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Abstract 

Seagrasses are angiosperm plants that are completely adapted to life in seawater. They are 

distributed widely across the climatic regions, ranging from the tropics to temperate regions, in 

both inter-tidal and sub-tidal zones. Multiple ecosystem services are recognized as being 

supported by seagrass meadows, which recently has included appreciation role in carbon 

sequestration. Seagrass meadows, however, have been degraded in both terms of area and habitat 

quality across the globe, leading to a significant loss of ecosystem services and human livelihood 

support. This ongoing degradation has resulted in an urgent need to develop tools for assessing 

the temporal changes of extant meadows and accurate estimation of seagrass biological 

parameters, which will contribute to a sustainable conservation strategy into the future.  

This thesis describes the use of a range of freely available Earth observation products, including 

multi-spectral imagery from Landsat and Sentinel-2, and synthetic aperture radar (SAR) products 

from Sentinel-1, coupled with a range of machine learning (ML) and meta-heuristic optimization 

algorithms, to develop novel and advanced techniques for remote sensing of seagrass. The work 

used field validation data from Tauranga Harbor, New Zealand, and specifically targeted 

mapping, change detection, and estimation of seagrass distribution and biomass. 

The relatively small and patchy meadows of Zostera muelleri in this harbor can be mapped using 

a three-category classification (dense, sparse and none) with up to 91% accuracy for dense and 

75% for sparse meadows using the machine learning algorithm Rotation Forest with Sentinel-2 

imagery. Despite a slightly lower accuracy (90%), the algorithm Canonical Correlation Forest 

also shows merit for categorical seagrass mapping.  
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Historic Landsat multispectral satellite data used with ML models was able to map accurately the 

change in distribution of seagrass meadows over 29 years (1989 - 2019). For this binary mapping 

application (presence/absence) the CatBoost model obtained over 90% accuracy. Historic 

imagery indicates an approximately 50% of seagrass loss, from 2,424 ha in the year 1989 down 

to 1,184 ha in the year 2019 in Tauranga Harbor. Most of the early loss was from the northern 

and southern parts of the harbor and results were consistent with published estimates of change 

based on aerial photography. 

In addition, a mapping scheme of seagrass distribution was developed from SAR data and a 

fusion of the multi-spectral and SAR data was developed for seagrass aboveground biomass 

(AGB) estimation. Optimal results were obtained using a combination of ML methods and meta-

heuristic optimization. The seagrass distribution was mapped at an accuracy over 90% using the 

Extreme Gradient Boost (XGB) whilst the AGB map at 10 m spatial resolution was produced at 

75% accuracy using the XGB model together with Sentinel-2 images and Particle Swarm 

Optimization (PSO).  

The last part of the thesis describes the development of a web-based application to allow the 

advances in this research to be shared with a broader community and strengthen international and 

domestic collaboration in seagrass protection and conservation.  

This study provides in-depth and advanced methods for seagrass resource inventory, maximizing 

the utilization of remotely sensed data, state-of-the-art ML and metaheuristic optimization 

algorithms to accurately map distribution and estimate desired biophysical parameters. The 

proposed methods are open-source and applicable across the globe, providing a complete toolset 

for both scientist and managers in aquatic resource management.  
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Chapter 1 General introduction and overview 

1.1. Introduction 

Seagrass is an angiosperm that has adapted to complete its life cycle in seawater. It frequently 

grows in dense intertidal or subtidal meadows, which provide several valuable ecosystem 

services (Nordlund et al., 2016), including breeding and nursery grounds, water quality 

improvement, wave energy attenuation and coastline stabilization. In recent years, blue carbon 

initiative (Fourqurean et al., 2012; Macreadie et al., 2019), which indicates the sequestrated 

carbon inside such meadows, has provided a new perspective on the ecological importance of 

this ecosystem, in terms of mitigating global warming (Ramesh et al., 2018). The seagrass 

resource, however, is reported to be in significant decline globally (Waycott et al., 2009), which 

might lead to a mass loss of ecosystem services (Nordlund et al., 2016; Githaiga et al., 2019), 

enhanced CO2 emission (Salinas et al., 2020), and a reduction in its contribution to climate 

change mitigation. The current degradation has led to a need for accurate mapping and 

monitoring tools (Unsworth et al., 2018; Dat Pham et al., 2019) to retrieve more detailed, real 

time information on seagrass distribution and biophysical parameters that will support 

monitoring, reporting, and verification (MRV), to inform sustainable restoration and 

conservation of this resource. 

Several attempts have been made to map and monitor extant seagrass meadows (Dat Pham et al., 

2019), with significant efforts on field data investigation, and accuracy improvement of retrieval 

models for seagrass detection and biophysical parameter estimation using remote sensing 

approaches. Traditionally, field-based sampling and analysis was preferred due to the high 

accuracy in measurement and estimation of selected parameters (Winters et al., 2017). This 
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approach, however, is time consuming, has high labor costs and is only applicable to a small 

spatial area. The application of space-born remote sensing, on the contrary, compensates for the 

drawbacks of the field-based approach, and has led to a rapid development of various types of 

image processing, classification, and modeling during the last decade (Devi et al., 2015; Joshi et 

al., 2016). Despite the successful employment of remote sensing-based mapping, numerous 

limitations have existed and are discussed in the literature (Xie et al., 2008; Kuenzer et al., 2011; 

Joshi et al., 2016). The main drawbacks include the poor spatial resolution of most satellite 

instruments, complexities in satellite image processing, impacts of the atmosphere and water 

column on the image pixel values, and an overall low accuracy of retrieval models, which leaves 

various gaps for further studies. The cost of many higher resolution satellite products is also a 

barrier to update application to the seagrass ecosystem.  

The literature review in Chapter 2 revealed a limited number of research papers describing 

seagrass mapping from Sentinel-2 imagery (Hossain et al., 2015; Dat Pham et al., 2019), which 

is free-of-charge to access and offers up to 10 m spatial resolution. Even fewer studies used 

modern machine learning (ML) models to improve the accuracy of mapping. In addition, long-

term observation of seagrass dynamics is not always conducted internationally and the 29 years 

of change detection (1989 - 2019) described in Chapter 4, is the first such study conducted for 

seagrass meadows in New Zealand. We also found that the estimation of Z. muelleri’s 

aboveground biomass (AGB) was either high cost in intensive field data collection/ using 

commercial satellite image or low accuracy in retrieval models (Roelfsema et al., 2014; 

Unsworth et al., 2018).  

In this study, which was conducted in Tauranga Harbor (New Zealand), I attempted to develop 

novel, low cost, open-source and reliable methods for accurate mapping and long-term change 
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detection of smaller sized and patchy seagrass meadows, in parallel with accurate estimation of 

seagrass AGB. This was undertaken using a combination of freely available remotely sensed 

data, machine learning (ML) models, and meta-heuristic optimization. Landsat, Sentinel-2 multi-

spectral and Sentinel-1 synthetic aperture radar (SAR) satellite images were the main data 

sources used. State-of-the-art and open source image processing and modeling frameworks were 

applied to deliver the most accurate and reliable mapping/ retrieval of selected parameters in the 

study. In addition, a demonstration of a web based geographical information system (web-GIS) 

application is presented to visualize the historical and near-real time seagrass data, which support 

collaboration, and provide readily accessible information source a better reference for 

policymakers. 

The objectives of this research involved: 

• Large-scale mapping and long-term change detection of Z. muelleri in Tauranga Harbor 

(New Zealand) using Landsat, SAR (Sentinel-1) and Sentinel-2 satellite images and 

machine learning.  

• Estimation of aboveground biomass (AGB) of seagrass meadows in Tauranga Harbor 

(New Zealand) using fused multi-spectral (Sentinel-2) and SAR (Sentinel-1) images, 

machine learning, and meta-heuristic optimization.  

• Creation of an historical database of seagrass distribution and biomass, toward a dynamic 

web-based system for visualization and query.  
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1.2. Study site  

 

Figure 1.1. Tauranga Harbor - Study site 
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The study site is located in Tauranga Harbor (Bay of Plenty, New Zealand, Figure 1), a habitat 

that supports more than 1,184 ha (Ha et al., 2020) of seagrass. The site was selected due to the 

following reasons:  

• Largest area of seagrass in New Zealand with extant patchy and scattered meadows  

• Well-known tidal ranges  

• Accessibility during low tide  

• Soft substratum (better for soil core sampling)  

• Availability of secondary environmental data and aerial images that is valuable for 

change detection and accuracy assessment  

• A popular place for tourism, with agriculture, and horticulture activities leading to a 

potential risk of high sediment conditions.  

• Homogeneous surface with known water depth, facilitate good field data collection for 

spatial analysis of seagrass biomass, and carbon content for relating to remote sensing 

data.  

• Previous mapping has been conducted at different timelines, but with different sensors 

and processing techniques without a robust accuracy assessment (Park, 2011). This 

approach may lead to uncertainty in detection of change, and therefore motivated us to 

unify the sensors, spatial resolution, and image processing with state-of-the-art 

processing workflows to derive the most reliable and applicable approaches for seagrass 

mapping and retrieval of AGB in Tauranga Harbor.  
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1.3. Thesis structure 

 

Figure 1.2. Thesis structure and flow-chart of the research 
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The thesis is structured as seven chapters, including the introduction (Chapter 1), literature 

review (Chapter 2), research findings (Chapter 3, 4, 5, 6), synthesis and future research (Chapter 

7). The first two chapters introduce the general context, motivation of the research, current gaps 

in the literature, and research questions (Chapter 2). The following chapters emphasize 

contributions to the development of novel and open-source methods for accurate mapping of 

sparse, patchy seagrass meadows (Chapter 3), reliable and long-term change detection of 

seagrass meadows (Chapter 4), consistent and accurate mapping of seagrass distribution and 

AGB using fusion data of multi-spectral and SAR images (Chapter 5), geospatial data 

visualization and collaboration (Chapter 6). The final chapter concludes the main findings of the 

research and suggests cutting-edge future research topics, using remotely sensed data, ML 

models, and meta-heuristic optimization for accurate mapping and effective management of 

aquatic resources.  

The next paragraphs briefly describe the content of each chapter in the thesis.  

Chapter 1. General introduction and overview 

Chapter 1 presents the necessity and state of research. In this chapter, the importance of the 

seagrass ecosystem is introduced, specifically the general current gaps for seagrass mapping, 

change detection, and estimation of seagrass AGB. Then, the research plan is presented together 

with the summary of the main finding of each research chapters.   

Chapter 2. Literature review  

Chapter 2 summarizes previously reported research for seagrass mapping and change detection, 

and biomass estimation using space-borne remote sensing data. The research methodology and 

results are analyzed, the limitations are discussed to determine the current gaps in the field of 
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study. Then, the following chapters attempt to answer the given questions in a format suitable for 

submission as research papers, two of which are already published.  

Chapter 3. A comparative assessment of ensemble-based machine learning and maximum 

likelihood methods for mapping seagrass using Sentinel-2 imagery in Tauranga Harbor, 

New Zealand 

This chapter has been published as a peer-reviewed paper in the Remote Sensing journal 

(https://www.mdpi.com/2072-4292/12/3/355/htm). The published paper is attached as Appendix 

2. 

Chapter 3 focuses on the mapping of Z. muelleri distribution using Sentinel-2 imagery and ML 

models. This paper develops a novel mapping technique using ML models (Random Forest, 

Rotation Forest, Canonical Correlation Forest) for the small size, patchy seagrass meadows in 

Tauranga Harbor, in comparison with the more traditional method (Maximum Likelihood). The 

results contribute novel, accurate mapping methods for seagrass which use open sources data and 

models, is reliable, and applicable to other species across various regions in the world. 

Chapter 4. Detecting multi-decadal changes in seagrass cover in Tauranga Harbor, New 

Zealand, using Landsat imagery and boosting ensemble classification techniques 

This chapter has been published as a peer-reviewed paper in the ISPRS International Journal of 

Geo-Information (https://www.mdpi.com/2220-9964/10/6/371). The published paper is attached 

as Appendix 4.  

Chapter 4 attempts to understand spatial and temporal change of seagrass meadows in Tauranga 

Harbor, which is impacted by rapid development of agriculture in the northern part and 

urbanization in the southern part of the harbor. ML models were applied to historical Landsat 

https://www.mdpi.com/2072-4292/12/3/355/htm
https://www.mdpi.com/2220-9964/10/6/371


9 

 

data over 29 years (1990 - 2019), and methods developed for fitting to historical Landsat images 

and patchy seagrass meadows in the study site. Our results detected a long-term decline of 

seagrass area, motivating the suggestion to use long-term Earth observation data (Landsat 

imagery) and ML models for large-scale mapping of temporal changes of seagrass ecosystem 

globally. 

Chapter 5. The use of radar and optical satellite imagery combined with advanced machine 

learning and meta-heuristic optimization techniques to detect and quantify above ground 

biomass of inter-tidal seagrass in a New Zealand estuary  

This chapter has been published as a peer-reviewed paper in the International Journal of Remote 

Sensing (http://dx.doi.org/10.1080/01431161.2021.1899335). The published paper is attached as 

Appendix 6. 

Chapter 5, for the first time, attempts the binary mapping of seagrass meadows using SAR 

image, and accurately estimates the seagrass aboveground biomass (AGB) using a combination 

of SAR and multi-spectral remotely sensed data, ML models, and meta-heuristic optimization. 

We initially applied the SAR data (i.e Sentinel-1 imagery) to map the seagrass distribution in 

Tauranga Harbor. We then developed novel approaches integrating both multi-spectral and SAR 

data with the deployment of ML models and meta-heuristic optimization for the retrieval of the 

seagrass AGB in the study site. The paper contributes advanced and general methods for 

seagrass mapping from SAR data and accurate estimation of seagrass AGB in the field. 

Chapter 6. A novel and open source web-GIS approach for seagrass data visualization and 

collaboration 
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In chapter 6, a local host demonstration of the open source geospatial database and web-based 

interface was introduced for seagrass distribution and AGB visualization, data query and 

collaboration. The motivation was to develop very low-cost approaches that will allow remote 

sensing to be used widely for seagrass mapping. It implements the QGIS desktop for geo-spatial 

data visualization, uses a QGIS server for QGIS desktop and web client connection, PostgreSQL 

for geo-spatial database management, PostGIS for data connection between QGIS desktop and 

PostgreSQL, and Lizmap to publish the spatial data to the world wide web. This approach is free 

to access, ease to implement, and is capable of further extension to various geo-spatial databases 

in the manner of a secure, elegant, and fast loading web-based service. This chapter contributes a 

very simple approach to seagrass mapping, which is suitable to different levels of management, 

is open-access, and stable in implementation.  

Chapter 7. Synthesis and future research 

Chapter 7 synthesize important results of the research and derives the essential 

recommendations. It synthesizes the key points of large-scale seagrass mapping and change 

detection using remote sensing data and ML models, that were developed in this work. The 

important findings for accurate mapping from SAR data and estimation of seagrass AGB are 

presented, and suggestions made for cutting-edge research topics in the future. 
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Chapter 2 Literature review 

2.1. An introduction to seagrass in New Zealand 

Seagrasses are a polyphyletic group of angiosperm plants that are adapted to grow in brackish 

and seawater and are widely distributed in intertidal and shallow sub-tidal waters around much of 

the world. Seagrass provides many valuable ecosystem services, with an estimated total 

economic value of approximately 1.9 trillion US dollar per year (Waycott et al., 2009). 

Currently, 24 ecosystem services have been described (Nordlund et al., 2016), including acting 

as an aquatic habitat, as a foodstuff, nursery, as a form of carbon sequestration, as a raw material, 

to aid coastal protection and sediment stabilization, with potential for mariculture, for water 

purification, and for more indirect uses as a cultural artifact, for education, and tourism. 

In New Zealand, there is a single seagrass species, Zostera muelleri (Park, 2011; Wilton et al., 

2016). It is found in both sub-tidal and intertidal zones, but mostly through intertidal areas, from 

Parengarenga harbor in the north to Stewart Island in the south (Green & Short, 2003; Tara et al., 

2019). Table 2.1 and Figure 2.1 present the location and area of Z. muelleri in New Zealand, and, 

where possible, indicate recent change. Short-term monitoring shows no significant change in 

seagrass area. However, long-term mapping of seagrass distribution presents a different story in 

which seagrass area change was detected from aerial mapping over a period of 20 - 60 years 

(Park, 2011; Matheson & Wadhwa, 2012).  
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Table 2.1. Seagrass distribution and area in New Zealand 

(Where data are available for more than one year, deviation of change is indicated as + (increased), - 

(decreased) or (0) no change)  

Location Year Area (ha) Change 

Tauranga Harbor 19592 4,424  

 20112 2,744 - 

Ōhiwa Estuary 20031 107  

 20112 100.5 - 

South Bay (Slipper Island) 20042 3  

Huruhi Bay and Parapara (Great Mercury Island) 20042 7  

Mahurangi Harbor 20031 3  

Whangateau Harbor 20031 33  

Pahurehure Inlet 20031 0  

Arm of Kaipara Harbor 20031 0  

New River Estuary 20031 94  

Matakana Harbor 20031 0  

Whitianga Harbor 20031 5  

 20082 8.94 + 

Tairua Harbor 20031 125  

 20082 130.08 + 

Wharekawa Estuary 20031 50  

 20082 45.28 - 

Otahu Estuary 20031 0.2  

 20072 0.6 0 

Te Kouma Estuary 20031 5.2  

 20092 4.66 0 

Firth of Thames 20031 33  

 

1 Data was collected from World Atlas of Seagrass (Green & Short, 2003) 

2 Data was collected from Waikato Region Council at https://www.waikatoregion.govt.nz/ 

https://www.waikatoregion.govt.nz/
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Location Year Area (ha) Change 

 20061 0 - 

Waimea Estuary 20031 28  

Havelock 20031 0.9  

Whanganui Inlet 20031 859  

Avon-Heathcote Estuary 20031 13.7  

Kaikorai Estuary 20031 0  

Harwood, Otago Harbor 20031 82  

Coromandel Harbor 20092 120.8  

Manaia Harbor 20032 27  

 20082 19.35 - 

Tairua Harbor 20082 130.8  

Whangamata Harbor 20032 51  

 20072 59.97 + 

Whangapoa Harbor 20102 202.71  

Wharekawa Harbor 20082 45.28  

Whitianga Harbor 20091 8.94  

Waikawau Estuary 20081 0  

 20163 0.01 0 

Te Kouma Harbor 20091 4.66  

Purangi Estuary 20121 0  

Otama River Mouth 20101 0.94  

Kennedy Estuary 20121 0.25  

Aotea Harbor 20121 584.16  

Kawhia Harbor 20121 842.97  

Waikato River Estuary 20111 0.82  

Colville Bay 20122 0.25  

Kennedy Estuary 20122 0.25  

 

3 (Robertson & Stevens, 2016) 
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Location Year Area (ha) Change 

Tautane 20163 0.8  

Porirua Harbor 19424 24  

 20084 54.8  

 

 

Figure 2.1. Map of locations of seagrass in New Zealand (satellite-based map from Google Earth). The 

location (orange dots) is referenced from the Global Seagrass Database (UNEP-WCMC, 2018) 

Despite a wide geographical distribution of seagrass in coastal waters, there has been little 

research into mapping of seagrass dynamics in New Zealand (Dat Pham et al., 2019). Seagrass 

mapping has been conducted in only 22 out of 300 estuaries in New Zealand, representing less 

than 3% of total estuarine area (Tara et al., 2019). The number of mapped areas has increased 

 

4 (Matheson & Wadhwa, 2011) 
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recently owing to airborne image-based mapping projects in several regions of New Zealand, 

though these tend to give limited detail on image processing and classification accuracy (Park, 

2011; Matheson & Wadhwa, 2012). The total known area of seagrass in New Zealand to 

November 2018 was reported as 294 km2 (Tara et al., 2019). Seagrass is mentioned in only 2 out 

of 16 marine reserve reports, with an area of 8.59 km2 in Whanganui Inlet and Te Angiangi.  

The most recent published papers on seagrass in New Zealand can be divided into four main 

topics: mapping using aerial imagery, ecology, restoration and ecosystem service and associated 

fauna (Table 2.2).  

Table 2.2. Published papers on seagrass in New Zealand 

Topic Location Citation 

Ecology, restoration, 

associated fauna 

Worldwide (Green & Short, 2003) 

Ecology, associated fauna Slipper Island and Great 

Mercury Island, Coromandel 

Peninsula in New Zealand 

(Schwarz et al., 2004)  

Ecology, associated fauna New Zealand (Schwarz & Turner, 2006) 

Ecology, associated fauna Whangapoua Harbor, 

Wharekawa Harbor, 

Whangamata Harbor in 

Coromandel Peninsula, New 

Zealand 

(Turner, 2007) 

Ecology, associated fauna, 

ecosystem service 

Mangawhai to Ahipara, North 

land, New Zealand; 

New Zealand 

(Kerr, 2009; Wotton, 2009) 

Mapping using aerial imagery Tauranga Harbor, New 

Zealand; 

Porirua Harbor, New Zealand 

(Park, 2011; Matheson & 

Wadhwa, 2012) 

Ecology, associated fauna, 

ecosystem service 

New Zealand (Cole, 2014) 
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Topic Location Citation 

Ecology, associated fauna, 

mapping using aerial imagery 

Manawatu Estuary, New 

Zealand; 

New Zealand 

(Robertson & Stevens, 2016; 

Wilton et al., 2016) 

Ecology, associated fauna, 

ecosystem service 

New Zealand (Tara et al., 2019) 

 

While acknowledging the important ecosystem services of seagrass, none of these New Zealand-

based studies have provided a detailed description of either large-scale seagrass mapping and 

change detection using space borne satellite imagery or seagrass blue carbon assessment in New 

Zealand waters. 

Large scale mapping of seagrasses in New Zealand is in its infancy. In 2009, a technical report 

presented, for the first time, a habitat map of Northland (Kerr, 2009). Aerial photographs and 

sonar data were interpreted to deliver bathymetry as well as a habitat map in tidal, sub-tidal and 

adjacent regions. According to the report, seagrass colonized 5,192 ha or 0.38% of the total area, 

but it was stated that further works were necessary to improve field survey data, map accuracy, 

and object interpretation from aerial imagery. In a later report, a detailed map of coastal habitats 

in several regions in New Zealand was released (DOC, 2011), but these lack seagrass, mangrove 

and salt marsh in the framework of classification and mapping. Other research has grouped 

seagrass and algae in one category to value ecosystem services in a marine protected area (Cole, 

2014). The latest report (Tara et al., 2019) presented a systematic review on seagrass dataset 

collection and summarized the biogeographic distribution maps in Kaipara Harbor, Kawhia 

Harbor, Waitemata Harbor, Parengarenga Harbor, Rangaunu Harbor, Tairua Harbor, Tauranga 

Harbor, southern Farewell Spit, Golden Bay, and Porirua Harbor conducted by the SeaSketch 

project covering the period 1942 - 2016. However, the state of most recent seagrass conditions 
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(including the current distribution, biomass, carbon storage) is less documented, and where it is 

this is usually mapping at a local scale using aerial images. The declining trend of seagrass in 

New Zealand which was mentioned in the international (UNEP-WCMC, 2018) and local (Tara et 

al., 2019) reports, lacks a systematic assessment and a rich dataset on these topics is still not 

available.  

In New Zealand, the largest threat to seagrass beds is from sedimentation due to urbanization, 

deforestation and rural land management practices (Schwarz et al., 2004). Additionally, nitrate 

and phosphate enrichment, recreational activities, wasting disease (a fungal disease which causes 

infection of seagrass tissue) together with grazing of the black swan threaten the integrity of 

seagrass meadows (Park, 2011). In many locations within New Zealand, declining trend in area 

is shown to have occurred during the 20th century. In the Bay of Plenty, for example, mapping in 

the years 1945, 1959, 1992, 1996, and 2011 showed a significant loss of seagrass area in the 

period of 1959 - 1996 (over 1000 ha) with a slower rate of loss to 2011. There was a 3.8%, 

which is equivalent to 43 ha, seagrass gain in the southern part of Tauranga harbor during the 

period 1996 - 2011. Grazing of the black swan and poor water quality were determined as the 

main reasons for this loss (Park, 2011). In Southern Bay, Slipper Island, seagrass area had lost 

approximately 65% by 2004, when compared to the year 1973 (Schwarz et al., 2004). In 

Whangamata harbor, aerial photos presented a roughly 28% increase of seagrass area during the 

period of 1944 - 1965, however, this reduced approximately 41% from 1965 - 1998 (Schwarz & 

Turner, 2006). Similarly, there has been a 40% loss between 1960 - 1980 in Porirua harbor 

(Matheson & Wadhwa, 2012). 

This picture of declining areal coverage of seagrass beds in New Zealand is similar to other parts 

of the globe. To deal with identified problems, several policies have been introduced by the 
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Department of Conservation. This list involves the Wildlife Act (1953), Reserves Act (1977), 

Marine Reserves Act (1971), The Resources Management Act (1991), and The New Zealand 

Fisheries Act (1996) that all gave seagrass a better protection. Our review has determined three 

gaps regarding the overall management of seagrass resources that remains in New Zealand: (i) 

the lack of (large-scale) seagrass mapping and change detection tools; (ii) (large-scale) mapping 

of biophysical parameters of seagrass meadows is not available; (iii) and the lack of a web-based 

and geospatial tool to improve the public awareness of seagrass decline and foster community-

based protection.  

2.2. Remote sensing of seagrass mapping 

Remote sensing refers to collection of information from the Earth’s surface through the operation 

of instruments on board airborne or satellite platforms. In recent decades, the technology of 

remote sensing has developed dramatically due to the significant improvement of a range of 

supporting technologies: satellite construction and launching, database structure, image storage, 

processing and classification algorithms (Devi et al., 2015). In several fields, remote sensing 

provides essential mapping that significantly supports managers to make informed decisions. The 

following review focuses on remote sensing-based mapping with special links to seagrass 

ecosystems. 

Imaging satellites receive reflectance signals from the Earth’s surface at their sensors, usually 

divided across the electromagnetic spectrum into bands. Typical bands, for example used for 

creation of “normal” images can include ρRed, ρGreen and ρBlue bands. The characteristics of the 

reflectance intensity across these bands provides data for the identification of different objects on 

the surface. In terms of remote sensing technique, this process is conducted with image 

processing and classification schemes. Use of satellite imagery has the advantages of low cost, 
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wide coverage and, for some platforms, the possibility of historical mapping as compared to 

classical, ground-based monitoring. However, this process is not simple due to the effects of the 

shape of the Earth, the atmosphere and water column on reflectance value. These factors may 

lead to a significant confusion in the classification process, particularly when applied to 

seagrasses at the land-water interface. Complex conditions such as unclear boundaries of aquatic 

ecosystem, the diversity of bottom types, large scale distribution of seagrass in different 

geographical regions and varying water depths mean that the challenges of image processing and 

classification for remote sensing of seagrasses requires advanced techniques for mapping and 

monitoring (Duarte et al., 2013). To date, gaps in the seagrass mapping database remain in 

several regions in the world, including Africa, South America, South East Asia and other parts of 

the Southern hemisphere. In the following sections, the most important factors that significantly 

contribute to effective seagrass mapping are explained.  

2.2.1. Light attenuation in the water column and water column correction techniques for 

underwater remote sensing  

Imaging the sea floor through an overlaying water column is particularly difficult. In the water 

environment, light is attenuated due to absorption, scattering, and reflection processes. 

Depending on the energy intensity, each spectral component is able to penetrate to a specific 

depth or be completely absorbed in the water. In shallow water, ρBlue, ρGreen, ρRed, and near 

infrared (ρNIR) bands in visible and infrared spectrum penetrate reasonably well and provide 

useful information on substratum (Green et al., 1996). Other bands attenuate very fast with water 

depth due to strong absorption and scattering of the water column and therefore only leave noise 

in the image pixels. Light attenuation, fundamentally, depends on water depth. In the ocean (case 

1 water), light is mostly absorbed by water and phytoplankton, whilst in the coastal zones (case 2 
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water), absorption is affected by colored dissolved organic matter (CDOM) and suspended 

material (ZhongPing Lee & Hu, 2006). The maximum penetration depth (case 1 water) of ρBlue, 

ρGreen, and ρRed bands is 15 m, 10 m, and 5 m respectively. The ρNIR band is more strongly 

absorbed and only reliable at depths less than 2 m (Green et al., 1996). This leads to the necessity 

of water column correction if remote sensing data are to be applied to a submerged surface 

(Chavez, 1988; Mumby et al., 1998; Zoffoli et al., 2014). This process may include various 

techniques that compensate for the impacts of water column constitution and water depth on 

satellite image pixel value and these are mentioned in many research papers (Maritorena et al., 

1994; Green et al., 1996; Zhongping Lee et al., 1999; Lyzenga et al., 2006; Sagawa et al., 2010; 

Yang et al., 2010; Brown et al., 2011; Ha et al., 2012; Manessa et al., 2014; Zoffoli et al., 2014; 

Manuputty et al., 2017). 

Depending on the clarity of the water environment, either an empirical or an analytical approach 

is preferred for accommodating water column attenuation. Empirical models (Mumby et al., 

1998; Lyzenga et al., 2006; Sagawa et al., 2010) are utilized in the case of limited ground truth 

data in both case 1 and case 2 water. However, when the water clarity is low, more 

comprehensive approaches known as semi-analytical, radiative transfer-based forward and look-

up table spectrum matching inverse models provide an alternative solution. The latter approach is 

promising, but requires complex computation and intensive ground truth data. Empirical-based 

water column correction is, therefore, still a preferred solution for substratum reflectance 

retrieval. The method proposed by Lyzenga (1978, 2006) only requires the ρBlue, ρGreen, ρRed 

bands of the image and the ground-truth data of the homogeneous substratum (Lyzenga, 1978; 

Lyzenga et al., 2006). An improved version involves the ρNIR band (Manessa et al., 2014) or 

bathymetry data (Sagawa et al., 2010) for additional correction. A third approach applies the 
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principal component analysis (PCA) technique (both of Inverse and Forward Principal 

Component Analysis) (Wicaksono, 2016; Manuputty et al., 2017) in parallel with a water column 

correction phase and empirical data. Under specific assumptions of water clarity, and at a limited 

water depth, this method is reliable and has been successfully applied in several regions for 

seagrass mapping (Green et al., 1996; Pasqualini et al., 2005; Dekker et al., 2006; Ha et al., 

2012; Zoffoli et al., 2014).  

2.2.2. Airborne and satellite imagery for seagrass mapping 

In the realm of remote sensing, airborne and satellite platforms are the most commonly used 

(Table 2.3). Airborne imagery has the advantage of very high spatial resolution (with pixel size 

ranging from one centimeter to one meter), and very high spectral resolution across the 

ultraviolet to infrared range, referred to as hyperspectral (36 contiguous spectral bands in case of 

the widely used hyperspectral compact airborne spectrographic imager (CASI) sensor).  Airborne 

sensing can avoid the complications of cloud cover, given that aircraft can fly below cloud or 

confine observations to cloud-free opportunities. Airborne imagery, however, covers a relatively 

small area, often with a low observing frequency, and may lead to challenges in larger scale 

monitoring or understanding comprehensive relationships between seagrass dynamics and 

external stressors (Hossain et al., 2015). In addition, airborne imaging requires a significant 

investment in equipment, image processing and data storage (Jia et al., 2020), leading to 

collaborative constraints in sharing or redistributing of data and can be impractical in developing 

countries. Observing from an extreme low altitude, unmanned airborne vehicle (UAV) has taken 

priority in recent years. Small in size, easy to control as well as providing a high spatial 

resolution image under different weather conditions, UAVs provide another option for seagrass 

mapping and monitoring at a very small scale (Konar & Iken, 2018; Tsouros et al., 2019; Yao et 
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al., 2019). Despite the advantages of high-quality hyperspectral images, high cost and small area 

coverage is obstructing further application of UAV. 

On the other hand, satellite-based instruments represent a very different case. In recent decades, 

satellite imagery has been improving in spatial, spectral and temporal resolution as the result of 

technology evolution. Satellite-based instruments have advantages of low cost and wide 

coverage, but spectral and spatial resolution can be limited. For coastal habitat mapping, satellite 

sensors are categorized by spatial resolution larger than 100 m, 10 - 100 m interval, and below 

10m. The above 100 m sensor measures sea surface temperature, phytoplankton biomass and 

provides information for fisheries management, toxic algal bloom monitoring, and anomaly 

warming phenomena resulting from climate variability. At an interval of 10 - 100 m, the image is 

most suitable for coastal management. High to very high spatial resolution image (below 10 m) 

provides the most reliable resolution for quantification of aquatic habitats, but few commercial 

sensors currently offer such resolution. 

