
Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

Felix Maurer

Investigating Causes of Jitter in
Container Networking

Master’s Thesis
Stockholm, July 30, 2021

Supervisors: Prof. Marco Chiesa, KTH Royal Institute of Technology
Prof. Mario Di Francesco, Aalto University

Advisors: Simone Ferlin-Reiter Ph.D., Ericsson AB
Tom Barbette Ph.D., KTH Royal Institute of Technology

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/479337823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

ABSTRACT OF
MASTER’S THESIS

Author: Felix Maurer
Title:
Investigating Causes of Jitter in Container Networking
Date: July 30, 2021 Pages: vii + 68
Major: Security and Cloud Computing Code: SCI3084
Supervisors: Prof. Marco Chiesa

Prof. Mario Di Francesco
Advisors: Simone Ferlin-Reiter Ph.D.

Tom Barbette Ph.D.
Clustered container infrastructures are increasingly popular for deploying appli-
cations. The networking in these clusters is provided by specialized container
networking solutions that often lead to complex network configurations on the
nodes hosting the containers. Thereby, they can have a significant impact on the
performance of the applications hosted in the cluster. While the throughput that
can be achieved by the container networking solutions is regularly studied, the
latency and subsequently jitter introduced by them is often underreported.
This thesis investigates the latency and jitter introduced by the packet processing
in the Linux kernel using different container networking solutions. This requires
very detailed data about the processing of packets, which existing tracing tools for
Linux fail to provide. Therefore, a custom tracing application is developed using
eBPF that focuses on the flow of packets through the kernel. The application is
evaluated and then used to compare the latency and jitter behavior of commonly
used container networking solutions.
The results show that the choice of transport protocols for real-time applications
has a significant impact on the latency introduced by the kernel irrespective
of the container networking. Also, some container networking solutions fall
short of providing their proclaimed benefits in their default configurations. This
highlights the need for performance evaluation in environments representative
of the production setting and the need for tuning the configuration of container
networking solutions and system resources to match the requirements of real-time
use cases. The data also show that there is a need for more lightweight tracing
technologies for packet processing.
Keywords: Container Networking; Tracing; eBPF
Language: English

ii

Acknowledgements

My sincere thanks to everyone who supervised me during this thesis, Marco
Chiesa, Mario Di Francesco, Simone Ferlin-Reiter and Tom Barbette, for their
helpful suggestions and ideas on my work, the inspiring discussions, and the
feedback to this thesis. I also thank my opponent, Max Crone, for challenging
my work and providing valuable feedback; the Linux kernel developers Toke,
Jesper, Jiri, and Arnaldo for answering my questions about the networking
stack and BPF; and Valentin, Simon, Carolin, and Wolfgang for suggesting
improvements to this thesis document. Finally I would like to thank my
friends and family for supporting me, either directly or indirectly, during this
thesis.

Stockholm, July 30, 2021

Felix Maurer

iii

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Goals . 2
1.3 Methodology . 2
1.4 Limitations . 3
1.5 Sustainability and Ethics . 3
1.6 Structure of the Thesis . 4

2 Background 5
2.1 The Linux Networking Stack 5
2.2 Kubernetes and Container Networking 10
2.3 Tracing in the Linux Kernel 13
2.4 The Extended Berkeley Packet Filter 14
2.5 Related Work . 23

3 Implementation 26
3.1 Design . 26
3.2 Existing Tracing Tools . 28
3.3 Identifying Hooks for Probes 29
3.4 Implementation . 32

4 Evaluation 39
4.1 Performance Overhead of the Tracing Application 40
4.2 Comparison of CNI Plugins 49

5 Conclusion 59

References 62

iv

Glossary

BPF Originally appeared as a abbreviation for Berkeley Packet Filter. Nowa-
days it is used as technology name for extended BPF (eBPF). In this
thesis, it always refers to eBPF.

conntrack A netfilter module implementing connection tracking in the Linux
networking stack.

DWARF A file format to store debugging information in the object file of
an application.

iptables A netfilter module that can filter, redirect and modify IP traffic.

netfilter The netfilter framework in the Linux kernel.

POSIX A set of standards for interfaces to ensure compatibility between
different operating systems. Many Unix systems implement them at
least partially.

sk_buff The data structure in the Linux kernel that manages packet data.
It is implemented as the struct sk_buff in the kernel source code.

tc A subsystem of the Linux networking stack to perform operations for
quality of service of network communication, including traffic shaping,
packet scheduling, and dropping packets.

v

Acronyms

ABI Application Binary Interface.

API Application Programming
Interface.

BPF Berkeley Packet Filter.

BTF BPF Type Format.

cBPF classic BPF.

CDF Cummulative Distribution
Function.

CNI Container Networking
Interface.

CO-RE Compile Once - Run
Everywhere.

CPU Central Processing Unit.

DMA Direct Memory Access.

eBPF extended BPF.

FIB Forwarding Information Base.

GRO Generic Receive Offload.

JIT Just-In-Time compilation.

NAPI New API.

NAT Network Address Translation.

NIC Network Interface Controller.

PDV Packet Delay Variation.

PMU Performance Monitoring
Unit.

RPS Receive Packet Steering.

RSS Receive Side Scaling.

TCP Transmission Control
Protocol.

UDP User Datagram Protocol.

VM Virtual Machine.

XDP eXpress Data Path.

XPS Transmit Packet Steering.

vi

Conventions

Throughout the thesis, the first mentions of uncommon names are set in
italic font. Subsequent mentions of the same names are set in normal font.
Identifiers from source code are set in monospaced font and the surrounding
text explains from which code base it was taken. The only exception to this
rule is the data structure sk_buff from the Linux kernel. It is frequently
used throughout this thesis and therefore written as sk_buff for the sake of
readability. System commands are always set in monospaced font.

vii

Chapter 1

Introduction

Software architecture and the way software is deployed is constantly evolving.
One recent change was the shift towards cloud computing and especially
containerization of workloads. While this at first appears to be a change in
deployment, it also affected the software architecture towards cloud-native
applications. As this approach promises benefits for software development and
infrastructure management, it is relatively common nowadays [1]. Therefore,
many new applications are built in a cloud-native way and even existing
applications are brought into cloud infrastructures, often starting out with
containerization, to benefit at least from the management advantages.

At the same time, the number of applications requiring low or ultra low
latency is growing and is projected to grow further [2]. The applications
range from entertainment purposes, such as cloud gaming or collaborative
content creation, to highly critical use cases, including industry automation
or even remote healthcare. The GSM Association [3] argues that especially
virtual and augmented reality applications will drive the need for low latency
mobile data connections. Most often when the latency needs to be low, also
the jitter, i.e., the variance of the latency, is required to be low. High jitter
in multimedia applications often indirectly leads to higher latency as well,
because buffer sizes are increased to be able to present a continuous stream
to users.

When these two developments meet, a new set of challenges arises. Cloud
environments often improve utilization by sharing resources between different
workloads. But resource sharing naturally adds some unpredictability to the
performance, which is opposed to maintaining a constant latency, i.e., low
jitter. Also, in efforts to create a uniform environment to deploy applications,
many layers of abstraction are introduced that all add their penalty to the ob-
served latency and jitter. Therefore, the applicability of cloud infrastructures
to low latency applications is an area of ongoing research.

1

CHAPTER 1. INTRODUCTION 2

This work focuses on a part of this issue. In particular, it considers
networking aspects of Kubernetes, a container orchestration system that is
commonly used in industry. Container networking is an interesting aspect
because it often uses many different features of the networking stack of
an operating system and creates rather complex configurations to provide
networking to containers. The more complex the configurations get and the
more different features are involved, the more places can potentially introduce
jitter.

1.1 Problem Statement
To allow latency-sensitive applications to be built on systems such as Kuber-
netes, it is important to understand how the container networking impacts
the latency and jitter of network connections of the applications. As the
container networking is provided by different software systems, it is necessary
to investigate how their impact on latency and jitter differs. In order to
optimize these systems in the future, the causes of latency and jitter should
be known.

1.2 Goals
This thesis collects detailed data about the latency of packets in the Linux
networking stack when the machine is used as a Kubernetes node. The data is
collected for different container networking providers. An analysis of the data
compares the different providers to show how the different implementations
impact the latency and jitter but also to highlight common behavior. The
data and analysis can help to select a container networking solution for a
specific use case and to adapt the settings of the system components to better
suit the needs of the applications. It can also support the improvement of
container networking implementations to achieve a better performance for
systems that require low latency and low jitter.

1.3 Methodology
The collection of detailed latency data from the networking stack can not be
performed with the existing tracing tools in Linux. Therefore, a specialized
tracing application for the stack latencies is developed using eBPF. This is a
new technology in the Linux kernel that can be used to implement specialized
applications for tracing the kernel. The results are based on quantitative

CHAPTER 1. INTRODUCTION 3

analysis of the obtained data. All measurements are performed in a testbed
environment with resources dedicated to the experiments. Additionally, the
overhead of the tracing application is estimated based on measurements in
order to give an intuition of the impact that the execution of the application
in a production environment would have.

1.4 Limitations
The thesis focuses on the latency introduced by the networking stack of the
Linux kernel when used for container networking. In particular, kernel bypass
technologies and userspace networking, such as DPDK, are not subject of this
thesis. These technologies are rarely used to provide full container networking
capabilities as required by Kubernetes. Instead, they may be configured in
addition to the normal container networking. In any way, they are usually
dependent on the underlying hardware and therefore break the abstractions
that cloud-native applications build upon.

The measurements are performed on a single host because they trace the
local stack. Therefore, the experiments are only performed with a single-node
Kubernetes cluster. For additional insights into the networking within a
multi-node cluster, the analysis could aggregate the results from multiple
nodes. The node used for the experiments is a bare-metal machine and there
is no virtualization layer in any of the measurements.

In the scope of this thesis, only a small number of container networking
solutions could be tested. The selected ones are commonly used and differ
in their implementation. If the results of this work should help to select a
container networking solution from candidates for a production environment,
it is anyways advisable to repeat the comparison with all candidates in a
setting that is more representative for that environment.

1.5 Sustainability and Ethics
The direct impact of this work on sustainability issues is limited. However, the
results may be used in the future to optimize container networking towards
low-latency applications. These applications could in turn also profit from the
benefits of cloud infrastructures, including reduced costs and higher energy
efficiency resulting from a better utilization of computing resources. Also, if
latency-sensitive applications can run on cloud infrastructures, the need for
additional infrastructure for these applications decreases which can improve
cost efficiency of infrastructure management and development.

CHAPTER 1. INTRODUCTION 4

The measurements for this work are performed in a testbed using dedicated
resources and synthetic network traffic. Therefore, the measurements can
not collect any private information that would require especially cautious
handling.

1.6 Structure of the Thesis
After this introduction and definition to the topic, the rest of this thesis is
structured as follows. Chapter 2 covers the necessary background information
for the thesis. It describes the Linux networking stack, Kubernetes and
container networking, different tracing tools in Linux, and the technology
eBPF and summarizes the related work. Chapter 3 shows the design ideas
behind the implemented tool, the development process, and the key features
of the actual implementation. Chapter 4 estimates the overhead of the
implemented tool and presents the comparison of the container networking
solutions. Chapter 5 provides concluding remarks.

Chapter 2

Background

This chapter provides the technical background for the thesis. It starts with
an overview of the Linux kernel networking stack, because Kubernetes clusters
usually consist of Linux nodes. Then, Kubernetes clusters in general and
their container networking are described. Next, different tracing tools for the
Linux kernel are presented to show why they can not be used to implement
the tracing application. Instead, it is based on the technology eBPF, which
is introduced afterwards. The chapter closes with a summary of the related
work.

2.1 The Linux Networking Stack
A particular strength of the Linux kernel is its full-featured and flexible
networking stack. It supports many different protocols, including all that are
commonly used in the Internet, and can perform different network functions
including routers, firewalls, and other middleboxes. Giving an overview of all
networking features is not possible within the scope of a thesis. Therefore, this
section is limited to the parts of the stack that will be relevant in the course
of this thesis. For further information, we refer to the available literature, for
example the detailed, technical description in Linux Kernel Networking by
Rosen [4].

The networking stack in the kernel handles functionality up to the trans-
port layer. In contrast, the application layer is usually handled by userspace
applications. The interface between applications and the networking stack
on Linux is the POSIX socket Application Programming Interface (API) [4].
This API provides an uniform interface to the different transport layer pro-
tocols supported by the kernel. Despite the differences of the protocols, the
interface is pretty consistent and allows to use the same functions irrespective

5

CHAPTER 2. BACKGROUND 6

of the underlying protocol. In general, the application can use sockets to
send data to other endpoints or to receive incoming data. Besides that, there
are functions to start outgoing communication for client applications and
functions to accept incoming communication for server applications.

Within the kernel, the data of network packets is kept within a data
structure called sk_buff. An sk_buff maintains the offsets to the beginnings
of the headers for the different protocols in the packet data in memory. It
also maintains other metadata of the packet that are useful throughout the
stack. As sk_buffs are used everywhere in the stack, they also serve as a
unified interface for packet handling within the kernel. While they are often
described as a single packet, sk_buffs do not necessarily represent one packet
as it is transferred over the wire. Instead, it can also combine the data of
multiple packets, often due to a technique called segmentation offloading
where the Network Interface Controller (NIC) handles the segmentation and
aggregation of packets that belong to one flow to enable the networking stack
to process them at once [5].

The rest of this section will focus on different aspects of the kernel net-
working stack. It starts with an overview of how the packets enter the stack
from physical NICs and is followed by a description of the three main paths
a packet can take through the stack.

2.1.1 NAPI
The Linux kernel contains drivers for many different NICs. They are respon-
sible for interacting with the hardware to receive incoming packets and hand
them to the networking stack, and to take packets from the stack and send
them out of the interface. Generally speaking, there are two ways in which a
driver for a NIC can operate. It can either react to interrupts generated by the
NIC for an incoming packet or it can constantly poll the network interface for
new data from the network [6]. While basing a driver on interrupts achieves
low latency, it can lead to significant performance issues at high load, because
of the high performance overhead of handling an interrupt. On the other
hand, constant polling wastes CPU resources and can increase the latency for
handling incoming data, while being able to provide high throughput.

The current prevalent framework for implementing drivers for NICs in
Linux is called New API (NAPI). It has been introduced by Salim et al. [7]
in 2001, but the core ideas go back to previous work by Mogul et al. [6]
from 1997. The main goal of that work is to prevent livelock when receiving
network packets in an interrupt driven kernel. Livelock describes a situation
where a kernel can not perform useful work any more because a resource,
most often CPU time, is fully exhausted by processing the interrupts from

CHAPTER 2. BACKGROUND 7

the NIC for incoming network packets. To address this issue, Mogul et al.
[6] suggest a combination of interrupts and polling, where the first interrupt
triggers subsequent polling. They also suggest trying to drop packets, which
can not be handled due to a overload situation, as early as possible. This
reduces the time spent on processing packets that would be dropped anyways
later on. Salim et al. [7] implement these ideas in the Linux kernel under the
name NAPI and extend them to reduce the introduction of packet reordering
on multi-core machines.

With NAPI in Linux, when a driver of a NIC receives an interrupt for an
incoming packet, it does not handle the packet immediately in the interrupt
handler [8]. Instead, it disables further interrupts for new packets from the
device and instructs the kernel to start polling on the device shortly. The
polling function, which is part of the driver as well, is then called and expected
to pass all new packets that arrived at the network interface to the networking
stack. This might be just the single packet from the original interrupt, but
may also entail additional packets that arrived in the meantime. To prevent
the polling from going on for to long, there is a limit in place for how many
packets the driver should pass to the stack. If the limit is reached and there
are still further packets available, the polling function hands control back
to the kernel and indicates that it expects to be run again. If there are no
further packets available from the device, the polling function indicates this
to the kernel and activates the interrupts from the device again. This process
clearly achieves a dynamic combination of interrupt-driven and polling-based
drivers, as suggested in the scientific work.

The NAPI design also achieves the goals of early dropping of packets
and reduced reordering of packets [7]. This happens due to the way NICs
handle the incoming packets: the packets are placed in a Direct Memory
Access (DMA) ring buffer. This means that the device writes the data of
received packets directly to a ring data structure in the main memory as long
as there is space left in the data structure. If the packets arrive faster than
the kernel can handle them, the ring fills up. When the ring is full, the NIC
silently drops further incoming packets without disturbing the kernel. This
means, that packets that can not be processed due to an overload situation
do not reach the kernel at all. As the ring is a linear data structure, the
packets are placed sequentially within it. This sequential order can be used
later in the stack to reduce the reordering of packets [7, 8]. To speed up
the processing of the received packets, the DMA ring serves as the memory
backing pre-allocated sk_buffs. Thereby, the incoming packets can directly
be used by the stack without the need to allocate an sk_buff first. When the
driver has completed one polling cycle, a new sk_buff in the DMA ring gets
allocated for each received packet to store the next incoming packets.

CHAPTER 2. BACKGROUND 8

However, NAPI also has its limitations. Especially in situations with
a medium amount of packets, the polling loop is started because a packet
arrives and finishes just before the next one arrives [9]. The processing of the
next packet will then again be triggered by an interrupt, which is costly. Due
to the high number of interrupts, the load on the machine is already very
high at a packet rate that is low compared to the maximum capacity of the
host.

2.1.2 netfilter
The netfilter framework is a very powerful subsystem of the Linux networking
stack. It provides various hooks throughout the packet processing path of
the kernel [4]. At the hooks, various actions can be performed with the
packet, including rewriting addresses or ports, dropping packets, and logging
them. These functionalities are provided by kernel modules, which can register
callbacks to be executed at the hooks. The most common usage of the netfilter
infrastructure is probably iptables, which allows system administrators to
configure rules for filtering and processing IP traffic.

