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Perception is one of the key factors to successful self-driving. According to recent
studies in developing perception 3D range scanners combined with stereo camera
vision are the most utilized sensors in autonomous vehicle perception systems. To
enable accurate perception, the sensors must be calibrated before the sensor data
can be fused. Calibration minimizes measurement errors caused by the nonidealities
of individual sensors and errors caused by the transformation between different
sensor frames.

This thesis presents camera-LiDAR calibration, synchronisation, and data
fusion techniques. It can be argued that the quality of data is more important to
the calibration than the actual optimization algorithms, therefore, one challenge
addressed in this thesis is accurate data collection with different calibration targets
and result validation with different optimization algorithms.

We estimated the vehicle windshield effect on camera calibration and show
that the error caused by the windshield can be decreased by using more complex
distortion models than the standard model. Synchronisation is required to ensure
that sensors provide measurements at the same time. The sensor data used in this
thesis was synchronized by using an external trigger signal from a GNSS receiver.
The camera-LiDAR extrinsic calibration was performed using synchronised 3D-2D
(LiDAR points and camera pixels) and 3D-3D (LiDAR points and stereo camera)
point correspondences. This comparison demonstrates that the best method to
estimate camera-LiDAR extrinsic parameters is to use 3D-2D point correspondences.
Moreover, a comparison between camera-based and LiDAR 3D reconstruction is
presented. Due to different sensors viewpoint, some data points are occluded,
therefore, we propose a camera-LiDAR occlusion handling algorithm to remove
occluded points. The quality of the calibration is demonstrated visually, by fusing
and aligning the LiDAR point cloud and the image.

Keywords: Camera, LiDAR, calibration, synchronisation, stereo vision,
3D reconstruction, windshield, point cloud.
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Havainnointi on yksi onnistuneen itseajon avaintekijöistä ja viimeaikaisen tutki-
muksen mukaan 3D-etäisyysmittaus yhdistettynä stereokameranäköön on autono-
misten autojen havainnointijärjestelmissä yleisimmin käytetty sensorikokoonpano.
Mahdollisimman tarkan havainnoinnin mahdollistamiseksi sensorit pitää kuitenkin
kalibroida ennen sensoridatan yhdistämistä. Kalibroinnilla minimoidaan yksit-
täisten sensoreiden epäideaalisuudesta johtuvaa mittausvirhettä ja sensoreiden
välisestä siirtymästä ja kierrosta johtuvaa virhettä

Työssä esitetään kameran ja 3D-laserkeilaimen kalibrointi, datan synkronointi
sekä datan yhdistämistekniikka. Voidaan väittää, että kalibrointiin käytettävän
datan tarkkuus on lopputuloksen kannalta olennaisempaa kuin itse kalibrointiin
käytettävä optimointialgoritmi. Yksi tämän työn haasteista onkin ollut kerätä mah-
dollisimman tarkka data-aineisto eri kalibrointikohteilla ja varmistaa kalibroinnin
lopputulos eri optimointialgoritmeilla.

Työssä on arvioitu tuulilasin vaikutusta auton sisään asennettujen kameroiden
kalibrointiin ja esitetty miten tuulilasin aiheuttamaa virhettä voidaan pienentää
huomattavasti käyttämällä vakiomallia monimutkaisempia kalibrointimalleja. Sen-
soreiden synkronointi pitää varmistaa, jotta mittausten ajanhetki tunnetaan ja eri
sensoreiden data on yhdistettävissä. Työssä käytetty data on synkronoitu laukai-
semalla sensorit ulkoisesti satelliittipaikannusjärjestelmän vastaanottimen avulla.
Kameran ja laserkeilaimen välinen siirtymä ja kierto on määritetty käyttämällä
sekä 3D-2D (laserkeilatut pisteet ja kuvapikselit) että 3D-3D (laserkeilatut pisteet
ja stereokamerapisteet) pistevastaavuuksia. Vertailu osoittaa, että 3D-2D piste-
vastaavuuksien käyttö on parempi kameran ja laserkeilaimen välisen siirtymän ja
kierron arviointiin. Lisäksi esitetään sekä stereokameraan että 3D-laserkeilaimeen
perustuvan 3D rekonstruktion vertailu. Sensoreiden eri katselukulmasta johtuen
jotkin pisteet saattavat todellisuudessa jäädä katvesseen, eikä niitä voi yhdistää
toisen sensorin dataan. Työssä on kehitetty katvepisteiden havaitsemiseen ja poista-
miseen tarkoitettu algoritmi. Kalibroinnin laatua on havainnollistettu visuaalisesti
yhdistämällä laserkeilaimen ja kameran tuottama data.

Avainsanat: Kamera, LiDAR, kalibrointi, synkronointi, stereonäkymä,
3D-rekonstruktio, tuulilasi, pistepilvi.
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1 Introduction
The rapid development of the autonomous vehicle sector has resulted in increased
demand for positioning and tracking systems. Paden et al. (2016) argues that the
self-driving feature is mainly composed of 2 parts: the perception and the decision-
making systems. To improve autonomous perception and navigation, self-driving
cars are embedded with a varied set of sensors. Inertial measurement unit (IMU),
light detection and ranging (LiDAR), cameras, and global navigation satellite system
(GNSS) receivers are among the most commonly used. These types of sensors differ
not only by price but also by the type of information that they provide to the system.
For example, IMU provides information about gravity, acceleration, and magnetic
field, LiDAR creates point cloud of the environment, and GNSS gives positioning
data. As Luettel et al. (2012) stated, an estimate based on data obtained from a
single sensor is not sufficient to perform robust and accurate estimation. Although
these sensors work independently of each other, none of them offer long-term solutions
on their own. IMU may drift on long trajectories, GNSS receiver may lose satellite
signals when the car is in tunnels or canyons, cameras may be affected by sunlight
or featureless environment, and LiDAR may suffer from insufficient data points (i.e.,
sparse point clouds) or reflective surfaces such as mirrors and windows. For this
reason, the fusion of data from these sensors can overcome the problems presented
above and can introduce stability and safety in the system. The information from
these sensors is processed by an estimation algorithm to determine the variable of
interest. The GNSS is used for localization, however, Claudine et al. (2021) states
that GNSS positioning alone is unreliable because of interferences caused by tall
trees, buildings, and tunnels. To avoid GNSS drawbacks, cameras and LiDARs are
fused to help the localization process.

Cameras perceive the environment intuitively in a human-like manner. Although
they are among the most commonly used sensors for localization and navigation,
they do not always offer the maximum safety and efficiency. Compared to cameras,
LiDARs are much more expensive sensors and offer more promising results, however,
LiDARs can also fail on long-term trajectories. On this point, Zhang et al. (2015)
has shown that better results can be obtained by fusing cameras and LiDARs for
simultaneous localization and mapping (SLAM) algorithms. Before being fused, the
sensors must first be calibrated. Calibration ensures that they work at the best
possible scale and assure the best possible performance. The objective of calibration
is to reduce measurement uncertainty and guarantee accuracy and consistency.

1.1 Autonomous driving relies on cameras and LiDARs
Research into autonomous driving is currently a hot topic. As Martins et al. (2020)
stated, the autonomous driving field is no longer exclusive to academic research labs.
To this end, development of all advanced driver assistance systems (ADAS) require
an accurate perception, which means that information from multiple sensors need to
be fused to perceive the environment. In this respect, Guindel et al. (2017) stated
that 3D range scanners combined with stereo camera vision currently tend to be the



2

most utilized perception systems for autonomous cars.
Localization, mapping, and other traffic participant detection are essential tasks in

autonomous driving. Approaches to solving these problems based only on inexpensive
monocular and stereo camera sensors have resulted in drastically low accuracy, which
according to Wang et al. (2019) is because of poor image-based depth estimation.
Contrary to image-based depth estimation, LiDARs provide high-quality 3D point
clouds, which are utilized to map the surrounding environment. Even though it is one
of the most expensive components for a self-driving car, LiDAR remain indispensable
in some situations where the vision-based solution might fail. Also, LiDAR prices
are coming down to reasonable levels in the next few years, which will encourage
autonomous driving companies to include them in their vehicles. To conclude, from an
economical point of view, it is profitable to use vision-based solutions for autonomous
vehicles, because camera sensors have lower costs. While from a safety and efficiency
point of view it is better to use a combination of vision-based and ranging laser scans,
in order to bring the highest accuracy and performance.

1.2 Research questions and goals
In this thesis, camera-LiDAR calibration methods are presented. The data set for the
experiments was collected with an autonomous-capable Ford Mondeo Hybrid vehicle
at the Finnish Geospatial Research Institute (FGI) in the autonomous research
vehicle observatory (ARVO). Two iDS cameras are used to collect visual information
and Velodyne VLS-128 LiDAR is used to measure point cloud data. We assume
that the LiDAR is already intrinsically calibrated. The goal of the thesis is to
implement and evaluate camera-LiDAR calibration methods which can improve the
vehicle’s perception system. For camera calibration, we aim to collect several data
sets with and without the car windshield, in order to verify the windshield effect
on calibration. We use several targets for data collection to verify if the type of
calibration board brings any significant improvement on calibration. Camera-LiDAR
extrinsic parameters are estimated based on 3D-2D (LiDAR-pixels) and 3D-3D
(LiDAR-stereo camera) points in order to examine which method is more suitable.
At the end of this work we will give answers to the following research questions:

1. What is the effect of the windshield on camera calibration?

2. Which is the best target for cameras and LIDAR calibration?

3. What is the best method for camera-LiDAR extrinsic calibration?

The goals are:

1. To perform mono and stereo camera calibration inside and outside the car.

2. To synchronize camera and LiDAR sensors.

3. To propose an automatic technique to extract point correspondences from the
camera and LiDAR frames.
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4. To estimate the extrinsic parameters for camera-LiDAR calibration.

5. To propose a method fo camera-LiDAR occlusion handling.

6. To fuse camera and LiDAR data.

1.3 Structure of the thesis
The thesis is organized as follows: Chapter 2 presents an overview of camera models
and lens distortion, followed by mono and stereo calibration methods. LiDAR
calibration is presented briefly, after which the camera-LiDAR extrinsic calibration
is described. The platform used for the experiments is presented in Chapter 3. Also
in that chapter, we present the research methods and materials. In Section 4 we
present in detail and interpret the results obtained in mono and stereo calibration,
as well as the extrinsic camera-LiDAR calibration. Chapter 5 presents a discussion
on the obtained results. The conclusion are presented in Chapter 6.
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2 Background
In this chapter, we present the mono and stereo camera calibration techniques. We
discuss the distortion models and stereo vision based depth. The LiDAR is already
internally calibrated, but for completeness, we briefly present LiDAR calibration
techniques. In the last part, we present the camera-LiDAR extrinsic estimation
methods.