Table 2.3. Available airborne and satellite sensors for seagrass mapping 

 Sensor Acronym 
Number of 

band 

Pixel size 

(m) 
Cost Reference 

1 

Compact airborne 

spectrographic 

imager 

CASI 36 4.4 
Commercial 

sensor 
(Phinn et al., 2008) 

2 
Unmanned aerial 

vehicle 
UAV 3 < 0.1 

Commercial 

sensor 
(Yang et al., 2020) 

3 Quickbird Quickbird 5 0.6 - 2.9 
Commercial 

sensor 

(Satellite Imaging 

Corp, 2021e) 

4 Worldview Worldview 5 0.3 - 14.0 
Commercial 

sensor 

(Satellite Imaging 

Corp, 2021g) 

5 Ikonos Ikonos 5 0.8 - 4.0 
Commercial 

sensor 

(Satellite Imaging 

Corp, 2021c) 
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 Sensor Acronym 
Number of 

band 

Pixel size 

(m) 
Cost Reference 

6 ASTER ASTER 14 15 - 90 
Commercial 

sensor 

(Satellite Imaging 

Corp, 2021b) 

7 SPOT SPOT 4 1.5 - 6 
Commercial 

sensor 

(Satellite Imaging 

Corp, 2021f) 

8 Kompsat Kompsat 6 0.5 - 5.5 
Commercial 

sensor 

(Satellite Imaging 

Corp, 2021d) 

9 ALOS AVNIR 
ALOS 

AVNIR 
4 10 

Commercial 

sensor 

(Satellite Imaging 

Corp, 2021a) 

10 
Indian remote 

sensing 
IRS 4 36 - 73 

Commercial 

sensor 
(ISRO, 2021) 

11 
Thailand Earth 

observation system 
THEOS 5 2 - 15 

Commercial 

sensor 
(ESA, 2021c) 

12 Landsat Landsat  15 - 60 Free (USGS, 2021c) 

13 Sentinel Sentinel 12 10 - 60 Free (ESA, 2021b) 

14 

Earth observing one 

(EO-1) – advanced 

land imager (ALI) 

EO1-ALI 10 10 - 30 Free (USGS, 2021a) 

15 
Earth observing one 

(EO-1) - Hyperion 

EO1- 

Hyperion 
220 10 - 30 Free (USGS, 2021b) 

16 
Synthetic aperture 

radar 
SAR 2 22 Free (ESA, 2021a) 

 

In the case of seagrass mapping, Landsat and Sentinel images, with spatial resolution of 10 - 30 

m, are suggested as the optimal choice to harmonize the cost and scale coverage, particularly 

given that the imagery is freely available (Dat Pham et al., 2019). At a higher spatial resolution, 

SPOT, Quickbird, Worldview, Ikonos all detect the distribution of seagrass more accurately than 

Landsat and Sentinel images, though, their spatial coverage is limited (Urbański et al., 2009). 

Dekker et al. (2003) utilized Landsat-5 TM and -7 ETM images to detect the variation of 
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seagrass area in Wallis Lake over 14 years (Dekker et al., 2003). Seagrass was also mapped with 

Landsat-8 OLI (Purnawan et al., 2016), ASTER, SPOT-4 and Kompsat-2 (Kim et al., 2015), 

SPOT-5 (Pasqualini et al., 2005). ALOS AVNIR-2 data provided good quality seagrass mapping 

in Tunisia, and Japan (Sagawa et al., 2010) as well as Brazil (Silva et al., 2017). Indian Remote 

Sensing (IRS) supplied 23.5 m spatial resolution images for seagrass mapping in Lakshadweep 

Island, India (Nobi & Thangaradjou, 2012) whilst THEOS data at 15 m supported a higher 

spatial resolution for this mapping in Phu Quoc island, Viet Nam (Nguyen et al., 2014). The very 

high spatial resolution (VHR) sensors may derive a higher accuracy of mapping, however there 

is a very high cost for purchasing the commercial imagery. Several research papers reported the 

uses of Worldview images (Tamondong et al., 2013; Roelfsema et al., 2014; Watkins, 2015; 

Baumstark et al., 2016; Candra et al., 2016; Manuputty et al., 2017; Su & Huang, 2019), 

Quickbird (Wolter et al., 2005; Urbański et al., 2009; Amran, 2010; Lyons et al., 2011; 

Roelfsema et al., 2014), Ikonos (Pu & Bell, 2017; Vela et al., 2008; Meyer et al., 2010) for 

seagrass mapping or to compare mapping performance among the VHR sensors (Wang et al., 

2004; Kovacs et al., 2018). 

In the realm of hyperspectral satellite imagery, Hyperion provides 30 m resolution across 242 

bands from 400 to 2500 nm. These data are combined with other sensors with higher spatial 

resolution, involving Landsat TM, EO1-ALI, Ikonos (Meyer et al., 2010) or Landsat TM, EO1-

ALI (Pu & Bell, 2013), for seagrass mapping. Other research papers include only Hyperion (Pu 

et al., 2012; Casal et al., 2013; Hedley et al., 2017). Most cases report a higher classification 

accuracy of Hyperion, both in terms of overall accuracy as well as Kappa coefficient (a 

consistence measurement of image classification results). This outcome is partly explained by 

the availability of a large number of spectral bands compared to multispectral sensors. These 
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hyperspectral sensors, however, are usually an on-demand request or in a specific geographic 

region (Heiden et al., 2017). Some studies focus on individual seagrass species mapping from 

hyperspectral imaging (Phinn et al., 2008; Valle et al., 2015; Pan et al., 2016; Hedley et al., 

2017). Nonetheless, scattered and mixed species meadows, complex inherent optical properties 

of water and the unavailability of hyperspectral imagery for many locations remain significant 

obstacles for seagrass species detection using this technique.  

In recent years, Landsat and Sentinel images have emerged as the most appropriate selection for 

seagrass mapping and monitoring at regional and worldwide scales. The spectral resolution, 

medium to high spatial resolution, and comprehensive global coverage enable efficient mapping 

and change detection of seagrass ecosystem for any sites of interest. Since the end of 2015, 

Sentinel-2 has officially provided qualified satellite imagery to end users free of charge. 

Sentinel-2 supports 10 m spatial resolution in the visible bands, and since 2017, the promising 

application of Sentinel-2 for seagrass mapping had been reported with data from the 

Mediterranean sea for Posidonia oceanica and Cymodocea nodosa species (Traganos and 

Reinartz, 2017), Indonesia for Enhalus acoroides, Thalassia hemprichii, Cymodocea rotundata, 

Halophila ovalis and Halodule uninervis (Fauzan et al., 2017), Australia for Halophila ovalis, 

Halophila spinulosa, Halodule uninervis, Zostera muelleri, Cymodocea rotundata and 

Syringodium isoetifolium (Kovacs et al., 2018). 

During the course of this literature review, we noted little use of radar images, or synthetic 

aperture radar (SAR) specifically, for seagrass mapping and monitoring. SAR is available at 

medium spatial resolution (Ha et al., 2021), and is a type of active remote sensing, in which the 

sensor transmits a signal and records the back scattered signals from a combination of acquisition 

sequences. Hence, SAR is different from the passive optical sensors (i.e Landsat’s Operational 
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Land Imager (OLI) or Sentinel-2’s Multispectral Instrument (MSI)). It uses longer wavelength 

bands within the electromagnetic spectrum (termed X, C, L, P bands at the cm to m scale), which 

penetrate easier through the obstacles (cloud, for instance) (Elhefnawy & Sri Sumantyo, 2016). 

SAR imagery thus has several advantages over passive optical sensors in that it is possible to 

acquire images at night and through cloud cover. It also collects information at different 

polarizations (a combination of the horizontal (H) and the vertical (V) tranmission/ receiving), 

and polarization at a given band is sensitive to surfaces texture, and therefore adds a capability to 

collect spatial information on the interacting surface objects (i.e vegetation) (El Hajj et al., 2018; 

Blomberg et al., 2021). Sentinel-1, for example, provides freely available SAR data at C band, at 

up to 10 m resolution and the polarizations of VH and VV, might suitable for the monitoring of 

the low biomass vegetation like seagrass meadows. While there are examples of SAR use for 

more structured vegetation types, such as mangroves (Navarro et al., 2019; Pham et al., 2020) 

there is as yet no application of SAR imagery for seagrass mapping in various regions globally. 

While unsuited to characterize submerged seagrass meadows, it is potentially useful to use SAR 

data for mapping in the intertidal zones as it requires only image acquisition time to coincide 

with low tide, rahther than for overpass to coincide with low tide, suitable solar elevation and 

cloud free conditions that applies to optical sensors.  

2.2.3. Image classification techniques for seagrass mapping 

Classification technique is acknowledged as being the most important phase (Hossain et al., 

2015) after image pre-processing, to successfully detect bottom covers (e.g sand, mud, seagrass, 

coral). Fundamentally, remote sensing classifications are divided into object-based and pixel-

based techniques. The advantages, disadvantages and corresponding classifiers are summarized 

in Table 2.4.  
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Table 2.4. A simple comparison of remote sensing classification approaches 

 Description Advantages Disadvantages Classifier 

Pixel based image 

classification 

Spectral 

information from 

image pixel is the 

input to 

classifiers; 

Image pixel is 

assumed as pure 

information. 

Fast and easy to 

implement; 

Suitable for 

medium to high 

spatial resolution 

imagery. 

Can be unsuitable 

for high-

resolution images 

due to spectral 

variation in each 

of the pixels; 

Contextual 

information is 

limited. 

Unsupervised 

classifiers (k-

means, 

ISODATA, 

SOM); 

Supervised 

classifiers 

(Maximum 

likelihood, 

Mahalanobis 

distance, machine 

leaning) 

Sub-pixel-based 

image 

classification 

Image pixel is 

assumed as mixed 

spectral 

information of 

different classes; 

A proportion is 

estimated for 

each sub-class in 

the pixel. 

Suitable for 

medium to coarse 

spatial resolution 

imagery; 

Sub-classes can 

be accurately 

classified from a 

mixed 

information pixel. 

Contextual 

information is 

limited. 

Fuzzy 

classification; 

Regression 

modeling; 

Regression tree 

analysis; 

Spectral mixture 

analysis; 

Fuzzy spectral 

mixture analysis. 

Image 

segmentation and 

object-based 

image analysis 

Geographical 

objects are 

considered as the 

input to the 

classifier, not 

individual pixels; 

Multiple image 

pixels create an 

object. 

More appropriate 

for very high 

spatial resolution 

imagery; 

Geographical 

objects may 

suggest a 

meaningful 

texture for the 

classification. 

Generalizes the 

data; 

Difficult to 

compare image-

objects in a time 

series data. 

 

 

Image 

segmentation 

(region-growing, 

hierarchical 

algorithms); 

Object based 

image analysis 

techniques – 

OBIA – (Support 

vector machine, 

nearest neighbor 

classifier). 
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The object-based technique identifies similarity in shape and size of the objects and then 

combines them into different homogeneous groups. This process is known as segmentation 

classification and has been widely utilized for several decades (Urbański et al., 2009; Otukei & 

Blaschke, 2010; Roelfsema et al., 2014) prior to the introduction of geospatial object-based 

image analysis (GEOBIA). The pixel-based technique analyzes spectral information of each 

image pixel and then autonomously classifies them into model defined classes (the unsupervised 

method) or uses defined classes provided by the users to guide the classification model (the 

supervised method). The unsupervised technique has no requirement of ground truth data whilst 

supervised classification needs information from the field surveys as input for a training phase.  

The most common unsupervised algorithms are K-means and ISODATA. Among supervised 

methods, Maximum Likelihood Classifier (MLC) is well-known and more widely applied than 

the K-Nearest Neighbor (KNN), Endmember method (Chen et al., 2016), Spectral Angle Mapper 

(SAM), Decision Tree (DT), Artificial Neural Network (ANN), and Mahalanobis distance 

methods (Kim et al., 2015). Recently, machine learning has attracted attention for supervised 

classification approaches due to its advantages in terms of edge discrimination between different 

classes (Wu et al., 2004; Nitze et al., 2012). For a wide range of remote sensing image 

classification, ML approaches include a group of bagging, boosting, and neural network-based 

techniques, which potentially produce higher classification accuracy (Mustapha et al., 2010; 

Colkesen & Kavzoglu, 2017; Ha et al., 2020). Recently, a suite of ML algorithms has been 

developed based on cutting-edge innovations from computer science. These new ML models 

work differently from the classical candidates, in that input data is not required to have a normal 

distribution, and the model is self-training through either a network of interpretation (neural 

network-based models) or a sequence of weak learner combinations (bagging/ boosting models) 
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(Thessen, 2016). These is a requirement of large dataset of input data for the training process, but 

ML is a practical approach where the user can collect large number of field data points and 

extract enough image pixels for the learning of ML models (Ha et al., 2020). In addition, the 

hyper-parameters (the parameters that define the structure of the model) can be optimized to 

make the ML model best fitting the local conditions and improve the accuracy (Ha et al., 2021). 

In this group of techniques, Support Vector Machine (SVM) and Random Forest (RF) have been 

introduced as effective methods for satellite imagery classification (Li et al., 2014; Ustuner, 

2015). Numerous efforts have been made to compare the MLC and other methods for 

classification of land cover (Li et al., 2014; Ustuner, 2015), land cover change and crop type 

(Otukei & Blaschke, 2010). Most cases present an acceptable accuracy using the MLC 

technique. MLC accuracy, however, tends to be lower than machine learning or DT methods for 

the same classifications (Otukei & Blaschke, 2010; Li et al., 2014; Ustuner, 2015). To our 

knowledge, a similar comparison, including machine learning based classification, has not been 

reported for seagrass mapping (Dat Pham et al., 2019). 

In other research, seagrass distribution has been converted to a biological index as a further 

interpretation for the post-classification process. Instead of discrete data, a continuous surface of 

seagrass abundance provides a more nuanced map of biological characteristics. These parameters 

are transferred to a range of 0 - 1 through a fuzzy membership procedure where 1 presents the 

highest index (Pu & Bell, 2013). The fuzzified map provides high quality input for deeper 

analysis and generation of a more informative map than a present/absent classification.  

The techniques discussed above are all empirical approaches using ground truth data to interpret 

class features. More advanced classification techniques include the semi-analytical and semi-

empirical procedure methods. To apply these models, a spectral library of bottom substratum 
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must be prepared prior to transfer to the programmed application. In the next step, a look-up 

table is used to match spectral data of the substratum with the library’s references. This semi-

analytical method potentially allows a higher accuracy than the empirical approach (Dekker et 

al., 2006; Wettle, 2006; Roelfsema et al., 2014; Hedley et al., 2017)). However, it also requires 

an intensive and inclusive spectral library of different bottom covers as input for the 

classification algorithm. This may lead to expensive field sampling and maintenance of the 

library in the case of large-area site monitoring. 

It is evident that the standard techniques described above are not ideally and globally suited for 

an accurate mapping of (patchy) seagrass meadows. The diversity of water column constitution, 

seagrass species characteristics such as patchy growth and high-density variability, limitations of 

existing remote sensing sensors make this task more challenge and therefore, require an 

innovative approach to retrieve the highest accuracy mapping of patchy extant seagrass meadows 

at an acceptable cost.  

2.3. Remote sensing for monitoring seagrass and detection of change 

Change detection is a key process for understanding the dynamics of seagrass ecosystems in 

relationship to external stressors. Long-term monitoring from remote sensing is capable of 

describing the spatial variation of seagrass area and, with suitable environmental data collection, 

may allow the relationship between driving factors and seagrass degradation to be inferred. The 

remote sensing approach provides solid mapping and change detection compared to classical 

field-based monitoring due to the capacity of continuous, large scale mapping and spatial 

analysis at both meadow and regional scales (Ferwerda et al., 2007). In addition, several external 

stressors have been retrieved from satellite data that provide a direct connection to the variation 

of seagrass biomass and distribution. Among them, chlorophyll-a concentration, CDOM, 
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turbidity, total suspended sediment, sea surface salinity and land cover change are the most 

frequent stressors extracted from satellite imagery (Gholizadeh et al., 2016). The following 

review aims to describe work on the selection of satellite sensors and techniques for seagrass 

change detection.  

2.3.1. Satellite sensors for seagrass change detection 

To successfully detect spatial and temporal variation of seagrass meadows, sensors should have a 

long-time operation with qualified standards for storage, image pre-processing and processing as 

well as ease of data access. Currently, Landsat is the most popular satellite imagery for change 

detection not only for land use cover but also for aquatic resources (Zhu, 2017). The first 

generation of Landsat operated from 1973 and until 2013, Landsat-8 is the current sensor in the 

orbit. Notably, the scan line corrector (SLC) of Landsat 7 was interrupted on 31 May 2003 and 

released a zig-zag pattern or gaps on the image that leads to 22% loss of retrieved information 

(USGS, 2018). Users have to accept these gaps despite the development of gap filling 

algorithms. Other sensors are, however, available and are capable of providing an alternative 

source to maintain long-term monitoring. Nevertheless, the diversity of spatial, spectral and 

temporal resolution must be considered prior to any change detection procedures applied to 

mixed satellite data.  

For long-term monitoring, the long-life operated Landsat family satellite imagery is a valuable 

dataset for seagrass dynamics assessment for eco-regional scale mapping (Wabnitz et al., 2008; 

Torres-Pulliza et al., 2013). Temporal change detection varies in durations in research papers 

across a range of 14 - 38 years (Dat Pham et al., 2019). Examples include the monitoring of the 

genera Zostera, Posidonia, Ruppia and Halophila in Wallis Lake, Australia using Landsat-5 TM 

and Landsat-7 ETM+ (Dekker et al., 2003), Moreton Bay, Australia with Landsat MSS, Landsat-
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5 TM, Landsat-7 ETM+ from 1972 - 2010, Eastern Puerto Rico using Landsat-5 TM and 

Landsat-7 ETM+ in 1985 and 2000 (Shapiro & Rohmann, 2006). Chen et al. (2016) reported the 

mapping and change detection of seagrass (for a mixed group of Enhalus acoroides, Halophila 

ovalis, Halophila minor, Thalassia hemprichii, Halodule pinifolia, Halodule uninervis) for the 

period of 1996 - 2015 in Cam Ranh Bay (Viet Nam) from Landsat TM/ETM+/OLI (Chen et al., 

2016). Landsat-5 TM and Landsat-8 OLI described the change of seagrass meadows between 

2009 and 2013 (for a mixed group of Halophila ovalis; Thlassia hemprichii; Enhalus acoroides; 

Halophila pinifolia, Halodule uninervis, Halophila decipiens, Cymodocea serrulata, Cymodocea 

rotundata, Halophila spinulosa) in Malaysia (Misbari & Hashim, 2016). Applying Landsat TM 

and Landsat-7 ETM+ in Tanzania, the peak points of seagrass change (Thalassia hemprichii, 

Enhalus acoroides, Halimeda spp) were identified during the period 1986 - 2003 (Gullström et 

al., 2006). In another study, the temporal change of seagrass from 1991 - 2006 was detected 

through bio-optical models in Xincun Bay (Hainan, China) with integration of in situ 

hyperspectral observation and a range of satellite images, involving Quickbird, China-Brazil 

Earth Resources Satellite (CBERS) data and Landsat (Yang & Yang, 2009). The longest interval 

for seagrass change detection was a period of 40 years (from 1972 - 2013) in Spermonde 

Archipelago, Indonesia using Landsat-1 to Landsat-8 (Nurdin et al., 2014). Seagrass damage 

caused by three typhoons was also recorded within an interval of 24 years from Landsat and 

other sensors in Korea. In this case, remote sensing data successfully detected the great loss and 

enabled a more comprehensive understanding of the past change that may link to current 

dynamics of seagrass (Kim et al., 2015).  

For short-term monitoring, commercial satellite imagery and small-scale mapping usually come 

together. Mediterranean seagrass (involving Cymodocea nodosa and Posidonia oceania) area 
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variation was assessed for 5 years from RapidEye time series data (Traganos & Reinartz, 2017). 

Quickbird and acoustic field survey data were also used to map seagrass change in 2004 and 

2007 (Lyons et al., 2011). In a similar study, Quickbird-2, Ikonos and Worldview-2 allowed 

seagrass dynamics (Cymodocea serrulata, Halophila ovalis, Halophila spinulosa, Syringodium 

isoetifolium, Halodule uninervis, Zostera muelleri) to be followed from 2004 - 2013 in the 

Eastern Banks, Moreton Bay, Australia (Roelfsema et al., 2014) and from 10/1947 - 2/2003 in 

the Solomon Islands (Lauer & Aswani, 2010). Landsat TM, ALOS AVNIR-2 and THEOS 

images were another combination to trace the dynamics of marine habitat (seagrass involved) in 

Phu Quoc island (Nguyen et al., 2014). This combination, however, created challenges for the 

post-classification phase due to the differences in image processing of the sensors and it proved 

difficult to produce a continuous and precise comparison from classified maps during the years 

of the study.  

2.3.2. Techniques for detecting change using remotely sensed data 

Recently, different change detection approaches have been developed in several research fields. 

These fields range from land use cover change (Deilmai et al., 2014; Gómez et al., 2016; Karan 

& Samadder, 2016) to aquatic resources and more specially seagrass dynamics, involving spatial 

distribution, coverage, and aboveground biomass (Dekker et al., 2005; Shapiro & Rohmann, 

2006; Urbański et al., 2009; Lyons et al., 2011; Misbari & Hashim, 2016; Deyanova et al., 2017; 

Zhu, 2017; Traganos & Reinartz, 2018). This has improved change detection algorithms, and 

accuracy of post-classification assessment and has resulted in a better understanding of the 

comprehensive relationships within aquatic ecosystems. As described below, several approaches 

have been found for change detection in remote sensing, however, no single technique has 
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emerged as optimal across diverse marine environments (Hossain et al., 2015; Dat Pham et al., 

2019). 

The change detection technique has a list of key requirements, involving sensor selection, image 

processing, image classification, post-classification, and detection of change in order to precisely 

detect the variation among classified maps. Importantly, change detection requires a consistency 

of sensor, date of acquisition, and geographical boundary. Unless these conditions can be reliably 

and repeatably satisfied, change detection remains questionable for accuracy (Liu & Zhou, 

2004).  

Tewkesbury et al. (2015) undertook an analysis of various techniques of change detection 

(Tewkesbury et al., 2015), using six approaches, involving layer arithmetic, post-classification, 

direct classification, transformation, change vector analysis, and hybrid. The advantages and 

disadvantages of these approaches are briefly summarized in Table 2.5.  

Table 2.5. A simple comparison of change detection approaches (based on Tewkesbury et al. (2015)) 

 Description Advantages Disadvantages 

Layer arithmetic Satellite images (at 

radiance level) are 

numerically compared 

to determine the 

change 

Easy to conduct Difficult to illustrate 

types of change 

Post-classification 

change 

Classified images are 

compared to identify 

the change 

Create change map 

with labels; 

Does not always 

require radiometric 

correction 

Low accuracy of 

classified map will 

impact on the accuracy 

of change detection 

Direct classification A multi-layer image of 

different time points is 

classified and the 

change is directly 

One-off classification 

stage with labeled 

classes; 

Can be suitable for 

Difficult to apply 

training data for each 

layer, especially for a 

time series image. 
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identified from these 

layers 

time series analyses. 

Transformation Apply mathematical 

transformation to 

reveal the variance 

among the images 

Can be suitable for 

high dimensional data 

Difficult to interpret 

transformed images to 

thematic change 

Change vector 

analysis 

The analysis of 

different vectors gives 

both magnitude and 

direction of the change 

Discover different 

types of change 

Difficult to interpret 

the magnitude and 

direction from the raw 

form of vector analysis 

Hybrid change 

detection 

A combination of 

different change 

detection techniques 

Not necessary to 

collect training data at 

less changeable areas 

No specific limitation 

 

Various change detection techniques have been used for seagrass dynamics assessment. 

However, the performance metrics of the classification are frequently reported rather than 

change detection techniques in the published research papers. An arithmetic approach enables 

presentation of a spatial change in area and distribution of seagrass corresponding to the years 

with classification accuracy ranged from 63% to 80% (Yang & Yang, 2009; Lauer & Aswani, 

2010; Misbari & Hashim, 2016). Other research papers involve image pixel analysis in various 

years by clustering pixels into classes (Dekker et al., 2003; Shapiro & Rohmann, 2006; Nobi & 

Thangaradjou, 2012; Kim et al., 2015; Chen et al., 2016) and then applying a visual 

interpretation or arithmetic technique (mapping accuracy ranged between 67% and 91%). These 

steps aim to reduce the impact of atmospheric, water column and acquisition date on the process 

of image change detection. Two time points, namely initial and final phase, are defined by the 

users and act as the inputs for change detection. Then, a differential map is created and indicates 

a positive, negative or no change of classified objects. Object based image analysis (OBIA) with 

geographic rules, for example in terms of defining seagrass patches, combined with field survey, 
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has also been used to trace seagrass dynamics from a very high resolution (VHR) image (Nguyen 

et al., 2014; Roelfsema et al., 2014). These authors argue for a higher accuracy of an OBIA 

classified map (accuracy 68% - 83%) compared to the pixel-based approach (35%). Additionally, 

contextual editing is another option to better adapt for change detection in a geographical 

information system (GIS) environment. The classified pixels are converted into shapefile format 

and then analyzed with simple or advanced spatial analysis technique (Wabnitz et al., 2008; 

Carter et al., 2011; Nguyen et al., 2014). The overall accuracy, however is widely varied (46% - 

91%) among research papers, indicating the challenges for seagrass habitat mapping in different 

conditions. In the case of monthly or annual detection, time series analysis is a feasible selection 

to identify the trend and discover the peak point of this variation. This approach, however, is 

sensor and climate dependent, and as a result, few studies have been conducted during recent 

years (Lyons et al., 2013; Traganos & Reinartz, 2018). Fundamentally, this is a pixel-based 

technique where pixel value presents the area, coverage or aboveground biomass of seagrass. 

Then, these values are spatially extracted and transferred into a time series chart to denote the 

variation of mentioned parameters. Further statistical analysis from classified maps with 

sufficient accuracy (85% - 100% as reported by Traganos & Reinartz. (2017) contributes to the 

certainty in change detection as well as uncovering driving factors in the study site.  

The hybrid option is applied when separate techniques fail to satisfy the requirement of change 

detection. Similarly, a combination of pixel-based and object-based classification techniques 

increased the overall accuracy from 75% to 88% for land cover change in Mexico (Aguirre-

Gutiérrez et al., 2012) and Donaxi et al. (2012) developed an urban change detection framework 

using object-based classification, data filtering, and multivariate alteration detection (MAD) 

transformation. The latter paper reported approximately 100% correctness of change detection 
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(Doxani et al., 2012). Bruzzone and Bovolo (2013) described a change detection framework for 

very high resolution multi-spectral imagery (Bruzzone & Bovolo, 2013) which was based on a 

taxonomy of radiometric change and context-sensitive decision approach. The results showed an 

improvement of the proposed framework compared to pixel-based and parcel-based change 

detection. The overall accuracy increased to 93.91% and was higher than pixel-based (90.86%) 

and parcel-based (91.56%) approaches. In addition, a time series analysis may contribute 

informative data to the last step of change detection to depict a clearer picture of the dynamics 

(Lyons et al., 2013).  

Despite the improvement of sensor resolution, image processing, and classification frameworks, 

the field survey still plays an essential role for both seagrass mapping and change detection 

(Hossain et al., 2015; Ferwerda et al., 2007). Ground truth data provides not only seagrass 

distribution but other ecological characteristics and enables an effective empirical modeling for 

mapping and post-classification assessment. Furthermore, a uniform approach for image 

selection, image pre-processing and classification will ensure the accuracy of output maps which 

is essential for change detection comparison.  

In summary, the Landsat family and Sentinel-2 are the most appropriate satellite images for 

long-term and large-scale monitoring. These sensors are promising due to their stability, and 

long-life operation, as well as their similarity in spectral resolution. However, Landsat-7 suffered 

a scan line corrector hardware failure (SLC-off) since 2003 and this leads to a significant loss of 

pixel information. As a result, an interval of 10 years monitoring should be investigated to fill 

this gap, otherwise, a gap-filling procedure must be considered. In a range of seagrass ecosystem, 

Landsat-8 (launched in 2013) and Sentinel-2 (launched in 2015) imagery, which are both high in 

temporal and spatial resolutions, together with ML models, are expected as the next rationale 
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approaches for mapping and change detection of seagrass dynamics. The classification accuracy 

for published remote sensing outputs on seagrass cover (which are not always reported) varies by 

study site, seagrass cover, satellite imagery selected, and classification models with the ranges of 

70% - 96% and 35% - 95% for long-term and short-term change assessment, respectively. This 

situation motivates the use of long-term operated satellite sensors to reduce the uncertainty in 

image processing, and investigation of novel classification approaches to improve the certainty 

in detection maps.  

2.4. Blue carbon mapping of seagrass ecosystems  

2.4.1. Blue carbon – A novel initiation for seagrass ecosystem conservation 

Anthropogenic carbon dioxide (CO2) emission is one of the most serious environmental 

problems in the early 21st century; this leads to greenhouse gas increase and indirectly results in 

global warming. Approximately one-third of anthropogenic carbon dioxide is currently absorbed 

by the oceans which reinforces the importance of the ocean ecosystem for carbon sequestration 

at a global scale (Rhein et al., 2013). Notably, mangrove, salt marsh and seagrass meadows 

contribute a 50-fold (Mcleod et al., 2011) higher carbon sequestration rate (g C m-2 yr-1) than 

other terrestrial ecosystems, including tropical or temperate forests (Pendleton et al., 2012; 

Duarte et al., 2013). As an autotrophic ecosystem, one hectare of seagrass sequestrates more than 

600 Mg CO2 with a large proportion stored in the top 0.5 - 1 m of the soil layer (Fourqurean et 

al., 2012). Despite representing a small area (approximately 0.1% of ocean surface), roughly 

20% of total buried carbon has been stored by seagrass (Duarte et al., 2013). Conversely, the loss 

of this ecosystem may lead to the emission of a huge amount of CO2 to the atmosphere. Under 

the pressure of coastal ecosystem degradation and CO2 emission, the blue carbon initiative was 



39 

 

born to fortify the conservation of coastal resources and contribute to climate change mitigation 

(Duarte et al., 2013).  

Blue carbon includes autochthonous and allochthonous carbon sequestered by an ecosystem 

(Mitra & Zaman, 2015). Autochthonous carbon is a product of in situ photosynthesis and is 

stored in the plant tissue and in organisms using those tissues, whilst allochthonous carbon 

originates from external sources. The downstream transfer of organic matter from terrestrial 

ecosystems significantly contributes to the allochthonous carbon in coastal areas. Blue carbon of 

mangroves, salt marshes, and seagrass meadows is calculated as total stored carbon in the soil, 

aboveground biomass (leaves, stem, and branch), below-ground biomass (root, rhizome), and 

non-living biomass (litter, dead wood). These ecosystems are acknowledged as high primary 

productivity ecosystems (Bouillon et al., 2007; Howard et al., 2014; Alongi et al., 2016) and 

maintain a considerable burial rate of organic carbon (Watanabe & Kuwae, 2015). Burial rate, 

which is a measurement of the amount of sequestered carbon in a specific time period, is a 

critical metric of mitigation of climate change. This number is well estimated for mangrove 

forest and salt marsh (Schile et al., 2017) but not well replicated for the seagrass ecosystem.  

Seagrass species, seagrass meadow structure and the source of carbon are the key factors that 

impact on carbon stocks and sequestration. At a meadow scale, carbon sequestration of seagrass 

varies due to the diversity of seagrass species, area and age of the meadow, and geographical 

features of the coastal zones (Gazeau et al., 2005; Bouillon et al., 2007; Duarte et al., 2013; 

Tokoro et al., 2014; Zarate-Barrera & Maldonado, 2015; Deyanova et al., 2017; Schile et al., 

2017). Oreska et al. (2017) found that stored carbon is proportional to sediment grain size and 

edge proximity at a meadow scale. At a plot scale, shoot density and seagrass age significantly 

correlated to carbon stocking. In other words, a dense, continuous and long-lived meadow tends 
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to accumulate more carbon than patchy, younger and smaller ones (Oreska et al., 2017). Notably, 

the loss of seagrass aboveground biomass may lead to a rapid reduction of stocked carbon in 

seagrass meadows (Duarte et al., 2013; Macreadie et al., 2014; Campbell et al., 2015; Alongi et 

al., 2016; Oreska et al., 2017), result in a negative carbon balance, raises the demand for accurate 

mapping of seagrass aboveground biomass changes (Deyanova et al., 2017). Restored seagrass 

meadows are also proven to have high potency for carbon sequestration (Duarte et al., 2013). 

The latter results demonstrated that an expensive investment in seagrass restoration can be 

effectively recouped through the carbon tax offset for CO2 capturing by recovered seagrass 

canopies.  

In addition, sequestered carbon of seagrass meadow also receives contributions from various 

sources, involving atmosphere-ocean CO2 exchange, allochthonous carbon, sediment, and the 

water column. Whilst the water column contributes an effective sequestration in the open ocean, 

burial of carbon in sediment is determined as the most important mechanism for shallow 

ecosystems (Tokoro et al., 2014). In this context, a meadow structure of seagrass supports a large 

volume of CO2 exchange by suspended sediment trapping and prevention of resuspension. Low 

oxygen concentration and decomposition rate in sediments of seagrass meadow preserves 

inactive carbon for a long period (Iacono et al., 2008). The top 10 cm of the soil layer tends to 

store the highest carbon concentration with large contributions from seagrass roots and rhizomes.  

Despite the importance of the blue carbon initiative (Fourqurean et al., 2012), its study still 

remains at the development phase with several knowledge gaps including: spatial distribution, 

and carbon sequestration in different ecosystems as well as external driving factors (Howard et 

al., 2014). In the case of seagrass ecosystems, there is a high demand for more blue carbon 

assessment due to known sensitivity to both internal and external stressors. In 2015, a large 
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survey was conducted in Indonesia and resulted in blue carbon estimation of the species Enhalus 

acoroides, Thalassia hemprichii, Halodule uninervis, Cymodocea rotundata for the entire 

country (Alongi et al., 2016). On average, the total blue carbon was calculated as 119 Mg C ha-1. 

Below-ground biomass carbon was significantly greater than aboveground biomass carbon. 

Duarte et al. (2013) summarized a short list of carbon storage assessment research in the 

Mediterranean and Australia (Duarte et al., 2013). Generally, the carbon burial rate of species of 

the genus Zostera (Zostera marina, Zostera noltii) is not as high as the rate for Posidonia 

oceania and Cymodocea nodosa. Organic carbon content in seagrass sediment was also 

measured for Enhalus acoroides, Thalassodendron ciliatum, Thalassia hemprichii and 

Cymodeocea spp. in the coastal zones of Tanzania and Mozambique (Gullström et al., 2006). On 

average, the content ranged from 213.4 - 730.5 Mg C ha-1 and was much higher than unvegetated 

areas in similar study sites. Among seagrass species, sediment associated with the very large 

seagrass Enhalus acoroides had the highest content of stored organic carbon (700 Mg C ha-1). 

