
Master’s Programme in ICT Innovation

Target Detection, Indoor Scene Classification, Visual and
Three-Dimensional Mapping for Service Robots in
Healthcare.

Aalto University School of Electrical Engineering

Ambikeya Pradhan

(Major : Autonomous Systems)

Master’s Thesis
2021

Copyright ©2021 Ambikeya Pradhan

Author Ambikeya Pradhan

Title of thesis Target Detection, Indoor Scene Classification, Visual and

Three-Dimensional Mapping for Service Robots in Healthcare

Programme Master’s Programme in ICT Innovation

Major Autonomous Systems

Thesis supervisor Prof. Daniele Fontanelli

Thesis advisor(s) Prof. Quan Zhou

Collaborative partner Thomas Hoglund, CEO, Done Enterprises Ab Oy

Date 22.05.2021 Number of pages 32 + 15 Language English

Abstract
This thesis details work on different techniques used to implement service robots

for indoor environments. This included two machine learning techniques: Target

Detection and Indoor scene classification as well as two computer vision

techniques: Visual mapping and three dimensional mapping. Using these

techniques, we tried to make service robots better in environments like hospitals.

Assistance provided by service robots will help staff in managing tedious tasks

without any problem. We used different techniques for mapping and localization

so service robots can autonomously navigate from floor to floor. Depth cameras

were used to make recognition and mapping better for indoor environments.

Keywords Localization, mapping, SLAM, ORB-SLAM visual odometry, object

recognition, scene recognition, Visual mapping, 3D mapping

2

Contents

1 Introduction 6

1.1 Robotic systems in Healthcare 7

1.2 Use of Service Robots 10

1.3 Different Features of Service Robots 11

1.4 Organization of this work 12

2 Literature review 14

2.1 Target Detection 14

2.2 Indoor Scene Classification 16

2.2.1 Conventional scene recognition framework 17

2.3 Visual Mapping and Localization (Visual-SLAM) 18

2.4 Three-dimensional mapping and localization (3D-SLAM) 19

3 Research material and methods 21

3.1 Deep-learning based approach to Object Detection 21

3.1.1 Basic Structure 21

3.1.2 Model Architecture Overview 22

3.2 Proposed Indoor Scene Recognition Method 30

3.2.1 Low-Level Feature Extraction 30

3.2.2 Mid-Level Features Building 31

3.2.3 ISR based on deep learning and sparse representation 33

3.3 Visual-SLAM Method 33

3.3.1 Installation of ORB-SLAM 33

3.3.2 Calibration of camera 33

3.3.3 Reproduction of results on KITTI and TUM datasets 34

3.3.4 Production of 2D Grid Map using ORB-SLAM map points 34

3.3.5 Map visualization and robot navigation on Rviz 35

3.3.6 Evaluation and comparison of results with already available methods 36

3.3.7 Novel Components 38

3.4 Materials and Methods for 3D-SLAM 41

3.4.1 Indoor Mobile robot for 3D SLAM 41

3

3.4.2 Windows software display and LiDAR configuration 43

3.4.3 Communication Protocol 43

3.4.4 Time Synchronization 44

3.4.5 LiDAR data calculations of Angles and Coordinates 45

3.4.6 Point cloud data time calculation 47

3.4.7 Implementation in software interface 49

3.4.8 Implementation in simulation 50

4 Results and Discussion 52

4.1 Target Detection 52

4.2 Indoor Scene Classification 52

4.2.1 Evaluation of different parameters 53

4.2.2 Evaluation on different methods for feature extraction 54

4.2.3 Evaluation on different classifiers 55

4.3 Visual SLAM 56

4.4 3D-SLAM 58

5 Conclusions 59

A. References 60

4

Preface
A very special thanks to Prof. Daniele Fontanelli and Thomas Höglund for their

collaboration and helping me with this thesis, without their expertise this project would

not have gone this smoothly! And a big gratitude to all the people who have always been

there when we were in desperate need of humble support. Also thanks to the people

working in similar research work, offering their expertise in all areas and providing us with

service robots . And a special gratitude to everyone in the Aalto University staff that helped

me out during my thesis!

Vaasa, 22 May 2021

Ambikeya Pradhan

5

1. Introduction

In recent years, technology has transformed everything around us. From the 1980s, first

robots have emerged in the field of medicine and healthcare. They have offered surgical

assistance via robotic arm technologies. Since then, Artificial Intelligence, Robotics, Data

analysis and machine learning has changed the field of healthcare. Artificial intelligence

(AI) - enabled machine vision based technologies have expanded the capabilities of human

beings in many areas of medicine.[2]

Robots are used in operating rooms, as well as they are used in clinical settings by

healthcare workers. These technological advancements have provided Doctors to look

beyond the impossible, which they were not capable of doing with limited machinery and

under-developed technology. During COVID-19, hospitals and clinics have realised that by

deploying a much wider range of robots to accomplish tasks, they can limit the spreading

of pathogens amongst their own staff. Since then, all the quarantine zones in hospitals or

clinics are supervised by limiting the healthcare personnels in there. Patients are

monitored through machines and in some places through automated robots. Robots are

also being used to sanitize, clean and prepare patient rooms or quarantine zones in

hospitals and clinics. They are also helping to limit the person-to-person contacts in

admission wards. AI-enabled medicine identifier software is also used by some robots to

identify, match, sort and distribute medicines to the patients admitted in the hospitals. [4]

For monitoring patients’ vital statistics and alerting the nurses when human presence is

needed in the room. This allows the nurses to monitor several patients in critical health at

the same time. These monitoring robots can also enter the information into a patient's

electronic health record which is stored in the centralised database. These data analytics

features support in the hospital management. In some countries, robotic carts or carriers

can be seen in the hospitals while moving supplies from one place to another. Robots are

assisting surgeries that allow doctors to conduct surgeries with very high precision.

Initially, robots were focused in laboratories to take samples and analyze, transport and

store them for future purpose. Then, perform respective tests on those samples and

electronic data is stored in their databases for doctors to review. Robots also test, prepare

and dispense medications in pharmacological labs.

In larger facilities, robot carriers or carts are used to carry bed linens, meals and other

supplies from floor to floor, while going through elevators and automatic doors. Robotic

assistants with “gears and wires” help paraplegics to move and they can administer

physical therapies. These robotic personal assistants are built to look friendly and respond

to human speech. Nowadays, these robot assistants are used for child care also. Some

robotic assistants are even built to look like humanoids and used to help with personal

care, socialization and for training. [1]

The robots deployed in healthcare settings are likely to rise because of their increasing

technological capabilities, their reduced costs and increasing pressure to curb costs.

However, robots are potentially highly disruptive innovations, and it is therefore important

to the sociotechnical challenges likely to be encountered as robots are deployed to find the

mitigating strategies. Sociotechnical approaches to study the implementation of

technology view social and technical factors as shaping each other over time. It is assumed

6

that technologies are shaped by their social environments (example, through designs being

modified) but also that social environments are shaped by technological features.

Developments currently taking place have begun to replace individual aspects of human

performance with robotic capabilities including precision (eg, surgical robots), logistic and

mechanical tasks (eg, service robots) and complex cognitive tasks (eg, rehabilitation

robots) Some of their different features respective to the tasks performed are shown in the

table below-

Table 1 - Use of Healthcare Robotics

Type of Device Autonomous Semi-Autonom

ous

Operational Healthcare

delivery, patient-

and staff-facing

Service Robots (eg,

Stock control,

cleaning, delivery,

sterilization)

✔ ✔ ✔ ✔

Surgical Robots ✔ ✔

Telepresence Robots ✔ ✔

Companion Robots ✔ ✔

Cognitive Therapy

Robots

✔ ✔

Robotic limbs and

exoskeletons

✔ ✔

1.1. Robotic Systems in Healthcare

Several robotic systems are already deployed in healthcare settings to enable a high level of

patient care, efficient operability in clinical settings and a safe environment for both

patients and healthcare workers. Medical robots support minimally invasive procedures,

customized and frequent monitoring of patients with chronic diseases or in critical

condition, intelligent therapeutics and social engagement with elderly patients. In

addition, robots alleviate workloads, nurses and other caregivers can offer patients

empathy and human interaction, which can promote long-term well-being. [3]

a) Service Robots

Service robots streamline monotonous routine tasks, reduce physical demand of

human workers, and support throughout the day with multiple shifts. Maintenance

cost is low once they are installed and trained to operate within the premises.

Service robots can also take work for admission wards for queries, booking

appointments and feedback. Service robots are mostly deployed as carriers or

robotic carts for transporting meals, other supplies, equipment and medicines from

7

floor to floor, through elevators and automatic doors.They can also transport bed

linens and other clothes to and from laundry facilities. They can also operate as

telepresence robots in quarantine areas in hospitals or clinics, either for collecting

data from patients or daily communication between nurses and patients for regular

checkup. Many of these robots function autonomously and can send a report when

they complete a task. These robots are also used to set up patient rooms, track

supplies and file purchase orders, and restock medical supply cabinets. By

efficiently handling routine tasks by service robots gives healthcare workers more

time to focus on immediate patient needs. [4]

Figure 1: Use of service robots in elderly care homes

Service robots can also be converted into cleaning and disinfection robots which can

operate in the same corridors and common areas through which their map is

defined. These cleaning and disinfection robots allow hospitals to be sanitized and

readied for incoming patients quickly. Cleaning and disinfection robots can limit

pathogen exposure while helping reduce hospital acquired infections (HAIs).

b) Surgical-assistance Robots

These robots help surgeons perform complex micro-procedures without making

large incisions. Over time, as motion control technology has advanced, these

surgical assistance robots have become more precise. The surgical assistance robots

are still evolving, eventually AI-enabled robots have started using computer vision

to navigate through specific areas in the body while avoiding nerves and other

obstacles. Some surgical robots are even able to complete the surgery

autonomously, allowing doctors and surgeons to oversee procedures through the

console.

The surgical assistance robotic field is evolving to make better use of Artificial

intelligence. Surgical robots enabled with computer vision help them to differentiate

between different types of issues in their field of view. For example, now they have

the ability to help surgeons avoid nerves and muscles during procedures. High

definition 3D computer vision can provide surgeons with detailed information and

enhanced performance during procedures. Eventually, robots will be able to take

over small subprocedures, such as suturing or other defined tasks under the

observation of the surgeon.

8

Figure 2: Surgical Robots assisting during surgery

c) Modular robots

Modular robots can be used to enhance other systems and configure to perform

multiple functions. In healthcare, modular robots are included in therapeutic

exoskeleton robots and prosthetic robotic arms and legs.

Most of the therapeutic robots can help patients with rehabilitation after strokes,

multiple sclerosis, traumatic brain surgeries or paralysis. These robots are equipped

with artificial intelligence and depth cameras. On their human-interaction module,

there can be some kind of input/output device for example touch screen, monitor,

different sensors like thermal imaging camera and gesture sensors. Modules

enabled with a processing system can use computer vision to detect, classify and

store data for learning or improving data segmentation. Modular robots can also be

self-powered and charged once a day for all day use. Batteries powering the

human-interaction module and processing unit module can also power the mobility

module on the bottom, so that the robots can move around on their own.

The therapeutic modular robots can monitor patients’ forms as they go through

prescribed exercises. They can measure degrees of motion in different positions and

track progress which is more precise than the human eye. They can also share

improvements after analyzing data with the patient and keep a record which doctors

and nurses can go through after the therapeutic period. Their interaction with the

patients help them to provide coaching as well as encouragement.

d) Social Robots

Social robots are designed to directly interact with humans. These “friendly looking”

are mostly designed to be used in long-term care environments. In these

environments, their practical function is for socially interacting and monitoring.

Their practical functions can change depending upon the care environment in which

they are used, for example elderly care homes, children’s wards, waiting areas etc.

They can encourage patients to comply with their treatment regimens, provide

analyzed data of their progress and promote daily activities to work with during

post-treatment therapy. They can provide patients with cognitive engagement and

9

keep them to stay alert and positive. Service robots can be converted into social

interaction robots that can be used to offer visitors and patients direction inside the

hospital environment.

