
 o
vr

eT
 e

p
o

o
R

 
g

ni
ts

ac
er

o
F 

tc
a

p
mI

 r
eh

ta
e

W 
d

es
a

B-
g

ni
nr

a
eL

 
e

ni
hc

a
M

 y
ti

sr
ev

i
n

U 
otl

a
A

 1202

 ecneicS retupmoC fo tnemtrapeD

desaB-gninraeL enihcaM
tcapmI rehtaeW

 gnitsaceroF

ovreTepooR

LAROTCOD
SNOITATRESSID



 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD  231 /  1202

rehtaeW desaB-gninraeL enihcaM  
 gnitsaceroF tcapmI

 ovreT epooR

fo rotcoD fo eerged eht rof detelpmoc noitatressid larotcod A  
eht fo noissimrep eht htiw ,dednefed eb ot )ygolonhceT( ecneicS  

dleh noitanimaxe cilbup a ta ,ecneicS fo loohcS ytisrevinU otlaA  
51 no ,27404953796/j/su.mooz.otlaa//:sptth knil noitcennoc etomeR  

 .00:51 ta 1202 rebmevoN

 ytisrevinU otlaA
 ecneicS fo loohcS

 ecneicS retupmoC fo tnemtrapeD
 ataD giB rof gninraeL enihcaM



Printed matter
4041-0619

N
O

R
DIC

 SWAN ECOLAB
E

L

Printed matter
1234 5678

 rosseforp gnisivrepuS
 gnuJ rednaxelA rosseforP tnatsissA

 
 rosivda sisehT

 gnuJ rednaxelA rosseforP tnatsissA
 

 srenimaxe yranimilerP
 dnalniF ,ukruT fo ytisrevinU ,alakkihaP oipaT rosseforP etaicossA

 airtsuA ,kimanydoeG dnu eigoloroeteM rüf tlatsnalartneZ ,rekcihcS enerI rehcraeseR
 

 tnenoppO
 dnalniF ,iknisleH fo ytisrevinU ,ikämalouP iaK rosseforP etaicossA

 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD  231 /  1202

 
 © 1202   ovreT epooR

 
 NBSI 7-4250-46-259-879  )detnirp( 
 NBSI 4-5250-46-259-879  )fdp( 
 NSSI 4394-9971  )detnirp( 
 NSSI 2494-9971  )fdp( 

:NBSI:NRU/if.nru//:ptth  4-5250-46-259-879
 

 yO aifarginU
 iknisleH  1202

 
 dnalniF

 



 tcartsbA
  otlaA 67000-IF ,00011 xoB .O.P ,ytisrevinU otlaA  if.otlaa.www

 rohtuA
 ovreT epooR

 noitatressid larotcod eht fo emaN
 gnitsaceroF tcapmI rehtaeW desaB-gninraeL enihcaM

 rehsilbuP  ecneicS fo loohcS

 tinU  ecneicS retupmoC fo tnemtrapeD

 seireS seires noitacilbup ytisrevinU otlaA  SNOITATRESSID LAROTCOD  231 /  1202

 hcraeser fo dleiF  ecneicS retupmoC

 dettimbus tpircsunaM  1202 lirpA 82  ecnefed eht fo etaD  1202 rebmevoN 2

 )etad( detnarg ecnefed cilbup rof noissimreP  1202 rebmetpeS 51  egaugnaL  hsilgnE

 hpargonoM  noitatressid elcitrA  noitatressid yassE

 tcartsbA
tsomla desuac dna ,sevil noillim 32.1 deriuqer ,elpoep noillib 4 revo decneuflni sretsasid larutaN  
elbarolped erom neve semoceb erutcip ehT .9102 dna 0002 neewteb sessol cimonoce noillirt 3 $SU  

roF .deredisnoc era ,seitlausac gniriuqer ton stneve rehtaew ereves elacs-rellams ,sdrazah nehw  
dna ,7102 ni rehtaew emertxe yb detciflni erew dnalniF ni segatuo rewop fo tnecrep 87 ,elpmaxe  
gnirud sdnuop noillib 1 tsoc ot detamitse neeb evah ,rehtaew esrevda yb desuac netfo ,syaled niart  
ecneiliser eht esaercni dna rehtaew esrevda eht fo stceffe eht etagitim oT .KU eht ni 7002 dna 6002  
-tcapmi fo ssensuoicsnoc eht desiar )OMW( noitasinagrO lacigoloroeteM dlroW eht ,seiteicos eht fo
suoirav ni desu eb nac snoitciderp dna sgninraw hcuS .stsacerof tcapmi htiw gnola sgninraw desab  

 .snoitidnoc rehtaew esrevda morf etarepucer dna etaivella ,eraperp ot sniamod
  

tcapmi elbaulav etaerc ot gninrael enihcam esu dna atad ssecorperp ot woh seiduts siseht sihT  
detneiro-tcejbo levon a secudortni siseht ehT .srotarepo cfifart liar dna dirg rewop rof stsacerof  

-eht-fo-etats senibmoc dohtem ehT .smrots evitcevnoc yb desuac segatuo rewop tciderp ot dohtem
gninrael enihcam nredom htiw smhtirogla gnitsacwon dna ,gnikcart ,noitacfiitnedi mrots tra  

desuac segatuo rewop tciderp ot detpada osla si dohtem detneiro-tcejbo desoporp ehT .sdohtem  
gnitciderp fo ksat eht seiduts siseht eht ,noitidda nI .daeha syad smrots laciportartxe elacs-egral yb  
no sretemarap rehtaew segnih siseht eht ni detneserp dohtem ehT .syaled niart detciflni-rehtaew  

 .daeha syad syaled eht etapicitna ot syaled niart
  

segatuo rewop tciderp ot dohtem elbacidniv a si hcaorppa detneiro-tcejbo eht taht swohs siseht ehT  
fo txetnoc eht ni osla elbisaef si hcaorppa ralimis a taht dna smrots evitcevnoc yb desuac  

etarucca ylgnisaercni srotarepo dirg rewop edivorp sdohtem decudortni ehT .smrots laciportartxe  
rehtaew esrevda ot detaler syaled niart eht taht setartsnomed osla siseht ehT .snoitciderp egatuo  
rof noitamrofni lanidrac reffo snoitciderp hcuS .atad gniniart ytilauq doog htiw detciderp eb nac  
nac sehcaorppa ralimis ,ylbamuserP .snoitidnoc gnignellahc eht gniraperp ni srotarepo cfifart liar  
,stneve rehtaew elbafiitnedi yb decudorp stcapmi evitatitnauq htiw niamod rehto yna ot deilppa eb  

detaulave erew sdohtem gninrael enihcam decnavda lareveS .elbaliava era atad tcapmi tneicfifus fi  
tsubor a dedivorp stserof modnar :hcraeser gnitsixe htiw etaroborroc stluser ehT .sksat eht ni  

rotcev troppus dna ,sessecorp naissuaG ,seert gnitsoob tneidarg osla tub ,sksat lla ni ecnamrofrep  
 .lufesu devorp senihcam

 sdrowyeK  gninraeL esivrepuS ,noitciderP tcapmI ,rehtaeW ,gninraeL enihcaM

 )detnirp( NBSI  7-4250-46-259-879  )fdp( NBSI  4-5250-46-259-879

 )detnirp( NSSI  4394-9971  )fdp( NSSI  2494-9971

 rehsilbup fo noitacoL  iknisleH  gnitnirp fo noitacoL  iknisleH  raeY  1202

 segaP  151  nru :NBSI:NRU/fi.nru//:ptth  4-5250-46-259-879





 ämletsiviiT
  otlaA 67000 ,00011 LP ,otsipoily-otlaA  if.otlaa.www

 äjikeT
 ovreT epooR

 imin najriksötiäV
 teskutsunnesutukiav nääs tavutsurep neesimippoenoK

 ajisiakluJ  uluokaekrok nedieteitsureP

 ökkiskY  sotial nakiinketoteiT

 ajraS seires noitacilbup ytisrevinU otlaA  SNOITATRESSID LAROTCOD  231 /  1202

 alasumiktuT  akkiinketoteiT

 mvp neskutiojrikisäK  1202.40.82  äviäpsötiäV  1202.11.20

 äviäpsimätnöym navulylettiäV  1202.90.51  ileiK  itnalgnE

 aifargonoM  ajriksötiävilekkitrA  ajriksötiäveessE

 ämletsiviiT
aj airhunolouk aanoojlim 32,1 tavitaav ,neekneh niidrajlim 4 ily tavittukiav tfiortsataknonnouL  
eenekkieh avuK .9102 -- 0002 anisouv toippat tesilleduolat nirallod nanoojlib 3 sehäl tavittout  

87 iskikremisE .tamuthapatääs tavakav nakoul nämmeneip söym naadioimouh iläkim ,näätsesitne  
nähääs niesu -- atlaasioT .aimattuehia nääs ilo atsioktakökhäs 7102 nedouv nemouS aittnesorp  

7002 -- 6002 anisouv toippat nannup nidrajlim atloivra tavittout tesimytsähöym neinuj -- tävyttiil  
tynätnedhät nikno )OMW( ötsejräj nedieteitamli namliaaM .assainnatirB-assosI  

nähääs neesillaraav ättyekrät nedietsunnesutukiav aj netsutiorav nesietsurepsutukiav  
alliesu enilävupa äekrät tavo teskutsunne aj teskutiorav tesietsurepsutukiaV .assesimutuarav  

aj aiskutukiav nediin ässeättiveil äkes nihiöimliääs niiverää asseutuarav allieula-aso nannuksiethy  
 .ätsiin asseupiot

  
-okkrevökhäs atsimimppoenok äätnydöyh aj aatad adiossesorpise akniuk iiktut ajriksötiäv ämäT  

neduu eelettise ajriksötiäV .assietsunnesutukiav assiutetout ellierottaarepoennekiilanuj aj  
.iskesimatsunne nejoktakökhäs neimattuehia nejomliujar netsiviitkevnok nidotem nesiajhopoilo  

timtiroglasutsunneiktehihäl aj -suarues ,-sutsinnut nyksrym tesiasatnaja äätsidhy idoteM  
uttakoum söym no idotem neniajhopoilo uttetodhE .niimletenemsimippoenok nihienredom  

ajriksötiäv ,iskäsiL .ajoktaökhäs aimattuehia nejyksrymeniapalatam netsiala-ajaal naamatsunne  
idohtem yttetise assajriksötiäV .atsimatsunne netsimytsähöym neinuj neimattuehia nääs iiktut  

äiviäp adiokanne naadiov äisimytsähöym attoj ,naatadsimytsähöym neinuj tirtemarapääs äätsidhy  
 .neetäkute

  
nejyksrym netsiviitkevnok nivyh iimiot apatsimytsehäl neniajhopoilo ätte ,aattioso ajriksötiäV  
söym aatlevos naadiov aidotem aavaatsav ätte aj ,assesimatsunne nejoktakökhäs neimattuehia  

-okkrevökhäs tavaojrat tidotem tytetise assajriksötiäV .asseskuapat nejyksrymeniapalatam
nääs ätte ,söym aattioso ajriksötiäV .atietsunneoktakökhäs aipmekrat ätsitne ellierottaarepo  
no aatadsutuluok atsiutaalävyh iläkim aatsunne naadiov äisimytsähöym neinuj neimattuehia  
niisilleetsaah ellierottaarepoennekiilanuj ätiekrät nivyh tavo teskutsunne tesialläT .allivataas  
söym äätnydöyh naadiov ajopatsimytsehäl ajomas itsavattetelO .asseattuduarav niisiethusolo  

namuthapatääs navattetsinnut aj aivattennillam itsesireemun tavo aiskutukiav allioj ,alliola allium  
nediesu eeliatrev ajriksötiäV .allivataas no aatadsutukiav atsillonnuk äkes aimattout  

netsillede assajnil tavo teskoluT .niiväthät niivätletisäk attuuvutlevos nediedotemsimppoenok  
ajomravatimiot tavisojrat )'stserof modnar'( tästemsiannutas itsesiytire :assnak netsumiktut  
,)'seert gnitsoob tneidarg'( tuup tesietsivhavittneidarg attum ,ässiväthet assikiak atietsunne  

tavimiot )'senihcam rotcev troppus'( teenokokkrevikut aj )'sessecorp naissuaG'( tissesorp tesissuaG  

 tanasniavA  nenimippo uttajhO ,sutsunneääS ,sutsunnesutukiaV ,nenimippoenoK

 )utteniap( NBSI  7-4250-46-259-879  )fdp( NBSI  4-5250-46-259-879

 )utteniap( NSSI  4394-9971  )fdp( NSSI  2494-9971

 akkiapusiakluJ  iknisleH  akkiaponiaP  iknisleH  isouV  1202

 äräämuviS  151  nru :NBSI:NRU/fi.nru//:ptth  4-5250-46-259-879





Kiitokset

Pojalleni Aatokselle

Olen aina halunnut tuottaa maailmaan edes pisaran verran uutta tietoa.
Toivottavasti tämä toimii esimerkkinä toiveiden toteuttamisesta myös
Sinulle.