Sediment organic carbon negatively correlated with sediment density but positively with 

belowground and aboveground seagrass biomass. In Kenya, seagrass blue carbon was estimated 

in Gazi Bay for Thalassodendron ciliatum, Thalassia hemprichii, Enhalus acoroides, 

Syringodium isoetifolium seagrass species (Githaiga et al., 2017). There was no overall 

correlation found between sediment organic carbon and aboveground organic carbon. Despite 

this, the relationship was species dependent. Currently, roughly 67% of seagrass’ carbon 

sequestration studies focus on tropical and subtropical regions, with a particular shortage of 

information in the Southern hemisphere, and North and West Pacific coastal areas (Duarte et al., 

2013).  
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2.4.2. Blue carbon mapping from remote sensing 

Blue carbon mapping from satellite data is an attractive topic due to the advantages of low cost, 

large-scale mapping and reliable monitoring. Recently, a majority of remote sensing work has 

concentrated on mangrove and salt marsh ecosystems by utilizing optical or SAR data (Avitabile 

et al., 2011; Wijaya et al., 2013; Candra et al., 2016), drone mapping (AGEDI, 2015), ShoreZone 

database (Cook, 2013). For seagrass ecosystems, blue carbon mapping using remote sensing is 

less extensive. Mapping can be effective where sufficient data on soil, belowground and 

aboveground stocking carbon is available, but this is not a simple task, since these data are not 

always available for several regions. Additionally, current remote sensing sensors are not able to 

detect below the sediment surface. For this reason, the task devolves to seagrass aboveground 

biomass mapping and development of an empirical relationship with total stored carbon 

(Roelfsema et al., 2014; Koedsin et al., 2016).  

Aboveground biomass detection has achieved some success. For example, spectroscopic aerial 

mapping system with on-board navigation (SAMSON) – a hyperspectral satellite imagery – was 

applied to retrieve a seagrass aboveground biomass through leaf area index for Thalassia 

testudinum, Halodule wrightii, Syringodium filiforme, Ruppia maritima, and Halophila 

engelmannii (Hill et al., 2014). Kim et al. (2016) developed a significant correlation between 

aboveground biomass of mudflat rush (Bolboschoenus planiculmis) and the combination of 

spectral band 3, 4 and 7 of Landsat-8 OLI (Kim et al., 2016); this model presented a good 

correlation between observed and predicted aboveground biomass with a Pearson correlation 

coefficient of 0.84. Similarly, Worldview-2, Ikonos and Quickbird-2 were combined with object-

based classification to retrieve aboveground biomass mapping of seagrass in the Eastern Banks 

and Moreton Bay (Australia) (Roelfsema et al., 2014). Biomass was modeled as a function of 
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percentage cover and confirmed by ground truth data. The determination coefficient (R2) of AGB 

regressions ranged from 0.26 to 0.82 for different seagrass species. High spatial resolution of 

satellite images provides more detail of seagrass species distribution, meadow texture and 

therefore, releases a higher accuracy mapping when applying an object-based approach. In 

Thailand, Worldview-2 imagery was utilized for seagrass mapping, retrieving an estimation of 

spatial distribution, species, coverage, and aboveground biomass. Linear relationships between 

coverage (percentage cover) and aboveground biomass were developed for Enhalus acoroides 

(R2 = 0.94), Halophila ovalis (R2 = 0.8), and Thalassia hemprichii (R2 = 0.67). The biomass map 

was modeled directly from reflectance bands of Worldview-2 with a strong correlation range 

from 0.68 (for all seagrass species) to 0.99 (for Enhalus acroides seagrass species) (Koedsin et 

al., 2016). Pu et al. (2017) conducted an ISODATA (unsupervised classification technique) 

clustering prior to combining truth data and supervised classification techniques (MLC and 

SVM) to retrieve the map of submerged aquatic vegetation (SAV) coverage (Pu & Bell, 2017). 

The continuous, patchy, and no SAV classes were mapped from Landsat TM and Ikonos with a 

higher accuracy of Ikonos mapping. Notably, Landsat TM presented a clear discrimination of 

large SAV (continuous or patchy meadows). The overall accuracy and Kappa coefficient of SAV 

mapping from Ikonos is not much higher than Landsat TM.  

There are, however, few attempts to connect AGB to blue carbon mapping by developing 

correlations with below-ground carbon. Among those that do exist, the database of shore zone 

imaging and mapping (http://www.shorezone.org) has been used for carbon stock assessment 

(Short et al., 2014). These authors also argued a serious data gap of seagrass blue carbon habitat 

maps as well as their spatial extent and variation. Their approach is very promising; however, it 

requires a high density of ground truth data as well as a synchronized feature of GIS system for 

http://www.shorezone.org/
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visualization and decision making. In Malaysia, Landsat image was processed in 2004, 2009 and 

2013 to review the dynamics of aboveground biomass as well as the aboveground blue carbon 

stock of seagrass (Misbari & Hashim, 2016). Seagrass aboveground biomass declined during the 

period of 2004 - 2013 and reduced the carbon stock to 18.77 kg C pixel-1 (2013) from 90.68 kg C 

pixel-1 (2004). The results presented a high potential for mapping for carbon sequestration 

dynamics from the medium of remote sensing, particularly if the link to below-ground biomass 

can be resolved. 

In summary, blue carbon mapping from remote sensing is promising. Nevertheless, in addition to 

all the challenges previously discussed related to estimation from remotely sensed data, the lack 

of in situ carbon stock data, the diversity of optical water types, high labor and laboratory cost, as 

well as the temporal changes of seagrass aboveground biomass remain the obstacles for accurate 

mapping and monitoring of seagrass AGB and aboveground blue carbon. This thesis proposes 

the use of free satellite data which helps to reduce the research budget, novel ML models which 

might benefit a higher accuracy of AGB retrieval, and advanced feature selection techniques 

which decrease the number of input variables as well as the requisite computation power. The 

successful estimation of seagrass aboveground biomass will provide a baseline for further 

assessment of aboveground stocking of blue carbon by seagrass globally, and ultimately will 

include total areal blue carbon. 

2.5. Dynamic web-based application for seagrass data visualization and collaboration 

In recent years, the rapid development of information technology has strengthened a wider 

application of web-GIS platforms in natural resources mapping and management, spatial 

planning, and social interaction (Veenendaal et al., 2017). A web-GIS based management system 

confers several benefits: (i) a near real time and clear visualization of geospatial database and 
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thematic maps; (ii) an instant access to geospatial database and data collaboration; (iii) provision 

of a platform for social interaction and collaboration which stimulates the sharing of GIS data 

among the stakeholders and improves community awareness (Fu, 2018). For this reason, the 

researchers have paid close attention to the application of web-GIS, not only to effectively 

visualize the geospatial database but to connect people for resource conservation through social 

interaction (Andris, 2016; Sui & Goodchild, 2011). 

A geospatial database is a group of remote sensing, global positioning system (GPS) and 

geographical information system (GIS) data, inter-connected and managed using a database 

management system. These datasets are managed and visualized within a GIS server and can be 

used to visualize specific maps at various scales and accessed from anywhere. In the case of an 

open system, the user is allowed to contribute their formatted data to the database. The use of 

geospatial data enables an overview of classified habitats regarding geographic features, social 

and environmental factors. In addition, time series analysis from a spatial decision support 

system will suggest driving parameters which are behind the changes in the habitats (Karnatak et 

al., 2007). As a function of the database system, the relational feature ensures a connection 

between separate datasets and allows a huge number of queries from remote users. This kind of 

system is known as a relational database management system (RDBMS). PostgreSQL 

(https://www.postgresql.org/) + PostGIS (https://postgis.net/), ArcGIS Enterprise 

(https://enterprise.arcgis.com/en/), Oracle Spatial 

(http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html), 

MySQL (https://www.mysql.com/), TerraLib (http://www.dpi.inpe.br/terralib5/codedocs_5.0.1/) 

or SpatiaLite (https://www.gaia-gis.it/fossil/libspatialite/index) are popular foundations for 

database building and management. In order to render a specific database into accepted formats 

https://www.postgresql.org/
https://postgis.net/
https://enterprise.arcgis.com/en/
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
https://www.mysql.com/
http://www.dpi.inpe.br/terralib5/codedocs_5.0.1/
https://www.gaia-gis.it/fossil/libspatialite/index


46 

 

as web pages, a GIS map server is required to connect, overlap and analyze data prior to 

presenting the results to the end users. Recently, GeoServer, UMN Mapserver, ArcGIS Server, 

Mapguide, Degree, ERDAS APOLLO Server, Intergraph GeoWeb Server, QGIS server are 

feasible platforms to build up a web-based system. Both database management and the web 

server system are released under a commercial or open source license that diversifies the options 

and satisfies different demands across disciplines. In order to reduce the cost and take advantage 

of open sources technologies, the following web-based mapping applications are listed as the 

priority (Table 2.6).  

Table 2.6. Open sources web-based mapping application 

 Name Web address 

1 MapGuide project https://mapguide.osgeo.org/ 

2 GeoTools http://www.geotools.org/ 

3 GLG Map Server http://www.genlogic.com/free_map_server.html 

4 Map Server http://mapserver.org/ 

5 Google Earth and Google My Map https://www.google.com/earth/ 

6 Degree https://www.deegree.org/ 

7 QGIS Server http://qgis.org 

8 GeoServer http://geoserver.org/ 

9 Lizmap https://www.lizmap.com/en/ 

 

The application should satisfy crucial requirements of security, database connection, effective 

management, user-friendliness multi-platform installation, fast loading and international web 

browser capability. 

In terms of blue carbon, this ideal has been successfully conducted in the USA with ShoreZone 

imaging and mapping (http://www.shorezone.org) (Cook, 2013), internationally within Mapping 

https://mapguide.osgeo.org/
http://www.geotools.org/
http://www.genlogic.com/free_map_server.html
http://mapserver.org/
https://www.google.com/earth/
https://www.deegree.org/
http://qgis.org/
https://www.lizmap.com/en/
http://www.shorezone.org/
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Ocean Wealth (http://maps.oceanwealth.org/#) and the Blue Carbon Mapping Tool 

(http://bluecarbontoolkit.ae/en/layout) in UAE. As web-based systems, these applications allow 

end users a remote access for database visualization and query. Locally, the ShoreZone and UAE 

mapping tools include coastal vegetation distribution and blue carbon in their database whilst the 

Mapping Ocean Wealth concentrates on coral reefs and their economic value globally. Currently, 

there is not an overview of system structure and operation due to the unavailability of the source 

codes and technical documents. In detail, their core functions allow a spatial query at a specific 

area (UAE blue carbon mapping tool), visualization of coral reef values (mapping ocean wealth) 

and more advanced function for mapping with ShoreZone.  

For a more general purpose, there are several web-GIS services available for natural resource or 

soil carbon management. The United States fish and wildlife service has released a version of 

wetlands mapper (https://www.fws.gov/wetlands/) using a geodatabase in the ArcSDE 

environment (Stout et al., 2007). This web-based inventory allows remote access for wetland 

types and surface water habitat query (involving estuarine, marine deep water, freshwater 

wetland, freshwater pond, lake and riverine), measurement of the area as well as the facility to 

export a wetland map in PDF format. In addition, a huge database permits the users to download 

wetland distribution and metadata datasets by states or watershed. Historical distribution is 

another option, however, it is not available for all regions. More broadly, the Global Earth 

Observation System (GEOSS) portal (http://www.geoportal.org/) and Ocean Data Viewer 

(http://data.unep-wcmc.org) provide visualization of a biodiversity dataset globally. Ocean Data 

Viewer focuses on the global distribution of marine ecosystems, biodiversity index (including 

risk index) as well as providing available data for downloading. On a more ambitious scale, the 

GEOSS portal aims to collect all database from around the world, involving metadata and 

http://maps.oceanwealth.org/
http://bluecarbontoolkit.ae/en/layout
https://www.fws.gov/wetlands/
http://www.geoportal.org/
http://data.unep-wcmc.org/
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geospatial information. The user makes a query with the keyword; however, it is time-consuming 

to filter the results from a big database. On the other hand, several records exist as raw 

information and should be updated in the next few years. The SeagrassSpotter 

(https://seagrassspotter.org/) supports a simple web-GIS system for seagrass image visualization 

globally, and a morphology-based classification for seagrass species involved.  

Soil carbon database is another collaborative endeavor between USGS Powell center and the 

Max Planck institute for biogeochemistry (https://powellcenter-soilcarbon.github.io/soilcarbon/). 

This work aims to create a database of soil carbon that allows users to view, make plots and 

contribute formatted data. The project’s data has been uploaded to GitHub, however, most 

information is not distributed widely at this time. Supporting REDD+ activities, Forest Carbon 

Database (http://carbonstock.cifor.org/user/HomeMap) has released an open access web-based 

mapping application (Kurnianto & Murdiyarso, 2010). The application supports basic functions 

of visualization in map and table view. The user is motivated to contribute carbon stocking data 

for any location. Nevertheless, current data is only available in Indonesia within limited data 

points. In another promising approach, Global Risk Assessment Services (GRAS) (http://gst-

prod.gras-system.org/webui/index.html#/worldmap/show) provides the database of total biomass 

carbon, total organic carbon, peatland, and aboveground biomass of woody vegetation in 28 

members of the EU and 13 other countries worldwide which covers carbon stocking, 

biodiversity, land use change, social index, and fires. The spatial maps allow the user to view one 

layer of specific data in listed countries. However, neither blue carbon nor coastal vegetation 

cover is involved in the GRAS database. 

Undoubtedly, these approaches take advantage of collaboration, peer exchange, monitoring cost 

reduction and unification of data formats. However, none of them concurrently (1) provides a 

https://seagrassspotter.org/
https://powellcenter-soilcarbon.github.io/soilcarbon/
http://carbonstock.cifor.org/user/HomeMap
http://gst-prod.gras-system.org/webui/index.html#/worldmap/show
http://gst-prod.gras-system.org/webui/index.html#/worldmap/show
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database of seagrass dynamics; (2) entirely uses open source applications for web-GIS building; 

(3) is easy for data visualization and extraction, simple in configuration and deployment, and 

social-media-emphasized with features of data sharing and collaboration; and (4) has integrated 

seagrass blue carbon into the database. The development of a web-GIS toolset, which is 

dedicated to the seagrass ecosystem, is very necessary to not only effectively protect extant 

seagrass but also improve public awareness of the need for seagrass conservation, fosters a win-

win mechanism in the future.  

The review has revealed that web-based applications at various scales, can be used not only for 

terrestrial ecosystems but present high potential for the visualization of coastal resource change. 

There are, however, only a modest number of dedicated database management and web-GIS 

systems for seagrass in specific regions. In New Zealand, a full feature and open source web-GIS 

system is not available for seagrass at the moment, which is a strong motivation to build a 

simple, low cost but solid web-GIS system for the visualization and collaborative building of a 

seagrass dynamics database. 

2.6. Knowledge gap and research question 

The literature review has provided an in-depth overview to identify the knowledge gaps and 

research questions for the mapping of temporal spatial distribution of seagrass’ biophysical 

parameters and web-GIS based applications (Table 2.7).  
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Table 2.7. Identified knowledge gap and proposed research question 

Knowledge gap Research question 

Seagrass mapping  

1. Large-scale and accurate mapping of Z. 

muelleri has not been undertaken in New 

Zealand. 

2. Limited application of ML algorithms 

for (sparse) seagrass maping. 

3. The potential of mapping using the SAR 

image has not been examined for the 

seagrass ecosystem. 

1. Is Sentinel - 2 imagery suitable for large-

scale seagrass mapping in New Zealand? 

2. Traditional classification approach (i.e: 

Maximum likelihood) and ML 

algorithms - which one results in more 

accurate mapping for seagrass 

meadows? 

3. Can we use SAR images for seagrass 

mapping in the intertidal zones? 

Seagrass change detection 

1. Large scale and long-term change 

detection for seagrass (Zostera muelleri) 

dynamics using space borne remotely 

sensed data have not been undertaken in 

New Zealand; 

2. Long-term monitoring from an historical 

remote sensing data framework has not 

been proposed for investigating Zostera 

muelleri dynamics in New Zealand 

1. Is it applicable and reliable to detect the 

large-scale and long-term change of the 

seagrass Zostera muelleri in New 

Zealand from Landsat image? 

2. Can we use ML models to map seagrass 

changes, and which one will be the best 

model integrating to Landsat imagery? 

3. Is Landsat imagery sufficient to plan a 

long-term monitoring of Zostera 

muelleri in New Zealand? 

Seagrass AGB mapping 

1. Accuracy of seagrass AGB estimation 

from space-born satellite image is very 

low for the species Z. muelleri; 

2. ML application has not been tested for 

seagrass AGB mapping from space-

borne satellite images. 

 

1. Is it reasonable and reliable to either 

apply multi-spectral/SAR data or using 

both multi-spectral and SAR data for Z. 

muelleri AGB estimation? 

2. With what accuracy do the ML models 

derive Z. muelleri AGB estimation? 

Web-GIS based application 

1. A geospatial-database of seagrass 

dynamics has not been built for the 

species Z. muelleri in New Zealand; 

2. An open-source, light-weight, and 

simple web-GIS interface for seagrass 

dynamics is not available in New 

Zealand. 

1. Is it solid and rational to integrate open 

source GIS applications for building a 

simple but light-weight, elegant web-

GIS interface for database visualization 

and collaboration in the study site? 

 



51 

 

The thesis will involve 4 research chapters which aim to fill the gaps in the literature and answer 

the research questions in Table 2.7. Chapter 3 describes the application of various novel ML 

models, in comparison to the traditional approach, to mapping the spatial distribution of dense 

and sparse seagrass meadows from multi-spectral Sentinel-2 imagery. Chapter 4 describes the 

testing of a combination of ML models and Landsat imagery for a large-scale and temporal 

detection of seagrass change which is expected to improve classification accuracy, and 

confidence in the long-term assessment of the seagrass ecosystem. In chapter 5, the potential 

application of both Sentinel-1 and Sentinel-2 images is examined for seagrass spatial distribution 

and AGB mapping using the novel ML models and metaheuristic optimization for feature 

selection. Sentinel-1 was initially selected for the mapping of seagrass meadows whilst various 

combinations using Sentinel-1 and Sentinel-2 bands were examined for seagrass AGB mapping. 

While chapter 3 and 4 contribute advanced methods for the mapping of spatial and temporal 

distribution, chapter 5 attempts to test the potency of both novel remotely sensed data (Sentinel-1 

image which has the advantages of being cloud and weather impactless) and retrieval models 

(ML models and metaheuristic optimization) for assessing seagrass distribution and AGB. 

Chapter 6 builds an experimental web-GIS interface to visualize the geodatabase of seagrass 

dynamics and provides a free access hub to the relevant stakeholders using open-source GIS 

application. 
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Chapter 3 A comparative assessment of ensemble-based machine learn-

ing and Maximum Likelihood methods for mapping seagrass using Sen-

tinel-2 imagery in Tauranga Harbor, New Zealand 

 

The contents of this chapter have been published in the Remote Sensing Journal 

(https://www.mdpi.com/2072-4292/12/3/355/htm). A copy of the published paper is bound into 

Appendix 2. 

  

https://www.mdpi.com/2072-4292/12/3/355/htm
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Abstract: Seagrass has been acknowledged as a productive blue carbon ecosystem in significant 

decline across much of the world. A first step towards conservation is mapping and monitoring 

of extant seagrass meadows. Several methods are currently in use but mapping the resource from 

satellite images using machine learning is not widely applied, despite its successful use in vari-

ous comparable applications. This research aims to develop a novel approach for seagrass moni-

toring, using state-of-the-art machine learning with data from Sentinel-2 imagery. We used Tau-

ranga Harbor, New Zealand, for which extensive ground truth data are available, as a validation 

site to compare ensemble machine learning methods, involving Random Forests (RF), Rotation 

Forests (RoF), and Canonical Correlation Forests (CCF) with the more traditional Maximum 

Likelihood Classifier (MLC) technique. Using a group of validation metrics, including F1, preci-

sion, recall, accuracy, and McNemar test, our result indicated that machine learning techniques 

outperformed MLC with RoF the best performer (F1 scores ranging from 0.75 - 0.91 for sparse 

and dense seagrass meadows, respectively). Our study is the first comparison of various ensem-

ble-based methods for seagrass mapping that we are aware of, and promises an effective ap-

proach to enhance the accuracy of seagrass monitoring.  

Keywords: seagrass, Sentinel-2, Random Forest, Rotation Forest, Canonical Correlation Forest, 

Maximum Likelihood, Tauranga, machine learning, remote sensing 
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3.1. Introduction 

Alongside mangrove and salt marsh, seagrass has been evaluated as an effective coastal ecosys-

tem for blue carbon storage (Duarte & Krause-Jensen, 2017; Gullström et al., 2018; Oreska et al., 

2017). However, ongoing degradation of seagrass meadows (Waycott et al., 2009) is leading to a 

requirement for accurate mapping and monitoring methods to facilitate the MRV (Monitoring, 

Reporting, and Verification) approach necessary for broad scale evaluation of their contribution 

to blue carbon reservoirs (Herold & Skutsch, 2011). In the last decade, satellite imagery has been 

used extensively in developing seagrass mapping techniques, employing various classification 

algorithms with or without parallel traditional field surveys (Dat Pham et al., 2019). Among 

them, Sentinel-2 imagery is becoming more popular for seagrass mapping. Operated by Europe-

an Space Agency (ESA) since 2015, this sensor supports a high quality image at the spatial reso-

lutions of between 10 and 60 m (ESA, 2015). Sentinel-2 data has been distributed free-of-charge 

at the top-of-atmosphere corrected level (level 1C), for ρBlue, ρGreen, ρRed, and ρNIR bands at 10 m 

resolution, and provides a very good resource for intertidal and subtidal ecosystem mapping. Us-

ing these data to derive ecosystem spatial properties requires classification algorithms, and over-

fitting, inaccurate edge detection of different substrata remain as limitations of traditional classi-

fication methods (Hossain et al., 2015; Winters et al., 2017; Dat Pham et al., 2019; Gumusay et 

al., 2019). For seagrass mapping, the problems of misclassification usually relate to the impact of 

deep water on pixel values or the mixture of substrata within a seagrass meadow (Wicaksono & 

Lazuardi, 2018). To overcome this problem, very high resolution (VHR) imagery and a variety 

of classification approaches can be considered (Poursanidis et al., 2018, 2019). Most frequently, 

probability-theory based models, such as Maximum Likelihood Classifier (MLC), have been ap-

plied for seagrass classification (Hossain et al., 2015; Dat Pham et al., 2019). This approach, 
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however, requires conditions that are difficult to satisfy in the marine environment, including a 

normal distribution of probabilities, equal co-variance, and large amounts of validation input data 

(Asmala, 2012; Richards, 2013). In addition, the utilization of the linear or quadratic discrimina-

tion functions of a MLC may not work when the boundaries of classes are not well defined 

(Richards, 2013).  

In recent years, machine learning (ML) has emerged as a novel approach for seagrass mapping 

and monitoring (Dat Pham et al., 2019). Machine learning has the benefits of rapid learning, ac-

commodation of non-linearity (Holloway & Mengersen, 2018) and the availability of an increas-

ing number of new, open source algorithms (Liu, 2017). In the field of seagrass mapping and 

monitoring, however, the application of machine learning is still in its infancy (Dat Pham et al., 

2019). Examples used to date include weighted majority voting using Quickbird image (Mo-

hamed et al., 2018); Logistic Model Trees (LMT), AdaBoost, Random Forest (RF), and Artificial 

Neural Networks (ANN) using digital images (Bonin-Font et al., 2016); Support Vector Machine 

(SVM) using Sentinel-2 images (Poursanidis et al., 2019; Traganos & Reinartz, 2017); and Deci-

sion Tree (DT) using aerial photographs (Pe’eri et al., 2016). In these examples, when used with 

high spatial resolution images (< 1 m), machine learning models achieved an accuracy of 92 - 

100%. Decision tree models using aerial photographs, however, achieved a lower accuracy of 

66% for seagrass meadows when plant cover was below 60% (Pe’eri et al., 2016). These mixed 

results support the exploration of novel machine learning approaches, particularly for improving 

low coverage seagrass mapping.  

Among various DT ensemble machine learning algorithms, Rotation Forests (RoF) and Canoni-

cal Correlation Forests (CCF) algorithms are now emerging as reliable techniques for land cover 

mapping (Colkesen & Kavzoglu, 2017), landslide mapping using multi-spectral (Sahin et al., 
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2018) or hyper-spectral (Moughal, 2013) imagery, and rapid building mapping using multi-

source data (Adriano et al., 2019). Through bootstrap sampling, combining multiple independent 

base classifiers, and applying statistical analysis (principle component analysis (PCA) in RoF 

model) (Probst et al., 2019; Xiu et al., 2017), these learning algorithms are well-known for re-

ducing the variance and overfitting of the classification results, resulting in a better detection of 

multi-classes boundaries (Bagnall et al., 2018; Belgiu & Drăguţ, 2016; Feng et al., 2018). In ad-

dition, the CCF model does not require optimizing of hyperparameters (Rainforth & Wood, 

2015) which make this model simpler to apply for mapping tasks. To our knowledge, these tech-

niques have not been used for seagrass mapping, yet they potentially offer benefits in the classi-

fication of low coverage through enhanced recognition of edge boundaries. Therefore, our goal 

in this study is to compare the use of three ML algorithms, RF, RoF and CCF to the more tradi-

tional MLC approach for mapping the aboveground distribution of seagrass communities at low 

and high coverage, using Sentinel-2 data.  

Our target was Tauranga Harbor, New Zealand, for which ground truth data were available, and 

where a mosaic of dense, sparse, and no seagrass present. We discuss here the difference in per-

formance of selected models for seagrass detection at two densities. Our results are expected to 

contribute alternative solutions for the mapping and monitoring of seagrass at various regions in 

the world, and assist conservation of this important blue carbon ecosystem. 

3.2. Materials and Methods 

3.2.1. Study site 

Tauranga Harbor, North Island, New Zealand was selected as our study site (Figure 3.1). The site 

supports a single seagrass species, Zostera muelleri, distributed in the intertidal parts of the har-

bor (Park, 1999). Z. muelleri tolerates at a wide range of salinity (10 - 30 practical salinity unit 
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(psu)), however a salinity at 12 psu is optimal to produce highest shoot density (Collier et al., 

2014). Z. muelleri is a small plant when growing intertidally, as in the Tauranga Harbor, with 

leaves 5 - 30 cm in length and 0.1 - 0.4 cm in width. It has a maximum growth rate in austral 

summer (December to March) with optimal temperature ranging from 27 - 33 oC (Collier et al., 

2011, 2017; York et al., 2013). Biomass declines gradually over winter to reach a minimum in 

early spring (October) (Turner, 2007). Since satellite image based mapping uses surface reflec-

tance as input data for the classification, our mapping addresses only the aboveground part of 

seagrass meadows, and may thus underestimate colonized area if applied in late winter when 

main leaves have senesced. Flowering and seed production in Z. muelleri is rare in New Zealand, 

and lateral spread is slow and by vegetative mechanisms (Ramage & Schiel, 1998; Schwarz & 

Turner, 2006).  

In Tauranga Harbor, the tide regime is semi-diurnal, with a range of 0.2 - 2.1 m. The size of the 

harbor means that tide timings are different in various areas in the harbor (Reeve et al., 2018). 

Examination of harbor bathymetry and seagrass distribution, which is almost exclusively inter-

tidal in the harbor, indicates that seagrass was occupying a depth range of 0.0 - 1.5 m at Sentinel-

2 acquisition time. Across the years 2018 - 2019, the mean air temperature ranged from 2.5 oC in 

winter to 31.6 oC in summer (data from the New Zealand MetService: 

https://www.metservice.com/towns-cities/locations/tauranga/past-weather) whereas mean sea 

temperature ranged from 14 oC in winter to 23 oC in summer (data from the New Zealand sea 

temperature: https://www.seatemperature.org/australia-pacific/new-zealand/tauranga.htm).  

Previous mapping, using aerial photography and manual classifications for the years 1959, 1996, 

and 2011 (Park, 2011), suggested a loss of ~50% of seagrass area, making a strong case for on-

https://www.metservice.com/towns-cities/locations/tauranga/past-weather
https://www.seatemperature.org/australia-pacific/new-zealand/tauranga.htm
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going monitoring of seagrass cover. In addition, a wide range of seagrass density and substratum 

make Tauranga Harbor a suitable location for testing novel classification algorithms (Figure 3.2).  

 

Figure 3.1. Study site in Tauranga Harbor using a ρRed-ρGreen-ρBlue combination of Sentinel-2 scene (1 May 

2019) 



59 

 

 

Figure 3.2. Dense (a) and sparse (b) seagrass meadows in Tauranga Harbor (photos taken by N.T.H) 

3.2.2. Field survey 

A seagrass mapping survey was undertaken from 1 - 7 April 2019 (Figure 3.1) in the intertidal 

areas of the habour. At low tide, the boundary of seagrass meadows was delimited using a 

Garmin Etrex 30 global positioning system (GPS) with an accuracy of ± 2 m. Other substrata 

recorded during the field survey, were bare sand and muddy sand. Macroalgae were neither 

detected from our field survey nor mentioned in previous mapping reports (Park, 1999, 2011). 

Ground truth points (GTPs) were recorded by following the boundary between seagrass 

meadows and unvegetated areas. In addition, we also recorded the internal boundary of seagrass 

and bare substrate if they coexisted in the same meadow. The frequency with which GTPs were 

recorded was related to the 10 m pixel size of Sentinel-2, and varied according to seagrass 

density.  The number of GTPs was 2 - 5 GTPs per pixel in the case of patchy meadows, and 

decreased to one GTP per pixel or one GTP per 2 - 3 pixels for continuous, dense meadows. 

GTPs were not collected for seagrass meadows smaller than 100 square meters (fitting with the 

pixel size of Sentinel-2 imagery), and some meadows were not able to be accessed due to logistic 

constraints. 

Seagrass class boundaries were determined visually, with “dense” and “sparse” boundaries 

recorded. A meadow was identified as “dense” if the coverage was larger than 80% (Figure 3.2 
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(a)), and “sparse” if the coverage was less than 80% (Figure 3.2 (b)). A total of 4315 GTPs were 

recorded, with 2751 and 1564 for sparse and dense meadows, respectively; 237 GTPs were 

recorded for other substrata. 

3.2.3. Satellite data acquisition and image pre-processing  

A Sentinel-2 scene acquired on 1 May 2019 was selected and downloaded from the GLOVIS 

website (https://glovis.usgs.gov) (Table 3.1). Sentinel-2 scene was pre-processed at level 1C 

(atmospheric correction at the top of atmosphere), and in the projection of WGS-84 UTM 60S. 

Sentinel pixels were classified into non-seagrass, sparse and dense seagrass classes according to 

our field observations. Field and remote sampling were closely synchronous, and we considered 

the field data to provide a sufficiently accurate representation of seagrass spatial distribution to 

develop the models. 

Table 3.1. Sentinel-2 data acquisitions used for seagrass mapping in this study 

Date of 

acquisition 

Time of acquisition*  

 

Spatial 

resolution 

(m) 

Cloud 

coverage (%) 

First  

low tide 

Second  

low tide 

1 May 2019 10:16 AM 10 0 10:33 AM 22:52 PM 

*: Time is local time of New Zealand zone 

 

Atmospheric correction  

Atmospheric correction was executed in a Python™ environment using the dark spectrum fitting 

method in ACOLITE (RBINS, 2018). This fast and free-to-download tool has been adapted for 

aquatic application and presented a reliable atmospheric correction for Landsat and Sentinel-2 

(Vanhellemont, 2019). This process converts pixel values from top of atmospheric (at level 1C) 

to surface reflectance for water pixels. 

  

https://glovis.usgs.gov/
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Table 3.2. Selected parameters for atmospheric correction using ACOLITE 

Parameters Values  

Ancillary data 

Gas transmittance True 

Ozone concentration (cm−1) 0.3 

Water vapour concentration (g cm-2) 1.5 

Pressure Normal pressure  

Masking 

Level 2 water masking (nm) 1600 

Negative reflectance masking True 

Cirrus masking True 

Other parameters 

Sky correction True 

Dark spectrum fitting Fixed  

Sun glint correction False  

Output parameter 

Surface reflectance for water pixel (𝜌𝑤) 

𝜌𝑤443  

𝜌𝑤560 

𝜌𝑤665 

 

The coefficients and options of selected parameters are presented in Table 3.2. For our study site, 

sun glint was not observed in the acquired scene. Therefore, the parameter of sun glint correction 

was set to False. SWIR, a spectral band of Sentinel-2 with the wavelength close to 1600 nm, was 

used to mask land and cloud pixels from water pixels. Corrected surface reflectance for water 

pixels of blue (𝜌𝑤443), green (𝜌𝑤560), and red (𝜌𝑤665) bands were used for the next step of water 

column correction.  
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Water column correction  

Satellite image acquisition did not coincide with low tide in Tauranga Harbor (Table 3.1), and 

most, but not all seagrass were inundated at the time of acquisition. We therefore next applied a 

water column correction. Previous studies suggested that visible wavelengths are the most sensi-

tive to seagrass meadows (Green et al., 1996; Ha et al., 2012; Garcia et al., 2015) and penetrate 

well into water (Green et al., 1996). Conversely, several studies indicated that the near infrared 

band is rapidly absorbed in the underwater environment (Green & Edwards, 2000; Traganos & 

Reinartz, 2017), and therefore may contribute noise to the image, leading to a low accuracy of 

underwater habitat detection (Ha et al., 2012; Chen et al., 2018). As a result, we decided on the 

use of only visible spectra in the current study without the ρNIR band. After the water column cor-

rection step, water pixels in the ρBlue (458 - 523 nm), ρGreen (543 - 578 nm), and ρRed (650 - 680 

nm) spectral bands were selected as input data for the evaluation of the model’s performance. 