2.1 Pinhole camera model
A camera sensor is a device that maps the 3D world points into a 2D image space
Hartley et al. (2004). We define a 3D point X = (X, Y, Z)> and a 2D point x = (x, y)>.
The camera pinhole geometry is presented in Figure 1. The transformation

(X, Y, Z)> → (f X
Z
, f
Y

Z
)> (1)

is used to map the 3D point (X, Y, Z)> into the image space, where f is the focal
length. Note that in this case we assume that the focal lengths in x and y directions
are the same. The center of the projection is called the camera center, point C in
Figure 1. The principal axis is the line from camera center perpendicular to the
image plane. The intersection of the image plane and principal axis is called principal
point. Usually, principal point is the center or left top corner of the image plane. For

Figure 1: Camera pinhole model, left is the 2D case, on the right is the 1D case.
Adapted from Hartley et al. (2004).

the sake of notation, the homogeneous vector representation is used to express the
linear mapping fXfY

Z

 =

f 0
f 0

1 0



X
Y
Z
1

 (2)

which can be rewritten in a compact form as

x = PX, (3)
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where P is the camera projection matrix as defined by Hartley et al. (2004), x is
the 2D image point, and X =

[
X Y Z 1

]>
is the homogeneous 3D point. In

Equation (1), we assumed that the principal point lies on the origin coordinates of
the image plane, in general, this is not true. The following transformation shows the
general case when principal point and camera origin are not the same

(X, Y, Z)> → (f X
Z

+ px, f
Y

Z
+ py)>. (4)

Similarly, we can rewrite Equation (2) as
fX + Zpx
fY + Zpy

Z

 =

f px 0
f py 0

1 0



X
Y
Z
1

 . (5)

The internal calibration parameters are defined by matrix

K =

f px
f py

1

 , (6)

where f is the focal length, and px and py define the optical center. Hartley et
al. (2004) defines K as the camera calibration matrix. Similar definition of K can
be found in Forsyth et al. (2012) and Szeliski (2010). Using the camera calibration
matrix, Equation (3) becomes

x = K[I|0]︸ ︷︷ ︸
P

Xcam, (7)

where Xcam is the 3D point in the camera coordinate system, I is the identity matrix
and 0 is a block of 3×1 zeros. The transformation from world frame to camera frame
is required to project an arbitrary 3D world point on image space. The mapping
transformation consists of camera rotation matrix R and translation vector t. R
and t are known as camera extrinsic parameters. Using camera extrinsic parameters,
Equation (7) becomes

x = K[R|t]︸ ︷︷ ︸
P

Xworld, (8)

where Xworld is a 3D point in the world frame, K is the camera intrinsic matrix, and
R and t are camera extrinsic parameters with

[R|t] =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 . (9)

Therefore, the projection matrix P is expressed as

P =

f px
f py

1


︸ ︷︷ ︸

K

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3


︸ ︷︷ ︸

[R|t]

=

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34


︸ ︷︷ ︸

3×4 matrix

. (10)
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2.2 Ground truth data for camera calibration
The ground truth point correspondences between the 3D world and 2D pixels space
are required to estimate the values of the projection matrix P. Camera 2D points
are estimated based on features in the image space. To obtain the 3D values of the
points, we should accurately measure their coordinates relative to the camera frame.
A simpler solution to collect 3D world points is to use a calibration plane/target
with a known structure and dimensions of the features. As shown in Figure 2, the
calibration board might be a simple chessboard, circle grid or any other template
that can be detected in camera space.

Figure 2: Camera calibration boards, circle grids, chessboard, ArUco, ChArUco - a
combination of the previous two.

The most popular calibration pattern design is the chessboard. It can be detected
by binarizing image and extracting black squares that meet the criteria imposed by
the user. After detecting the board, each corner of the template is estimated with
high accuracy, because the corners are unbiased under lens distortion or perspective
transformations. In OpenCV chessboard detection module, the entire calibration
board is required to be visible in the camera FOV and this is the main drawback,
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as it is problematic to collect points that belong to the very edges of the frame and
these points are most affected by lens distortion. Also, to be rotation invariant, the
number of columns must be even and the number of rows must be odd, or vice-versa.
If both are even or odd, there is 180-degree rotation ambiguity for stereo calibration.

Circle grid is another calibration target that can be detected based on the white
or black circles on it. Circles are detected as blob objects. The regular structure
is identified based on the detected circle points. In contrast to the corners of the
chessboard, the circles can be seen as ellipses through the camera lens, which means
that the detection of candidate circles is affected by the lens distortion.

ChArUco calibration target overcomes the limits of the chessboard and circle
grid mentioned above. As the name suggests, it is a combination of a chessboard
and ArUco markers presented by Marut et al. (2019). An ArUco marker is placed in
each white cell on the chessboard and it can be uniquely identified. This eliminates
the problem of rotation ambiguity. Also, there is no need for the entire calibration
board to be visible in the camera FOV, this allows point collection from the very
edges of the frames.

2.3 Camera lens and distortion parameters
In the pinhole camera model, we presented the tranformation of 3D points to 2D
image space using projection matrix P. However, the pinhole model is a mathematical
ideal case, which cannot be directly applied to real cameras. For a general camera
sensor, the smaller the aperture (hole) is, the sharper and clear the resulting images
are. However, this limits the number of photons that hit the image sensor and the
images are dark. If the aperture is increased, multiple rays from the 3D world are
incident on the same part of the sensor screen, which makes the image blurred. We
are interested in getting a sharp image, and at the same time to get more light rays
to make the image brighter. As shown in the following figure, replacing the pinhole
with the lens allows us to get a sharp and bright image by capturing multiple light
rays with lens. However, lenses introduce distortion problem.

Figure 3: Camera pinhole replaced by lens. Replacing the pinhole with a lens, allows
gathering multiple light rays that makes the resulted image brighter. Adapted from
Scaramuzza et al. (2011).
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On this point, Wang et al. (2008) states that there are two principal components of
distortion shown in Figure 4.

1. Radial distortion - caused by the variations of the light refractions, on camera
lens, also called barrel distortion.

2. Tangential distortion - a problem in the manufacturing of cameras, caused
by a small displacement of the lens center from the optical axis.

The standard distortion model includes 5 parameters, (k1, k2, k3 for radial distortion
and p1, p2 for tangential distortion). Besides the standard model, Martins et al. (2020)
present rational, thin prism and tilted distortion models.

• Standard distortion - a model with three parameters (k1, k2, k3) for radial

Figure 4: The standard camera lens distortion model. Top - radial distortion,
caused by light refraction. Bottom - tangential distortion, caused by inaccuracies in
manufacturing of cameras. Adapted from Chiou (2017).
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distortion and two parameters (p1, p2) for tangential distortion, this is known
as Duane (1971) model.

• Rational distortion - besides the standard distortion model parameters,
includes extra three radial distortion parameters, (k4, k5, k6), which gives better
results with higher distortions.

• Thin prism distortion - this model includes the standard distortion and
extra four parameters, (s1, s2, s3, s4). Wang et al. (2008) argues that Thin
prism distortion is caused by slight tilt of lens or image sensor array which can
cause additional radial and tangential distortion.

• Tilted distortion - the lens tilting around x, y axes is represented by two
extra parameters (τx, τy).

As reported by Martins et al. (2020) the projected pixel is affected according to the
following equation

x = x′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6 + 2p1x
′y′ + p2(r2 + 2x′2) + s1r

2 + s2r
2,

y = y′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6 + 2p2x
′y′ + p1(r2 + 2y′2) + s3r

2 + s4r
2,

(11)

where (x, y) stands for corrected pixel, (x′, y′) is the projected pixel, and r is the
radial distance of the projected point (x′, y′) with r2 = x′2+y′2. The effect of changing
the distortion parameters is presented in Figure 5. The importance of distortion

Figure 5: The effect of the distortion parameters on the image frame. Adapted from
Martins et al. (2020).



10

parameter estimation is clear, these parameters are used to correct the image, thus
improve the robustness and accuracy of most computer vision algorithms. Let x′ be
projected sensor point and x the observed sensor point, thus, the observed distortion
vector is

d̂ = x− x′. (12)
The resulting vector after applying distortion model from Equation (11) on projected
point x′ is referred as model distortion vector d. As Burger (2016) described, the
distortion parameters can be estimated using least-squares fitting, minimizing the
difference between the model distortion and observed distortion as

arg min
k1,k2,...

N,M∑
i=1,j=1

||di,j − d̂i,j||2, (13)

where N and M are the 2D image width and height.

2.4 Camera calibration methods
In this section we present the intrinsic (K matrix and distortion) and extrinsic
(rotation R and translation t) camera parameter estimation.

2.4.1 Direct linear transformation

Direct linear transformation (DLT) is a method to estimate the projection matrix P
from given point correspondences (Shapiro 1978). Equation (7) can be rewritten as

λ

xy
1


︸︷︷︸

x

=

λxλy
λ

 =

p11 p12 p13 p14
p21 p22 p23 p23
p31 p32 p33 p34


︸ ︷︷ ︸

P


X
Y
Z
1


︸ ︷︷ ︸

X

, (14)

where λ is a scaling factor, (x, y, 1)> is camera pixel and (X, Y, Z, 1)> is a 3D world
point in camera frame written in a homogeneous form. Equation (14) can be rewritten
as a system with three equations

λx = Xp11 + Y p12 + Zp13 + p14

λy = Xp21 + Y p22 + Zp23 + p24

λ = Xp31 + Y p32 + Zp33 + p34

We can substitute λ from the last equation into first two, which givesX(p11 − p31x) + Y (p21 − p32x) + Z(p13 − p33x) + (p14 − p34x) = 0
X(p21 − p31y) + Y (p22 − p32y) + Z(p23 − p33y) + (p24 − p34y) = 0

As described by Dubrofsky (2009), for multiple points we can stack the equations
and rewritten the above system as a matrix multiplication
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

X1 Y1 Z1 1 0 0 0 0 −X1x1 −Y1x1 −Z1x1 −x1
0 0 0 0 X1 Y1 Z1 1 −X1y1 −Y1y1 −Z1y1 −y1
... ... ... ... ... ... ... ... ... ... ... ...
Xi Yi Zi 1 0 0 0 0 −Xixi −Yixi −Zixi −xi
0 0 0 0 Xi Yi Zi 1 −Xiyi −Yiyi −Ziyi −yi
... ... ... ... ... ... ... ... ... ... ... ...
Xn Yn Zn 1 0 0 0 0 −Xnxn −Ynxn −Znxn −xn
0 0 0 0 Xn Yn Zn 1 −Xnyn −Ynyn −Znyn −yn





p11
p12
p13
p14
p21
p22
p23
p24
p31
p32
p33
p34



=



0
0
0
0
0
0
0
0
0
0
0
0


or in a compact form

Ap = 0 (15)
with A being a 2n× 12 matrix and p unknown projection matrix written in a vector
form. The vector p has 12 unknown components, but only 11 DOF because the
last unknown component is the scale. Since each pair of point correspondence gives
two equations, at least six points are required to estimate the solution. Solution
of Equation (15) can be computed via SVD(A) = UΣV>, the unknown vector p
is the last column of V matrix. As Hartley et al. (2004) described, the intrinsic
and extrinsic parameters can be extracted from projection matrix P via RQ matrix
decomposition (the QR decomposition with reversed order).

The standard DLT algorithm can be used under the assumption that the pixels
and world point correspondences are known. Sometimes, in real environments, it
is hard to gather exact 3D positions of the points. A simplified method is used in
the Zhang (2000) technique, where points are collected using calibration targets
presented in Section 2.2, under the assumption that z coordinate of each 3D point is
zero.

2.4.2 Plane-based calibration

According to Burger (2016) the mono camera calibration is done following the next
steps:

1. Collect images using a target with a known structure. The points are collected
either by moving the camera around the target or moving the target in front
of the camera. For every image, 2D pixels and their corresponding corners are
extracted from the target.

2. The 3D homography is estimated for each view, using a modified DLT algorithm.
In the standard DLT algorithm the mapping is defined as

x = K[R|t]Xworld, (16)
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where

K[R|t] =

p11 p12 p13 p14
p21 p22 p23 p23
p31 p32 p33 p34

 , (17)

which means that parameters are estimated all together from projection matrix
P. Since the 3D points have the z axis zero, the projection takes the form of

xy
1

 = K


... ... ... ...
r0 r1 r2 t
... ... ... ...



X
Y
0
1

 Since−−−→
Z = 0

K


... ... ...
r0 r1 t
... ... ...