Haluan kiittää työnantajaani Ilmatieteen laitosta ja pomoani Tarja
Riihisaarta tämän mahdollistamisesta. Lisäksi kiitän lämpimästi profes-
soriani Alex Jungia, joka on tarjonnut erinomaista tukea opiskeluuni ja
tutkimukseeni. Kanssakirjoittajani Joonas, Ilona ja Laila ovat kontribuoi-
neet merkttivästi tutkimukseen. Kiitän syvästi myös Timoa, Annakaisaa,
Anttia, Markoa, Yuta, Laiaa ja Elenaa tekstieni kommentoinnista.

Kiitos äidille, isälle ja isovanhemmilleni, että opetitte arvostamaan sivistystä.

Ja ennen kaikkea, kiitos vaimolleni Tealle tuesta, mitä ilman tämä työ ei
olisi ollut mahdollista.

Heidelberg, 15 syyskuuta 2021,

Roope Tervo

11





Contents

Kiitokset 11

Contents 13

List of Publications 15

Summary of Publications and Author’s Contribution 17

List of Figures 19

List of Tables 23

Abbreviations 25

1. Introduction 27
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2 Scientific Contribution . . . . . . . . . . . . . . . . . . . . . . . 31
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2. Monitoring and Predicting Adverse Weather 33
2.1 Convective Storms . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Extratropical Storms . . . . . . . . . . . . . . . . . . . . . . . . 36

3. Machine Learning Primer 39
3.1 The Concept of Data . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 The Concept of Model . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 The Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Training Process . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Summary of Relevant Machine Learning Methods . . . . . 43

3.5.1 Gaussian Naïve Bayes (GNB) . . . . . . . . . . . . . 43
3.5.2 Generalised Linear Model (GLM) . . . . . . . . . . . 43
3.5.3 Decision Trees (DT) . . . . . . . . . . . . . . . . . . . 43
3.5.4 Random Forest (RF) . . . . . . . . . . . . . . . . . . . 44
3.5.5 Gradien Boosting Trees (GBT) . . . . . . . . . . . . . 44

13



Contents

3.5.6 Multilayer Perceptron (MLP) . . . . . . . . . . . . . 45
3.5.7 Support Vector Machines (SVM) . . . . . . . . . . . . 45
3.5.8 Gaussian Processes (GP) . . . . . . . . . . . . . . . . 46

4. Predicting Power Outages 49
4.1 Existing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Convective Storms . . . . . . . . . . . . . . . . . . . . 50
4.1.2 Extratropical Storms . . . . . . . . . . . . . . . . . . . 50

4.2 Proposed Method to Predict Power Outages . . . . . . . . . 51
4.2.1 Convective Storms . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Extratropical Storms . . . . . . . . . . . . . . . . . . . 54

4.3 User Interface for the Power Outage Predictions . . . . . . 58

5. Predicting Weather-Inflicted Train Delays 61
5.1 Existing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 User Interface for the Train Delay Predictions . . . . . . . . 66

6. Summary of Results and Discussion 69
6.1 Key Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 Discussion and Future Directions . . . . . . . . . . . . . . . . 71

References 75

Publications 87

14



List of Publications

This thesis consists of an overview and of the following publications which
are referred to in the text by their Roman numerals.

I Roope Tervo, Joonas Karjalainen, Alexander Jung. PREDICTING ELEC-
TRICITY OUTAGES CAUSED BY CONVECTIVE STORMS. In IEEE
Data Science Workshop (DSW), Lausanne, pp. 145-149, May 2018.

II Roope Tervo, Joonas Karjalainen, Alexander Jung. Short-term predic-
tion of Electricity Outages Caused by Convective Storms. IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 57, no. 11, pp. 8618 – 8626,
November 2019.

III Roope Tervo, Ilona Láng, Alexander Jung, Antti Mäkelä. Predicting
power outages caused by extratropical storms. Natural Hazards and
Earth System Sciences, 21 pp. 607–627, February 2021.

IV Roope Tervo, Laila Daniels, Alexander Jung. Predicting Weather-
Inflicted Rail Traffic Disruptions. Submitted to Springer Transportation,
25 pp., April 2021.

15





Summary of Publications and Author’s
Contribution

Publication I: “PREDICTING ELECTRICITY OUTAGES CAUSED BY
CONVECTIVE STORMS”

Publication I introduces a novel object-oriented power outage prediction
method focusing on the outages caused by convective storms. The pre-
diction is based on weather radar data. The method combines storm
identification, tracking, and radar-based nowcasting algorithms with state-
of-the-art machine learning methods to classify the storm cells based on
their damage potential to the power grid. The paper compares random
forest classifiers with multilayer perceptron neural networks in the task
and finds the random forests to provide better classification results.

The author proposed and designed the method. He also employed back-
ground analysis, trained and optimised the machine learning methods,
and analysed their performance. The author was the main writer of the
paper.

Publication II: “Short-term prediction of Electricity Outages Caused
by Convective Storms”

Publication II develops the object-oriented power outage prediction further
and deepens the analysis provided in Publication I. The method was also
trained with a larger dataset, and the optimisation of the machine learning
models was done more assiduously. The paper extends the analysis of the
power outages and the performance of the model with an analysis of the
importance of predictive features.

The author carried out scientific research and wrote the paper.

17



Summary of Publications and Author’s Contribution

Publication III: “Predicting power outages caused by extratropical
storms”

Publication III adapts the power outage prediction method, introduced in
Publication I and Publication II, to extratropical storms. Similar to the
previous publications, the method identifies and tracks the storm objects
from gridded weather data and classifies the objects based on their damage
potential to the power grid using machine learning. The identification
and tracking process is tailored for geographically broad and long-lasting
storms. ERA5 reanalysis data were used in the model training. The paper
finds Gaussian processes and Support vector classifiers to befit in the clas-
sification task.

The author introduced and implemented the method and conducted the
scientific analysis. The author was one of two main writers of the paper.

Publication IV: “Predicting Weather-Inflicted Rail Traffic
Disruptions”

Publication IV proposes a novel method to predict an average delay of
arrived trains at the station based primarily on the weather information.
Such method can be deployed to predict the train delays days ahead. The
paper introduces binary classification to anticipate severe disruptions
along with regression to estimate the amount of delay.

The author designed and developed the method. He also employed back-
ground analysis, trained and optimised the machine learning methods,
and analysed their performance. The author was the main writer of the
paper.

18



List of Figures

1.1 Conceptual illustration of the decision process to decide
warning level for impact-based warnings, adapted from [1].
The warning level typically depends on the probability of
the weather event and the severity of its impacts. This
thesis studies methods for computing predictions for the
expected impacts of weather. . . . . . . . . . . . . . . . . . . . 29

1.2 An example for an impact-forecast that measures the im-
pacts by the number of households being disconnected from
the power grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Taxonomy of weather events based on their spatial and
temporal extend. This thesis considers the events described
in dark font. The figure is modified from [2] . . . . . . . . . 32

2.1 Illustrative example of data types in the thunderstorms-
inflicted power outage predictions in Section 4.2.1. The blue
areas in the figure represent the precipitation. Identified
storm objects, solid polygons with intensive precipitation,
are marked with a black line. . . . . . . . . . . . . . . . . . . 35

2.2 NWPs discretise the atmosphere using a regular grid and
compute different parameters for each grid point. The
dark grids represent the model levels and the red grid the
surface level. Instead of using these grid points directly,
the methods presented in Chapter 4 extract weather events
(storm objects) from the grid. . . . . . . . . . . . . . . . . . . . 37

3.1 Example decision tree. Considered features and the cor-
responding thresholds in each node are deducted in the
training process by minimising the cost function. This
imaginary example use Gini-impurity. . . . . . . . . . . . . . 44

19



List of Figures

3.2 Example multilayer perceptron. The nodes are shown as
circles and weights as lines between the nodes. This ex-
ample has Sigmoid activation function ( 1

1+e−z ) at the first
two hidden layers and SoftMax layer, producing categorial
output at the last hidden layer. . . . . . . . . . . . . . . . . . 46

3.3 Kernel trick illustrated. (a) visualises a linearly non-separable
classification problem. In (b) the same data is transformed
with kernel Φ(x)= (

�
2x1x2, x2

1, x2
2). The decision boundary of

SVC classifier is presented with gray surface. . . . . . . . . 47

4.1 Normalised confusion matrix of RFC. Each cell represents
the probability of predicted and true label combination. For
example the upper left cell tells a probability that the model
predicts class 0 when true class is 0. . . . . . . . . . . . . . . 53

4.2 a) Geographical coverage of the local outage data (used in
Section 4.2.1). The power grid of one company is illustrated
with red lines, and the operative areas of another com-
pany with green lines. b) National outage dataset regions.
Outages are obtained from most power grid companies in
Finland and aggregated to the regions shown in the figure.
The figure is originally published in Publication III (license
CC4BY). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Normalised confusion matrix of SVC. Each cell represents
the probability of predicted and true label combination. For
example the upper left cell tells that the model predicts
class 0 with 64 percent probability when true class is 0. . . 58

4.4 A user interface is providing the forecast of convective
storms to power grid operators. The map view presents
the categorised storm objects, and the graph estimates the
number of households being disconnected from the power
grid at the selected area as a function of time. Blue lines
on the map represent operating areas, following roughly
Finnish municipalities. . . . . . . . . . . . . . . . . . . . . . . 59

4.5 A user interface providing the forecast of extratropical
storms to power grid operators. The map view presents
the categorised storm objects. The user may select the area
of interest and get similar impact estimation as shown in
Figure 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Normalised confusion matrices of GBC for both the whole
and weather-related dataset and the continuous and ran-
domly selected test set. Each cell represents the probability
of predicted and true label combination. . . . . . . . . . . . . 65

20



List of Figures

5.2 Actual and predicted average delay over train stations in
February 2011 (test set of the whole dataset). Figure from
Publication IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 UI to explore train delay predictions. The map contains a
rail network with colour-coded train stations. The green
colour indicates that no severe disruptions are anticipated.
The graph under the map shows the predicted amount of
delay as a function of time at the selected station. The map
in the figure also contains wind gust (light blue areas) and
precipitation (green areas) overlays. . . . . . . . . . . . . . . 67

21





List of Tables

4.1 Storm cell class definitions . . . . . . . . . . . . . . . . . . . . 52
4.2 Class definitions in the task of predicting extratropical

storms-related power outages . . . . . . . . . . . . . . . . . . 56

5.1 Characteristics of train delay data divided to two different
dataset: the weather-related dataset and the whole dataset. 64