Water column correction was conducted using bottom reflectance index (BRI), as proposed by 

Sagawa et al (2010). Instead of absolute values of bottom reflectance, this approach creates dif-

ferent indexes for various bottom types which are used for the step of classification. The index is 

calculated using Equation (3-1): 

BRI𝑖 =
SR𝑖

𝑒−𝑘𝑖∗𝑔∗𝑧
 (3-1) 

 

in which:  

BRI𝑖: Bottom reflectance index of band i 

SR𝑖: Surface reflectance for water pixel of band i (𝜌𝑤𝑖) 

𝑘𝑖: attenuation coefficient of solar radiance in water column (m−1) of band i 

𝑔: a geometric factor accounting for the path length through the water  
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𝑧: water depth (m)  

Values of SR and 𝑘 of blue, green, and red bands were retrieved from the atmospheric correction 

step. Water depth (𝑧) was extracted from bathymetry published by the national institute of water 

and atmospheric research (NIWA). g was calculated using Equation (3-2) (Lyzenga et al., 2006): 

𝑔 =
1

𝑠𝑒𝑐(𝑆𝑜𝑙𝑎𝑟𝑍𝑒𝑛𝑖𝑡ℎ𝐴𝑛𝑔𝑙𝑒) + 𝑠𝑒𝑐(𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑁𝑎𝑑𝑖𝑟𝐴𝑛𝑔𝑙𝑒)
 

(3-2) 

 

in which: 

𝑠𝑒𝑐(𝑆𝑜𝑙𝑎𝑟𝑍𝑒𝑛𝑖𝑡ℎ𝐴𝑛𝑔𝑙𝑒) =
1

𝑐𝑜𝑠(𝑆𝑜𝑙𝑎𝑟𝑍𝑒𝑛𝑖𝑡ℎ𝐴𝑛𝑔𝑙𝑒)
 

𝑠𝑒𝑐(𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑁𝑎𝑑𝑖𝑟𝐴𝑛𝑔𝑙𝑒) =
1

𝑐𝑜𝑠(𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑁𝑎𝑑𝑖𝑟𝐴𝑛𝑔𝑙𝑒)
 

g factor was calculated as 0.0245 for Sentinel-2 scene at study site.  

3.2.4. Image classification with ML ensemble-based and MLC methods 

Selection of maximum likelihood, random forest, rotation forest, and canonical correlation forest 

classifiers 

MLC is the most popular classification method in remote sensing (Dat Pham et al., 2019) and is 

based on probability theory. This model requires a normal distribution, equal covariance, and 

sufficient number of training samples (Hogland et al., 2013) to maintain a reliable result. Class 

mean vector and covariance matrices are used to minimize class distance and maximize the 

probability of a feature belonging to selected class, using quadratic or linear discrimination func-

tions. This method, however, may overfit posterior probabilities and result in inaccurate classifi-

cation when the assumptions are violated.  
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RF (Breiman, 2001) builds a forest of decision trees from a bootstrap sampling of training data 

points, and uses only a selection of all the samples for each decision tree. For each subset, a deci-

sion tree is built using two thirds of the total samples for training and one third for validation of 

the RF model. Majority voting is applied to arrange labels to given classes. The RF model con-

structs and combines a large number of base-decision trees using the classification and regres-

sion tree (CART) algorithm. Known as a robust and consistent model, RF is the most popular 

ensemble based model for classification problems, and, in particular, for seagrass mapping (Dat 

Pham et al., 2019).   

Rodriguez et al., (2006) presented RoF – a feature extraction based method (Rodriguez et al., 

2006). RoF is expected to provide an alternative selection for both regression and classification 

tasks (Bagnall et al., 2018). The training data created by a bootstrap sampling is split into K sub-

sets and then principal component analysis (PCA) is applied for each subset. All the principal 

components are retained and a number of decision trees are built from these transformed da-

tasets. RoF can perform better than RF with a smaller number of trees, and therefore reduces the 

time for running the model. Instead of estimating the average value from all the trees in RF, a 

confidence value is calculated to assign a label to a given class with the highest value of the con-

fidence.  

CCF creates a number of canonical correlation trees (CCTs) using canonical correlation analysis 

(CCA) to maximize the correlation between the input data and the selected labels. The authors 

(Rainforth & Wood, 2015) confirmed the robustness of the model and also introduced the projec-

tion bootstrapping which uses of all of the data and improves prediction accuracy over RF mod-

els. CCF is different from RF and RoF, lacking the tuning hyper-parameter, but offers similar 
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accuracy with a smaller number of trees (Rainforth & Wood, 2015) and therefore, may consume 

less computation time for the training phase.  

Training and testing dataset 

Differences between collected date of GTPs and acquisition date of satellite image existed and, 

in the variable marine environment, this may be inevitable (Koedsin et al., 2016; Kovacs et al., 

2018; Meyer & Pu, 2012; Tsujimoto et al., 2016). In our study site, the difference between the 

field survey (1 - 7 April 2019) and acquired date of Sentinel-2 (1 May 2019) is approximately 23 

days which was acceptable comparing to various literatures (Meyer & Pu, 2012; Tsujimoto et al., 

2016; Wicaksono & Lazuardi, 2018; Kovacs et al., 2018). In addition, April and May are in the 

austral autumn. Therefore, the GTPs are reliable to support the selection of image pixel for 

training and testing dataset. Following the GTPs, the regions of interest (pixels) of three classes: 

dense seagrass, sparse seagrass, and non-seagrass, were selected and randomly split into 60% for 

training and 40% for testing phases, and used as a unique input for all selected models (Table 

3.3).  

Table 3.3. Number of pixels for training and testing at various acquisition dates 

Sentinel acquisition date  Number of pixels 

 60% for training  40% for testing  

1 May 2019 8586 5724 

 

Performing of MLC, RF, RoF and CCF models  

The optimization and performance of the RF, RoF, and MLC algorithms for image classification 

were conducted in a Python™ environment, using Jupyter notebook as the code editor. RF and 

RoF codes were sourced from Scikit-learn (Pedregosa et al., 2011), GitHub (Joshua, 2016), and 

MLC from mlpy (Albanese et al., 2012; Davide, 2012). For the RF and the RoF models, optimi-
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zation of the hyper-parameters used a grid search with fivefold cross-validation (Bagnall et al., 

2018; Probst et al., 2019). The optimization and performance of the CCF model was conducted 

in the Matlab environment, using the source code of Rainforth and Wood (Rainforth, 2018; Rain-

forth & Wood, 2015). The CCF models were performed with 10, 30, 50, 100, 200, and 500 trees, 

and an optimal number was selected based on the lowest misclassification rate, highest Kappa 

coefficient, and an acceptable computation time. 

The results of the CCF model were exported to a CSV format for model comparisons in Py-

thonTM. All source codes were open access, and the codes developed in this study will be submit-

ted to GitHub (https://github.com). The image processing and classification were performed us-

ing a desktop computer with four 3.8 GHz physical cores and 16 Gb RAM.  

Evaluation criteria  

Equations (3-3) - (3-7), involving accuracy, Kappa coefficient, precision, recall, and F1 were 

used to compare the performance of selected models. High precision means that the classifier is 

able to detect seagrass pixels precisely, whilst high recall means that the classifier is able to find 

all possible pixels of seagrass. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦𝑝𝑟𝑒𝑑) =
1

𝑛samples
∑ 1

𝑛samples−1

𝑖=0

(𝑦𝑝𝑟𝑒𝑑𝑖 = 𝑦𝑖) (3-3) 

 

in which:  

𝑦𝑝𝑟𝑒𝑑: predicted value  

𝑦: corresponding true value  

𝐾𝑎𝑝𝑝𝑎 =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒
 

(3-4) 

https://github.com/
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in which:  

𝑝𝑜: observed agreement ratio  

𝑝𝑒: expected agreement  

Precision =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (3-5) 

Recall =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (3-6) 

𝐹1 =
2 × precision × recall

precision + recall
 (3-7) 

in which:  

𝑡𝑝: true positive  

𝑓𝑝: false positive  

𝑓𝑛: false negative 

 

In addition, the non-parametric McNemar test was used to compare statistically the accuracy of 

selected models in this research. The test was executed in a Python™ environment using the 

mlxtend library (Raschka, 2018). The chi-square value (χ2) is calculated from Equation (3-8) 

with Edward’s continuity correction. 

𝜒2 =
(|𝑓𝑛 − 𝑓𝑝| − 1)2

(𝑓𝑛 + 𝑓𝑝)
 (3-8) 

 

in which:  

𝑓𝑛: false negative 

𝑓𝑝: false positive  
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3.3. Results 

Pixels were selected from each ground-truth class for evaluation of automated classification. The 

main challenge to the automated classification emerged as the problem of the mixing of sparse 

seagrass and bare sand in the same meadow. In particular, the substratum in very shallow water 

belonging to the non-seagrass class could be confused with sparse seagrass. 

3.3.1. Hyper-parameters tuning for RF, RoF, and optimizing number of trees for CCF models  

The hyper-parameters were tuned and consistently maintained for RF and RoF running during 

the training and testing phases (Table 3.4).  

Table 3.4. Hyper-parameters selected for use in RF and RoF models 

 RF RoF 

Bootstrap True True 

Max depth 20 30 

Max feature Auto Auto 

Min sample leaf 1 3 

Min sample split 9 7 

Number of tree 100 100 

Number of subset  3 

 

For the CCF model, lowest misclassification rates, and highest Kappa coefficient values were 

recorded at 200 trees (Figures 3.3 (a), 3.3 (d)). As a result, we selected 200 trees as an optimal 

choice for CCF, which gave a computation time for training and testing runs, which increased 

linearly with the number of trees, of 27 and 4.5 s respectively (Figures 3.3 (b), 3.3 (c)).  
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Figure 3.3. Number of tree, mean values of mis-classification rate, computation time (training and testing 

time is the computation time measured for training and testing phases, respectively), and Kappa 

coefficient using data described in Table 3.3 

3.3.2. Comparing the performance of RF, RoF, CCF, and MLC models for seagrass mapping  

The ML methods consistently outperformed the MLC for all evaluation metrics (Table 3.5), and 

the McNemar test indicated these effects as significant (Table 3.6). In particular, the precision of 

ML models are similarly high, and greater than MLC methods for dense and sparse seagrass, 

whilst very high recall was observed for both classes using the MLC model. F1 values of MLC 

were lower than the ML methods for both dense and sparse seagrass. Among the ML methods, 

RoF outperformed CCF and RF models (Figure 3.4 and Table 3.5), and this difference was also 

statistically significant (Table 3.6). RoF values show highest values for precision and F1 across 

all three ML methods for both dense and sparse seagrass classes (Table 3.5). The ML models are 

less effective at discriminating sparse than dense seagrass. 
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All ensemble-based ML models were able to detect dense seagrass meadows with very high F1 

scores ranging from 0.90 - 0.91 whereas the MLC model produced a F1 score of 0.75 (Table 3.5). 

The performance of these ML models is consistent with a balance of high precision and recall. A 

good performance for dense seagrass class is conceivably due to a spectral separation of this 

class from sparse and non-seagrass classes. As can be seen from Table 3.5, the RoF model im-

proved the accuracy of the classification, in terms of F1 score, by 1% compared to the CCF, and 

RF, but by nearly 17% over the MLC model for dense seagrass class. Corresponding improve-

ments were 3% (CCF, RF) and 33% (MLC) for the sparse seagrass class.  

In addition, the findings also demonstrate how seagrass meadows made the classification more 

challenging due to the mixing between seagrass and bare sand in the same meadow. The RoF 

model still produced the highest F1 score (0.75), followed by the CCF and RF (0.73) models 

(Table 3.5). Conversely, the MLC model yielded a F1 score of only 0.50, which was significantly 

lower than the three ML models. Regarding computation time, the CCF model requires more 

time to run whilst the MLC model executes very fast for both training and testing phases (Table 

3.5).  
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Figure 3.4. A comparison of F1, precision, and recall scores for Sentinel-2 scene (1 May 2019) using 

ensemble-based and traditional approaches 

Table 3.5. Accuracy, precision, recall, and F1 of model performing for selected Setinel-2 scene 

Model Accuracy 
Precision 

DS* 

Precision 

SS* 

Recall 

DS 

Recall  

SS 

F1  

DS 

F1  

SS 

Training 

time (s) 

Prediction 

time (s) 

RoF 0.88 0.90** 0.74 0.92 0.75 0.91 0.75 3.54 0.37 

CCF 0.87 0.90 0.74 0.89 0.72 0.90 0.73 27.06 4.57 

RF 0.87 0.89 0.73 0.92 0.74 0.90 0.73 0.07 0.00 

MLC 0.51 0.63 0.34 0.93 0.95 0.75 0.50 0.00 0.01 
*: DS: dense seagrass and SS: sparse seagrass classes 
**: Bold values indicate the best performance 
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Table 3.6. McNemar test comparing the performance of selected models in prediction of seagrass class 

 χ2 p-value 

 Scene 1 May 2019 

RoF – RF 9.03 0.00 

RoF – MLC  1,667.29 0.00 

RoF – CCF  2,069.37 0.00 

RF – MLC  1,599.46 0.00 

RF – CCF  1,995.93 0.00 

CCF – MLC  42.51 0.00 

 

As the RoF model yielded the highest performance assessment for seagrass mapping in this re-

search, we employed this model to create the classified maps (Figure 3.5). The distribution of 

seagrasss meadows were consistently in the middle and southern part of the harbor which may 

suggest optimal sites for blue carbon assessment as well as potential targets for long-term con-

servation of seagrass in Tauranga Harbor. Seagrass area was approximately estimated as 

1,027.59 ha in May 2019.  
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Figure 3.5. Seagrass map for Tauranga Harbor, 1 May 2019, derived using the RoF model applied to 

Sentinel-2 imagery 
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3.4. Discussion 

As far as we are aware, this research is the first attempt to compare the performance of RF, RoF, 

CCF and MLC methods for seagrass mapping with a full radiometric correction of the images. 

Desirable characteristics for seagrass mapping are both high precision and recall. To give a final 

coherence score and harmonize the values of precision and recall, F1 score is usually preferred to 

evaluate a model’s performance. The research presented here suggests that ML models detect 

dense seagrass meadows well, and out-perform the traditional MLC approach.  

Of the machine learning ensemble approaches used, CCF and RF models performed less well 

than the RoF model, contradicting a superior performance of CCF in other studies (Rainforth & 

Wood, 2015). CCF produced lower recall whilst RF created lower precision for both dense and 

sparse seagrass classes. For sparse seagrass meadows, CCF detected more precisely than the RF 

model. In addition, MLC produced very high recall but low precision scores, for both seagrass 

classes, leading to lower F1 score and accuracy than ensemble based models. Overall, our results 

show that RF, RoF, and CCF are good performers with a balance of high precision and recall 

scores, whilst very low precision scores of dense and sparse seagrass classes, ranging from 0.34 - 

0.63, were found for MLC. These results confirm the robustness and consistency of machine 

learning ensemble based methods in comparison to MLC. We hypothesis that the poor perfor-

mance of MLC may be because of the need of input data to satisfy built-in assumptions, de-

scribed above, which are difficult to sustain in the spatially heterogeneous marine environment.  

Of the methods tested here, only the RF technique has previously been applied to seagrass map-

ping, using very high spatial resolution imagery. In that case, high precision (0.947) and recall 

(0.968) values were determined mapping Posidonia oceanica from digital airborne images, 

though no comparison to other methods was attempted (Bonin-Font et al., 2016). In another 
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seagrass study, overall accuracy only reached 82% using the RF algorithm applied to RapidEye 

imagery (Traganos & Reinartz, 2018). Considering the size of seagrass meadows and the mix of 

substrate in Tauranga Harbor, the measured scores in our results are reliable for both dense and 

sparse seagrass mapping using medium spatial resolution of Sentinel-2 data (10 m pixel size). In 

other studies that allow comparison of RF, RoF, and CCF models, CCF slightly outperformed 

RF and RoF models for land cover mapping (Colkesen & Kavzoglu, 2017), RoF outperformed 

RF and CCF for mangrove mapping (Pham et al., 2019) whilst a similar performance of RoF and 

CCF models was noted previously for land slide mapping (Sahin et al., 2018).  

In addition to performance advantages, RF and RoF are easy to execute in Python™, whilst CCF 

is confined to the Matlab environment. The open source operating environment and diverse Py-

thon™ libraries provide multiple solutions for seagrass mapping and monitoring, and enhance 

the capacity to develop novel algorithms for various tasks in marine science (Lemenkova, 2019). 

Several libraries in the Python™ environment support a built-in framework for classification 

problems with a long list of state-of-the-art machine learning algorithms (Raschka & Mirjalili, 

2017). This ease-of-use approach allows a person with a minimum programming skill to make 

the classification more reliable with machine learning. Recently, cloud computing divers the ex-

ecutable environments for the big Earth observation data, and coastal resources mapping, in par-

ticular. A cloud computation system is able to deal with a massive remote sensing data, parallel 

processing of satellite image using multiple data centers, and enables to respond to on-demand 

information requests at the country and global scales (Yan et al., 2018; Yao et al., 2019). The 

using of open source machine leaning algorithms in PythonTM and cloud system, therefore prom-

ises the big scale and reliable mapping in the future. 
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Our results validated the performance of RF, RoF, and CCF models for seagrass mapping and 

suggest the RoF technique is a promising novel approach to further seagrass monitoring at vari-

ous sites in the world. The current study does have some limitations. The mismatch between the 

number of ground truth points (GTPs) and Sentinel-2 pixel size (10 × 10 m) may raise a degree 

of uncertainty in classification, particularly for sparse seagrass. However, we consider that de-

spite this mismatch, a sufficient and representative number of GTPs for each class was collected 

during the field survey (as presented in the subsection 3.2.2) to have confidence in classification. 

Related issues that might explain the low values of precision and recall for sparse seagrass 

meadows are issues of mixed pixel, whereby small seagrass patches or dispersed clumps within a 

pixel challenge the classification process. To our knowledge, these effects are not easy to com-

pensate for in the case of low to very low coverage seagrass, using Sentinel-2 imagery. Thus, the 

use of very high spatial resolution sensors such as Worldview (~ 0.3 - 0.4 m) (Koedsin et al., 

2016; Kovacs et al., 2018) or Pleiades-1 (0.5 m) is currently being investigated for future studies 

for seagrass mapping. Moreover, with the development of computer vision and pattern recogni-

tion, deep learning approaches with a Convolutional Neural Network (CNN) such as U-Net or 

Recurrent Neural Network (RNN) for semantic segmented imagery applied sub-pixel techniques 

should be encouraged for future studies (Dat Pham et al., 2019). 

3.5. Conclusions 

We tested the performance of ML ensemble-based and MLC methods for seagrass mapping from 

Sentinel-2 data. Using Tauranga Harbor as a validation site, our comparison indicated that all 

ML-based approaches significantly outperformed MLC. MLC failed to detect sparse seagrass 

meadows, with a low F1 score of 0.50. We noted a better performance of RoF compared to RF 

and CCF models with a highest F1 score of 0.91 and 0.75 for dense and sparse seagrass classes.  
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Our results attest to the reliable application of RoF model for the mapping and monitoring of 

seagrass in shallow water, using Sentinel-2 imagery. Despite a lower accuracy for sparse than 

dense seagrass meadow classification, CCF model shows potential for the mapping of seagrass 

and merits further testing at various scales and in various case studies. Regarding MLC, this 

model is still an applicable candidate for dense seagrass meadows, however may be not applica-

ble for sparse to very sparse seagrass meadows mapping. 
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Chapter 4 Detecting multi-decadal changes in seagrass cover in Tau-

ranga Harbor, New Zealand, using Landsat imagery and boosting en-

semble classification techniques  

 

The contents of this chapter have been published in the ISPRS International Journal of Geo-

Information (https://www.mdpi.com/2220-9964/10/6/371). A copy of the published paper is 

bound into Appendix 4. 

  

https://www.mdpi.com/2220-9964/10/6/371
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Abstract: Seagrass provides a wide range of essential ecosystem services, supports climate 

change mitigation, and contributes to blue carbon sequestration. This resource, however, is 

undergoing significant declines across the globe, and there is an urgent need to develop change 

detection techniques appropriate to the scale of loss and applicable to the complex coastal marine 

environment. Our work aimed to develop remote-sensing-based techniques for detection of 

changes between 1990 and 2019 in the area of seagrass meadows in Tauranga Harbour, New 

Zealand. Four state-of-the-art machine-learning models, Random Forest (RF), Support Vector 

Machine (SVM), Extreme Gradient Boost (XGB), and CatBoost (CB), were evaluated for 

classification of seagrass cover (presence/absence) in a Landsat 8 image from 2019, using near-

concurrent Ground-Truth Points (GTPs). We then used the most accurate one of these models, 

CB, with historic Landsat imagery supported by classified aerial photographs for an estimation 

of change in cover over time. The CB model produced the highest accuracies (precision, recall, 

F1 scores of 0.94, 0.96, and 0.95 respectively). We were able to use Landsat imagery to 

document the trajectory and spatial distribution of an approximately 50% reduction in seagrass 

area from 2237 ha to 1184 ha between the years 1990–2019. Our illustration of change detection 

of seagrass in Tauranga Harbour suggests that machine-learning techniques, coupled with 

historic satellite imagery, offers potential for evaluation of historic as well as ongoing seagrass 

dynamics. 

Keywords: seagrass mapping; Tauranga Harbour; change detection; Landsat; Random Forest; 

Support Vector Machine; Extreme Gradient Boost; CatBoost; machine learning 
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4.1. Introduction 

Seagrass provides a number of valuable ecosystem services in coastal areas, including primary 

production, biogenic habitat production, water filtering, wave energy attenuation, and sediment 

trapping (Nordlund et al., 2016; Nordlund et al., 2018). In recent years, blue carbon, including 

seagrass meadows, has been acknowledged as an important service for climate change mitigation 

because of its value in the sequestration of carbon (Fourqurean et al., 2012; Gullström et al., 

2018). Seagrass meadows, however, have declined and degraded across various regions in the 

world, a change largely attributed to anthropogenic effects (Marbà et al., 2015; Orth et al., 2006; 

Waycott et al., 2009).  

The destruction of seagrass leads to the loss of various ecosystem services (Cullen-Unsworth & 

Unsworth, 2013; Marbà et al., 2015), threatens the stability (Waycott et al., 2009) and long-term 

livelihood of the fisherman in the coastal areas (Bujang et al., 2018; Hejnowicz et al., 2015). 

Therefore, an accurate and rapid technique to inventory this resource is in high demand (Orth et 

al., 2006; Unsworth et al., 2018; Dat Pham et al., 2019), to contribute baseline data for the 

evaluation of coastal ecosystem dynamics, establishment of marine protected areas, and 

functional zoning fitting to the local conditions. Where this can include a historic perspective, it 

can provide a comprehensive understanding of system change.  

Several attempts at mapping and monitoring seagrass meadows using different satellite sensors 

and approaches have been reported (Dat Pham et al., 2019). Change of seagrass cover has been 

assessed using RapidEye (Traganos & Reinartz, 2018), Indian satellite image (IRS LISS IV) 

(Paulose et al., 2013), WorldView-2, Ikonos, Quickbird-2 (Roelfsema et al., 2015), and Landsat 

(Chen et al., 2016; Hossain et al., 2015; Amone-Mabuto et al., 2017; Phinn et al., 2018) in 

various parts of the globe including the Mediterranean, the USA, Australia and Malaysia. The 
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temporal range of these attempts is constrained by the various platform launch dates, and 

typically range from 5 to ~ 25 years. Few efforts have attempted a longer-term change detection 

(30–40 years) of seagrass, and accuracy assessment has not frequently been reported for such 

long-term change detection. The reasons for this may relate to a deficiency of ground-truth data 

against which to evaluate older satellite scenes, and a need for imagery for the development of 

robust models for the classification of seagrass meadows in variably submerged conditions to be 

captured at optimal times to allow traditional classification procedures to be applied.   

In recent years, machine learning (ML) has been emerging as an effective approach in various 

classification tasks, including for seagrass mapping (Dat Pham et al., 2019; Ha et al., 2020). ML 

provides improvements over the traditional Earth observation (EO) data classification 

approaches, to deal better with the challenges of mixed habitat, coarse spatial resolution of 

satellite imagery, water column and atmospheric interference in coastal habitats (Ha et al., 2020; 

McCarthy & Halls, 2014; Sousa et al., 2016). Advantages of ML models are their use of non-

parametric approaches, requiring no assumptions of normal distribution of input data, effective 

use of noisy data, and capability for multiple feature extraction (Ahmad, 2019; Camps-Valls, 

2009; Lary et al., 2016; Maxwell et al., 2018). The application of ML techniques to 

multitemporal satellite data, gathered from different satellite platforms, may therefore improve 

the overall accuracy of the classification result and enhance the reliability of seagrass change 

assessment. A range of different ensemble-based supervised classification techniques, such as 

boosting and bagging approaches (Camps-Valls, 2009; Sousa et al., 2016; Lary et al., 2016; 

Huettmann, 2018) have been considered and tested in the literature for this type of task 

(Bühlmann, 2012; Machova et al., 2006). The most important differences between the bagging 

and boosting methods come from the approaches to creation of training and testing datasets, and 
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how the bagging and boosting methods deal with weak learners during the learning process. 

Despite the potential for improved classification accuracy in suboptimal datasets, these 

approaches have not yet been fully implemented for seagrass change detection (Dat Pham et al., 

2019). We are aware of only a single study, using Random Forest (RF) classification, for 

mapping the change of seagrass cover (Traganos & Reinartz, 2018). In the case study reported by 

these authors, the performance of the model was unstable and the accuracy varied among 

acquired scenes. Here we test the performance of a range of ML models, both boosting and 

bagging methods, with a time-series of satellite images, to compare their performances for 

assessment of seagrass cover and long-term change in Tauranga Harbour. Our goal is to improve 

the accuracy of tools for seagrass mapping and change detection. 

Landsat time-series data were selected for the current study as the longest available time series 

and as freely available satellite remotely sensed resources. Landsat has operated since 1972 and 

provides continuous, homogeneous input data up to the most current Landsat 8 operational land 

imager (OLI) in orbit (Northrop, 2015). The Landsat multitemporal data has been used 

previously for several long-term change detection tasks (Zhu, 2017; Pham et al., 2019) with the 

combination of long-term acquisition, medium spatial resolution, and the high quality of 

atmosphere-corrected products cited as important attributes. The spatial resolution has been 

retained as 30 m through eight generations (Landsat 1–Landsat 8); however, the radiometric 

resolution has been improved from 8 bit to 12 bit, leading to a better recognition of surface 

objects (Ihlen, 2019). In addition, Landsat imagery includes blue, green, and red wavebands, 

which are the most appropriate for underwater resource mapping (Green et al., 1996; Ha et al., 

2012; Garcia et al., 2015), but have not yet been evaluated for long-term seagrass change 

detection (Pham et al., 2019). Thus, our work attempts to fill a gap in the current literature by 
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assessing the performance of historic Landsat imagery, coupled with various machine-learning 

boosting and bagging models implemented in an open-source environment, in mapping changes 

in seagrass extent in a tidally inundated environment. 

We employed two well-known models, i.e., Support Vector Machine (SVM), Random Forests 

(RF); and two novel techniques, Extreme Gradient Boosting (XGB), and CatBoost (CB)) for the 

classification of seagrass meadows in Tauranga Harbour from Landsat imagery, and for detecting 

change across 29 years. The results demonstrated that the novel classification method CB was 

successful in describing the dynamics of change in seagrass in the study site as well as 

contributing baseline data for further assessment of change. 

4.2. Materials and Methods 

4.2.1. Study site 

We selected Tauranga Harbour (North Island, New Zealand) as the study site (Figure 1), due to 

its large size (201 km2 in surface area (Park, 2011)), variation in water depth (from 0 m when 

exposed to 20 m in deep channels (Reeve et al., 2018)), widely distributed but patchy seagrass 

cover and the availability of historic ground-truth information. The tidal regime is semidiurnal, 

with a range of 0.2–2.1 m, and the estuary has an average water residence time of 3–8 days (Tay 

et al., 2013). Zostera muelleri is the only species of seagrass, occurring primarily in the intertidal 

parts of the harbor (Park, 2011; Ha et al., 2020). The growth rate of Z. muelleri is optimal at 12 

practical salinity units (psu) (Collier et al., 2014) and 27–33 °C (York et al., 2013; Collier et al., 

2017). It attains its highest biomass in the austral summer and declines gradually over the winter, 

reaching a minimum cover in early spring (Turner, 2007). Flowering and seed production of Z. 

muelleri is rare in New Zealand, reproduction is primarily vegetative and patch dynamics are 

correspondingly slow (Ramage & Schiel, 1998; Schwarz & Turner, 2006). Seagrass is primarily 



84 

 

intertidal in the estuary and, based on bathymetry and tidal predictions (Reeve et al., 2018) at the 

time of the Landsat image acquisition, water depths ranged between 0.0–1.5 m in the locations 

where seagrass was present. 

In recent decades, Tauranga Harbour has been increasingly influenced by agricultural activities 

in the northern part (between 37.44° S and 37.54° S) and urban development in the southern part 

(between 37.62° S and 37.72° S). Episodic high loadings of sediment have been recorded and 

have resulted in the accumulation of sediment and high turbidity over the autumn and winter sea-

sons (Hicks et al., 2019; Hicks, 2019). Changes in the sedimentary environment have been im-

plicated in negative impacts on the growth of seagrass (Cabaço et al., 2008; Saunders et al., 

2017), though other factors may also be involved. Available maps of seagrass in 1959, 1996, and 

2011 derived from manual classification of aerial photography provided a resource for model 

validation (Park, 2011). 
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Figure 4.1. Tauranga Harbor – A study site (ρRed - ρGeen - ρBlue composited Landsat image, date on 23 May 

2019).  GTPs, collected on 1 - 7 April 2019, are indicated by green circles (yellow lines indicate the 

boundaries of the northern, central, and southern harbor). 

4.2.2. Satellite image acquisition  

Landsat images were downloaded from the GLOVIS website (USGS, 2019) for the years 1990, 

2001, 2011, 2014, and 2019 (Table 1) at process level 1 (pixel value in digital number), and in 

the projection of WGS-84 UTM 60S. Landsat images were selected based on: (1) the acquired 

time of the Landsat image that coincided as closely as possible to low tide at the study site; (2) 

the image that had the lowest coverage of cloud; (3) whether there existed a similar acquisition 

month among the scenes. In practice, we selected scenes that ranged 1–2 months around March 

(Table 2).  

Table 4.1. Landsat data acquisitions used for seagrass mapping and change detection. 

Date of 

Acquisition 

(MM/DD/YYY) 

Landsat 

Generation 

Time of 

Acquisition a 

Spatial 

Resolution 

(m) 

Cloud 

Coverage 

(%) 

First 

Low Tide b 

Second 

Low Tide b 

4 April 1990 Landsat 4 TM 10:16 AM 30 2 02:49 AM 15:09 PM 

10 March 2001 Landsat 7 ETM+ 10:16 AM 30 0 08:14 AM 20:35 PM 

17 February 2011 Landsat 5 TM 10:15 AM 30 2 06:33 AM 18:57 PM 

6 March 2014 Landsat 8 OLI 10:15 AM 30 0 11:41 AM c  

23 May 2019 Landsat 8 OLI 10:15 AM 30 0 04:14 AM 16:29 PM 

a: Local time of New Zealand zone. b: Tide data was retrieved from the National 

Institute of Water and Atmospheric Research (NIWA). c: Only one low tide at the study 

site. 
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Table 4.2. Available aerial, Google Earth images corresponding to historic Landsat images acquisition. 

Landsat Image 

Acquisition 

Nearest Aerial Image 

Acquisition 

Aerial Image 

Spatial Resolution (m) 

Google Earth Image 

(Year of Acquisition) 

April 1990 

February 1991 

March 1992 

0.23 December 1990 

March 2001 February 2003 0.23 December 2001 

February 2011 February 2011 0.25  

March 2014 March 2014 0.125  

 

4.2.3. Field survey data 

A field survey was undertaken from 1–7 April 2019 (Figure 1) in the intertidal areas of the har-

bor. At low tide, the boundary of seagrass meadows was delimited using a Global Positioning 

System (GPS) Garmin Etrex 30 with an accuracy of ±2 m. Other substrata recorded during the 

field survey were bare sand and muddy sand. Macroalgae were neither detected from our field 

survey nor mentioned in previous mapping reports (Park, 1999, 2011). 

Ground-Truth Points (GTPs), which were the base points to make the regions of interest (ROIs) 

for given classes, were recorded by following the boundary between seagrass meadows and non-

vegetated areas. A total of 4315 GTPs were recorded for seagrass distribution, and 237 GTPs for 

other substrata in the harbor. 

4.2.4. Ground-truth historical scenes 

Before 2019, no GTPs from field surveying were available, therefore we used aerial and Google 

Earth images (Table 2) and published documents (Park, 1999, 2011) to identify regions of inter-
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ests (ROIs), within which we were able to determine seagrass presence/absence with sufficient 

confidence to develop the models and to evaluate the accuracy of the hindcast seagrass maps. 

High-resolution aerial imagery exists from the years 2011 and 2014, and cloud-free, near-low-

tide Landsat scenes, from February 2011 and March 2014, could be found that coincided with 

these. However, for the Landsat scenes in 1990 and 2001, aerial images were only available with 

a gap of 1–2 years. These included aerial images in 1991–1992 (monochrome and colour) and 

2003 (colour). We found Google Earth images (identified as Landsat/Copernicus images in the 

Google Earth application) for both December 1990 and December 2001, which were in the aus-

tral summer and were close to the acquisition time of the Landsat scenes in April 1990 (austral 

autumn) and March 2001 (austral summer). Due to concerns over circularity of use of Landsat 

data, we used both Google Earth and aerial images to select the ROIs for Landsat scenes in 1990 

and 2001, ensuring that ROIs were only used where both sources showed seagrass present. We 

considered that the slow dynamics of seagrass patches in Tauranga Harbour (Ramage & Schiel, 

1998; Schwarz & Turner, 2006) made this approach robust.  