︸ ︷︷ ︸

H

XY
1

 , (18)

xy
1

 = H

XY
1

 , (19)

where H is a 3× 3 transformation matrix. Similar to DLT, for multiple points,
the equations are stacked and expressed as a homogeneous linear system

X1 Y1 1 0 0 0 −X1x1 −Y1x1 −x1
0 0 0 X1 Y1 1 −X1y1 −Y1y1 −y1
... ... ... ... ... ... ... ...
Xi Yi 1 0 0 0 −Xixi −Yixi −xi
0 0 0 Xi Yi 1 −Xiyi −Yiyi −yi
... ... ... ... ... ... ... ... ...
Xn Yn 1 0 0 0 −Xnxn −Ynxn −xn
0 0 0 Xn Yn 1 −Xnyn −Ynyn −yn





h11
h12
h13
h21
h22
h23
h31
h32
h33


=



0
0
0
0
0
0
0
0
0


. (20)

The initial guess of H is computed using SVD after which the solution can be
refined by minimizing the following error

arg min
H

N−1∑
j=0

∥∥∥∥∥∥∥
xjyj

1

−H

Xj

Yj
1


∥∥∥∥∥∥∥

2

, (21)

where N is the number of point correspondences. Any optimization technique
can be used to minimize the above error, OpenCV uses Levenberg-Marquardt
(Lourakis 2005) optimization with initial guess provided by SVD. The value
function used for minimization is defined as

f(X,H) =
[
x
y

]
= H

XY
1

 , (22)
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and the Jacobian is defined as

∂f
∂(H) =



∂x1
∂h1

∂x1
∂h2

∂x1
∂h3

∂x1
∂h4

∂x1
∂h5

∂x1
∂h6

∂x1
∂h7

∂x1
∂h8

∂x1
∂h9

∂y1
∂h1

∂y1
∂h2

∂y1
∂h3

∂y1
∂h4

∂y1
∂h5

∂y1
∂h6

∂y1
∂h7

∂y1
∂h8

∂y1
∂h9... ... ... ... ... ... ... ... ...

∂xn

∂h1
∂xn

∂h2
∂xn

∂h3
∂xn

∂h4
∂xn

∂h5
∂xn

∂h6
∂xn

∂h7
∂xn

∂h8
∂xn

∂h9
∂yn

∂h1

∂yn

∂h2

∂yn

∂h3

∂yn

∂h4

∂yn

∂h5

∂yn

∂h6

∂yn

∂h7

∂yn

∂h8

∂yn

∂h9

 . (23)

3. Similar to DLT, the computed homography is decomposed into intrinsic and
extrinsic parameters. The camera center or translation of the camera in world
coordinates C = (X, Y, Z,W )> is a point where PC = 0 or

RC + t = 0 ⇒ C = −R−1t ⇒ C = −R>t, (24)

where t is the relative translation, R is relative rotation between camera and
world frame, and

P = K[R|t] = K[R| −RC] = [KR| −KRC]. (25)

We have R−1 = R> since R is a rotation matrix and it is orthonormal. The
homography matrix H takes the role of P and is decomposed into intrinsic and
rotation matrix.

4. Since the approximate values of the intrinsic parameters are known, techniques
presented in Section 2.3 are applied to estimate the lens distortion parameters.

5. The last step of the plane based calibration is to combine all solutions together.
Intrinsic parameters (K matrix) are the same for all views, while rotation and
translation parameters are estimated for each view independently. The total
projection error is defined as

arg min
K,Rj ,tj

=
N∑
i=0
||xi − x′i||2, (26)

where x is the observed pixel, x′ is the projected pixel, and N is the total
number of points in image j. Using P matrix the above equation becomes

arg min
K,Rj ,tj

N∑
i=0
||xi −PXi||2 = arg min

K,Rj ,tj

N∑
i=0
||xi −K[Rj|tj]Xi||2, (27)

where j is the image view.

The plane-based calibration steps are covered in OpenCV calibrateCamera function
(Bradski 2000).
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2.5 Stereo vision
Stereo vision (Ayache 1991) is the principle of using two cameras to measure the depth
for each pixel. The geometry is motivated by searching for pixel correspondences in
stereo images. Besides the intrinsic calibration, in stereo case we have the rotation R
and translation t between cameras. The stereo setup is presented in Figure 6. The
translation between cameras is called baseline. The camera origins (O and O′) and
3D point X are coplanar and form the epipolar plane (gray area in Figure 6). The
intersection of the image planes with the baseline are called epipoles. The intersection
of the epipolar plane with the image planes form epipolar lines.

In the epipolar constraint, for each observed point x in the left image, we search
for the corresponding point x′ in the right image. As shown in Figure 6, the left
camera coordinate system is a world frame and the rotation for the left camera is
I and translation is zero. The right camera is transformed relative to left camera.
Potential matches for point x, have to lie on the corresponding epipolar line l’, and
vice-versa, potential matches for x′, lie on the epipolar line l. If the intrinsic and
extrinsic parameters of the cameras are known, the projection matrices are given by:

Pleft = Kleft [ I |0],
Pright = Kright[R|t].

(28)

The cross product of every vector by itself is zero, −→a ×−→a = 0, and any cross product

Figure 6: Epipolar geometry. O-left camera origin, O′-right camera origin, X-3D
world point, x-pixel projection of X point on left camera frame, x′-pixel projection
of X point on right camera frame. Adapted from Hartley et al. (2004).
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can be written in a matrix form

−→a ×−→b = [a]×
−→b =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


b1
b2
b3

 . (29)

Vectors Rx, t and x′ from Figure 6 are coplanar, triple dot product rule (Szabo 2015)
can be applied, which results in

x′[t× (Rx)] = 0︸ ︷︷ ︸
triple dot product

Using−−−−→
Eq (29)

x′> [t]×Rx = 0→ x′>Ex = 0, (30)

where [t]× is the translation vector written in a matrix form and E is the essential
matrix (Yang et al. 2014). In this case Ex is the epipolar line associated with x
point (l′ = Ex) and E>x′ is the epipolar line for x′. If E matrix is known, we can
extract rotation and translation between cameras from it, as presented by Horn
(1990). Usually, E matrix is computed when the cameras are calibrated (the intrinsic
parameters are known). If Kleft and Kright are unknown, we can rewrite the result
of Equation (30) in terms of unknown intrinsic parameters

x̂′>Ex̂ = 0, (31)

where x̂ and x̂′ are points on the left and right camera, written in terms of unknown
intrinsic matrices Kleft and Kright. Luong et al. (1996) presented a method of
computing rotation and translation between stereo cameras, with unknown internal
calibration where essential matrix is replaced

x̂′>Ex̂ = 0→ x′>Fx = 0, (32)

where F is the fundamental matrix and

F = K−>rightEK−1
left. (33)

Stereo data points can be collected in a similar manner as for mono camera calibration
with the constraint that the same point should be visible in both cameras at the
same time. Any patterns presented in Section 2.2 can be used to collect point
correspondences for the left and right camera. For now, let’s assume the point
correspondences are known x = (u, v, 1)> and x′ = (u′, v′, 1). Eight-point algorithm
(Hartley 1997 and Chojnacki et al. 2003) can be used to estimate the F matrix.

2.5.1 The eight-point algorithm

The eight-point algorithm (Hartley 1997) is used to estimate the values of F matrix,
given the point correspondences on the left and right camera. It describes the
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relationship between stereo images as

[
u′ v′ 1

]
︸ ︷︷ ︸

x′

f11 f12 f13
f21 f22 f23
f31 f32 f33


︸ ︷︷ ︸

F−matrix

uv
1


︸︷︷︸

x

→
[
u′u u′v u′ v′u v′v v′ u v 1

]
︸ ︷︷ ︸

A



f11
f12
f13
f21
f22
f23
f31
f32
f33


︸ ︷︷ ︸

f

= 0,

(34)
or in a compact form

Af = 0. (35)
The homogeneous linear system is solved using SVD decomposition, and the solution
is the eigenvector that corresponds to the smallest singular eigenvalue. With known
F,Kleft, and Kright matrices, we can infer E from Equation (33). According to
Luong (1993), E is decomposed in rotation R and translation t in the following
manner:

• Take UΣV> = SVD(E) where U and V are 3× 3 orthogonal matrices and Σ
is 3× 3 diagonal matrix.

• Define W matrix as:

W =

0 −1 0
1 1 0
0 0 1

 ,
where W−1 = W>.

• Define R and [t]× as:
R = UW−1V>,
[t]× = UWΣU>,

where R is rotation and [t]× is the translation vector written in a matrix form.

2.5.2 Stereo rectification and correspondence search

Point depth can be inferred from pixel correspondences between images (Zou et
al. 2010). For each pixel in the left image, we search the best matching pixel in
the right image. Both images should be aligned, such that the motion is horizontal.
By rectifying the images, we ensure that epipolar lines are horizontal and the pixel
correspondence from the left image lies on the same row in the right image. This
reduces the correspondence search space to 1D after rectification. Stereo rectification
process is illustrated in Figure 7. According to Fusiello et al. (2000) the main steps
to rectify images are:
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Figure 7: Stereo rectification, the gray planes are the original left and right image,
the yellow planes are the stereo-rectified images. Adapted from Loop et al. (1999).

1. Rotate left camera such that its image plane is parallel to the baseline.

2. Apply the same rotation to right camera.

3. Adjust the scale in both cameras.

Searching the point correspondences between images is a challenging problem. The
standard correlation-based methods compute the common regions for all pixels in
the left and right image (Hall 1999). Figure 8 presents the block matching technique
and disparity computation (Georgoulas et al. 2008). For each block from the left
image, we search the correspondence on the epipolar line, in the right image. The
blocks are matched using the sum of squared differences (SSD) cost function

SSD(d) =
M∑

x,y∈Wm

[IL(x, y)− IR(x+ d, y)]2 = ||WL −WR(d)||2, (36)

where IL and IR are left and right image, WL and WR are the left and right windows,
M is the number of windows and d is pixel disparity. As shown in the bottom of the
Figure 8, the matched block from the right image correspond to the lowest SSD cost

d∗ = arg min
d
||WL −WR(d)||2. (37)
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Figure 8: Demonstration of stereo rectification and correspondence via correlation.
a) original left and right image, b) rectified images, the blue line is the epipolar
line after the rectification process. c) blocks from left and right image, and their
matching cost d) disparity map, e) reconstructed point cloud.
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SSD cost function penalizes large errors more than small ones. The sum of absolute
difference (SAD) cost function

SAD(d) =
M∑

x,y∈Wm

|IL(x, y)− IR(x+ d, y)| (38)

equally penalizes the errors. Until now we have assumed that pixel intensity in the
left and right image is the same, however, in some cases, blocks may have different
illuminations. Normalized cross-correlation (NCC) cost function

NCC(d) =
M∑

x,y∈Wm

ÎL(x, y)̂IR(x+ d, y), (39)

overcomes this issue, it is less sensitive to changes in illumination and therefore can
result in a more accurate disparity map. The normalized pixel Î(x, y) is computed as

Î(x, y) = I(x, y)− Imean
||I− Imean||

. (40)

According to Hirschmuller et al. (2007), NCC blurs the regions of discontinuity more
than other matching cost methods. This happens due to large errors caused by
outliers in NCC cost computation. A demonstration of the block matching is shown
in Figure 8 c). We notice that disparity gets smaller with increasing depth. The
objects closer to the camera have brighter disparity regions, while further regions
are darker. The block size parameter influences the accuracy of the disparity since
it enforces the block region to have the same depth, therefore, it should be tuned
accordingly. The effect of window size is presented in Figure 9. Too big block size
has a smooth effect on the disparity map, however, there is a loss of data, since the
algorithm enforces all pixels within the same block to have the same depth. On the

Figure 9: Effect of window size on disparity computation. Small window size results
in more details and more noise. Big window size results in smooth disparity map,
but less details. Adapted from Loop et al. (1999).
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other hand, smaller block size can capture more pixels depth information, but the
resulted disparity map is noisy.

The block matching method for disparity computation has some disadvantages:
it suffers from textureless surfaces (i.e., not enough features to detect) and therefore
cannot estimate the depth for those regions. Also, occlusions and repetition might
produce ambiguities. In comparison to correlation-based, feature-based methods
search for the sparse set of correspondences, typically most similar feature pairs like
corners, edges, and lines. There are different techniques to compute the disparity,
for example Wang et al. (2019) use a convolutional neural network to predict the
disparity map. Godard et al. (2017) and Mac et al. (2019) have shown promising
results in unsupervised monocular depth estimation, however, the results are not yet
as accurate as LiDAR measurements.