23





Abbreviations

AMDAR Aircraft Meteorological DAta Relay

ANN Artificial neural network

BART Bayesian additive regression trees

BSS Brier skill score

BT Boosted gradient tree

CAPPI Constant altitude plan position indicator

DBSCAN Density-based spatial clustering of applications with noise

dBZ Radar reflectivity factor

DT Decision tree

ECMWF European Centre for Medium-Range Weather Forecasts

ENS Ensemble decision tree

EPS Ensemble Prediction System

ERA5 ECMWF Reanalysis v5

FMI Finnish meteorological institute

GBC Gradient boosting trees classifier

GBR Gradient boosting trees regression

GBT Gradient boosting trees

GDBSCAN Generalized density-based spatial clustering of applications
with noise

GLM Generalised linear models

GNB Gaussian naïve Bayes

25



Abbreviations

GP Gaussian processes

i.i.d. Independent and identically distributed

LR Linear regression

LSTM Long short-term memory network

Luke The Natural Resources Institute Finland

MAE Mean absolute error

MCS Mesoscale convective systems

MLE Maximum likelihood estimation

MLP Multilayer perceptron

NWP Numerical weather prediction

PPI Plan position indicator

QRF Quantile regression forests

RF Random forest

RFC Random forest classifier

RMSE Root mean squared error

RNN Recurrent neural network

SAR Synthetic-aperture radar

SMOTE Synthetic Minority Oversampling Technique

SVC Support vector classifier

TITAN Thunderstorm, Identification, Tracking, Analysis, and Nowcasting

UI User interface

SVM Support vector machine

WMO The World Meteorological Organization

26



1. Introduction

1.1 Motivation

Adverse weather poses a considerable threat to life, wellbeing, and property
and causes tremendous economic loss across the world each year. Between
2000 and 2019, 7 348 major disasters, influencing at least 100 people,
requiring more than ten casualties, causing a state emergency, or calling
for an international emergency, were reported globally. The disasters
influenced altogether over 4 billion people, required 1.23 million lives, and
caused almost US$ 3 trillion economic losses. [3]

The picture becomes even more gloomy when hazards, smaller-scale
severe weather events, are considered. The comprehensive global statistics
have not been gathered, but extensive losses have been estimated in
different domains and areas. To name some examples: wind damages
forest up to 200 million m3 y−1 in Europe, causing considerable losses in
economic value, and carbon sequestration [4]; road transport is vulnerable
to the extreme weather in UK [5]; 78 percent of power outages in Finland
were inflicted by extreme weather in 2017 [6, p.20]; train delays, often
caused by adverse weather, have been estimated to cost 1 billion pounds
during 2006 and 2007 in UK [7].

Sharp growth in the number of recorded disaster events and the losses
have been observed compared to the previous 20 years [3]. Windstorm
damages have also increased significantly during the previous decades
in Europe [8, 9, 10, 11]. However, the number of windstorms may not be
the reason for the increased damages [12, 13, 14] but also the increased
vulnerability of society may play a significant role [15].

Many of these consequences could be avoided by anticipating and commu-
nicating the events beforehand [2], and especially early warning systems
could decrease death tolls and costs [16]. However, this is not always the
case, even though the hazardous conditions would have been correctly
forecasted. One fundamental reason for the damages is a lack of under-
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standing of the impacts of the predicted hydrometeorological conditions
among the authorities and the wide audience [1].

In 2015, The World Meteorological Organization (WMO) prioritised the
impact-based warnings and impact forecasts for mitigating the conse-
quences induced by the severe weather [1]. Traditionally, meteorological
services have provided weather forecasts such as1:

Forecast for next 24 hours
Sea of Bothnia
North to northeast 9-13 m/s, in the evening up to 15. Locally showers of snow,
otherwise good vis.

In contrast, the impact-based warnings and forecasts are based on and
augmented with the anticipated consequences:2

Southern Sea of Bothnia
Wind warning for sea areas — valid between 5.2. 09:00 - 5.2. 22:00
North to northeast gale 15 m/s starting before noon.
Possibly dangerous for recreational crafts and small boats.

The impact-based warnings typically include the risk level determined
from the probability of hazard occurrence with the severity of the hazard
with an impact matrix as illustrated in Figure 1.1. If a low impact event
occurs with low probability, no warning is given. In a case of high impact
with low probability, a low-level warning is given. A high or moderate
impact event with high probability triggers a high-level warning. It is
notable that the impacts of weather events greatly vary between different
areas and societies. For example, a blizzard hardly affects life in northern
Lapland but causes chaos in southern European cities.

The impact forecasts and warnings predict the direct consequences. An
example of such application is revealed in Figure 1.2. The map shows
storm cells categorised based on their damage potential, and the graph tells
occurred and forecasted households without electricity. The application
is discussed more in Chapter 4. Notably, creating such forecasts require
knowledge and data about users’ processes, exposure mechanisms, and
impact data that can be combined with the meteorological data.

The anticipation of the impacts is not always adequate. Timely and
correct mitigating actions need to be taken by various humans and au-
tomated agents, such as power grid operators as in Chapter 4 and rail
traffic operators as in Chapter 5. Usability and quality of delivered infor-

1Example taken from:
https://en.ilmatieteenlaitos.fi/weather-forecast-for-shipping at 5/2/2021
2Example taken from:
https://en.ilmatieteenlaitos.fi/warnings at 5/2/2021
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Figure 1.1. Conceptual illustration of the decision process to decide warning level for
impact-based warnings, adapted from [1]. The warning level typically depends
on the probability of the weather event and the severity of its impacts. This
thesis studies methods for computing predictions for the expected impacts of
weather.

Figure 1.2. An example for an impact-forecast that measures the impacts by the number
of households being disconnected from the power grid.

29



Introduction

mation depend significantly on the context and requirements of agents
receiving the information. Thus, the impact forecasts need to be delivered
in different ways and forms for different users [17].

Machine learning is a key technology to create impact forecasts. Gen-
erally, machine learning refers to a set of methods capable of learning
from data. The methods may be supervised or unsupervised. Supervised
methods are trained with correct answers and labels, while unsupervised
methods try to learn data structure independently. Impact forecasts typi-
cally employ supervised learning with weather data as predictive features
and impact data as labels.

Machine learning methods have widely been used, especially for indirect
impact predictions, focusing on providing tools for meteorological duty offi-
cers and other authorities who can then communicate the warnings to the
end-users. Typical domains are for example predicting floods [18], detect-
ing forest fires [19, 20, 21], tropical cyclone modelling [22] and detection
[23], classification of convective storms [24, 25], and predict extreme pre-
cipitation and hails [26, 27]. Convolutional neural networks have also been
applied to find extreme weather from climate datasets [28] and weather
datasets [29, 30]. Numerous products providing direct impact forecasts
exist as well. Example of such products are predicting flight delays [31],
detecting turbulence from weather radar data [32], reducing traffic acci-
dents [33, 34], and predicting power outages [35]. The impacts of weather
are not always negative. In the field of renewable energy, predicting solar
energy production [36, 37] and wind power production are typical tasks
solved with machine learning techniques [38].

As previous examples show, a lot has already been done to predict the im-
pact of adverse weather. However, the existing examples contend with only
specific domains in societies. Geographical and infrastructural features
also vary, and the methods need to be adapted to dedicated regions and so-
cieties. A spectrum of possible machine learning methods is also enormous,
and underlying data can be processed and employed in numerous ways.
Different methods are often required to create predictions in various time
scales. Underlying data and its preprocessing differ in structure, accuracy,
and update frequency depending on the time scale. Thus, a dedicated set
of methods are required to create a prediction hours ahead, days ahead, or
even years ahead.

As an example of a particular domain of impact forecasts, extreme
weather events cause a substantial number of power outages each year.
While hurricanes are one primary reason for large blackouts [39], espe-
cially overhead power lines are vulnerable to heavy winds and lightning
caused by convective thunderstorms and extratropical storms in Europe
[11]. For example in Finland, hundreds of thousands of households are
experiencing power outages caused by weather events each year [6]. These
events can not be prevented, and burying all lines underground would
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not be economically meaningful in rural areas, but predicting the power
outages as accurately and early as possible would help power grid op-
erators to mitigate their impact and provide civil protection authorities
the possibility to prepare the society to possible outbreaks. However, the
geospatial and temporal resolution and the accuracy of the current power
outage predictions need still to be improved for a successful preparedness.

The adverse weather is also a common source of train delays causing
significant economic loss each year [7]. Especially intense snowfall and
heavy wind inflict delays in northern Europe [40, 41, 42, 43, 44] and China
[45]. Although weather conditions have been included in several short-
term delay propagation estimations (i.e., [46, 47]), days-ahead predictions
of the weather-inflicted train delays have not been made before.

This thesis studies how supervised machine learning can be utilised to
create valuable impact forecasts for end-users in northern Europe. Three
particular applications are considered: (1) predicting power outages caused
by convective storms (Section 4.2.1), and (2) extratropical storms (Section
4.2.2), (3) anticipating train delays caused by adverse weather (Chapter 5).
The characteristic geospatial and temporal scale of the events considered
in this thesis are illustrated in Figure 1.3. The lead time of the forecasts
varies from hours (convective storms) to days (extratropical storms and
adverse weather for rail traffic). The event size varies from a kilometre to
hundreds of kilometres, correspondingly.

The challenge in creating accurate impact predictions increases from
applications (1) to (3). Power outages caused by convective storms are
easier to predict than extratropical storms (in the means of machine learn-
ing) since the spatial and temporal accuracy of available weather data is
better for local events. The train delays are particularly challenging to
predict since, in addition to the lower accuracy of the data, they are not
typically inflicted by any single identifiable event but long-lasting weather
conditions.

1.2 Scientific Contribution

The thesis has three important scientific contributions. First, it proposes a
new object-orientated method to predict power outages caused by convec-
tive and extratropical storms. The method contains a storm identification
with a solid threshold, tracking, feature extraction, and classification based
on the damage potential of the storm cells. The proposed method is an
unprecedented combination of object-orientated data processing and state-
of-the-art machine learning classification methods. Opposite to grid- and
point-based methods, the object-oriented methods process the storms as
polygons (‘objects’). Most importantly, the combination incorporates merg-
ing storm objects with meteorological and non-meteorological features
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Figure 1.3. Taxonomy of weather events based on their spatial and temporal extend. This
thesis considers the events described in dark font. The figure is modified from
[2]

and classifying them based on their potential to induce power outages.
The method is applied first to the convective storms (Publication I and
Publication II) and then modified to the extratropical storms (Publication
III).

Second, the thesis introduces a novel framework to anticipate weather-
inflicted train delays days ahead (Publication IV). The thesis shows that
the weather-related train delays can be predicted days ahead with valu-
able accuracy. A thorough literature search did not yield previous works
providing weather-related long-term train delay predictions.

Third, the thesis delivers essential information on how different ma-
chine learning methods function with the weather, power outage, and rail
traffic information. It compares several state-of-the-art machine learning
methods exploiting the storm objects in the power outage predictions and
aggregated ground observations in the train delay prediction.

1.3 Structure

Chapter 2 provides a brief overview of monitoring and predicting adverse
weather. Chapter 3 continues with a similar overview on machine learning
as relevant for this thesis. Chapter 4 presents methods to forecast weather-
related power outages caused by convective storms (Section 4.2.1) and
extratropical storms (Section 4.2.2). Chapter 5 presents a method to
forecast weather-induced rail traffic disruptions days ahead. Chapter 6
discusses the key results and speculates about future research avenues.
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2. Monitoring and Predicting Adverse
Weather

While surface weather observations work as the backbone of the global ob-
serving system [48], diverse sensors and systems contribute to monitoring
the atmosphere. The surface weather observations provide information
at a specific location. They are a relevant source of information for appli-
cations requiring a time series of faced weather conditions on the Earth
surface, such as train delay prediction discussed in Chapter 5.

Some phenomenons, such as storm events, require, nevertheless, more
complex instrumentation. This chapter briefly introduces the monitoring
and prediction system, essential to this research, for the readers from
non-meteorological domains. The particular focus is on convective and
extratropical storms causing power outages, discussed more in Chapter 4.

2.1 Convective Storms

Thunderstorms – caused by upward atmospheric motion, convection – are
typically geospatially small and evanescent phenomena. Individual storms
may be only a few kilometres large and endure only tens of minutes [49, 50].
While multi-cell storms or mesoscale convective systems (MCS) may cover
large areas, the thunderstorms may also occur as individual, single-cell
storms. They often include extremely heavy precipitation, lightning, hails,
and heavy winds and can cause severe damage [51, 52].