4.2.5. Development of seagrass maps and detection of change 
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Figure 4.2. Flowchart of image processing and change detection using Landsat images in Tauranga 

Harbor 

Our method of seagrass change detection using Landsat images involved four steps (Figure 2): 

(1) atmospheric correction, necessary to convert the pixel values from digital number to water 

surface reflectance; (2) selection of the best ML technique by comparing the accuracies of 

classification models for 2019 data; (3) application of the selected ML model (from step 2) for 

seagrass mapping to Landsat images from 1990, 2001, 2011, and 2014; (4) identifying the 

changes of area and spatial distribution. Due to the deficiency of field data in the past, a binary 

classification (seagrass and non-seagrass) was adopted to deliver the most consistent change 

detection. 

Atmospheric correction 

An atmospheric correction for all Landsat scenes was conducted using ACOLITE, in the Py-

thonTM environment (Table A1, Appendix A) (RBINS, 2018). The original pixel values in physi-

cal digital number were converted to surface reflectance. Atmospheric corrected surface reflec-
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tance for pixels (limited by the study boundary, Figure 1) for the ρBlue (ρw482), the ρGeen (ρw561), 

and the ρRed (ρw654) bands were retained for all Landsat scenes in the years 1990, 2001, 2011, 

2014, and 2019 for further processing steps. In the years 2014 and 2019, when Landsat 8 images 

were available, the coastal aerosol band (ρw443) was used, together with the ρBlue, ρGeen, and ρRed 

bands. The selected bands were used as independent variables in ML model prediction of the 

presence/absence of seagrass. 

Due to inconsistency between the tidal status and the acquisition time of Landsat images, our study 

site was considered to contain both exposed and submerged areas. Therefore, the near infrared (ρNIR) 

band, which attenuates rapidly in water, was not used in the analysis. A water column correction was 

not employed for water pixels in Tauranga Harbour, since the water depth and water optical 

characteristics (i.e., attenuation coefficient of the solar radiance in the water column) were 

unavailable for the historic scenes (1990, 2001, 2011). 

Application of Machine learning algorithms 

Hyper-parameter tuning for selected machine learning models 

Machine-learning models comprise several hyperparameters (i.e., the parameters that control the 

learning process during the implementation of ML models), which often need to be optimized 

(i.e., by the process of tuning) to find the best combination to achieve best classification 

performance. The hyper-parameters of the RF, the SVM, the XGB, and the CB models were 

tuned using a grid search with threefold cross-validation in the scikit-learn library (Pedregosa et 

al., 2011). The hyperparameters for each of the models were maintained during the training and 

the testing phases (Table A2, Appendix A). 

Theoretical background of the machine learning algorithms used 

Random Forest 
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Random Forests (RF) (Breiman, 2001) is perhaps the most popular machine-learning model for 

both classification and regression problems in remote sensing (Belgiu & Drăguţ, 2016). It is an 

ensemble bagging method, which uses a bootstrap sampling approach to build the training and 

the testing data and a voting method to select the most accurate decision from a large group of 

input decision tress. The RF model is a nonparametric method that is insensitive to the data’s 

distribution, reducing the overfitting. The RF technique supplies various hyperparameters for 

tuning; however, the large number of parameters in the model results in slow optimization. 

Support Vector Machine 

Support Vector Machine (SVM) (Mountrakis et al., 2011; Khemchandani et al., 2015) supports 

linear, poly-nominal, and radial basis function (RBF) kernels and can be adapted to various 

linear or non-linear data types. It has relatively few tunable hyperparameters but performance 

speed is still relatively slow when dealing with a large dataset. The SVM model uses a 

hyperplane to find the separation space among the classes with the most typical rules being: (i) 

better segregation of data; (ii) maximization of the distance between the closest data points and 

the hyperplane. Despite an accurate prediction and robustness to outliers, the SVM technique is 

not effective on overlaid classes or noisy datasets. 

Extreme Gradient Boost 

Extreme Gradient Boost (XGB) (Chen & Guestrin, 2016) is different from Gradient Boosting as 

it uses a more regularized model, which reduces over-fitting and results in a higher prediction 

accuracy. In the regularized gradient boosting mode, a selection of L1 or L2 regularization can be 

made to adapt the model to suit input data. Similar to other boosting models, the XGB technique 

supports various hyperparameters that are tuned using a grid search or genetic algorithm (GA) 

(Georganos et al., 2018). 
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CatBoost 

CatBoost (CB) was introduced in 2018 (Prokhorenkova et al., 2019) for classification, 

regression, and ranking tasks. It can handle both category and numerical data types. Using 

ordered boosting on decision trees, a permutation-driven derivation from classic boosting, the 

CB yields a fast and reliable performance, even with a small dataset. The model itself produces 

robust predictive results with default hyperparameters, reducing the requirement of tuning, and 

its novel gradient boosting scheme results in less overfitting. 

Comparison of ML algorithms for seagrass mapping using Landsat image taken in 2019 

Four ML models, SVM, RF, XGB, CB, were compared for seagrass mapping using the Landsat 

image from May 2019 and near-synchronous GTPs collected in April 2019 to identify the 

regions of interest (hereafter referred to as ROIs-2019) known to either seagrass or non-seagrass 

classes. The 1-month gap between the acquisition date of the Landsat image and the field survey 

date is acceptable due to the stable condition of the weather (i.e., no extreme weather 

phenomena) (NIWA, 2020), and seagrass dynamics are slow in the study site (Ramage & Schiel, 

1998; Schwarz & Turner, 2006). A dataset of pixel reflectance values was extracted from ROIs-

2019 and its corresponding Landsat image (dataset DS5, Table A3, Appendix A), split randomly 

into 60% for the training and 40% for the testing of selected ML models. The best model was 

selected as the model with highest accuracy and F1 score. 

Seagrass mapping using Landsat images in 1990, 2001, 2011, and 2014 

The best ML model identified using the 2019 data was applied for mapping of seagrass using 

Landsat images from 1990, 2001, 2011, and 2014 (see Table 1 for date acquisition and spatial 

resolution of satellite images). The hyper-parameters developed using the 2019 data were 

retained for subsequent analysis, while the year-specific model was developed using ROIs 
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containing seagrass and non-seagrass classes from the relevant year. For the years 2011 and 

2014, we created these ROIs using aerial imagery (BOPRC, 2018) (hereafter referred to as ROIs-

2011 and ROIs-2014). For 1990 and 2001, we used Google Earth images cross-referenced with 

the aerial images acquired between 1991 and 1992 (for creating ROIs-1990) and 2003 (for 

creating ROIs-2001). A dataset of pixel reflectance values was extracted from corresponding 

Landsat images (dataset DS1, DS2, DS3, and DS4, Table A3, Appendix A) for ROIs-1990, 

ROIs-2001, ROIs-2011, and ROIs-2014. Datasets were split randomly into 60% for training of 

the classification and 40% for the accuracy assessment for 1990, 2001, 2011, and 2014. 

Change detection 

Change detection was conducted using the standard confusion matrix tool in the SAGA GIS 

(Conrad et al., 2015). The confusion matrix analyzed the changes of the pairs of classified maps 

(years 1990–2011 and 1990–2019), reporting in the map as seagrass loss (seagrass to non-

seagrass), seagrass recovery (non-seagrass to seagrass), and unchanging seagrass. 

4.2.6. Evaluation criteria 

We employed standard metrics for the evaluation of the classification skill: accuracy, Kappa co-

efficient (κ), Kendall’s tau coefficient (τ), precision, recall, and F1 (Equations (1)–(6)). These 

were applied independently to the five datasets listed in Table A3, to yield the skill of the initial 

model based on GTPs from DS5 (2019), and to check its performance when applied to the histor-

ic Landsat data in DS1 (1990), DS2 (2001), DS3 (2011), and DS4 (2014). Kendall’s tau coeffi-

cient was calculated using the SciPy library (Virtanen et al., 2020). 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦𝑝𝑟𝑒𝑑) =
1

𝑛samples
∑

𝑛samples−1

𝑖=0

1(𝑦𝑝𝑟𝑒𝑑𝑖 = 𝑦𝑖) (4-1) 



93 

 

 

 

in which: 

𝑦𝑝𝑟𝑒𝑑:  predicted value 

𝑦: corresponding true value 

𝜅 =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒
 (4-2) 

 

in which: 

𝑝𝑜is the observed agreement 

𝑝𝑒is the expected agreement 

 

𝜏 =
𝑃 − 𝑄

√(𝑃 + 𝑄 + 𝑇) × (𝑃 + 𝑄 + 𝑈)
 

(4-3) 

in which: 

P: the number of concordant pair 

Q: the number of discordant pair 

U: the number of ties in predicted value 

T: the number of ties in true value 

Precision =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

(4-4) 

 

Recall =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

(4-5) 
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𝐹1 =
2 × precision × recall

precision + recall
 (4-6) 

 

in which: 

𝑡𝑝: true positive 

𝑓𝑝: false positive 

𝑓𝑛: false negative 

In addition, the non-parametric McNemar test was used to compare statistically significant dif-

ference of the overall accuracy of the selected models in this research. The test was executed in a 

Python™ environment using the mlxtend library (Raschka, 2018). The chi-square value (χ2) was 

calculated from Equation (4-5) with Edward’s continuity correction. 

𝜒2 =
(|𝑓𝑛 − 𝑓𝑝| − 1)2

(𝑓𝑛 + 𝑓𝑝)
 (4-7) 

 

in which: 

𝑓𝑛: false negative 

𝑓𝑝: false positive 
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4.3. Results 

4.3.1. Performance of the RF, SVM, XGB, and CB models using Landsat image and GTPs for 

2019 data 

Of the four machine-learning models applied to the 2019 data, the CB model outperformed all 

others, with the F1 score, κ and τ coefficients reaching 0.95 (Table 4.3), and 0.92 (Table A4, 

Supplemental Materials), respectively. The difference between models was statistically signifi-

cant (McNemar’s test, Table 4.4) with the exception of the XGB and RF models. The CB model 

required a longer computation time (3.71 s) than the RF model (0.33 s), the XGB model (0.15 s), 

and the SVM model (0.04 s). The RF and XGB techniques showed an equivalent performance 

(Table 3) with F1 score of 0.93, while the SVM model underperformed the other models with a 

F1 score of 0.91. 

All models tested were able to classify seagrass from other bottom types in the harbor with a 

precision exceeding 0.89, but the highest precision was again from the CB model. Despite a 

similar F1 score, the XGB model gained a higher precision than the RF technique. 

Table 4.3. Model performance for seagrass detection in Tauranga Harbor for the 2019 dataset 

Model Accuracy Precision Recall F1 

Training Time 

(s) 

Testing 

time (s) 

RF 0.96 0.92 0.95 0.93 0.33 0.02 

CB 0.97 0.94 0.96 0.95 3.71 0.006 

XGB 0.96 0.93 0.94 0.93 0.15 0.004 

SVM 0.94 0.89 0.92 0.91 0.04 0.02 

Bold values indicate the best performance of the model. 
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Table 4.4. Model performance comparison using the McNemar’s test 

 χ2 p-value 

CB–RF 5.88 0.01 

CB–SVM 19.11 0.00 

CB–XGB 4.50 0.03 

XGB–RF 0.00 1.00 

XGB–SVM 8.20 0.00 

RF–SVM 9.25 0.00 

p-value < 0.05 indicates a significant difference between two models. 

4.3.2. Seagrass change detection from 1990 – 2019 

The CB technique was then used to make classification maps for the years 1990, 2001, 2011, and 

2014 (Figure 4.3). Our results indicated a performance across all metrics that was equivalent to 

that in the 2019 case, with accuracy and F1 scores over 95% for the binary classification of 

seagrass and nonseagrass (Table 4.5 and Table A4, Appendix A). 
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(a) (b) 

 
 

(c) (d) 
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(e)  

Figure 4.3. Seagrass distribution in the years 1990, 2001, 2011, 2014, and 2019 (a–e) using the CB model 

(yellow lines indicate the boundaries of the northern, central, and southern harbor). 
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Table 4.5. Accuracy assessment of classified map using Landsat images in 1990, 2001, 2011 and 2014 

Date acquisition Accuracy Precision Recall F1 

4 April 1990 0.97 0.98 0.98 0.98 

10 Mar. 2001 0.96 0.95 0.96 0.96 

17 Feb. 2011 0.97 0.98 0.96 0.97 

6 Mar. 2014 0.96 0.96 0.96 0.96 

The time series shows that the seagrass meadow area decreased from 2237 ha in 1990 to 

1184 ha in 2019, though not monotonically (Figures 4.3 and 4.4). A downward trend from 1990 

(2237 ha) to 2001 (2035 ha), was followed by a recovery in 2011 (to 2380 ha), followed by a 

second decline to 1184 ha in 2019 (Figure 4.4a). Different trends, though all with an overall de-

cline to 2019, were discovered in the northern (Figure 4.4b), the central (Figure 4.4c), and the 

southern (Figure 4.4d) harbor. Seagrass attained the largest area in the central harbor, where it 

reached the peak of 1985 ha in 2011; however, it declined to 776 ha in 2019. In the northern har-

bor, seagrass was very abundant in 1990 with 549 ha, but strongly decreased to only 92 ha in 

2001. This number increased to 242 ha in 2014 before suffered a second decline to 148 ha in 

2019. Seagrass loss was also recorded in the southern harbor, at a slower rate of degradation, 

dropping from 576 ha in 1990 to 222 ha in 2011, and around 260 ha in 2019. Across the entire 

harbor, the recovery in 2011 was due to a large increase of seagrass areas from 2001 in the 

northern and the central harbors. 
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Figure 4.4. Seagrass area in Tauranga Harbour from 1990–2019 derived from Landsat imagery with the 

variation in: (a) entire harbor; (b) northern harbor; (c) central harbor; (d) southern harbor. 

 

The distribution of seagrass has also changed over time. In 1990, the meadows were similarly 

abundant in the northern, central, and southern harbors. Declines to 2001 mostly reflected losses 

from the northern and southern meadows, while the central meadows remained and were respon-

sible for most of the expansion between 2001 and 2011 (Figures 4.3 and 4.5). After 2011, there 

was no detectable recovery of the northern or the southern meadows, and the renewed overall 

decline was due to degradation of the central meadows, declining in area and becoming patchier 

by 2019 (Figures 4.3 and 4.5). 
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(a) (b) 

Figure 4.5. Seagrass change detection between 1990-2011 (a) and 1990-2019 (b). 

 

4.4. Discussion 

In this investigation, we have demonstrated the use of machine-learning approaches successfully 

to classify seagrass in Landsat images of Tauranga Harbour, and to use this classification to 

detect changes in seagrass cover over a period of 29 years. Due to the relative paucity of field 

validation data from most of the time series of this analysis, we only tested a binary classification 

(seagrass and nonseagrass classes), but the four machine-learning models, RF, XGB, SVM, and 

CB, were all capable of detecting seagrass from other bottom types with high precision and recall 
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scores. Previously, the RF and the SVM models have been tested for seagrass classification 

(Traganos & Reinartz, 2017) and the RF for seagrass change detection in the Mediterranean 

(Traganos & Reinartz, 2018). These previous attempts have produced accuracies from 76–98% 

for Posidonia oceania and 32–62% for Cymodocea nodosa using higher resolution RapidEye 

imagery (Traganos & Reinartz, 2017, 2018), both lower than were achieved in this study using 

the CB technique. P. oceania and C. nodosa are structurally similar to Z. muelleri and would 

seem likely to offer a similar target. This suggests that the use of the state-of-the-art ML models 

with optimized hyper-parameters is an important factor contributing to the high-precision 

classification of seagrass presence/absence. Both the XGB and the CB techniques have been 

proven as potential candidates for a range of classification (Georganos et al., 2018; Sun et al., 

2019; Pham, Yokoya, et al., 2020; Pham, Le, et al., 2020), and regression (Lou et al., 2016; 

Maier & Keller, 2018; Lee et al., 2019) problems but have not previously been applied to 

seagrasses, or to any other semisubmerged targets, so it is not clear if this is a general 

performance advantage in this type of application. 

Other advantages over previous studies may, however, exist in Tauranga Harbour. Specifi-

cally, Z. muelleri occurs as monospecific meadows, without a substantial presence of macroal-

gae, which can degrade classifications (Park, 2011; Ha et al., 2020), and where the reflectance 

value of seagrass is considerably different from the other common bottom types (sand, muddy 

sand, deep water). In addition, we were able to use cloud-free Landsat scenes, with atmospheric 

correction using ACOLITE, which has been designed for the aquatic application of Landsat im-

agery, which likely reduced the uncertainty of atmospheric impact and derived a higher quality 

of corrected surface reflectance (Vanhellemont, 2019). 
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In this study, the two boosting techniques (XGB, CB) and the one bagging (RF) outper-

formed the more traditional SVM methods. The SVM model does not work well with noisy data, 

where unclear margins exist between classes (Karamizadeh et al., 2014). Such fuzzy margins 

were observed at the study site at the overlap between seagrass and nonseagrass (sand, muddy 

sand) classes, where the distinction between present and absent was gradual. This likely resulted 

in the relatively poor performance of the SVM model. The boosting techniques XGB (0.93) and 

CB (0.94) show slightly higher precision than the bagging RF (0.92), which might have resulted 

from the advancement in decision-tree growth of the boosting techniques. Unlike the RF model, 

which builds the independent decision tree from the bootstrapped samples, the boosting XGB 

and CB models sequentially grow new trees using the residual information of previous trees, 

which allows the new learner to solve the errors of the previous tree by minimizing the residual 

of the next model fitting. For a final prediction of a classification task, the bagging RF takes a 

majority vote from all decision trees while a weighted majority vote is adapted to the boosting 

techniques, such as XGB and CB, and potentially results in a higher precision of a class predic-

tion. 

Given the classification skill metrics, the CB is the best candidate for the mapping and 

change detection of seagrass in the study site. The CB is also amongst the latest emerging algo-

rithms developed in the computer vision and pattern recognition fields (released in 2018); is easy 

to tune with fewer hyperparameters than the RF and the XGB techniques; and is using symmetric 

trees, which potentially results in faster optimization and prediction (Prokhorenkova et al., 2019). 

The CB model differs from the boosting algorithm family by using ordered boosting on a ran-

dom permutation of given dataset, which prevent the prediction shift and alleviate the overfitting 

in model prediction. The outperformance of the CB over other ML models has been reported for 
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mangrove total carbon estimation (Pham et al., 2020), various testing datasets (Prokhorenkova et 

al., 2019), and forest aboveground biomass (Luo et al., 2021), which confirm the reliability and 

the capability of the CB implementation for seagrass mapping in our study. Our accurate long-

term (29-year) change detection of seagrass meadows using the CB machine-learning model in 

Tauranga Harbour is a significant advance in the classification and monitoring of seagrass eco-

system using multispectral, remotely sensed data. 

Our analysis has confirmed a general declining trend of seagrass cover in Tauranga Harbour 

reported previously (Park, 2011) using aerial photography. In absolute terms, Park (2011) report-

ed 2744 ha in March 2011, close to our estimate of 2380 ha at that time. Also, like Park, our 

analysis was able to resolve areas within the estuary where the greatest loss has occurred be-

tween assessments. We specifically noted that the seagrass loss was initially focused in the 

northern and southern parts of the harbor. High flux of sediment was recorded into the northern 

part, due to agricultural intensification, and the southern part, due to urban development, particu-

larly after 2011 (Hicks, 2019) and may explain the long-term decline of seagrass in those areas. 

The potential impact of agricultural and urban developments in the northern and the southern 

parts is supported by the observation that recovery was only observed in the central part of the 

harbor (Figure 4.3, year 2011, and Figure 4.5). Another potential factor contributing to long-term 

loss of seagrass is the grazing of black swans, which has previously been linked to variations in 

seagrass cover in the southern harbor (Park, 2011; Dos Santos et al., 2012). Further analysis is 

required to develop a detailed explanation on the dynamics of seagrass meadows in Tauranga 

Harbour. 

Here, we advocate the use of novel and advanced ML models, in combination with mul-

titemporal Landsat images to obtain a long-term, historic series of observations on seagrass dy-
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namics that will continue to be supported into the future through ongoing developments of the 

Landsat series. The proposed method potentially provides a low-cost, high-precision classifica-

tion tool that can be extended to other estuaries with similar target conditions. While aerial pho-

tography and very high spatial resolution (VHR) satellite images have higher spatial resolution 

than Landsat images, they come at a high cost, and spatial coverage can be limited. Currently, 

Landsat is the most suitable satellite image resource for any long-term change detection due to 

its long time in service. A 30 m spatial resolution was found suitable to support a binary classifi-

cation of seagrass in this study, and accuracy was unaffected by the small changes in spectral 

information that have accompanied the incremental changes in Landsat optical sensors. The most 

recent generation Landsat 8, with an improvement in radiometric resolution up to 16 bit (in the 

level 1 product), compared to the 8 bit in previous generations, and the addition of a coastal aer-

osol band, has good potential for accurate detection of the dynamics of seagrass. An improve-

ment of spectral and radiometric resolution in Landsat 9 (scheduled for launching in 2021) is ex-

pected to provide continuity into the future monitoring of seagrass (USGS, 2019). For a short-

term observation of seagrass change, our proposed methods for seagrass classification are also 

potentially applicable to a wide range of VHR images (Quickbird, Ikonos, Unmanned Aerial Ve-

hicle (UAV)) with consideration of the trade-off among the spatial coverage of the study site, the 

spatial resolution of the image, and the available budget. 

The open-source approach is another significant advantage of our proposed methodology. 

The Python environment provides an excellent option for the end users to apply the novel ma-

chine-learning algorithms and remote-sensing data processing platform to support accurate map-

ping and estimation of the blue carbon budget of seagrass ecosystem (Macreadie et al., 2019). 

Most commercial software only provides a limited number of processing and classification algo-
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rithms, with few, older ML options (e.g., SVM) and has a high license cost. Our proposed meth-

ods are more flexible, free of charge, and offer a high efficiency for mapping the dynamics of 

seagrass meadows in the complex coastal marine environment. 

Despite a successful application of the CB model for seagrass classification and change de-

tection, this research still comes with limitations. Since we used a supervised classification tech-

nique, both classification and validation require an independent assessment of seagrass cover in 

at least part of the remote image, to provide the ROIs that allow the training and validation steps. 

In addition, the seasonal growth of seagrass in temperate waters, and its intertidal habit, raise the 

uncertainty of change detection between various time points unless imagery is available at the 

same time, and under similar tidal conditions. The offset between Landsat, the time of image ac-

quisition, and tidal regime (Table 4.1) is unavoidable in the study site; however, we consider that 

it is unlikely to significantly impact on classification accuracy. In Tauranga Harbour, seagrass 

meadows are distributed in the intertidal regions at a water depth ranging from 0 m (exposed) to 

a maximum of 1.5 m (at high tide) (Park, 1999, 2011). The ρBlue, ρGreen, and ρRed bands have 

nominal maximum penetration depths of 15, 10, 5 m respectively (Green et al., 1996), and while 

moderate, but variable, coastal turbidity in the harbor will increase attenuation rate, the maxi-

mum immersion depth of 1.5 m suggests that the spectral bands reflectance signatures are highly 

likely to have been impacted by seagrass. Average vertical attenuation rate of the downwelling 

radiation within the 400–700 nm band in Tauranga Harbour is 0.40 m−1 (range 0.16–0.98 m−1) 

(Cussioli et al., 2019) and these authors found that 65% of incident radiation reached the estuary 

floor at 1.2 m depth. Again, this suggests that water clarity is sufficient to ensure that, even at 

maximum water depth, seagrass will contribute to the reflectance spectrum detected by the satel-
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lite. As with all satellite-based remote sensing, a cloud-free view is required, which constrains 

use of this technology. 

To compensate for the limitation, we attempted to select all Landsat images acquired in the 

growing season of seagrass in Tauranga Harbour (austral summer and autumn) and at low tide, 

but this further constrains the availability of verifiable Landsat imagery for seagrass cover esti-

mation. Further research focusing on expanding the novel approach used in the current study for 

long-term change detection of seagrass meadows is underway.  
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4.5. Conclusion 

In this research, we used the novel machine-learning model CatBoost (CB) and other well-

known ML models (RF, SVM, and XGB) for seagrass cover classification (present/absent), us-

ing Landsat satellite imagery, in Tauranga Harbour, New Zealand. Our results showed a high 

level of accuracy for all approaches, but the CB model outperformed the other selected models, 

with precision, recall, and F1 scores of 0.94, 0.96, and 0.95 respectively. 

We then applied the CB technique to multispectral Landsat data for the detection of change in 

seagrass cover over a 29-year period between 1990 and 2019 in Tauranga Harbour. The change 

detection analysis determined an overarching declining trend of seagrass cover in Tauranga Har-

bour with approximately 50% loss over the 29 years period (from 2237 ha in 1990 to 1184 ha in 

2019); these results concurred with a study using aerial imaging. Seagrass was lost in the far 

northern and southern areas of the harbor during the first part of this time, then more gradually 

from the central region. This analysis of change using Landsat images combined with the CB 

model demonstrates the value of historic satellite imagery and machine-learning for accurate 

documentation of the change over time in this difficult-to-quantify coastal vegetation. 
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4.6. Chapter supplementary material 

Table A1. Selected parameters for atmospheric correction using ACOLITE. 

Parameter Value 

Ancillary data 

Gas transmittance True 

Ozone concentration (cm−1) 0.3 

Water vapor concentration (g cm−2) 1.5 

Pressure Normal pressure 

Masking 

Negative reflectance masking True 

Cirrus masking True 

Other parameters 

Sky correction True 

Dark spectrum fitting Fixed 

Sun glint correction False 

Output parameter 

Surface reflectance for water pixel () 

𝜌𝑤443 

𝜌𝑤482 

𝜌𝑤561 

𝜌𝑤654 

Table A2. The tuned hyperparameters of the RF, the SVM, the XGB, and the CB models. 

Random Forest Extreme Gradient Boost 

Bootstrap True Booster GbTree 

Max. depth 8 Gamma 1 

Max. features Auto Learning rate 0.2 

Min. sample leaf 1 Max. depth 5 

Min. sample split 3 Min. child weight 3 

Number of trees 100 Number of trees 100 

Support Vector Machine CatBoost 

Kernel RBF Depth 7 

C 100 Iteration 200 
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(Number of trees) 

Gamma 1000 Learning rate 0.2 

 L2 leaf reg 1 

Table A3. Number of pixels for the training and the testing sets at various acquisition dates. 

Dataset Landsat Acquisition Date Number of Pixels 

  60% for Training 40% For testing 

DS1 4 April 1990 2171 1448 

DS2 10 March 2001 3000 2001 

DS3 17 February 2011 2618 1746 

DS4 6 March 2014 2544 1696 

DS5 23 May 2019 1830 1221 

Table A4. Kappa and Kendall’s tau coefficients of the classification. 

Model κ τ p-Value of τ 

Data DS5, date 23 May 2019 

RF 0.90 0.90 0.00 

SVC 0.87 0.87 0.00 

CB 0.92 0.92 0.00 

XGB 0.90 0.90 0.00 

Data DS1, date 4 April 1990    

CB 0.95 0.95 0.00 

Data DS2, date 10 March 2001    

CB 0.92 0.92 0.00 

Data DS2, date 17 February 2011    

CB 0.94 0.94 0.00 

Data DS4, date 6 March 2014    

CB 0.93 0.93 0.00 

Table A5. List of acronyms and abbreviations. 

Acronym/Abbreviation Meaning Explanation 
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ACOLITE 

Atmospheric correction for 

operational land imager (OLI) ‘lite’ 

toolbox 

A Python language-based 

application for atmospheric 

correction of satellite imagery 

 Accuracy 

An agreement degree between the 

classified values and the ground-

truth values in a classification task 

CB CatBoost A machine-learning algorithm 

XGB Extreme Gradient Boost A machine-learning algorithm 

F1 F1 

A harmonic measurement of 

precision and recall scores in the 

prediction of a machine-learning 

model 

GPS Global Positioning System 
A satellite-based system providing 

positioning services 

GTPs Ground-Truth Points 

GTPs are the boundary points of 

any given classes in the study site, 

defined by GPS 

Κ Kappa coefficient 

A statistical index measuring the 

accuracy (agreement between 

predictions and ground-truthed 

values) of the classification. A 

higher Kappa coefficient denotes a 

more accurate classification 

τ Kendall’s tau coefficient 

A nonparametric measurement to 

evaluate the classification’s 

accuracy. A higher Kendall’s tau 

coefficient denotes a more accurate 

classification 

ML Machine learning  

An artificial intelligence (AI) 

approach that builds an 

application/algorithm for a specific 

output by learning from data 

NIR Near infrared 
The near infrared region in the 

electromagnetic spectrum  
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 Precision 

A score to measure the success of 

the prediction of a machine-

learning model. A higher precision 

denotes a more accurate prediction  

RF Random Forest A machine-learning algorithm 

 Recall 

A score to measure the success of 

the prediction of a machine-

learning model. A higher recall 

denotes a more accurate prediction 

RBF Radial basis function 

A function used in the Support 

Vector Machine model, together 

with linear and polynomial 

functions 

ROI Region of interest 

A bounded region used in image 

classification where the pixels 

contain a given class 

SVM Support Vector Machine A machine-learning algorithm 

UAV Unmanned aerial vehicle An aircraft without a human pilot 

GLOVIS USGS Global Visualization Viewer 

A web-based system for satellite 

image visualization and 

downloading 

UTM Universal Transverse Mercator A map projection 

VHR Very high spatial resolution 

Indicating satellite images that 

have spatial resolution from 

centimeters to a few meters 

WGS World Geodetic System 
A standard coordinate system used 

in cartography. 
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Chapter 5 The use of radar and optical satellite imagery combined with 

advanced machine learning and metaheuristic optimization techniques to 

detect and quantify above ground biomass of intertidal seagrass in a New 

Zealand estuary  

 

The contents of this chapter have been published in the International Journal of Remote Sensing 

(http://dx.doi.org/10.1080/01431161.2021.1899335). A copy of the published paper is bound 

into Appendix 6. 

  

http://dx.doi.org/10.1080/01431161.2021.1899335
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Abstract: Seagrass provides numerous valuable ecosystem services across a wide range of cli-

matic regions. However, in terms of area and habitat, this resource is in decline globally and 

there is an urgent need for accurate mapping of extant meadows and biomass to support sustain-

able seagrass blue carbon conservation and management. This study develops a novel method 

for a binary mapping of seagrass distribution and estimating seagrass aboveground biomass 

(AGB) by applying a suite of advanced machine learning (ML) algorithms combined with and 

without a metaheuristic optimization approach (Particle Swarm Optimization - PSO) to various 

combinations of multispectral (Sentinel-2) and Synthetic Aperture Radar (Sentinel-1) remote 

sensing data. Our results reveal that the Sentinel-1 data has potential for the binary mapping of 

seagrass meadows using an extreme gradient boosting (XGB) model (scores of precision (P) = 

0.82, recall (R) = 0.90, and F1 = 0.86) but is less effective at estimating AGB. The optimal 

method for estimation of AGB used both Sentinel-1 and Sentinel-2 imagery, the XGB model 

and PSO optimization (coefficient of determination (R2) = 0.75, root mean squared error 

(RMSE) = 0.35, Akaike information criteria (AIC) = 24.80, Bayesian information criteria (BIC) 

= 44.70). Our findings contribute novel and advanced methods for seagrass detection and im-

provement of AGB estimation, which are fast and reliable, use open source data and software 

and should be easily applicable to intertidal zones across many regions of the world. 

Keywords: seagrass, aboveground biomass, metaheuristic, Particle Swarm Optimization, 

Extreme Gradient Boost, Sentinel-2  
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5.1. Introduction 

Seagrasses are a group of marine angiosperms, which survive in a wide range of environmental 

conditions and are widely distributed in coastal zones. Several valuable ecosystem services are 

recognized for this resource (Nordlund et al., 2016), including wave attenuation (Fonseca & Ca-

halan, 1992; Reidenbach & Thomas, 2018), pollution attenuation (Short & Short, 1984), nursery 

and breeding habitat (Heck Hay et al., 2003) and, most recently, carbon sequestration (Bedulli et 

al., 2020). Recognition of the importance of seagrass systems as a blue carbon resource has re-

sulted in initiatives to foster a long-term strategy of reversing the current decline in seagrass ar-

ea/biomass (Waycott et al., 2009), and carbon sequestration (Githaiga et al., 2019; Aoki et al., 

2020) world-wide as a nature-based solution in averting climate change (Macreadie et al., 2019). 

To facilitate this, a precise method for mapping the distribution and biomass in seagrass ecosys-

tems, under different environmental conditions (Unsworth et al., 2018), is needed to support its 

inclusion in the carbon credits market (Macreadie et al., 2019; Ricart et al., 2020).  