During COVID-19, social robots were used as telepresence robots and were

promoted by many doctors and surgeons. Telepresence robots helped doctors and

their patients to interact through video conferences. This avoided person-to-person

contact and saved time for both doctors and patients. Regular check ups and

appointments were chosen through this telemedicine method. Healthcare workers

could also contact patients in quarantine areas through telepresence robots to avoid

multiple visits for routine check ups.

In general, social robots help healthcare workers by reducing their workload and

improving their patients’ well-being.

e) Mobile Robots

Mobile robots can be used inside any premise of the hospital or clinic. They are

operated using a cable wire following or predefined tracks. They are being used for a

wide range of purposes - either moving heavy machinery, helping to transport

patients, or sanitizing/disinfecting rooms. Mobile robots used as cleaning or

disinfection robots can use air filtration, hydrogen peroxide vapors, or ultraviolet

(UV) light to sanitize reachable places in a uniform way and help reduce infection.

f) Autonomous Robots

Autonomous robots have built-in light detection and ranging (LiDAR) systems,

visual computing with thermal imaging cameras or depth cameras, and mapping

capabilities which the robots can use to self-navigate to patients in hospital or exam

rooms. This allows doctors and other healthcare workers to interact with patients

from afar. These robots are controlled by remote specialists or other healthcare

workers (who are trained on the system), so they can also accompany doctors as

they make hospital rounds and do their daily routine checkups with the patients.

The remote specialist can also contribute to the checkups with on-screen

consultation regarding patient diagnostics and care. These robots can keep track of

their own batteries and make their way back to the charging station when necessary.

Some autonomous robots can also perform cleaning and disinfecting, while

navigating through the operating rooms, laboratories, infectious disease wards and

public hospital spaces. For example, a startup Akara has developed an autonomous

robot prototype which is being tested for disinfecting contaminated surfaces in

hospitals and clinics using UV light. Its goal is to help hospitals sanitize rooms and

equipment, aiding in the fight against COVID-19.

1.2. Use of Service Robots

Shortages of doctors is a global phenomena. The World Health Organisation (WHO) has

estimated that there is a worldwide shortage of physicians, nurses, and other healthcare

workers which range up to 4.3 million. We will never be able to train as many doctors and

other healthcare workers as we need. Service Robots with telemedical devices would be

10

able to merge this gap. They will certainly appear more and more in hospitals and clinics,

while it is going to be a common element to see around.

Service robots aim to offer also as a robot companion. They offer solutions in order to

enable elderly and other people and other people without the necessary social support to

connect with the world. There are various types of robot companions - human or animal

shaped, smaller or bigger, but they all share one thing: their goal is to make life more

enjoyable and easier.

They also offer patients in remote areas or people who are not able to travel have access to

high-quality emergency consultations for stroke, cardiovascular, and burn services exactly

when they need it. Moreover with telehealth, medical professionals in rural towns and

remote areas also have access to specialty services, while patients can be treated in their

own communities.

In healthcare, doctors and nurses are using service robots as telepresence robots to extend

their reach to monitor and consult with patients in the hospital, skilled nursing facility and

in the home. Family members are also using telepresence robots to visit loved ones when

they can’t be there in person.

Service robots used as carriers, robotic carts or autonomous mobile delivery robots which

are able to carry around a multitude of racks, carts or bins in the form of medications,

laboratory specimens or other sensitive materials. These carriers can be sent or requested

using a touch screen interface and upon completing its “mission”, it returns to the charging

dock while it is loaded for the next job.

Service robots are also used as a robotic medical dispenser system, with a built-in

dispensing capacity range, which helps any given facility (suitable to the system) for its

volume. It is also designed with robust data mining capabilities, so the pharmacy can gain

valuable insights about its efficiency all the time.

1.3. Different features of Service Robots

Service robots are being used for daily purposes ranging from security guard service robots

to tour guides. They are used in malls as an order payment method. These service robots

have most of the technical features in common. All the features can be upgraded remotely

and hardware can be replaced during the time of their maintenance period. Some of these

are-

● Autonomous driving (Virtual fence)- Robots can recognise the driving environment,

detect obstacles and avoid driving.

● RMS remote monitoring and control- Provision of robot control platform (RMS) for

multi control and service-scenario scheduling.

11

● Guidance service for guiding and exhibits- It is possible to provide directions and

exhibit information services to escort users to specific destinations within the

facility.

● Emergency alert notification- Emergency alert notification in the event of the

emergency such as leakage or fire hazard.

● Data analysis using robot- Statistical analysis of usage data of robot users based on

the cloud service platform (Paas).

● Customer-specific guided content- Continuous content update is possible through

the application of RUX (operational location and customer-specific content)

development. Various information such as location and usage of various facilities

can be provided.

● Security Surveillance IP camera (CCTV)- Real time control to the central control

room of surveillance cameras.

● Video call service- Emergency call and video call service in the case of emergency.

● HRI-based face avatar- They provide HRI-based face avatars with various emotion

expressions, and if necessary, character avatars can be developed and applied

according to customer needs.

● Natural Face Movement- Increased intimacy and attention to the robot by

expressing the delicate movement of the neck joint of the robot head.

● Customized Exterior design- Customizable exterior design.

● Robot Management System (RMS)- It is possible to provide an RMS system that can

remotely monitor and control the robot operation status from anywhere.

● Screen display- Equipped with a touch display that enhances the visibility of guided

content.

● Removable replacement battery- The battery can be detached at any time to replace

the spare battery, allowing continuous operation time to be extended.

● Thermal imaging camera- Support for installing thermal imaging cameras to

prevent the spread of infectious diseases in multiple uses facilities.

● Unmanned payment (experience based service)- Provides unmanned payment

linkage service that increases the value of customers' purchasing experience.

Individual robot platforms can be configured for a wide range of applications: a mobile

information center in museums, DIY stores and airports, for collection and delivery

services in homes and offices, for security applications or as museum robots at attractions.

1.4. Organization of this work

This paper is organised as follows. Chapter 2, 3, 4 and 5 define the Literature review,

Research materials created and Methods performed to solve various problems (Target

Detection, Indoor Scene Classification, Visual Mapping and Localization and

three-dimensional mapping and localization) for our service robot. In Chapter 2, we

reviewed all the related literature for our case problems. Target Detection includes all the

techniques that have been used for object recognition. We performed indoor scene

12

classification using the method of Faster R-CNN. We tested visual mapping and

localization or Visual-SLAM based on the concept of ORB-SLAM and used the generated

maps for autonomous navigation. We have described three-dimensional mapping or

3D-SLAM using 3D LiDAR and using the SLAM algorithm.In Chapter 3, we conducted the

experiments for all our case problems. In Chapter 4, we have described all the obtained

results and thoroughly discussed each one of them. In Chapter 5, we concluded our whole

work.

13

2. Literature review

2.1. Target Detection

Object Detection is a computer vision technique that is used to identify and locate an

object or a group of objects within an image or image frames of a video. Object detection

draws a bounding box around the detected objects and signifies them separately as the

class of the given object. This allows us to locate where said objects are in (or how are they

moving through)in the given scene.

Object Detection can be split into machine-learning based approaches and

deep-learning based approaches. In the ML-based approach, the computer vision uses

different features of an image, for example color histogram, edges, group of pixels that

belong to the object. These features are fed to the regression model which predicts the

location of the object and its label in the image. Deep learning based approaches use

convolutional neural networks (CNNs) for performing end-to-end, unsupervised object

detection. This object detection doesn’t require features to be defined and extracted

separately.

Object Detection is indistinguishably connected to other computer vision techniques like

image recognition and image segmentation. It helps in analyzing and understanding

scenes in images and videos. There are some important differences amongst them. Image

recognition is used to only give output a class label for an identified object and image

classification is used for creating pixel-level understanding of the scene’s elements. Object

Detection is different from both of these tasks and it has the unique ability to locate objects

in images and videos. This allows us to track and detect those objects in the consecutive

images or image frames of a video.

Image Classification predicts the class of one object in the image. Object localization

identifies the location of one or more objects in an image and draws a bounding box

around them. Object detection combines these two tasks, localizes and classifies one or

more objects in an image frame. We can differentiate among these three computer vision

tasks as follows-

● Image Classification: It predicts the class or type of an object in an image.

○ Input: Image with a single object

○ Output: A class label (example, mapped integers to class labels)

● Object Localization: It locates the presence of an object in an image and indicates

them with a bounding box.

○ Input: Image with one or more objects

○ Output: One or more bounding boxes (example, defined by point, width or

height)

● Object Detection: It locates the presence of objects with bounding boxes and classes

or types of the located objects in the image.

○ Input: Image with one or more objects

○ Output: One or more bounding boxes (example, defined by point width or

height) and a class or type label for the bounding boxes.

Another extension of these computer vision tasks is object segmentation, also known as

semantic segmentation or object instance segmentation, where recognized objects’

instances are highlighted objects instead of creating bounding boxes around them. From

14

figure 3, object detection can be displayed as a part of this suit of challenging computer

vision tasks.

Figure 3: Overview of Object Detection Computer Vision Tasks

There is another method of Single-Object Localization, which is a simpler version of the

more properly defined “Object Localization”. It constraints the localization tasks to objects

of one type or class within an image. Single-Object Localization is an algorithm that

produces a list of categories of objects that are present in the image. These lists are

available along with an axis-aligned bounding box which indicates the position and scale of

one instance from each object category.

Below in figure 4, is an example from a paper which compares single object

localization and object detection. The difference in ground truth expectations in each case

can be seen.

Figure 4: Comparison between Single Object Localization and Object Detection

Using mean classification error across the predicted class labels, the performance of a

model for image classification is evaluated. The distance between the expected and

15

predicted bounding box for the expected class is used for evaluating the performance of a

model for single object localization. Whereas, the precision and recall across each of the

best matching bounding boxes for the known objects in the image are used for evaluating

the performance of a model for object detection. Now that we are familiar with object

detection and localization, let’s start with how object detection works.

2.2. Indoor Scene Classification

Indoor scene classification or Automatic scene classification (sometimes also known as

scene recognition or scene analysis) is a well established research problem tool of

computer vision. It comprises assigning labels such as ‘bedroom’, ‘kitchen’ or simply

‘indoor or outdoor’ to the images given as input, on the basis of images’ overall contents.

[15]

In this work, we will focus only on indoor images, since our application is based on

the service robot which is used only for indoor scene environments. Hence, all the

experiments and their results will be performed on a public MIT-67 dataset. The dataset

consists of 67 indoor categories which is a total of 15620 indoor images. The number of

images are varying with different categories and every category has at least 100 images.

Some of the examples of images from different categories are shown in Figure 5 below.

Figure 5: Examples of indoor scene images from different categories of public MIT-67 dataset

Indoor scene images are also more difficult to predict class than for outdoor scenes. The

indoor scenes have various characteristics including all content complex attributes makes

it tough for any deep learning-based model to keep everything in account. The processing

for training on indoor scene datasets is heavy and time-consuming in comparison to

outdoor scene datasets. The outdoor scene recognition methods use different supervised

classification techniques for scene analysis in different environments. Several feature

detectors and local descriptors used for supervised classification are like: Scale Invariant

Feature Transform (SIFT), Histogram of Oriented Gradients (HOG), Bag of Visual Words

(BoVW), Spatial Pyramid Matching (SPM), Speeded Up Robust Features (SURF), Features

from Accelerated Segment Test (FAST), Binary Robust Independent Elementary Features

(BRIEF), Oriented FAST and Rotated BRIEF (ORB), Maximally Stable Extremal Regions

(MSER) and Binary Robust Invariant Scalable Keypoints (BRISK).

These above mentioned methods are easily able to achieve good performance in the tasks

that require outdoor scene recognition. But their accuracy drops sharply when they are

applied to indoor scene images. Outdoor scene images always have similar scene attributes

and their differences in image scenes are easy to detect. On the other hand, indoor scenes

are more complex. Most of the time, they suffer with partial occlusion as well as different

16

scales and change in illumination[21]. Hence, indoor scene images show characteristics of

both smaller-sized inter-class variety and larger-sized inter-class variety.

Recently, hierarchical representations based scene recognition techniques have shown to

be more efficient to extract low-level features from indoor scene images[18-20]. The

important step for this kind of method is to design constructive mid-level features. In the

paper “Indoor scene recognition” by Quattoni in his paper [17], it was suggested to propose

GIST + ROI (Region of Interest) for explaining indoor scene detection. Although, heavy

computational costs were needed by the method to get ROI and it was inefficient for some

indoor scene image classes like malls and offices.