Being short-living and local events, thunderstorms are hard to observe
with sparse surface measurements and model with numerical weather
prediction models (NWP). They are most typically monitored with weather
radars that scan the atmosphere with a few hundred kilometre range from
different elevation angles and produce 3-dimensional volumes of data [53]
including several parameters1 such as radial Doppler speed and radar
reflectivity factor (dBZ). Most of the observed radar parameters can also
be examined in a two-dimensional plane projection at a certain altitude,

1In the context of weather radars, the typical term is variable. Here, the term
parameter is used for the consistence.
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called constant altitude plan position indicator (CAPPI) product.
In addition to the regular grid, the convective weather can be anal-

ysed in an object-oriented way. The paradigm roots back to the 1970s,
when Crane proposed adaptive thresholds to identify and track the storm
objects [54]. In the 1990s, Dixon and Wiener introduced a widely used
Thunderstorm, Identification, Tracking, Analysis, and Nowcasting (TI-
TAN) algorithm, which identifies the objects from 3-dimensional data [55].
Several studies have further extended and developed the object-oriented
storm identification and tracking (i.e. [56, 57, 58, 59, 60, 61]). All pro-
posed algorithms identify the storm cells from the regular grid by finding
2- or 3-dimensional contours with a single [58, 60, 55], adaptive [54] or
multiple thresholds [57, 56]. The tracking of the identified storm cells
may be conducted as the combinatorial optimisation problem [62] like in
TITAN [55] or based on the heuristic criteria such as geospatial proximity
or overlapping [56, 57, 58, 60, 61]. The object-oriented tracking can be
further improved by moving the previous time step objects with estimated
velocity vectors before applying the heuristic criteria. A split and merge of
the convective storms may be considered as well (i.e., [57, 60]).

A few-hours-ahead prediction of the precipitation and convective storms
is typically conducted with a nowcast. Nowcasts are often, but not always,
based on the weather radar data, and radar-based nowcasts focus on
the precipitation. Traditionally, they are based on the velocity vector
field, calculated to the whole grid employing cross-correlation (i.e., [63])
or optical flow algorithm [64], which is used to extrapolate the observed
precipitation pattern forward in time (i.e., [65]). The methods have been
further improved to take a stochastic nature of the precipitation into
account and employ NWP data (i.e., [66]). The object-oriented methods
provide a computationally less consuming way to predict the storm motion
since instead of defining the velocity vectors for the whole grid, the vectors
and the extrapolation are determined only for the identified storm cells.
For example, TITAN [55] identifies the storm cells from weather radar
data, tracks them, and provides a short-term prediction of their movement.
Recently, the artificial neural networks are widely experimented in the
nowcasting (i.e. [67, 68, 69]). For a more detailed review, the reader is
asked to consult [70].

Figure 2.1 instantiates the data types one needs to process when dealing
with the radar and nowcasting data. Radar data are typically processed
in a regular grid and further handled as images. Thus, radar data cover
the whole spatial domain, while ground observations are available only at
specific points. Notably, instrumentation varies at each observation station,
and most stations observe only a subset of all observable parameters.

The method presented in Section 4.2.1 exploits the operative CAPPI
radar data produced by the Finnish Meteorological Institute (FMI). The
data is cleaned from non-meteorological echoes with an anomaly removal,
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Figure 2.1. Illustrative example of data types in the thunderstorms-inflicted power outage
predictions in Section 4.2.1. The blue areas in the figure represent the precipi-
tation. Identified storm objects, solid polygons with intensive precipitation,
are marked with a black line.
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described in [71]. The weather radar parameter used in this work is the
radar reflectivity factor, a quantity based on the backscattered power from
the atmospheric rain or snow particles, which can be converted to represent
the rainfall intensity. The data are derived from 11 Doppler C-band radars
covering Finland, which scan in a spatial resolution of 250 metres and a
temporal resolution of 5 minutes.

2.2 Extratropical Storms

Extratropical storms, also referred to as extratropical cyclones, are caused
by synoptic-scale low-pressure areas. They are typically over 1000 kilome-
tres wide, and their lifetime varies from several days to 2 weeks. Extrat-
ropical storms appear in the middle latitudes of the Earth and often cause
a rapid temperature change, yielding weather fronts from the center of the
storms. Such storms can produce heavy winds and blizzards but can also
be embedded with thunderstorms and tornadoes.” [72]

The process of monitoring and predicting extratropical storms consists of
observations, analysis, and prediction phases. In the first phase, ground
observations, soundings, aircraft observations (AMDARS), and satellite
observations compose an earth observation data feed. In the second phase,
the feed is fed to the assimilation process, creating an analysis represent-
ing a state of the atmosphere. The assimilation process typically contains
a short-range forecast from the previous analysis time step and the obser-
vations correcting the forecast. The resulting new analysis is then used to
update the forecast, and the process is repeated. The analysis phase can
also be calculated retrospectively to produce a consistent long time series
about the past climate in the process called reanalysis. A more detailed
description of the assimilation process is available in [73].

The third phase contains creating a weather forecast with a long-term
simulation based on the analysis. The typical forecast range is from 2
to 14 days ahead of the analysis time. The second and the third phase
together are called a numerical weather prediction model (NWP). The
modern weather forecasting systems contain also an ensemble prediction
system (EPS), where the long-term simulation is repeated several times
with slightly different analyses. The process yields an ensemble of forecasts
providing different weather scenarios and can thus provide probabilistic
information to the forecast. For more details on a the weather forecasting
process, the reader is asked to consult [74].

The analysis and NWP data are stored and processed on the regular
grid as illustrated in Figure 2.2. The data is typically produced in 3
dimensions but may be reduced into 2 dimensions on a level of interest in
the specific application. A one particular level is the land surface where
the parameters are provided from the specific altitudes near the Earth
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Figure 2.2. NWPs discretise the atmosphere using a regular grid and compute different
parameters for each grid point. The dark grids represent the model levels and
the red grid the surface level. Instead of using these grid points directly, the
methods presented in Chapter 4 extract weather events (storm objects) from
the grid.

ground. For example, the temperature is typically provided at a 2 metre
altitude, wind at a 10 metre altitude, and snow depth from the ground
level.

The method presented in Section 4.2.2 exploits ECMWF ERA52 reanaly-
sis land surface data [75] in a model training. The data are in 9 kilometre
spatial and 1-hour temporal resolution. Using the model in operations
would, however, require changing from reanalysis to NWP data.

2ERA5 data may be downloaded from Copernicus Climate Data Store: https:

//doi.org/10.24381/cds.bd0915c6
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3. Machine Learning Primer

Machine learning is typically seen as a family of models creating predic-
tions1 based on given data. The model consists of the underlying machine
learning method, which is fitted to the data based on a loss function in the
training process. This chapter illuminates the key components and terms
of machine learning. The aim is to be concise but comprehensive enough so
that the readers not familiar with machine learning can follow the thesis.
Machine learning can be supervised, unsupervised, or reinforced. This
thesis focuses on supervised learning. For more details, the reader is asked
to consult, for example, [76].

3.1 The Concept of Data

Data consist of predictive features and, in supervised learning, corre-
sponding labels. Each datapoint has n features stacked to a feature
vector x = (x1, ..., xn) ∈ Rn. Data contain m datapoints composing a ma-
trix X = (x1, ...,xm)T ∈ Rm×n. In the supervised learning, training data are
also complemented with m labels, correct answers of the prediction task,
composed to a vector y = (y1, ...ym) ∈ Rm. The primary features X in this
thesis are extracted from weather observations, weather radar data and
reanalysis, introduced in Chapter 2. The corresponding labels are dis-
cussed in Chapter 4 and 5. Data are often assumed to be independent
and identically distributed (i.i.d.), which does not hold for temporally and
geospatially dependent weather variables. Nevertheless, several studies
indicate good results obtained with machine learning models applied to
the weather data (i.e., [24, 77, 78]) despite of its internal structure.
1It is important to distinguish the term prediction from its ordinary meaning. In
the context of machine learning, prediction refers to the outcome of the machine
learning model, which is not necessarily anticipated future, such as weather
prediction.
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3.2 The Concept of Model

The objective of a machine learning task is to find a mapping from features
to labels for all possible datapoints:

y≈ h(x)= ŷ,

where y denotes the label, ŷ the model prediction, and h(x) refers to the
hypothesis. If the task is supervised, y is known for all datapoints used in
the training. In unsupervised cases, the correct answers are undetermined.
The machine learning task may be classification or regression depending
on whether y is discrete (classification) or not (regression).

The function h(x) is also called hypothesis. In practice, the hypothesis is
confined to a limited hypothesis space called model. The models include
always at least one variable vector optimised in the training process. For
example, a unregularised linear regressions (LR) is defined as:

h(x)= ŷ= xTw, (3.1)

where w is a weight vector acting as a variable. The training task is then
to find optimal values for w so that ŷ is as close to y as possible.

The main challenge in the machine learning task is to find an appropriate
model that is powerful enough for the particular mapping but is not too
powerful. Overly complex models need to be avoided for two reasons: First,
as the models gain complexity, they also become computationally unduly
expensive to train. Second, when hypothesis space enlarges due to the com-
plex models, the models tend to overfit. In other words, they find a perfect
solution for the training data but generalise poorly to the unprecedented
samples. The second problem is also coped with regularisation.

3.3 The Loss Function

The model is fitted to the data by minimising a loss function. In the
supervised learning, the loss function estimates the difference between the
prediction ŷ and the label y. Loss functions and their derivatives against
weights w are typically desired to be continuous for an efficient training
process. A squared error works as an example of loss function used in the
regression:

L
(
(x, y),h

)
:= (

y−h(x)
)2 = (y− ŷ)2

In the classification loss functions, h(x) is often assumed to provide a
probability that the sample belongs to the class y. One prevalent example
of loss functions is cross entropy loss. In the binary classification, the loss
is:

L
(
(x, y),h

)
:=−(y log

(
h(x)

)+ (1− y) log
(
1−h(x)

))
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If multiple classes are predicted, the loss gets the form:

L
(
(x, y),h

)
:=−

C∑
c=1

yind log
(
h(x)

)
, (3.2)

where yind = 1, if y= ŷ and 0 else.
As above examples denote, the loss is applied to a simple datapoint. Using

the i.i.d. assumption, the expected value of the loss can be approximated
with an average loss of data (X,y) ∈Rm×n. Hence, an empricial risk, often
called also as a cost, is calculated based on the loss:

E
(
h|(X,y)

)= 1
m

m∑
i=1

L
(
(x(i), y(i)),h

)= J(w) (3.3)

3.4 Training Process

Training the model can be accomplished using several techniques. One
of the prevailing methods is gradient descent, in which the weights are
updated gradually so that the cost function is minimised. On each step,
the weights get a new value following:

wnew =wold −α
∂J(w)

w
, (3.4)

where α is a learning rate and J(w) is a cost function.
A dataset is typically used for three purposes: training, validation, and

testing. The goal of the training is to find optimal weights (and other
trainable variables) by minimising the cost function (Equation 3.3). Most
machine learning models incorporate other tunable variables, hyperparam-
eters. They are considered constants during the training process, but their
values play a crucial role in the performance of the model. For example,
the learning rate α in Equation (3.4) greatly affects on the success of the
training process and thus model performance. The hyperparameters are
optimised in the validation phase, usually relying on grid- or random-
search [79] with a help of k-fold cross-validation. The general procedure of
the cross-validation is as follows:

1. Shuffle the dataset to a random order.
2. Split the dataset into k groups.
3. For each group:

(a) Hold out the group as the test data.
(b) Fit a model with other groups and evaluate its performance.
(c) Retain the evaluation score and discard the model.

4. Average evaluation scores to get overall performance for the whole
dataset.
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The grid-search involves defining a search space, a set of values for each
hyperparameter to be evaluated, and applying the k-fold cross-validation
for all possible combinations of the defined hyperparameter values. The
random-search selects the performed trials randomly.

The purpose of the testing is to evaluate the model performance with
unprecedented samples. A conventional procedure is to choose a fraction
of samples to the test set randomly. Model performance is evaluated then
with the test set, and the rest of the samples are used in the training
phase. Sometimes, especially if the labeled data is an exiguous resource,
the k-fold cross-validation is also used to obtain the final test results. That
yields, however, circular reasoning as the same data is employed both in
the validation and test phase.