Recently, mapping seagrass distribution and aboveground biomass (AGB) has been investigated 

either using intensive field surveys or data-driven models developed from Earth observation 

(EO) data and statistical techniques (Roelfsema et al., 2015; Sani et al., 2019). The former ap-

proach is highly accurate, using in situ measurements for each sampling plot. However, it is la-

bor intensive, is time-consuming, and cannot be readily upscaled (Unsworth et al., 2018). In con-

trast, the use of optical remote sensing data for mapping seagrass ecosystems allows low cost, 

large area spatial mapping, and fast performance (Hossain et al., 2015; Dat Pham et al., 2019; 

Veettil et al., 2020; Ha et al., 2020). EO-based techniques, however, have unresolved challenges 

of coarse spatial resolution, insufficient accuracy for retrieval models, cloud cover constraints, 

and the effect of immersion on retrieval algorithms in intertidal environments.  
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For seagrass distribution mapping, researchers have developed various techniques for image pre-

processing and classification (Hossain et al., 2015; Dat Pham et al., 2019). Recent studies have 

used the multispectral Land Remote-Sensing Satellite (System, Landsat) 5 Thematic Map (TM), 

Landsat-8 Operational Land Imager (OLI) (Misbari & Hashim, 2016), Landsat-5 TM, and Hype-

rion (Pu & Bell, 2013), or very high spatial resolution (VHR) optical data, including Quickbird, 

Ikonos, Worldview-2 (Roelfsema et al., 2014; Koedsin et al., 2016) for the retrievals of seagrass 

AGB using linear regression models. The coefficient of determination (R2) varied between stud-

ies, with higher values, ranging from 0.34 to 0.68, observed when using VHR images.  

Despite the obvious advantages of using spectral bands for seagrass (species) detection, these EO 

techniques are constrained by the need for scene to be captured at suitable time during daylight 

and free of cloud. The high cost of VHR images adds to the constraints of analyzing large areas. 

Therefore, the development of novel approaches using other EO data that escape some of these 

constraints (i.e synthetic aperture radar (SAR) images that can be obtained regardless of time or 

weather conditions during overpass) may better suit the requirement of rapid assessment of 

seagrass change globally. To the date of this study, we found no application of SAR data for 

seagrass meadows mapping of presence-absence, cover, or AGB. 

The current situation regarding the broad scale estimation of the contribution of seagrass to blue 

carbon storage, is that optical satellite data can be used for seagrass detection and estimation of 

AGB, however with a variable and generally low precision, and with the constraint of requiring 

an absence of cloud cover, suitable ambient lighting and low tide to coincide with satellite over-

pass. In a previous study that used Landsat imagery to address 40 year trends in seagrass cover in 

Tauranga Harbor (New Zealand), we found this to seriously constrain usable observations. To 

address this limitation we elected to assess the potential application of SAR remote sensing to 
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map seagrass distribution and to estimate seagrass biomass, due to its freedom from the need for 

cloud-free observing conditions with the sun in a suitable position. We also investigate the use of 

fusions of multi-spectral and SAR remotely sensed images, to improve accuracy of models for 

biophysical parameters estimation of seagrass ecosystems in the coastal areas. 

Given a list of available satellite resources, we selected Sentinel-1 (S-1) and Sentinel-2 (S-2), 

which were launched in the years 2014 and 2015, are operated by the European Space Agency 

(ESA), and provide freely accessible remote sensing data (ESA-S1, 2020; ESA-S2, 2020). S-1 

provides dual-polarimetric SAR imagery, acquired day and night at C-band (dual-polarization 

vertical transmitting and horizontal receiving (VH) and vertical transmitting and vertical receiv-

ing (VV)) in any weather conditions, at a wide swath of 250 km and a spatial resolution of 20 m 

(level 1 production). A favourable S-1 image therefore only requires that the overpass is at low 

tide. S-2 provides 12 multispectral bands ranging from 400 to 2400 nm and spatial resolutions 

ranging from 10 to 60 m. For coastal environments, the blue, and the green wavelengths are ex-

pected to have a good penetration through the water environment, whilst the red and the three 

red-edge bands of S-2 produce a range of vegetation and soil indices, which might be useful for 

the estimation of biophysical parameters such as AGB retrievals (Pham, Le et al., 2020; Pham, 

Yokoya et al., 2020). S-1 and S-2 have repeating cycles of 12 and 5 days, respectively. In this 

work, we hypothesize that the S-1 C-band sensor may be suited to estimate the meadow structure 

despite the low canopy height of seagrass ecosystems (El Hajj et al., 2018; Howell et al., 2018) 

whereas the S-2 optical sensor can be useful to extract spectral information that will assist in the 

estimation of seagrass AGB. 

To extract information from these Earth observing sensors we elected to use machine learning 

(ML) models, which have been developing rapidly in recent years. The current literature reveals 



118 

 

a limited application of ML models for the retrieval of biophysical parameters of seagrass eco-

system, but successful implementation in various domains (Huettmann, 2018; Thessen, 2016). 

Currently, the ensemble decision tree-based approaches of bagging and boosting algorithms that 

have been applied in numerous field of studies include the Random Forest (RF) (Belgiu & 

Drăguţ, 2016), Rotation Forest (RoF) (Ha et al., 2020; Rodriguez et al., 2006), Canonical Corre-

lation Forest (CCF) (Rainforth & Wood, 2015), Support Vector Machine (SVM) (Mountrakis et 

al., 2011), Gradient Boost (GB) (Natekin & Knoll, 2013), Extreme Gradient Boost (XGB) (Chen 

& Guestrin, 2016), CatBoost (CB) (Prokhorenkova et al., 2019), and Light Gradient Boosting 

Machine (LGBM) (Ke et al., 2017). In general, they produce better predictive performance, fast-

er speed and often outperform parametric models but, to our knowledge, have seldom been used 

for seagrass mapping and have never been used to retrieve seagrass AGB. Therefore, in this 

work we attempted to develop novel approaches for first the binary (presence/absence) mapping 

of seagrass meadows using S-1 images. For retrieving seagrass AGB, we investigated the use of 

various combinations of S-1 and S-2 images and a range of advanced ML techniques. Our novel, 

integrated approach is expected to strengthen the utilization of multisource remote sensing data 

in accurately detecting the distribution and predicting the AGB of extant seagrass meadows and 

to support their integration into the blue carbon strategy to deal with climate change impacts. 

5.2. Materials and Methods  

5.2.1. Study site  

Tauranga Harbor (New Zealand) (Figure 5.1 (a) - (b)) was the study site; at this site, seagrass 

meadows are patchy and distributed mainly in the center and southern parts of the harbor (Ha et 

al., 2020). The tide regime is semi-diurnal with a range from 0.20 to 2.10 m. The only species of 

seagrass in the harbor, as in the rest of New Zealand, is Zostera muelleri, which is distributed in 
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the inter-tidal zone of the harbor (Park, 1999). Compared to other seagrasses, Z. muelleri is small 

(0.10 to 0.40 cm in leaf width), with optimal growth at 27 to 30 °C (Collier et al., 2017; York et 

al., 2013) and 12 practical salinity units (psu) (Collier et al., 2014). Z. muelleri biomass shows a 

seasonal rhythm (Turner, 2007), with the highest biomass in the austral summer (December to 

March) and declining during the austral winter to minimum biomass in early September.  

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
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(b) 

Figure 5.1. Sentinel imagery of Tauranga Harbor (New Zealand) and ground truth points used in the 

investigation. (a) S-1 image (acquisition date 31 March 2020) used for seagrass binary mapping. (b) S-2 

image (pseudo color using a composition of bands ρRed - ρGreen - ρBlue, acquisition date 5 April 2020). The 

red line indicates the mask used in analysis of remote imagery 

5.2.2. Field survey  

Seagrass collection  

The field survey was conducted during the austral summer (March 2020) season in the inter-tidal 

areas of the harbor, when biomass would be approaching the seasonal maximum. 57 sampling 
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plots (size 10 m × 10 m) across the harbor were selected (Figure 5.1 (a) – (b)). The geographic 

position of each plot was recorded using a global positioning system (GPS) Extrex-30 with an 

accuracy of ± 2 m and used as the ground truth points (GTPs) for the seagrass binary mapping 

using the S-1 image. 

A 0.5 m × 0.5 m square quadrat and a plastic core were used to collect seagrass for the 

measurement of the AGB as dry weight. The plastic core was used (Howard et al., 2014; Lyons 

et al., 2015) within each plot to take three cores, each 15 cm in diameter and 40 cm in depth in 

representative locations (Figure 5.2 (a) – (b)). The cores were inserted to a depth of 20 cm and 

the seagrass samples were washed free of sediment at the field sites, then kept at – 10 °C until 

analysis in the laboratory.  

Sample processing and dry AGB measurement 

In the laboratory, the seagrass sample was divided into aboveground and below-ground parts. 

The aboveground part consisted of seagrass shoots whilst the below-ground part comprised the 

rhizome and the root. We observed no epiphytes on the leaves of the seagrass samples. The 

aboveground part of seagrass was dried at 60 °C for 48 hours, cooled in a desiccator and weighed 

to ± 1 mg. An average AGB, normalized to the unit of g dry weight m-2 (g DW m-2), for each site 

was used in the production of the AGB distribution map. 
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(a) (b) 

Figure 5.2. Seagrass samples collection in Tauranga Harbor using (a) quadrat and (b) plastic 

core. Photos were taken by N.T.H in March 2020 

5.2.3. Development of models 

Satellite image acquisition 

S-1 and S-2 data were downloaded from the Copernicus open access hub (ESA 2020) and the 

United States geological survey (USGS) global visualization viewer (USGS-Glovis) (USGS 

2020), respectively in the projection of World Geodetic System (WGS84) (S-1) and WGS84-

Universal Transverse Mercator (UTM), zone 60 South (60S) (S-2) (Table 5.1). The images were 

acquired to have the acquisition time closest to each other and the low tide in Tauranga Harbor, 

and as close as possible to the field data collection dates (4 to 25 March 2020). Despite the close 

coincidence of low tide and overpass, comparison with bathymetry suggests that both submerged 

and exposed intertidal areas in the harbor were present at the time of satellite image acquisition 

(Reeve et al., 2018). 
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Figure 5.3. Flow chart of image processing, retrieval modeling (steps (1) to (5)) for seagrass AGB 

estimation and binary mapping 

 

Table 5.1. S-1 and S-2 data acquisition details 

Sensor 
Processing 

level 
Band used 

Date of 

acquisition 

Time of 

acquisition 

Corresponding 

low tide 

S-1 Ground range 

detected (GRD) 

level 1 sensor 

Dual-

polarimetric 

VH and VV 

31 March 

2020 

19:07 19:02 
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mode: 

interferometric 

wide swath (IW) 

S-2 Level 1C Band 1 to 8A 

vegetation 

(8A-V), 11, 

12 

5 April 2020 10:15 10:17 

 

Sentinel-1 preprocessing and image transformation 

The preprocessing of the S-1 image consisted of multiple steps to convert the pixel values from 

the raw intensity signal to the backscattering coefficients (σ0) in decibel units (dB), which were 

used for seagrass detection and retrieval of AGB. The S-1 C-band intensities of the VH and the 

VV polarizations were processed to the normalized radar σ0 as suggested by (Filipponi, 2019). 

This involved the following steps: (1) Correct the orbit file; (2) Thermal noise removal; (3) 

Border noise removal; (4) Radiometric calibration; (5) Speckle filtering; (6) Range Doppler 

terrain correction: before (7) conversion of the pixel values to the normalized radar 

backscattering coefficient (σ0) using Equation (5-1). 

σ 0 = 10 × log10 (DN2) (5-1) 

 

in which DN is the digital number of the intensity image. 

The band transformation for S-1 VH and VV polarizations was conducted as follows: (1) band 

combinations were derived as VV / VH, VH / VV, VV  ̶  VH, VH  ̶  VV, (VV + VH) / 2; (2) 

applying the gray level co-occurrence matrix (GLCM) feature extraction to create twenty new 

bands (VH contrast (VH_cons), VH dissimilarity (VH_diss), VH homogeneity (VH_homo), VH 
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asm (VH_asm), VH energy (VH_energy), VH max (VH_max), VH entropy (VH_entropy), VH 

mean (VH_mean), VH variance (VH_variance), VH correlation (VH_corr), VV contrast 

(VV_cons), VV dissimilarity (VV_diss), VV homogeneity (VV_homo), VV asm (VV_asm), VV 

energy (VV_energy), VV max (VV_max), VV entropy (VV_entropy), VV mean (VV_mean), 

VV variance (VV_variance), VV correlation (VV_corr)); (3) extracting the first principal 

component (PCA1) from  principal component analyses (PCA) of firstly the seven bands 

developed in step 1 (VV, VH, VV / VH, VH / VV, VV  ̶  VH, VH  ̶  VV, (VV + VH) / 2)) and 

secondly the 20 GLCM bands developed in step (2), resulting in the PCA1_7_band and 

PCA1_GLCM. The GLCM and PCA features were both extracted using the Sentinel application 

platform (SNAP) toolbox (ESA, 2020). A total of 29 bands (2 dual polarizations and 27 

transformed bands) were involved as the input variables/features from the S-1 analysis for use in 

the estimations of seagrass AGB whilst a total of 8 bands (2 dual polarizations and 6 

transformation bands (VV / VH, VH / VV, VV  ̶  VH, VH  ̶  VV, (VV + VH) / 2), 

PCA1_7_band) were used for the binary mapping in this study (see Table S5, the supplemental 

material) for the abbreviations and full names of the transformations). 

All the steps were accomplished in the SNAP application using the SAR toolset (ESA, 2020). 

Finally, we resampled to a spatial resolution of 10 m and co-registered the projection to WGS84 

UTM 60S to match S-2 imagery.  

Sentinel-2 image atmospheric correction and transformation 

The level 1C S-2 is downloaded as the top of atmosphere (TOA) processing level and was 

converted to surface reflectance using the atmospheric correction for operational land imager 

(OLI) “lite” toolbox (ACOLITE) (Vanhellemont, 2016) with the dark spectrum algorithm 

(Vanhellemont, 2019) (Table 5.S1, the supplemental material).  
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For the retrieval of AGB, the literature indicates the usefulness of different vegetation indices 

(VIs) and soil radiometric indices (SIs) (Xue & Su, 2017; Pham, Yokoya et al., 2020). Therefore, 

we computed a number of band transformations to generate different VIs and SIs (Table 5.2). A 

total of 22 bands (11 multispectral bands, 11 bands of VIs and SIs) were computed as the input 

variables for the retrievals of AGB from the S-2 scene (see Table 5.S5, the supplemental material 

for the abbreviations and full names of the transformations).  

Seagrass mapping using Sentinel-1 

Our previous work on seagrass binary mapping using Landsat images in Tauranga Harbor 

indicated that XGB and CB outperformed other ML models (Thang et al. in review, chapter 4). 

Therefore, we evaluated the classification skills of XGB and CB models for the presence/absence 

mapping of seagrass meadows using only S-1 images here. Using the GTPs from the field survey 

(March 2020), two classes of regions of interest (ROIs) (seagrass and non-seagrass) were created 

with a total of 5435 pixels selected from S-1 images (Table 5.3). The dataset was randomly split 

into 60% for the training and 40% for the testing of the selected ML models. The best model 

with highest scores of precision (P) and F1 was used to produce the binary map of seagrass 

meadows in Tauranga Harbor.  
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Table 5.2. Vegetation and soil index transformed from S-2 bands. Band wavelengths of S-2: ρBlue (460 

nm), ρGreen (560 nm), ρRed (665 nm), Red-edge 1 (RE1 (704 nm)), Red-edge 2 (RE2 (740 nm)), Red-edge 3 

(RE3 (783 nm)), Near-infrared (ρNIR) (833 nm) 

Vegetation index Acronym 
S-2 band  

wavelength used 
Reference 

Ratio vegetation 

index 
RVI 

𝜌NIR

𝜌Red
 

 

(Tucker, 1979) 

Normalized 

difference vegetation 

index 

NDVI 

𝜌NIR −  𝜌Red

𝜌NIR +  𝜌Red
 

 

(Rouse et al., 1974) 

Green normalized 

difference vegetation 

index 

GNDVI 

𝜌NIR − 𝜌Green

𝜌NIR + 𝜌Green
 

 

(Gitelson et al., 

1996) 

Enhanced vegetation 

index 2 
EVI2 

2.5 ×
𝜌NIR −  𝜌Red

𝜌NIR + 2.4 × 𝜌Red + 1
 

 
(Jiang et al., 2008) 

Normalized differ-

ence index using 

bands 4 & 5 of S-2 

NDI45 

RE1 −  𝜌Red

RE1 +  𝜌Red
 

 

(Delegido et al., 

2011) 

Soil-adjusted 

vegetation index 
SAVI 

(1 + 𝐿) ×
𝜌NIR −  𝜌Red

𝜌NIR +  𝜌Red + 𝐿
 

 

L = 0.5 in most conditions 

(Huete, 1988) 

Inverted red-edge 

chlorophyll index 
IRECI 

RE3 −  𝜌Red

RE1

RE2

 (Frampton et al., 

2013) 

Modified chlorophyll 

absorption in reflec-

tance index 

MCARI 

[(RE1 −  𝜌Red) − 0.2

× (RE1

−  𝜌Green)]

× (RE1

−  𝜌Red) 

(Daughtry et al., 

2000) 
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Soil Index Acronym 
S-2 Band 

Wavelengths Used 
Reference 

Brightness index BI 

 

√
𝜌Blue

2 +  𝜌Green
2 +  𝜌Red

2

3
 
(Escadafal, 1989) 

Redness index RI 

 

𝜌Red
2

𝜌Blue × 𝜌Green
3
 

(Mathieu et al., 1998) 

Colour index CI 

 
𝜌Red −  𝜌Green

𝜌Red +  𝜌Green
 

(Mathieu et al., 1998) 

  

Table 5.3. Number of input bands and field data observations used for various scenarios 

  For AGB estimation For binary mapping 

 Sensor 

No. of 

input 

band 

No. of  

observation 

No. of 

input 

band 

No. of  

training/testing 

pixel 

 S1 + SAR transformation   8 3261/2174 

Scenario 1 S-1 + SAR transformation 29 57   

Scenario 2 S-2 + VIs + SIs 22 57   

Scenario 3 S-1 + SAR transformation 

+ S-2 + VIs + SIs 

51 57   

Scenario 4 S-1 + SAR transformation 

+ S-2 + VIs + SIs and 

Spearman feature 

selection 

47 57   

Scenario 5 S-1 + SAR transformation 

+ S-2 + VIs + SIs and 

PSO feature selection 

26 57   

 

Seagrass AGB estimation  

We examined all available integrations of S-1 and S-2 data using five scenarios, and in each the 

performance of various ML models for AGB estimation was evaluated (Table 5.3). Scenarios 1 
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and 2 used only the original bands and transformations of S-1 and S-2 images respectively. 

Scenario 3 used both the original bands and transformations of S-1 and S-2 images and Scenario 

4 used a band subset derived from a Spearman correlation analysis between each input band and 

AGB. In this case, input bands with a Spearman coefficient > 0.10 were selected to include in 

scenario 4. In scenario 5, the best retrieval model from previous scenarios was integrated with a 

Particle Swarm Optimization (PSO) procedure designed to select the best combination of bands 

(see section 2.3.7).  

Retrieval of AGB using ML models  

Random Forest (RF) 

To date, the RF algorithm (Breiman, 2001) would be the most popular ML model applied for a 

wide range of classification and regression problems (Belgiu & Drăguţ, 2016; Pal, 2005). The 

RF model is reliable, with bootstrap sampling and ensemble bagging trees used to derive the 

most accurate decision from an ensemble of the weak learners. During the learning, 

approximately 2/3 of the samples (in-bag) is used for the training phase and 1/3 of the samples 

(out-of-bag) is used for the testing phase. Similar to other tree-based and boosting ML models, 

the RF model estimates the importance of each variable as predictors in the model. The most 

notable hyper-parameters of the RF model involve the maximum depth, minimum sample leaf, 

minimum sample split, maximum features, and number of trees that can be tuned to fit to a 

specific dataset.  

Support Vector Machine (SVM) 

SVM is a well-known algorithm for supervised learning applied for various non-linear problems 

(Gholami & Fakhari, 2017; Mountrakis et al., 2011). Given a classification or regression 

problem, the SVM algorithm defines the hyperplanes with the support vectors, the closest points 
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to the hyperplanes, and the margin, the gap between the classified classes. Compared to other 

ML models, the SVM model consists of fewer hyper-parameters of the kernel function (linear, 

poly-nominal or radial basis), gamma (γ) controlling the overfitting, and regularization parameter 

(C). The SVM model is able to deal with non-linear data, however not efficiently when the data 

is noisy or comprises overlapped data classes (Fehr et al., 2008; Mountrakis et al., 2011).  

Extreme Gradient Boost (XGB) 

Developed by Chen & Guestrin (2016), the XGB algorithm shares the same theory of boosting 

technique with the gradient boosting family, however it uses a more regularized model to 

produce scalable, and accurate prediction. The XGB model computes the second-order gradients 

of the loss function which provide essential information on minimizing the loss function. The 

introduction of L1 and L2 regularization models improves the generalization, and therefore 

reduces the overfitting. Parallelization, out-of-core computation and cache optimization are 

further advantages of the XGB, which reduces the training time when dealing with a big dataset. 

In addition, the XGB algorithm can be wrapped inside various optimization algorithms to tune 

the hyper-parameters for specific problems. The most important hyper-parameters involve the 

booster, maximum depth, minimum child weight, number of trees and learning rate.  

Light Gradient Boosting Machine (LGBM)  

The LGBM algorithm is designed for big data processing, but is still applicable for small-scale 

datasets (Ke et al., 2017). The LGBM technique inherits the advantages of decision tree-based 

and gradient boosting algorithms, in addition to a fast training speed with parallel computation, 

lower memory usage, and is capable of large-scale data processing. The LGBM grows the 

decision tree using the leaf-wise mode rather than the level-wise mode used in other tree-based 

ML models, which results in higher prediction accuracy, however, it may also lead to excessive 
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tree complexity and overfitting. The most important hyper-parameters of the LGBM model 

include the number of trees, number of leaves, maximum depth, which may reduce the model 

overfitting, and the gradient boosting model such as dropouts meet multiple additive regression 

tree (DART), gradient-based one-side sampling (GOSS), and gradient boosting decision tree 

(GBDT). On the other hand, the LGBM algorithm performs well with high dimensional data (Li 

et al., 2018), which might be appropriate to the multiple bands data in this study. 

CatBoost (CB) 

Of the ML algorithms used in this study, the CB algorithm is the most recent addition to ML 

techniques, that have been used for an extensive range of classification, regression, and ranking 

tasks (Prokhorenkova et al., 2019). The CB algorithm is able to handle both category and 

numerical data. The CB model introduced ordered boosting, which was modified from the 

standard gradient boosting algorithm and helps to avoid “shifting” in prediction due to target 

leakage. During the algorithm’s learning, the CB algorithm uses the oblivious decision tree 

instead of the asymmetric tree used in the XGB and the LGBM algorithms. The CB technique 

supports graphics processing unit (GPU) processing, significantly reduces training time and is 

easy to apply for a user-friendly application programming interface (API). The CB algorithm is 

robust as it uses only a few defaults hyper-parameters such as depth, number of trees, and 

learning rate.  

Hyper-parameter tuning for selected ML models 

In this study, we employed a five-fold cross-validation (CV) using the GridSearch in the Scikit-

learn library (Pedregosa et al., 2011a) to find the best combination of each model’s hyper-

parameters (See Table 5.S2, the supplemental material for seagrass binary mapping and Table 

5.S3 (a) - (d), the supplemental material for seagrass AGB estimation).  
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Particle Swarm Optimization (PSO) application for feature selection  

Introduction to PSO 

PSO is a powerful metaheuristic search algorithm for optimization of solutions to non-linear 

functions introduced by Kennedy & Eberhart (1995). Implementing a swarm-based stochastic 

optimization, the PSO uses the knowledge gained by each of the swarm of particles to affect the 

behavior of other particles in a search space of n dimensions. Each particle is controlled by three 

parameters inertia weight (w), cognitive (c1) and social (c2) components. The particles then 

implement the searches in n dimensional space, which correspond to the input features, returning 

the best positions in the search space with the minimum fitness during the optimization of feature 

selection (Sengupta et al., 2018; Seixas Gomes de Almeida & Coppo Leite, 2019). Compared to 

the Genetic algorithm (GA), PSO shares the idea of updating the particle positions after the 

iterations, however it requires a less complex model structure and is thus capable of being 

implemented with fewer hyper-parameters (Lambert-Torres et al., 2009).   

PSO implementation 

The PSO algorithm was separately employed for estimating seagrass AGB using the PySwarms 

library (Tisimst, 2020) in the PythonTM environment. The cost function in the PSO was defined 

using the best retrieval model for retrieving AGB in step 4 (Figure 5.3). At the end of the 

optimization, the positions corresponding to the lowest root mean squared error (RMSE) was 

selected and tested for the model performance in scenario 5 (step 5, Figure 5.3). 

PSO parameter tuning for AGB estimation  

PSO consists of different hyper-parameters, which should be tuned to derive the best 

optimization. In this work, we used GridSearch in the PySwarms library (Tisimst, 2020) to find 
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the best combination of number of particles, w, c1, and c2 parameters (Table 5.S4, the 

supplemental material). The search algorithm was fixed to global search. 

Evaluation criteria 

To evaluate the model performance for the binary classification, we used the accuracy (A), 

precision (P), recall (R), and F1 scores to measure the performance (Equations (5-2) to (5-5)) 

whilst the McNemar test was used to check the statistical difference from the two ML models 

(the chi-square (χ2) and p-value were produced using the Python library mlxtend (Raschka, 

2018)). 

For seagrass AGB retrieval, we used the following metrics to evaluate the model performance: 

the coefficient of determination (R2), root mean square error (RMSE), and RMSE percent of 

mean (RMSE%) (Equations (5-6) to (5-8)). Additionally, the Akaike Information Criteria (AIC) 

(Akaike, 1974) and the Bayesian Information Criteria (BIC) (Schwarz, 1978) were used to test 

the statistical difference among the selected models (Equations (5-9) to (5-10)). Lower values of 

AIC and BIC indicate a better performance of the model (Vrieze, 2012). 

𝐴(𝑦, 𝑦̂) =
1

𝑛samples
∑ (𝑦𝑖̂ =  𝑦𝑖)

𝑛samples − 1

𝑖 = 0

 (5-2) 

 

in which: 

ŷi : predicted value 

yi : corresponding true value 

nsamples : is the total number of validation samples 

𝑃 =
(TP)

(TP) + (FP)
 (5-3) 
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𝑅 =
(TP)

(TP) + (FN)
 (5-4) 

 

𝐹1 = 2 ×
 𝑃 ×  𝑅

𝑅 +  𝑃
 (5-5) 

 

in which: 

TP : true positive 

FP : false positive 

FN : false negative 

𝑅2(𝑦, 𝑦̂) = 1 −
∑ (𝑦𝑖 −  𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 −  𝑦̅)2𝑛
𝑖=1

 (5-6) 

 

in which: 

𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  and ∑ (𝑦𝑖 −  𝑦̂𝑖)2𝑛

𝑖=1 = ∑ 𝜀𝑖
2𝑛

𝑖=1  

ε : the error term 

n : is the total number of validation samples  

RMSE(𝑦, 𝑦̂) = √
1

𝑛samples
∑ (𝑦𝑖 −  𝑦̂𝑖)2

𝑛samples− 1

𝑖=0

 (5-7) 
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RMSE%(𝑦, 𝑦̂) = √
1

𝑛samples
∑ (

𝑦𝑖− 𝑦̂𝑖

𝑦𝑖
)

2𝑛samples−1

𝑖=0
× 100  (5-8) 

 

in which:  

ŷi : predicted value of the i samples 

yi : corresponding true value of the i samples 

nsamples : is the total number of validation samples 

 

AIC = 𝑛 × log (
RSS

𝑛
) + 2 × 𝐾 (5-9) 

 

BIC = 𝑛 × log (
RSS

𝑛
) + 𝐾 × log(𝑛) (5-10) 

 

in which: 

RSS : residuals sum of squares 

K : number of parameters (including intercept) 

n : number of observations 

Seagrass AGB mapping  

The best performing model in step (4) or step (5) (Figure 5.3) was used to generate the 

distribution maps of the seagrass AGB parameters. The binary seagrass map produced in this 

study was used to mask out the non-seagrass area in the AGB map. 
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5.3. Results 

5.3.1. Seagrass binary mapping 

The results indicate a high accuracy for seagrass binary mapping using the S-1 image data. The 

XGB obtained a higher metrics of P (0.82) and F1 (0.86) comparing to the CB model (Table 5.4) 

and the accuracy is significantly different from two ML models (McNemar test, Table 5.4). 

Table 5.4. Model performance for seagrass binary mapping 

 A P R F1 

XGB 0.92 0.82 0.90 0.86 

CB 0.90 0.78 0.91 0.84 

 McNemar test   

 χ2 value p-value   

XGB-CB 10.89 0.00   

 

The feature importance determines the contribution of the input variables to the seagrass binary 

mapping, in which the band VH is the most influential variable (62%), following by the 

PCA1_7_band (17.2%), VV / VH, VV, and VV  ̶  VH, VH / VV (Figure 5.4). The 

transformations of VH  ̶  VV and (VV + VH) / 2 have no impact on the seagrass binary mapping 

in this study.  
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Figure 5.4. Influence of input variables for seagrass binary mapping 

Using the XGB model, we produced a seagrass binary map for Tauranga Harbor (Figure 5.5). 

The map indicates an estimated total area of approximately 1,100 ha, with continuous meadows 

in all parts of the harbor, and these are particularly abundant in the middle section. 
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Figure 5.5. Seagrass binary distribution map derived from XGB model using S-1 image data 
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5.3.2. Seagrass AGB estimation  

During the field survey, the seagrass AGB varied over an order of magnitude from 23 to 237 g 

DW m-2, with a mean of 69 g DW m-2, standard deviation of 42 g DW m-2 and 99% of the field 

data ranged between 23 to 178 g DW m-2. The result indicates a wide variation of seagrass AGB 

from plots collected in the harbor. 

In scenario 1, when only S-1 bands were considered, the LGBM model produced the highest R2 

of 0.49 whilst the XGB model was the better model, however at a lower R2 of 0.47 in scenario 2 

(Table 5.5). The accuracy was improved for AGB estimation when combining S-1 and S-2 bands 

in scenario 3, with the LGBM model yielding an R2 of 0.54 and the lowest values of AIC and 

BIC (Table 5.5).  

Table 5.5. Comparison of the ML models’ performances for AGB retrieval in four scenarios5 

 
Model 

RF SVM XGB CB LGBM 

Scenario 1 

R2 0.34 -0.04 0.23 0.19 0.49 

RMSE (g) 0.55 0.70 0.60 0.62 0.49 

RMSE% (%) 63.57 82.70 69.07 74.27 50.02 

AIC 40.40 47.50 42.90 43.70 36.70 

BIC 61.00 68.00 63.40 64.20 57.20 

  

Scenario 2 

R2 0.21 0.00 0.47 0.22 0.26 

RMSE (g) 0.48 0.54 0.39 0.47 0.46 

RMSE% (%) 68.11 71.88 59.78 68.61 60.75 

AIC 22.00 25.70 16.20 21.90 21.10 

BIC 37.60 41.30 31.80 37.50 36.70 

  

Scenario 3 

R2 0.24 0.01 0.12 0.31 0.54 

RMSE (g) 0.50 0.57 0.54 0.48 0.39 

RMSE% (%) 79.64 88.00 79.85 73.01 51.61 

 

5The RMSE was calculated differently due to the random sample splitting from each scenarios. Therefore, the RMSE was used 

only to compare the model’s performance inside the scenario whilst the R2 was used to compare the model among the scenarios. 

Bold values indicate the best performance of the model. 
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AIC 82.20 85.60 83.80 80.10 74.20 

BIC 118.30 121.70 119.90 116.80 110.30 

  

Scenario 4 

R2 0.52 0.32 0.70 0.49 0.53 

RMSE (g) 0.46 0.56 0.37 0.48 0.46 

RMSE% (%) 55.87 45.60 47.40 59.56 55.89 

AIC 71.30 76.70 64.40 72.30 71.10 

BIC 104.50 109.90 97.60 105.60 104.40 

 

In scenario 4, we tested the model performance with the feature selection using only bands that 

yielded a Spearman correlation coefficient > 0.10, which reduced the selected bands to 47. Using 

these, the XGB model derived an enhanced prediction of AGB at R2 of 0.70 (Table 5.5). R2, 

RMSE, AIC, BIC confirmed that XGB was superior to all other ML models. The model 

performances were visualized (Figure 5.6), and this confirmed that the XGB was a good fit with 

residuals smaller and more evenly spread than other models. 

For Scenario 5, the best performing model from scenarios 1 to 4 (XGB model) was used as the 

cost function in the PSO algorithm, and 26 bands were selected from optical and SAR data 

fusion. The XGB model with PSO for feature selection (XGB-PSO) outperformed the Spearman 

correlation analysis used in Scenario 4, with a higher R2 (0.75), and lower AIC (24.80), BIC 

(44.70), RMSE% (41.69%). Overall, the XGB-PSO was the best model for seagrass AGB 

retrieval in Tauranga Harbor, with the highest R2, lowest values of AIC, BIC, RMSE% and a 

good agreement between estimated and measured AGB values (Figure 5.6 (f)). The bands that 

emerged as of greatest significance in the various models confirm that similar numbers of bands 

computed from SAR and multispectral data contribute to the final XGB-PSO model (Figure 5.7). 

For seagrass AGB estimation, the most influential bands involve ρRed, IRECI of S-2 and 

VH_cons, VH_diss, VH_entropy, VV_corr of S-1 images. Among selected vegetation indices 

using the PSO algorithm, several new VIs computed from S-2 data such as MCARI, IRECI, 
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EVI2 play a role in estimating seagrass AGB in the study area. On the other hand, other common 

VIs (NDVI, SAVI) are less important when retrieving AGB. 