2.5.3 Depth from disparity

Given stereo calibrated cameras, we can fuse them to compute depth information
by using disparity (Georgoulas et al. 2008). Disparity means a lack of similarity or
the difference, it is the difference between pixel points on the left and right camera.
From similar triangles in Figure 10 we have

x

f
= B1

z
, (41)

−x′

f
= B2

z
. (42)

By summing Equations (41) and (42) we get

x− x′

f
= B1 +B2

z
, (43)

disparity = x− x′ = Bf

z
, (44)

where f is the focal length, z is the depth, and B is the baseline. We can infer
depth from disparity using Equation (44). With depth information, each pixel is
re-projected on 3D world using

Z = Bf

x− x′
,

X = Z(x− px)
f

,

Y = Z(y − py)
f

,

(45)

where px and py is the optical center and (X, Y, Z) is a 3D point with color from the
image at pixel location (x, y). Figure 8 e) shows the reconstructed 3D point cloud
based on stereo matching disparity map. The resulted 3D point cloud is dense and
at the same time is noisy due to inaccuracies in the disparity map.
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Figure 10: The stereo camera setup for disparity computation. Knowing the focal
length and the baseline, the depth can be inferred using the difference between the
projections of X point on each camera. Adapted from Hartley et al. (2004).

2.6 LiDAR calibration
LiDAR, also known as laser scanner (Lichti et al. 2000), estimates the distance to its
surroundings by emitting laser light and measuring the time required for the light to
return to the sensor. Molebny et al. (2010) state that origins of laser scanning comes
from military research. Currently, LiDAR sensors are commonly used in autonomous
vehicles. Hecht (2018) claims that the development of autonomous cars has led to
an increase in demand for more accurate modelling of the surrounding environment,
therefore, research in this area is a hot topic. LiDARs can be classified as single-beam
(produces 2D data) or multi-beam (produces 3D data). In this thesis, we have used
a multi-beam Velodyne (2018) LiDAR, which is provided with internal calibration
parameters, but for completeness, we will describe the general steps for LiDAR
calibration. As presented in Figure 11, a LiDAR sensor provides measurements in a
polar coordinate system. The records consist of range R, azimuth angle α (which
determines the direction of the measurement if we use a single-beam sensor), and the
elevation angle ω. A point cloud can be generated by transforming the measurements
into cartesian coordinate system. The transformation is presented in the following:

X = R · cos(ω) · sin(α),
Y = R · cos(ω) · cos(α),
Z = R · sin(ω).

(46)
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Figure 11: Raw sensor data conversion to (X, Y, Z) coordinate system. Adapted
from Miądlicki et al. (2019).

The generated 3D point cloud is in the sensor coordinate frame. The radius R is
computed using

distance = R = acqusition time− shooting time
2 · speed of light. (47)

The time difference must be divided by two because the light ray travels the distance
twice. As shown in Figure 12, Velodyne LiDAR has 360◦ horizontal FOV, but the
vertical FOV and angular resolution depend on the number of LIDAR beams, for
example, Velodyne VLS-128 has +15◦ to −25◦ vertical FOV while Velodyne VLP-16
has only +15◦ to −15◦ vertical FOV (Velodyne 2018).

Similarly to the camera, LiDAR calibration parameters are divided into intrinsic
and extrinsic parameters. LiDAR extrinsic parameters (rotation R and translation t
between sensor and world frame) are defined as

Θextrinsic = (ψ, θ, γ, tx, ty, tz), (48)

were (ψ, θ, γ) are rotation parameters and (tx, ty, tz) correspond to translation. To
estimate the intrinsic parameters, each laser beam is inspected individually. For each
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Figure 12: Velodyne LiDAR field of view. Adapted from Putkiranta (2020).

LiDAR beam, we define a 6D array of internal parameters, which is composed of
internal 3D rotation and translation, then we add two extra parameters (additive
and proportional correction) for the distance metric. 8 intrinsic parameters should
be estimated for each beam, (8× 16 = 128 intrinsic parameters for Velodyne VLP-16
LiDAR and 8× 128 = 1024 for Velodyne VLS-128 ). Some of these parameters can
be discarded, for example, in Equation (46), it can be seen that the roll angle is
not used to compute the 3D point cloud. To this end, Muhammad et al. (2010)
suggest incorporating the additive and proportional correction for distance metric,
into extrinsic translation parameters, therefore, each LiDAR beam has 5 intrinsic
parameters

Θintrinsic = (δxi, δyi, δzi, αi, ωi), ∀i ∈ (0,#Beams), (49)
where (δxi, δyi, δzi) are the internal displacement parameters and (αi, ωi) are the
azimuth and elevation angles.

2.6.1 Calibration methods

Most of LiDAR sensors are provided with a factory calibration. However, the factory
calibration is not always done perfectly, it may contain noise, or disturbance may
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occur due to inaccurate transportation of the device. Lichti et al. (2000) argues that
factory calibration parameters can often be improved.

There are several methods to perform LiDAR calibration, in this section we will
briefly describe two of them.

1. Calibration based on known features - calibration targets are placed in some
known positions in the environment. The optimization minimizes the error
between the sensor estimation of the feature coordinates and their ground truth
values. Typically, plane or cylinder features are used (Chan et al. 2013), due
to the ease of detection and precise shapes.

2. Data based calibration - this approach does not require prior knowledge
about the environment, but rather searches for local planarity or some keypoints
descriptors in the point cloud. The features can be detected either automatically
or manually, after which the calibration parameters are optimized to minimize
the amount of noise in the observed features.

2.7 Camera-LiDAR extrinsics
Camera-LiDAR extrinsic calibration parameters are rotation R and translation t
between sensor frames. In this section, we show the point correspondences registration

Figure 13: Camera-LiDAR extrinsic (rotation and translation) transformation.

and the transformation estimation. In the preprocessing phase, we extract the corners
from the original point cloud and their 2D correspondences in camera space. A point
cloud template is fitted in the resulted points to get the exact pose of each corner.
Different fitting strategies may suffer from point cloud sparsity and the result can
be biased towards higher density regions in the data. To overcome this issue, we
propose to use only a carefully selected part of points (e.g., cloud margins) for fitting.

2.7.1 Convex hull

Convex hull is a method to acquire the shape around the data, it is a minimal set of
points that forms a convex polygon around the given points. An example of a convex
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hull is presented in Figure 14. Only hull vertexes (red points from the green line)
are used for template fitting. The common method of computing the convex hull

Figure 14: Example of convex hull.

around a given set of points is known as Graham’s algorithm, presented by Graham
et al. (1983). The main steps of the Graham’s method are as follows:

1. Find the point with the lowest y coordinate, if there are 2 or more such points,
take the one with the lowest x coordinate and push the point into a stack.

2. Sort the other n− 1 points by the polar angle in counterclockwise order around
the first point and push the second and third point into a stack.

3. For the remaining n− 3 points, do the following:

• Take the point at the top of the stack q, point next to top in stack p and
current point r.

• While the orientation of (p, q, r) is not counterclockwise, keep removing
points from the stack.

• Push the current point r into the stack.

The time complexity of the algorithm is O(n log n). The algorithm uses a stack
data structure and the bottleneck is sorting the points by polar angle. A simple
determinant is computed to find whether the points are oriented counterclockwise
(make a left turn) or clockwise (right turn). The orient(...) function is used to sort the
points. Figure 15 shows a visualization of orientation computed with det function.

orient(p, q, r) = det

1 px py
1 qx qy
1 rx ry

 (50)
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Figure 15: Orientation of the points computed with determinant function.

2.7.2 Iterative closest point

Iterative closest point (ICP) algorithm is a common method for point cloud fitting
(Chetverikov et al. 2002). In the standard version of ICP, two point sets (X =
x1, . . . ,xn and P = p1, . . . ,pn) are given with known point correspondences. As
shown in Figure 16, ICP estimates the transformation (rotation R and translation t)
from X to P that minimizes the sum of squared error

E(R, t) = 1
N

N∑
i=1
||xi −Rpi − t||2, (51)

where xi and pi are point correspondences and N is the total number of points. If
the point correspondences are known, we can compute the solution in a closed form.

Figure 16: Iterative closest point (ICP) method, with known point correspondences.
Adapted from Thrun et al. (2005).
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We compute the mean of each data set

µx = 1
N

N∑
i=1

xi, µp = 1
N

N∑
i=1

pi, (52)

and center the data sets by

X′ = X− µx, P′ = P− µp. (53)

The covariance matrix is defined as

W = 1
N

N∑
i=1

x′ip′>i , (54)

with x′i and p′i points from the centered data sets. Taking SVD(W) = UΣV>,
leads to R = UV> and t = µx −Rµp.

The key assumption of ICP method is that point clouds have the same size and
point correspondences are known. As Besl et al. (1992) stated, if the point correspon-
dences are unknown, it is generally impossible to find the optimal transformation
between the data in one step. Data association with unknown point correspondences
and data sparsity is the main problem of ICP. Different variants of ICP were proposed
to handle the above specified problems:

1. Point subsets - the use of different sampling strategies (uniform, random,
feature based) to select points from one or both point sets.

2. Data association - for each point in the first set, search for the closest point
in the second set.

3. Reject outlier points - as described by Guo et al. 2011, select points from
both point sets using RANSAC method.

2.7.3 Least squares pose estimation

The point correspondences are either 3D-2D (camera pixels and LiDAR) or 3D-
3D (stereo camera and LiDAR). Usually, LiDAR is kept as a world frame and
transformation is estimated relative to it. DLT algorithm, presented Section 2.4.1,
can be used to estimate the transformation. However, DLT aims to estimate the
whole projection matrix, which contains the internal camera calibration matrix K
and extrinsic parameters, 11 DOF (5 for K matrix and 6 for camera pose). The
intrinsic camera matrix K is already known, which can be leveraged to estimate the
remaining unknown extrinsic parameters.

Pose estimation can be defined as a least square problem. Let y = f(X)x where
f is a function that returns the transformed point X and x is a vector of unknown
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pose parameters with

x =



θx
θy
θz
tx
ty
tz


y =


[x1, y1, z1]

...
[xN , yN , zN ]

 , (55)

where (θx, θy, θz) is the orientation and (tx, ty, tz) correspond to position, N is the
number of data points. The cost function can be defined as follows:

x∗ = arg min
x

N∑
i=0
||f(Xi)x − ŷi||2, (56)

where ŷ is a vector of observed/ground truth points.

2.7.4 Perspective-n-Point

Perspective-n-Point (PnP) algorithm is another method to compute the camera pose
(Lepetit et al. 2009). The standard version of the algorithm uses three points, known
as P3P problem, presented by Gao et al. (2003). The result of this method can
sometimes be inaccurate since it uses only three point correspondences. Moreover,
the provided solutions are not unique, therefore, extra points are required. The
camera projection matrix is defined as

P = K[R RC] = [KR| −KRC] = KR[I| −C], (57)

where K is the intrinsic camera calibration matrix, R corresponds to camera rotation,
C is the center of the camera in world coordinate frame, and I is the identity matrix
in 3D. A homogeneous 3D point can be projected into 2D space via

λ

[
x
1

]
= P

[
X
1

]
. (58)

Left hand side and right hand side of Equation (58) are equal, which means that
their cross product is zero. Using the fact that the cross product of any vector and
itself is zero and the cross product in a matrix form described in Equation (29), we
can rewrite Equation (58) as

[
x
1

]
×P

[
X
1

]
= 0 From−−−−→

Eq (29)

[
x
1

]
×

P
[
X
1

]
= 0⇒

uv
1


×

P1
P2
P3

 [X1
]

= 0

⇒

 0 −1 v
1 0 −u
−v u 0


︸ ︷︷ ︸

3×3

X> 01×4 01×4
01×4 X> 01×4
01×4 01×4 X>


︸ ︷︷ ︸

3×12

P1
>

P2
>

P3
>


︸ ︷︷ ︸

12×1

=

0
0
0


︸︷︷︸
3×1

,

(59)
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where
[
u v 1

]>
is the image point, 01×4 is a 1 × 4 block of zeros and Pi is the

row i from projection matrix P. There are 12 unknown parameters and every point
correspondences introduces two constraints. The minimum of six points are required
to solve the equation. For given six points, Equation (59) can be expressed as 18×12
matrix A



0 0 0 0 −X1 −Y1 −Z1 −1 X1v1 Y1v1 Z1v1 v1
X1 Y1 Z1 1 0 0 0 0 −X1u1 −Y1u1 −Z1u1 −u1
−X1v1 −Y1v1 −Z1v1 −v1 X1u1 Y1u1 Z1u1 1 0 0 0 0

... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ... ...
0 0 0 0 −Xn −Yn −Zn −1 Xnvn Ynvn Znvn vn
Xn Yn Zn 1 0 0 0 0 −Xnun −Ynun −Znun −un
−Xnvn −Ynvn −Znvn −vn Xnun Ynun Znun 1 0 0 0 0



.