In recent years, deep learning models like R-CNN have become one of the most

successful methods for multi-class object recognition. R-CNN first extracts region

proposals in the indoor images and then all the detected proposals generated are loaded

into a deep convolutional network (CNN). R-CNN[8] thoroughly combined a heavily

computed detection technique and deep learning theory for effectively detecting thousands

of objects in the input images at the same time. R-CNN and its follow-up methods, Fast

R-CNN[10] and Faster R-CNN [11] have accomplished excellent results in multi-class

object recognition of the high quality images.

According to the above illustration, in this paper, we will present a method of indoor scene

recognition based on deep learning and sparse representation influenced from the paper

with the same name[16]. In this method, the object-based information like class, size and

position as low-level features will be extracted by multi-class objects detector, Faster

R-CNN. The modified Bag-of-Words (BoW) model is designed to collect semantic and

spatial information from low-level features of objects and build mid-level features. By

using Faster R-CNN, we will be quickly able to collect abundant features of objects in the

images. For intensifying the robustness, the learned sparse representation from mid-level

features will be used to detect the class of indoor scene images. The modified BoW

efficiently solves the semantic gap of elements between high-level features and low-level

features. It also maintains the spatial information provided by the objects. In comparison

to all the older and traditional classifiers like Bayesian, SVM and k-NN, sparse

representation is robust to solve the issues like change in illumination, partial occlusion or

variations in pose.

2.2.1 Conventional Scene Recognition Framework

In conventional scene recognition framework, the process is split into three modules:

pre-processing of input image, feature extraction and building a deep convolutional neural

network based classifier as shown in Figure 16. The scene recognition process also involves

a local feature descriptor, global feature descriptor, saliency detection and Spatial Pyramid

Matching (SPM)[22].

First, the image is divided at three different sublevels of resolution, so that a three-level

pyramid can be constructed. The Scale Invariant Feature Transform (SIFT) operator is

used for extracting features of bins under three different sublevels. All the feature vectors

of different sublevels are combined to create a mid-level feature. For giving the

classification results, a SVM classifier is also trained. On the basis of Bag-of-Words (BoW)

model, the information of multi-scale and position is added and by adding this

information, the performance of scene recognition is improved. Hence, robust feature

17

representation building of complex indoor scene images has improved the performance of

indoor scene recognition as well as it has solved the problem of semantic gap between

high-level semantic features and low-level features.

Figure 6: Conventional Scene Recognition Framework

The problems faced by previous traditional algorithms for extracting low-level features

were-

● Feature extraction from low-level features is basically focused on retrieving feature

information like color, texture and edge which are difficult to describe globally in

the scene content. As well as these features were not enough to solve the problem of

illumination change, pose variation and partial occlusion. The low-level features are

very specific in scene content information hence their proper extraction is not

effectively worked in earlier algorithms.

● By using a variety of low-level features for representing indoor scene images, higher

feature dimensions are created and it generates heavy computational cost. This

leads to slower scene recognition models and their processing and training might be

high in accuracy but not a very effective indoor scene recognition method.

2.3 Visual Mapping and Localization (Visual SLAM)

Simultaneous Localization and Mapping (SLAM) is a very important field of robotics and

autonomous navigation. SLAM techniques are used to build a map for an unknown

environment as well as the sensor is localized in the map for real-time operation. Among

all the sensors used, cameras are cheap and they provide a rich environment for accurate

place recognition. For mapping closed loops (where the main sensor detects the whole

mapped area and returns the starting point by correcting all environmental errors)[24],

place recognition is used as a key module for SLAM. It can avoid all the tracking failures

caused due to partial occlusion, system re-initialization or moving aggressively, so that the

camera can re-localize. Some other issues could also be using 2D/3D sensors like LiDAR

for SLAM is LiDAR’s high cost. This makes it unusable for low cost systems.

Visual SLAM uses a camera as a main sensor which is considered as a major interest

nowadays. Using a simple, smallest, cheapest monocular camera, we can perform Visual

SLAM. But the disadvantage of using a monocular camera is that depth is undetectable for

one camera. This affects estimated trajectory and scale in the map. So, a camera without

multi-view or any filtering techniques cannot create an initial map which is impossible to

triangulate to the first frame. Due to scale drift, a monocular camera based SLAM fails and

doesn’t recover to perform further mapping and localization. To avoid all these errors,

stereo or RGB-D cameras replaced monocular cameras for performing Visual SLAM.

ORB-SLAM [26, 27] is a Visual SLAM method which creates a map based on the point

clouds of the indoor environment using stereo, RGB-D or depth cameras. Using the point

cloud, we can understand the 3D structure of the environment. The point clouds are

useless for path planning and navigation if we use the algorithms which require 2D

occupancy grid map as an input [28]. ORB-SLAM generated point clouds are scattered,

18

hence it is difficult to generate an occupancy grid map from them. In this chapter, we will

use ORB-SLAM and its newer version ORB-SLAM2 and build an occupancy grid map in

real time from all 3D point clouds received. The grid map will be further used for

navigation (navigation stack of ROS[25]) based on the real-time camera trajectory

produced by ORB-SLAM.

2.4 Three-dimensional mapping and localization (3D-SLAM)

Generating three-dimensional maps and their models for the indoor environment is an

interesting and popular field nowadays. This task has increased in a number of different

fields. Different possible tasks require three-dimensional mapping and localization and it

ranges from tasks like assisting in navigation inside big buildings like hospitals or hotels to

assisting in increasing efficiency. This process, as we have already learnt about it in the last

chapter, is known as Simultaneous Localization and Mapping (SLAM)[38].

Initially for plotting maps, localization and indoor navigation, two dimensional

mapping methods were used. Although these methods were implemented for mobile with

their focus for autonomous navigation [39], they have limitations to perform only a certain

number of tasks. Then mobile robots started employing in different applications including

the medical field. Service robots were required to be used in hospitals and other medical

care facilities. This required incorporating mobile robots with reduction in the sizes of

their sensors and electronics [40]. Other multiple applications required autonomous

navigation of mobile service robots to perform in big buildings like hospitals including

deploying them as carriers or robotic carts for transporting meals, other supplies,

equipment and medicines from floor to floor, through elevators and automatic doors.

These cases required an initial map or layout of the surrounding area as well as for its

navigation a whole mapping operation is required during the operation. Many robots have

either RGB-D, stereo or depth cameras, LiDAR sensors or both, so that these sensors can

obtain a view for the surrounding environment in the third dimension (which is essentially

needed for mapping and navigation). They are incorporated with the Inertial Measurement

Unit (IMU) to provide a sense of localization (to know the movement and exact location of

the robot in the map). Using IMU, the robot can provide us information about its

movement and process of planning using different algorithms [41]. As we know, the Global

Navigation Satellite System (GNSS) is not operational for indoor environments. So, we

used the Robotic Operative System (ROS) and SLAM algorithm for data processing. Using

ROS and SLAM, we performed point cloud registration and did map extraction by using

Cartographer Library from Google [42]. The map extraction is modified to reconstruct the

3D image of the scenes.

The indoor 3D mapping systems produce 3D point clouds and they are not generalized and

extended in research work yet to produce the accuracy tests as it has been done for 2D

mapping [43]. The three approaches for existing accuracy tests for 3D points are classified

in the order of approaches [44]: the control approach, the subset approach and point cloud

to point cloud (p2p) approach. For the control approach, the evaluation is based on the

points clouds that are under study and their distance from the corresponding point.

Through these distances of the point pairs, we can understand the specific number of

measurements required for the whole point cloud. For the subset approach, the new and

reference points (under study) are taken from each point cloud and differences between

them are evaluated. These differences are some regular variables like distances and

deviations between planes. For the p2p approach, the two points in whole are evaluated.

This approach is better than the rest of the two approaches as it provides the whole

19

information about the proper quality of the points present in the three dimensions. Now all

three approaches are focused for both static and mobile environments of indoor mapping.

But there is one issue that is not solved by any of these three approaches. The issue of

deviation in trajectory causing deformation, which has no specific measurement

mentioned for it. This issue is a main factor to assess the quality of all indoor mapping

systems and evaluate applied SLAM algorithms.

Through the compulsory trajectory established for the robots, we can evaluate the

performed pose computation as well as the robot’s tracking [45]. For indoor mapping, this

accuracy is not necessary. We can accept the trajectory with partial deviations only if they

are not changing the final point cloud. In this paper, we will present the mobile robot for

indoor mapping. It comprises 3D LiDAR and SLAM algorithms established in ROS. For the

evaluation of this methodology, we will determine its accuracy using the p2p approach. We

will be using Leishen C16 3D LiDAR for collecting three dimensional point clouds with an

in-built IMU for localization. It will be placed on top of a Magni mobile robot with a certain

height platform to detect everything in a range of 30 degrees (+15° to -15°). Using the p2p

approach we will evaluate the trajectory by measuring its effect caused on the point cloud.

20

3. Research material and methods

3.1. Deep learning-based approach to Object detection

In this section, we will look at different deep learning approaches to object detection and

assess their basic structure that uses neural networks.

3.1.1. Basic Structure
The deep learning-based model for object detection is typically divided into two parts.

First, an image goes as an input through an encoder, then the encoder takes it through a

series of blocks and layers. After completing the block for the encoder, the algorithm will

learn to extract the statistical features used to locate and label objects. The block for

decoder will collect the passed outputs from encode. The decoder predicts the bounding

boxes and labels for each object. [5]

A pure regressor is used for the simplest decoder. The regressor is directly connected to

the outputs of the encoder and predicts the size and length of each bounding box around

the objects. The output given by this model is the coordinate pair of the object (X,Y) as

well as its defined extent in the image. Although this model is simple, it is still limited.

The number of boxes are needed to be specified ahead of time. If an image has two same

objects, the model is designed to detect only a single object, the other one will go

unlabeled. However, if the number of objects is known ahead of time, they should be

predicted in each image. For this, pure regressor-based models should be considered as a

good option. [8]

Another extension of the regressor-based approach is known as the regional proposal

network. In this decoder, specific regions of the image are proposed by the model, where

it is believed an object might reside. The pixels of these regions are fed to classification

subnetwork to either determine the label or reject the proposal. Those pixels containing

regions are then passed through a classification network. The benefit of using this

method is to get a better, flexible model which can estimate the arbitrary numbers of

regions that might contain bounding boxes. This enhanced accuracy comes at the

increased cost of computational efficiency.

In figure 7, it could be seen how image input goes through the convolutional layers to

feature maps which produce regional proposal networks. Then, using classifiers network

over ROI pooling, an arbitrary number of regions for bounding boxes can be proposed.

[6]

Another extension for making object detection better are Single Shot Detectors (SSDs).

Instead of using subnetworks for estimating the regions, SSD works on only

predetermined regions. A grid of points known as anchor points are laid over the input

image. At each anchor point, there are multiple boxes of different shapes which can serve

as regions. At each anchor point with each box, the model estimates and gives the output

of whether the objects exist within the regions or not. If the objects don’t exist within the

regions, the modifications are made to change the locations and sizes of the boxes to fit

the objects in the regions properly. Most of the time, many potential detections are

estimated by the SSDs that are overlapping.

21

Figure 7: Region Proposal Network approach

This occurs because there are multiple boxes for each defined grid of anchor points and

these anchor points can be close together. Therefore, post processing is done for the

estimated overlapping to remove most of these predictions and keep the best one. One of

the most popular post-processing techniques is known as non-maximum suppression.

Figure 8: Single Shot Detectors

Object Detection algorithm gives the location and the class label of the objects as an

output. For finding out the object’s location, the most popularly known metric is

intersection-over-union (IOU). If the two intersecting bounding boxes are given, the area

of intersection is computed and divided by the area of union. The output ranges from

value 0 to 1 where 0 is no intersection and 1 is perfectly overlapping. In the labels of the

bound objects, a simple “percent correct” is used.

3.1.2. Model Architecture Overview

3.1.2.1. R-CNN Model Family

Many popular object detection models are either based or belong to the R-CNN family.

