

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Graph Convolutional LSTM Model for

Traffic Delay Prediction with

Uncertainty

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Science (Research) in Statistics

at

The University of Waikato

by

Dale Townsend

2021

Abstract

Traffic flow in an urban environment exhibits a complex spatio-temporal in-

teraction. The propogation of traffic flow through a transportation network

depends on a number of factors, including the structure of the network and the

time of day. Current analysis of this data by road controlling authorities is of-

ten simplified and lacks a detailed understanding of how traffic moves through

the network. A deep learning model which models both the spatial and tempo-

ral interactions present in the data is able to capture complex patterns present

in the data and allows for a more detailed understanding of traffic flow. A GC-

LSTM model is explored for Hamilton City to predict traffic delay. It is found

to have improved prediction accuracy over a standard LSTM by incorporating

the spatial structure of the Hamilton road network. Additionally, Bayesian

layers are integrated into the model to obtain a probability distribution over

each prediction. By quantifying the uncertainty over each prediction, the de-

cision making process based on the analysis can be carried out with a higher

degree of confidence than a single point prediction from the model.

Acknowledgements

I would like to thank my supervisor Chaitanya Joshi for guidance in producing

this dissertation. His expertise and motivation was instrumental throughout

my research.

Thank you to staff in the City Transportation Unit at Hamilton City Council

for your knowledge and expertise. A particular thanks to John Kinghorn for

guidance in the uses cases of the model.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 4