︸ ︷︷ ︸
A:18×12

P1
>

P2
>

P3
>


︸ ︷︷ ︸

12×1

=



0
0
0
...
...
...
0
0
0


︸︷︷︸
18×1

.

Using SVD(A) = UΣV>, the last column of V> gives the solution for the unknowns[
P>1 P>2 P>3

]>
. The P matrix is further decomposed into R and t

P = K[R|t] Multiply with−−−−−−−−−→
K−1

K−1︸ ︷︷ ︸
3×3

P︸︷︷︸
3×4

= [R|t]︸ ︷︷ ︸
3×4

⇒ R = K−1P1:3, (60)

where P1:3 are the first three columns of the projection matrix P and R is the
rotation matrix, which should be orthonormal. To enforce orthonormality, we again
take the SVD(R) = UΣV> and the new rotation matrix is R+ = UV>. Similarly
for translation, t = K−1P4

δ1
, where P4 is the last column of the projection matrix and

δ1 is the first eigenvalue of the SVD(R). This is one method to solve PnP problem,
but also another techniques do exist. Lepetit et al. (2009) presents efficient version
of PnP which returns an unique solution with at least four point correspondences.
Usually, more point correspondences are used to reduce the impact of noisy data.
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3 Research material and methods
In this section, we present the hardware and software system that was used in this
work, as well as data collection and processing techniques.

3.1 Research platform
All experiments were performed on a research platform built on top of the Ford
Mondeo vehicle presented in Figure 17. The research platform is called Autonomous
Research Vehicle Observatory (ARVO) and it is equipped with five LiDAR sensors.
The main LiDAR Velodyne VLS-128 is located in the center of the roof and four
Velodyne VLP-16 LiDARs are installed in each corner of the vehicle’s roof. Details on
LiDAR sensors are provided in LiDAR Velodyne (2018) datasheet. Two monochrome

Figure 17: Autonomous-capable Ford Mondeo Hybrid research platform.

and three RGB cameras are installed inside the vehicle, the installation is presented
in Figure 18. A thermal camera is installed on the left side of the vehicle’s roof. The
sensors measurements are processed by an Intel i7 2.9 GHz processor from a mobile
workstation with 64 GB of memory embedded in the vehicle. All software systems
run under the Ubuntu 16.04 and Robot Operating System (Quigley et al. 2009).

In this thesis, two monochrome cameras (IDS GmbH 2021) and the Velodyne
VLS-128 LiDAR were used. The selected monochrome camera sensors provide images
with 1936 × 1216 pixel resolution and up to 166 FPS. As shown in Figure 19, a
large baseline between cameras reduces the depth uncertainty, therefore, the distance
between the monochrome cameras is set to 96 cm. All experiments were performed
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with monochrome cameras, but the provided solution can also be used with RGB
and thermal cameras.

Figure 18: RGB and Monochrome cameras installed inside the vehicle.

Figure 19: Effect of small vs. large baseline. A larger baseline minimizes the depth
uncertainties (red ball). Adapted from Yousif et al. (2015).

3.2 Mono and stereo camera data collection
Point correspondences between 3D environment and their 2D pixel location are
collected with two calibration targets, a ChArUco (Gwon et al. 2018) and a chessboard
presented in Figure 21. Using a chessboard, it is complicated to collect data points
from the very edges of the images and it is preferable to have those data points,
because they constrain the camera lens distortion properly. In OpenCV module, the
entire chessboard must be visible in the camera FOV, ChArUco board was used to
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Figure 20: Camera sensors for mono (left) and stereo (right) case installed outside
the vehicle, used to collect data that is not affected by the windshield.

overcome this disadvantage. The benefit of using ChArUco markers is that each cell
is uniquely identified and can provide enough information to obtain the camera pose.
As can be seen in the top side of Figure 22, the ChArUco board allows us to collect
data points from the very edges of the image. We used two monochrome cameras of
the same type, however, we treated them individually, therefore, two separate data
sets were collected. For the calibration targets used in this thesis, the square size of
the chessboard is 10 cm, while the marker of the ChArUco is 6 cm, therefore, the
chessboard can be detected further away from the camera. To increase the diversity
of the recorded data set, data points collected with chessboard and ChArUco targets
are combined. The more point correspondences from different configurations, the
better. To estimate the windshield effect on camera calibration, we collected images
while the cameras were installed inside and outside the car, the setup is presented in
Figures 18 and 20. Similarly, we collected the data sets for stereo calibration.

Figure 21: On the left ChArUco 8× 11 board with marker size 6 cm. On the right
7× 10 chessboard with square size of 10 cm.
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Figure 22: Top: point correspondences with ChArUco calibration board for both
cameras, Bottom: point correspondences with standard chessboard.

In the initial setup, the camera is static and the calibration board is placed in
different locations and orientations, to accumulate as many variations as possible.
For simplicity, we can assume that the calibration board is static inXY plane and that
the camera moves around it, bringing Z-axis always to zero. In this case for X and Y
coordinates of the 3D points we defined values: (0, 0), . . . , (i, j), . . . , (Ncols−1, Nrows−1),
where (Ncols, Nrows) are the number of corners per columns and rows of the calibration
board. The data points are in scale of the calibration board square size (10 cm for
the chessboard and 6 cm for the ChArUco board). 3D points are multiplied with
square size, to convert them to a scale of 1 cm. OpenCV was used to detect and
extract the 2D corners from the image. Table 1 shows details on camera calibration
data set. Each image recorded with the chessboard pattern provides 70 points (7×10
corners), while the number of points recorded with ChArUco is variable, since the
whole board might not be visible in the image. The number of images collected
with the ChArUco board is higher than the number of images collected with the
chessboard, so that in the end we could obtain approximately equal number of point
correspondences.
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Table 1: The number of images recorded for mono and stereo calibration, for each cam-
era inside and outside the car. Data collection was performed with both calibration
boards.

Mono dataset
Chessboard ChArUco

Cams Inside Outside Inside Outside
Left camera 48 61 106 99
Right camera 39 62 113 101

Stereo dataset
Chessboard ChArUco

Inside 30 70
Outside 45 71

3.3 Camera-LiDAR synchronisation
Camera and LiDAR have their own internal clock. Cameras are set to send messages
at a frequency of 20Hz, while LiDAR is set to publish massages at a rate of 10Hz.

Synchronisation is required to associate measurements from different sensors.
Software-based sensor synchronization package provided by ROS filters messages
by a given time threshold. But the time threshold may vary, so, hardware-based
synchronisation is a better solution. In this thesis, an external clock was used to
synchronise sensors messages. A Pulse Per Second (PPS) signal is sent by GNSS
receiver and its value is recorded by the cameras together with the triggered images.
To associate camera and LiDAR messages, all the messages in a two second interval
are collected in a buffer. Every LiDAR point has the time information when it was
recorded. Therefore, we extracted the time series by taking a modulo operation of
each LiDAR point time and time interval between 2 PPS signals. For camera time
series, we divided the 2 seconds interval between the number of messages. For each
LiDAR point, only the closest camera message was used. This method downscales the
camera’s rate to match the LiDARs rate. Figure 23 shows the time series alignment
between the LiDAR and camera messages.

3.4 Camera-LiDAR data collection
As stated by Luo et al. (2002), there are three levels of information fusion that can
be grouped as low-level (i.e., raw data), mid-level (i.e., features), and high-level (i.e.,
object-based fusion). In this thesis, mid-level data is used to estimate the extrinsic
transformation between sensor frames. This subsection presents the techniques that
were applied to collect and extract the feature point correspondences from camera
and LiDAR data.

Besides the standard chessboard, we used a custom calibration target presented
on the right side of the Figure 24. This target has four printed ArUco (Ferrão
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Figure 23: Camera-LiDAR synchronisation. Top: GNSS pulse, Bottom: LiDAR and
Camera time series. PPS pulse is 1 every 2 seconds, in this interval ≈ 40 camera
messages and ≈ 19 LiDAR messages are collected and later synchronized. The
synchronization is initiated when the PPS pulse is 1, after which the buffer is cleared.

et al. 2018) markers, to be easily detected on the camera. In the LiDAR frame, it
can be detected as a plane and a circle inside it. The dimension of the board is 1×1
meter and the circle diameter is 33 cm. Each pair of messages provide camera image
points and LiDAR point cloud correspondences. Figure 24 shows an example of the
camera and LiDAR point cloud data of the same view. The point correspondences
in camera space are chessboard corners and plane corners with circle center, for the
second board. The same 3D point correspondences are detected in the original point
cloud. RANSAC method was used to extract the plane points from the original point
cloud.

3.4.1 RANSAC plane fitting

RANSAC stands for random sampling and consensus (Yaniv 2010). It is an iterative
method used to fit a model into a data that contains outliers. We used RANSAC to
fit a plane in a 3D point cloud.
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Figure 24: Camera-LiDAR view with 2 calibration boards. The colour of the point
cloud is based on point intensity.

According to Gallo et al. (2011) the main steps of the algorithm are:

1. Randomly select a minimal subset of points to fit a model. For a 3D plane,
we need at least 3 points. The following equation shows the plane model in
cartesian form:

ax+ by + cz + d = 0, (61)
where (x, y, z) is a 3D point and (a, b, c, d) are plane parameters.

2. Fit the model into randomly selected points. Given plane equation and 3 points
we can estimate the parameters (a, b, c, d) using:

a = [(y2 − y1)(z3 − z1)− (z2 − z1)(y3 − y2)],
b = [(z2 − z1)(x3 − x1)− (x2 − x1)(z3 − z2)],
c = [(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x2)],
d = −(ax+ by + cz).

(62)
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3. For all n− 3 points, compute their deviation from the estimated plane using:

disti = axi + byi + czi + d√
a2 + b2 + c2

(63)

where n is the total number of points and disti is the deviation for point i

4. If the estimated disti is within a given threshold, save the point as an inlier,
otherwise save it as outlier.

5. Save the (a, b, c, d) parameters with the max number of inliers.

6. Repeat the steps 1-5 M times, where M is max number of iterations.

Figure 25: Camera-LiDAR filtered point cloud with RANSAC and camera calibration
targets.
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The result of RANSAC plane fitting is presented in Figure 25. All points that do
not lie on the calibration target are treated as outliers. As we can see from Figures
24 and 25, the point cloud has sparse regions, due to LiDAR beam structure. We
fit a board model into resulted plane to extract the corners. Data sparsity causes
problems in model fitting because the solution is biased towards higher data density.
To overcome this issue, margins of the boards were extracted and fitted with the
convex hull algorithm, presented in Section 2.7.1. The board’s margins are composed
of the first and the last point from each LiDAR ring that lie on the target. Therefore,
to extract the borders, the points were grouped by their ring information. Similarly,
the points that correspond to the inside circle margin, were extracted. Given a
distance threshold, we checked if the distance between two consecutive points from
the same ring is bigger than the threshold, then the point belongs to the inside circle.
Given a set of points that belong to a circle, we use least squares method to estimate
the circle parameters.