The regional convolutional neural network or R-CNN are the architectures that are

based on the above mentioned structure of the region proposal network. This model

22

family includes techniques like R-CNN, Fast R-CNN and Faster R-CNN which are

designed and demonstrated for object detection and object localization. Let's see the

highlights of each of these techniques.

● R-CNN

Regional convolutional neural networks or R-CNN can be considered one of the first

largest applications of convolutional neural networks to our problem of object

detection, localization and segmentation. This approach is demonstrated on the

basis of benchmark datasets and achieving state-of-the-art results on the

VOC-2012 dataset and the 200-class ILSVRC-2013 object detection datasets.

This approach based on the benchmark datasets has the proposed R-CNN model

which is comprised of three modules, they are defined as follows-

● Module 1: Region Proposal - It generates and represents category independent

region proposals, e.g. candidate bounding boxes.

● Module 2: Feature Extractor - It extracts features from each candidate region, e.g.

using a deep convolutional neural network.

● Module 3: Classifier - It classifies features as one of the known classes, e.g. linear

SVM classifier model.

A method to propose the candidate bounding regions or bounding boxes of the

potential objects, a computer vision technique is used, known as “selective search”,

although the flexibility in its design allows the possibility to use other region

proposal algorithms.

The architecture of the model is summarized in the figure 9 below.

Figure 9: Summary of R-CNN model architecture taken from Rich feature hierarchies for
accurate object detection and semantic segmentation

The feature extractor used by the model is based on AlexNet deep CNN. The CNN

gives the output of a 4,096 element vector. The element vector is used to describe

the contents of the image that is fed to a linear SVM for classification. One SVM is

specifically assigned to each known class.

This application of CNNs to the problem of object detection and localization is

relatively simple and straight-forward. The only disadvantage of using this

application is that it is relatively slow. This requires a CNN based feature extraction

that goes through each candidate region which is generated by the region proposal

algorithm. The problem faced by this model is that it operates on 2,000 proposed

regions per image at a time, which consumes a lot of time considering increased

processing time for other modules of the model.

23

● Fast R-CNN

Based on the 2015 paper titled as “Fast R-CNN” [10] which summarizes the

limitations of R-CNN as -

● Training is a multi-stage pipeline - training of an R-CNN model requires

preparation and operation of three separate models.

● Training is expensive in space and time - deep CNN training on so many region

proposals per image is slow.

● Object detection is slow - making predictions on so many region proposals per

image is very slow.

Instead of using a pipeline to learn and output regions and classifications directly,

Fast R-CNN is proposed as a single model. In the architecture of this model, a set

of region proposals are taken over the photograph. This set is then passed through

a deep convolutional neural network. VGG-16 (a pre-trained CNN) is used for

feature extraction. A custom layer at the end of the deep CNN, called a “Region of

Interest Pooling layer” or ROI Pooling. ROI pooling is used to extract the specific

features for the given input of candidate region.

The output of the deep convolutional neural network passes through a series of

fully connected layers (FCs). The output of FCs is divided into two outputs. One of

them goes through class prediction via a softmax layer and another one with a

linear output goes through a bounding box regressor. This process is repeated as a

loop for multiple times and passed through each region of interest in a given

image.The model is significantly faster but it still requires a set of candidate regions

per image each time. The architecture of Fast R-CNN is shown in the figure 10

below.

Figure 10: Summary of Fast R-CNN model architecture. Taken from “Fast R-CNN”

● Faster R-CNN

This model was introduced to improve speed for both training and detection. The

architecture model is based on the benchmark datasets achieved from both

ILSVRC-2015 and MS COCO-2015 which are used for training models for object

detection and localization.

The architecture model for Faster R-CNN first introduced the concept Region

proposal network or RPN which we discussed in R-CNN basic structure earlier

[11]. RPN is used to propose and refine region proposals as a part of the training

process. These regions are then used in agreement with single-model design

24

prepared for the Fast R-CNN model. Using RPN, improvements are observed as

the number of region proposals are reduced and the test-time operation of the

model is accelerated to near real-time with then state-of-the-art performance.

The architecture of the single model is consisted of two modules-

● Module 1: Region Proposal Network - CNN to propose regions and the type

of object to consider in the region.

● Module 2: Fast R-CNN- CNN to extract features from the proposed regions

and output the bounding boxes and class labels.

RPN works as an attention mechanism for the Fast R-CNN model for enhancing

the performance of the architecture in CNN based tasks. The architecture of the

model is described in Figure 11 below.

Figure 11: Summary of Faster R-CNN Model Architecture. Taken from “Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks”

RPN takes output from a pre-trained CNN like VGG-16 and passes over a small

network for feature maps and outputs multiple region proposals. RPN checks the

proposals if the potential object lies in the region proposals or not. They are

passed through the next anchor box for bounding box regressor before moving to

the Region of Interest pooling layer. The output of ROI pooling is moved through

the anchor box for object classification and bounding box regressor until multiple

region proposals are checked in the input image.

3.1.2.2. YOLO Model Family

This is another family for object detection models, known as YOLO or “You Only Look

Once”. The R-CNN model family can be considered more accurate but the YOLO model

25

family is much faster than R-CNN. Even so, YOLO is achieving object detection in

real-time.

● YOLO

The YOLO model was first described in a 2015 paper titled as “You Look Only

Once: Unified, Real-Time Object Detection” by Joseph Redmon [12]. In this

approach, a single neural network is trained from end to end. It takes a photograph

as an input, creates a bounding box around objects and then predicts class labels

for each bounding box directly. Although this technique offers lower predictive

accuracy(e.g. more localization errors), it is much faster than all R-CNN models. It

operates at 45 frames per second and up to 155 frames per second for a better and

speed-optimized version of the model. [7]

First, the input image is split into a grid of cells. Now each cell is

independently responsible for predicting B (a bounding box) if the center of the

bounding box lies inside the cell. This prediction of a bounding box by each cell

involves the x, y coordinate, the width (w), the height (h) and the confidence score

as well as class prediction. Each confidence is used to reflect the probability that if

the bounding box contains an object Pr(Object) as well as by evaluating the overlap

of the predicted box with ground truth bounding box measured by the intersection

over union, its accuracy is calculated.

Therefore, the value of confidence score is

For example, an image is split into 7 ✕ 7 grid of cells. Each cell in the grid is

capable of predicting at most 2 bounding boxes, which will result in 94 proposed

bounding boxes predictions. The bounding boxes with confidence score and the

class probabilities are then incorporated together to give an output of bounding

boxes and class labels as a final set. The Figure 12 below summarizes the two

outputs of the model.

Figure 12: YOLO model summarizes all the predictions. Taken from “You Only Look Once:
Unified, Real-Time Object Detection”

26

During test time, the model signifies the class-specific confidence score with each

box and multiplies each box’s confidence score with its respective class-conditional

probabilities. These scores will be used to evaluate the probability of class

appearing in the box and the precision of the box coordinates.

Architecture of YOLO is extremely based on GoogleNet. The network consists of 24

convolutional layers (used for feature extraction). It is followed by 2 fully

connected layers (FCs) which are used for predicting bounding box coordinates and

their respective object probabilities. Apparently, YOLO replaces the inception

modules which are used in GoogleNet with 1 ✕ 1 convolution layers, so that the

depth dimensions of the feature maps can be reduced.

The training part in YOLO comprises of 2 steps:

● The network is pre-trained so that classification can be performed with 224

✕ 224 resolution on ImageNet. It uses only the first 20 convolution layers which

are followed by an average pooling and a fully connected layer.

● For training the network for detection, the four convolution layers and two

fully connected layers are added. A 448✕ 448 resolution inputs are trained as it is

observed that gradually training on high resolution images considerably increases

the accuracy. This is quite evident that visual information is better for detection.

The architecture for YOLO is shown in Figure 13 below.

Figure 13: Architecture of YOLO model. Taken from “You Only Look Once: Unified,
Real-Time Object Detection”

A modified version of YOLO known as “FastYOLO” is also introduced. It is a

comparatively smaller network of 9 convolution layers. Yet, this oversimplified

network structure contributes to an impressive speed of 155 fps when recorded for

PASCAL VOC detection. Even with an accuracy of 52.7% mAP, it has twice better

accuracy than any other real-time detector. The values in the table below shows the

real-time systems in PASCAL VOC 2007 and compares their accuracy and speed

with each other.

27

Table 2: Real-Time systems on PASCAL VOC 2007

To further examine the difference between YOLO and earlier developed detectors, a

detailed breakdown is done in the paper. YOLO is compared with Fast R-CNN

because Fast R-CNN is one of the highest performing detectors on PASCAL as well

as its detections are publicly available. The methodology and tools of Hoiem et al

have been used. The top N-predictions of each category at test time are observed.

Each prediction is either correct or it is classified on the basis of the type of error-

● Correct: correct class and IOU > .5

● Localization: correct class, .1 < IOU < .5

● Similar: class is similar, IOU > .1

● Other: class is wrong, IOU > .1

● Background: IOU < .1 for any object

As the localization errors are much higher for YOLO in comparison to all other

detectors combined. Fast R-CNN performed better with localizing objects correctly,

but background errors are much higher than what YOLO reported. As shown in

figure 14 below, 13.6% background error for Fast R-CNN means Fast R-CNN is 3

times more likely to predict background detections than YOLO.

Figure 14: Error Analysis: Fast R-CNN vs YOLO

● YOLOv2 (YOLO9000) and YOLOv3

28

The updated model was designed by Joseph Redmond and Ali Farrahadi in order

to improve the performance of the model as mentioned in the paper titled as

“YOLO9000: Better, Faster, Stronger”. [13]

This updated model is able to train on two object detection datasets in

parallel, which makes it capable of predicting 9,000 object classes at a time. Hence

YOLOv2 is also known as YOLO9000. A lot of changes related to the training

method and architecture were made in this model. For example, high-resolution

input images and the use of batch normalization.

Like Faster R-CNN, YOLOv2 model has also used pre-defined bounding boxes with

useful shapes and sizes as well as use of anchor boxes during training. The images

are pre-processed with use of k-means analysis on the training dataset for choosing

the bounding boxes.

To have the less influencing effect on the predictions, the bounding boxes’

predicted representation is modified to make small changes. This will result in a

more stable model. Instead of choosing prediction values directly for position and

size, predictions are done for moving and reshaping offsets for the pre-defined

anchor boxes which are relative to a grid cell and their values are dampened by the

logistic function.

Figure 15: Example of chosen representation when predicting bounding box position and
shape. Taken from “YOLO9000: Better, Faster, Stronger”

The improvements proposed for YOLOv3 in the 2018 paper titles as “YOLOv3: An

Incremental Improvement” were really minor including minor representational

modifications and deep feature detector network. [14]

29

3.2. Proposed Indoor scene recognition method

Figure 16: The framework of the proposed indoor scene recognition method

The proposed indoor scene recognition method is shown above in Figure 16. As we

discussed in the above section, to overcome the problems faced by the traditional scene

recognition methods, a new method has been proposed. This indoor scene recognition

method will be based on deep learning and sparse representation. This method comprises

five parts: scene dataset expansion, low-level features extraction, mid-level features

building, sparse dictionary building and sparse recognition.

In scene dataset expansion, we increased the MIT-67 datasets by adding their

rotated and flipped versions, so that we can fine-tune the Faster-RCNN multi-class

detector. These edited images will increase the limited images in the different categories of

MIT-67 dataset. All the information related to scene images like category, score of salient

objects and position will be received by the detector. An improved BoW model is designed

to create mid-level features. These mid-level features will have the semantic and spatial

information from object-based low-level features. Using the spatial information from

object-based low-level features, a spatial-pyramid with multiple layers is built. In each

division of all layers, the feature histograms are concatenated as the mid-level feature.

Finally, for generating the final recognition results, a SRC based classifier is trained on

these mid-level features. Sparse representation is highly effective for object recognition

under heavy partial occlusion and disturbance. Using SRC as a high-level semantic

classifier, the robustness of indoor scene recognition can be improved further. Also

chances of errors from low-level feature extraction and building mid-level semantics will

be reduced.

3.2.1. Low-Level Feature Extraction

We have chosen Faster R-CNN multi-class object detector for extracting the low-level

features from the input image scenes. Faster R-CNN is a better deep convolutional neural

network architecture than R-CNN and Spatial pyramid pooling networks (SPPnets)[9].