1.3 Aims of this thesis . 9

1.4 Thesis Structure . 10

2 Deep Learning 11

2.1 Perceptron . 11

2.2 Multilayer Perceptron . 13

2.3 Hyperparameters . 14

2.4 Backpropagation . 19

2.5 Convolutional Neural Networks 25

2.5.1 CNN Layers . 25

2.5.2 CNN Case Study - Traffic Peak Classification 27

2.5.3 Hyperparameter Turning 28

2.6 Recurrent Neural Networks . 32

2.6.1 LSTM Cell . 33

2.6.2 GRU Cell . 34

2.6.3 Case Study - Prediction of Traffic Delay 35

2.7 Summary . 38

3 Spatio-Temporal Deep Learning for Transportation Networks 39

3.1 Transportation Data and Analysis 39

3.2 Deep Learning Models . 41

3.3 Traffic Graph . 45

3.4 Traffic Graph Convolution . 48

3.5 Traffic Graph Convolutional LSTM 49

3.6 Regularisation . 51

3.7 Summary . 52

4 Bayesian Inference on Deep Learning 53

4.1 Bayesian Inference . 53

v

4.2 Quantifying Uncertainty . 55

4.3 Bayes via Dropout . 56

4.4 Stochastic Gradient Descent 56

4.5 Bayes by Backprop . 57

4.5.1 KL Divergence . 57

4.5.2 Variational Inference 58

4.5.3 Reparameterisation . 59

4.5.4 Gaussian Variational Posterior 60

4.5.5 Prior Distribution . 60

4.5.6 Network Training . 61

4.5.7 Prediction Uncertainty 62

4.6 Bayesian Deep Learning in PyTorch 63

4.6.1 LSTM Model on Delay Data using Blitz 64

4.7 Summary . 66

5 Transportation Data 67

5.1 AddInsight Delay Data . 68

5.2 AddInsight Traffic Graph . 71

5.3 Northern Links Model . 72

6 Data & Measures 74

6.1 Delay Data . 74

6.2 Accuracy Measures . 76

7 Results 78

7.1 Prediction on Wairere Drive 83

7.2 Quantifying Uncertainty . 84

7.3 Northern Model . 85

7.4 Hyperparameters . 86

7.4.1 Summary . 89

8 Summary & Future Work 90

8.1 Summary . 90

8.2 Imputation of Traffic Volume Data 91

8.3 Prediction of the effect of road closures 93

8.4 Mode Share Quantification . 95

List of Figures

1.1 Traffic delay in central Hamilton from 7am to 9am 3

2.1 The structure of a simple perceptron [1] 12

2.2 The decision boundary between height and weight data points [2] 12

2.3 Curve fitting as the number of epochs decreases [3] 16

2.4 Traversal of a parameter landscape with different choices of

batch size [4] . 18

2.5 Traversal of a parameter landscape with different choices of

learning rate [5] . 19

2.6 A representation of the gradient descent function [6] 21

2.7 Sigmoid Activation Function 23

2.8 ReLU Activation Function . 24

2.9 Structure of the fully connected layers, showing neuron weights

used in determining the output class [7] 26

2.10 Delay heatmaps of the AM Peak (left) and PM peak (right) in

Hamilton . 28

2.11 Batch Size vs Epochs . 29

2.12 Batch Size vs Learning Rate 30

2.13 Hidden Layers vs Learning Rate 31

2.14 Hidden Layers vs Neurons . 32

2.15 LSTM Architecture [8] . 33

2.16 An LSTM Cell [8] . 34

2.17 A GRU Cell [8] . 34

vii

2.18 BTT computational graph, showing dependencies between model

variables and parameters during computation [9]. 35

2.19 Delay on Wairere Drive on September 2, 2019 36

2.20 Predicted vs Actual Delay for a section of Wairere Drive, using

an LSTM model . 37

3.1 Spectral Graph Convolution [10] 44

3.2 A simplified graph, showing nodes as blue circles and edges as

lines. The numbers adjacent to lines represent a known charac-

teristic of the network, such as distance or time [11]. 45

3.3 The number of hops from each node (road segment) to the link

in black . 46

3.4 Adjacency matrix for the Hamilton traffic network at K = 1 . 47

3.5 Architecture of the GC-LSTM model [12] 50

4.1 Weight One . 62

4.2 Weight Two . 62

4.3 The variation in prediction uncertainty across regions of a dataset 63

4.4 The predicted vs actual stock price for IBM across 750 days,

and the 90% credible interval shown in green 64

4.5 Predicted vs actual delay for Wairere Drive, with predicted de-

lay shown in red . 65

5.1 The capture rate of two links on Tristram St in the Hamilton

CBD . 70

5.2 AddInsight Network, showing links (blue lines) and sensors (or-

ange dots) . 71

5.3 A graph of nodes and edges, with an attribute attached to each

edge. 72

5.4 The green links are the spatial extent of the northern model,

while links in white are excluded 73

5.5 Links with missing data at k = 2 hops 73

viii

6.1 Observed delay on Wairere Drive, showing a large morning peak 75

7.1 Predicted vs actual values for the GC-LSTM 80

7.2 Predicted vs actual values for the LSTM 80

7.3 Distribution of the MPE across all links 81

7.4 Observed proportional delay vs MPE 82

7.5 Predicted vs actual delay on Wairere Drive, between Resolution

Drive and River Rd, on 27/09/2019 83

7.6 Predicted delay with 90% credible intervals shaded in grey . . 84

7.7 Model accuracy by levels of the K receptive field parameter.

K = 0 is a standard LSTM. 86

7.8 The MPE distribution by levels of the K parameter 86

7.9 P viewed against k-connectivity and peak periods 87

7.10 Validation loss against three batch sizes of 48, 64 and 96 . . . 88

7.11 Training loss over 100 epochs 89

7.12 Validation loss over 100 epochs 89

8.1 Periods of missing counts at an intersection in Hamilton, in five

minute intervals . 92

8.2 Mode share of active modes on Rostrevor St, during its closure

in May and June . 97

8.3 Complete map of the AddInsight Network within the Hamilton

City boundary. Links are in dark blue, sites are in orange. . . 104

List of Tables

5.1 An example of travel time and delay data recorded by AddInsight 70

6.1 An example of recorded data from the AddInsight system used

in the GC-LSTM model . 75

6.2 Adjusted delay (proportional delay) for Link 371 76

7.1 Results for the full GC-LSTM model 79

7.2 The P measure for the northern model and the full model, across

periods of the day. 85

Chapter 1

Introduction

1.1 Motivation

Hamilton City Council (HCC) has placed growing importance in the use of

data in its Infrastructure Operations strategy - ‘Data is turned into visible

information that is openly available to our community to unlock opportunities

for fast growth, efficiency and optimisation’ (Hamilton City Council, internal

document). As a result, there has been a significant increase in the collec-

tion of transportation data and consequently a need for efficient and accurate

analysis of the data. The HCC data warehouse will continue to grow over

the next year with the addition of datasets from the CCTV camera network,

micro-mobility and pedestrian monitoring, and cellular data. With the analy-

sis of this data comes the need to quantify uncertainty in the resulting models.

The results of data analysis in local government have a significant influence on

investment in infrastructure. The ability to understand models from a proba-

bilistic perspective is valuable in both justifying the spend and better targeting

that infrastructure to give a better outcome to the community. Bayesian deep

learning models have the ability to provide this for transportation data analysis

through the construction of credibility intervals over model parameters. The

deep learning framework allows for large datasets with thousands of param-

eters, and Bayesian layers in the network construct probability distributions

2

over each output to quantify the prediction uncertainty. In the event of predic-

tions with wide credible intervals, less weighting can be given to the particular

prediction over those with a narrower interval.