Figure 26: Point correspondences extraction from LiDAR point cloud. Top-
chessboard plane, Bottom-custom calibration plane. 1) Filter point cloud with
RANSAC and apply convex hull on margin points, 2) Fit a template into the filtered
plane, 3) Extract corners from the point cloud.
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3.4.2 Least squares circle fitting

As shown in Figure 26, compared to the chessboard, the custom designed board
provides only four points (the corners). To improve the model fitting accuracy, we
decided to fit a circle in the center of the board which will result in an extra feature.
The equation of circle is

(x− x0)2 + (y − y0)2 = r2, (64)
where (x0, y0) is the center of the circle, r is the radius and (x, y) is a point that
belongs to the circle. Using (a− b)2 = a2 − 2ab+ b2, Equation (64) becomes:

x2 − 2xx0 + x2
0 + y2 − 2yy0 + y2

0 = r2 →
2xx0 + 2yy0 + r2 − x2

0 − y2
0 = x2 + y2.

(65)

The above equation can be re-written in a matrix form:

[
x y 1

]  2x0
2y0

r2 − x2
0 − y2

0

 =
[
x2 + y2

]
→
[
x y 1

] p1
p2
p3


︸ ︷︷ ︸

unknowns

=
[
x2 + y2

]
. (66)

For multiple observations Equation (66) becomes:

[
xi yi 1

] p1
p2
p3

 =
[
x2
i + y2

i

]
. (67)

If we have N data points, we can stack the Equation (67):
x1 y1 1
x2 y2 1

...
xN yN 1


︸ ︷︷ ︸

A

p1
p2
p3


︸ ︷︷ ︸

p

=


x2

1 + y2
1

x2
2 + y2

2
...

x2
N + y2

N


︸ ︷︷ ︸

b

. (68)

The system becomes:
Ap = b, (69)

which can be solved by minimizing ||Ap− b||2, therefore, using pseudo inverse
p = (A>A)−1A>b. (70)

ICP method presented in Section 2.7.2, was used to fit the cloud template into plane
points. Figure 26 shows the steps and results of point correspondences extraction
from the point cloud plane. Two types of point correspondences were extracted:
2D-3D that correspond to the mono camera and LiDAR frames, and 3D-3D that
correspond to stereo cameras (3D reconstructed boards) and LiDAR. We computed
stereo 3D points using depth from disparity technique, presented in Section 2.5.3.
Table 2 provide the information about the collected data set for camera and LiDAR
point correspondences. Every camera-LiDAR view recorded with chessboard provides
70 point correspondences, while the custom target provides only 5 points (4 corners
and circle center).
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Table 2: The number of images and point clouds correspondences recorded for
camera-LiDAR calibration. The data set was recorded with two calibration targets
(chessboard and custom board). Each chessboard view provids 70 points. Each
custom board view provides 5 points.

Camera-LiDAR dataset
Chessboard Custom-board

Images 18 23
Data points 1260 115

3.5 Data analysis and processing
3.5.1 Mono and stereo camera

The pixel size of the mono IDS GmbH 2021 is 5.86 µm and the pixels are square,
this means that the focal length in pixels in x and y direction should be the same.
As described in Section 2.4.2, we calibrate mono cameras using modified DLT
algorithm with 3D-2D point correspondences. Each camera is separately calibrated

Figure 27: Camera-LiDAR transformation. LiDAR points are converted to camera
frame using camera-LiDAR extrinsic parameters, and then points are projected on
the image using camera intrinsic parameters. Adapted from Scaramuzza et al. (2011).
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with chessboard and ChArUco data sets to check if different calibration target brings
any improvements. Similarly for the windshield effect, cameras are calibrated inside
and outside the car, with the chessboard, ChArUco and combined (chessboard +
ChArUco) point correspondences. A similar process was performed for stereo camera
calibration. StereoCalibrate function available in OpenCV, was used to compute
rotation R and translation t between the cameras. Calibration was realized with all
distortion models: rational (RAT), thin prism (THP), tilted (TIL), and complete
(CMP), described in Section 2.3.

3.5.2 Camera-LiDAR transformation

Figure 28: Camera-LiDAR extrinsic calibration steps. Feature detection is applied
to the original data set. Calibration can be done either with 2D-3D or 3D-3D point
correspondences.

Camera-LiDAR extrinsic parameters are used to rotate and translate the points
from LiDAR frame to camera frame. The calibration process is presented in Figure
28. PnP algorithm, described in Section 2.7.4, was used to find the transformation
between the 2D-3D point correspondences. We kept the LiDAR frame as the origin
and estimated the transformation relative to it. In the 3D-3D approach, we estimated
the transformation between the LiDAR and stereo cameras using ICP and least
squares technique presented in Section 2.7.3. One disadvantage of this technique
is that calibration based on 3D-3D point correspondences takes an extra step to
reconstruct the 3D camera-based point cloud before calibration.

We computed the transformation between the LiDAR and each camera individu-
ally, therefore, we can validate stereo camera extrinsic calibration parameters. As
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Figure 29: Stereo camera and LiDAR frames transformations.

shown in Figure 29, T0 can be inferred in terms of T1 and T2.

T0 = T−1
1 T2 (71)

3.5.3 Occlusion handling

Camera-LiDAR occlusion issue appears because of different sensor locations. The
same scene is viewed from a different angle. As shown in Figure 30, some blue points
are occluded in camera view, and for this reason, the blue 3D point will be coloured
in red. To overcome this issue Schneider et al. (2010) propose to perform 3D point
cloud clustering, sort the cluster based on their depth and group the projected points
by their cluster. This method treats the points as groups and enforces the points
from the same group to have the same depth. We propose a different approach to

Figure 30: LiDAR and camera have different locations, therefore, both sensors have
different view. Some of the blue points are visible by LiDAR, but not visible by
camera, these points are occluded. The colour of the occluded blue point will be red
since the camera cannot see the actual colour of the point.
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handle the occlusion problem. Based on Figure 30, some occluded blue points may be
projected in the same pixel locations as red points or nearby red pixels. Therefore, to
remove occlusion, we filter the data in image space. The following algorithm assumes
the extrinsic calibration between the camera and LiDAR to be done. Our idea is to
treat each point as a rectangle and set the points that lie inside that rectangle as
occluded if they have different depth. The pseudocode is presented in Algorithm 1.
The outcome of the method are further discussed in the results Chapter 4.

Algorithm 1 Occlusion removal
1: Define box size bx, by, depth threshold t and neighbours k
2: Project the point cloud in the image space
3: for point ∈ point cloud do
4: compute k nearest neighbours for point in 2D pixels space
5: end for
6: Sort the projected point cloud by depth
7: for point ∈ projected point cloud do
8: Create a box centered in point and assign it to current point
9: end for

10: for point ∈ projected point cloud do
11: Check if point falls inside any rectangle of its neighbours
12: Compute depth difference between point and its neighbours
13: if point lies inside neighbour rectangle and depth difference is greater than t

then
14: Set point as occluded
15: end if
16: end for
17: Return the points that aren’t occluded
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4 Results
This chapter presents the results and answers to the research questions.

4.1 Mono and stereo camera calibration
Mono and stereo camera calibration results are compared based on the root mean
squared error (RMS), the number of data points, and the aspect ratio of the focal
length in pixels in x and y directions. A small RMS error is a required outcome, but
not enough. For example, calibration based on fewer data points may result in a
smaller re-projection error, which means that camera model will be good for those
few data points. However, if we have a large enough data set, a small RMS error is
interpreted as a good result. The RMS error is computed as follows

RMS =
√∑N

i=1 ||xi − x̂i||2
N

, (72)

where N is the number of data points, xi is the observed pixel point and x̂i is
projected pixel, using projection matrix from Equation (8).

4.1.1 Calibration with different calibration boards

We calibrated the cameras using two calibration boards (ChArUco and chessboard).
Table 3 presents left camera calibration outside the car with both calibration targets.
The results with both boards are similar, with small differences of 2-3 pixels for
intrinsic parameters and 0.06 pixels for re-projection error. We concluded that there
is no significant performance of one target over another. However, the advantage
of the ChArUco board is the easiness to collect data points from the very edges of
the frames, since it does not require to be fully visible in the camera FOV. The
final intrinsic parameters are estimated based on the combined points collected with
chessboard and ChArUco.

Table 3: Left camera calibration outside the car with ChArUco-99 images (7543
points) and Chessboard-61 images (4270 points). Values are in pixels.

params ChArUco Chessboard
1 fx 1368.3 1364.3
2 fy 1368.1 1365.0
3 px 966.1 968.2
4 py 603.7 605.0
5 RMS 0.21 0.15
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Table 4: Outside right camera calibration based on 11927 point correspondences,
with all available distortion models. Values are in pixels.

params ST RAT THP TIL RAT+THP THP+TIL RAT+TIL CMP
1 fx 1367.5 1367.2 1367.5 1367.5 1367.3 1367.5 1367.3 1367.3
2 fy 1367.4 1367.2 1367.5 1367.5 1367.3 1367.5 1367.3 1367.3
3 px 953.0 953.0 954.3 954.3 954.3 960.8 947.9 960.8
4 py 610.5 610.5 616.1 616.1 616.18 615.7 613.3 615.7
5 sk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 RMS 0.172 0.171 0.171 0.171 0.171 0.171 0.171 0.171

Table 5: Outside left camera calibration based on 11813 point correspondences, with
all available distortion models Values are in pixels.

params ST RAT THP TIL RAT+THP THP+TIL RAT+TIL CMP
1 fx 1367.3 1367.0 1367.4 1367.4 1367.1 1367.3 1367.0 1367.0
2 fy 1367.4 1367.1 1367.5 1367.5 1367.2 1367.5 1367.2 1367.2
3 px 966.2 966.2 975.5 975.5 976.7 965.5 967.5 965.6
4 py 604.2 604.3 610.1 610.1 611.7 607.3 607.2 607.3
5 sk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 RMS 0.200 0.199 0.200 0.200 0.199 0.200 0.199 0.199

4.1.2 Windshield effect on camera calibration

As mentioned earlier, we refer to inside and outside for the calibration done while
the cameras are installed inside or outside the car. To estimate the windshield effect,
we calibrated both cameras inside and outside the car. The outside calibration is
not affected by the windshield, for this reason, these results will be used as a basis
for comparison. The left camera is used as a world frame, and the right camera
is transformed relative to it. Tables 4 and 5 show the outside calibration for both
cameras. Calibration was performed with all distortion models. For all cases, we
got the same focal length, fx ≈ fy ≈ 1367.5 pixels. The use of several distortion
models for outside calibration does not bring any significant improvement. Inside
calibration for left and right camera are presented in Tables 6 and 7. We noticed
that focal lengths fx and fy are no longer the same. The windshield introduces
noise that increases the focal length mostly in y-direction and shifts the principal
point, down on x and y axis. Also, the re-projection error is higher. On the contrary
with outside calibration, we noticed that different distortion models can handle the
windshield noise. For example, the best inside calibration is achieved with complete
(CMP) distortion model, which gives the smallest re-projection error (0.31 for the
right camera and 0.33 for the left camera) and focal length parameters that are closer
to values estimated outside the car. For a full mono camera calibration parameter
set, see Appendix 7. Table 8 shows stereo calibration results. We got similar results
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Table 6: Inside right camera calibration based on 11668 point correspondences, with
all available distortion models. Values are in pixels.

params ST RAT THP TIL RAT+THP THP+TIL RAT+TIL CMP
1 fx 1367.57 1367.7 1374.12 1374.12 1373.9 1368.8 1372.1 1369.1
2 fy 1373.76 1373.9 1382.3 1382.3 1382.2 1375.8 1387.13 1376.0
3 px 955.7 955.6 863.2 863.2 863.6 990.1 711.5 988.8
4 py 601.9 601.9 502.0 502.0 501.5 691.8 653.4 691.3
5 sk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 RMS 0.520 0.519 0.347 0.347 0.347 0.318 0.378 0.317

Table 7: Inside left camera calibration based on 11596 point correspondences, with
all available distortion models. Values are in pixels.

params ST RAT THP TIL RAT+THP THP+TIL RAT+TIL CMP
1 fx 1372.0 1371.52 1373.73 1373.73 1373.1 1366.8 1369.4 1366.5
2 fy 1377.9 1377.5 1379.7 1379.7 1379.3 1370.1 1375.5 1369.7
3 px 966.3 966.1 1059.3 1059.3 1057.0 970.8 1033.1 965.5
4 py 589.1 589.0 524.3 524.3 522.8 599.6 632.6 602.0
5 sk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 RMS 0.430 0.427 0.364 0.364 0.362 0.339 0.408 0.337

as in the mono calibration case, bigger RMS error inside the vehicle. However, the
rotation R and translation t between the left and right camera, are almost the same
inside and outside. We concluded that the windshield affects both cameras in the
same way, therefore, the transformation between the cameras remains the same.