Pre-trained Faster R-CNN model for multi-class object detector is fine-tuned by transfer

learning. Faster R-CNN training set samples for indoor scenes are collected from

ImageNet, as shown in Figure 17 below.

30

Figure 17: Faster R-CNN training set

Since we lack enough indoor image scenes for training dataset, so for enlarging it we

utilized data augmentation by flipping and rotating the training dataset and added them

in it. Faster R-CNN based multi-class object detector pipeline has been shown in Figure

18.

As discussed in Section 3.1.2.1, the architecture of Faster R-CNN will be divided into two

parts: Region Proposal Networks and detection networks. Both parts will share feature

extraction. Input image scenes pass through a deep convolutional neural network and all

the Region of Interests (RoIs) of objects will be marked. All extracted RoIs from RPN are

pooled into fixed-size feature maps. The feature maps are then mapped to the feature

vector by the fully-connected layers. The network received two output vectors per RoI:

bounding-box regressor offsets per class and softmax probabilities. This architecture is

much faster to train and test than all the former versions of the R-CNN model family.

This architecture also improved the performance of recognition significantly.

Figure 18: Faster R-CNN model architecture

3.2.2. Mid-Level Features Building

In the general procedure for BoW, a local operator has extracted the low-level features

from the input images and has obtained the visual vocabulary vector. To build a

dictionary (word bank) from all the low-level features, K-means clustering is used for

computing the mean value of k cluster-center. All the final features are counted for

31

generating feature histograms. Then the final classifier is trained on some learning

method like SVM or KNN.

Here, we are using the BoW model to build a mid-level feature. Various partitions on

different scales of the rectangle are divided from the indoor scene image. A spatial

pyramid is extracted from these partitions of images and feature histograms are

extracted from each partition. The accuracy of indoor scene recognition can be improved

by preserving the spatial information of the low-level features. Building of SPM and its

implementation plays an important effect on the final results. Larger partitions often

show difficulty for providing accurate information about the object's scale and position.

While smaller partitions have introduced the problem of showing more noise and leading

this to a higher feature dimension. In a traditional SPM method, the partition of an

image is equally subdivided layer by layer. In our case, we subdivided the image into

different scales of rectangle by splitting it across its cross-sectional area. The SPM is

designed by building 5 layers for the mid-feature of indoor scene image. Layer0 is the full

image. Layer1 is split into two parts: vertically division and horizontal division. Similarly,

Layer2, Layer3 and Layer4 are further into 4, 9 and 16 equal parts, respectively. This

division method is shown in Figure 19 below.

Figure 19: The division method for the proposed mid-level feature building

The process for building mid-level feature is shown as follows:

1) The low-level features of the input image are extracted (, ,), where , ,𝐹
𝑙

𝑐
𝑖

𝑝
𝑖

𝑠
𝑖

𝑐
𝑖

𝑝
𝑖

𝑠
𝑖

are the category, position and score of the ith object;

2) The feature histogram is created for each partition, designed only for counting

pixel-by-pixel which is based on low-level features. The pixels accounted for are

the only ones which are being overlapped by the multiple objects of the same

category and their only high scores are considered. The histogram of the nth

partition in the mth layer is defined as . It is calculated by counting the sum ofℎ
𝑛
𝑚

the score for each certain category.

3) The final mid-level feature histogram is obtained by concatenation of all the

histograms , H = concat[,, ,,], where , ... is denoted as theℎ
𝑛
𝑚 ℎ

1
0 ℎ

𝑀0
0 ℎ

𝑀4
4 𝑀

0
𝑀

4

number of divisions in Layer0 to Layer4 respectively.

32

3.2.3. Indoor Scene Recognition based on Deep Learning and Sparse
Representation

Sparse Representation-based Classification[23] is used for increasing performance of the

scene recognition under the influence of extreme occlusion and heavy noise. To further

increase the performance of recognition, SRC is trained on already received mid-level

features for determining the final results achieved for scene recognition. The algorithm of

our whole procedure for this method is shown in Table 3 below. The object-based

low-level features are quickly and accurately extracted by the Faster R-CNN multi-object

based detector. The mid-level features with a modified SPM are obtained for the BoW

model. The SPM will preserve spatial information of all the low-level features. Finally,

the classifier is trained on sparse representation for increasing the performance of the

proposed method.

Table 3: Algorithm of the procedure for the proposed method

3.3. Visual SLAM method

3.3.1. Installation of ORB-SLAM

In this part, we will install ORB-SLAM2 based on the instructions provided on Github

page[30]. The current version of ORB-SLAM2 required additional installation of Eigen

3.3.3 and OpenCV 3 on ROS Melodic for Ubuntu 18.04.

3.3.2. Calibration of Camera

This part included instructions for the ROS calibration tutorial [31] used for calibrating

the MYNT-EYE-D depth camera that we will use in generating our testing sequence

(Section 4.2.6). The camera calibration we received is shown in Table 4.

Table 4: Camera calibration values

33

Camera

Matrix

fx fy cx cy

644.996428 649.647201 318.918209 225.367132

Distortion

Coefficients

k1 k2 p1 p2 k3

-0.073281 0.052634 -0.006255 0.003086 0.000000

3.3.3. Reproduction of results on KITTI and TUM Datasets

In this part, we downloaded two sequences of the KITTI dataset: sequence 00 and 05

[32]. From the TUM dataset we download fr3_walking_halfsphere [33]. We tried all

three sequences by running them on the installed ORB-SLAM2 following the instruction

from the Github page [30] to reproduce results. The point clouds created as shown in the

screenshots in Figure 20 below. The commands for running all of the three sequences on

ORB-SLAM2 are shown below:

./Examples/Stereo/stereo_kitti Vocabulary/ORBvoc.txt Examples/Stereo/KITTI00-02.yaml
./KITTI/00

./Examples/Stereo/stereo_kitti Vocabulary/ORBvoc.txt Examples/Stereo/KITTI04-12.yaml
./KITTI/05

./Examples/Stereo/stereo_tum Vocabulary/ORBvoc.txt Examples/Stereo/TUM3.yaml
./TUM-RGBD/rgbd_dataset_freiburg_walking_halfsphere

Figure 20: The point clouds generated by running the ORB-SLAM2 for KITTI datasets and TUM
dataset. From left to right: KITTI00, KITTI05 and TUM fr3_walking_halfsphere.

3.3.4. Production of 2D Grid Map using ORB-SLAM map points

For generating a 2D occupancy grid, we processed all the map points (point clouds) and

the keyframes generated by ORB-SLAM only after all the frames are included in the

sequence. We modified ORB-SLAM stereo application Examples/Stereo/stereo_tum to

give an output of all the keyframes consisting of 3D poses including map points in each

frame to a text file. The script generating 2D occupancy grid will store the key frames,

camera poses and the included map points of each frame into the form of dictionary

structure. This will help in projecting all the values on the XZ plane. It is quite

understood that these projections could only be obtained by only removing Y coordinate.

The ORB-SLAM coordinate values are stored in meters while finer grid resolution is

calculated by the product of all positions to inverse of desired resolution chosen as a

34

scaling factor. For example, if the needed resolution is 0.1m/cell, then the scaling factor

is 10.

The following steps are applied to all the points in each keyframe and keyframes are then

processed one at a time:

1) Camera position ray casting is set to all visible points by the method of

Bressenham’s line drawing algorithm [34].

2) For each point along the ray, a visit counter is incremented. For corresponding

the locating of the map point, an occupied counter is incremented.

Then visit and occupied counters will be defined as integral arrays which have the same

sizes (for the range of x and z locations of camera and map points after being scaled) and

then they will be stored. For ORB-SLAM, we have assumed the XZ plane as the

horizontal frame, therefore y will be considered as the height. After keyframes are

processed, we will calculate the occupancy probability of each cell for the grid map as:

𝑝
𝑓𝑟𝑒𝑒

(𝑖, 𝑗) = 1 − 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 (𝑖,𝑗)
𝑣𝑖𝑠𝑖𝑡 (𝑖,𝑗)

Where visit (i,j) and occupied (i,j) are the respective entries we received for visit and

occupied counters and is the probability of the respective cell that it is not occupied.𝑝
𝑓𝑟𝑒𝑒

The ternary cost map is converted from the probability cost map using occupied_thresh

and free_thresh so that particular cell will be considered free only if its is greater𝑝
𝑓𝑟𝑒𝑒

than free_thresh, occupied if its value is less than occupied_thresh. Otherwise their value

will be unknown.

Figure 21: Probability Map generated before thresholding for KITTI00 sequence (left) and our local
map (right)

3.3.5. Map visualization and robot navigation in Rviz

In this part, we used a simulation of TurtleBot in an empty world using the Gazebo

simulator [35]. We applied Monte Carlo localization (AMCL) for navigation of TurtleBot

[36] and its visualization on Rviz [37]. The following commands will be used to run these

nodes:

35

roslaunch turtlebot_gazebo turtlebot_world.launch
world_file:=/opt/ros/indigo/share/turtlebot_gazebo/worlds/empty.world

roslaunch turtlebot_gazebo amcl_demo.launch map_file:=./grid_map.yaml
roslaunch turtlebot_rviz_launchers view_navigation.launch

In Figure 22 below, we have shown the map generated and the navigation path produced

by AMCL when we ran these command lines:

Figure 22: Map Visualization and robot navigation

3.3.6. Evaluation and comparison of results with already available methods

As we have already said earlier, it is not possible to create 2D occupancy grid maps using

3D points generated by Visual SLAM using methods like ORB-SLAM. Therefore, we

needed data from 2D LiDARs so that we can compare it without results. We used

RPLiDAR A3M1 for plotting 2D SLAM. The visualization of the map is shown in Figure

23 (a). As well as for comparison, we recorded our own data using the calibrated stereo

camera MYNT-EYE-D for ORB-SLAM. Figure 23 (b) shows point clouds frames for

indoor scene environments.

36

Next, using the 2D LiDAR SLAM generated map, we created a similar ground truth

map for our sequence. Figure 23 (c) shows 3D point clouds of our sequence created after

the completion of mapping. We used two measures for evaluating this comparison: a

completeness sore and accuracy measure. The completeness score shows that out of the

whole truth map how much of the map was able to generate. The accuracy measure

shows how correct the map is in comparison to the ground truth map. For comparing two

maps, both of them were aligned and then we used the following formulations to

compute the evaluation matrices.

37

Figure 23: (a) The map visualization using 2D LiDAR; (b) The points clouds frames generated in a 3D indoor
scene environment; (c) 3D point cloud produced by ORB-SLAM on this sequence

3.3.7. Novel Components

For this part, we are building a grid map in real time based on the results of the previous

section and then use it to follow the camera trajectory for navigation. The novel

components are as follows:

3.3.7.1. Online Variant

First, to process all the keyframes and map points in real time, we converted the

python scripts into C++ code to work in an incremental manner. We created two ROS

nodes for the modification of stereo ROS nodes Examples/ROS/ORB_SLAM2/Stereo.

The first node is known as Stereopub. It will be used to publish each keyframe’s poses

which are added along to the map with all the map points already visible in that

keyframe. It also performs the detection whenever loop closure takes place and then

publishes it along with the map points already added so far. Stereopub is also modified

to take images from live stereo cameras as an input. Now, we will run this node on

three sequences (KITTI00, TUM fr3_walking_halfsphere and our live stereo camera)

and to publish images (ROS node to publish images to /usb_cam/image_raw topic).

The commands are as follows:

rosrun ORB_SLAM2 Stereopub Vocabulary/ORVvoc.txt Examples/Stereo/KITTI00-02.yaml ./KITTI/00
0
rosrun ORB_SLAM2 Stereopub Vocabulary/ORBvoc.txt Examples/Stereo/TUM3.yaml

./TUM-RGBD/rgbd_dataset_freiburg3_walking_halfsphere
rosrun ORB_SLAM2 Stereopub Vocabulary/ORBvoc.txt Examples/Stereo/stereo.yaml 0
rosrun ORB_SLAM2 Stereopub Vocabulary/ORBvoc.txt Examples/Stereo/demo_cam.yaml -1

/usb_cam/image_raw

The second node we built is known as Stereosub and it will be used to subscribe to all

the pose data that has been published by Stereopub. So, whenever it will obtain a

single keyframe, it will process it using the same method as mentioned in Sec. 3.3.4.