Arguably, examining just a single packet may often be not enough for
deciding which action to take upon it [10]. Therefore, the connection tracking
system conntrack has been built, utilizing netfilter to support stateful filtering
and similar operations. It identifies connections by their 5-tuple (source
address and port, destination address and port, and protocol) and stores
the current state of the connection. The stored state does not resemble, for
example, a full TCP state machine, but rather distinguishes mainly if there
has been just one-way, or already two-way traffic for a flow.

A particular strength of netfilter is that the modules can also be combined.
Thus, it is possible to base the decisions in iptables rules on the current
state of the flow in conntrack. This makes it possible to express complex
network functions, including stateful firewalls or load balancers, using netfilter
modules.

2.1.3 Incoming Packets
The path that incoming packets take through the stack can be seen on the
left side of Figure 2.1 in green. New packets enter the stack as sk_buffs that
the NIC driver passes to the stack. The first operation relevant in the scope
of this thesis is the processing of packets by traffic control (tc) ingress hooks.
This can be used to perform operations related to quality of service [11].
Next, the callbacks attached to the NF_INET_PRE_ROUTING hook are executed,
including running conntrack for the incoming packet [4]. They may change

CHAPTER 2. BACKGROUND 9

Network interface driver

Application

tc ingress tc egress

netfilter prerouting
+ conntrack

Routing

netfilter local in

SocketSocket

Routing

netfilter local out
+ conntrack

Rerouting

netfilter postrouting

netfilter forward

Userspace

Kernel

Figure 2.1: Packet flow in the Linux networking stack, based on Rosen [4]

the packets when they, e.g., perform Network Address Translation (NAT).
After that, the Forwarding Information Base (FIB) of the system is consulted
to decide if the packet is destined for the local host, or should be forwarded.
Packets for the local host go through the callbacks for the NF_INET_LOCAL_IN
hook. Afterwards, the socket that the packets should arrive at is looked up
and if such a socket exists, the sk_buffs are added to the receive queue of this
socket. Then, the data is ready to be received by the userspace application.
If the packets are not for the local host, they instead follow the forwarding
path described in the next section.

2.1.4 Forwarding Packets
The forwarding path is simple and shown in the center of Figure 2.1 in
orange. After the routing decision in the input path was made, the packets
are processed by the callbacks for the NF_INET_FORWARD hook [4]. Then, the
packets join the output path at a particular step that is described in the next
section.

CHAPTER 2. BACKGROUND 10

2.1.5 Outgoing Packets
The path of outgoing packets is shown in Figure 2.1 on the right in blue.
Outgoing packets can be generated by userspace applications [4]. When
an application writes to a socket, an sk_buff is allocated for the data and
passed to the networking stack. For these sk_buffs, first a lookup in the FIB
is performed to find out if the kernel knows how to send the packet to its
destination. If this lookup is successful, the packets are processed by the
callbacks for the NF_INET_LOCAL_OUT hook, which includes running conntrack.
This step may change parts of the packet, including the destination address
when performing NAT. Therefore, another routing decision is made now to
decide on the network interface through which the packet leaves the system.
From this step onward, the packets that are forwarded by the kernel follow
the same steps.

Next, the packets are processed by the callbacks for the NF_INET_POST_-
ROUTING hook [4]. Then they are handled by the tc egress hooks. After that,
they are finally handed to the driver of the interface through which the packet
is supposed to leave the system.

2.2 Kubernetes and Container Networking
Kubernetes is a software system to manage containerized applications [12].
The desired state of the deployed applications is defined in a declarative way
and the system constantly compares the desired state to the actual state
to take action if needed. Kubernetes has a focus on being scalable to big
application deployments. For example, it usually distributes the running
applications across a cluster of worker nodes, can start multiple instances of
an application, and load balance the traffic towards them.

The containers running the applications are organized in pods [13]. Each
pod can contain one or more containers. The containers and pods are isolated
from the system and other pods using Linux namespaces, cgroups, and
potentially other technologies. From a networking perspective, it is important
that all containers in a pod share the same network namespace. Each network
namespace appears to have its own networking stack with its own set of
interfaces, a routing table, and all the other features of the Linux networking
stack. Within one network namespace, the applications can also communicate
with each other over localhost.

CHAPTER 2. BACKGROUND 11

Worker node Worker node Worker node

Virtual services network (e.g., 172.16.0.0/16)

Datacenter network (e.g., 192.168.1.0/24)

e.g. 10.0.1.0/24 e.g. 10.0.2.0/24 e.g. 10.0.3.0/24

Pod network (e.g., 10.0.0.0/16)

(a) The different networks used in a cluster

Service

Pod PodPod

ClusterIP

NodePort

LoadBalancer

(b) The different layers
for exposing a service

Figure 2.2: Networking in a Kubernetes cluster

2.2.1 Kubernetes Networking
In general, there are three different networks in a Kubernetes cluster. They
are shown in Figure 2.2a. First, there is the datacenter network. Each of
the nodes in the cluster has an IP address from this network to be able to
communicate with other nodes. Then there is the pod network. The pod
network is defined when the cluster is setup and each node in the cluster gets
assigned a subnet of the pod network. Finally, there is the virtual services
network. Services running in the cluster can get assigned one IP address from
this network. They are described in more detail later in this section.

Kubernetes puts up a few rules for how the networking within the cluster
should work [14]. Each of Tthe pods gets assigned one IP address from the
pod subnet assigned to the node the pod is running on. Kubernetes requires
that a pod can reach all other pods in the cluster without any NAT happening
in between. Also, software running in the host network namespace must be
able to reach the pods running on the same node. On Linux, this rule is
extended so that software in the host network namespace must also be able
to reach all other pods in the cluster.

In addition, Kubernetes also defines how pods can be made reachable
from outside the cluster [15]. This is shown in Figure 2.2b. There are Services
that group one or more pods which are usually running instances of the
same application. A Service can have a ClusterIP assigned to it which is
taken from the virtual services network. The ClusterIP is accessible from all

CHAPTER 2. BACKGROUND 12

pods in the cluster and the traffic to it is load-balanced to the pods of the
service. To make a ClusterIP accessible from outside the cluster, Kubernetes
offers NodePorts. A NodePort opens a port on each node of the cluster and
forwards the traffic arriving at this port to the underlying ClusterIP. However,
NodePorts are still not optimal for users to access because they require the
users to memorize the port number. Also, the nodes of the cluster might
just be connected to a private network that is not accessible by the users.
Therefore, Kubernetes allows to configure LoadBalancers that distribute the
traffic to the different NodePorts. The LoadBalancers are usually external to
the cluster, e.g., operated by the cloud provider where the Kubernetes cluster
is hosted.

While Kubernetes specifies all this, it does not implement the networking
itself. Instead, this is delegated to other software systems that follow the
Container Networking Interface (CNI) specification [16]. There are many
of these CNI plugins available. The installation of one of them is required
for a working Kubernetes cluster. To achieve a network configuration that
follows the rules imposed by Kubernetes, the CNI plugins make use of various
elements of the Linux networking stack, such as iptables to configure NAT or
different tunnel protocols to transport the inter-node traffic. They might also
use additional software to provide additional functionality, such as routing
daemons to integrate with the datacenter network or userspace proxies to
implement network policies on higher layers. The software kube-proxy is
often used by CNI plugins to perform the load balancing from ClusterIPs
to the pods of a service. While there are other options, kube-proxy usually
configures iptables to perform the load balancing.

2.2.2 CNIs in This Thesis
This thesis considers the CNI plugins Calico and Cilium for the comparison of
their packet processing latency and jitter. Both are commonly used systems
with many different features, often exceeding the requirements of Kubernetes.
In their default configurations they differ in how they configure the networking:
while Calico uses iptables for most of the configuration [17], Cilium aims to
implement many features in BPF and bypass the networking stack in these
cases to achieve better performance [18]. However, Calico also provides a
implementation of its data plane in BPF [17]. Both BPF implementations
are capable of replacing kube-proxy and its iptables rules completely [17, 19].
Calico and Cilium both use virtual ethernet pairs to transfer packets between
network namespaces. A virtual ethernet pair can be imagined as a virtual
ethernet cable. It is created when a pod is created and one side of the pair is

CHAPTER 2. BACKGROUND 13

moved into the network namespace of the pod while the other side remains
in the host namespace.

Of course, the two CNI plugins have many other features that are not
covered here and are not considered in this thesis, including different mecha-
nisms to transfer traffic between nodes, encryption of this intra-cluster traffic,
integration into the data center network, network observability, or network
policies. For these topics, the reader is referred to the extensive documentation
of both projects.

2.3 Tracing in the Linux Kernel
Tracing is a way to obtain detailed data about a software system by providing
a framework for efficient and configurable logging of events [20]. The events
are usually timestamped and concern the execution flow of the system itself
instead of more high-level business metrics. As such, tracing has proven itself
to be a very helpful tool for developers to debug complex systems and identify
performance issues. Therefore, there are several tracing tools available for the
Linux kernel [20]. Some of them are directly integrated into the kernel, while
others are developed outside the kernel source tree and can be added to a
system as a kernel module. The rest of this section describes the capabilities
of the different tracing systems that are directly integrated into the kernel,
ftrace and perf, while the next section presents eBPF in detail.

The so called tracepoints are an important feature for tracing the Linux
kernel. They are essentially hooks in the Linux kernel code that are placed
there at development time [21]. At runtime, user defined programs, called
probes, can be attached to tracepoints. If there is no probe attached, a
tracepoint adds very little overhead, i.e., just one check of a branch condition.
The probes also get passed some pre-defined parameters, which describe the
context of the current invocation of the function. For example, in networking-
related tracepoints, this context might include a pointer to the sk_buff that
is being processed. In addition to tracing, the tracepoints may also be used
for performance accounting.

2.3.1 ftrace
ftrace is a tracing system that focuses on the internal behavior of the kernel [20].
It can trace events from two main sources: kernel functions and tracepoints.
For kernel functions, it can generate events when a function is entered and
exited [22]. This allows, for example, to build call graphs for the kernel
and record the time spent in each individual function. When it works on

CHAPTER 2. BACKGROUND 14

tracepoints, ftrace just generates an event when it encounters tracepoints in
the kernel.

ftrace it not available as a single program on a Linux system [20]. Instead,
it is integrated into the kernel and controlled using the debugfs filesystem. The
files, that this virtual filesystem presents, can be used to enable and disable
the tracing, filter the events, and select which information should be collected.
As interacting with ftrace through the filesystem is rather inconvenient, there
are command line frontends, such as trace-cmd, that can be installed in most
Linux distributions [23].

2.3.2 perf
perf is usually known to be a tool for sampling and profiling of Linux applica-
tions [20]. For this use case, it uses the perf_events subsystem to gather
information about the performance of applications. Most notably, it can inter-
act with the Performance Monitoring Units (PMUs) of CPUs to collect data
on various low-level metrics, including the number of processed instructions,
the busy and stalled cycles of the processor, cache hits and misses, and missed
branch predictions, and thereby helps with fine-grained, down to the line of
code or even instruction, performance analysis of applications. But perf can
also interact with tracepoints in the kernel [20]. This allows it to collect more
high-level data on how an application uses different Linux kernel subsystems.
An example for this use case would be to check if an application uses the
read() system call efficiently or if it issues a high number of small reads.

2.4 The Extended Berkeley Packet Filter
The original Berkeley Packet Filter (BPF) was introduced in the early 1990s
to improve the performance of packet captures in the userspace [24]. Before
capturing packets, a userspace application provides a set of rules to the kernel.
The kernel evaluates these rules for each packet to decide if the packet should
be copied to the userspace. This way, the performance-wisely expensive copy
over the kernel/userspace boundary is limited to the packets that are of
interest to the application. BPF provided a new way to write the rules and
evaluate them in the kernel. They are provided as program consisting of
BPF instructions. The kernel executes these instructions in a register-based
pseudo machine. Combined with additional optimizations, this improved the
performance of the in-kernel filtering by up to 100 times. The most notable
use of BPF is probably libpcap that underlies tcpdump and generates BPF
code from the traffic filters given by users on the commandline [25].

CHAPTER 2. BACKGROUND 15

BPF has later been substantially reworked [26]. The reworked version was
released with kernel version 3.18 in December 2014 and publicly called eBPF
because it contained so many improvements. Therefore, the original BPF
design is sometimes referred to as classic BPF (cBPF) when it is required
to highlight the differences between the versions. The kernel development
community continued to call the new version BPF but does consider it a
name of a technology now and no longer an abbreviation for Berkeley Packet
Filter. Throughout this thesis, the term BPF always refers to the current
implementation, eBPF.

eBPF includes an updated instruction set and changes to the pseudo
machine used to execute them [27]. These changes were mainly introduced
to align the BPF instruction set more closely with current native hardware
instruction sets. This potentially improves the performance, simplifies the
Just-In-Time compilation (JIT), and allows for direct interaction with kernel
functions. These low-level changes allowed to introduce additional features
that made BPF more versatile, including maps to support stateful processing
and a library of in-kernel helper calls [28]. Thereby, it evolved into a flexible
technology to add functionality in different places in the Linux kernel and
is sometimes considered an “universal in-kernel virtual machine” [29]. The
following sections describe the capabilities that BPF has at the moment.

2.4.1 Programs
Usually, BPF programs are written in a limited C dialect and compiled to BPF
bytecode by LLVM [26]. The most important limitation of the programs is
that their complexity is limited by the verifier in the kernel. Therefore, control
structures can not be arbitrarily deeply nested. Programs may only contain
bounded loops, i.e., the loops must have a maximum number of iterations
that is known at compile time. Therefore, the code shown in Listing 1 is a
common pattern to implement loops. Up until kernel version 4.16 and LLVM
version 6.0, a BPF function could not directly call another one. Instead,
all function calls needed to get inlined, which leads to increased size of the
bytecode. The only exception to this were tail calls, by which the end of a
BPF program trigger the start of another one. In contrast to an ordinary
function call, the execution flow never returns to the calling function in case
of a tail call.

The programs can not directly access arbitrary kernel memory [26]. Direct
access is only possible to memory in the stack of the program, in maps, or of
the network packet the program is working with. Even these accesses need
to be checkable by the verifier, which sometimes makes it necessary to add
explicit bound checks before accessing the memory. Programs can only read

CHAPTER 2. BACKGROUND 16

#define MAX_ITERATIONS 4096
for (i = 0; i < iterations && i < MAX_ITERATIONS; i++) {

// do work
}

Listing 1: Example for a bounded loop that can be used in BPF

kernel memory using helper functions such as bpf_probe_read but they are
not allowed write to the kernel memory to maintain the integrity of the kernel.

In addition to the memory access functions, there are many more functions
available to developers. They are all called helpers and documented in the
man page bpf-helpers(7) [30]. Some helpers provide convenient access to
commonly needed functionalities, such as the computation of packet check-
sums, while many others can be used to access kernel functionality that could
not be expressed in pure BPF. Examples for this include redirecting packets,
modifying socket options, reading perf event counters, performing lookups in
the kernel routing table, and many more. Many of the helpers are focused
on operations related to the networking stack, because packet processing is
a common use case for BPF. However, the usage of some of the functions
comes with a potential caveat: some helpers require the BPF program to be
licensed under the GPL. To allow the verifier to check the license, the BPF
object files contain a special section to denote the license, which can be set
from the BPF source code.

The process of loading BPF programs into the kernel is depicted in
Figure 2.3. First, the bytecode of the program is loaded into the kernel by
the userspace application by issuing a bpf() system call. Then the verifier
runs to ensure that the program is safe to run in the kernel [25]. This most
importantly means, that the program always runs to completion, does not
crash, and only performs safe memory accesses as described before. To verify
the completion of all executions, the verifier parses the program into an
directed acyclic graph. This step requires that the program does only contain
bounded loops and performs no backward jumps. Afterwards, the verifier
follows all possible execution paths of the program to make sure they all
pose correct behavior using a state machine. This step limits the overall
complexity of the BPF programs to prevent a state explosion caused by too
many different paths through a program. If the program accesses packet data,
the verifier makes sure that it performs a border check beforehand to prevent
illegal access to kernel memory. Thereby, it is possible to allow writing to the
packet data while making sure that the program can not write to arbitrary
kernel memory.

After the program has been approved by the verifier, it may be processed

CHAPTER 2. BACKGROUND 17

Figure 2.3: The process of loading a BPF program into the kernel1

by a JIT compiler [26]. The JIT compiler is supported on many architectures,
including the most common Arm and x86 on 32-bit and 64-bit processors,
and can be disabled at runtime. It translates the BPF instructions into native
instructions for the processor. This enables high performance as if the code
has been compiled for the hardware platform. If the JIT compiler is not
available or disabled, the bytecode is executed by an interpreter in the kernel.

When this process is completed, the program is ready to be executed.
The execution of BPF programs is event driven, i.e., a program is executed
when a particular event occurs in the kernel. The different events that could
trigger the execution of a program are called hooks. The hook that a program
should be attached to is set when the program is loaded into the kernel. It
is determined by the program type [25]. Often, the type is accompanied
by additional parameters to choose the exact hook. Besides the hook, the
program type also determines the context which is passed to the program
and the helper functions it may use. The program types can be divided into
two groups according to their use cases: networking and tracing.

The networking program types have in common that their context is a
network packet, a data stream, or other networking related data. These
contexts are usually defined for the BPF programs and pose a compatible API
and Application Binary Interface (ABI) across kernel versions. The helper
functions for these program types offer functionality often needed for network
processing, such as redirecting packets and calculating header checksums,
and sometimes allow the modification of the passed context or related data
structures. Some of the networking related program types and their contexts
are described below.