Given the vast amount of transportation data collected by HCC, there is a

growing need to apply novel techniques for handling big data. Much of the

data is collected from thousands of sensors in the transport network, often

recording data at small time intervals. It is often the case in these scenarios

that the data is not utilised to its full potential, which is realised through the

use of detailed analytics and machine learning models. Analysis of the city’s

traffic data shows that Hamilton is undergoing a change in travel patterns and

increasing congestion. Inter-peak traffic volumes, defined as the hours outside

of the morning and evening peaks, are increasing year on year and resulting

in higher delays in certain areas of the city [13]. As the population of the city

grows - 2.4% to 176,000 in 2020 [14] - traffic in the school peak continues to

worsen. The ability to understand the spatio-temporal interaction of traffic

will allow HCC to understand how people travel at different times of the day

and how traffic on a street impacts the traffic nearby. When planning changes

to infrastructure this information is vital for correct implementation. For

example, traffic signal optimisation is a complex process which involves a deep

understanding of where vehicles originated to use a certain road corridor, and

where they then depart to after using it. When optimising corridors with

multiple sets of signals, it is helpful to know the degree to which delay at one

set of signals affects the next downstream set, which then has a branching

effect to nearby sites and streets. This origin-destination (O-D) and travel

time data informs the timings of each approach to an intersection in order to

minimise the travel time on main routes.

In recent years, travel delay in Hamilton has increased across both peak and

off-peak times [15] Note: 2020/21 result is 49%, to be published later in the

3

year]. Intersection Level of Service, as defined by the HCM guidelines [16]

show that several intersections are operating at a poor level of service. Figure

1.1 (page 3) shows the average delay in seconds for streets in central Hamilton

during the morning peak. High levels of delay up to 120 seconds can be seen

on inbound links to the CBD, caused by an increase in traffic volume and

a high number of trips ending in the CBD. The reason for a poor level of

service at these intersections consists of several factors, which cannot be fully

understood from analysis of the data without a spatio-temporal context. By

viewing inbound links to an intersection and how delay propagates from their

upstream links, delay can be analysed spatially and the concentration of delay

across time in the peaks can be found.

Figure 1.1: Traffic delay in central Hamilton from 7am to 9am

A graph convolution LSTM model (GS-LSTM) is explored in this thesis to

model traffic delay data in a spatio-temporal manner. This model can be

generalised for a number of applications and current issues in transportation

analysis. One is in predicting delay on the transport network given historical

data and observed delay in the surrounding area. It is often the case that

4

unexpected delay on a given street will have a significant flow on effect to

nearby streets, as traffic is pushed onto parts of the network that operate on a

previously expected level of traffic. Small increases in volume on these areas of

the network can have significant effects on travel delay, which then propagates

downstream through the network. The ability to use spatial and temporal

information allows for detailed analysis of these effects when unusual delay

is encountered, and therefore a better understanding of how traffic flows in

a dense urban environment. A second application is in the analysis of road

closures and prediction of their effects. By analysing the change in traffic flows

in the immediate area of a closed road, transport planners are able to better

understand how a change in one part of the network affects nearby streets.

A GC-LSTM model may also model variances in mode usage across the net-

work, known as mode share. The temporal aspect of the model is able to

capture long term trends in the proportion of usage by each mode, while the

spatial component utilises the inherent graph structure of the transport net-

work to capture shifts in mode proportion between areas of the city. The ability

to calculate and understand mode shift is a key objective by HCC as defined

in the 2021-31 long-term plan (LTP) [17]. By capturing the correct data and

analysing it in a spatio-temporal manner, insights can be gathered to view

patterns and trends in mode share as they implement projects to encourage a

shift in mode usage towards bikes, walking, and public transport.

1.2 Background

Google Maps is a widely used tool by councils to analyse delay on the net-

work, provide alerts to high delay, and predict future delay on the network.

However, the alerts provided by Google Maps are only for high levels of delay,

not ’unusual’ delay. Another Intelligent Transport System (ITS) deployed in

Hamilton is AddInsight. AddInsight creates a profile of ’expected’ delay for

5

each road, given the observed historical data. This allows for alerts to unusual

delay to transport operators, where the traffic is not just high in the peak

periods but above what is expected in that period [18]. AddInsight can be

installed at a much smaller cost and adds several tools designed for analysing

the road network. One such tool is origin-destination analysis, which allows for

viewing the routes taken by vehicles and a deeper understanding of how people

choose to travel around the network. As a result, several city councils in New

Zealand have either deployed or are planning to deploy AddInsight over the

next year. This provides further benefits in seeing trips between these cities,

as well as trips within cities.