There will be several additional steps that will be included in this method and these

38

steps are described in subsequent sections. The visit and occupied counters are being

added to create a map in increments. The map this process has generated is just an

approximation of the true map because co-visibility for different keyframes between

them is not taken into account (even if the counters are being updated independent of

each frame. Although, it turned out to show quite accurate values and it is sufficient

for our purpose of navigation.

The counters have ended and recomputed for all the keyframes once these

keyframes are obtained after the loop closure. All the keyframes and map points have

been received from the publisher simultaneously. Now we can check all the

inaccuracies that might have been collected over the time. Stereopub can still publish

all the keyframes and map points periodically even if the loop closure has not been

detected. Although, the no detections of loop closure are few and far apart, so their

chances of occurring are very less. Map should be reset from time to time even if it is a

time consuming process.

For achieving the navigation goals in AMCL and Rviz, Monosub publishes the map

that has been generated as well as the meta data in process with the camera

trajectories. There are a lot of parameters that has to be adjusted in Monosub, the

command line for it is as follows:

rosrun ORB_SLAM2 Stereosub <scale_factor> <resize_factor> <cloud_max_x>
<cloud_min_x> <cloud_max_z> <cloud_min_z> <free_thresh> <occupied_thresh>
<use_local_counters> <visit_thresh> <use_gaussian_counters> <use_boundary_detection>
<use_height_thresholding> <normal_thresh_deg> <canny_thresh>
<enable_goal_publishing> <show_camera_location> <gauss_kernel_size>

For example, using different parameters we can fine tune two nodes on KITTI00 and

our local map sequences. The commands are as follows:

rosrun ORB_SLAM2 Stereosub 10 1 31 -22 46 -12 0.65 0.60 1 5 1 0 1 80 300
rosrun ORB_SLAM2 Stereosub 40 1 12 -16 23 -12 0.55 0.50 1 10 1 1 1 35 350

Note that for the first command, the resolution is 1/10 m/cell and for the second one it

is 1/40 m/cell. Under this node, we can adjust parameters at runtime.

3.3.7.2. Local and Global Counters

An issue with projection of 3D points as 2D points onto the XZ plane which is used for

ray casting arises the idea of creating local and global counters. For example, let's

consider a situation where we are getting the projections of multiple collinear points in

2D in a single keyframe (as shown in Figure 24). In this case, for generating the 2D

map, we are using only one global counter. This will lead to misrepresentation of the

available information. The value of the visit counter is incrementing when we have been

decreasing the occupied ratio parameter for all the points that have been laid along.

This is occurring even when the middle point is already occupied. So if we use one

global counter, we can replace some of the occupied cells with the free ones.

39

Figure 24: Problem of corrupting counter when points are collinear (in 2D)

3.3.7.3. Visit thresholding

To measure the confidence score of a cell, we have been using the visit count of that

cell. In this condition, if the total visit count of the cell is higher than the threshold, only

then that grid cell can be occupied or left empty. This lets us remove all the outliers that

have been generated by wrong triangulations occurring in ORB-SLAM, particularly for

those which were far away from the camera. We have been using the default visit

threshold value of 5 in our tests.

3.3.7.4. Height thresholding

According to Goeddel et al, if the points that are lying within a specified range of y

coordinate (as a height) over the XZ plane will be considered as obstacles. Therefore,

changed the points back to the default camera coordinate frame and then started

imposing a threshold on their height. If the points which have y-coordinate lying below

this threshold will be considered as free space instead of either removing or counting

their cells occupied. They will change as a free space by incrementing their visit

counter.

3.3.7.5. Gaussian smoothing of counters

To avoid the problem of small distance separated two cells marked occupied causing

the whole range of cells occupied, gaussian smoothing of local counters (both occupied

and visited) is employed. Using this method, the value of any cell will be influenced by

its nearest neighboring cell. So the cells that are empty will take the value of their

neighbor’s cell in both counters. This will generate a probability map much smoother.

Based on this, we used a kernel size of 3 for our tests.

3.3.7.6. Canny boundary detection

As we have already employed so many methods for removing false obstacles, the

problem is occurring where real obstacles are also being removed. We observed that

40

this is usually occurring near the boundary obstacles, where they are lying somewhere

between free space and unknown space. This will help us to bring all those obstacles

lying between those spaces. Using canny detection, we set all the pixels of the detected

edges as 0 in the probability map, so they can be marked occupied. Figure 25 below

shows an approximate way to show the contours for the outer boundaries by

eliminating all false obstacles from inside. Hence, we set the value of 300 for the canny

threshold for our tests. We found that all the false edges have been eliminated on the

interior side of the boundary without making any changes to these outer boundaries.

Figure 25: Finding contours for canny boundary detection

3.3.7.7. Slope thresholding

We encountered a problem where the points which are lying relative to the horizontal

planes are not considered as obstacles. So we estimated the plane in which the point is

lying by determining its two nearest points and then computing the best plane which

can fit all these three points in the least square sense. If the angle between the normal

to this plane and XZ plane is exceeding the threshold, then this plane will be declared

as horizontal and the point will correspond to the nearest free cell. By checking this

condition with our results, we found a threshold of 80 degrees would be correct for

estimating the best fit plane.

3.4. Materials and methods for 3D-SLAM

In this section, we will describe the indoor mobile robot for 3D SLAM and testing its

system for performance.

3.4.1. Indoor mobile robot for 3D-SLAM

The platform that we selected is Magni by Ubiquity Robotics. It is capable of carrying

100 Kg. It can run for 8 hours on a 10 Ah battery, and 24 hours if we upgrade it to 32

Ah battery. It comes with some sensors like Raspberry Pi Camera, sonar board etc and

additionally we can connect it with other sensors like 2D LiDAR, monocular camera,

depth sensors using Raspberry Pi 3 (Ubuntu 16.04) installed on board. We can use it

for navigation purposes and further use it for building service robot on top of it. The

magni platform is shown in Figure 26 (a) below. There is space for storing batteries and

41

running Magni for teleoperation nodes. We have designed a support with some height

for 3D LiDAR on top of Magni, so we can use teleoperation nodes for 3D SLAM. The

increase in height over the mobile robot for 3D LiDAR will help us to scan all the point

clouds from the ground to the ceiling, provided that angle measure is only 30° vertically

(Table 5) 3D LiDAR sensor we are using is a Leishen C16 LiDAR, which we have chosen

for collecting point clouds and on this mobile platform for its light weight and smaller

dimensions (in comparison to other 3S LiDARs). In every scan, the sensor receives the

3D coordinate of the point which is detected by LiDAR’s 16 rays. This will help to create

a scattered 3D point cloud from all the points the robot has gone through.

Table 5: Technical characteristics of Lesihen C-16 provided by the manufacturer.

Leishen C-16

Weight 800 grams

Laser rays 16 channels

Range 100-120 m

Acquisition rate 300,000 points per second

Point accuracy 3 cm

Field of View 360° (H) × 30° (V)

The information from the 3D LiDAR can be seen on the windows-based software

provided by Leishen (connected using an adapter box with ethernet cable as shown in

Figure 26(b). We can use this stored information (performed measurements for 3D

point cloud) as a time-stamped, binary file which has structure and code provided by

ROS, this format is known as bag (rosbag) [46]. It also allows us to reproduce the

acquired results in the simulation.

Figure 26: (a) Magni platform; (b) Connection between adapter box and LiDAR; (c) 3D LiDAR
mounted on top of Magni for real-time indoor 3D mapping.

42

3.4.2. Windows software display and LiDAR configuration

The point cloud display software provides parsing data package and Device package

information, and displays 3D point cloud data. Through the visual window, we can

reset LiDAR parameters. LiDAR IP and port are shown in the table below:

Table 6 LiDAR Default Network configuration

IP Address UDP Equipment

Port

UDP Parsing Port

LiDAR 192.168.1.200 2368 (fixed

unmatchable)

2369 (fixed

unmatchable)

Computer 192.168.1.102 2369 2368

When using a connecting device, it is necessary to set the computer IP to the same

network segment as the device, for example, IP: 192.168.1.x, and subnet mask:

255.255.255.0. If the device’s network configuration information is unknown,

wireshark is used for the connecting device to capture the device’s ARP packet for

analysis after the LiDAR is powered on.

3.4.3. Communication Protocol

The LiDAR data output and configuration use the 100M Ethernet UDP / IP

communication protocol. There are 3 UDP packet protocols with a packet length of

1248 bytes (42 bytes Ethernet header and 1206 bytes payload). The LiDAR supports

unicast, broadcast, and multicast communications.

1) MSOP(Main data Stream Output Protocol), Output data include : measured distance,

angle, intensity and other information；
2) DIFOP(Device Information Output Protocol), Output data include: LiDAR

configuration information；
3) UCWP(User Configuration Write Protocol), Setting LiDAR Configuration parameter

Table 7: UDP Protocol

(Protocol/pac

ket) Name

Abbreviati

on

Function Type Packet

Size

Transmissio

n Interval

Main data

Stream Output

Protocol

MSOP Outputting

scanned data

UDP 1248bytes 1.2ms/0.6ms

Device

Information

Output Protocol

DIFOP Outputting

device

information

UDP 1248bytes 1.2ms/0.6ms

User

Configuration

Write Protocol

UCWP Inputting

user

configured

device

parameters

UDP 1248bytes INF

43

3.4.3.1. MSOP Protocol

The data of the packet is little-endian mode. MSOP Packet data format structure of the

LiDAR includes frame header, sub-frame and frame tail. Each packet has 1,248byte:

42byte for UDP packet overhead, 1,200byte for sub-frame data packet interval (a total

of 12 data blocks), 4byte for timestamp, and 2byte for frame tail factory.

3.4.3.2. Device Information Output Protocol (Device Packet Protocol)

The device package outputs read-only parameters and status information such as

version number, Ethernet configuration, motor speed and running status, and fault

diagnosis. The data of the device package uses big-endian mode.

The device packet includes 42-byte Ethernet header and a 1206-byte payload with a

length of 1248 bytes. The payload consists of an 8-byte frame header, 1196-byte data

Data and a 2-byte frame tail.

3.4.3.3. User Configuration Write Protocol (Configuration Packet Protocol)

The configuration packet protocol configures the LiDAR's Ethernet, PPS alignment

angle, motor and other parameters. The data of the configuration packet adopts

big-endian mode.

The configuration packet includes a 42-byte Ethernet header and a 1206-byte payload

with a length of 1248 bytes. The payload consists of an 8-byte header, 1238-byte Data,

and a 2-byte Tail.

3.4.4. Time Synchronization

There are 3 ways to synchronize LiDAR with external devices: GPS synchronization, NTP

synchronization, and external PPS synchronization. If there is no external

synchronization input, timing information is generated inside the LiDAR. The absolute

precise time of the point cloud data is obtained by adding a 4-byte time-stamp (accurate

to microseconds) of the data packet and a 6-byte UTC time (accurate to seconds) of the

device packet.

3.4.4.1. GPS Synchronization

The LiDAR receives the PPS second pulse, the LiDAR uses microseconds as the unit,

and the time value is output as the timestamp of the data packet. The LiDAR extracts

UTC information from GPS's $ GPRMC information as the UTC time output of the

device package, with accuracy to seconds.

3.4.4.2. NTP

The LiDAR periodically obtains the NTP server time ,The time is used as the timestamp

of the data packet, and the extracted UTC time is output as the UTC (GMT) time of the

device envelope. The LiDAR sends a time request to the NTP server every 4 seconds.

44

After receiving the request, the server sends time information to LiDAR according to

the NTP protocol.

3.4.4.3. External Synchronization

The LiDAR obtains PPS signal input by the external device, the LiDAR uses

microseconds as the time unit, and time is output as the time stamp of the data packet.

At this time, there is no UTC time reference. If UTC time is required, it must be written

through the configuration package; otherwise, the UTC time output information of the

device package is invalid.

The PPS level of the external synchronization signal is 3.3 ~ 5V, which is triggered by

the rising edge of the LiDAR. The PPS high pulse width is required to be greater than

40 ns.