4.2 Camera-LiDAR extrinsic calibration
The extrinsic calibration based on 3D LiDAR and 2D pixel point correspondences
was performed with PnP method, described in Section 2.7.4. Table 9 shows the
extrinsic parameter between the LiDAR and the left camera, and Table 10 shows
the transformation between the LiDAR and the right camera. Results obtained
with both targets are approximately the same. For the final estimation, points
collected with chessboard and with custom-board were merged. Figure 31 shows the
projection from LiDAR to image frame. The extrinsic parameters estimated with
3D-3D point correspondences, are presented in Table 11. Camera-based 3D points
were estimated in the left camera frame, therefore, the transformation is between
the LiDAR and left camera. The achieved 3D-3D transformation is less accurate
than the 3D-2D estimation. Figure 32 shows a comparison between 3D-3D and
3D-2D extrinsic parameters projecting the point cloud on the image. We visually
evaluate the transformation and see that 3D-2D based transformation point cloud
results in a better projection on the image. We concluded that the best approach
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Table 8: Stereo calibration results inside (top) and outside (bottom) the car, with
all available distortion models. Calibration is based on 11250 point correspondences.

params ST RAT THP TIL RAT+THP THP+TIL RAT+TIL CMP
1 Inside - - - - - - - -
2 Tx(m) -0.96 -0.97 -0.98 -0.98 -0.98 -0.98 -0.98 -0.98
3 Ty(m) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 Tz(m) 0.20 0.188 0.11 0.11 0.11 0.12 0.12 0.12
5 Rx° 0.68 0.68 8.23 8.23 8.89 4.67 4.66 4.64
6 Ry° 22.66 21.67 21.00 21.00 21.33 20.25 20.25 20.27
7 Rz° -1.05 -1.01 0.12 0.12 0.20 0.04 0.04 0.03
8 RMS(px) 0.42 0.31 0.21 0.21 0.20 0.19 0.19 0.19
9 Outside - - - - - - - -
10 Tx(m) -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96 -0.96
11 Ty(m) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 Tz(m) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
13 Rx° 0.87 0.88 0.90 0.90 0.96 0.99 1.01 1.04
14 Ry° 22.65 22.65 22.66 22.66 22.67 22.68 22.69 22.69
15 Rz° -0.83 -0.83 -0.82 -0.82 -0.80 -0.79 -0.79 -0.78
16 RMS(px) 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14

Table 9: Camera-LiDAR extrinsic parameters between LiDAR-left camera estimated
with both calibration boards for 3D-2D case.

Rx
◦ Ry

◦ Rz
◦ tx(m) ty(m) tz(m)

Chessboard 90.8 -8.8 0.7 0.64 -0.5 -0.65
Custom-board 90.4 -8.5 0.72 0.66 -0.46 -0.66
Merged data points 90.6 -8.5 0.71 0.66 -0.48 -0.66

for camera-LiDAR extrinsic is to use 3D-2D point correspondences because the
3D-3D approach has an extra step (3D board reconstruction) that might introduce
noise into the calibration. The extrinsic parameters estimated with 2D-3D point
correspondences were used to project the whole LiDAR point cloud in the image

Table 10: Camera-LiDAR extrinsic parameters between LiDAR-right camera esti-
mated with both calibration boards for 3D-2D case.

Rx
◦ Ry

◦ Rz
◦ tx(m) ty(m) tz(m)

Chessboard 92.0 14.1 -0.4 -0.65 -0.48 -0.64
Custom-board 91.7 14.14 -0.37 -0.66 -0.46 -0.63
Merged data points 91.8 14.15 -0.37 -0.66 -0.47 -0.64
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Figure 31: LiDAR points projected on camera space, based on 3D-2D point corre-
spondences.

Figure 32: LiDAR to camera projection comparison: left-(3D-3D), right-(3D-2D).

frame. Figure 33 shows the LiDAR and the camera frames on the car, estimated
based on 3D-2D point correspondences.
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Figure 33: Stereo camera and LiDAR frames extrinsic estimated based on 3D-2D
point correspondences. LiDAR is used as the world frame.

Table 11: Camera-LiDAR extrinsic parameters estimated with 3D-3D point corre-
spondences. The transformation is between LiDAR and left camera.

Rx
◦ Ry

◦ Rz
◦ tx(m) ty(m) tz(m)

90.73 -5.41 0.35 0.37 -0.47 -0.56

4.3 3D scene reconstruction
In this subsection, we show how the same environment scene is perceived by each
sensor. Figure 35 shows the same scene viewed by cameras and LiDAR. Figure 34
shows a comparison between LiDAR-based and camera-based 3D scene reconstruction.
Using correlation-based matching, described in Section 2.5.2, we computed the 3D
reconstruction of the scene, based on disparity map. The quality of the 3D point
cloud is directly bonded to the disparity map. The used block matching technique
for disparity computation requires a block size parameter. Smaller block size results
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Figure 34: Camera-based and LiDAR-based 3D scene reconstruction. Top - original
image, disparity map, camera 3D point cloud based on disparity map. Bottom -
LiDAR point cloud projected on camera frame, original point cloud, 3D point scene
reconstruction based on camera-LiDAR fusion.

Figure 35: The same scene viewed by cameras (top) and LiDAR (bottom).
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in a more detailed scene, however, it introduces noise due to ambiguity (the same
block size may have multiple matches) and textureless regions in the scene. A bigger
block size may not detect small objects in the scene. In this example, block size of 15
pixel was used. Using camera-LiDAR extrinsic parameters, the LiDAR point cloud
was projected on the image frame. Each LiDAR point gets the colour from its pixel
projection. The colour of the projected points on the image space is based on point
depth. Figure 36 shows the camera-LiDAR fusion.

Figure 36: Camera-LiDAR fusion before occlusion removal. Top-point cloud projected
on the image frame, the colour of the projected points is based on their depth. Bottom-
point cloud fused with image colour.

4.4 Occlusion removal
On the camera frame in Figure 36, we noticed that points that lie on the calibration
board do not have the same colour. This is because of sensors occlusion issue
described in Section 3.5.3. As we have seen in Figure 33, cameras and LiDAR have
different locations, due to this, some LiDAR points cannot be seen by the camera.
The occluded points get a wrong colour on the camera-LiDAR projection. We notice
this shadow effect on the 3D point cloud, which causes ambiguity. Algorithm 1,
presented in Section 3.5.3 was applied to filter occluded points. The number of
nearest neighbours and box size parameters must be tuned accordingly, otherwise
the Algorithm 1, may suffer from point cloud sparsity. In this thesis we used five
nearest neighbours for each point and treat each point as a box of 20 × 20 pixels.
The filtered result is presented in Figure 37.
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Figure 37: Camera-LiDAR fusion after occlusion removal algorithm. Top - LiDAR
points projected on left and right camera. Bottom - LiDAR points fused with camera
colour information.
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5 Discussion
In this thesis, a camera-LiDAR calibration is performed utilizing mid-level sensor
data (i.e., camera and LiDAR feature point correspondences). The windshield effect
is tackled by performing mono and stereo camera calibration with cameras installed
inside and outside the vehicle. Data sets are collected with several calibration targets,
to check how the calibration board influences the results. The extrinsic calibration
is based on two types of data point correspondences (2D-3D and 3D-3D). The
camera-based and camera-LiDAR-based 3D reconstruction is presented. Usually,
ambiguities in sensor fusion is caused by occlusion, therefore, an occlusion handling
algorithm is proposed and implemented to filter the ambiguously fused points. In
the end, the sensors are calibrated, synchronised, and fused. This thesis presents the
following results:

• Calibration parameters estimated based on data sets collected with different
calibration targets, are almost the same. We concluded that no calibration
board is superior to the other. It is a matter of feature detection technique,
however, some calibration targets (e.g., ChArUco) allow the user to easier
collect data sets.

• It has been shown that there is a windshield effect on mono camera calibration,
which affects the intrinsic parameters, however, it does not affect the transfor-
mation between stereo cameras. It increases the focal length, mostly in the
y-direction and shifts the principal point down on the xy-axis. The windshield
effect also increases the camera calibration re-projection error. We suspect that
the extrinsic parameters remain unchanged on inside and outside calibration
due to the fact that both cameras are affected by the windshield in a similar
manner.

• The use of different distortion models does not bring any significant improvement
on camera calibration, however, when cameras are affected by windshield, the
complete distortion model can deal with the introduced noise, even if not
completely, it can decrease the windshield effect. We suspect that the windshield
works as an extra lens for camera calibration that introduces nonlinear noise
and changes the light rays’ direction. We have seen that the complete distortion
model does not completely remove the windshield effect, and we should probably
add a light refraction parameter to the distortion polynomial equation. Another
idea would be to have ground truth point correspondences with and without
a windshield on the vehicle. This would mean that we have to unmount and
mount the windshield on the vehicle, keeping the camera and calibration target
positions fixed. With ground truth point correspondences, the windshield effect
can be handled as an extra parameter in the distortion polynomial equation.

• All sensors have their internal clock, which might drift even if they have the
same frequency, therefore, sensor synchronisation is an essential and required
step to ensure a precise data transmission. It is preferable to perform hardware-
based sensor synchronisation because it is the safest and most stable method,
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however, when hardware-based synchronisation is not possible, a temporary
solution can be achieved via software-based synchronisation.

• The LiDAR point cloud may have a patchy density, which might cause problems
in model fitting. We overcome this issue by using the point cloud margins
obtained with convex hull algorithm. Another idea to overcome point cloud
sparsity when fitting a model will be to estimate point cloud feature descriptors
and use them for fitting.

• It has been shown that the most suitable method for extrinsic calibration is to
utilize 3D LiDAR and 2D camera pixel point correspondences. Transformation
based on 3D-3D point correspondences tends to be less accurate and also
introduces an extra computational step (camera-based 3D point reconstruction)
in the calibration pipeline.

• We have shown that camera 3D reconstruction based on correlation feature
matching is dense but noisy while LiDAR point cloud is accurate but sparse
(the density is dependent on the number of LiDAR beams). The noise in
camera-based 3D reconstruction is mostly caused by inaccurate disparity map.
To the authors’ knowledge, none of the existing camera-based disparity estima-
tion methods is as accurate as LiDAR measurements. However, in applications,
where depth is not a crucial feature, camera-based methods might offer accept-
able solutions.

• The occlusion problem is crucial in object and obstacle detection for autonomous
driving. A pedestrian detected by LiDAR may not be detected by the camera
and vice-versa. At this point, occlusion handling can improve sensor fusion
setup. In this work, we showed how the occlusion introduces ambiguities in
camera-LiDAR fusion, therefore, an occlusion filtering algorithm was proposed
to filter the occluded points in camera space. Furthermore, we leverage the
stereo camera setup to reconstruct the occluded information between the
cameras (i.e., the occluded points on the left camera are reconstructed from
the right camera and vice-versa).