A number of issues lurk in the randomised selection of the test set. A
temporal, spatial, hierarchical, or phylogenetic structure may yield an
autocorrelation, meaning that datapoints are depending on each other.
In such conditions, the model may ‘memorise’ the linkage and provide
overly optimistic results. Even more demanding, weather and climate data
are also spatially autocorrelated, as the data have an internal geospatial
structure. The temporal autocorrelation can be confronted by selecting the
test set as a continuous-time series or picking a specific moment of the
period, such as a day of the week. To minimise the effects of spatial auto-
correlation, one needs to select samples from representing areas. Specific
strategies to cope with the autocorrelation are analysed in [80].

However, these strategies do not come without repercussions. In impact
forecasting, a sufficient amount of adverse weather is required to evaluate
the results reliably. It is often hard to select a continuous time series, or
long-enough moment of the period, having enough representative weather
events without misspending the available training data. Thus, the result-
ing test data may not contain enough relevant samples for the reliable
evaluation, or it may drain too many relevant samples from the training
data resulting in improper training of the model. The issue is discussed
more in Chapter 6.

Since extreme events are, by definition, rare, another challenge in impact
forecasting is imbalanced data. Several different approaches exist to cope
with the imbalance. One option is to give more value for the accuracy of
minor classes, for example, by modifying the cost function [81], defined
in Equation (3.3). The imbalance of the training set can also be removed
by over-sampling or under-sampling [81]. The over-sampling creates new
samples into the minority classes, while the under-sampling selects a
subset of samples from the majority class. Naturally, one can combine
these methods to create a hybrid approach. It is also notable that, for
example, the ensemble methods, such as boosting and RF (presented in
Sections 3.5.4 and 3.5.5), are not particularly fragile to the imbalance [82].
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3.5 Summary of Relevant Machine Learning Methods

The following section provides a summary of popular machine learning
methods applied in the tasks of power outage prediction in Chapter 4
and train delay predictions in Chapter 5. Since the list of available and
experimented methods is enormous, the aim is not to be comprehensive
but to provide a context for applied methods in this thesis. For a detailed
description of the methods, the reader is asked to consult corresponding
references.

3.5.1 Gaussian Naïve Bayes (GNB)

GNB [83] is a widely utilised method based on the Bayesian probability
theory. The method assumes all samples to be i.i.d. This, as noted in
Section 3.1, does not hold for the weather data but does not prevent the
method from providing good results (e.g. [78, 24, 77]). GNB classifies the
samples based on the rule:

ŷ= argmax
y

P(y)
n∏

i=1

P(xi | y),

where P(y) is a frequency of class y and P(xi | y) is a likelihood of the ith
feature, assumed to be Gaussian.

Since the samples are assumed to be i.i.d., each likelihood can be con-
sidered separately, which helps to cope with high-dimensional and small
datasets. The likelihood estimations can be, nevertheless, conducted ef-
fectively and iteratively, which provides good scalability to large datasets.
The main weakness of the basic form of GNB is a lack of expression power
in more complex domains.

3.5.2 Generalised Linear Model (GLM)

GLMs generalise machine learning methods empowering the usage of la-
bels that do not follow the normal distribution. Here, a particular extension
of LR is considered. The GLM consists of three parts: 1) The labels are
assumed to have a particular distribution with mean μ. 2) A LR, defined
in Equation 3.1, is conducted. 3) The prediction is linked to the expected
value E(Y |X ) with a link function g so that E(Y |X ) = μ = g−1(y) [84]. The
method may be trained with the maximum likelihood estimation (MLE) or
GD method. GLMs are applied to the weather data, for example, in the
power outage predictions [85, 86].

3.5.3 Decision Trees (DT)

DTs are simple but yet powerful machine learning algorithms. An illustra-
tive example of DT is shown in Figure 3.1. DTs are formed by branches
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Figure 3.1. Example decision tree. Considered features and the corresponding thresholds
in each node are deducted in the training process by minimising the cost
function. This imaginary example use Gini-impurity.

with several decision nodes and one leaf node. Each decision node contains
a logical ‘if-then decision’ regarding one predictive feature, and the leaf
nodes are associated with labels. The decision criteria at each node, the
best possible split, are determined during the model training by minimis-
ing a cost function, such as Gini-impurity [87]. The tree is then constructed
by splitting the nodes recursively, starting from the root node and ending
when a stopping criterion is satisfied or a maximum depth is reached. The
training may be further improved, for example, by pruning the trees and
arranging the nodes in the tree based on the feature importances [88]. DTs
have been used, for example, to predict weather-related power outages
[85, 86, 89].

3.5.4 Random Forest (RF)

RF builds on a random ensemble of DTs, discussed in Section 3.5.3. It
aggregates the final estimate by averaging results of individual trees,
constructed in four phases: (1) employ bootstrapping in order to generate
a random sample of data, (2) randomly select a subset of features at each
node in the tree, (3) determine the best split of features at the node based
on selected loss function, and (4) grow the full tree [90]. RF is capable of
coping with high-dimensional and imbalanced data [82]. The method is
prone to overfit, which makes the hyperparameter tuning very important.
Random forest classifiers (RFC) are widely applied in various weather
applications [91]. They are also a popular choice to predict the weather-
related power outages [92, 89, 93] and train delays [46].

3.5.5 Gradien Boosting Trees (GBT)

GBT resembles RFC, discussed in Section 3.5.4, in the sense that it exploits
several randomly selected DT (see Section 3.5.3) to create the final predic-
tion. Instead of averaging the results of individual trees, GBT sums the
result of each tree multiplied by a learning rate α. [94] GBT has famous
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variants: AdaBoost [95] is a GBT with exponential loss function and with-
out cost-complexity pruning. XGBoost [96] use regression trees containing
continuous scoring of each leaf in a tree and decide the final prediction
based on the sum of the scores. The training of XGBoost considers also
a cost complexity pruning regularisation, defined as Ω( fk)= γT + 1

2λ||w||2,
where γ and α are hyperparameters of the model, T is a number of leaves in
the tree, and w is leaf weights. The method has been used with the weather
data, for example, in the context of outage prediction [89]. This thesis
denotes gradient boosting tree classifiers as GBC and gradient boosting
tree regression as GBR.

3.5.6 Multilayer Perceptron (MLP)

MLPs [97] represent artificial neural networks in the basic form. A simple
feed-forward deep neural network contain multiple linear regression layers
(defined in Equation 3.1) augmented with a bias term. The layers are
connected with an activation functions g(z)→ s. Each node i at the layer l
gets output as:

sl,i = g
( N∑

i=0

wl,i sl−1 +bl,i
)
,

where wl,i is a weight variable, bl,i is a bias variable and N is a number of
nodes at the layer l.

The training of MLPs is conducted using GD in the process called back-
propagation. Overfitting is typically controlled by dropping connections
randomly during the training process and stopping the training process
before the model gets overfitted. Figure 3.2 illustrates the MLP. Deep neu-
ral networks are able to learn a representation of the input at their hidden
layers, which makes them very adaptive and powerful methods. The non-
linear activation functions and possibly several hidden layers enable MLPs
to learn nonlinear learning problems. As a downside, MLPs have a large
number of hyperparameters, and the correct network architecture requires
careful design from the developer. They also require a large dataset to be
appropriately trained.

3.5.7 Support Vector Machines (SVM)

SVMs [98] employ typically nonlinear kernels to form high-dimensional
feature space and maximise the distance between training samples and
the hyper-plane. The kernels are used to reform a nonlinear classification
problem to a linear one as illustrated in Figure 3.3. Popular kernels are
for example Gaussian radial basis function (RBF) [98] and a dot product
kernel [99]. Being able to operate in the high-dimensional feature space
without additional computational complexity is one of the main advantages
of SVM, especially for high-dimensional datasets. Moreover, the kernels
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Figure 3.2. Example multilayer perceptron. The nodes are shown as circles and weights
as lines between the nodes. This example has Sigmoid activation function
( 1

1+e−z ) at the first two hidden layers and SoftMax layer, producing categorial
output at the last hidden layer.

provide a natural way to capitalise on domain-specific expert knowledge.
SVM training is a convex optimisation problem without a local minimum.
The computational complexity of the training process is, however, between
O (n2) and O (n3) [100] and some kernels may turn that into a very memory-
intensive process as well.

3.5.8 Gaussian Processes (GP)

GP interprets the observed datapoints as a realisations of a Gaussian
random process. GP can be seen as a stochastic process defining a Gaussian
distribution over functions:

f (x)∼GP(μx,Σxx′),

where

μx = E
(

f (x)
)
,

Σxx′ = E
((

f (x)−μx
)(

f (x′)−μx′
))

In other words, GP model the underlying distribution of dataset X to-
gether with labels y as a multivariate normal distribution. The joint
probability distribution p(X,y), assumed to follow Gaussian distribution,
thus covers the space of possible values for the predicted function. The
distribution p(X,y) is updated using Bayesian inference, and the posterior
distribution is fitted by maximising a log-marginal-likelihood. A prior for
mean μx is typically assumed as either zero or mean value of the data. The
covariance matrix Σxx′ is generated with a kernel, a pairwise covariance
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Figure 3.3. Kernel trick illustrated. (a) visualises a linearly non-separable classification
problem. In (b) the same data is transformed with kernel Φ(x)= (

�
2x1x2, x2

1, x2
2).

The decision boundary of SVC classifier is presented with gray surface.

function on all points, representing a pairwise interdependence of the
datapoints.

GP is an extremely flexible and powerful but computationally complex
method. Similarly to SVM in Section 3.5.7, GP exploits the kernel function,
which opens the developer an avenue to effectuate the domain-specific
knowledge. Due to the Bayesian inference, the model provides probabilistic
predictions. The complexity casts, however, challenges to utilise large
datasets and high-dimensional data. A detailed view on the GP is given,
for example, in [99].
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4. Predicting Power Outages

As discussed in Chapter 1, the power outages caused by extreme weather
events are the key problem for power grid operators. With an accurate
outage prediction, the power grid operators may prepare to repair the
damages with the right workforce level. The predictions may also help the
operators analyse what has happened and target the needed resources to
the damaged regions. Finally, they can communicate anticipated distur-
bances to the clients beforehand. While some applications for preparedness
already exist (e.g., [101]), they are relatively uncustomary. For example, in
Finland, the power grid operators use weather information, warnings, and
advisories made by duty forecasters in anticipation.

The chapter starts with a review of the already conducted research. The
proposed methods for convective and extratropical storms are presented in
Sections 4.2.1 and 4.2.2 correspondingly. Both sections describe the method
and present the key results. Finally, the chapter ends with a section 4.3,
discussing delivering the information to the end-users.

4.1 Existing Work

The power grid network started to evolve in the US in the late 1880s
[102] and already in 1939, a relationship of power outages and extreme
weather was studied [103]. Early methods simulate the power grid system
behaviour under extreme weather, typically with the Markov Processes
[104, 105, 106, 107, 108, 109]. Until the 1990s, the weather was usually
classified in two or more categories based on its damage potential. However,
as the accuracy of the weather forecasts improved and the power grids
evolved, the power outage models required more granularity. Therefore,
several applications started to employ individual weather parameters, such
as wind and temperature, in the power outage predictions using Monte
Carlo simulation [110, 111, 112, 113, 114] and heuristic model [115]. Icing
was studied using numerical simulation [116] and statistical methods [117,
118]. A yearly weather-related failure analysis using Poisson regression
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and a Bayesian network model was implemented in [119].
After the 2010s, the research agenda has turned more into machine

learning algorithms. The studies can be roughly categorised into three
classes based on the weather phenomenon size and intensity: small-scale
convective storms, extratropical storms, and tropical cyclones. The majority
of the studies address the hurricane-induced power blackouts in northern
America (i.e.[120, 121, 122, 123, 124]). Typical methods use DT (see Section
3.5.3), RF (Section 3.5.4), GLM (Section 3.5.2), Poisson regression, and
fuzzy logic to estimate blackouts. This thesis focuses on smaller-scale
events and thus omits a more detailed analysis of the hurricane-caused
blackouts.