3.4.5. LiDAR data calculations of Angles and Coordinates

3.4.5.1. Vertical Angle

See table 8 below for the vertical distribution.

Table 8: Vertical Angle Distribution of 16 Laser Channels

UDP Package Channel Vertical Angle

Channel 0 Data -15°

Channel 1 Data 1°

Channel 2 Data -13°

Chanel 3 Data 3°

Channel 4 Data -11°

Channel 5 Data 5°

Channel 6 Data -9°

Channel 7 Data 7°

Channel 8 Data -7°

Channel 9 Data 9°

Channel 10 Data -5°

Channel 11 Data 11°

Channel 12 Data -3°

45

Channel 13 Data 13°

Channel 14 Data -1°

Channel 15 Data 15°

Table 9: Vertical Angle Distribution of C16-laser channels

UDP Package Channel Vertical Angle

Channel 0 Data -10°

Channel 1 Data 0.665°

Channel 2 Data -8.665°

Channel 3 Data 2°

Channel 4 Data -7.33°

Channel 5 Data 3.33°

Channel 6 Data -6°

Channel 7 Data 4.665°

Channel 8 Data -4.665

Channel 9 Data 6°

Channel 10 Data -3.33°

Channel 11 Data 7.33°

Channel 12 Data -2°

Channel 13 Data 8.665°

Channel 14 Data -0.665°

Channel 15 Data 10°

By querying the table above, we can get the vertical angle of the 16-channel data.

3.4.5.2. Cartesian Coordinate Representation

To obtain the vertical angle, horizontal angle, and distance parameters of the LiDAR,

and convert the angle and distance information in polar coordinates to the x, y, and

z-coordinates in the right-hand Cartesian coordinate system. The conversion

relationship is shown in the following formula:

46

The r is the distance, α is the vertical angle, θ is the horizontal rotation angle (the

horizontal correction angle needs to be considered in the calculation), and x, y, and z

are the coordinates of the polar projection onto the x, y, and z axes.

Figure 27: Cartesian Plane coordinates

3.4.6. Point cloud Data Time Calculation

To accurately calculate the time of point cloud data, we need to obtain the data packet

timestamp and device package UTC time output by the LiDAR. The timestamp and

UTC time come from the same synchronization source, such as a GPS or NTP server.

The measurement time interval of a group of data in each data block of 16-LiDAR is

50us. The data packet has 12 data blocks, and one data block contains two groups of

16-channel data.

A data packet has (16 * 2) * 12 = 384 channels of data in total, and the packet packing

time is about (50us * 2) * 12 = 1.2ms. The data rate is 1s / 1.2ms = 833.3 data packets /

second. Double-echo mode data rate doubles.

3.4.6.1. GPS Time Calculation

The timestamp in the data packet is a relative time of microseconds, which is defined as

the packaging time (data packet end time) of the last channel of laser measurement

data in the data packet, which is less than 1 second, So to calculate the absolute time of

the end of the data packet, we need to first Get the 4-byte microsecond timestamp in

the data packet, and then get the UTC time (greater than 1 second) from the device

packet. Adding the two is the exact time at which the data packet ends.

EXACT TIME = DIFOP TIME + MOSP TIMESTAMP

47

3.4.6.2. Channel Data Time Calculation

We have to obtain the exact time of the end of the data packet. Each UDP contains 12

data blocks. And each data block contains 2 groups of 16 channels of light emitting time

and the light emitting time interval of each channel. The precise measurement time of

each channel data can be calculated.

(a) Data Block Time - Each data block of C16 LiDAR contains 2 groups of 16 channel

measurement data. The end time interval of each group of channels in each data

block is 50us, each data block (single echo mode) or each parity block pair (Double

echo mode) The end time interval is 2 * 50us = 100us. Assuming that the absolute

time of the end of the data packet is TPacket_end, the steps to calculate the end

time of the data block (N) are as follows:𝑇
𝐵𝑙𝑜𝑐𝑘_𝑒𝑛𝑑

1) Single Echo Mode

The data packet contains 12 data blocks, each data block includes two sets of single

measurement data of 16 laser channels. The end time of each data block is the end

time of all 2 groups of 16 channels. Calculate the end time of each data block as

follows

(N) = (– 100*(12-N))us,（N = 1,2，...,12）𝑇
𝐵𝑙𝑜𝑐𝑘_𝑒𝑛𝑑

𝑇
𝑃𝑎𝑐𝑘𝑒𝑡_𝑒𝑛𝑑

(N) represents the end time of the N th data block𝑇
𝐵𝑙𝑜𝑐𝑘_𝑒𝑛𝑑

2) Dual Echo Mode

(2N) = (2N-1) = (– 100*(6-N))us, （N = 1,2，...,6）𝑇
𝐵𝑙𝑜𝑐𝑘_𝑒𝑛𝑑

𝑇
𝐵𝑙𝑜𝑐𝑘_𝑒𝑛𝑑

𝑇
𝑃𝑎𝑐𝑘𝑒𝑡_𝑒𝑛𝑑

(M) represents the end time of the N th data block, M=2N or (2N-1)𝑇
𝐵𝑙𝑜𝑐𝑘_𝑒𝑛𝑑

(b) Point Cloud Data Time Calculation - The C16 LiDAR 2° / 1.33° type fixed the time

interval of each channel as: T = 50us / 16 = 3.125us. There is a fixed correspondence

between the lighting time and the UDP packet encapsulation order. Assuming that

the lighting time of Channel 0 is T0, the corresponding lighting time of 16 channels

is shown in the table below:

Table 10: C16 LiDAR Channel Glowing Time

UDP (Channel) Vertical Angle Glowing moment（T=3.125us）

Channel 0 Data -15° T0

Channel 1 Data 1° T0+(1*T)

Channel 2 Data 13° T0+(2*T)

Channel 3 Data 3° T0+(3*T)

Channel 4 Data -11° T0+(4*T)

Channel 5 Data 5° T0+(5*T)

Channel 6 Data -9° T0+(6*T)

Channel 7 Data 7° T0+(7*T)

48

Channel 8 Data -7° T0+(8*T)

Channel 9 Data 9° T0+(9*T)

Channel 10 Data -5° T0+(10*T)

Channel 11 Data 11° T0+(11*T)

Channel 12 Data -3° T0+(12*T)

Channel 13 Data 13° T0+(13*T)

Channel 14 Data -1° T0+(14*T)

Channel 15 Data 15° T0+(15*T)

After the end time of each data block is obtained, the precise measurement time of the

point cloud data of each channel in the data block can be calculated according to the

correspondence between the channel data packing order and the light emission time

in the table above.

3.4.7. Implementation in Software Interface

In the Leishen’s Windows software, we can connect an ethernet cable to the 3D LiDAR,

we will start getting the 3D point clouds of the indoor environment as shown in Figure

28(a) and (b). We can change different filters and also record the point cloud data

either in the form of excel sheet, rosbag or video.

49

Figure 28: (a) Top View and (b) Side view of 3D LiDAR point cloud scan

3.4.8. Implementation in Simulation

We have collected the rosbags that we have generated from the windows software, now

we will try the LiDAR using ROS Melodic and try to get output for SLAM in simulation

Rviz.

3.4.8.1. Read the data from LiDAR

When the LiDAR is connected and is ready to use, if we already have the data

permissions port:

$ ls -l /dev/tty

We should see a new item labelled ACMX or USBX, X being a figure equal or higher

than zero (depending on how many ports are already in-use).

Our output will be in the form of:

$ crw-rw-XX- 1 root dialout 166, 0 2016-09-12 14:18 /dev/ttyACM0

or

$ crw-rw-XX- 1 root dialout 166, 0 2016-09-12 14:18 /dev/ttyUSB0

● If XX is rw, then the laser is configured properly.

● If XX is –, then the laser is not configured properly and we need to change

permissions like below:

$ sudo chmod a+rw /dev/ttyACM0

or

50

$ sudo chmod a+rw /dev/ttyUSB0

Once the permissions are configured, we have to download the package of the LiDAR

manufacturer.

For downloading LiDAR package from GitHub in the src folder of the ROS

environment, the commands are:

$ cd ~/your_workspace/src

$ git clone #github link of the manufacturer#

$ cd ..

$ catkin_make

$ source devel/setup.bash

Inside the launch folder, launch with the same name as the LiDAR:

$ roslaunch lslidar_c16_decoder lslidar_c16.launch

To check that the LiDAR is publishing to /scan, we will use

$ rostopic list

All active topics will be listed, check that /scan is present. Next, check the messages

being published to /scan by using:

$ rostopic echo /scan

We will be successfully able to stream data from the LiDAR. We can visualize the data

on RViz with the command line below.

$ rosrun rviz rviz

3.4.8.2. Implementing LiDAR processed data

hdl_graph_slam is an open source ROS package for real-time 6DOF SLAM using a 3D

LIDAR. It is based on 3D Graph SLAM with NDT scan matching-based odometry

estimation and loop detection. It also supports several graph constraints, such as GPS,

IMU acceleration (gravity vector), IMU orientation (magnetic sensor), and floor plane

51

http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
https://github.com/koide3/hdl_graph_slam

(detected in a point cloud). We tested this package with our Leishen C16 LiDAR.

Output is shown in Figure 38.

4. Results and Discussion

4.1. Target Detection

We implemented YOLO using MYNT-EYE-D camera and the result is shown in Figure 29

below.

Figure 29: Image scene from a object detection video sequence

4.2. Indoor Scene Classification

The experiments consist of three modules. All the experiments including training and

testing are performed on the MIT-67 dataset as mentioned earlier. The five categories that

we have chosen for the experiments are: bathroom, bedroom, living room, kitchen and

dining room. In total 600 image scene samples of different categories of MIT-67 dataset

were taken for the experiment. The sample images are shown in Figure 21. For achieving

better accuracy in our proposed method, we have used 5-fold cross-validation for testing

the accuracy. Faster R-CNN detector was developed by using Caffe+Python in the

JupyterHub Notebook and the rest of the parts were tested in Matlab. The experiments

were conducted on an AMD Ryzen 7 processing station equipped with Radeon 2.5 GHz 8

core CPU and NVIDIA Jetson Nano 2 GB GPU.

52

Figure 30: Some indoor scene image samples from MIT-67 dataset

4.2.1. Evaluation of different parameters

We are using two key parameters for evaluating our method: layer combination and

threshold of the Faster R-CNN detector. For layer combination, Level n is denoting the

combination of any Layer n to Layer 0 . For example, Level 3 is a layer combination of

Layer 0, Layer 1, Layer 2 and Layer 3. For the second parameter, threshold T of the

Faster R-CNN based object detector will be assessed. The performance of the detector

will be assessed on the basis of different four values of T. If the value of T is smaller

then high values of false positives will be generated, while if the value of T is higher

then needed objects will be missed in detection.

Figure 31: The Class-specific recognition accuracy of our proposed method under various layer
combination and detector threshold

Using various layer combinations and detector threshold, the class-specific recognition

accuracy for our method is shown in Figure 31. The complete recognition accuracy for

our method using different parameters is also shown in Table 11. When we add more

layers into the layer combination, the recognition accuracy increases and the maximum

53

value achieved is at Level2. If we keep increasing layers, the accuracy starts decreasing

sharply. This happens because the highly-fine partition increases the chances of adding

more noise as well as higher values of feature dimensions. If T is increased the results

do not show any proper trend for that. So from the experiments, it is observed that

Level2 and T=0.3 are the selected parameters for our proposed method.

Table 11: Complete recognition accuracy of our proposed method for different parameters.

4.2.2. Evaluation on different methods for Feature Extraction

Using different methods or schemes of feature extraction, we will evaluate the

performance of our proposed method. Instead of using mid-level retrieved from

object-based low-level features, we will use three other different kinds of features: LBP,

Gabor and saliency map. The class-specific recognition accuracy achieved using four

different methods on different categories of samples is shown in Figure 32. In

comparison to three mentioned methods, our method achieved better performance.

While our method has shown accuracy of 88.1%, other methods’ accuracy was quite

lower (45.3% by LBP, 21.4% by Gabor and 41.9% by Saliency). So, it is observed that

our novel BoW model for mid-level feature building has shown better performance

indoor scene recognition.