1From https://ebpf.io/what-is-ebpf, under Creative Commons BY 4.0

https://ebpf.io/what-is-ebpf
https://creativecommons.org/licenses/by/4.0/

CHAPTER 2. BACKGROUND 18

eXpress Data Path (XDP) Programs of type BPF_PROG_TYPE_XDP can
run before a packet does even enter the networking stack [31]. They
only have access to the raw packet, which has not yet been parsed by
the stack. Therefore, XDP programs can process packets at very high
throughput rates at low CPU utilization. To achieve this, the program
is called directly by the driver, which thus needs to be modified. Such
modifications have been introduced to many drivers, especially to the
drivers for NICs with a high bandwidth. If the driver does not have
XDP support, generic XDP can be used instead. However, this only
runs the programs after the packet has been parsed by the stack and
therefore does not offer the same high performance.
An XDP program is attached to a network interface and only handles
incoming packets [31]. Within the programs, the content of the packets
can be read and modified. At the end of the program, it can determine
how the packet should be processed further. The options are to drop
the packet, transmit the modified packet out of the same interface
it arrived at, pass the packet to the normal networking stack, or to
redirect the packet. The redirection can happen to a different interface
for transmission, a different CPU for processing, or directly to an AF_XDP
userspace socket.

Traffic Control Hooks Programs of type BPF_PROG_TYPE_SCHED_CLS can
be attached to the ingress and egress tc hooks [25]. The ingress hook
runs the program after it has been parsed into an sk_buff but still before
most of the networking stack; the egress hook runs the program after
most of the networking stack. As with XDP, the programs are able to
read and write directly to the packet in memory and can the determine
the further processing of the packet with the return code. Options for
further processing are, among others, to accept the packet to the tc
queue, to drop the packet, or to start the classification again, e.g., when
the packet was modified.

In addition to these, there are program types that can be attached to
various networking related hooks in the kernel, including the opening of
sockets, handling of socket options, packet filtering from cBPF, and parsing
of data streams to and from sockets.

The other group of program types deals with tracing. The context of these
programs is usually a set of register values that refer to data structures in the
kernel. Therefore, the BPF bytecode for tracing programs is not necessarily
compatible between different kernel versions. A current approach to increase
the compatibility is called Compile Once - Run Everywhere (CO-RE) and

CHAPTER 2. BACKGROUND 19

described in Section 2.4.3. The tracing programs do not have access to many
of the helpers related to networking, but to other helpers that allow more
low-level interaction with the kernel, including, reading kernel or user memory,
or triggering signals to tasks. The points to attach the programs fall into two
categories.

Tracepoints As described before, there are tracepoints in the kernel for
various events [21]. BPF programs can be attached to these tracepoints
at runtime. The programs can read all the parameters that are defined
as the context of the tracepoint. However, they can not modify the
parameters or any other kernel memory.

Kernel functions It is also possible to attach BPF programs directly to the
beginning or end of functions in the kernel [26]. This is more flexible
because the programs are not limited to the pre-defined tracepoints. The
programs can be attached using the older k(ret)probe mechanisms [32]
or the newer fentry/fexit mechanisms [33]. While they both achieve
very similar results, they differ in details. The k(ret)probes can be
attached to all functions in the kernel, while fentry/fexit probes need
BTF information to be available for the functions. Most notably, this
is not available for kernel functions marked as static. The context of
programs attached at the beginning of kernel functions, i.e., kprobes
and fentry probes, contains all the parameters that were passed to the
function. However, the context of programs at the end of a function, i.e.,
kretprobes and fexit probes, differs in that kretprobes can only access
the return value of the function while fexit probes can additionally
access the parameters that were initially passed to the function. Both
types of programs can only read kernel memory and their respective
contexts but not modify it.

In the context of tracing, the programs are often called probes to align with
the terminology from other tracing tools. The technical differences between
the different hooks in each of these categories are presented in Section 4.1.2.

2.4.2 Maps
Maps are one of the most notable additions that were introduced with eBPF.
They are special data structures that can be accessed from BPF programs in
the kernel and from userspace applications. In contrast to cBPF, maps make
it possible to build stateful applications in eBPF that share state between the
invocations of the programs. There are different types of maps available for
different use cases. Most of them treat the keys and the values as binary data

CHAPTER 2. BACKGROUND 20

and thereby allow the users to freely define their use. The maps always have
a maximum number of entries that is set at load time. Thus, the required
memory can already be reserved at initialization to prevent exhausting kernel
memory at runtime by growing maps. The most important types of maps to
store generic data are described below.

BPF_MAP_TYPE_ARRAY This map behaves like an array in other programming
languages. The values in the map are accessed by their index and
all indexes exist from the beginning of the program. This map also
exists in a per-CPU version where the map is duplicated for each core.
This allows programs to access the map without locking but does not
synchronize the values across the different cores.

BPF_MAP_TYPE_HASH This map implements a key-value store with user-
defined keys and values. The values can be looked up using the key but
only after they have been inserted, i.e., there are no pre-allocated entries
that can be accessed as in the arrays. When the maximum number of
entries is reached, further insertions will fail. This map is also available
in a per-CPU version.

BPF_MAP_TYPE_LRU_HASH This map type is very similar to the hash maps.
But when the maximum number of entries is reached, further insertions
do not fail. Instead, the least recently used entry is evicted and the new
entry is inserted. This map is also available in a per-CPU version.

BPF_MAP_TYPE_LPM_TRIE This map implements a longest prefix matching
trie. This is especially useful for networking use cases, such as routing
tables.

BPF_MAP_TYPE_PERF_EVENT_ARRAY This map is an array where the values
can only be file descriptors for perf events. These maps can be used
for two different things. Firstly, they can be used to read perf events,
e.g., the hardware counters for instructions or cycles, in a BPF program.
In this case, the userspace application initializes the map with file
descriptors to any perf event obtained from perf_event_open. Secondly,
the map can also be used as a message queue from the BPF program
to the userspace application. For this, the application needs to obtain
the file descriptor with a special configuration. The BPF program can
then write data of arbitrary size to the file descriptor in the map. The
userspace application can then read each of these data blobs as one
event.

CHAPTER 2. BACKGROUND 21

BPF_MAP_TYPE_RINGBUF The new ring buffer map works similar to the second
use case of the perf event array, i.e., as a message queue to the userspace
application [34]. The main difference from a developer perspective is
that the ring buffer guarantees to deliver the events in the order they
were added to the buffer.

In addition, there are many map types available that store references to
particular kernel data structures, e.g., BPF_MAP_TYPE_SOCKMAP stores refer-
ences to sockets that can be used to redirect traffic to the referenced socket
using a helper function, or BPF_MAP_TYPE_PROG_ARRAY stores references to
other BPF programs to allow tail calls to them. These maps can not be used
to store user-defined data and are therefore only suitable in their specific use
cases.

2.4.3 CO-RE and BTF
Linux generally offers strong ABI guarantees for user APIs, especially for
system calls [35]. This means that the layout of binary data, e.g., structs
filled by system calls, is not changed across kernel versions, to maintain
compatibility. If data structures need to be changed, existing fields can only
be deprecated and new ones added at the end of the structure. As described
previously in Section 2.4.1, the contexts of the networking BPF programs
usually follow these ABI guarantees which makes the compiled bytecode
compatible across different kernel versions. In contrast, tracing programs can
read directly from internal kernel data structures. These data structures are
not part of the userspace API and thus not guaranteed to be stable. Therefore,
plain tracing programs can only work reliably on the single kernel version
they were compiled for.

For some time, the solution to run the programs on different kernel versions
was to recompile them on the system when they are about to be used. This
approach is used for example by BCC, a framework that allows to use BPF
from a Python interface [36]. However, this approach has the downside of
requiring the compiler to be present on the target system [37]. The only
BPF compiler available today is part of LLVM, which is a compiler suite
for many different programming languages. Therefore, it requires significant
storage space on the target system. Also, compiling the programs on the
target system introduces additional load on that system.

To make compiled tracing programs more compatible across kernel versions,
a technology called Compile Once - Run Everywhere (CO-RE) has been
introduced [37]. It allows to store type information in the BPF programs that
get resolved to the actual kernel data structures at load time of the program.

CHAPTER 2. BACKGROUND 22

This is achieved by an integration of a new type format, the LLVM compiler
for BPF, and the userspace library libbpf. The kernel itself only needs few
changes to support CO-RE, which makes it available even in non-recent kernel
versions.

The type format used for CO-RE is called BPF Type Format (BTF) [37].
It allows to embed type information into object files similar to what is
achieved with DWARF debug symbols. The advantage over these debug
symbols is, that BTF information are up to 100 times smaller than DWARF
symbols for the same object file. This makes it feasible to always include BTF
information even in production kernels. They are already included in recent
releases of the common Linux distributions. The size reduction is achieved
by a simplification of the format to focus on the type information and by a
deduplication algorithm that aims to include each symbol just once and work
efficiently across multiple compilation units. The algorithm has been created
and thoroughly described by Nakryiko [38].

The Linux kernel is most often compiled using GCC. However, this compiler
can not emit BTF information directly. Thus, in the kernel build process,
pahole is used to generate the BTF information from DWARF symbols [39].
When compiling BPF programs, the compiler must emit BTF relocations [37].
This is natively supported by LLVM since version 8.0.0. The relocations keep,
for example, the information about what field of a struct should be accessed
by name, instead of compiling it down to a simple access with an offset from
the beginning of the struct. The relocation information are translated at load
time into accesses with the offsets that apply to the running kernel. This is
done by mapping the names and types stored in the relocations to the BTF
information of the kernel.

The loading of CO-RE BPF programs happens through libbpf [37]. This
userspace library is part of the Linux kernel source code and performs the
aforementioned translation of BTF relocations in the object file of a BPF
program to simple memory accesses to generate an executable version of the
bytecode that matches the running kernel. However, this is only a small
subset of the functionality of libbpf. It actually supports the whole lifecycle
of BPF programs, including the complete loading and attachment process of
a program, the setup of maps described in the object file, the creation of the
necessary data structures, and the actual interaction with the kernel using
system calls. The library greatly simplifies the handling of BPF programs
and is therefore also used for the implementation of the tracing application
in this thesis.

The preceding section has outlined the different functionalities and versatile
components that BPF has. They allow developers to program elements of
the kernel that could previously only be changed by changing the kernel itself

CHAPTER 2. BACKGROUND 23

or by introducing kernel modules. This newly gained programmability of the
kernel in combination with userspace software enables many new applications
in tracing, networking and security without modifying the kernel that were
previously impossible to build.

2.5 Related Work
One example of a specialized tracing tool that makes use of BPF is ipftrace [40].
It allows to observe the functions that process sk_buffs in the networking
stack. To achieve this, the tool scans the BTF information of the running
kernel for all functions that take a pointer to an sk_buff as a parameter.
It then attaches BPF kprobes to each of these functions to register their
execution. The advantage that this tool offers over less specialized tools is
that it only traces sk_buffs that are marked in a specific way. Such marks can
be added to sk_buffs using tc or iptables. Therefore, the scope of the tracing
can be narrowed down to network packets that fulfill certain requirements,
e.g., belong to a specific flow. Thereby, ipftrace can support debugging that
is directly related to the handling of packets [41]. However, while it supports
to retrieve some customizable data from the sk_buff, it can not get the full
context that is necessary to identify, for example, which netfilter table the
sk_buff is being processed by. Also, it does not report accurate per-packet
timing information that are necessary for jitter calculation.

There has been previous research on the latency and jitter of networking
on a single host. Beifuß et al. [42] study the latency of packet processing in
Linux that is caused by NAPI and its interaction with the hardware drivers,
i.e., before a packet reaches the networking stack. They simulate the behavior
of a NAPI driver and validate their results in a testbed with accurate timing
measurements. The machine is configured to perform simple in-kernel layer
2 forwarding using the Open vSwitch included in Linux. Their results show
that NAPI leads to a high number of interrupts at low packet rates and a
low number of interrupts at higher rates. This is expected due to the design
of NAPI. For the latency, they show that the distribution of observed packet
latencies is non-trivial. As an example they show round-trip latencies ranging
from less than 10 µs to 100 µs with multiple peaks across the whole range
but the two highest ones around 80 µs. This latency determined by kernel
functionality such as the NAPI design and the concrete driver implementation,
but not the implementation of a CNI plugin. Therefore, we note its existence
here and do not include it in our measurements.

Herzog et al. [43] measure the latency between the top half and the bottom
half of an interrupt handler. While their measurements are not focused on

CHAPTER 2. BACKGROUND 24

network packets, this latency applies to NAPI drivers as well before they start
polling packets. To obtain the data, they used a custom kernel module that
registers an interrupt handler and measures the time difference that occured
between its top and bottom half. The results show that this latency can be
up to 10 µs and exhibit significant jitter. However, this jitter can also not be
influenced by the CNI plugin and is thus excluded from the measurements in
this thesis.

Public cloud providers usually offer Kubernetes clusters based on Virtual
Machines (VMs). Oljira et al. [44] show that virtualization adds latency to
the packets because of buffering and unfair resource sharing in the hypervisor
networking. Also, the number and network traffic of VMs co-located on the
same hypervisor host have a high impact on the additional delay. Whiteaker
et al. [45] also found that co-locating VMs with high network traffic leads to
increased latency. This effect greatly exceeds the impact of co-located VMs
stressing other system resources. We conclude from the described research
that virtualization adds many more potential causes of jitter outside the
control of the cluster operator. Therefore, we focus our work on clusters
running on bare-metal machines, because they are more feasible for workloads
with strong requirements in terms of low latency and jitter.

Emmerich et al. [46] present an analysis of round-trip latency for UDP
connections up to the application layer. The application running on the test
machine is supposed to resemble a game server, i.e., real-time communication.
They as well see a high impact of running the application in a VM and see a
huge increase in latencies and jitter when the host is under high load. Also,
they show how the socket buffer size affects the trade-off between latency and
throughput for sending packets.

Blake et al. [47] focus their latency measurements on an application that
uses TCP connections and measure the latency introduced by the networking
stack. To collect the internal data from the networking stack, they have built
a kernel module using SystemTap. This is a tracing framework that is not
part of the Linux source code and allows to create custom tracers that are
compiled into kernel modules and loaded for the data collection. They show
that the 99th percentile latency until the packets are placed in the receive
queue does not vary a lot with increasing load while the 99th percentile latency
until the packet is received by the userspace application can increase by more
than two orders of magnitude. Therefore, they conclude that the queuing
behavior is responsible for a significant share of the receive latency. They
also observe that outgoing packets show a significant increase in the 99th

percentile latency under high load.
While the related work described so far focuses on the latency of network

communication and thereby detects jitter as variance in their data, it has

CHAPTER 2. BACKGROUND 25

also been tried to identify sources of jitter more directly. De et al. [48]
used instrumentation of the Linux kernel to observe operating system jitter,
i.e., jitter that applications running on the system experience that is not
necessarily related to networking. They used custom kernel modules to obtain
data on which process or interrupt handler was active on the processor and
when it started or ended. Their data shows that most of the interruptions of
a synthetic test application happened due to the timer interrupt, but they
also identified several daemons running on the system that were responsible
for interruptions of the application and therefore jitter.

Gonzalez et al. [49] also investigate the operating system jitter but using
a different method. Instead of using custom kernel modules, they use perf to
collect data from tracepoints related to the scheduler. While this removes
the requirement of kernel modules, it also misses some sources of jitter, most
notably the handling of interrupts. However, it is possible to observe when
the system executes parts of the interrupts, i.e., the bottom half, in kernel
threads as they are managed by the scheduler. The data shows that the
majority of jitter from other processes can usually be attributed to a small
number of processes and thus potentially optimized with reasonable effort.

Toussaint et al. [50] determine the networking jitter under different Linux
system configurations. They use an external video device to generate a stream
of network packets with constant inter-packet gaps. On the device under test,
timestamps are generated when the kernel receives a packet and when the
userspace application receives a packet. The kernel timestamps are generated
by a tracepoint in the interrupt handler of the NIC and observed using
perf. The variation of the difference of consecutive timestamps is the jitter
introduced by the hardware (kernel timestamps) or the kernel (application
timestamps). To see the effects of different parts of the system, they changed
the system configuration in various ways and observed the resulting jitter.
They conclude that they see the biggest impact on the jitter from hardware
effects, such as the interrupt throttling of the NIC, and these effects exceed
the impact of the scheduler.

Qi et al. [16] recently published an extensive study comparing five different
CNI plugins, including Calico with the default data plane and Cilium. They
compare the features and describe how each plugin fulfils the Kubernetes
networking requirements on a technical level. In addition, throughput and
latency is measured in two-node cluster in a testbed. However, they only
measure the round-trip latency and do not dissect the latencies in the net-
working stack. Instead, perf is used to observe how many cycles are spent
in the different kernel subsystems for each of the CNI plugins. While this
correlates with the latency introduced by a subsystem, the data can not be
used to determine the causes of jitter in the stack.

Chapter 3

Implementation

This thesis aims to obtain data that allow to identify the causes of jitter in
the Linux kernel networking stack. The data collection is performed by an
application that is implemented as part of this thesis, because the existing
tracing tools in the Linux kernel are not sufficient for this use case. This
chapter first presents the main design ideas of the implemented application
and summarizes why the existing tools are not sufficient. Then, the process
of identifying feasible probe points is outlined and finally, the details of the
implementation are described.

3.1 Design
The core idea is to implement a specialized tracing application to measure
the latency introduced by different parts of the networking stack of the Linux
kernel. The application is called lattrace and focuses particularly on the
components of the stack that are used by CNIs.