4.1.1 Convective Storms

In the early 2000s, only a few studies addressed local and ephemeral
weather phenomenons, such as thunderstorms [125, 110, 126, 127]. Im-
proved data processing capabilities, better weather forecasting, and ad-
vances in machine learning techniques, discussed in Chapters 2 and 3
respectively, have opened an avenue for several new power outage methods.
Many of the new methods are focusing on convective storms. Authors
of [128] classified the weather by temperature, wind speed, and amount
of lightning to forecast cumulative power outages applying an empirical
exponential function over time. Kankanala et al. applied LR [129] (see
section 3.2), MLP [130] (Section 3.5.6), and AdaBoost [131] (Section 3.5.5)
with ground observations to predict weather-caused outages. Li et al. intro-
duced an outage prediction method [85] which was later modified to employ
power grid topology as well [86]. The methods in [85] and [86] applied
DT (see Section 3.5.3) and GLM (Section 3.5.2) to the predefined regions.
Yue et al. introduce a Bayesian outage probability prediction that utilises
weather radar data from several sources combined to the geographically
unified grid [132].

Wanik et al. evaluated DT, RF, GBT (see Section 3.5.5), and an ensemble
decision tree regression (ENS) with NWP data (discussed more in Section
2.2) to predict several types of storms, including both thunderstorms and
extratropical storms [89]. Similarly, quantile regression forests (QRF) and
Bayesian additive regression trees (BART) were used with NWP data in
[133]. Shield et al. studied an outage prediction by employing RFC to
NWP data [93].

4.1.2 Extratropical Storms

Relatively few former works focus on outages caused by extratropical
storms. Some methods employing QRF, BART, and RFC, already discussed
in the context of convective storms (Section 4.1.1), employ NWP data and

50



Predicting Power Outages

have therefore a utility in predicting the outages caused by extratropical
storms [89, 133, 93]. These studies have been extended in [92], where
the authors build on [89] and [133] by classifying the storms by their
types (thunderstorms, extratropical storms, hurricanes) and using different
calibrations for meteorologically distinct storms. The authors of [134]
continued this work by adding uncertainty information to the predictions.

4.2 Proposed Method to Predict Power Outages

This section proposes a novel method to predict power outages caused by
convective storms and extratropical storms.

4.2.1 Convective Storms

The proposed method to predict the power outages caused by convective
storms is first presented in Publication I and then extended with more
detailed analysis and evaluation in Publication II. The method is based
on the object-oriented approach and utilises the storm cell identification
and tracking developed in [25]. The storm objects are first identified from
the radar reflectivity CAPPI images with a solid 35 dBZ contour threshold.
The particular threshold is selected to detect complete storm systems like
multicellular storms [135, 55]. Section 2.1 describes the data in more
detail.

After the identification, GDBSCAN clustering [136] is applied to the
storm objects. The particular clustering algorithm is chosen as a similar
approach has provided prominent results in the previous applications
[137, 138]. As an advantage, it can discover an unspecified number of
clusters of any shape. In the clustering, a storm object is considered as
a core object C if the cumulative area of its nearby storm objects inside
a radius exceeds an area threshold. The objects not exceeding the area
threshold are considered as outliers O. Objects are said to be directly
reachable if they are inside the radius from a core object. Objects can
be directly reachable only from core objects. Objects are considered to
be connected if a path p1, ..., pn exists from C to O so that pi+1 is directly
reachable from pi, p1 = C, and pn =O. The definition of connection implies
that all objects along the path except pn need to be core objects. All
connected objects form a cluster and the objects outside the radius and
not filling the area threshold to be core objects are considered noise. This
method used 20 km2 as the area limit, and 2 km as the radius based on
the evaluation in [137].

The formed clusters are then tracked, and their movement is predicted
based on the idea introduced in [139]. The previous time step clusters are
interpolated to the current time step employing optical flow [64]. If the
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interpolated cluster overlaps with the current time step cluster, they are
considered to be connected. The nowcast is conducted 2 hours ahead with
a 5 minute time interval using Kalman filtering as in [137].

The clustered storm cells are then classified into 4 categories based
on their potential to induce outages. The outage data is obtained from
two Finnish power grid companies, shown in Figure 4.2 a, and contains
in total 33 858 outages. Each outage is reported as a malfunctioning
transformer (node in the power grid) near the actual damage location. The
storms are cast into the classes based on the share of the malfunctioning
transformers of all transformers covered by the storm object. The classes
are introduced in Table 4.1. They are designed to provide a simple and
quickly interpretable view to power grid operators. Detailed description
and analysis of the outage data are presented in Publication III.

Table 4.1. Storm cell class definitions

Class Share of transformers
0 no damage

1 0 - 10 %

2 10 - 50 %

3 50 - 100 %

The classification is conducted based on the storm features derived from
the clusters themselves (such as area, age, and location), the weather
radar measurements (such as reflectivity dBZ described in Section 2.1), the
supporting features from ground observation stations, and thunder strikes
detected by the lightning detection network. That is to say, the training
data consists of X= (

x(i), y(i)
) ∈RN×D, where x(i) represents characterising

features of the cluster at one time step, y(i) represents a the storm class
at the corresponding time step, N is a dataset size and D is a number
of features in x. Publication I employed in total 559 071 samples and
Publication II employed in total 885 976 samples. Both papers employed
16 features.

RFC, discussed in Section 3.5.4, and MLP, discussed in Section 3.5.6,
were experimented in Publication I and Publication II. Gini-impurity
[87] and cross-entropy (Equation 3.2), were used to train the RFC and
MLP respectively. Most storms are not causing damage to the power
grid, and therefore the imbalance of the dataset is a pivotal issue, as
noted also in [140]. As already discussed in Section 3.4, the imbalance
can be coped with several ways. For example, [141] and [93] propose a
two-stage prediction, with the first stage predicting whether any damage
will occur and the second stage predicting the amount of damage. This
work equalised class sizes by over-sampling using the synthetic minority
over-sampling technique (SMOTE) [142].
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Figure 4.1. Normalised confusion matrix of RFC. Each cell represents the probability of
predicted and true label combination. For example the upper left cell tells a
probability that the model predicts class 0 when true class is 0.

Results
RFC provided better results than MLP. A macro average of F1-score, de-
fined in Equation 4.1, was selected as the key metrics. The particular
metric gets values from 0 (worst) to 1 (best) and was chosen to represent
a harmonic mean of recall and precision with one number. The test set
included 25 percent of the total samples selected randomly.

F1-score:

F1macro = 1
N

N∑
λ=1

( precisionλ× recallλ
precisionλ+ recallλ

)
, (4.1)

where
precisionλ =

tpλ

tpλ+ f pλ
,

and
recallλ =

tpλ

tpλ+ fnλ
,

and tpλ is amount of true positive samples, f pλ false positives and fnλ false
negatives in class λ.

RFC gained 0.70 as a macro average which can be considered as an
excellent result for the task. The results can also be illustrated with a
confusion matrix depicted in Figure 4.1. Each cell in the matrix shows
the probability of predicted and true class combination. The accuracy is
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excellent in the class 0 (no damage) and the class 3 (high damage) but
lower in the middle classes.

While the comprehensive comparison between the results of previous
studies and this thesis is an extremely hard or impossible task due to the
differences in data, environment, and exact task definition, the attained
results are auspicious. The object-oriented approach equips the model to
focus on the relevant data and provide important information about the
storm movement and life cycle that would be complicated to obtain else.
The advantages and disadvantages of the object-oriented approach are
discussed more in Chapter 6.

The proposed solution has some significant disadvantages as well. It
does not exploit 3-dimensional information. The 3-dimensional data could
be used with more advanced object identification and tracking algorithm,
discussed in Section 2.1. Some significant features are also missing. Forest
information, used in Publication III, and information about ground frost
and tree leaves would most probably improve the results.

4.2.2 Extratropical Storms

Extratropical storms, distinguishable from convective storms and torna-
does in time-span, geographical scale, characterising meteorological pa-
rameters, and applicable methods for monitoring and tracking them, as
described in Section 2.2, are responsible for over half of all losses related
to the natural hazards in Europe [143]. The method presented in section
4.2.1 provides a crucial tool in mitigating the effects of convective storms
but has a limited capacity with extratropical storms. Hence, a specific tool
for predicting the outages caused by these storms is required. In addition
to the more accurate prediction, the dedicated tool provides power grid
operators a pivotal advantage to extend the prediction lead time to days,
as the forecast is based on the NWP data ranging days ahead.

All existing machine learning-based power outage prediction methods,
discussed in Section 4.1, have been built on regular grid or predefined
areas. Publication III introduces a novel approach, where the object-
oriented power outage prediction, presented in Section 4.2.1, is modified
to operate with an analysis and NWP data, discussed in Section 2.2. The
overall process is the following: (1) identify potentially devastating storm
objects, (2) track the identified objects, (3) extract characterising features
of the objects, and (4) classify the objects based on their damage potential.

The process starts with an identification of wind and pressure objects.
The wind objects are identified from the grid by finding contour lines of
10 metre maximum wind gust fields and the pressure objects from the
surface pressure fields using single thresholds. Thus, the identification
process yields solid polygons with wind gust above the threshold and
pressure polygons below the threshold. The wind objects are considered
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and called from here on as the storm objects. The pressure objects connect
the potentially distant storm objects around a low-pressure center to a
single storm event and thus enhance the tracking process. A threshold
of 15 ms−1 is selected for the wind gusts and 1000 hPa for the pressure
objects since several studies indicate that in Finland the forest damages
start to occur above 15 ms−1 winds [144, 145].

The second phase is to track the objects so that characterising features –
such as movement, size, and age – from the whole life cycle of the storm
can be extracted. Each object is first connected to the nearest pressure
objects within a distance threshold from the current and preceding time
steps. If the pressure objects are not found, the storm object is connected
first to the nearest storm object within the distance threshold and second
to the nearest storm object on the preceding time step. The preceding time
step objects are required to be inside pressure and storm object movement
thresholds. The detailed algorithm is presented in Publication III.

Two main reasons necessitate a different tracking algorithm than with
the convective storm cells presented in Section 4.2.1. First, DBSCAN
does not find proper clusters for the extratropical storm objects with large
solid polygons, possibly far away from each other. Second, the optical
flow algorithm cannot consider the existence of the pressure objects; the
advantage of the bespoke tracking algorithm is the ability to consider
all storm objects around one low-pressure object as a single storm event
without merging them to a single polygon.

The distance threshold between the storm and the pressure objects
was set to 500 kilometres. Since extratropical storms are typically ap-
proximately 1000 kilometres wide [72], the devastating storm objects are
expected to locate no further than 500 kilometres from the pressure objects.
The movement threshold is 200 kmh−1 for the storm objects and 45 kmh−1

for the pressure objects. That is to say, the storm objects are assumed
to move at a maximum of 200 kilometres and the pressure objects at a
maximum of 45 kilometres in an hour [72]. Convective storms sometimes
move faster but are outside the focus of this method.

The third phase of the process is to extract characterising features of
the storm objects. Three groups of features are used. The first group
consists of features describing the objects themselves. The object size
is the most important feature, while the object movement direction and
speed also contribute to the prediction. The second group contains weather
conditions such as wind speed, temperature, and other variables. The
values are aggregated as a minimum, maximum, average, and standard
deviation calculated over the object coverage. The third group carries
forest information such as tree height, age, et cetera. Similarly to the
weather parameters, the values are aggregated over the object coverage.
Finally, including the number of outages, is used in the training phase as
a label. In total, 35 parameters, listed in Publication III, are used in the
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classification.
The fourth phase is to classify the objects based on their damage potential.

Table 4.2 lists the classes. As in Section 4.2.1, the classes were designed in
collaboration with power grid companies and aimed to provide a quick view
of the situation. Class 1 is chosen to represent 80 percent of all devastating
storm objects. As in Section 4.2.1, most storms are not causing any damage
and the classes are highly imbalanced.

Since extratropical storms are larger and longer-lasting events than
convective storms, lower geospatial and temporal accuracy are required in
the classification. Lower requirements opened the author a possibility to
use a larger, national outage dataset obtained from most Finnish power
grid companies and containing the whole of Finland. Instead of accurate
location, the outages are only reported to be in one of the five different re-
gions, shown in Figure 4.2 b. Publication III compares the results between
classifiers trained with the local dataset, used in predicting convective
storms in Section 4.2.1, and the national dataset. The national dataset
provided better results.