Figure 32: The class-specific recognition accuracy achieved using four different methods on
different categories of samples

The confusion matrices are created for the four methods is shown in Figure 33. While

the Gabor method barely recognised indoor scene images, LBP and saliency maps were

more selective than Gabor. They performed better for most indoor scene images. Our

method attained top accuracy in all four schemes for all the categories of indoor scene

images.

54

Figure 33: Comparison of our method with 3 other methods using confusion matrix for feature
extraction based scene recognition

4.2.3. Evaluation on different classifiers

Figure 34: The class-specific recognition accuracy of our method in comparison to other
classifier

By comparing our method of SRC classifier with different classifiers of SVM and KNN,

we will evaluate the performance of our method for feature extraction. The comparison

of class-specific recognition accuracy and confusion matrices of these three classifiers

are shown in Figure 34 and 35. Our proposed method of SRC is better than SVM and

KNN as the total accuracy achieved by three classifiers are: 88.1%, 76.4% and 72.6%

respectively. It is proved from these results that our method of sparse representation is

more efficient and effective for indoor scene recognition. In comparison to SVM and

55

KNN, it has been proved that SRC is more effective towards partial or full occlusion,

changes in illumination and pose variation. In confusion matrices, SRC easily achieved

better accuracy of 84% in comparison to SVM (60%) and KNN (46%). This showed that

in even similar image samples from categories like living room and dining room, SRC is

very accurate in recognizing scene images.

Figure 35: Comparison of confusion matrices of our method of SRC to different classifiers: SVM and
KNN

4.3. Visual SLAM

In Figure 36 below, two screenshots from the KITTI00 sequence have been shown. It

consists of the grid map and its navigation result in Rviz.

56

Figure 36: 2D Occupancy grid map and its navigation result for KITTI00

In Figure 37, we have shown a 2D occupancy grid map and navigation results for our

sequence.

57

Figure 37: 2D occupancy grid and navigation result for our sequence

4.4. 3D-SLAM

Using hdl_graph_slam, we performed 3D SLAM and created a 3D occupancy grid map (as

shown in Figure 38), which we can use for navigation also.

Figure 38: 3D SLAM generated occupancy grid map

58

https://github.com/koide3/hdl_graph_slam

5. Conclusions

We built a service robot incorporated with different sensors to perform many different

purposes for indoor environments. We described Target detection strategy to solve the

problem of real-time sequence. We described indoor scene classification to perform scene

recognition to solve the problem of difficulties to recognize indoor scenes. We performed

Visual-SLAM using ORB-SLAM so we can accumulate 3D point clouds to generate 2D

occupancy grid maps. Finally we performed 3D-LiDAR based SLAM to solve the issue of

mobile robots to navigate through a 3D environment by creating a three dimensional map

using 3D point clouds. This concludes that an efficient service robot is created with many

capabilities to perform inside indoor environments.

59

References

[1] K. Cresswell, S. Cunningham-Burley and A. Sheikh, "Health Care Robotics: Qualitative Exploration of
Key Challenges and Future Directions", Journal of Medical Internet Research, vol. 20, no. 7, p. e10410,
2018. Available: 10.2196/10410.

[2] “Robotics in Healthcare: The Future of Medical Care – Intel", Intel, 2021. [Online]. Available:
https://www.intel.com/content/www/us/en/healthcare-it/robotics-in-healthcare.html. [Accessed: 24- May-
2021].

[3] "How are Robots Changing Healthcare? - Healthcare Administration Degree Programs", Healthcare
Administration Degree Programs, 2021. [Online]. Available:
https://www.healthcare-administration-degree.net/faq/how-are-robots-changing-healthcare/. [Accessed: 24-
May- 2021].

[4] "Benefits of Robotics in Healthcare: Tasks Medical Robots Will Undertake", The Medical Futurist, 2021.
[Online]. Available: https://medicalfuturist.com/robotics-healthcare/. [Accessed: 24- May- 2021].

[5] J. Brownlee, "A Gentle Introduction to Object Recognition With Deep Learning", Machine Learning
Mastery, 2021. [Online]. Available:
https://machinelearningmastery.com/object-recognition-with-deep-learning/. [Accessed: 24- May- 2021].

[6] "Object Detection Guide | Fritz AI", Fritz.ai, 2021. [Online]. Available: https://www.fritz.ai/object-detection/.
[Accessed: 24- May- 2021].

[7] "Manal El Aidouni", Manal El Aidouni, 2021. [Online]. Available:
https://manalelaidouni.github.io/manalelaidouni.github.io/Understanding%20YOLO%20and%20YOLOv2.html
. [Accessed: 24- May- 2021].

[8] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Region-Based Convolutional Networks for Accurate
Object Detection and Segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
38, no. 1, pp. 142-158, 2016. Available: 10.1109/tpami.2015.2437384.

[9] K. He, X. Zhang, S. Ren and J. Sun, "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual
Recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904-1916,
2015. Available: 10.1109/tpami.2015.2389824.

[10] R. Girshick, "Fast R-CNN", arXiv.org, 2021. [Online]. Available: https://arxiv.org/abs/1504.08083.
[Accessed: 24- May- 2021].

[11] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks", arXiv.org, 2021. [Online]. Available: https://arxiv.org/abs/1506.01497.
[Accessed: 24- May- 2021].

[12] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real-Time Object
Detection", arXiv.org, 2021. [Online]. Available: https://arxiv.org/abs/1506.02640. [Accessed: 24- May- 2021].

[13] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger", arXiv.org, 2021. [Online]. Available:
https://arxiv.org/abs/1612.08242. [Accessed: 24- May- 2021].

[14] J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement", arXiv.org, 2021. [Online].
Available: https://arxiv.org/abs/1804.02767. [Accessed: 24- May- 2021].

60

[15] "Scene Classification Using Deep Learning", Medium, 2021. [Online]. Available:
https://medium.com/mathworks/scene-classification-using-deep-learning-853c64318f6b#:~:text=Automatic%
20scene%20classification%20. [Accessed: 24- May- 2021]

[16] "Indoor scene recognition based on deep learning and sparse representation", Doi.org, 2017. [Online].
Available: https://doi.org/10.1109/fskd.2017.8393385. [Accessed: 24- May- 2021].

[17] "Recognizing indoor scenes", Doi.org, 2009. [Online]. Available:
https://doi.org/10.1109/cvpr.2009.5206537. [Accessed: 24- May- 2021].

[18] "A Discriminative Representation of Convolutional Features for Indoor Scene Recognition", Doi.org,
2016. [Online]. Available: https://doi.org/10.1109/tip.2016.2567076. [Accessed: 24- May- 2021].

[19] "Orientational Pyramid Matching for Recognizing Indoor Scenes", Doi.org, 2014. [Online]. Available:
https://doi.org/10.1109/cvpr.2014.477. [Accessed: 24- May- 2021].

[20] "Indoor Scene Recognition Based on the Weighting Spatial Information Fusion", Doi.org, 2012. [Online].
Available: https://doi.org/10.1109/isdea.2012.564. [Accessed: 24- May- 2021].

[21] L. Li, H. Su, Y. Lim and L. Fei-Fei, "Object Bank: An Object-Level Image Representation for High-Level
Visual Recognition", 2013. .https://doi.org/10.1007/s11263-013-0660-x

[22] "Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories",
Doi.org, 2006. [Online]. Available: https://doi.org/10.1109/cvpr.2006.68. [Accessed: 24- May- 2021].

[23] "Robust Face Recognition via Sparse Representation", Doi.org, 2008. [Online]. Available:
https://doi.org/10.1109/tpami.2008.79. [Accessed: 24- May- 2021].

[24] "Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception
Age", Doi.org, 2016. [Online]. Available: https://doi.org/10.1109/tro.2016.2624754. [Accessed: 24- May-
2021].

[25] Ai.stanford.edu, 2009. [Online]. Available: http://ai.stanford.edu/~mquigley/papers/icra2009-ros.pdf.
[Accessed: 24- May- 2021].

[26] "ORB-SLAM: A Versatile and Accurate Monocular SLAM System", Doi.org, 2015. [Online]. Available:
https://doi.org/10.1109/tro.2015.2463671. [Accessed: 24- May- 2021].

[27] "ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras", Doi.org,
2021. [Online]. Available: https://doi.org/10.1109/tro.2017.2705103. [Accessed: 24- May- 2021].

[28] "Using occupancy grids for mobile robot perception and navigation", Doi.org, 2021. [Online]. Available:
https://doi.org/10.1109/2.30720. [Accessed: 24- May- 2021].

[29] "FLAT2D: Fast localization from approximate transformation into 2D", Doi.org, 2016. [Online]. Available:
https://doi.org/10.1109/iros.2016.7759305. [Accessed: 24- May- 2021].

[30] "raulmur/ORB_SLAM2", GitHub, 2021. [Online]. Available: https://github.com/raulmur/ORB_SLAM2.
[Accessed: 24- May- 2021].

[31] "camera_calibration/Tutorials/MonocularCalibration - ROS Wiki", Wiki.ros.org, 2021. [Online]. Available:
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration. [Accessed: 24- May- 2021].

61

[32] "Are we ready for autonomous driving? The KITTI vision benchmark suite", Doi.org, 2021. [Online].
Available: https://doi.org/10.1109/cvpr.2012.6248074. [Accessed: 24- May- 2021].

[33] "A benchmark for the evaluation of RGB-D SLAM systems", Doi.org, 2021. [Online]. Available:
https://doi.org/10.1109/iros.2012.6385773. [Accessed: 24- May- 2021].

[34] "The Bresenham Line-Drawing Algorithm", Cs.helsinki.fi, 2021. [Online]. Available:
https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html. [Accessed: 24- May- 2021].

[35] "gazebo - ROS Wiki", Wiki.ros.org, 2021. [Online]. Available: http://wiki.ros.org/gazebo. [Accessed: 24-
May- 2021].

[36] "amcl - ROS Wiki", Wiki.ros.org, 2021. [Online]. Available: http://wiki.ros.org/amcl. [Accessed: 24- May-
2021].

[37] "rviz - ROS Wiki", Wiki.ros.org, 2021. [Online]. Available: http://wiki.ros.org/rviz. [Accessed: 24- May-
2021].

[38] "A solution to the simultaneous localization and map building (SLAM) problem", Doi.org, 2021. [Online].
Available: https://doi.org/10.1109/70.938381. [Accessed: 24- May- 2021].

[39] "Constructing maps for indoor navigation of a mobile robot by using an active 3D range imaging
device", Doi.org, 2021. [Online]. Available: https://doi.org/10.1109/iros.1990.262380. [Accessed: 24- May-
2021].

[40] "New technologies and applications in robotics | Communications of the ACM", Doi.org, 2021. [Online].
Available: https://doi.org/10.1145/175247.175253. [Accessed: 24- May- 2021].

[41] J. Jung, S. Yoon, S. Ju and J. Heo, "Development of Kinematic 3D Laser Scanning System for Indoor
Mapping and As-Built BIM Using Constrained SLAM", 2021. .

[42] Int-arch-photogramm-remote-sens-spatial-inf-sci.net, 2021. [Online]. Available:
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W3/543/2017/isprs-archives-XLII-2-W
3-543-2017.pdf. [Accessed: 24- May- 2021].

[43] "A quantitative study of tuning ROS gmapping parameters and their effect on performing indoor 2D
SLAM", Doi.org, 2021. [Online]. Available: https://doi.org/10.1109/roma.2016.7847825. [Accessed: 24- May-
2021].

[44] V. Lehtola et al., "Comparison of the selected state-of-the-art 3D indoor scanning and point cloud
generation methods", Mendeley, 2021. [Online]. Available:
https://www.mendeley.com/catalogue/06ab8db8-4e0f-3693-b8eb-0210593cca74/. [Accessed: 24- May-
2021].

[45] "MSGD: Scalable back-end for indoor magnetic field-based GraphSLAM", Doi.org, 2021. [Online].
Available: https://doi.org/10.1109/icra.2017.7989444. [Accessed: 24- May- 2021].

[46] 2021. [Online]. Available: http://wiki.ros.org/Bags/Format. [Accessed: 24- May- 2021].

62