Inside the kernel, BPF probes generate timestamped events when a packet
passes specific parts of the stack. An event is always related to one particular
sk_buff and may be augmented with additional information where it is feasible.
This may include data to further describe the event or details of the packet,
such as the flow 5-tuple. The events are transferred to a userspace application
which collects them and calculates the latency that each packet experienced.
This per-packet data is stored to be analyzed later on.

The probes are attached at different points in the networking stack to trace
different subsystems. In the following, it is explained which probes, on a high
level, were identified to obtain useful insights into the stack latencies. The
concrete hooks to attach probes are not readily listed anywhere but needed
to be found through a manual process described in Section 3.3. Section 3.4

26

CHAPTER 3. IMPLEMENTATION 27

presents the hooks that were selected for the tracing application by this
process and explains the probes being attached to them. The application
should collect data for the following events:

New packet The time when a packet is seen for the first time in the stack.
This may be due to the packet arriving from a NIC or being sent out
from an application.

Begin of processing The time when the stack starts processing the packet
in the main part of the stack. This can show if there are significant
delays between the time we see a new packet and the time its processing
starts.

tc The start and end time, and subsequently the duration, of the processing
of tc hooks. Cilium attaches its BPF programs here to process packets
before most of the stack is executed [51].

conntrack The start and end time, and subsequently the duration, of the
normal connection tracking based on netfilter. This can be bypassed by
Cilium [52].

iptables The start and end time, and subsequently the duration, of the
processing of one hook in one table. This also requires additional
information to identify the processed hook and table. Many CNIs use
iptables but they often differ in how they use it.

End of processing The time when the stack is done processing the packet.
This can be because the packet has been handed to the NIC to be sent
to the network or because the packet has been placed in the queue of a
userspace socket.

Packet finished The time when the packet has been completely handled
and is not needed any more. This can differ from the end of processing
for packets that are destined for a socket where the packet is only
finished after its data has been read by the socket.

During the processing, a probe retrieve the information of the flow 5-tuple
from the packet to be able to attribute it to a connection. The flow information
is just obtained once and not by every probe to reduce the impact of the
probes on the system performance. This happens at the end of processing the
sk_buff to make sure that all packet headers have already been parsed by the
stack to be able to reuse this information. Obtaining the flow information
just once means that some fields in the packet have already been rewritten by

CHAPTER 3. IMPLEMENTATION 28

previous actions of the stack. Thus, the manual process of identifying relevant
flows from the output data requires some knowledge about the communication
that is happening in the cluster.

3.2 Existing Tracing Tools
The main tracing tools that are integrated into Linux are perf and ftrace as
described in Section 2.3. While they provide great value in many situations,
they are not feasible to obtain the data necessary for the latency tracing.
For this, the tracing tool needs to fulfill three criteria. First, it needs to be
able to instrument the kernel in a very fine-grained way. It needs to be able
to record when the execution of certain functions starts or ends. Second,
it must obtain rich data from the kernel. The traced function executions
need to be attributed to particular packet. Some functions may provide even
more context, such as the currently processed table for functions that belong
to iptables. In addition, the packet should not only be identified but also
attributed to a flow. Third, the tracing should be limited to the necessary
information to limit the overhead introduced by performing the measurement.
The functions in the networking stack are notoriously often executed because
they process all network packets that arrive at the machine. Therefore, the
implemented tracing tool should obtain the previously described fine-grained,
rich data only in the few necessary spots and not influence any other parts to
keep the overhead low.

The tracing tool perf handles the performance counters and kernel trace-
points. Performance counters are optimized for userspace applications instead
of the kernel and not optimal for latency tracing. On the other hand, the
kernel tracepoints do not cover every part needed in the networking stack.
That requires tracing the execution of kernel functions, which is not supported
well with perf. Also, the context received from tracepoints is very limited
and does not fulfill the requirement for rich data. perf does only provide
information about how the processing is happening but not about what data
has been processed.

ftrace can also trace arbitrary kernel functions in addition to tracepoints.
The tracing can also be limited down to certain functions and tracepoints of
interest to reduce the overhead that is not necessary for the latency tracing.
However, also with ftrace it is not possible to obtain further data for the
traced events.

Therefore, the tracing application for this thesis is implemented using BPF.
It can attach probes to tracepoints and the beginning and end of functions.
Each of the attachment points needs to be selected manually which keeps the

CHAPTER 3. IMPLEMENTATION 29

overhead low compared to probes being attached to all kernel functions by
default. The probes can read arbitrary data that can increase the level of
insights that can be obtained from the data. As BPF is not limited to tracing,
functionality that the other tracing tools provide out of the box needs to be
implemented, e.g., generation of timestamped events and the transfer to the
userspace application.

3.3 Identifying Hooks for Probes
To trace the latencies in the networking stack, timestamps should be taken
when packets traverse important points in the stack. The high-level ideas for
the points is described in Section 3.1. For the implementation it is necessary
to identify concrete hooks in the kernel where the tracing probes could be
attached. This requires a thorough understanding of the whole networking
stack for which the literature can only serve as a basis. Thus, significant
effort has been put into obtaining knowledge about how exactly packets are
processed by the networking stack with different CNI plugins. The process
of identifying the hooks that are used in the implementation is described in
the following. It can also serve as guide to adapt lattrace to new use cases.
There are two types of hooks relevant for the tracing applications: attaching
a probe at an existing tracepoint or attaching it at the beginning or end of a
kernel function.

The initial idea for probe points to measure the lifetime of an sk_buff was
taken from Gregg [53]. As there are no tracepoints that could be used for
the allocation of new sk_buffs, the probes were attached to the function that
allocates memory from a kernel memory cache. This approach was abandoned
later, because this function is used by many other kernel subsystems apart
from the network stack and therefore attaching probes to it introduced a
lot of overhead. Instead, the probes were attached to the functions for
allocating sk_buffs in the networking stack. For freeing the sk_buffs there
are two tracepoints already available, but they turned out not to cover every
code path. Therefore, an additional probe at a low-level function for freeing
sk_buffs was added to not miss out on any attempts to free an sk_buff. These
hooks were all identified by reading the kernel source code and discussing
with kernel developers. But this is a rather slow and inconvenient process to
identify hooks for all kernel subsystems.

To improve the process of identifying further hooks for probes, ftrace
was used to observe how the kernel processed packets and narrow down to a
few candidates to attach probes. The next paragraphs describe how tracing
with ftrace was used to identify the hooks for lattrace. First, a single-node

CHAPTER 3. IMPLEMENTATION 30

Kubernetes server was installed with one of the CNIs of interest to be able
to follow the traffic in this setting and an iperf server was deployed to the
cluster. Next, the node was configured to perform all the packet processing
on a single core. This simplifies the analysis of the trace later on because
there are no concurrent activities in the trace.

To keep the processing on one core, there are three elements to consider:
on which core are incoming packets processed, on which core is the application
running that receives the packets, and on which core are outgoing packets
processed. All three aspects can be configured on a Linux machine. If a NIC
supporting multiple queues is used, the number of send and receive queues
should be set to one for the tracing. To restrict the incoming packet to a
specific core, the irqbalance daemon is stopped to prevent it from overriding
any manual configuration. The system is then configured to handle interrupts
for incoming packets from the single queue of the NIC on a specific core using
Receive Side Scaling (RSS) [54]. Usually, RSS is used by the network interface
to distribute incoming traffic to different queues that are processed on different
cores. In addition, Linux supports Receive Packet Steering (RPS), which is
similar to RSS but implemented in software [54]. It is disabled by default and
should stay disabled for the tracing. Outgoing packets are processed on a core
determined by Transmit Packet Steering (XPS) [54]. This allows to configure
the queue of the interface that is used for outgoing packets. If the interface
has just a single queue, XPS has no effect and does not need to be configured.
The core that executes a userspace application is selected by the scheduler.
This selection can be restricted to a subset of the available cores using CPU
affinity. It can be configured for a running process using taskset and should
be set to allow the iperf server to run only on the core that also handles the
incoming packets as configured using RSS. The described configuration is
just used to understand the networking stack better by tracing its execution.
It was reverted afterwards and is not required to perform the measurements
with lattrace.

With the system prepared as described, the processing of packets can be
traced with ftrace. To simplify the interaction with ftrace, trace-cmd is used.
The tracing can be restricted to the single core that has been configured
to perform all the packet processing. The function tracer from trace-cmd
generates an event every time a new function in the kernel is entered and is
therefore well suited to understand the code path a packet takes. The output
contains a line for each function entry in the kernel in the order the functions
were executed. In addition, the function names in the output are indented
according to the stack depth to visualize which function called which one.
This helps to quickly identify potential functions for the latency tracing. To
find the actual hooks to be used, it is necessary to read the source code of

CHAPTER 3. IMPLEMENTATION 31

<idle>-0 [021] 976125.386983: function: ip_list_rcv
<idle>-0 [021] 976125.386984: function: ip_rcv_core.isra.0
<idle>-0 [021] 976125.386984: function: ip_rcv_core.isra.0
<idle>-0 [021] 976125.386984: function: ip_sublist_rcv
<idle>-0 [021] 976125.386984: function: nf_hook_slow_list
<idle>-0 [021] 976125.386985: function: nf_hook_slow
<idle>-0 [021] 976125.386985: function: ip_sabotage_in
<idle>-0 [021] 976125.386985: function: ipv4_conntrack_defrag
<idle>-0 [021] 976125.386986: function: iptable_raw_hook
<idle>-0 [021] 976125.386986: function: ipt_do_table
<idle>-0 [021] 976125.386986: function: comment_mt
<idle>-0 [021] 976125.386987: function: comment_mt
<idle>-0 [021] 976125.386987: function: mark_tg
[...]
<idle>-0 [021] 976125.386994: function: iptable_mangle_hook
<idle>-0 [021] 976125.386994: function: ipt_do_table
<idle>-0 [021] 976125.386994: function: comment_mt
<idle>-0 [021] 976125.386995: function: comment_mt

Listing 2: Snippet from the ftrace output used to identify hooks for probes

the potential functions in addition to the tracing output. They may already
contain tracepoints that can be used. Otherwise, the function entry or exit
needs to be traced. As functions that are marked as static can not be traced
with fentry or fexit probes but need k(ret)probes, functions that are not
marked as static should be preferred.

Listing 2 shows a short snippet from the tracing output to exemplary
demonstrate the process of finding a hook. The trace was generated with
incoming packets and the output starts soon after the networking stack starts
processing one of the packets. For the sake of this example, we are looking
for hooks to trace the time that is needed to evaluate the iptables rules.
Each line of the output contains the process name (here always identified
as idle), the process ID (here always zero), the CPU ID of the core the
function is running on, a timestamp, and finally the name of the function that
was executed. It can be observed that iptables uses different functions that

unsigned int
ipt_do_table(struct sk_buff *skb,

const struct nf_hook_state *state,
struct xt_table *table)

Listing 3: Signature of ipt_do_table from net/ipv4/netfilter/ip_
tables.c of the Linux kernel source code

net/ipv4/netfilter/ip_tables.c
net/ipv4/netfilter/ip_tables.c

CHAPTER 3. IMPLEMENTATION 32

are themselfes hooks, e.g., iptable_raw_hook and iptable_mangle_hook,
which could both serve as potential hooks for our tracing probes. But both
functions call ipt_do_table, which could also be a hook for our tracing tool.
While this would have the advantage of just requiring one probe, we want to
maintain the context in which it was executed, i.e., the netfilter hook. The
context must be identified from the parameters of the function. To make a
decision for one or the other potential hooks, we can take a look at the source
code of the functions. None of the functions contain useful tracepoints that
could be directly utilized. While the whole ipt_do_table function is too
long to be shown here, Listing 3 displays its signature. The first parameter is
a pointer to the sk_buff being processed, which is always needed as context to
identify the packets across the networking stack. By looking at the definitions
of the passed structs, it can be seen that the struct nf_hook_state contains
a field with the current netfilter hook and the struct xt_table contains a field
the name of the iptables table that is processed right now. As this provides
enough context, the duration of the evaluation of one iptables table can be
traced by attaching probes to the beginning and end of ipt_do_table. The
two calling functions do nothing more than calling ipt_do_table, so we are
not excluding any relevant processing time from our tracing.

This is just one example of how a hook was identified. In some cases,
tracepoints could be found somewhere in the executed functions that can be
used instead of attaching directly to functions. In other cases it was in the
end necessary to trace a static functions, because there are no other options
available. However, all of the hooks that are used in the tracing application
were picked by the described combination of tracing and studying the kernel
source code.

3.4 Implementation
This section describes the implementation of the tracing application in detail
and provides remarks about the kernel version compatibility and potential
improvements at the end.

The tracing application was implemented using the Rust programming
language using the library libbpf-rs which offers a safe interface to libbpf.
This is a library which manages the full lifecycle of BPF programs and
provides additional utility functions. At the start of the application, it loads
the BPF probes into the kernel and attaches them to the different hooks
across the network stack. When the probes are executed, they create an
event data structure, fill it with the type of the event, the current time and
potentially additional information, and send the event into a perf event array.

CHAPTER 3. IMPLEMENTATION 33

A perf event array can be used as unidirectional communication channel from
the probes in the kernel the userspace application and behaves similar to a
message queue. In the application, one thread is polling the perf event array.
When a new event is received, the bytes representing it are read from the
perf event array, parsed into a data structure, and send to another thread for
further processing. There, the events for each packet are collected over the
whole lifetime of the sk_buffs. When the application is stopped, the collected
events are further processed to calculate the duration spent in the different
subsystems of interest for the latency tracing. The resulting data are saved
per-packet into a CSV file to be analyzed later on. In addition, the collected
events can be saved to repeat the post-processing with new versions of the
application.

The sk_buffs are identified by its memory address in the tracing application.
Usually, the memory for the sk_buffs is allocated using a slab allocator [55].
These allocators are commonly used in operating system kernels to improve
the performance of allocations of many objects of the same type and to reduce
the fragmentation of the memory [56]. The core idea of a slab allocator is to
maintain a cache of allocations for each type of objects. New allocations are
made from this cache and are therefore fast. Instead of freeing the memory
after usage, the allocation is returned to the cache.

For the tracing application, this means that the sk_buffs with the same
memory addresses, and therefore the same identifiers, are often reused. There-
fore, it is very important not to miss any allocation and free of an sk_buff to
make sure that all collected events are attributed to the right sk_buff and not
an earlier or later packet. As described before, adding probes at the functions
managing the cache is not desirable, because these functions are used more
often than just from the network stack. The key observation to trace all
allocations of sk_buffs was that an sk_buff might be cloned while traversing
the networking stack. This is used, for example, to be able to perform a TCP
retransmit after the original packet has already been sent out. The cloning
of an sk_buff is handled in the tracing application by cloning the history of
already collected events as well. Thereby, the recorded allocation time and
the beginning of the history of the clone is equal to the original sk_buff. After
the cloning event, the recorded events can differ.

3.4.1 Selected Hooks
This section describes the actual hooks that are used in the tracing application
to obtain the information outlined in Section 3.1. In general, attaching probes
to tracepoints is often preferable over attaching them to function entries and
exits. Tracepoints are guaranteed to be called when the code is executed,

CHAPTER 3. IMPLEMENTATION 34

while function calls might not be present in the binary anymore because the
function has been inlined by the compiler to optimize the performance. Also,
the same tracepoint can cover many different execution paths where it would
be easy to miss a path when attaching probes directly to the function entry or
exit. Of course, tracepoints are not always available and, especially when the
duration of the execution of a function should be measured, the probes need
to be attached directly to functions. Attaching probes to fentry or fexit hooks
is claimed to introduce less overhead than k(ret)probes [33]. The difference
in overhead is thoroughly investigated in Section 4.1.2. The hooks used by
lattrace are listed in Table 3.1 and the reasoning behind them is described in
the following.

New sk_buff To trace the allocation of a new sk_buff, there are two fexit
probes at the functions __alloc_skb and __build_skb. These func-
tions cover all allocations of sk_buffs from the slab allocator. The probes
need to be attached at the exit of the functions, because they both
return a pointer to the fresh sk_buff, which is used as an identifier for the
whole lifetime of the sk_buff. While these probes cover all allocations of
sk_buffs, the first measurements showed overly long lifetimes in the order
of 60 ms for the packets arriving at a NIC. This happens, because NAPI
drivers maintain a buffer of sk_buffs. They are allocated before they
are put into the buffer but only used after a while when they have been
filled with packet data by the network interface. To account for this,
another probe is attached to the tracepoint napi_gro_receive_entry.
This tracepoint is located at the beginning of the first function in the
networking stack that handles incoming packets and does not belong to
the driver anymore.

Cloned sk_buff Sometimes, an sk_buff is created by cloning an existing
one, e.g., to keep it ready for potential TCP retransmits. To observe
the creation of clones, an fexit probe is attached to skb_clone. This
function returns a pointer to the new clone which is why the probe is
attached at the end of the function, similar to the functions creating
fresh sk_buffs.