Table 4.2. Class definitions in the task of predicting extratropical storms-related power
outages

Class Outage limit Dataset size Class description
0 0 76 215 no damage

1 1- 140 14 417 low damage

2 ≥ 141 3 085 high damage

Publication III compares the performance of RFC (Section 3.5.4), SVC
(Section 3.5.7), GNB (Section 3.5.1), GP (3.5.8), and MLP Section (3.5.6)
for the task. As discussed below, SVC achieved the best F1-score and most
harmonic classification results in the evaluation. Similar to [141] and [93],
the classification is conducted in the phases: First, class 0 (no outages)
and other objects are distinguished using SVC with radial basis function
(RBF), defined in Equation 4.2. Second, the objects with predicted outages
are divided into classes 1 and 2 employing SVC with a dot-product kernel,
defined in Equation 4.3 [99]. The approach resembles the widely-used
one-vs-one classification scheme, where a binary classifier is applied for
each pair of classes. Contradicting to the one-vs-one scheme, the model
presented here employs separate kernels for separate pairs. The class
imbalance, discussed more in Section 4.2.1, was coped with SMOTE.

RBF kernel:
kRBF (x,x′)= exp

(−γ||x−x′||2) (4.2)

where x and x′ are two samples in the input space and γ is a kernel
coefficient parameter.
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Figure 4.2. a) Geographical coverage of the local outage data (used in Section 4.2.1). The
power grid of one company is illustrated with red lines, and the operative
areas of another company with green lines. b) National outage dataset regions.
Outages are obtained from most power grid companies in Finland and aggre-
gated to the regions shown in the figure. The figure is originally published in
Publication III (license CC4BY).

Dot-product kernel:
k·(x,x′)=σ0 +x ·x′ (4.3)

where x and x′ are two samples in the input space and σ is a kernel
inhomogenity parameter.

Results
As with convective storms in Section 4.2.1, the F1 macro average (Equation
4.1) was used as the primary metric to evaluate the performance. Because
of the autocorrelation issue, presented in Section 3.4, the evaluation was
done with both a randomly selected test set and a continuous period test set.
SVC gained 0.60 as a macro average of F1 for both randomly selected and
continuous test sets. The confusion matrix produced with the randomly
selected test set is shown in Figure 4.3.

The gained performance is significantly lower than with convective
storms, discussed in Section 4.2.1. The possible reasons for the lower
performance are the coarser spatial and temporal resolution of the data.
While destructive parts of the convective storms can be relatively reliably
detected with 250 metres spatial and 5 minutes temporal resolution, extra-
tropical storms are monitored with several kilometre accuracy. The precise
devastating locations of the wind gusts are not obviously detectable from
the data. The convective storms are also always occurring in summer when
trees have leaves and the ground is unfrozen. The extratropical storms
may occur any time of the year, but the presented method is missing in-
formation about the leaves and the ground frost, significantly affecting
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Figure 4.3. Normalised confusion matrix of SVC. Each cell represents the probability of
predicted and true label combination. For example the upper left cell tells
that the model predicts class 0 with 64 percent probability when true class is
0.

the impact of the storm. Unfortunately, such parameters were not easily
available at the time of conducting the research.

The methods have been developed in collaboration with three Finnish
power distribution companies1 and are used by the grid operators. At the
time of writing, the convective storm application provides evidence of being
useful in the operations, and the experiments of the extratropical storm
application have been started. Chapter 6 debates more about the results,
their limitations, and the future directions.

4.3 User Interface for the Power Outage Predictions

Processing objects instead of grid or individual points opens an avenue
for rich applications since the objects may be enriched with additional
information and interactions. A bespoke web-based user interface (UI) was
developed to provide the forecast to the power grid operators. Figure 4.4,
shown already in Chapter 1 as an example of impact forecast, depicts the
UI for the convective storm-related power outage prediction in Section 4.2.1.
Figure 4.5 extends the UI to work with extratropical storms presented
in Section 4.2.2. If convective storms are selected, the operator sees all
identified and forecasted storm objects from the preceding and the following
30 minutes. The identified storm objects are marked with a solid colour
based on the predicted object class. The forecasted objects are marked
with a texture with the corresponding colour. If extratropical storms are
selected, the operator sees only one time step at a time.

1Loiste sähkönsiirto ltd, Järvi-Suomen Energia ltd, and Imatra Seudun Sähkön-
siirto ltd
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Figure 4.4. A user interface is providing the forecast of convective storms to power grid
operators. The map view presents the categorised storm objects, and the
graph estimates the number of households being disconnected from the power
grid at the selected area as a function of time. Blue lines on the map represent
operating areas, following roughly Finnish municipalities.

Finnish power grid companies are obligated to compensate customers
for the interruptions in electricity distribution. Urban-area customers are
eligible for the compensation after 6 hours, and rural area customers after
36 hours. The operator can use the UI to select municipalities of interest
and get an estimated number of households without electricity along with
derived liabilities for the power grid company. The estimation is shown in
the graph over the map in Figure 4.4. The first part of the graph, shown
with yellow, represents the occurred outages, while the orange part shows
predicted outages. The area with pink colour stands for (constant) waiting
time before restoration can begin. After the waiting time, the damages
are assumed to be repaired at a constant speed depending on the number
of teams. The operator can adjust the number of teams and estimated
repairing time to modify the estimated liabilities.
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Figure 4.5. A user interface providing the forecast of extratropical storms to power grid
operators. The map view presents the categorised storm objects. The user
may select the area of interest and get similar impact estimation as shown in
Figure 4.4.
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5. Predicting Weather-Inflicted Train
Delays

As discussed in Chapter 1, train delays cause considerable economic losses.
The punctuality also affects crucially on the attractiveness of rail traffic
[146, 147]. Predicting the train delays as early as possible is a key to reduce
them. If anticipated well in advance, rail traffic operators may take several
actions to mitigate the effects of the train delays: (1) They can reschedule
cargo trains and cancel part of the trains to keep the rest better in time.
(2) Especially with long-term predictions, rail traffic support functions
such as resource planning may be better prepared. (3) Anticipated delays
may be communicated to passengers. (4) In some countries, the rail traffic
operators may also reroute the trains [148, 149]. Such predictions are also
essential information for weather duty forecasters in issuing impact-based
weather warnings.

While diverse reasons induce the delays, most severe rail traffic dis-
ruptions are inflicted by adverse weather. Especially snowfall and heavy
wind, affect on journey times in northern Europe [150, 44, 41, 43], China
[45, 151, 152], and Toronto [153]. During 2008 – 2010, 60 percent of the
freight railway delays in Finland were caused by the winter weather [40].
Punctuality have been noticed to decrease exponentially when the tem-
perature drops below 0 ◦C [154]. Brazil et al. found that the time of the
year and prevailing weather are better predictors for the delays than the
published schedules for the trains [155].

Despite the evident connection between the adverse weather and the
delays, current methods employed for preparedness are typically rather
manual and are based on the rail traffic interpretation of current weather
forecasts and warnings. Moreover, although preparing for the mundane
challenging conditions would also help to prepare ultimate extreme events,
many operators are focusing on the natural hazards only [156]. More
systematic preparedness may be categorised into four types: topological,
simulation, optimisation, and data-driven [157].

This chapter describes a novel data-driven method to predict the weather-
inflicted train delays days ahead. Instead of providing solely underlying
weather information, the method shows an estimation of anticipated train
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delays. Next, existing work is discussed in Section 5.1. After the literature
review, the proposed method is introduced with key results in Section 5.2.
Finally, delivering the results to the rail traffic operators is discussed in
Section 5.3.

5.1 Existing Work

Various works exist to predict a short-term delay propagation in the rail
network hours ahead (i.e., [158, 159, 160, 161, 162, 163, 164, 165]). Some
works exploit also weather parameters, such as temperature, wind, pre-
cipitation, visibility and snow depth, in operations [166], railway upkeep
[167, 168]. Serdar et al. utilised extreme wind, snowfall, fog, rainfall, flood,
and temperature to create a Bayesian-network-based model of derailments
in turnouts caused by extreme weather [169]. Molarius et al. created a
macro-level weather risk indicator for all transport modes in [42], consid-
ering precipitation, blizzards, wind, and temperature in their study. Oneto
et al. compared RFR, SVM, and MLP for the short-term prediction of the
delays. The primary features of the prediction were train punctuality and
schedule information of approximately 1 000 trains from 6 months, but the
models were augmented with six weather parameters [46].

5.2 Proposed Method

While the weather parameters have been considered in the short-term de-
lay propagation predictions ranging hours ahead, the author is not aware
of any long-term delay prediction reaching days ahead. Publication IV
introduces a novel delay prediction method based on the weather informa-
tion. The method predicts the anticipated average delay experienced at a
train station.

The delay prediction is formalised as a supervised learning problem
with weather parameters as primary features and an average delay of
passenger trains as labels (features and labels are discussed in Chapter 3).
The average delay is defined as a mean of the delays of all trains arrived
at a specific station during an hour. The delay is defined as the difference
between nominal travelling time and the actual travelling time from the
previous station.

The method contains two complementary phases: The first phase is to
conduct a binary classification to predict whether the delays exceed a 10-
minute threshold at a train station. The 10 minutes threshold is chosen
based on personal communication with the Finnish rail traffic operators.
It is set to distinguish broad disruptions from ‘individual delays.’ The
threshold is not, however, a specific limit for the rail traffic operators
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to take action. The second phase is a regression problem predicting the
amount of delay as a continuous variable.

The delay prediction is based on 13 weather parameters, train station
latitude and longitude, and a month obtained from the train arrival time.
The features contain typical weather parameters, like temperature and
wind, and also parameters such as cloud base, pressure, and visibility
which are expected to indicate challenging weather parameters indirectly.
Since the precipitation is an influential element of the challenging weather
conditions [155], the accumulated precipitation for three and six hours was
calculated. The month is used to distinguish different conditions during
winters and summers [155] and the train station location to differentiate
circumstances at northern and southern stations. Publication IV lists the
employed features and discusses them in more detail. The prediction is
based primarily on the weather parameters and excludes the effects of the
train network topology and operations since the propagation of ongoing
delays has only minimal or no effect in the delays of the following days
[170]. Challenging weather also affects broad areas [72] and many adjacent
train stations concurrently in a geographically smooth country as Finland,
so the rail network topology is assumed to have only a limited effect
on the prediction performance. The model may, nevertheless, recognise
challenging locations based on the train station location.

The weather observations were obtained from the corresponding one-
hour time slot with the average delay within a 100-kilometres radius from
each train station. They are aggregated as the minimum, maximum, and
mean for each parameter. The 100-kilometre range covers whole railway
sections between adjacent stops in virtually all records in our data. The
observations were gathered around the train stations instead of railway
sections since the delays are considered as the average delay of trains
arriving at a station from all directions.

Publication IV compares GNB, RFC, GBC, LR, RFR, and GBR, described
in Section 3.5, in the task. As already mentioned, the delays may naturally
occur because of many reasons. As shown in Publication IV, a great
majority of the recorded delays are without any reason code. The models
were trained with both weather-related delays and all delays. The weather-
related dataset contains only records marked with a ‘weather’ reason code.
The whole dataset contains all records except the ones marked with a
reason code not relating to the weather. Table 5.1 lists the characteristics
of both datasets.

The data is naturally imbalanced as most of the trains are running in
time. Section 3.4 presents different strategies to cope with the imbalance.
Publication IV analyses different over- and under-sampling ratios in the
task of train delay prediction. The best results with GNB were obtained by
the under-sampling, and with RFC and GBC by over-sampling the minority
classes using SMOTE [142], as in power outage prediction in Chapter 4.
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Table 5.1. Characteristics of train delay data divided to two different dataset: the weather-
related dataset and the whole dataset.

Weather-related Whole dataset

Row count 7 350 10 679 977

Number of train stations 56 486

Share of class 0 rows 67 % 92 %

Share of class 1 rows 33 % 8 %

5.2.1 Results

As with the power outage prediction, discussed in Chapter 4, the primary
metrics in the classification evaluation was the macro-average of F1-score,
defined in Equation (4.1), and the confusion matrices. The methods were
evaluated both with a randomly chosen dataset and a continuous time
series to cope with the autocorrelation issue, discussed in Chapter 3. The
most challenging month from the whole data, February 2011, containing
long-lasting severe delay periods, was selected as the continuous test set.
The randomly chosen test set may be seen as a ‘normal situation’ and the
continuous test set as an ‘exceptional situation.’