• It has been shown that camera disparity-based depth is not accurate enough,
while LiDAR does not provide texture information, therefore, camera-LiDAR
fusion provides accurate depth and texture information to the system by
combining the best of both worlds.
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6 Conclusion
Sensor fusion is the ability to gather data and balance the strengths of multiple
sensors that result in a more accurate perception model of the environment. 3D range
scanners combined with stereo camera vision currently tend to be the most utilized
perception system for autonomous vehicles. A camera-LiDAR fusion presumes
accurate sensors synchronisation and calibration which benefit autonomous driving
safety and robustness. In this thesis, stereo cameras and a LiDAR sensor from a
research vehicle platform are fused.

This thesis presents camera-LiDAR calibration techniques and in addition, it
shows a comparison between the existing methods and finds the most suitable
one. Furthermore, it shows that the windshield affects the camera calibration and
demonstrates that its effect can be minimized. Sometimes the quality of data points
is more important than the actual estimation algorithms, therefore, we focused on
accurate as possible data collection. The acquired results are based on data sets
collected with multiple calibration targets and validated with different estimation
algorithms. The calibration parameters quality is visually demonstrated by perfectly
aligning point clouds.

Two monochrome cameras and Velodyne VLS-128 LiDAR have been used for
data collection and experiments. We collected two separate camera data sets to
inspect the effect of the windshield on camera calibration. One data set was recorded
while the cameras were installed inside the vehicle and the other cameras were
installed outside. The data set that was recorded outside the car is not affected
by the windshield, therefore, the estimated results from it are used as a basis for
comparison. A chessboard and a ChArUco target were used to record camera data.
The calibration was performed with all available distortion models and it has been
shown that the complete distortion model decreases the windshield effect. Data
sets for camera-LiDAR extrinsic calibration were also collected with two calibration
targets: a chessboard and a custom board. The original LiDAR point cloud was
filtered with the RANSAC plane fitting method. Convex hull algorithm was applied
to avoid the data sparsity problem and extract the calibration target shape. A
target template model was fitted on the filtered point cloud, to extract the features.
Extrinsic calibration was performed using 3D-2D (LiDAR and camera pixels) and
3D-3D (LiDAR and 3D stereo camera) point correspondences and different estimation
algorithms. PnP method was used for 3D-2D points and ICP with least squares were
used for 3D-3D point correspondences. It has been shown that using 3D-2D point
correspondences is the most suitable method to estimate the extrinsic parameters
since the 3D-3D method has an extra computational step and the result may be
affected by camera-based 3D reconstruction inaccuracies. Besides the calibration,
sensor synchronisation was performed using GNSS clock. Synchronisation is an
important phase that ensures that sensors provide measurements of the same scene
at the same time. The occlusion problem was encountered in camera-LiDAR fusion,
which causes ambiguities in data fusion. Therefore, an occlusion removal algorithm
was developed and applied to filter out the ambiguities in camera-LiDAR fusion.

Cameras and LiDARs can handle most self-driving perception tasks, such as
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localisation, mapping, and obstacle detection, however, none of the sensors alone
provides long-term accuracy and safety. The importance of camera-LiDAR fusion
is obvious, it improves the robustness and accuracy of the perception system by
combining precise depth and texture with colour information. Cameras and LiDARs
have complementary strengths and weaknesses, however, their fusion show improve-
ments in performance by combining the best of both worlds. Obstacle detection plays
an extremely important role in self-driving since it is directly related to the safety
and security of passengers and other traffic participants. Typically, the obstacle
detection module suffers from occlusion problem. This thesis offers solutions for
stereo camera-LiDAR occlusion handling which filters out the ambiguously fused
points and reconstruct the missing information by leveraging stereo setup. The
provided stereo camera-LiDAR fusion module can further be used in Visual-LiDAR
SLAM problems, and the solution can also be easily extended to any camera and
laser systems.

The autonomous research vehicle is embedded with five LiDARs, two monochrome,
one thermal and three RGB cameras, therefore, in future work, all cameras and
LiDARs should be synchronised and calibrated with the current solution. The
development will be continued by fusing camera-LiDAR in an actual driving scenario.
Also, in future work, we propose to improve the occlusion removal algorithm, (e.g.,
estimate the box size for each point separately, and select the number of neighbours
automatically), propose a better model to deal with the windshield effect on camera
calibration and include an IMU in the calibration pipeline.
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7 Appendix
In this section, we present the full results for camera calibration, intrinsic matrix
and distortion patameters for all available distortion models.

Table 12: Full intrinsic Inside left camera calibration based on 11596 points corre-
spondences. Values are in pixels.

params ST RAT THP TIL RAT+THP THP+TIL RAT+TIL CMP
1 fx 1372.01 1371.56 1373.73 1373.73 1373.10 1366.83 1369.43 1366.59
2 fy 1377.99 1377.56 1379.77 1379.77 1379.32 1370.16 1375.54 1369.78
3 px 966.343 966.10 1059.35 1059.35 1057.06 970.89 1033.16 965.53
4 py 589.17 589.04 524.34 524.34 522.86 599.64 632.67 602.0
5 sk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 k1 -0.144 -0.27 -0.13 -0.13 1.394 -0.137 -0.168 -0.205
7 k2 0.10 0.66 0.09 0.09 0.344 0.08 0.461 5.17
8 p1 -0.00 -0.00 -0.02 -0.02 -0.021 -0.038 -0.006 -0.038
9 p2 0.00 0.001 0.024 0.024 0.023 -0.02 -0.0 -0.022
10 k3 -0.008 0.110 -0.02 -0.02 0.003 0.006 0.008 0.008
11 k4 — -2.65 0.0 0.0 1.52 0.0 -1.52 -1.92
12 k5 — 6.12 0.0 0.0 3.59 0.0 4.21 4.80
13 k6 — 12.58 0.0 0.0 3.84 0.0 9.84 9.468
14 s1 — 0.0 -0.03 -0.03 -0.03 0.02 0.0 0.02
15 s2 — 0.0 0.006 0.006 0.006 0.0008 0.0 0.0
16 s3 — 0.0 0.02 0.02 0.02 0.03 0.0 0.03
17 s4 — 0.0 -0.0 -0.0 -0.0 0.0 0.0 0.0
18 tx — 0.0 — — — 0.07 0.03 0.079
19 ty — 0.0 — — — -0.045 -0.04 -0.04
20 Error 0.43 0.42 0.36 0.36 0.36 0.33 0.40 0.33
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Table 13: Full Outside left camera calibration based on 11813 points correspon-
dences. Values are in pixels.

params ST RAT THP TIL RAT+THP THP+TIL RAT+TIL CMP
1 fx 1367.32 1367.0 1367.45 1367.45 1367.12 1367.35 1367.05 1367.04
2 fy 1367.47 1367.159 1367.58 1367.58 1367.25 1367.54 1367.20 1367.22
3 px 966.22 966.23 975.53 975.53 976.74 965.57 967.59 965.6
4 py 604.29 604.318 610.13 610.13 611.73 607.35 607.28 607.39
5 sk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 k1 -0.14 -0.39 -0.142 -0.142 -0.174 -0.142 -0.33 -0.398
7 k2 0.094 0.21 0.096 0.096 0.186 0.09 0.181 0.20
8 p1 -0.0 -0.0 0.0 0.0 0.0 -0.0 -0.0 -0.0
9 p2 -6.59e-05 -6.57e-05 0.0 0.0 0. -0. -0. -0.
10 k3 -0. -0.0025 -0.01 -0.01 -0.0271 -0.00 -0.002 -0.025
11 k4 — -0.26 0.0 0.0 -0.03 0.0 -0.20 -0.26
12 k5 — 0.149 0.0 0.0 0.1 0.0 0.12 0.13
13 k6 — -2.7 0.0 0.0 -2.92 0.0 -2.8 -2.75
14 s1 — 0.0 -0. -0. -0. 0 0.0 0.0
15 s2 — 0.0 0.0 0.0 0.0 0.03 0.0 0.0
16 s3 — 0.0 -0. -0. -0.0 -0.0 0.0 -0.0
17 s4 — 0.0 0.0 0.0 0.0 0.0 0.0 0.0
18 tx — 0.0 — — — 0.0 0.0 0.0
19 ty — 0.0 — — — -0.0 -0.0 -0.0
20 Error 0.20 0.19 0.20 0.20 0.19 0.20 0.19 0.19

Table 14: Full Inside right camera calibration based on 11668 points correspon-
dences. Values are in pixels.

params ST RAT THP TIL RAT+THP THP+TIL RAT+TIL CMP
1 fx 1367.58 1367.76 1374.1 1374.1 1373.9 1368.81 1372.14 1369.16
2 fy 1373.75 1373.93 1382.30 1382.30 1382.22 1375.82 1387.12 1376.04
3 px 955.74 955.68 863.28 863.28 863.68 990.16 711.57 988.88
4 py 601.97 601.942 502.07 502.07 501.57 691.87 653.47 691.36
5 sk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 k1 -0.149 -3.54 -0.13 -0.13 0.52 -0.14 -0.19 -0.58
7 k2 0.11 5.00 0.0 0.0 0.87 0.12 6.455 2.5
8 p1 -0.0 -0.0 -0.02 -0.02 -0.02 0.048 -0.005 0.04
9 p2 0.0 0.0 -0.02 -0.02 -0.0 -0.01 0.018 -0.01
10 k3 -0.03 10.63 -0.027 -0.027 0.29 -0.051 2.003 7.82
11 k4 — -3.3901 0.0 0.0 0.6 0.0 -0.0 -0.43
12 k5 — 4.30 0.0 0.0 0.8 0.0 6.4 2.24
13 k6 — 12.11 0.0 0.0 0.3 0.0 2.8 8.69
14 s1 — 0.0 0.03 0.03 0.03 0.01 0.0 0.01
15 s2 — 0.0 -0. -0. -0.0 0. 0.0 0.0
16 s3 — 0.0 0.0 0.0 0.0 -0.055 0.0 -0.05
17 s4 — 0.0 -0.005 -0.005 -0.005 0.004 0.0 0.004
18 tx — 0.0 — — — -0.06 0.032 -0.06
19 ty — 0.0 — — — -0.06 0.169 -0.060
20 Error 0.52 0.51 0.34 0.34 0.34 0.31 0.37 0.31
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Table 15: Full Outside right camera calibration based on 11927 points correspon-
dences. Values are in pixels.

params ST RAT THP TIL RAT+THP THP+TIL RAT+TIL CMP
1 fx 1367.51 1367.27 1367.58 1367.58 1367.35 1367.5 1367.34 1367.33
2 fy 1367.49 1367.24 1367.5 1367.5 1367.32 1367.56 1367.3 1367.37
3 px 953.09 953.061 954.315 954.315 954.309 960.84 947.92 960.80
4 py 610.596 610.587 616.17 616.17 616.14 615.79 613.34 615.77
5 sk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 k1 -0.14 0.017 -0.145 -0.145 0.03 -0.144 -0.02 0.03
7 k2 0.104 0.6 0.104 0.104 0.54 0.10 0.39 0.5
8 p1 -0. -0. 0. 0. 0. -0. -0. -0.
9 p2 0. 0.0 0. 0. 0. 0. 0. 0.
10 k3 -0.014 -1.05 -0.014 -0.014 -1.28 -0.011 -1.60 -0.97
11 k4 — 0.157 0.0 0.0 0.172 0.0 0.11 0.172
12 k5 — 0.636 0.0 0.0 0.5 0.0 0.35 0.505
13 k6 — -1.11 0.0 0.0 -1.3 0.0 -1.72 -1.03
14 s1 — 0.0 -0.0 -0.0 -0.0 -0.0 0.0 -0.
15 s2 — 0.0 0. 0. 0. 0. 0.0 0.
16 s3 — 0.0 -0. -0. -0 -0. 0.0 -0.
17 s4 — 0.0 0. 0. 0. 0. 0.0 0.
18 tx — 0.0 — — — 0. 0. 0.
19 ty — 0.0 — — — 0.0 0. 0.
20 Error 0.172 0.171 0.171 0.171 0.171 0.171 0.17 0.17
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