 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure 5.6. Scatter plot of AGB estimation use S-1 and S-2 bands with feature selection from Spearman 

correlation (a) - (e) and PSO (f): (a) RF, (b) SVM, (c): XGB, (d): CB, (e) LGBM, (f): XGB-PSO 

 

 

Figure 5.7. Variable importance for AGB estimation in Tauranga Harbor 

Seagrass AGB distribution map  

We created an AGB distribution map for Tauranga Harbor using the XGB-PSO model (Figure 

5.8). Predicted seagrass AGB ranged from 15 to 201 g DW m-2 and almost all seagrass meadows 

were estimated to have AGB from 61 to 139 g DW m-2. We predict highest seagrass AGB values 

in the areas in the center and south of the harbor. 
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Figure 5.8. Seagrass AGB map for Tauranga Harbor created from the XGB-PSO model 
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5.4. Discussion 

In this research, we evaluated novel approaches for estimation of seagrass properties using EO 

resources. We attempted to map the seagrass distribution using only SAR data, to offset 

constraints imposed on optical sensors by viewing conditions. We then went on to assess 

whether AGB could be best estimated using SAR, multispectral or a fusion of these remote 

sensing data, when combined with advanced ML models. To our knowledge, no other studies 

have applied EO data fusion techniques for such applications. In addition, we demonstrate how 

an advanced feature selection technique, using PSO metaheuristic optimization, improved the 

reliability of the retrievals to yield spatial AGB maps at 10 m resolution.  

We were capable of mapping the distribution of intertidal seagrass meadows (present-absent) 

using 8 input variables derived from S-1 data (2 original bands and 6 transformations) with high 

accuracy (F1 score 0.86). Our mapping is the first report on the use of SAR data for seagrass 

detection. The finding of the high contribution of the VH to the detection of vegetation is in 

agreement with the literature, where this polarization conveys information on stem scattering 

(Shang et al., 2020; Xu et al., 2019). Our results indicate that complex relationships across the 

SAR signals exists, with transformations and the PCA of all bands contributing 33% to the XGB 

model performance.  

For seagrass AGB, the spatial map indicates high biomass values in the middle and southern 

parts of the harbor which coincides with the distribution of healthy seagrass meadows in a 

previous map (Ha et al., 2020). Compared to the task of binary/trinary classification, the 

quantification of AGB is more of a challenge due to the limited amount of training/testing data 

and the difference in the input data ranges (i.e the limited number of output classes for 

classification comparing to a wide range of output variables for regression against biomass). The 
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accuracy of the regression is, therefore usually lower than the binary/trinary classification task as 

presented in this study.  

Substantial performance differences were observed with the use of S-1, S-2 or both, and between 

the various ML techniques applied. Best performance consistently was associated with scenarios 

using both the S-1 and S-2 images, and overall the XGB-PSO was the most effective ML model. 

Vorster et al. (2020) discussed the variation of RMSE% in the forest biomass estimation, in 

which satellite image based prediction models contribute 25% to 75% to the total uncertainty of 

the estimation (Vorster et al., 2020). Salum et al. (2020) reported RMSE% of 20.66% to 43.81% 

for mangrove AGB estimation (R2 ranged from 0.90 to 0.97) (Salum et al., 2020) whilst Li et al. 

(2020) indicated the values of RMSE% of 38% to 54% for forest AGB retrieval (R2 ranged from 

0.38 to 0.75) (Li et al., 2020). The RMSE% of XGB-PSO model (41%), therefore is rationale and 

acceptable when dealing with the small size and low AGB of the seagrass Z. muelleri in this 

study.  

Feature selection resulted in higher accuracy of AGB estimation, which exceeded the accuracy of 

a simple linear regression model for predicting AGB for seagrasses from VHR optical images 

(Roelfsema et al., 2014; Koedsin et al., 2016). In other words, the high performance of the XGB 

model indicates that high to very high resolution images might not be the only solution to return 

high accuracy seagrass AGB estimation. Naidoo et al. (2019) and Byrd et al. (2018) applied 

similar scenarios with and without the fusion of S-1 and S-2 images for predicting biomass of 

emergent wetland plants, and retrieved AGB at an R2 ranging from 0.36 to 0.63, slightly less than 

those achieved in this study (R2 = 0.75). Given the targets of the other studies had a higher 

biomass (5 to 3000 g m-2 in the wetland), and likely presented a more favorable radar target than 
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emerged seagrass, our proposed models are promising and could be expanded to include not only 

the seagrass but also other blue carbon ecosystems in the coastal areas.  

The integration of the metaheuristic optimization with remote sensing data fusion is another new 

approach to the estimation of seagrass biophysical parameters from remote sensing data. Our 

results show the value of including advanced feature selection tools to gain higher accuracy of 

seagrass AGB estimation. Compared to the results in scenarios 3 (no feature selection) and 4 

(feature selection using Spearman correlation analysis), the model performance was improved 

substantially by the addition of the PSO (scenario 5). The PSO is fast proving a powerful tool in 

ecological models. Through the harmonization of the control parameters of w, c1, and c2 inside 

the swarm, the next best location is updated among the particles via each iteration. In addition, 

the memory function (i.e the personal best feature in the algorithm) provides another solution for 

the particles to revert to the best way when they explore a “wrong way” in the searching space. 

Two features of the PSO - the iterative updating of the next best solution within swarm space and 

the ability to revert when the algorithm explores a “wrong way” in the searching space - usually 

result in a faster convergence of the swarm and better exploration of the target variable (seagrass 

AGB in this study) (Bansal et al., 2009; Elbeltagi et al., 2005; Panda & Padhy, 2008; Xiaohui et 

al., 2020). Since the effective application of the PSO for seagrass AGB estimation is first 

reported here, it is expected that our results will pave the way for advanced methods to be 

applied to other seagrass species in other international locations (Akbari et al., 2020; Sengupta et 

al., 2018; Wang et al., 2018).  

We observed the most important variables for retrieval of seagrass AGB from S-2 are the single 

color bands ρGreen and ρRed, the vegetation indices EVI2, IRECI, MCARI, the soil index BI and 

the GLCM bands VH_cons, VH_diss, VH_entropy, VV_corr of S-1 image (Figure 5.7). The 
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ρGreen and ρRed bands are likely sensitive to the pigment information, whilst the VIs and the SIs 

provide useful information on the density of the seagrass. These indices were derived to provide 

information on vegetation from reflectance data, and have been shown to be effective in other 

situations (Morcillo-Pallarés et al., 2019; Mulder et al., 2011; Xue & Su, 2017). The GLCM 

bands, on the other hand, have not previously been used for seagrass, but here appear to provide 

quantitative information on the shape and texture of the meadows, and make a significant 

contribution to the final model. Whether the SAR data are truly addressing the texture of 

seagrass, or some other component of the seagrass ecosystem such as cockles which typically co-

occur in Tauranga Harbor (Morrison et al., 2014), is not clear. Our results are, however, 

consistent with recent studies for mangrove AGB retrieval in the tropics which suggested that S-

1 is appropriate for quantification of low biomass vegetation (Pham, Le et al., 2020; Pham, 

Yokoya et al., 2020).   

The method described here provides a novel direction using data fusion and state-of-the-art 

machine learning and optimized techniques in detecting the distribution and retrieving seagrass 

AGB in the coastal area at 10 m spatial resolution, and may be useful for other blue carbon 

ecosystem analyses. All satellite and analytical products used in this work are open access, and 

present opportunities for low-cost analyses where suitable data to supervise classification and 

regression can be obtained. Our work could provide a baseline for blue carbon credit markets, 

toward a nature-based solution to climate change bb current study, however is spatially narrowed 

to the intertidal zones where the seagrass meadows can be exposed at low tide and all the bands 

of S-1/S-2 are available for further processing. In addition, the data saturation for AGB 

estimation was reached at approximately 170 g DW m-2 which might be considered as the 

limitation when using S-1 data.  
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Future research might be to expand the proposed methods with more field surveying data on 

various seagrass species across different coastal regions at a larger-scale using different SAR 

sensors such as advanced land observing satellite 2 (ALOS-2) phased array type L band synthetic 

aperture radar (PALSAR-2). The L band SAR has a longer wavelength, penetrates deeper than 

the C band of S-1 image, and is potentially higher in data saturation (Pham, Yokoya et al., 2020). 

In addition, various metaheuristic optimization algorithms (Harris Hawks Optimization (HHO) 

(Heidari et al., 2019), Firefly Algorithm (FFA) (Pan et al., 2019)) could be investigated for better 

feature selection to improve the accuracy of the retrieval models.  

5.5. Conclusion 

Our work pioneers the use of SAR remote sensing data (S-1 imagery) for mapping the distribu-

tion of intertidal seagrasses, and the fusion of optical remote sensing data (S-2 imagery) with ad-

vanced machine learning and metaheuristic optimization techniques (PSO) for estimating AGB 

of the small seagrass species Z. muelleri in the intertidal zone in Tauranga Harbor.  

S-1 provides useful remote SAR image data for the binary mapping of seagrass with high accu-

racy (A 0.92 and F1 0.86 when combined with the XGB model). For seagrass AGB, both optical 

and SAR sensing provided information to drive models and data fusion provided the best retriev-

al accuracy. In addition, feature selection improved the model accuracy for AGB estimation with 

a superior performance of the metaheuristic optimization PSO using the XGB model over the 

Spearman correlation.   

Our results contribute a novel advance in the use of multispectral and SAR remote sensing data 

fusion and state-of-the-art ML models together with metaheuristic optimization, for both 

seagrass detection and seagrass AGB estimation in the intertidal zones that may be expandable to 

various seagrass species globally.  
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5.6. Chapter supplemental material 

Table 5.S1. Selected parameters for atmospheric correction using ACOLITE 

Parameter Value 

Ancillary data  

Gas transmittance True 

Ozone concentration (cm-1) 0.30 

Water vapour concentration (g cm-2) 1.50 

Pressure Normal pressure 

Masking  

Negative reflectance masking True 

Cirrus masking True 

Other parameters  

Sky correction True 

Dark spectrum fitting Fixed 

Sun glint correction False 

 

Table 5.S2. List of tuned hyper-parameters for seagrass binary mapping  

CatBoost  Extreme Gradient Boost  

Depth 5 Boosting type GBTREE 

Learning rate 0.01 Gamma 2 

L2 leaf regression 3 Learning rate 0.20 

Number of trees 30 Max depth 5 

  Min child weight 3 

  Number of trees 50 
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Table 5.S3a. List of tuned hyper-parameters for AGB estimation in Scenario 1  

Random Forest  
Extreme Gradient 

Boost 
 

Bootstrap True Boosting type GBTREE 

Max depth 1 Gamma 3 

Max features 2 Learning rate 0.10 

Min sample leaf 4 Max depth 3 

Min sample split 3 Min child weight 7 

Number of trees 100 Number of trees 30 

    

CatBoost  
Light Gradient 

Boosting Machine 
 

Depth 10 Boosting type DART 

Learning rate 1 Learning rate 0.10 

L2 leaf regression 4 Max depth -1 

Number of trees 10 Number of leaves 10 

  Number of trees 200 

    

    

Support Vector 

Machine 
   

Kernel RBF   

C 10   

Epsilon 0.01   

Gamma 1000   
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Table 5.S3b. List of tuned hyper-parameters for AGB estimation in Scenario 2 

Random Forest  
Extreme Gradient 

Boost 
 

Bootstrap True Boosting type GBTREE 

Max depth 3 Gamma 1 

Max features 2 Learning rate 0.10 

Min sample leaf 4 Max depth 3 

Min sample split 9 Min child weight 7 

Number of trees 100 Number of trees 50 

    

CatBoost  
Light Gradient 

Boosting Machine 
 

Depth 10 Boosting type GBDT 

Learning rate 0.30 Learning rate 0.50 

L2 leaf regression 4 Max depth -1 

Number of trees 10 Number of leaves 10 

  Number of trees 10 

    

    

Support Vector 

Machine 
   

Kernel RBF   

C 1000   

Epsilon 0.50   

Gamma 0.00   
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Table 5.S3c. List of tuned hyper-parameters for AGB estimation in Scenario 3 

Random Forest  
Extreme Gradient 

Boost 
 

Bootstrap True Boosting type GBTREE 

Max depth 3 Gamma 3 

Max features 2 Learning rate 0.20 

Min sample leaf 4 Max depth 3 

Min sample split 3 Min child weight 7 

Number of trees 50 Number of trees 30 

    

CatBoost  
Light Gradient 

Boosting Machine 
 

Depth 10 Boosting type DART 

Learning rate 0.20 Learning rate 0.30 

L2 leaf regression 4 Max depth -1 

Number of trees 100 Number of leaves 10 

  Number of trees 50 

    

    

Support Vector 

Machine 
   

Kernel RBF   

C 1000   

Epsilon 0.50   

Gamma 0.00   

    

 



153 

 

Table 5.S3d. List of tuned hyper-parameters for AGB estimation in Scenario 4 

Random Forest  
Extreme Gradient 

Boost 
 

Bootstrap True Boosting type GBTREE 

Max depth 3 Gamma 1 

Max features 8 Learning rate 0.51 

Min sample leaf 1 Max depth 3 

Min sample split 2 Min child weight 6 

Number of trees 30 Number of trees 50 

    

CatBoost  
Light Gradient 

Boosting Machine 
 

Depth 2 Boosting type GBDT 

Learning rate 0.185 Learning rate 0.92 

L2 leaf regression 4 Max depth -1 

Number of trees 30 Number of leaves 10 

  Number of trees 100 

    

    

Support Vector 

Machine 
   

Kernel RBF   

C 100000   

Epsilon 0.20   

Gamma 0.00   
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Table 5.S4. PSO tuned hyper-parameters for AGB estimation 

Estimation Search algorithm Number of particles w c1 c2 

AGB Global search 30 0 0.50 0.50 

 

Table 5.S5. Abbreviation of Sentinel-1 and Sentinel-2 bands used in the study   

Abbreviation Full name Abbreviation Full name 

Sentinel-1  Sentinel-2  

VV Dual-polarization 

vertical 

transmitting and 

vertical receiving 

8A-V 8A vegetation 

VH Dual-polarization 

vertical 

transmitting and 

horizontal 

receiving 

RE Red edge 

VH_cons: VH contrast NIR Near infrared 

VH_diss: VH dissimilarity BI Brightness index 

VH_homo: VH homogeneity CI Color index 

VH_asm: VH asm EVI2 Enhanced vegetation index 2 

VH_energy: VH energy GNDVI Green normalized difference 

vegetation index 

VH_max: VH max IRECI Inverted red edge chlorophyll 

index 

VH_entropy: VH entropy MCARI Modified chlorophyll 

absorption in reflectance 

index 

VH_mean VH mean NDI45 Normalized difference index 

derived from band 4, 5 

VH_variance: VH variance NDVI Normalized difference 

vegetation index 

VH_corr: VH correlation RI Red index 

VV_cons: VV contrast RVI Ratio vegetation index 
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VV_diss: VV dissimilarity SAVI Soil adjusted vegetation 

index 

VV_homo: VV homogeneity   

VV_asm: VV asm   

VV_energy: VV energy   

VV_max: VV max   

VV_entropy: VV entropy   

VV_mean 

VV_variance: 

VV mean 

VV variance 

  

VV_corr: VV correlation   
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Chapter 6 A novel and open source web-GIS approach for seagrass data 

visualization and collaboration 

Abstract: Web-GIS provides an effective platform to visualize scientific data in the form of a 

readily interpretable thematic map, which is capable of benefiting a broad community. Using this 

approach, web-GIS fosters geospatial data sharing, collaboration, and strengthens community-

based conservation efforts. In the current study, we developed a web-GIS application based on 

an integrated framework using open-source assets, including QGIS, QGIS server, Lizmap web 

client, PostGIS, and PostgreSQL to successfully visualize a database of seagrass dynamics in 

Tauranga Harbor, New Zealand. The name of this application is Blue Carbon Web (BCW). 

BCW is designed to support diverse functions, be secure, with data loading, and to facilitate 

collaboration. Our work is the first application of open source web-GIS for seagrass ecosystems 

in New Zealand, provides an elegant and lightweight interface, which supports the improvement 

of community awareness in conservation of this blue carbon ecosystem in New Zealand. 

Keywords: seagrass, web-GIS, QGIS, PostgreSQL, PostGIS, Lizmap 
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6.1. Introduction  

Seagrasses are a polyphyletic group of angiosperm species which have adapted to marine life, 

and are widely distributed across the climatic regions. Recent studies reveal various important 

ecosystem services provided by seagrass, including filtering water, acting as a nursery and 

breeding ground, coastal erosion attenuation, and carbon sequestration (Nordlund et al., 2016, 

2018). A large amount of research effort has been dedicated to accurate mapping, change 

detection and long-term policy engagement, toward sustainable conservation of seagrass 

meadows across the world (Cullen-Unsworth & Unsworth, 2013; Nordlund et al., 2018; 

Unsworth et al., 2018; Dat Pham et al., 2019; Ha et al., 2020). 

Despite the demonstration by researchers of valuable ecological functions and the development 

of tools for updating temporal distribution and estimating carbon sequestration capability 

(Nordlund et al., 2016; Dat Pham et al., 2019; Macreadie et al., 2019), seagrass meadows have 

been degraded in both area and habitat quality globally (Waycott et al., 2009; de los Santos et al., 

2019). Challenges facing seagrass conservation include failures in transplantation (Suykerbuyk 

et al., 2016; Paulo et al., 2019), impacts of intensive aquaculture and unsustainable fisheries 

(Herbeck et al., 2014; Ferriss et al., 2019), extreme weather phenomena (Fraser et al., 2014; 

Oprandi et al., 2020), water pollution and sediment accumulation (Fraser & Kendrick, 2017), and 

importantly, a failure in effective social communication (Orth et al., 2006; Ramesh et al., 2018; 

Unsworth et al., 2018). The current state of seagrass dynamics is widely investigated by a small 

community of scientists and a limited number of the managers (Hossain et al., 2015; Dat Pham et 

al., 2019), whilst a broader community, including fishermen, local managers, and tourist 

operators, are still out of the box (Unsworth et al., 2018). The reasons for this may come from a 

limited access to the information generated in research databases, poor communication via social 
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media, and a lack of interest from local managers. To deal with these issues, social media have 

been identified as high impact, essential tools that provide instant, easy access, and simple data 

visualization for end users (Di Minin et al., 2015; Wu et al., 2018; Toivonen et al., 2019). In this 

context, a web-GIS approach will be the most popular practical solution with a web-based 

interface providing an intuitive interaction, readily updated information and ease of use for 

multiple purposes (Rouse et al., 2007; Sui & Goodchild, 2011; Werts et al., 2012). Such an 

approach requires a geographic information system (GIS), web server, web client, GIS server, 

and database management application as essential system components.  

Recently, a limited number of web-GIS based applications have been developed that are 

specifically designed for seagrass ecosystems or integrate seagrass dynamics in their database. A 

detailed review of the literature was presented in Section 2.5, Chapter 2 in this thesis. Of the 

existing web-GIS systems, seagrass dynamics data was only integrated into the global database 

of the Ocean Data Viewer (http://data.unep-wcmc.org), Mapping Ocean Wealth 

(http://maps.oceanwealth.org/#), simplified as the image data web-GIS 

(https://seagrassspotter.org/), or as a local database of in the Blue Carbon Mapping Tool 

(http://bluecarbontoolkit.ae/en/layout) and seagrass extent developed by the Bay of Plenty 

Regional Council (https://maps.boprc.govt.nz/datasets/seagrass-extents-bay-of-plenty). These 

web-GIS systems take advantage of global visualization, data sharing, and support various 

ecosystems. However, we have observed a few limitations from the listed web-GIS systems, 

including a failure to update seagrass data, slow performance, discrete illustrations of spatial 

dynamics as well as lack of a mapping interface. In addition, many come at high cost, due to the 

problems of a big database, web client and use of commercial software. Currently there is no 

web-GIS application showing integrated seagrass blue carbon resources.  

http://data.unep-wcmc.org/
http://maps.oceanwealth.org/
https://seagrassspotter.org/
http://bluecarbontoolkit.ae/en/layout
https://maps.boprc.govt.nz/datasets/seagrass-extents-bay-of-plenty
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The recent literature review motivated us to build an open geospatial database of seagrass 

dynamics for Tauranga Harbor, New Zealand. To make this readily applicable and transferable, 

our goal was to base this around open access platforms. The database is structured in the format 

of PostgeSQL - a secure and advanced open source database management system (PGDG, 2020), 

mapping using QGIS - the best-known GIS open source application (Brunsdon & Singleton, 

2015; Coetzee et al., 2020), connection to the QGIS server via Lizmap web client (Douchin, 

2020) - an emerging web client and natively integrated to the QGIS/QGIS server, to create an 

elegant and lightweight web-GIS interface (hereafter namely Blue Carbon Web or BCW). Our 

application is expected to provide an effective communication web gate to a broader community, 

increasing the flow of information on seagrass ecosystem conservation, and engaging the 

willingness of the general population to value and protect the extant seagrass meadows in New 

Zealand.  

6.2. Methodology  

6.2.1. Visualization site  

Tauranga Harbor, New Zealand (Figure 6.1) is our visualization site. A single species, Zostera 

muelleri, has colonized the inter-tidal zones of the harbor, where it forms one of the largest areas 

of seagrass in New Zealand (Park, 2011). Our previous work has indicated a significant change 

in area of seagrass meadows in the harbor over the last 29 years (1990 - 2019) (Ha et al., in 

revision, Chapter 4). In addition, our fieldwork has provided good observation data of the 

aboveground, and belowground dry biomass, and the total carbon of seagrass meadows at 57 

random plots (Ha et al., 2020) that support the development of maps of cover, biomass and 

change. The available data provides an excellent case study to develop an experimental open 

source web-GIS application.  
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Figure 6.1. Tauranga Harbor – A web-GIS visualization site (pseudo color using ρRed - ρGreen -ρBlue 

composition of Sentinel-2 imagery). The green dots indicate the location of ground-truth point collection 

and blue carbon assessment 
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6.2.2. Seagrass changes, dry biomass and total soil carbon data 

The seagrass changes (Table 6.1), dry biomass and total soil carbon (Table 6.2) data are taken 

from our previous works in the years 2019 and 2020. The data of dry biomass and total soil 

carbon are formatted in GeoTIFF raster whilst GPS data of field survey are saved in Shapefile 

format. In total, seven (7) GeoTIFF files, and two (2) Shapefile are structured and stored in an 

PostgreSQL database with a file size approximately 78 megabyte (Mb).  

Table 6.1. Seagrass changes data in Tauranga Harbor 

Month year Area (ha) Format Projection Mapping source Thematic map 

April 1990 2237 GeoTIFF WGS-84, 

UTM-60S 

Landsat-4 TM Raster map of 

seagrass 

distribution 
Mar. 2001 2035 Landsat-7 ETM 

Feb. 2011 2380 Landsat-5 TM 

Mar. 2014 1734 Landsat-8 OLI 

May 2019 1184 Landsat-8 OLI 

 

Table 6.2. Dry biomass and total soil carbon data in Tauranga Harbor 

Month/Year Amount of 

plots 

Format Projection Mapping 

source 

Thematic map 

Sep. 2019 & 

Mar. 2020 

57 Shapefile WGS-84, 

UTM-60S 

 Map of point-based 

field survey 

  Shapefile WGS-84, 

UTM-60S 

 Map of study site 

boundary 

 

Mar. 2020  GeoTIFF WGS-84, 

UTM-60S 

Sentinel-1 

& Sentinel-

2 

Raster map of dry 

biomass and total soil 

carbon 
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6.2.3. Methodology 

 

 

Figure 6.2. Flowchart of geospatial database and web-GIS building 



163 

 

Several components are required to build a web-GIS interface (Figure 6.2). The application of 

PostgreSQL is used to build and manage the geospatial database, PostGIS is used to connect the 

geospatial database between PostgreSQL and QGIS, QGIS desktop is used to do the data 

visualization, decoration in a map format whilst QGIS server and Lizmap client help to convey 

the styled map to the WWW via a web-GIS interface (the BCW application in this study).  

Install and configure web-GIS components 

In this study, the web-GIS components (Table 6.3) are installed and configured under the Linux 

environment (Lubuntu distribution, version 20.04). 

Table 6.3. Application information used in the installation 

Application Version Operating 

system 

Source code Link to download 

QGIS server 3.16 Linux Open source https://qgis.org/en/site/forusers/

alldownloads.html#debian-

ubuntu 

QGIS 3.16 Linux Open source https://qgis.org/en/site/forusers/

download.html 

Lizmap web 

client/ QGIS 

plugin 

3.2 Linux Open source https://github.com/3liz/lizmap-

web-client 

PostgreSQL 12 Linux Open source https://www.postgresql.org/dow

nload/ 

PostGIS 3.0 Linux Open source https://postgis.net/install/ 

 

Installation instructions for the application of QGIS server, Lizmap plugin for QGIS, Lizmap 

web client, PostgreSQL, PostGIS and QGIS are presented in the supplemental material of the 

chapter. 

  

https://qgis.org/en/site/forusers/alldownloads.html#debian-ubuntu
https://qgis.org/en/site/forusers/alldownloads.html#debian-ubuntu
https://qgis.org/en/site/forusers/alldownloads.html#debian-ubuntu
https://qgis.org/en/site/forusers/download.html
https://qgis.org/en/site/forusers/download.html
https://github.com/3liz/lizmap-web-client
https://github.com/3liz/lizmap-web-client
https://postgis.net/install/


164 

 

Geospatial database building  

PostgreSQL was used to build, manage the geospatial database using both command line and a 

user interface PgAdmin4 (Table 6.4). To make the web-GIS accessible and ease data 

collaboration, the popular Shapefile (shp) and GeoTIFF (tif) formats were used to stored vector 

and raster dataset in the geospatial database (Table 6.4).  

Table 6.4. Functional level and data format of geospatial database 

Function Tool 

Create server PgAdmin4 

Create database PgAdmin4 

Delete database PgAdmin4 

Add vector data Database manager in QGIS 

Add raster data Command line 

  

Data format Data type 

Shapefile Point 

Shapefile Polygon 

GeoTIFF 64bit real 
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Web-GIS performance evaluation 

As a web-based platform, the BCW application should be fast in page loading, friendly in user 

interface, and easy for searching by the user. Considering the criteria mentioned, the four web 

services (Table 6.5) were implemented to test the BCW performance from the scores of (i) 

performance, (ii) page speed, (iii) load time which measure the speed of the web page, (iv) 

search engine optimization which quantifies the visibility of the web page to the user, (v) 

accessibility, and (vi) best practice which evaluates the friendly design of the web user interface.   

The Google web development tool (GWDT) supports a direct assessment for the local-host web 

whilst the GTmetrix, Dareboost, and Uptrends only work with the online website. For this 

reason, we used the ngrok application (https://www.ngrok.com/) to create a communication 

between the local folder of BCW and the WWW. An online link will be created and the 

performance of BCW can be tested using Gtmetrix, Dareboost, and Uptrents services.   

Table 6.5. Web services for BCW performance evaluation 

Web services Measured score Web link 

GTmetrix Page speed, load time https://gtmetrix.com/ 

Dareboost Load time https://www.dareboost.com/en 

Uptrends Google page speed, load time https://www.uptrends.com/tools/website-

speed-test 

Google web 

development tool 

(GWDT) 

Performance, accessibility, best 

practice, SEO 

https://developers.google.com/web/tools 

  

https://www.ngrok.com/
https://gtmetrix.com/
https://www.dareboost.com/en
https://www.uptrends.com/tools/website-speed-test
https://www.uptrends.com/tools/website-speed-test
https://developers.google.com/web/tools
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6.3. Results 

6.3.1. Seagrass distribution and blue carbon geospatial database 

In this study, a geospatial database postgres was created, then connected to the QGIS application 

using the external extension PostGIS. Two vector (in Shapefile format) and seven raster 

(GeoTIFF format) layers were added into the database (Table 6.6) with a size of approximately 

78 Mb. All the vector and raster dataset are managed using PgAdmin4 (Figure 6.3).  

Table 6.6. Vector and raster dataset in the geospatial database 

Name Format Amount Size 

(Mb) 

Sampling point Shapefile (point) 1 0.32 

Tauranga boundary Shapefile (polygon) 1 0.10 

Seagrass distribution map GeoTIFF 5 11.1 

Seagrass biomass map GeoTIFF 1 33.3 

Seagrass total carbon map GeoTIFF 1 33.3 

Total (Mb)   78.12 
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Figure 6.3. Data table in the interface of PgAdmin4 

6.3.2. BCW performance  

The performance of the local-host BCW was evaluated using the web services of GWDT, 

GTmetrix, Dareboost, and Uptrents. The analysis results (Table 6.7) indicate a fast and stable 

performance (scores of performance, page speed, load time), good search engine optimization 

(SEO) (score of SEO), and friendly user interface (scores of accessibility and best practice) that 

are essential to keep the visitors staying longer at the website. The GWDT service gave the BCW 

score 100/100 for performance whilst the Uptrents and GTmetrix score the page speed 86 - 

92/100. Importantly, the load time ranges from 2.4 - 3.4 s which were smaller than the standard 4 

s for a website loading, indicating an acceptable loading time for the BCW. We also noted the 

high scores of SEO (89/100) and best practice (85/100), implying a friendly, trustworthy, and 

safe web interface. In other words, the BCW bring a comfortable experience to the visitors, that 

will motivate them to spend more time to view the content of the website. At the time of page 
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loading, only a limited number of functions were loaded and this might explain the modest score 

of accessibility (61/100).    

Table 6.7. BCW performance evaluation from GWDT, GTmetrix, Dareboost, and Uptrents 

Service Metric 

 Performance Accessibility Best practice SEO 

GWDT 100/100 61/100 85/100 89/100 

 Google page speed score Load time (s)   

Uptrents 92/100 2.4/4   

Dareboost Overall score Load time (s)   

 0.78 2.5/4   

 Page speed score Load time (s)   

GTmetrix 86/100 3.4/4   

 

6.3.3. BCW functions 

Data visualization 

BCW provides a variety of visualization functions for both vector and raster data, including 

mapping, plotting with several options of base maps (Table 6.8 and Figure 6.4).  

Table 6.8. BCW visualization functions 

Functions Explanation 

Mapping 

 

Present the maps of seagrass distribution, 

biomass and total carbon 

Zoom in/ out 

Pan map 

Overview map 

Distance and area measurement 

Different base maps (Google terrain, Google 

satellite, open street map) 

Layer management (show/hide, 

expand/collapse) 
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Functions Explanation 

Plotting Plot the quantitative data (biomass, total 

carbon) 

Histogram plot 

Box plot 

Scatter plot 

Download plot as image 

Zoom in/ out 

Auto scale 

 

Attribute table View, manage and download data table 

Show/hide list of tables 

Show/hide several tables in tab format 

Select/unselect rows 

Select number of entries to show 

Export and download table data 

 

Time series Present various maps in a time series 

Window pop-up Present pop-up windows to view all relevant 

information 

Figure 6.4. An overview of BCW web-GIS application 
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Using mapping, the user is able to view the distribution at various supported time points, the 

biomass and the total soil carbon of seagrass meadows in the year 2020. The layer control panel 

supports a convenience view to show or hide any layers that provides an overview of seagrass 

distribution, change detection, and the spatial variation of biomass and total soil carbon in the 

harbor. The measurement toolset provides the means to measure length, area, and angle of spatial 

objects. In addition, BCW supports three basic plots for data visualization, involving histogram, 

box and scatter plots (Figure 6.5). Plotting with parameters defined by the user will be supported 

in the future.  

 

(a) 
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(b) 

 

(c) 

Figure 6.5. Plotting functions (a) histogram, (b) box, (c) scatter plots in the BCW 
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Another useful function is to view, manage and export tables from vector data. The data table is 

accessible through the table manager to show or hide any tables, select the desired rows or export 

all the tables to the formats of GML and GeoJSON (Figure 6.6).  

 

Figure 6.6. Table management and GeoJSON/GML export 

Moreover, the user can open a pop-up window to view the detail information at any data point 

(sampling plot). This function is very helpful to check all relevant information regarding the 

sampling plots with an attached photograph of seagrass meadows at the time of sampling (Figure 

6.7).  
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Figure 6.7. Pop-up window for data point in BCW 

Finally, a time series animation is another function, which supports a continuous and attractive 

presentation of the maps at various time points.  

Data query and filtering 

Data query  

Recently, BCW supports a query protocol using the search box in an attribute table (Figure 6.8). 

This search box enables the user to find the desired information in both format of text and 

number. 
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(a) 

 

(b) 

Figure 6.8. Attribute query using number and text in BCW using (a) number and (b) text query 
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For a large dataset table, this function is helpful to export a subset of required data instead of the 

entire dataset. The query is fast, however it only supports a single query without the usage of 

SQL syntax.  

Data filtering  

BCW provides a filter for various data fields for imported vector data. It is easy to define a range 

of different parameters (data fields) in the data table to subset the sampling points from the 

mapping window (Figure 6.9).  

 

Figure 6.9. Data filter using the filter tool in BCW 

All the vector files containing data tables are accessible from a drop list. In addition, BCW 

provides an export function to open document spreadsheet (ODS) format, which enable the 

export of the entire data table. This function is effective when the user would like to filter the 

sampling points for a specific ranges of sampling plots, total soil carbon, aboveground, and 

belowground biomass.  
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Data printing 

BCW provides a simple solution to print out the desired maps (Table 6.9). The user is able to 

change the title of the map, set the desired scale, image format and image resolution. The 

printing function is friendly, supporting a wide range of map scale from the entire region (scale 

1: 500,000) to the smallest area (scale 1: 2,000) containing one or two sampling plots. For an 

easier measurement to work with data on the map, the coordinate reference system (CRS) was 

set to the world geodetic system (WGS) 84 universal transverse mercator (UTM) 60S (Figure 

6.10).  