Begin of processing A probe is attached to the tracepoint netif_receive_-
skb to observe when the handling of packets from a network interface
starts in the networking stack. This is not necessarily identical to the
point of time where the packets are retrieved from the interface, because
after the retrieval of the packet the buffer of sk_buffs in the driver may
be refilled or other interrupts may arrive. As many CNI plugins use
virtual ethernet pairs, which are virtual network interfaces, this probe

CHAPTER 3. IMPLEMENTATION 35

Event Probe Type Function/Tracepoint

New sk_buff
fexit __alloc_skb
fexit __build_skb
tracepoint napi_gro_receive_entry

Cloned sk_buff fexit skb_clone

Begin of processing tracepoint netif_receive_skb

tc

fentry tcf_classify_ingress
fexit tcf_classify_ingress
fentry tcf_classify
fexit tcf_classify

conntrack kprobe nf_conntrack_in
kretprobe nf_conntrack_in

iptables

kprobe ipt_do_table
kretprobe ipt_do_table
kprobe ip6t_do_table
kretprobe ip6t_do_table

Queued to NIC tracepoint net_dev_queue

Queued to socket kprobe tcp_queue_rcv
kprobe udp_queue_rcv_skb

Freed sk_buff
tracepoint consume_skb
tracepoint kfree_skb
fentry __kfree_skb

Table 3.1: Hooks that are used by the tracing application

can also be used to observe when the sk_buff is picked up by the stack
in a different network namespace.

tc Cilium attaches BPF programs to tc hooks to process packets before they
hit the main part of the stack. The programs are executed by the func-
tions tcf_classify_ingress for incoming packets and tcf_classify
for outgoing packets. While they both call the same function to perform
the actual processing, the context, i.e., incoming or outgoing, is not
accessible in the called function and the called function is marked as
static which would require to use k(ret)probes. Therefore, fentry and
fexit probes are attached in the beginning and end of each of the two

CHAPTER 3. IMPLEMENTATION 36

initially mentioned functions.

conntrack The connection tracking is performed for packets received from
a network interface and for packets created on the host. Both times,
the main work is performed by the function nf_conntrack_in which
allows to identify the context, i.e., incoming or outgoing, from one of
the parameters. Therefore, the probes can be attached directly to this
common function. However, the netfilter modules, including conntrack,
are developed as kernel modules. While kernel modules can contain
BTF information, those were not exposed by the running kernel until
very recent kernel versions. But the BTF information of a function are
necessary to attach fentry and fexit probes to that function. Therefore,
the k(ret)probes are used in the beginning and end of nf_conntrack_in.
However, this introduces another issue: In contrast to fexit probes,
kretprobes can not access the parameters of the function but just the
return value. The return value of nf_conntrack_in are just constants
indicating what should happen to the packet after connection tracking.
Therefore, the kretprobe is neither able to identify the currently pro-
cessed sk_buff nor any other context. To address this issue, a new BPF
map is introduced to the program. The map is a per-CPU array that
has only one entry on each CPU core. The kprobe at the beginning
of nf_conntrack_in creates its event with all information and stores
it in the map in addition to sending it to the userspace application.
The kretprobe at the end of the function can than reuse the event in
the array, replace the type and the timestamp of the event, and send
it to userspace. This way, the event already contains all important
information like the identifier and the context. The approach works
because a core does not execute functions in parallel, the probes at the
beginning and end of the function run on the same core, i.e., the core
the function runs on, and each core has its own value in the array that
is not overwritten from other cores.

iptables The iptables rules can be added to different tables, such as raw,
filter, or mangle, and netfilter hooks, which appear as the default chains
to users. However, not all tables are present at all hooks. Together,
table and hook are the necessary context to identify which rules are
being evaluated. Depending on the table and the hook, the rules
are evaluated in different places in the stack, but always by the same
functions, ipt_do_table for IPv4 and ip6t_do_table for IPv6 packets.
The parameters of the two functions allow to identify both elements
of the context. The table can only be identified by its name which

CHAPTER 3. IMPLEMENTATION 37

is stored as a string. This name is sent to the userspace application
as a string which is not optimal because it increases the size of the
transferred events unnecessarily.
As conntrack, iptables is also maintained as a kernel module. Therefore,
k(ret)probes are attached to the beginning and end of the functions as
well. The issue of the missing context in the kretprobe is also addressed
with a BPF per-CPU array map, in the same way as for conntrack.

Queued to NIC To observe when the network stack is done processing an
outgoing sk_buff and adds it to the queue of a network interface, a probe
is attached to the tracepoint net_dev_queue. With the virtual ethernet
pairs used by many CNI plugins, this probe can also be used to observe
when the sk_buff has been fully processed in a network namespace. In
combination with the probe at the beginning of processing, this allows
to determine the latency introduced by the network namespace switches.

Queued to socket When an sk_buff is destined for an application on the
local host and is fully processed, it is added to the receive queue for the
respective socket to be read by the application. For TCP, this is done by
the function tcp_queue_rcv; for UDP by udp_queue_rcv_skb. While
both functions represent the queueing operation well for their respective
transport protocol, they are both marked as static. Therefore, no BTF
information are generated for the functions and kprobes must be used
instead of attaching fentry probes.

Freed sk_buff When an sk_buff is not needed anymore, it is freed, i.e., re-
turned to the slab allocator. This can happen through many code paths.
Probes are attached to the tracepoints consume_skb and kfree_skb
which already cover many of these paths. Many of the functions with
the tracepoints call the function __kfree_skb to perform the actual
work. However, this function is also called directly from the TCP stack,
bypassing the tracepoints. Therefore, an fentry probe is attached to
__kfree_skb as well. In theory, this could lead to two free events being
observed for one sk_buff, but this case is never observed in practice.
This is probably due to the function often being inlined and therefore
not covered by the fentry probe.
One important aspect of the probes for freeing sk_buffs is that they
are the last operations in the stack. It is reasonable to assume that all
headers in the packet have been identified and parsed by now. Therefore,
these final probes are also used do retrieve the flow information from the
packet and include them in the event sent to the userspace application.

CHAPTER 3. IMPLEMENTATION 38

3.4.2 Kernel Requirements
The tracing application does not require one specific kernel version because it
uses BTF. However, it does require a kernel with included BTF information.
This is the case for many current releases of the popular Linux distributions.
In addition, it requires kernel version 5.5 or higher to make use of fentry/fexit
probes for more efficient tracing of the start and end of function executions. In
the future, the minimum required version could be increased to 5.11, because
this version makes it possible to expose the BTF information of kernel modules
through the existing kernel interface. This would allow to use fentry/fexit for
functions related to iptables and conntrack which are maintained as kernel
modules.

This also highlights the automatic adaptation to the kernel version as one
potential area of improvement for the tracing application. The current code
was written for the kernel version 5.8 and at least the BPF probes should
be compatible with other kernel versions thanks to BTF. However, bigger
changes in the kernel are currently not accounted for. For example, it could be
implemented that the probes for iptables and conntrack are attached as fentry
and fexit probes if supported by the kernel with a fallback to the current
k(ret)probes. Similarly, when parts of the networking stack are rewritten, the
tool could have probes for the old and the new code paths. In many cases,
this would not even mean to maintain a large list of kernel versions and their
features. Instead, the application could simply try to attach the probes and
use potential fallbacks if the attachment fails.

Chapter 4

Evaluation

This chapter consists of two sections. It begins with a evaluation of the
performance overhead introduced by running lattrace. This is followed by a
comparison of the latency and jitter characteristics of three Kubernetes CNIs.
The data for the comparison is collected using the tracing application.

For the evaluation, two different hosts were used. Their specifications are
shown in Table 4.1 and they were connected via an Ethernet switch for the
measurements. The main host was running the experiments while the traffic
generator was used as a client for generating network traffic. The setups of
each experiments are described more extensively in the respective sections.
In general, the experiments do not require the powerful machines used and
should be reproducible with less resources.

Main Host Load Generator

Processor 2 × Intel Xeon 8276M 2 × Intel Xeon E5-2695 v4
Memory 12 × 16 GiB 16 × 16 GiB
NIC Intel I219 Intel X540
Operating System Ubuntu 20.04.2 Ubuntu 20.04.2
Kernel Version 5.8.0-45 5.11.22

Table 4.1: Details of the machines used for the evaluation

In the context of networking, jitter usually describes how much the latency
differs over a set of packets. Despite being commonly used, the term is
not well defined as a metric. Different standards, such as RFC 5481 [57]
and ITU-T Y.1540 [58], instead define the metric Packet Delay Variation
(PDV) of a packet as the difference between the delay of that packet and the
lowest observed delay of a packet. The distribution of the PDV is thus the

39

CHAPTER 4. EVALUATION 40

distribution of the latency, shifted towards zero by the minimum latency. To
summarize the PDV of a set of packets into one value, ITU-T Y.1540 [58]
recommends to choose two quantiles and use the difference between the delay
variation values at these quantiles as the summary. For this chapter, whenever
numbers for the jitter or PDV are reported, the difference between the 0.01
quantile and the 0.99 quantile, i.e., the 1st and 99th percentile, of the PDV
distribution are used.

4.1 Performance Overhead of the Tracing Ap-
plication

The tracing application was developed for this thesis and thus has no existing
validation available for it. Therefore, it is important to measure the overhead
introduced to the packet processing by the application. This is necessary
to assess the obtained data later on. However, the impact on the overall
system performance is not of great importance, because the application is not
supposed to run on production machines.

The most significant overhead when running lattrace results from the fact
that there is the additional code of the probes that is executed for every packet
that is processed by the kernel. This overhead is estimated in two different
ways in the next section. Often, probes can be attached with different mecha-
nisms, e.g., kprobes, fentry probes or tracepoints. Section 4.1.2 investigates
the impact of the different attachment mechanisms on the overhead.

4.1.1 Overhead of the Probes
The first way to estimate the overhead of the latency tracing application is
to run a simplified version of the application. This simplified version contains
only the probes at the beginning and the end of the stack, but the probes for
the different subsystems in the kernel are removed. The remaining probes are
for the allocation, cloning, and freeing of sk_buffs and for adding an sk_buff
to the queue of a network interface. The results of the two versions of the
tracing application can then be compared. The difference in the measured
stack latency can be attributed to the probes that are missing in the simplified
version of the application. It includes the the overhead of the attachment
mechanisms and the probes themselves.

The differences in the number of probes and the observed latency is shown
in Table 4.2. The traffic during the measurements was generated using iperf
sending out 50 Mbit/s of UDP traffic. The data shows that the number of

CHAPTER 4. EVALUATION 41

Observed Latency Difference
CNI Probes Median* PDV* Events Latency* Events

Calico all 65.3 57.8 17 44.0 13start/end 21.3 39.2 4

Calico eBPF all 78.1 65.7 21 59.3 17start/end 18.9 40.1 4

Cilium all 30.6 37.9 9 15.7 5start/end 14.9 27.6 4
* Times displayed in µs

Table 4.2: Measured stack latency and jitter with all probes attached or only
probes at the beginning and end of the stack (“start/end”) and the number
of events observed for each sk_buff, i.e., executed probes

probes has a big impact on the overall latency. Each probe adds around 3 µs
overhead to the packet processing which is around 15 % to 20 % of the latency
of the whole networking stack as measured with probes at the beginning and
end of the stack. In addition, an increase of the jitter can be observed as well.
However, this effect is smaller than the increase in latency. Both observations
apply regardless of the CNI plugin.

Another way to measure the overhead of probes is to profile their execution
directly. This allows to reason about the overhead of one specific probe more
accurately than with the former method. bpftool can profile, beside others,
the number of instructions the CPU executed and the number of cycles needed
for the execution. Due to the internals of the tool, the profiling does not work
on fentry and fexit probes, but for the sake of this measurement, they can be
converted into k(ret)probes. This does not impact the executed code of the
probe.

The probes used by the latency tracing tool can be categorized by their
expected overhead: simple probes that emit events without reading memory,
probes that need to read memory before emitting an event, the kprobes that
emit an event and cache it in a map, and the kretprobes that use the cached
events. To recall, the two latter ones are needed to retain information for
the kretprobe when it is not possible to attach fentry and fexit probes, for
example, in kernel modules.

Four probes from the tracing application were selected to represent the
categories: a kprobe at udp_queue_rcv_skb for the simple probe, a kprobe at
__kfree_skb that reads the flow information from the sk_buff in memory, and

CHAPTER 4. EVALUATION 42

k(ret)probes around ipt_do_table employing the caching mechanism. Each
of the probes was profiled for a period of time to accumulate about 40 000 to
50 000 runs of the probe. The measurement was repeated 10 times for each
of the probes. The obtained results are shown in Table 4.3 Unfortunately,
bpftool only reports the number of executions and the sum of cycles and
instructions over all executions which only allows to calculate a mean but
does not provide information about the variance. The numbers reported here
are means of the means and the standard deviation of the means to provide
at least some intuition about the stability of these numbers.

CPU Cycles Instructions
Function Probe Mean Std.Dev. Mean Std.Dev.

udp_queue_rcv_skb kprobe 3947.7 93.3 2370.0 123.4
__kfree_skb kprobe 6566.6 74.7 3201.5 11.7
ipt_do_table kprobe 4285.0 201.3 2865.5 215.8
ipt_do_table kretprobe 1357.1 154.3 1379.7 1.5

Table 4.3: Cycles and instructions as reported by bpftool for different probe
categories

The data from the profiling confirm the results from the previous latency
measurements that the probes add significant overhead. Taking into account
a CPU frequency of 1 GHz to 2 GHz as observed during the experiments, the
time derived from the number of cycles is similar to the times observed in the
previous measurement. While the overhead is in the same range for all probes,
the impact of the probes differs depending on their category. Probes that need
to read a lot of memory, e.g., to gather the flow data, generally show a higher
overhead in terms of cycles and instructions than the simple probes. Also, a
kprobe that caches an event has slightly more overhead than a simple probe.
However, the kretprobe reading the cached event uses much less cycles and
instructions. The sum of the overhead of such a pair of kprobe and kretprobe
is still lower than the combined overhead of two simple probes. Especially the
number of cycles is significantly lower for the k(ret)probe pair, because the
kretprobe can execute more instructions per cycle, which is probably related
to the event generated by the kprobe still being in the CPU cache.

Considering the results from both measurement approaches, it becomes
clear that the application introduces significant overhead to the processing of
network packets. As expected, it is thus not suitable for continuous monitoring
of stack latencies on production hosts. But the overhead is relatively constant
per probe and can therefore be estimated when the number of probes in the

CHAPTER 4. EVALUATION 43

Probe Type Attach Point Data Access

kprobe Begin of any function in the
kernel

All parameters

kretprobe End of any function in the
kernel

Return value

fentry Begin of kernel functions with
BTF information

All parameters

fexit End of kernel functions with
BTF information

All parameters and the return
value

tracepoint Pre-defined tracepoints in the
kernel

Context of the tracepoint

Table 4.4: Comparison of BPF probes for tracing from a developer perspective

processing path is known. The impact on the jitter appears to be lower than
the impact on the latency. Still, both effects should be kept in mind when
assessing the results. To limit these effects, some probes are disabled in the
experiments in Section 4.2. Chapter 5 presents some further ideas for how to
improve the application to reduce the overhead.

4.1.2 Performance of the BPF Probe Types
In addition to the overhead from the actual probe code, the probes also need
to be attached to hooks in the kernel. This section evaluates the performance
overhead of the different attachment mechanisms.

The Linux kernel offers different mechanisms to attach BPF probes. The
mechanism used for a particular probe is determined by the type of the
probe. There are three general types of probes that are interesting for tracing:
tracepoints, kprobes/kretprobes, and fentry/fexit probes. For a developer of
probes, they differ in the places where they can be attached and in the data
they can access. These differences are shown in Table 4.4. From a kernel
point of view, the probe types also differ in the mechanism that is used to
execute attached probes. The mechanisms are described in the following.

k(ret)probe In Linux, kprobes can be attached to the kernel for a long time
already, since kernel version 2.6.9 [59]. It was originally designed to be
used from kernel modules. Later, this was extended to allow to attach
kretprobes at the end of kernel functions. The k(ret)probes accessible

CHAPTER 4. EVALUATION 44

through BPF are slightly limited but come with all the benefits of BPF
programs. All kernel versions that support BPF, support k(ret)probes.
To attach a kprobe to a kernel function, the first instruction of the
function is copied to a different location in memory [32]. The original
instruction in the function is then replaced with a breakpoint instruction.
When the CPU reaches this breakpoint, all registers are saved. Then,
the BPF program is executed, which receives a pointer to the saved
registers as a parameter. Afterwards, the copy of the single instruction
is executed before the CPU returns to the normal execution flow of the
kernel function.
When a kretprobe is attached to a kernel function, first a kprobe is
attached to the beginning of the function [32]. This kprobe saves the
return address from the stack and replaces it with the address of a so
called trampoline. Therefore, upon the return from the probed function,
the code of the trampoline is executed. The trampoline itself has
another kprobe attached to it. This kprobe then runs the code that the
user supplied for the kretprobe. Afterwards, the kprobe restores the
saved return address to the instruction pointer of the CPU. Thereby,
the execution continues normally in the kernel function that called the
function with the attached kretprobe. Attaching a kprobe to a function
that already has a kretprobe attached should add less overhead because
the user-defined kprobe and the internal kprobe at the beginning of the
function can be chained without an additional breakpoint.
Due to the way the BPF programs are attached to k(ret)probes, there
is a bit of additional, constant overhead for the call to the program.

fentry/fexit This attachment mechanism has been added recently in kernel
version 5.5 [33]. It works by creating customized BPF trampolines for
the attached probes and making use of a compiler feature that was
originally used for dynamic tracing with ftrace.
The Linux kernel is compiled using an option that inserts a function
call to a special function in the beginning of each kernel function. Thus,
in the compiled Linux kernel, the first instruction in each function is a
call. At boot time, these call instructions are replaced with nop (no
operation) instructions of the same size to minimize the overhead as
long as tracing is disabled.
To attach an fentry probe to a kernel function, a customized trampoline
is created that saves just the parameters of the function to the stack, calls
the fentry probe with a pointer to the stored parameters, and returns [60].