Publication IV reveals the detailed metrics. GBC performed best in the
task, with the F1 macro average ranging from 0.53 to 0.72 depending on the
dataset and the test set selection method. Figure 5.1 shows the confusion
matrices. The model gains adequate performance for the randomly selected
test sets, representing ‘normal situation’ but tends to be biased for the
continuous test sets, representing ‘exceptional situation.’

The regression was evaluated using mean absolute error (MAE), root
mean square error (RMSE) and Brier Skill Score (BSS) defined as:

BSS = 1− RMSE
RMSEref

,

where RMSE denotes root mean square error of the results and RMSEref

denotes a root mean square error calculated with a mean value over the
dataset.

RFR provided the best results in terms of the metrics achieving 2.82/4.63
as MAE, 6.64/7.06 as RMSE, and 0.06/0.26 as BSS for the randomly chosen
and the continuous test set of the whole dataset correspondingly. Errors
were larger for the weather-related test set: RFR achieved 8.40/9.59 as
MAE, 14.86/12.71 as RMSE, and 0.15/0.06 as BSS for the randomly cho-
sen and the continuous test set correspondingly. Figure 5.2 portrays the
occurred and predicted average delays over train stations in February
2011. The figure reveals that even though GBR did not provide as good
metrics as RFR, it provides very similar predictions. The larger errors
derive from GPR’s tendency to predict longer delays, increasing the errors
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Figure 5.1. Normalised confusion matrices of GBC for both the whole and weather-related
dataset and the continuous and randomly selected test set. Each cell repre-
sents the probability of predicted and true label combination.
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Figure 5.2. Actual and predicted average delay over train stations in February 2011 (test
set of the whole dataset). Figure from Publication IV.

if the prediction is wrong or wrongly timed.
Surprisingly, the models trained with the whole data, including also

delays not related to the weather conditions, provided similar or even
better results than those trained with only the weather-related delays. Two
reasons are assumed to explain the effect: The weather-related dataset is
relatively small for the sufficient training of the models. On the other hand,
as discussed in Publication IV, a remarkable share of delays in the whole
dataset is evidently related to the weather even though stored without any
reason codes.

The results provide evidence that the proposed method can predict train
delays with high accuracy if trained with sufficient history of good quality
data. The results are in line with the previous studies [155, 46]. The
consequences and the limitations of the results are discussed more in
Chapter 6.

5.3 User Interface for the Train Delay Predictions

The train delay predictions were delivered to the rail traffic operators via
a web-based UI shown in Figure 5.3. The train stations are shown on the
map coloured based on the predicted class. The user may select the interest
of time with a time slider and select a train station to get the predicted
amount of delay, shown as a graph under the map. Associated weather
parameters, such as precipitation, may also be visualised as a map overlay.
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Figure 5.3. UI to explore train delay predictions. The map contains a rail network with
colour-coded train stations. The green colour indicates that no severe disrup-
tions are anticipated. The graph under the map shows the predicted amount
of delay as a function of time at the selected station. The map in the figure also
contains wind gust (light blue areas) and precipitation (green areas) overlays.
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6. Summary of Results and Discussion

This thesis studied how to employ machine learning to create serviceable
weather impact predictions. In particular, the study scrutinised the power
outages caused by highly local convective and large-scale extratropical
storms and the weather-inflicted train delays.

A novel, object-oriented, method to predict the power outages caused
by convective storms were created in Publication I and Publication II
and presented in Section 4.2.1. The method incorporates identifying the
storm objects from weather radar data, tracking the objects, predicting
their movement 6 hours ahead, and classifying them based on their dam-
age potential. The objects are categorised into 4 classes employing RFC,
described in Section 3.5.4, based on the number of presumably affected
transformers.

As described in Section 4.2.2, the power outage prediction application
was then modified for synoptic-scale extratropical storms in Publication
III. Similar to the case of convective storms, the application involves
identifying, tracking, and classifying the storms based on their damage
potential. Nevertheless, the process was modified for different type of
data, required to monitor and predict the broad and long-lasting storms.
Publication III experimented with several machine learning methods in
the classification task. The best evaluation results were obtained with the
GP classifier (see Section 3.5.8). The ERA5 reanalysis data, introduced
in Section 2.2, were used in the Publication III while operational setting
naturally requires operational NWP data.

The weather-inflicted train delays were predicted in Publication IV and
presented in Chapter 5. Both binary classifier and regression was created.
The main challenge was the insufficient training data as the reasons for the
delays have not been recorded consistently in Finland. From the compared
machine learning methods, the best classification metrics were obtained
using GBC and the best regression results using RFR.
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6.1 Key Results

The presented object-oriented method anticipates the power outages caused
by convective storms eminently well, and its modified version provides
reasonable results for extratropical storms. The gained performance and
the analysis are depicted in Chapters 4.2.1 and 4.2.2. Publication I and
Publication II provide a strong evidence that classifying storm objects
instead of grid points (i.e., [132]), predefined regions (i.e., [86]) or individual
point of interests, such as transformers in the power grid (i.e., [131]),
is a vindicable approach. The same approach can also be successfully
used to predict power outages caused by extratropical storms, while other
approaches might function better with geographically broad storms, as
discussed in Section 6.2.

Presumably, the method can be applied to any other domain, such as
traffic accidents [33, 34], or air traffic disruption [31], where the impacts
are quantitative and produced by identifiable weather events. Thus, the
availability of the sufficient impact data is the key issue to create valuable
impact forecasts.

The performance of the train delay prediction, discussed in Chapter 5,
was not as good as in the other applications in this thesis. The gained
results provided evidence that the weather-inflicted train delays can be
predicted days ahead, but train delay data with detailed and coherently
recorded reasons are needed to provide such predictions with a reasonable
accuracy. Nevertheless, the results are essential indication that the data
should be gathered, and the delay prediction can be developed where or
when the necessary data are available.

Comparing the performance with currently used methods is a non-trivial
task as the prediction paradigm is significantly different and thus omitted
in this work. Nevertheless, the power outage prediction has proven useful
and is in operational use in Finnish power grid companies. The train
delay prediction was also evaluated and seen prominent by the Finnish
rail traffic operators in the early phase of the development. Unfortunately,
the latest version has not been experimented with in operations due to the
end of the project.

From the machine learning methods point of view, the results agree with
existing research. RF, GP, and GBT, discussed in Section 3.5, played the
most prominent role in providing the predictions. Especially RF showed
solid performance for all tasks. Remarkably, deep learning methods did
not reach similar performance to other methods, although experimented
in Publication I, Publication II, and Publication III. All articles analysed
the importance of each feature used in the predictions employing either
the decrease in the node impurity in the decision trees or the permutation
analysis [90]. Although methods employed highly dependent parameters
such as minimum and mean temperature, virtually all features contributed
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to the predictions.

6.2 Discussion and Future Directions

The main concern in the results is that despite the target in Chapters 4.2.2
and 5 is to provide a days-ahead forecast, the development and evalua-
tion were conducted with ERA5 reanalysis and observations (described
in Chapter 2). In an operational setting, the NWP is, however, required.
The final error of the prediction would then consists of two, presumably
independent, components: an NWP error and an impact prediction error.

A number of issues justify the use of selected data. Employing the
weather data that can be considered as the ground truth in this context
enables focusing on the error of the impact prediction model itself. If the
NWP were used, the ingredients of errors would become too complicated
or impossible to analyse. The second justification relates to the available
training data. Training an impact model requires a consistent time series
covering several years since a sufficient number of significant weather
events is required. Due to the changes in NWP models, no consistent NWP
time series exist. Especially local area model Harmonie, used in Nordic
countries, has gone through significant changes during the previous years
[171]. The third reason is practical: using ERA5 and observations makes
the effort affordable. Gathering all necessary data requires much work and
rather a long period of computational time. Acquiring the corresponding
NWP time series would require even more work and at least months of
computational time as the data is stored in the deep, slow archive.

Another consideration relating to the evaluation lies in the autocorre-
lation issue, discussed in Chapter 3. In the context of the convective
storm-related power outages (see Section 4.2.1), the test set was selected
randomly. Both random and continuous time series strategies were com-
pared when predicting the extratropical storm-inflicted power outages
(see Section 4.2.2) and the train delays (see Section 5.2). No significant
difference between the evaluation strategies was found in the task of power
outage prediction. The train delay models provided better results for the
randomly selected test set. Nevertheless, as noted in Section 5.2, an ex-
traordinarily challenging period was selected as the test set. Presumably,
both autocorrelation and easier random test set contribute to the difference
in the evaluation scores.

While providing an intuitive and well-known view to the model perfor-
mance, the used metrics contain also a significant deficiency, as they fail to
measure a scale of the error. In power outage prediction, for example, it
is significantly larger error to predict class 0 than class 2 in case of true
class 3. All used metrics treat, however, all misclassifications as the same.
Possible resolution to this problem might be for example an extension of
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AUC for more than two ordinal classes [172].
As already alleged above, the object-orientation employed in Publication

I and Publication II is evidently a good choice for predicting the impacts of
convective storms. The approach has several advantages compared to the
previous solutions employing ground observations, NWP data, or weather
radar data as a grid. Providing only relevant parts of the data to the
machine learning methods is beneficial, especially for methods, such as
RFC or SVC, that are not doing feature learning. Moreover, processing
objects instead of the whole NWP or radar data grid decreases the compu-
tational complexity of the training, still improving the spatial accuracy of
the processed data compared to the NWP or ground observation stations.
The object tracking provides information about storm attributes such as
age, size, and movement. The objects are also convenient in designing user
interfaces and related applications, such as alerting.

While the same advantages are valid for the geospatially wide extratrop-
ical storms-related power outages, discussed in Section 4.2.2 and Publica-
tion III, preprocessing the data into as objects is not necessarily the best
approach. The aggregated attributes of the storm objects may decrease the
classification performance, especially when predictive features fluctuate
significantly under object coverage. Various machine learning methods, i.e.,
neural networks, could exploit the local features and utilise 3-dimensional
data.

Comparing deep neural networks in the extratropical storms-related
power outage prediction and the train delay prediction with methods
proposed in Publication III and Publication IV is one of the most compelling
follow-up research for this thesis. The deficient label data seemed to be an
issue in the train delay prediction model training in Chapter 5. Retraining
the delay prediction when or where long enough coherent delay time series
with reason codes is available would be attractive.

One presumable shortcoming of the extratropical storm-related power
outage and the train delay predictions is the absence of 3-dimensional
data. Especially geopotential height at selected pressure levels might
improve the quality of the predictions [173]. The upper-level data in the
extratropical storms-related power outage was omitted to optimise the
effort within a limited time in acquiring the data and developing and
optimising the model. Adding parameters from various pressure levels
would be an obvious future improvement of this work.

The rationale to use only ground observations in the train delay predic-
tion is, nevertheless, an assumption that available historical upper-air
data (such as ERA5) is too different to train the model as the prediction is
conducted based on the local area model Harmonie. We argue the geospa-
tial accuracy is more important than the availability of 3-dimensional data.
Comparing the different data sources would naturally be an interesting
avenue for future exploration.
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As noted in Publication IV, we tried to add an aggregation of the weather
parameters over a 72 hours time window as predictive features in the
train delay prediction without an improvement. Using lagged data might,
however, improve the prediction accuracy. Using crowdsourced weather
observations might also improve the predictions as they are distributed
geospatially much denser than the traditional ground observations. How-
ever, at the time of the project, the crowdsourced observations were not
available for the authors.

Last, the uncertainty of the predictions was not exposed to the end-
users. Especially expert users and duty forecasters would, however, benefit
from the uncertainty information, as discussed in Chapter 1. Providing
the information is a significant further development of the applications.
However, the presentation needs to be designed carefully not to confuse
non-expert users [17] and to take both weather forecast and impact pre-
diction uncertainty into account. One possible way to achieve that would
be to create several scenarios based on the different EPS weather forecast
data members, discussed in Section 2.2.
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