Table 6.9. Printing functions in BCW 

Function Explanation 

Scale printing 

1:2,000 - 1:500,000 

Print the maps at selected scales 

Dot per inch (DPI) resolution 

100 - 300 

The image resolution 

Title Change the title 

Format export 

PDF, JPG, SVG, PNG 

The image format to export 

Base map 

Open street map 

Print the map with a base map for better 

visualization 
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Figure 6.10. An exported map using the printing function in BCW 

6.3.4. Geospatial data sharing and collaboration  

Collaboration is important and is facilitated by the data being updated and shared very quickly 

via social networks. When accessing the BCW application, the user is able to download and 

export the original data table and thematic maps from our repository (Table 6.10).  
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Table 6.10. Downloadable and exportable format from BCW 

Format  

ODS Export and download 

GeoJSON Export and download 

GML 2 and GML3 Export and download 

Image (PNG/JPG/SVG) Download 

PDF Download 

 

On the other hand, where the user wishes to submit a new dataset or support any update to 

existing tables in the geospatial database of BCW, this is also facilitated. An automatic upload 

and management of external data is not currently available. However, it is possible for external 

users, who have been granted appropriate privileges, to add new data to a specific data table. 

Data exchange via the administrator’s email in the format of shapefile and GeoTIFF for the 

vector and raster files is also possible, and the administrator can integrate the new data in the 

existed geospatial database and publish to the BCW.  

BCW provides the option of creation of permanent links using a sharable link or a HTML code 

to various web platforms (Figure 6.11). This function allows the user to instantly share the 

desired content to other partners or embed into different social platforms to improve social 

interaction and facilitate information updates.  
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(a) 

 

(b) 

Figure 6.11. Web link sharing (a) and HTML code (b) embedding in BCW 
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6.4. Discussion  

This study describes an integrated and simple approach to stimulate data sharing and 

collaboration and present scientific data to a broader community in a readily assimilable format. 

The study aims to improve the awareness of the importance of seagrass conversation for not only 

in Tauranga Harbor, New Zealand but is applicable across various regions in the world. Several 

web-GIS applications have been developed for various types of data ranging from soil 

(https://powellcenter-soilcarbon.github.io/soilcarbon/), marine resources 

(http://maps.oceanwealth.org/#) to forest conversation 

(http://carbonstock.cifor.org/user/HomeMap), however only a few existing applications include 

seagrass data or have been designed entirely for blue carbon ecosystems.  

Comparing to other web-GIS application, the BCW has the advantage of being based on open 

source software, is lightweight, easy to install and configure, and can adapt to various levels of 

data, from a few megabytes of vector and raster files to gigabytes of complex data structure with 

hundreds of data files (for example: hierarchical data format (HDF), network common data form 

(NetCDF)). Our open geodatabase provides a platform for continuous and long-term assessment 

of seagrass changes in the harbor, seagrass aboveground and belowground biomass, and seagrass 

total soil carbon which can be scaled up to the entire country, motivating community-based 

interactions with data. Given the variety of designed functions, the BCW is unique for the 

seagrass ecosystem with an opening geodatabase and open source installed applications, is a 

well-designed interface and is good in data quality with additional data of seagrass dynamics and 

blue carbon ((Ha et al., 2020), Ha et al., in revision (Chapter 4)). Importantly, the website has a 

friendly interface, simple sharing and printing functions which optimize the user’s experiment 

and assist the spreading of information within the community. All the maps are accessible via 

https://powellcenter-soilcarbon.github.io/soilcarbon/
http://maps.oceanwealth.org/
http://carbonstock.cifor.org/user/HomeMap
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direct layer management which enables show/hide for a specific layer, the essential buttons for 

map viewing are located on the right side of the window and leave the center part for the map to 

maximize the viewing screen. The simple but full features BCW interface brings a feeling of a 

GIS desktop software to the end user. Moreover, the printing and embedding options provide an 

efficient way to share beautiful maps or selected data to other users, stimulating interest in 

seagrass protection as well as raising awareness of seagrass conversation in the wider 

community.  

Since our BCW application used the state-of-the-art open source GIS (QGIS, QGIS server) and 

database manager (PostgreSQL, PostGIS) together with a compelling emerging web client 

(Lizmap), the cost is only for maintaining the world wide web (WWW) server and collecting 

more field data in the future. In addition, this web-GIS system is capable of scaling up to any 

desired management levels, from a small local area to large-scale regions in New Zealand. 

Importantly, our web-GIS system is easily integrated to various open source web-GIS projects in 

the world using the QGIS application for mapping/ map server and PostgreSQL/PostGIS for 

database management/ connection that would strengthen a joint collaboration on blue carbon 

ecosystems mapping, investigation, and data sharing globally.  

Despite of a successful performance of BCW, the application may come with some unavoidable 

limitations. First, the BCW is running at a localhost level and is not entirely published through 

the WWW network due to the renting fee constrain of the web-GIS server. This drawback might 

be solved with a donation from the community to maintain an annually renewable web-GIS 

server. Second, despite well designed functions and web interface, Lizmap web client still lacks 

the capacity to handle advance data queries using the SQL syntax, and instant connection to 

various social networks. However, Lizmap web client is a community driven project and similar 
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to PostgreSQL, QGIS, thus progress is controlled and development is secured. For this reason, it 

is expected that more functions will be included and will make the web-GIS application better at 

handling real time and complex data.  

6.5. Conclusion  

Collection of data on seagrass ecosystem services and the impact of loss of this habitat is 

important and necessary to improve our understanding of the resources’ contribution to the 

strategy of climate change mitigation. However, the need to share these data with non-scientists 

is becoming more urgent as it is necessary to improve popular awareness of protection and 

conservation of extant seagrass meadows in the world. In the era of social networks, web-GIS is 

emerging as an effective toolset for geospatial data visualization, query, instant sharing, and 

strong collaboration in the community.  

In this study, we have proposed an integrated solution for publishing geospatial data via a 

protocol of web-GIS. The open source applications, which are used PostgreSQL, QGIS, QGIS 

server, PostGIS, and Lizmap web client are integrated in the Linux environment to create a 

localhost web-GIS application, BCW (Blue Carbon Web), which aims at publishing all seagrass 

data in Tauranga Harbor, New Zealand. Using PostgreSQL as the database manager, we have 

created the seagrass geospatial database with the data of seagrass historic distribution, sampling 

plots, dry aboveground and belowground biomass, and total carbon acquired during field work in 

the austral winter 2019 and summer 2020. The external extension PostGIS was used to connect 

the database to the mapping application QGIS and then published all formatted data to the web 

via Lizmap web client.  

The localhost BCW provides diverse functions, ranging from thematic map visualization, data 

query and filtering, data sharing and collaboration, to the quick printing of various GeoTIFF 
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images. BCW is simple and elegant in the web interface, function richness, lightweight, yet still 

secured for long-term development. Currently, BCW is sufficient as the web-GIS to visualize 

geospatial data, and permit instant sharing of the recent conditions of extant seagrass in Tauranga 

Habour. The beautiful maps and simple interaction will support a fast and reliable platform to 

spread the data to various partners, improving popular awareness and make the conservation of 

this resource more efficient in the future.  
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6.6. Chapter supplemental material 

Installation instructions for the application of QGIS server, Lizmap plugin for QGIS, Lizmap 

web client, PostgreSQL, and QGIS. The codes and installation are implemented in the Linux 

environment (Lubuntu 20.04 distribution). 

QGIS server  

Instructions to install and configure the QGIS server:  

# Step 1: Install Apache2 

sudo apt install apache2 

sudo /etc/init.d/apache2 restart 

# or use this line if the line above not work 

sudo service apache2 restart 

# Step 2: Install QGIS server 

sudo apt install qgis-server libapache2-mod-fcgid 

# Step 3: Activate the server services 

sudo a2enmod fcgid 

sudo a2enconf serve-cgi-bin 

# Step 4: Restart apache2 service 

sudo service apache2 restart 

# Step 5: Add the following code  

ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ 

<Directory "/usr/lib/cgi-bin/"> 

Options ExecCGI FollowSymLinks 

Require all granted 

AddHandler fcgid-script .fcgi 

</Directory> 

# into /etc/apache2/sites-available/000-default.conf and save the changes. 

# Replace gedit with any text editor:  

sudo gedit /etc/apache2/sites-available/000-default.conf 

After adding the lines, the configuration file will be like this:  
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<VirtualHost *:80> 

    # The ServerName directive sets the request scheme, hostname and port that 

    # the server uses to identify itself. This is used when creating 

    # redirection URLs. In the context of virtual hosts, the ServerName 

    # specifies what hostname must appear in the request's Host: header to 

    # match this virtual host. For the default virtual host (this file) this 

    # value is not decisive as it is used as a last resort host regardless. 

    # However, you must set it for any further virtual host explicitly. 

    #ServerName www.example.com 

    ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ 

    <Directory "/usr/lib/cgi-bin/"> 

    Options ExecCGI FollowSymLinks 

    Require all granted 

    AddHandler fcgid-script .fcgi 

    </Directory> 

  

    ServerAdmin webmaster@localhost 

    DocumentRoot /var/www/html 

  

    # Available loglevels: trace8, ..., trace1, debug, info, notice, warn, 

    # error, crit, alert, emerg. 

    # It is also possible to configure the loglevel for particular 

    # modules, e.g. 

    #LogLevel info ssl:warn 

  

    ErrorLog ${APACHE_LOG_DIR}/error.log 

    CustomLog ${APACHE_LOG_DIR}/access.log combined 

  

    # For most configuration files from conf-available/, which are 

    # enabled or disabled at a global level, it is possible to 

    # include a line for only one particular virtual host. For example the 

    # following line enables the CGI configuration for this host only 

    # after it has been globally disabled with "a2disconf". 
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    #Include conf-available/serve-cgi-bin.conf 

</VirtualHost> 

Then, we restart and test the server to ensure the server working.  

# Step 6: Restart the server 

sudo service apache2 restart 

# Step 7: Test the 'GetCapabilities' of the web server by run this line in the web browser: 

http://localhost/cgi-bin/qgis_mapserv.fcgi?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities 

The following figure (Figure 6.S1) indicated that the QGIS server was successfully installed and 

configured.  

 

Figure 6.S1. Test the installation and configuration of QGIS server  

Add the ”project” folder in ”/usr/lib/cgi-bin/project” and create the symlinks of the ’wms-

metadata.xml’ and the ’qgis-mapserv.fcgi’ as well as link the ’projectname.qgs’ file (the QGS 

file created by QGIS and saved in “/home/user/qgis/project”) to the “/usr/lib/cgi-bin/project” 

folder. The following lines will do the tasks.  

  

http://localhost/cgi-bin/qgis_mapserv.fcgi?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities
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# Step 8:  

cd /usr/lib/cgi-bin/project 

sudo ln -s ../qgis_mapserv.fcgi . 

sudo ln -s ../wms_metadata.xml . 

# The letters after “sudo” are considered as one (1) line: 

# Step 9: 

sudo ln -s /home/user/project/projectname.qgs /usr/lib/cgi-bin/project/projectname.qgs 

sudo ln -s /home/paul/project/projecname.qgs.cfg /usr/lib/cgi-bin/project/projectname.qgs.cfg 

# Step 10: Restart Apache2 server  

sudo service apache2 restart 
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Lizmap QGIS plugin and Lizmap web client 

Lizmap QGIS plugin 

In QGIS, Lizmap is designed as a plugin, which aims to connect the data in QGIS to the QGIS 

server and display in the web browser. The Lizmap plugin is installed using the plugin manager 

in QGIS. Figure 6.S2 indicates a successful installation of the plugin.  

 

Figure 6.S2. Lizmap plugin installation in QGIS plugin manager 
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Lizmap web client   

The following codes will download and run the installation of Lizmap web client.  

# Step 1: Go to a specific folder. The downloaded files will stay in this folder: 

cd /home/user/.../folder 

# Step 2: Download the source code of Lizmap web client from master branch:  

git clone https://github.com/3liz/lizmap-web-client 

# Step 3: Copy the downloaded client into '/var/www': 

sudo cp lizmap-web-client /var/www 

# Step 4: Link the lizmap client into the apache2 server 'html' directory to make the service is available for web 

browser:  

sudo ln -s /var/www/lizmap-web-client/lizmap/www/ /var/www/html/lm 

cd /var/www/lizmap-web-client 

sudo lizmap/install/set_rights.sh www-data www-data 

cd /var/www/lizmap-web-client/lizmap/var/config 

sudo cp lizmapConfig.ini.php.dist lizmapConfig.ini.php 

sudo cp localconfig.ini.php.dist localconfig.ini.php 

sudo cp profiles.ini.php.dist profiles.ini.php 

cd ../../.. 

# Step 5: Install required python php packages (the command after “sudo” is understood as one (1) line): 

sudo apt install xauth htop curl libapache2-mod-php7.4 php7.4-cgi php7.4-gd php7.4-sqlite3 php7.4-xml php7.4-curl 

php7.4-xmlrpc php7.4-pgsql python-simplejson python-software-properties 

# Step 6: Install the lizmap web client  

sudo php lizmap/install/installer.php 

# The output should be like this: 

sudo php lizmap/install/installer.php 

Installation start.. 

[notice] Installation starts for the entry point index 

All modules dependencies are ok 

Module jelix installed 

Module jauthdb_admin installed 

Module master_admin installed 

Module jacl2 installed 

https://github.com/3liz/lizmap-web-client
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Module jacl2db installed 

Module jacl2db_admin installed 

Module jauth installed 

Module jauthdb installed 

Module admin installed 

Module lizmap installed 

Module view installed 

Module proj4php installed 

All modules are installed or upgraded for the entry point index 

[notice] Installation starts for the entry point admin 

All modules dependencies are ok 

Module jelix installed 

Module jauthdb_admin installed 

Module master_admin installed 

Module jacl2 installed 

Module jacl2db installed 

Module jacl2db_admin installed 

Module jauth installed 

Module jauthdb installed 

Module admin installed 

Module lizmap installed 

Module view installed 

Module proj4php installed 

All modules are installed or upgraded for the entry point admin 

[notice] Installation starts for the entry point script 

All modules dependencies are ok 

Module jelix installed 

Module jauthdb_admin installed 

Module master_admin installed 

Module jacl2 installed 

Module jacl2db installed 

Module jacl2db_admin installed 

Module jauth installed 
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Module jauthdb installed 

Module admin installed 

Module lizmap installed 

Module view installed 

Module proj4php installed 

All modules are installed or upgraded for the entry point script 

Installation ended. 

# Step 7: Restart the server: 

sudo service apache2 restart 

# Step 8: Set the rights for user to the folder: 

cd /var/www/lizmap-web-client 

sudo chown :www-data temp/ lizmap/var/ lizmap/www  -R 

sudo chmod 775 temp/ lizmap/var/ lizmap/www -R 

# Step 9: Restart the server:  

sudo service apache2 restart 

# Step 10: Test the working of Lizmap web client by typing this line in a web browser: 

http://localhost/lm 

During the installation, an error regarding the vendor and autoload.php may appear. The solution 

is to install the package composer and then deploy this package into lizmap.  

# Step 1: Install composer: 

sudo apt install composer 

# Step 2: deploy composer into lizmap: 

cd /path_to_lizmap/lizmap-web-client-x.x/lizmap 

sudo composer install 

Configure lizmap web client 

The lizmap web client was configured in the administrator page (Table 6.S1) and QGIS plugin 

(Figure 6.S3).  

http://localhost/lm
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(a) 

 

(b) 

Figure 6.S3. Lizmap QGIS plugin configuration with options in Map (a) and Layers (b) 
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Table 6.S1. Configuration parameters in Lizmap administration page  

Parameters  

Interface Set as default 

Email Set as default 

Projects Leave as blank 

Cache Set as default 

QGIS server  

QGIS server version >= 3.0 

Other parameters Set as default 

System Set as default 

 

Finally, we create a new repository to store the QGIS project’s information. This can be done 

from the dashboard of the Lizmap administrator page inside the Maps Management option 

(Table 6.S2).  

Table 6.S2. Configuration parameters in Lizmap map management 

Data configuration Explanation 

Label Set a name 

Local folder path Path to QGIS project (.QGS format) 

Allow theme/javascript code for this repository Yes 

Rights and granted groups Set to the admins right 
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PostgreSQL 

Install PostgreSQL 

# Step 1: Import the GPG key using for PostgreSQL packages: 

sudo apt-get install wget ca-certificateswget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | 

sudo apt-key add - 

# Step 2: Add the repository to the system: 

sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt/ `lsb_release -cs`-pgdg main" >> 

/etc/apt/sources.list.d/pgdg.list' 

# Step 3: Install PostgreSQL: 

sudo apt-get update 

sudo apt-get install postgresql postgresql-contrib 

At this step, PostgreSQL is installed with a default user name and database as postgres and 

postgres. To manage the database, user privilege, and extension, the application PgAdmin4 is 

installed and used as the front-end manager.  

# Step 1: Install PgAdmin4: 

sudo apt-get install pgadmin4 pgadmin4-apache2 

# Step 2: Access PgAdmin4:  

http://localhost/pgadmin4 

In addition, the extensions postgis and postgis_raster are installed using PgAdmin4 to add the 

data in the format of Shapefile and raster into PostgreSQL database. In this study, we used both 

default user (postgres) and database (postgres) without a password attached. This setting aims to 

make the demonstration faster and ease to access from a level of local host for a demonstration 

purpose. 

Configure PostgreSQL 

We used PgAdmin4 to configure all required parameters (Table 6.S3) to active the database and 

connect to QGIS application.  

http://localhost/pgadmin4
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Table 6.S3. Parameters configuration in PgAdmin4  

Parameter  Explanation 

Server Tauranga The server to manage all user and database 

Database Postgres The database 

User Postgres The user to do all the tasks regarding management database 

Extension Plpgsql To manage basic task in PostgreSQL 

 Postgis To import and manage vector data 

 postgis_raster To import and manage raster data 

 

PostGIS  

Since we installed PostgreSQL version 12, the following code was used to install PostGIS:  

# Step 1: Install PostGIS: 

sudo apt install postgis postgresql-12-postgis-3 

Connect PostgreSQL database to QGIS 

To make the thematic maps in QGIS, vector and raster data are required to be imported from a 

PostgreSQL database. Technically, the connection is established using a PostgreSQL’s external 

extension, PostGIS. By connecting the PostgreSQL database to QGIS via PostGIS using 

parameters in Table 6.S4, we are able to import, export, and create thematic maps inside the 

QGIS application.  

The following codes are used to add the raster data to the geospatial database:  

# add raster data in PostgreSQL 

raster2pgsql -s 32760 /path/to/raster_data/raster.tif | psql postgres 

# where  

# postgres is the name of the geospatial database 

# -s 32760 is the coordinator reference system of the raster datase 
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Table 6.S4. PostGIS parameters connection to QGIS  

Parameter  Explanation 

Name Postgres The user is with full privilege of the database 

Host localhost The localhost 

Port 5432 Default port to access to the database 

Database Postgres The name of the database 

SSL mode Disable No SSL mode 

Authentication No authentication No user/password requirement 

 

QGIS 

There is no specific codes for QGIS installation. Instead, the user is encouraged to use the 

official guidance from the QGIS website for a Linux distribution 

(https://qgis.org/en/site/forusers/alldownloads.html#debian-ubuntu). 

 

 

  

https://qgis.org/en/site/forusers/alldownloads.html#debian-ubuntu
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Chapter 7 Synthesis and future research 

7.1. Seagrass dynamics and conservation from space – the state-of-the art challenges 

In the last decade, coastal zones significantly contribute to the development of coastal and ocean 

economies, with the intensification of agriculture, tourism, urbanization, and aquaculture (He et 

al., 2014; Wenhai et al., 2019). The development of economic activities has significantly 

benefited the community, however they have led to several unsolved challenges of water 

pollution, over population, aquatic resource depletion, and coastal habitat degradation (He et al., 

2014; de Alencar et al., 2020). In particular, many reports have provided evidence of seagrass 

degradation in terms of area and habitat quality (Waycott et al., 2009; de los Santos et al., 2019).  

This has in turn led to a significant reduction in ecosystem services of provision of breeding and 

nursery ground, coastal zone protection, and carbon sequestration (Marbà et al., 2015; Githaiga 

et al., 2019), and might result in an unsustainable social-economic impact in various regions of 

the world (Ferrol-Schulte et al., 2013; Cahaya, 2015). Several efforts to address this issue have 

been considered and are encapsulated in the initiative of Coastal Blue Carbon, which aims to 

protect, conserve, and move toward a sustainable maintenance of coastal ecosystem services 

(Hejnowicz et al., 2015). To do this, the strategy of monitoring, reporting, and verification 

(MRV) has been advocated (Herold & Skutsch, 2011) to allow updating of the most recent 

situation and to facilitate a fast and reliable response policy. The first part of this strategy, 

monitoring, includes mapping and assessment of ecosystem changes using space-born satellite 

images. This has been to some extent successful but has left unsolved challenges that require 

further studies, some of which are outlined below, and which form the motivation of this thesis. 

Mapping the spatial and temporal distribution of seagrass meadows using remotely sensed 

imagery differs from mapping of terrestrial ecosystems. This is due to the differences between 
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the optical properties of the aquatic and terrestrial environments, the phenology of the 

vegetation, and the anthropogenic stressors specific to aquatic systems, particularly fine sediment 

pollution, that impact the ability to observe underwater meadows. This leads to the need for 

additional steps in image processing for atmospheric and water column correction, and the use of 

advanced methods for image classification and retrieval models that are better suited to the more 

complex task of remote estimation of vegetation in an aquatic, often tidal, environment (Hossain 

et al., 2015; Dat Pham et al., 2019).  

The impact of the water column and the mixed substrate usually result in misclassification and 

low confidence in seagrass mapping when using traditional methods. Several attempts to 

enhance accuracy using very high resolution (VHR) image (Poursanidis et al., 2018), increasing 

ground truth points for parametric classification methods (Koedsin et al., 2016) or application of 

a narrow range of machine learning (ML) models have been made (Bonin-Font et al., 2016; 

Mohamed et al., 2018; Poursanidis et al., 2019), however the accuracy thus obtained varies 

significantly varied depending on the water depth and the cover of seagrass meadow. In addition, 

spaceborn VHR images only cover a small area at very high cost, leading to a limited number of 

VHR based mapping applications worldwide (Dat Pham et al., 2019).  

Broad-scale seagrass change assessment, on the other hand, requires a long-term operated 

satellite platform combined with an advanced classification technique to deal with the variation 

in environment conditions at various historical scales. It is still not an easy task, and the current 

research literature contains only a modest number of studies dedicated to long-term change 

detection (30 - 40 years) (Dat Pham et al., 2019). Attempts at temporal mapping of seagrass 

meadows also reveals a fundamental drawback of multi-spectral imagery, its requirement of 

cloud free acquisition, which significantly reduces the number of available satellite images 
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(Chapter 4). Moreover, the use of classical learning models (e.g parametric model maximum 

likelihood classifier (MLC)) during the classification process has not delivered high accuracy 

and low uncertainty in the change evaluation (Chapter 3). MLC performs well when working 

with healthy seagrass meadows in stable water environments, however, underperforms in 

classification accuracy when dealing with degraded (scattered and low coverage) meadows (Ha 

et al., 2020). 

When estimating aboveground biomass (AGB), traditional linear models result in a very wide 

variation of R2 values (0.26 - 0.99) for seagrass AGB estimation (Roelfsema et al., 2014; 

Koedsin et al., 2016), depending on the seagrass species and the coverage. VHR imagery was 

successfully applied for AGB retrieval with large size seagrass species (e.g. Enhalus acoroides) 

(Koedsin et al., 2016), however only achived a very low accuracy (R2 0.26) when dealing with 

the smaller species (e.g. Zostera muelleri) (Roelfsema et al., 2014). Improving seagrass AGB 

estimation accuracy is very necessary since the AGB data contributes to the precise evaluation of 

seagrass blue carbon globally (Howard et al., 2014; Susi et al., 2019) and might lead to 

significant changes in conservation policy (Chapter 5). 

In recent years, web based social media that allowed widespread access to current research 

information was recognized as an effective toolset to fill the gap of social interaction in 

conservation science (Toivonen et al., 2019) and seagrass conservation in particular. Several 

attempts have been made to bring scientific data to a wider spectrum of audiences via various 

social platforms (Di Minin et al., 2015; Wu et al., 2018). Nonetheless, this movement is 

spreading only slowly, in comparison with the rapid change of many seagrass ecosystems at the 

moment (Orth et al., 2006; Unsworth & Coles, 2014; Unsworth et al., 2018). Developing a low 

cost, effective social web based application, would greatly conservation awareness and support a 
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community based management of seagrass resource in the future (Toivonen et al., 2019) 

(Chapter 6).  

7.2. Novel approaches for accurate mapping of seagrass dynamics and seagrass 

conservation 

This thesis describes the development of novel methods to solve the problems of accurate 

mapping of seagrass dynamics and proposes a social web-based approach to foster community-

based conservation of seagrass ecosystems.  

In Chapter 3, the performance of a range of ML models was assessed to provide a preferred 

solution for the mapping of dense (> 80% cover) and sparse (< 80% cover) seagrass meadows 

from S-2 imagery. A wide range of decision tree based ML models (i.e Random Forest (RF), 

Rotation Forest (RoF), and Canonical Correlation Forest (CCF)) were tested in comparison to the 

traditional approach (MLC), resulted in a high precision mapping (F1 0.91 for dense and F1 0.75 

for sparse meadows, respectively) using the non-parametric RoF model, and much improved to 

the parametric MLC (F1 0.75 for dense and F1 0.50 for sparse meadows).  

The successful implementation of the open source ML models for seagrass mapping significantly 

benefits the research community. Firstly, the rapidly increasing number of ML models available 

helps to diversify the model selection, and gives better fitting with the mapping of seagrass 

meadows in degraded condition. Secondly, ML models can be effectively trained/undergo self-

learning using various spatial and temporal datasets and potentially resulting in higher accuracy 

of the classification/ regression (Ha et al., 2020; Pham, Le et al., 2020; Pham, Yokoya et al., 

2020). In addition, the open source license of ML algorithms supports the opportunities for 

developers to integrate the algorithms into different programming languages (e.g Python 

programming language), to build simple but effective toolsets for non-programming researchers. 
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The integration with free-of-charge medium resolution satellite images (e.g the multi-spectral 

Sentinel-2 (S-2) imagery) will improve the spatial resolution of mapped seagrass and diversify 

the options in seagrass mapping.  

It is, however, noted here that this approach is challenged by the presence of mixed pixels due to 

conflicts between image pixel size (10 m for S-2) and meadow patch size (1 - 50 m), such that 

seagrass and sand were mixed in many image pixels (i.e sub-pixel mixture). Because of this 

issue, we have to accept a lower threshold of mapping accuracy (up to 91% of F1 score using 

RoF model in this study) using S-2 imagery.  On the other hand, greater accuracy could be 

expected through application of commercial VHR images for the mapping using the most recent 

generations of Quickbird, Ikonos, or Worldview, highlighting potential considerations of 

conflicts between spatial coverage, mapping details, mapping accuracy, and available budgets.  

The ML, tree based models were useful in high precision mapping of seagrass meadows at 

different coverages. To extend the application of ML models for seagrass change assessment, 

two novel models, Extreme Gradient Boost (XGB) and CatBoost (CB), were compared to the 

more traditional RF and Support Vector Machine (SVM) models to map the temporal changes 

(29 years) of seagrass meadows from the long-life operated Landsat imagery (Chapter 4). The 

CB model outperformed other models, and delivered high and consistent scores of F1 (0.96 - 

0.98) during the historical mapping. Here, the results contribute a solid mapping framework for 

the task of long-term change assessment using the free-of-charge Landsat image which has been 

secured in operation since 1972 (Roy et al., 2014) and advanced ML models which potentially 

improve the mapping accuracy and certainty in seagrass change evaluation.  

The practical implementation of multi-temporal mapping illustrates the usefulness of the multi-

spectral satellite sensors in assisting long-term change assessment. However, the requirement of 
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cloud free acquisition emerged as a vital drawback and significantly constrained the number of 

images for various study sites. To overcome this challenge and for the first time, the Sentinel-1 

(S-1) synthetic aperture radar (SAR) imagery was tested for spatial mapping of seagrass meadow 

in the intertidal zone of the harbor. In addition, the S-1 image was combined with S-2 to validate 

the hypothesis of improving accuracy of seagrass AGB estimation. With the support of ML XGB 

model, seagrass distribution was successfully mapped using only S-1 image with a surprisingly 

high level of confidence (F1 0.92). The implication here is that change detection can be 

supported by combining use of S-1 data to fill gaps in the records of optical sensors due to cloud 

cover. In addition, this thesis shows that S-1 has potential for enhancing seagrass AGB retrieval 

when combined with optical (S-2) imagery. Despite the small size of the local seagrass species 

(Z. muelleri), the integration of S-1, S-2 images together with the ML model and metaheuristic 

optimization provided a high accuracy of AGB retrieval (R2 0.75), which was higher than that 

achieved using a linear parametric model with VHR imagery (R2 0.26) (Roelfsema et al., 2014). 

The proposed methods for seagrass mapping from S-1 and seagrass AGB retrieval using the 

fusion of both S-1 and S-2 images are reliable and applicable, therefore will diversify the 

mapping strategy for not only seagrass, but for the blue carbon ecosystems worldwide. It will 

however be necessary to validate the performance of S-1 imagery for AGB estimation of large 

size and high biomass seagrass species.  

In Chapter 6, the thesis developed an open source, low cost web-GIS application (i.e the Blue 

Carbon Web or BCW) as the social bridge between the scientist and the community and foster a 

community-based conservation effort for the seagrass ecosystem. The BCW is a lightweight, 

open hub where people are able to view the spatial data of seagrass dynamics, extract high 

dimensional information, produce elegant thematic maps for further usage, and easily share 
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seagrass data via social media. The BCW avoids commercial GIS platforms, thus freeing funds 

for data collection for ongoing ground-truth validation and laboratory analysis. The only cost 

attached to the BCW application is the renting fee for a web GIS hosting.  

7.3. Future research  

The successful implementation of the proposed methods helped to overcome some of the current 

challenges in accurate mapping of seagrass dynamics and the need to awake community 

awareness of seagrass conservation. However, a variety of research topics should be considered 

in the future to further progress these issues in order to better deal with rapid change in the blue 

carbon ecosystem.  In general, the challenges continue to lie in the areas of enhancing precision 

and accuracy across species and density.  This involves both enhanced processing of imagery, 

but also better ways to develop training and validation datasets for supervised classification 

systems, including for historic images.  Specific issues for future research include:  

− Improve the classification accuracy for sparse – very sparse meadows using multi-spectral 

S-1/S-2 data (10 m in spatial resolution) in integration with the state-of-the-art algorithms for 

atmospheric correction, water column correction, and classification.  

− Validate the ML model performance for various seagrass species and regions to attain the 

best fitting models.  

− Develop the novel accuracy assessment in change detection without using historical 

validation data.   

− Verify the proposed mapping methods and retrieval models for various seagrass species in 

different estuary/lagoon conditions, using S-1, S-2, and Landsat images.  

− Verify the application of state-of-the-art meta-heuristic optimization algorithms (Harris 

Hawk Optimization, Sparrow Search Algorithm, Firefly Algorithm, Particle Swamp 
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Optimization, etc.) for feature selection assessment in the retrieval of seagrass biophysical 

parameters.  

− Develop the meta-heuristic optimization Python toolset as the independent library or 

wrapped component inside the scikit-learn library which would highly benefit the research 

community in the future.
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Appendix 6. Published paper in the International Journal of Remote Sensing 
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Appendix 7. Co-authorship form of research chapter 6  
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Appendix 8. The contribution of machine learning (ML) hyper-parameters to 

model performance 

 Shareable hyper-parameters 

among ML model 

Contribution to ML model performance 

 Depth (or max depth) Higher values might increase the 

complexity of the decision tree and result 

in overfitting during the prediction.  

 Learning rate Lower values result in longer training time. 

Decrease the learning rate in case of 

detected overfitting.  

 Number of trees The number of decision trees in the model. 

Higher number of trees might produce 

better accuracy prediction. 

 Boosting type Define the boosting strategy during the 

learning of the model. Selection of 

boosting methods might have different 

impact on the prediction accuracy and are 

user-dependent experience.  

ML model Unique hyper-parameters of ML 

model 

Contribution to ML model performance 

CatBoost L2 leaf regression Different values might have different 

impact on the performance of the cost 
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function in the model.  

Extreme 

Gradient Boost 

Gamma Define the conservative feature of the 

model. Value depends on the used loss 

function.  

 Min child weight Control the overfitting during the learning 

and prediction of ML model. Higher 

values improve the global learning (i.e the 

model does not learn only from specific 

observations), however too high values 

might lead to the underfitting.  

Random Forest 

& Rotation 

Forest 

Boostrap Define the sampling strategy during the 

training/ testing process. Should be set to 

“True” in the configuration of the model.  

 Max features Impact on the best splitting of nodes in a 

decision tree. High value might result in 

overfitting during the prediction. Max 

features should be the square root of 

available number of features in the dataset. 

 Min sample leaf Similar to “min sample split”, this 

hyperparameter control the growth of 

decision tree and should be tuned with 

specific input data. 
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 Min sample split Too low value might lead to an overgrowth 

of decision tree and overfitting in the 

prediction.  

 Number of subset Maximize the gained information through 

a Principle Component Analysis (PCA) 

from a given dataset. Higher value might 

lead to longer training time and overfitting. 

A 3-subset is recommended as the starting 

point to train the model. 

Light Gradient 

Boosting 

Machine 

Number of leaves Maximum number of leaves that weak 

learners have. Higher value might increase 

the training and prediction accuracy, 

however too high value might lead to the 

overfitting.  

Support Vector 

Machine 

Kernel Define the discrimination space in the 

classification. Radial Basis Function 

(RBF) is preferred to the linear and poly-

nominal kernels.  

 C Control the soft margin in the model. Low/ 

high value of C might lead to a decision 

boundary with different margins, and 

impact on the prediction accuracy.  
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 Epsilon Higher value of epsilon, lower number of 

support vectors is selected to construct the 

model performance. Lower value of 

epsilon is recommended in almost cases. 

 Gamma Control the impact distance on the training 

points. High to very high values might lead 

to overfitting in the prediction.   

 

 