CHAPTER 4. EVALUATION 45

The creation utilizes the BTF information of the function to store the
parameters and ensure the stack stays intact. The first instruction of
the function is then replaced with a call to the trampoline.
Attaching an fexit probe to a function works similarly by replacing
the first instruction with a call to a customized trampoline, which is
created differently [60]. The trampoline also stores the parameters on
the stack, but then calls the function with an offset to skip the first
instruction. When the function returns, the execution of the trampoline
continues, which stores the return value on the stack and calls the fexit
probe with access to the parameters and the return value. Afterwards,
the execution returns to the kernel function that called the probed
function to continue the normal execution.
If both, an fentry and an fexit probe, are attached, there is just one
trampoline that is a combination of two described before [60].

tracepoint Tracepoints can be used to attach BPF programs as well. When
an enabled tracepoint is hit, a special function is called. This function
executes the BPF program, besides other operations that are required
for other tracing tools.
As some of the operations are not necessary when just a BPF program
is attached, raw tracepoints were introduced [61]. They rely on the
same tracepoints that are present in the source code, but do as little
additional work as possible to just run the program.

The different attachment mechanisms lead to different overheads when
running the probes. The measurement of these overheads is described in the
following sections.

Measurement approach

To measure the overhead of the different probe types, a small benchmarking
application was implemented. The idea behind the benchmark is to pick two
hooks in the kernel and attach measurement probes to them. The probes
observe how many instructions have been processed in between them and
how many cycles this took. Then, additional dummy probes, which do as
little work as possible, are attached between the two measurement probes.
This allows to compare the number of instructions of a scenario where no
probe is attached and scenarios where different types of probes are attached.
The difference between the baseline measurement and the measurements with
probes is the overhead of attaching a probe.

CHAPTER 4. EVALUATION 46

The measurement probes are an fentry and an fexit probe attached to the
same function. This allows simple reasoning about what happens between the
two probes. The fentry measurement probe reads the relevant perf counters
(instructions and cycles) and stores them in a per-CPU array map. The fexit
measurement probe reads the perf counters again and the measurements from
the fentry probe, calculates the difference, and sends the difference to the
userspace application. The application then reads the measurements and
stores them in a CSV file for later analysis. The measurement probes are
based on the code that bpftool uses to profile BPF programs1 but were
modified to send every measurement to the userspace application.

The benchmarking imposes some requirements on the function that the
measurement probes are attached to. The function needs to contain a tra-
cepoint that dummy probes can be attached to and it also needs to call
another function which dummy probes can be attached to. Ideally, the func-
tion with the measurement probes is simple and contains no loops and not
too many conditionals to reduce the noise introduced by running different
code paths. The function consume_skb matches these requirements quite
well and is shown in Listing 4. It has a tracepoint called consume_skb and
calls the function __kfree_skb next to the tracepoint. It has the additional
advantage that it is run often by the networking stack, which reduces the
overall execution time of the benchmark, and that it can easily be triggered
by sending network traffic to the machine.

void consume_skb(struct sk_buff *skb)
{

if (!skb_unref(skb))
return;

trace_consume_skb(skb);
__kfree_skb(skb);

}

Listing 4: Function consume_skb used for benchmarking of the overhead of
the different probe types, from the Linux kernel source, net/core/skbuff.c

However, during the measurements it turned out that dummy probes
attached to __kfree_skb were never executed. Inspecting the disassembled
kernel binary revealed that the compiler had optimized the code by inlining
__kfree_skb into consume_skb. Thus, there was no function call anymore
that could trigger the execution of the dummy probes. To address this, the
dummy probes are instead attached to the function skb_release_head_state,

1See the Linux kernel source, tools/bpf/bpftool/skeleton/profiler.bpf.c

net/core/skbuff.c
tools/bpf/bpftool/skeleton/profiler.bpf.c

CHAPTER 4. EVALUATION 47

which is unconditionally called by __kfree_skb and can therefore serve as a
replacement hook.

The benchmarking process works as follows: First, the dummy probe to
be measured is installed. Then, the application waits for a few seconds to
exclude effects of the attachment process from the benchmark. After that,
the measurement probes are attached and the results are polled and saved by
the userspace application. When the execution has been benchmarked about
10 000 times, first the measurement probes and then the dummy probe are
removed. The application repeats this cycle for each of the dummy probes to
measure. During the whole benchmarking, there is an iperf server running on
the main host and the traffic generator is sending 50 Mbit/s of TCP traffic to
the server.

Results

The results obtained from the benchmarks are shown in Figure 4.1. The
graphs for instructions and cycles are both boxplots to visualize the spread of
the measurements. In Figure 4.1a, the boxes are just lines, because almost all
executions had the same number of instructions. This is reasonable because
the executed code is always the same. The graph for the cycles in Figure 4.1b
shows a similar pattern as the number of instructions because these metrics
are strongly correlated. However, the variance of the observed measurements
for cycles is higher, because the number of cycles needed for one execution is
influenced by many other factors, including CPU caches.

Figure 4.1 shows that kprobes already have a high overhead and that
kretprobes have more than twice the overhead of a kretprobe. If a kprobe
and a kretprobe are used in combination at one function, the additional
overhead over a kretprobe is significantly lower than the overhead of attaching
just a kprobe. This is reasonable considering that attaching a kretprobe
to a function automatically also attaches a kprobe for technical reasons as
described earlier. A kretprobe actually consists of two kprobes, one of which
performs work to store the return address. This explains why the kretprobe
needs more than twice the instructions of a kprobe. When a kprobe and a
kretprobe are used, the user-defined kprobe and the internal kprobe from the
kretprobe are chained. Thus, the additional kprobe introduces less overhead
than adding the first kprobe to a function.

The fentry and fexit probes both have a very low overhead compared to
k(ret)probes while offering similar flexibility. In terms of instructions, both
have a very similar overhead while the fexit probe appears to need more cycles.
The number of instructions differs only minimally because the trampoline of
fentry and fexit is very similar. The overhead of a combination of an fentry

CHAPTER 4. EVALUATION 48

BTF
Tra

cep
oin

t

No P
rob

e

Ra
w Tra

cep
oin

t

Tra
cep

oin
t

fen
try

fen
try

+fex
it

fex
it

kp
rob

e

kp
rob

e+
kre

tpr
ob

e

kre
tpr

ob
e

0

250

500

750

1000

1250

1500

1750

2000

Nu
m

be
r o

f i
ns

tru
ct

io
ns

(a) Instructions

BTF
Tra

cep
oin

t

No P
rob

e

Ra
w Tra

cep
oin

t

Tra
cep

oin
t

fen
try

fen
try

+fex
it

fex
it

kp
rob

e

kp
rob

e+
kre

tpr
ob

e

kre
tpr

ob
e

0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f c
yc

le
s

(b) Cycles

Figure 4.1: Number of instructions an cycles with different attachment
mechanisms; the difference to “No Probe” is the overhead of the mechanism;
the benchmark results are randomly sampled down to 1000 data points to
improve visibility

and an fexit probe is a bit less than the sum of the overheads of the two
probes, because they are called from the same trampoline that can reuse
the stored parameters for both probes. However, this setting is probably
less often needed as with k(ret)probes because fexit probes can access the
parameters of the function directly.

Attaching a BPF program to a tracepoint has a high overhead but not
as high as a kprobe. The number of instructions that are needed when the
program is attached to a raw tracepoint or a BTF tracepoint is equal but
significantly lower than for a normal tracepoint. The number of cycles does
not differ much between the different tracepoint types in this experiment.
BTF tracepoints and raw tracepoints have the same number of instructions,
because they use the tracepoints in the same way internally and only differ
in the mechanism for loading the probe into the kernel. The difference in

CHAPTER 4. EVALUATION 49

instructions between normal tracepoints and raw/BTF tracepoints are the
additional operations that are not necessary to just run a BPF program.

As a summary, it is advisable to use fentry or fexit probes over k(ret)probes
when it is possible for the respective function and the kernel version supports
it. Tracepoints have the benefit of covering many code paths that perform
the same operation, e.g., the tracepoint for consuming an sk_buff is placed
in four different function of the networking stack. In addition, tracepoints
will never be removed during the optimization of the compiler, while function
calls as the hooks for fentry/fexit and k(ret)probes might be inlined and
thereby be removed. Thus, (raw) tracepoints do have an advantage compared
to k(ret)probes if they are available. In comparison with fentry/fexit probes,
the situation is more nuanced and might be best decided by weighting the
different advantages in every case.

4.2 Comparison of CNI Plugins
The thesis aims to compare the latency and jitter of different CNI plugins
for Kubernetes. This section describes the measurement setup used for the
comparison and presents the results obtained from tracing the latency of
packet processing in the kernel.

The Kubernetes cluster used for the measurements is a single-node cluster
on a bare-metal machine, the main host described earlier. The cluster is freshly
set up for each of the different CNI plugins using kubeadm. After that, one of
the CNI plugins is installed: Calico, Cilium, or Calico with the eBPF data
plane. Calico and Cilium were selected because they are both commonly used
in the industry but follow different approaches by default. Calico provides the
CNI functionality relying on iptables while Cilium implements many features
using eBPF. More recent versions of Calico also implement an eBPF data
plane that can be activated. This is included in the comparison as well.

The configuration of the cluster uses mostly the provided defaults. It
deviates only in three aspects: It uses a different IP subnet for the pods; the
single node is untainted, i.e., Kubernetes control plane and worker node at the
same time, to allow scheduling normal pods on it; and the number of usable
NodePorts has been increased to exceed 10 000. The latter was necessary to
be able to test with a very high number of services configured in the cluster.
Calico is installed following the installation guide from its documentation2.
This installs the Tigera operator to the Kubernetes cluster which in turn
installs Calico in version 3.19.0. For Calico with eBPF data plane, Calico

2Calico installation guide:
https://docs.projectcalico.org/getting-started/kubernetes/quickstart

https://docs.projectcalico.org/getting-started/kubernetes/quickstart

CHAPTER 4. EVALUATION 50

is installed as before but the guide for activating the different data plane is
followed after the installation3. Cilium is also installed using their installation
guide4. The guide installs Cilium directly in version 1.9.7. All CNI plugins
were configured to follow the pod subnet of the cluster and the increased
number of NodePorts but otherwise left in their default configuration.

For each of the CNI plugins, the following measurement process is per-
formed. After the Kubernetes cluster and the CNI plugin have been set
up, there are 10 000 services with NodePorts created that all point to the
same pod. The services are created in batches to prevent the control plane
from overloading. These services should serve as an overhead to measure
how the CNI plugin performs with many services. Then, an iperf server is
deployed to the cluster that is later used as the testing service. It is created
after the overhead services to add its respective rules at the end of iptables
chains after the rules of the overhead services. Next, the iperf client on the
traffic generator starts the traffic, which is given 10 seconds to stabilize before
the latency tracing application is run for 10 seconds. This is repeated for
incoming TCP traffic to the cluster, outgoing TCP traffic from the cluster,
incoming UDP traffic, and outgoing UDP traffic. The number of overhead
services is then reduced to 1000, 100, 10, and finally 0 with all measurements
being repeated for each number of services.

However, in none of the experiments, did an increased number of overhead
services result in relevant changes to the latency or jitter behavior. Thus,
all the results reported in the following refer to the configuration with no
additional overhead service. This stands in contrasts to previous results [62,
63] which show an increased latency with more services, but with significant
increases only when running more than 2000 services. A reason for this might
be the configuration that all overhead services map to a single pod in our
experiments. Running one or even multiple pods for each service in the
experiments was not possible, because a Kubernetes node does not support
running that many pods.

4.2.1 Incoming Traffic
This section presents the results obtained from the measurements with in-
coming traffic. Figure 4.2 shows Cummulative Distribution Functions (CDFs)
of the times it took for the sk_buffs from reception at the NIC to arrive at
specific points in the stack, with different subgraphs for the different CNI

3Calico eBPF data plane activation:
https://docs.projectcalico.org/maintenance/ebpf/enabling-bpf

4Cilium installation guide:
https://docs.cilium.io/en/v1.9/gettingstarted/k8s-install-default/

https://docs.projectcalico.org/maintenance/ebpf/enabling-bpf
https://docs.cilium.io/en/v1.9/gettingstarted/k8s-install-default/

CHAPTER 4. EVALUATION 51

0.0

0.5

1.0

CD
F

(n
=2

65
1)

TCP, Calico

0.0

0.5

1.0

CD
F

(n
=2

70
3)

TCP, Calico eBPF

0.0

0.5

1.0

CD
F

(n
=2

61
2)

TCP, Cilium

0.0

0.5

1.0

CD
F

(n
=4

07
64

)

UDP, Calico

0.0

0.5

1.0

CD
F

(n
=4

00
31

)

UDP, Calico eBPF

0 200 400 600 800 1000
Time since allocation/first use in s

0.0

0.5

1.0

CD
F

(n
=4

02
63

)

UDP, Cilium

Total lifetime
Processing start in host netns
Processing end in host netns

Processing start in pod netns
Received by L4

Figure 4.2: Times from retrival of an incoming sk_buff from a network interface
until it has passed certain parts of the networking stack

CHAPTER 4. EVALUATION 52

Received by Socket1 Host Network Namespace2

CNI, Protocol Median (µs) PDV (µs) Median (µs) PDV (µs)

Calico, TCP 141.24 467.67 18.02 28.38
Calico eBPF, TCP 124.64 336.53 5.50 14.11
Cilium, TCP 151.99 448.37 22.46 44.98

Calico, UDP 147.82 132.26 53.85 54.40
Calico eBPF, UDP 129.71 128.19 4.49 14.92
Cilium, UDP 169.91 158.88 65.32 61.64

1 Time from reception of a packet until it is added to the queue of the socket (purple
lines in Figure 4.2)

2 Time that is actually spent processing the packet in the host network namespace
(between orange and green lines in Figure 4.2)

Table 4.5: Latency and jitter for incoming traffic over the whole networking
stack and for the processing in the host network namespace

plugins and transport protocol. The line for the lifetime (blue) is equivalent
to the time the data is read from the socket. All probes that are not shown
in the figure (i.e., iptables, conntrack and tc) were disabled to prevent them
from introducing additional latency and jitter. Figure 4.3 shows CDFs of the
durations spent in specific subsystems of the networking stack, again with
subgraphs for the different CNI plugins and transport protocols. If there is a
line missing for one subsystem, this means that this subsystem was not used
by the plugin.

Looking at Figure 4.2, the gap between the reception of the packet
and the start of processing in the stack stands out, which is especially
big for TCP traffic. In terms of the kernel, this gap occurs between the
napi_gro_receive_entry tracepoint for packet reception and the function
netif_receive_skb that starts the processing. From more invasive traces
generated with ftrace, it can be seen that this time is mostly spent in the
polling function of the NAPI driver. Therefore, other packets may be received
by the driver after the first sk_buff has been received from the interface and
before it is further processed. Also, after all packets have been received, the
driver allocates as many new sk_buffs as it has received from the interface and
adds them to the buffer of the NIC so they can be filled with new incoming
data. Both of these operations have probes attached to them by the tracing
application, which add overhead as described in Section 4.1.1. The trace also
shows that the driver generally receives more TCP packets from the NIC
during one polling loop than UDP. The UDP packets are then processed

CHAPTER 4. EVALUATION 53

0.0

0.5

1.0

CD
F

(n
=2

03
6)

TCP, Calico

0.0

0.5

1.0

CD
F

(n
=3

51
76

)

UDP, Calico

0.0

0.5

1.0

CD
F

(n
=2

29
2)

TCP, Calico eBPF

0.0

0.5

1.0

CD
F

(n
=3

64
40

)

UDP, Calico eBPF

0 5 10 15 20
Duration for processing in s

0.0

0.5

1.0

CD
F

(n
=2

02
3)

TCP, Cilium

0 5 10 15 20
Duration for processing in s

0.0

0.5

1.0
CD

F
(n

=3
62

90
)

UDP, Cilium

conntrack
iptables: prerouting, raw
iptables: prerouting, mangle
iptables: forward, mangle

iptables: forward, filter
iptables: postrouting, mangle
tc ingress
tc egress

Figure 4.3: Observed processing durations in different subsystems of the
networking stack

individually whereas the TCP packets are combined into few big sk_buffs due
to a feature of the Linux kernel called Generic Receive Offload (GRO). They
are aggregated into the first received sk_buff whose observed waiting time
before being processed by the stack then includes the reception of all other
packets including the respective probes. In experiments with GRO disabled,
the TCP packets show the same, small delay before the processing starts as
UDP packets do. GRO is also the reason why there are so much less sk_buffs
observed for TCP despite the same measurement duration and the same data
rate of the traffic.

For TCP, the gap before the processing starts appears to dominate the
latency until the data is received by the application. The lines that mark
the times where an sk_buff crosses different points in the stack all follow the
shape of the delay until the processing of a packet begins. This also leads to a
high jitter when looking a the whole stack as it can be seen in Table 4.5. For
UDP, the initial processing delay does not dominate all the other observed
timestamps, but does of course contribute to the jitter.

CHAPTER 4. EVALUATION 54

After this initial delay, the packets are processed in the host network
namespace. The majority of the configurations applied by the CNI plugins
happens here. The time spent in the host network namespace can be seen in
Figure 4.2 between the orange and the green line. The data for the introduced
latency and jitter are also shown in Table 4.5 in the last two columns. With
both transport protocols, the time spent in the host network namespace
differs between the CNI plugins. It is especially low for Calico with the eBPF
data plane and significantly higher for Calico with the default data plane.
For Cilium, it is even higher than for Calico with the default data plane. The
same order also applies to the jitter that can be observed for the different CNI
plugins. Figure 4.3 points to a reason for this observation. While Calico with
the eBPF data plane uses just two tc hooks for the packet processing, Calico
with the default data plane uses five different iptables hooks and conntrack.
Cilium, in turn, uses iptables and conntrack as Calico does but additionally
the tc hooks as Calico eBPF does. The amount of processing also seems
to determine the amount of jitter in the host networking namespace. This
high latency with Cilium is an unexpected result, because it is focused on
providing a performant eBPF data plane that bypasses the kernel networking
stack. However, it does not succeed to provide this feature while Calico with
the eBPF data plane does so instead.

Further investigations reveal the reasons for this behavior. When Calico
eBPF is activated, kube-proxy is explicitly disabled on the nodes, which
would normally install many iptables rules. In the default deployment of
Cilium as it was used in the experiments, kube-proxy was still running on
the node. According to the documentation, this is supposed to be a fallback
mechanism in case the kernel is missing features for the eBPF data plane [19].
Cilium is supposed to detect the features the kernel supports and do as much
in eBPF as possible. According to the Cilium documentation, the kernel
version 5.8 as used in the experiments should support all necessary features
to run without kube-proxy. Also, the status report Cilium confirms that all
potential eBPF implementations are active. In production setups, this should
probably enforced by configuring Cilium to fail if eBPF features are missing
(strict mode). However, Cilium relies on the networking stack for routing
decisions [64]. Thus the traffic is passed through the stack where it also passes
iptables with all the rules from kube-proxy, albeit most of these rules should
be skipped. Only starting from kernel version 5.10, Cilium activates a feature
called eBPF-based host-routing which performs these routing decisions in
eBPF and thereby allows the traffic to bypass the stack completely.

The jitter in the host networking namespace clearly correlates with the
amount of work to be performed, i.e., the number of kernel subsystems that
an sk_buff has to traverse. The data in Table 4.5 show that this difference

CHAPTER 4. EVALUATION 55

between the CNI plugins is present for both transport protocols. However,
the plugins that use iptables and conntrack, i.e., Calico with the default data
plane and Cilium, the jitter introduced for UDP traffic is significantly higher
than for TCP traffic. This may be caused by the higher load on the system
due to the more costly processing of the packets and the higher number of
sk_buffs that are processed for UDP.

Figure 4.3 shows that a more fine-grained analysis of which subsystems are
responsible for jitter is not meaningful due to the latency and jitter introduced
by the probes of the tracing application. All lines only start after 2.5 µs which
is the same order of magnitude as the overhead of one probe as determined
in Section 4.1.1. Therefore, it can be assumed that the detailed graphs in
Figure 4.3 show more about the behavior of the probes than of the actually
traced functions.

After the sk_buffs have been processed in the host network namespace and
before they are processed in the pod namespace, they are not being processed
for a while. This can be seen in Figure 4.2 as a gap between the green and
red lines, which is more pronounced for UDP traffic. In that period, other
packets that were received from the network interface at the same time are
processed and added to a queue of the virtual ethernet pair before the whole
batch of sk_buffs gets processed in the pod network namespace. The figure
also shows that the amount of time spent with processing in the pod network
namespaces, i.e., red to purple line, is very low. This is reasonable because
the CNI plugins do not configure any networking features inside the pod
namespace where they could easily be changed by the applications running
in the pod. The delay is slightly higher for TCP traffic because the protocol
requires additional work to be done when a packet is received.

When the processing of sk_buffs in the stack is done, they are added
to the queue of a socket where they stay until their content is read by the
applications. This period is clearly visible for UDP traffic as a gap between
purple and blue line. The delay this introduces is not controlled by the CNI
plugin but could rather be optimized by the application developers or by
tuning the operating system on the host.

4.2.2 Outgoing Traffic
This section presents the results for outgoing traffic with similar graphs as
the previous section. Figure 4.4 shows CDFs of the times it took for the
sk_buffs to arrive at specific points in the stack, with different subgraphs for
the different CNI plugins and transport protocols. As before, probes that
are not shown in the figure (i.e., iptables, conntrack and tc) were disabled to
prevent them from introducing additional latency and jitter.

CHAPTER 4. EVALUATION 56

0.0

0.5

1.0

CD
F

(n
=1

28
4)

TCP, Calico

0.0

0.5

1.0

CD
F

(n
=4

13
28

)

UDP, Calico

0.0

0.5

1.0

CD
F

(n
=1

29
9)

TCP, Calico eBPF

0.0

0.5

1.0

CD
F

(n
=3

94
63

)

UDP, Calico eBPF

0 20 40 60 80 100
Time since allocation/first use in s

0.0

0.5

1.0

CD
F

(n
=1

30
0)

TCP, Cilium

0 20 40 60 80 100
Time since allocation/first use in s

0.0

0.5

1.0
CD

F
(n

=4
01

09
)

UDP, Cilium

Processing end in pod netns
Processing start in host netns

Processing end in host netns

Figure 4.4: Times from creation of an outgoing sk_buff due to a write to a
socket until the sk_buff has passed certain parts of the networking stack

In Figure 4.4, the graph of Cilium processing TCP traffic shows a remark-
able feature: the CDF do not reach 1 but instead merge into a straight line
at 0.7. While this appears to be an issue with the measurement, the effect
is reproducible over several runs in the evaluation setup. It does only occur
for Cilium with outgoing TCP traffic. A closer analysis of the data shows
that almost all sk_buffs whose processing, apart from allocation and freeing,
happens on core 21 exhibit the high latency. This is also the core that handles
the interrupts from the NIC. The sk_buffs processed on other cores do not
show this behavior. Performing the same analysis for the other CNI plugins
shows that they almost never process sk_buffs on core 21. Thus, they do not
exhibit the high latencies. While this explains, where the differences come
from, it is unclear what causes the processing of nearly half of the sk_buffs
on core 21 when Cilium is used and what causes the long delays on this
particular core. Because of this, TCP with Cilium is not directly compared
in the following paragraphs.

The time 0 µs in Figure 4.4 marks the creation of a new packet. With
outgoing traffic, this happens when a userspace application writes data to a
socket. The figure shows that TCP traffic is subject to a long delay before

CHAPTER 4. EVALUATION 57

Received by NIC Queue1 Host Network Namespace2

CNI, Protocol Median (µs) PDV (µs) Median (µs) PDV (µs)

Calico, TCP 49.36 69.57 12.47 27.90
Calico eBPF, TCP 47.70 65.56 11.39 24.94
Cilium, TCP 63.50 750.16 9.88 12.90

Calico, UDP 22.26 41.09 10.54 22.87
Calico eBPF, UDP 21.36 42.74 9.98 24.27
Cilium, UDP 17.35 34.29 5.16 12.80

1 Time from creation of a packet until it is added to the queue of the NIC (green lines
in Figure 4.4)

2 Time that is actually spent processing the packet in the host network namespace
(between orange and green lines in Figure 4.4)

Table 4.6: Latency and jitter for outgoing traffic over the whole networking
stack and for the processing in the host network namespace

the sk_buffs leave the pod network namespace, i.e., the gap before the blue
line. This part of the processing is also responsible for a significant share of
the overall jitter. A reason for the initial delay can be found in the buffering
of packets at the socket because of TCP congestion control. This can be
seen in the more invasive traces from ftrace. For UDP traffic, this delay is
consistently small for all CNI plugins and most sk_buffs. This is reasonable
because UDP does not employ congestion control or similar mechanisms that
would result in buffering of data.

The time between the end of processing of an sk_buff in the pod network
namespace and the beginn of processing in the host network namespace, i.e.,
the gap between the blue and orange lines in Figure 4.4, is pretty constant
across all CNI plugins and transport protocols. This indicates that outgoing
sk_buffs created through application writes are usually directly picked up by
the stack in the host network namespace. Data from ftrace confirm that a
software interrupt is raised when an sk_buff is transmitted through a virtual
ethernet pair, which immediately triggers the processing of the sk_buff in
the host network namespace. For UDP, where no buffering is in place, the
data even shows that an sk_buff created by writing to a socket is usually
processed completely until it is added to the queue of a physical NIC to leave
the machine.

The host network namespace is where the majority of the processing
configured by CNI plugins takes place. This introduces latency which can
be seen in Figure 4.4 as the gap between the orange and green lines and

CHAPTER 4. EVALUATION 58

in Table 4.6. The data show that the introduced latency is lower than for
incoming traffic with the exception of Calico eBPF, which shows a higher
latency than for incoming traffic. Also, processing of UDP traffic is generally
a bit faster than processing TCP traffic. For both transport protocols, Calico
and Calico eBPF appear to introduces similar latency and jitter. In contrast,
Cilium only introduces about half of this latency and jitter. This is an
interesting observation considering that for incoming traffic Calico eBPF has
the best latency and jitter behavior while Cilium has the worst. Looking at
the data in more detail reveals that processing outgoing traffic with Cilium
uses only two tc hooks whereas Calico eBPF makes use of the two tc hooks,
iptables, and conntrack. This is the opposite configuration compared with
incoming traffic, where Calico eBPF used just the tc hooks. Here it can
be seen again that the latency and the jitter increases when more different
subsystems are used for processing.

Chapter 5

Conclusion

This chapter summarizes the work of this thesis and its results, shows how
the results can be applied in practice, and presents ideas on how the tracing
application could be improved in the future.

In this thesis, a tracing application is developed to observe the latency
and jitter introduced by different parts of the Linux networking stack. It is
tailored to obtain these metrics from a host performing container networking
as in a Kubernetes cluster. The overhead of the application is thoroughly
analyzed to allow a better assessment of the results. The application is then
used to collect latency data from different CNI plugins which are compared
with regard to the latency and jitter they introduce to the network traffic.

Analyzing the overhead of the tracing application shows that its probes
introduce significant additional latency. In addition, an impact on the jitter
could be observed, albeit smaller than on the latency. To account for that,
the number of probes is reduced in the experiments with the different CNI
plugins. As the remaining probes still increase the processing latency, the
results should not be used to compare absolute values with the results from
other measurements. However, they can still be compared relative to each
other in the scope of this thesis.

One result of the experiments applies irrespective of the CNI plugin. UDP
traffic exhibits similar or lower latency and always lower jitter than TCP
traffic considering the processing in the whole stack. This can be attributed
to the stack performing less operations in general and absence of buffering
mechanisms when using UDP. While it is commonly known that latency-
sensitive applications should prefer UDP as the transport protocol wherever
possible, the obtained data also enables a nice visualization of the reasons
behind this knowledge.

The data for the different CNI plugins shows that processing packtets
using only eBPF can decrease latency and jitter compared to plugins using

59

CHAPTER 5. CONCLUSION 60

iptables. However, none of the compared plugins used eBPF for incoming and
outgoing traffic at the same time. While Calico eBPF shows good performance
for incoming traffic, Cilium shows good performance for outgoing traffic. With
newer kernel versions, Cilium is supposed to use a pure eBPF data plane for
incoming and outgoing traffic. It remains to be tested if that can provide the
latency and jitter benefits in both directions.

Apart from that, it is hard to make a recommendation for a CNI plugin that
provides universally low latency and jitter. Instead, many factors contribute
to the latency and jitter that is introduced by the kernel networking stack.
The factors are not just limited to the plugin itself but also include the impact
it has on the overall system performance and probably aspects like hardware
components and other workloads in the cluster. Therefore, it is key to perform
measurements assessing the latency in a cluster that matches the production
environment as closely as possible. This can as well reveal unexpected side
effects of the CNI plugins. It is also important to check if a plugin really
processes packets according to its claims or if there are additional operations
involved in the processing or if there are unexpected performance issues such
as observed for Cilium with outgoing traffic. Of course, the configuration of
the container networking solution as well as the system in general should be
tuned to be as deterministic as possible when very low latency and jitter are
required.

While all experiments are performed using Kubernetes, the tracing appli-
cation can also work with other container infrastructures, such as Docker or
Linux Containers. If their network configurations are substentially different
from CNI plugins, it may be necessary to introduce furter probes in the
stack with the technique shown in Section 3.3. This should be especially
considered for the way packets are forwarded into the network namespaces
of the containers. CNI plugins often use virtual ethernet pairs for this while
other container infrastructures use bridges instead. Thus, they may need
additional probes to cover this part of the networking stack. However, as
long as the workloads and the network processing share the same kernel, i.e.,
no VMs are used, the tracing application can obtain traces from the network
interface to the userspace application.

Chapter 4 shows that the tracing application can have significant impact
on the observed latencies. Due to the increased CPU utilization, this may
also lead to other parts of the system behaving differently, e.g., the scheduler.
To address this high overhead, several areas are worth a look. One option is
to reduce the number of probes in the path. While the number of the probes
is already limited to the minimum of what is needed to gather the desired
data, the probes do not all need to be active at the same time. Instead, they
could be grouped and only activated if their measurements are of interest.

CHAPTER 5. CONCLUSION 61

For example, the measurement of the duration of iptables, conntrack, and
tc could be disabled when the investigation focuses on the latency of the
whole networking stack and only activated when the very fine-grained data is
needed. This has already been done manually for some of the experiments.
However, this could be implemented in a more user-friendly way that does
not require to recompile the application with the different sets of probes but
rather allow to choose the probes from the commandline interface.

Section 4.1.1 shows that the caching of events that are reused soon, as it is
necessary for functions where only kprobes can be attached, has a significant
performance benefit. Therefore, this caching could be applied to other probes
as well, i.e., the probes for the measurement of the duration spent in tc hooks.
However, for all other probes, this approach is not easily applicable and would
require more careful design.

The third area of improvements would be to redesign the transfer of events
to the userspace application. The different maps that could be suitable for
this could be compared in terms of their performance to see if any of them
offers an improvement compared to perf event arrays. Also, more data could
be aggregated by the probes in the kernel. Here it is important to find a good
balance between the time the computations in the kernel take and the time
that the transfer to the userspace takes.

However, none of these improvements are expected to reduce the overhead
to a level that makes continuous collection of metrics about the stack latency
possible, because the tracing of code paths that are as heavily used as the
networking stack will always stay expensive. Instead, it may help to reduce
the error that needs to be taken into account during the analysis. But even
the existing application can provide useful insights as the results obtained in
this thesis show.

References

[1] Nane Kratzke and Peter-Christian Quint. “Understanding Cloud-Native
Applications after 10 Years of Cloud Computing - A Systematic Mapping
Study”. In: Journal of Systems and Software 126 (Apr. 2017). doi:
10.1016/j.jss.2017.01.001.

[2] Maria A. Lema, Andrés Laya, Toktam Mahmoodi, Maria Cuevas,
Joachim Sachs, Jan Markendahl, and Mischa Dohler. “Business Case
and Technology Analysis for 5G Low Latency Applications”. In: IEEE
Access 5 (2017). doi: 10.1109/ACCESS.2017.2685687.

[3] GSM Association. Cloud AR/VR Whitepaper. Apr. 26, 2019. url:
https : / / www . gsma . com / futurenetworks / wiki / cloud - ar - vr -
whitepaper/ (visited on Jan. 17, 2021).

[4] Rami Rosen. Linux Kernel Networking: Implementation and Theory.
The Expert’s Voice in Open Source. New York, NY: Apress, 2014. 612 pp.
isbn: 978-1-4302-6196-4.

[5] Linux kernel developers. Segmentation Offloads. The Linux Kernel
documentation. url: https://www.kernel.org/doc/html/latest/
networking/segmentation-offloads.html (visited on July 1, 2021).

[6] Jeffrey C. Mogul and K. K. Ramakrishnan. “Eliminating Receive Live-
lock in an Interrupt-Driven Kernel”. In: ACM Transactions on Computer
Systems 15.3 (Aug. 1997). doi: 10.1145/263326.263335.

[7] Jamal Hadi Salim, Robert Olsson, and Alexey Kuznetsov. “Beyond
Softnet”. In: Proceedings of the 5th Annual Linux Showcase & Confer-
ence. Vol. 5. ALS ’01. Oakland, California, USA: USENIX Association,
Nov. 2001.

[8] Jonathan Corbet. Driver Porting: Network Drivers. LWN.net. Apr. 28,
2003. url: https://lwn.net/Articles/30107/ (visited on July 1,
2021).

62

https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1109/ACCESS.2017.2685687
https://www.gsma.com/futurenetworks/wiki/cloud-ar-vr-whitepaper/
https://www.gsma.com/futurenetworks/wiki/cloud-ar-vr-whitepaper/
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://doi.org/10.1145/263326.263335
https://lwn.net/Articles/30107/

REFERENCES 63

[9] Torsten M. Runge, Alexander Beifuß, and Bernd E. Wolfinger. “Low
Latency Network Traffic Processing with Commodity Hardware”. In:
2015 International Symposium on Performance Evaluation of Computer
and Telecommunication Systems (SPECTS). 2015 International Sympo-
sium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS). July 2015. doi: 10.1109/SPECTS.2015.7285296.

[10] Pablo Neira Ayuso. “Netfilter’s Connection Tracking System”. In: ;login:
31.3 (2006).

[11] Tc(8) - Linux Manual Page. url: https://man7.org/linux/man-
pages/man8/tc.8.html (visited on July 29, 2021).

[12] Kubernetes Developers. What Is Kubernetes? Kubernetes Documenta-
tion. url: https://kubernetes.io/docs/concepts/overview/what-
is-kubernetes/ (visited on July 15, 2021).

[13] Kubernetes Developers. Pods. Kubernetes Documentation. url: https:
//kubernetes.io/docs/concepts/workloads/pods/ (visited on
July 15, 2021).

[14] Kubernetes Developers. Cluster Networking. Kubernetes Documen-
tation. url: https://kubernetes.io/docs/concepts/cluster-
administration/networking/ (visited on July 15, 2021).

[15] Kubernetes Developers. Service. Kubernetes Documentation. url: https:
//kubernetes.io/docs/concepts/services-networking/service/
(visited on July 15, 2021).

[16] Shixiong Qi, Sameer G. Kulkarni, and K. K. Ramakrishnan. “Assessing
Container Network Interface Plugins: Functionality, Performance, and
Scalability”. In: IEEE Transactions on Network and Service Manage-
ment 18.1 (Mar. 2021). doi: 10.1109/TNSM.2020.3047545.

[17] Calico Developers. About eBPF. Calico Documentation. url: https:
//docs.projectcalico.org/about/about-ebpf (visited on July 24,
2021).

[18] Cilium Developers. Introduction to Cilium & Hubble. Cilium 1.9.8 docu-
mentation. url: https://docs.cilium.io/en/v1.9/intro/ (visited
on July 24, 2021).

[19] Cilium Developers. Kubernetes Without Kube-Proxy. Cilium 1.9.8 docu-
mentation. url: https://docs.cilium.io/en/v1.9/gettingstarted/
kubeproxy-free/ (visited on July 19, 2021).

https://doi.org/10.1109/SPECTS.2015.7285296
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://doi.org/10.1109/TNSM.2020.3047545
https://docs.projectcalico.org/about/about-ebpf
https://docs.projectcalico.org/about/about-ebpf
https://docs.cilium.io/en/v1.9/intro/
https://docs.cilium.io/en/v1.9/gettingstarted/kubeproxy-free/
https://docs.cilium.io/en/v1.9/gettingstarted/kubeproxy-free/

REFERENCES 64

[20] Mohamad Gebai and Michel R. Dagenais. “Survey and Analysis of
Kernel and Userspace Tracers on Linux: Design, Implementation, and
Overhead”. In: ACM Computing Surveys 51.2 (June 2, 2018). doi:
10.1145/3158644.

[21] Mathieu Desnoyers. Using the Linux Kernel Tracepoints. The Linux
Kernel documentation. url: https://www.kernel.org/doc/html/
latest/trace/tracepoints.html (visited on July 6, 2021).

[22] Steven Rostedt. Ftrace - Function Tracer. The Linux Kernel documen-
tation. url: https://www.kernel.org/doc/html/latest/trace/
ftrace.html (visited on July 6, 2021).

[23] Steven Rostedt. Trace-Cmd: A Front-End for Ftrace. LWN.net. Oct. 20,
2010. url: https://lwn.net/Articles/410200/ (visited on July 6,
2021).

[24] Steven McCanne and Van Jacobson. “The BSD Packet Filter: A New
Architecture for User-Level Packet Capture”. In: USENIX Winter 1993
Conference Proceedings. USENIX Winter 1993. San Diego, California,
Jan. 1993.

[25] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico, Eler-
son R. S. Santos, Eduardo P. M. Câmara Júnior, and Luiz F. M. Vieira.
“Fast Packet Processing with eBPF and XDP: Concepts, Code, Chal-
lenges, and Applications”. In: ACM Computing Surveys 53.1 (May 29,
2020). doi: 10.1145/3371038.

[26] Cilium Developers. BPF and XDP Reference Guide. Cilium Documen-
tation. url: https://docs.cilium.io/en/latest/bpf/ (visited on
June 25, 2021).

[27] Jay Schulist, Daniel Borkmann, and Alexei Starovoitov. Linux Socket
Filtering Aka Berkeley Packet Filter (BPF). The Linux Kernel doc-
umentation. url: https://www.kernel.org/doc/html/latest/
networking/filter.html (visited on June 25, 2021).

[28] Sebastiano Miano, Fulvio Risso, Mauricio Vasquez Bernal, Matteo
Bertrone, and Yunsong Lu. “A Framework for eBPF-Based Network
Functions in an Era of Microservices”. In: IEEE Transactions on Net-
work and Service Management (2021). doi: 10 . 1109 / TNSM . 2021 .
3055676.

[29] Jonathan Corbet. BPF: The Universal in-Kernel Virtual Machine.
LWN.net. May 21, 2014. url: https://lwn.net/Articles/599755/
(visited on June 29, 2021).

https://doi.org/10.1145/3158644
https://www.kernel.org/doc/html/latest/trace/tracepoints.html
https://www.kernel.org/doc/html/latest/trace/tracepoints.html
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://lwn.net/Articles/410200/
https://doi.org/10.1145/3371038
https://docs.cilium.io/en/latest/bpf/
https://www.kernel.org/doc/html/latest/networking/filter.html
https://www.kernel.org/doc/html/latest/networking/filter.html
https://doi.org/10.1109/TNSM.2021.3055676
https://doi.org/10.1109/TNSM.2021.3055676
https://lwn.net/Articles/599755/

REFERENCES 65

[30] Bpf-Helpers(7) - Linux Manual Page. url: https://www.man7.org/
linux/man-pages/man7/bpf-helpers.7.html (visited on June 25,
2021).

[31] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. “The eX-
press Data Path: Fast Programmable Packet Processing in the Operating
System Kernel”. In: Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies. CoNEXT ’18:
The 14th International Conference on Emerging Networking EXperi-
ments and Technologies. Heraklion Greece: ACM, Dec. 4, 2018. doi:
10.1145/3281411.3281443.

[32] Jim Keniston, Prasanna S Panchamukhi, and Masami Hiramatsu. Kernel
Probes (Kprobes). The Linux Kernel documentation. url: https://
www.kernel.org/doc/html/latest/trace/kprobes.html (visited on
June 15, 2021).

[33] Alexei Starovoitov. [PATCH v4 bpf-next 00/20] Introduce BPF Tram-
poline. E-mail. Nov. 14, 2019. url: https://lore.kernel.org/bpf/
20191114185720.1641606-1-ast@kernel.org/ (visited on July 14,
2021).

[34] Linux kernel developers. BPF Ring Buffer. The Linux Kernel docu-
mentation. url: https://www.kernel.org/doc/html/latest/bpf/
ringbuf.html (visited on July 16, 2021).

[35] Linux kernel developers. Linux Kernel ABI Readme. url: https://www.
kernel.org/doc/Documentation/ABI/README (visited on July 27,
2021).

[36] IO Visor Project. BCC (BPF Compiler Collection). url: https://
github.com/iovisor/bcc (visited on June 30, 2021).

[37] Andrii Nakryiko. BPF CO-RE (Compile Once – Run Everywhere).
Feb. 19, 2020. url: https://nakryiko.com/posts/bpf-portability-
and-co-re/ (visited on Mar. 19, 2021).

[38] Andrii Nakryiko. BTF Deduplication and Linux Kernel BTF. Nov. 14,
2018. url: https://nakryiko.com/posts/btf-dedup/ (visited on
June 30, 2021).

[39] Linux kernel developers. BPF Type Format (BTF). The Linux Kernel
documentation. url: https://www.kernel.org/doc/html/latest/
bpf/btf.html (visited on June 30, 2021).

[40] Yutaro Hayakawa. ipftrace2. url: https://github.com/YutaroHayakawa/
ipftrace2 (visited on July 6, 2021).

https://www.man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://www.man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://doi.org/10.1145/3281411.3281443
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://lore.kernel.org/bpf/20191114185720.1641606-1-ast@kernel.org/
https://lore.kernel.org/bpf/20191114185720.1641606-1-ast@kernel.org/
https://www.kernel.org/doc/html/latest/bpf/ringbuf.html
https://www.kernel.org/doc/html/latest/bpf/ringbuf.html
https://www.kernel.org/doc/Documentation/ABI/README
https://www.kernel.org/doc/Documentation/ABI/README
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://nakryiko.com/posts/bpf-portability-and-co-re/
https://nakryiko.com/posts/bpf-portability-and-co-re/
https://nakryiko.com/posts/btf-dedup/
https://www.kernel.org/doc/html/latest/bpf/btf.html
https://www.kernel.org/doc/html/latest/bpf/btf.html
https://github.com/YutaroHayakawa/ipftrace2
https://github.com/YutaroHayakawa/ipftrace2

REFERENCES 66

[41] Yutaro Hayakawa. “eBPF at LINE’s Private Cloud”. eBPF Summit
2020 (Online). Oct. 28, 2020. url: https://ebpf.io/summit-2020-
slides/eBPF_Summit_2020-Lightning-Yutaro_Hayakawa-eBPF_at_
LINE_Private_Cloud.pdf (visited on July 6, 2021).

[42] Alexander Beifuß, Daniel Raumer, Paul Emmerich, Torsten M. Runge,
Florian Wohlfart, Bernd E. Wolfìnger, and Georg Carle. “A Study of
Networking Software Induced Latency”. In: 2015 International Confer-
ence and Workshops on Networked Systems (NetSys). 2015 International
Conference and Workshops on Networked Systems (NetSys). Mar. 2015.
doi: 10.1109/NetSys.2015.7089065.

[43] B. Herzog, L. Gerhorst, B. Heinloth, S. Reif, T. Hönig, and W. Schröder-
Preikschat. “INTspect: Interrupt Latencies in the Linux Kernel”. In:
2018 VIII Brazilian Symposium on Computing Systems Engineering
(SBESC). 2018 VIII Brazilian Symposium on Computing Systems En-
gineering (SBESC). Nov. 2018, pp. 83–90. doi: 10.1109/SBESC.2018.
00021.

[44] Dejene Boru Oljira, Anna Brunström, Javid Taheri, and Karl-Johan
Grinnemo. “Analysis of Network Latency in Virtualized Environments”.
In: 2016 IEEE Global Communications Conference (GLOBECOM).
2016 IEEE Global Communications Conference (GLOBECOM). Dec.
2016. doi: 10.1109/GLOCOM.2016.7841603.

[45] Jon Whiteaker, Fabian Schneider, and Renata Teixeira. “Explaining
Packet Delays under Virtualization”. In: ACM SIGCOMM Computer
Communication Review 41.1 (Jan. 22, 2011). doi: 10.1145/1925861.
1925867.

[46] Paul Emmerich, Daniel Raumer, Florian Wohlfart, and Georg Carle.
“A Study of Network Stack Latency for Game Servers”. In: 2014 13th
Annual Workshop on Network and Systems Support for Games. 2014
13th Annual Workshop on Network and Systems Support for Games.
Dec. 2014, pp. 1–6. doi: 10.1109/NetGames.2014.7008960.

[47] Geoffrey Blake and Ali G. Saidi. “Where Does the Time Go? Character-
izing Tail Latency in Memcached”. In: 2015 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS). 2015
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). Mar. 2015. doi: 10.1109/ISPASS.2015.7095781.

[48] Pradipta De, Ravi Kothari, and Vijay Mann. “Identifying Sources of
Operating System Jitter through Fine-Grained Kernel Instrumentation”.
In: 2007 IEEE International Conference on Cluster Computing. 2007

https://ebpf.io/summit-2020-slides/eBPF_Summit_2020-Lightning-Yutaro_Hayakawa-eBPF_at_LINE_Private_Cloud.pdf
https://ebpf.io/summit-2020-slides/eBPF_Summit_2020-Lightning-Yutaro_Hayakawa-eBPF_at_LINE_Private_Cloud.pdf
https://ebpf.io/summit-2020-slides/eBPF_Summit_2020-Lightning-Yutaro_Hayakawa-eBPF_at_LINE_Private_Cloud.pdf
https://doi.org/10.1109/NetSys.2015.7089065
https://doi.org/10.1109/SBESC.2018.00021
https://doi.org/10.1109/SBESC.2018.00021
https://doi.org/10.1109/GLOCOM.2016.7841603
https://doi.org/10.1145/1925861.1925867
https://doi.org/10.1145/1925861.1925867
https://doi.org/10.1109/NetGames.2014.7008960
https://doi.org/10.1109/ISPASS.2015.7095781

REFERENCES 67

IEEE International Conference on Cluster Computing. Sept. 2007. doi:
10.1109/CLUSTR.2007.4629247.

[49] Nelson Mimura Gonzalez, Alessandro Morari, and Fabio Checconi.
“Jitter-Trace: A Low-Overhead OS Noise Tracing Tool Based on Linux
Perf”. In: Proceedings of the 7th International Workshop on Runtime
and Operating Systems for Supercomputers ROSS 2017. ROSS ’17:
International Workshop on Runtime and Operating Systems for Super-
computers ROSS 2017. Washingon DC USA: ACM, June 27, 2017. doi:
10.1145/3095770.3095772.

[50] Arthur Toussaint, Mohammed Hawari, and Thomas Clausen. “Chasing
Linux Jitter Sources for Uncompressed Video”. In: 2018 14th Interna-
tional Conference on Network and Service Management (CNSM). 2018
14th International Conference on Network and Service Management
(CNSM). Nov. 2018.

[51] Cilium Developers. Life of a Packet. Cilium 1.9.8 documentation. url:
https://docs.cilium.io/en/v1.9/concepts/ebpf/lifeofapacket/
(visited on July 9, 2021).

[52] Cilium Developers. eBPF Maps. Cilium 1.9.8 documentation. url:
https://docs.cilium.io/en/v1.9/concepts/ebpf/maps/ (visited
on July 9, 2021).

[53] Brendan Gregg. BPF Performance Tools: Linux System and Application
Observability. 1st ed. Addison Wesley, 2019. isbn: 978-0-13-655482-0.

[54] Tom Herbert and Willem de Bruijn. Scaling in the Linux Network-
ing Stack. The Linux Kernel documentation. url: https : / / www .
kernel.org/doc/html/latest/networking/scaling.html (visited
on July 13, 2021).

[55] Linux kernel developers. Memory Allocation Guide. The Linux Kernel
documentation. url: https://www.kernel.org/doc/html/latest/
core-api/memory-allocation.html (visited on July 13, 2021).

[56] Jeff Bonwick. “The Slab Allocator: An Object-Caching Kernel Memory
Allocator”. In: USENIX Summer 1994 Technical Conference. Boston,
MA: USENIX Association, June 1994.

[57] Al Morton and Benoit Claise. RFC 5481: Packet Delay Variation Appli-
cability Statement. Mar. 2009. url: https://datatracker.ietf.org/
doc/html/rfc5481.

[58] Recommendation ITU-T Y.1540: Internet Protocol Data Communica-
tion Service – IP Packet Transfer and Availability Performance Parame-
ters. Dec. 2019. url: http://handle.itu.int/11.1002/1000/13933.

https://doi.org/10.1109/CLUSTR.2007.4629247
https://doi.org/10.1145/3095770.3095772
https://docs.cilium.io/en/v1.9/concepts/ebpf/lifeofapacket/
https://docs.cilium.io/en/v1.9/concepts/ebpf/maps/
https://www.kernel.org/doc/html/latest/networking/scaling.html
https://www.kernel.org/doc/html/latest/networking/scaling.html
https://www.kernel.org/doc/html/latest/core-api/memory-allocation.html
https://www.kernel.org/doc/html/latest/core-api/memory-allocation.html
https://datatracker.ietf.org/doc/html/rfc5481
https://datatracker.ietf.org/doc/html/rfc5481
http://handle.itu.int/11.1002/1000/13933

REFERENCES 68

[59] Ananth Mavinakayanahalli, Prasanna Panchamukhi, Jim Keniston, Anil
Keshavamurthy, and Masami Hiramatsu. “Probing the Guts of Kprobes”.
In: Proceedings of the Linux Symposium. 2006 Linux Symposium. Vol. 2.
Ottawa, Canada, July 2006.

[60] Alexei Starovoitov. [PATCH v4 bpf-next 04/20] bpf: Introduce BPF
Trampoline. E-mail. Nov. 14, 2019. url: https://lore.kernel.org/
bpf / 20191114185720 . 1641606 - 5 - ast @ kernel . org/ (visited on
July 24, 2021).

[61] Alexei Starovoitov. [PATCH v8 bpf-next 6/9] bpf: Introduce BPF_-
RAW_TRACEPOINT. E-mail. Mar. 28, 2018. url: https://lore.
kernel.org/netdev/20180328190540.370956-7-ast@kernel.org/
(visited on July 24, 2021).

[62] Alex Pollitt. Comparing Kube-Proxy Modes: iptables or IPVS? Apr. 18,
2019. url: https://www.tigera.io/blog/comparing-kube-proxy-
modes-iptables-or-ipvs/ (visited on July 29, 2021).

[63] Shaun Crampton. Introducing the Calico eBPF Dataplane. Feb. 25, 2020.
url: https://www.tigera.io/blog/introducing- the- calico-
ebpf-dataplane/ (visited on July 29, 2021).

[64] Cilium Developers. Tuning Guide. Cilium 1.10.3 documentation. url:
https://docs.cilium.io/en/v1.10/operations/performance/
tuning/ (visited on July 24, 2021).

https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org/
https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org/
https://lore.kernel.org/netdev/20180328190540.370956-7-ast@kernel.org/
https://lore.kernel.org/netdev/20180328190540.370956-7-ast@kernel.org/
https://www.tigera.io/blog/comparing-kube-proxy-modes-iptables-or-ipvs/
https://www.tigera.io/blog/comparing-kube-proxy-modes-iptables-or-ipvs/
https://www.tigera.io/blog/introducing-the-calico-ebpf-dataplane/
https://www.tigera.io/blog/introducing-the-calico-ebpf-dataplane/
https://docs.cilium.io/en/v1.10/operations/performance/tuning/
https://docs.cilium.io/en/v1.10/operations/performance/tuning/

	Introduction
	Problem Statement
	Goals
	Methodology
	Limitations
	Sustainability and Ethics
	Structure of the Thesis

	Background
	The Linux Networking Stack
	Kubernetes and Container Networking
	Tracing in the Linux Kernel
	The Extended Berkeley Packet Filter
	Related Work

	Implementation
	Design
	Existing Tracing Tools
	Identifying Hooks for Probes
	Implementation

	Evaluation
	Performance Overhead of the Tracing Application
	Comparison of CNI Plugins

	Conclusion
	References