INLA (Integrated Nested Laplace Approximation) is a model for Bayesian in-

ference. It is an established alternative to methods such as Markov Chain

Monte Carlo (MCMC) due to its speed and ability to model a wide range of

complex problems [19]. It allows for an adjacency matrix to be defined to

account for the spatial interaction in the data. INLA has previously been used

for predicting traffic volume at signalised intersections in Hamilton City [20].

However, the ability for neural network models to learn is a valuable feature

which can be used to understand changes in traffic flow given the changes seen

in other parts of the city. While INLA was seen to accurately predict traffic

volume and make use of the spatial structure in the road network, it is more

difficult to generalise this to ’learn’ how changes in one part of the network

then influence the observed traffic flow in other areas. Another issue is in

modelling the graph structure of the traffic network in a directional manner.

While INLA allows for an adjacency matrix to be used in analysing spatial de-

pendence, this adjacency is bi-directional and therefore does not capture the

upstream and downstream nature of links in the traffic network, as well as the

variance in time dependency and the distance of the influencing link. Upstream

links have influence on their downstream links, but have very little effect on

its own upstream links. Approximate Bayesian Computation (ABC) has also

6

been used in Hamilton City to model pedestrian flows in the CBD. ABC is a

simulation based model which is able to bypass the likelihood function neces-

sary for Bayesian models such as MCMC [21]. When comparing observed data

with simulated data, a rejection algorithm is used with an appropriate distance

function to accept or reject parameter values to the posterior distribution. An

ABC model was used to predict pedestrian movements in the Hamilton CBD.

It was found to accurately predict posterior probabilities, although its simu-

lation based approach is computationally expensive for large datasets such as

travel time data and an extension to the entire Hamilton City network.

Neural networks are often used in transportation data analysis - object de-

tection in satellite imagery, classification of modes in camera feeds, and time

series prediction of traffic volumes. A system was recently deployed in Hamil-

ton to count forms of micro-mobility and pedestrians using an object detection

algorithm. The core of this model is a Convolutional Neural Network (CNN)

which was found to accurately classify four different forms of micro-mobility,

given a sufficient quantity of labelled training data. An issue with the output

of such models lies in the prediction uncertainty. Probabilities can be produced

for a given prediction, however beyond this there is no ability to understand

the parameters which contribute to this uncertainty or the probability distri-

bution. This is what Bayesian models provide - a probability distribution is

constructed over each parameter in the model. This allows for a greater under-

standing of the uncertainty in the model and construction of a credible interval

over each output. This is valuable in the decision making process where the

investment into infrastructure requires a certain degree of confidence in the

analysis. It also allows for models which will not output a prediction under

certain conditions [22].

This thesis looks at a Bayesian deep learning approach to modelling the spatio-

temporal interaction of traffic flows. Deep learning models are able to learn

7

complex non-linear features in a dataset by utilising multi-layered architec-

tures. Long-short term memory (LSTM) models in this field are capable of

learning long term dependencies in sequenced datasets such as time series.

However, predictions from LSTM’s do not take into account the spatial inter-

action between elements of a dataset. Convolutional Neural Networks (CNN’s)

are able to model such a spatial structure, and are commonly used in image

recognition where features of images can be identified and related to particular

categories. When analysing traffic flows there is a complex interaction present

between the sequence of time series observations on a particular street and

the observations on surrounding streets. This interaction also changes based

on the time of day, where traffic tends to travel towards key destinations in

the morning and away from those destinations in the evening. Therefore, to

obtain an accurate estimation of traffic flows on a given street, a model must

be able to model both the spatial and temporal patterns present in the data.

For a transport network the spatial structure is best defined by a graph model

(graph convolutional), in which directionality and connectivity can be defined.

This is a natural fit for a transport network, particularly to constrain observed

data to discrete edges and nodes on the network rather than over a continuous

field [23].

The use of both a graph convolutional model and an LSTM will enable traf-

fic flows to be modelled over defined intervals of space and time, and will

develop a greater understanding of how traffic behaves in Hamilton. A Graph-

Convolutional LSTM (GC-LSTM) model is used to predict the travel delay

on all links in the network, given the prior sequence on a given link and the

observed delay on a series of upstream links at n prior time steps, where n

is defined based on the link reachability within a given time interval t and a

parameter k to limit the receptive field. Bayesian layers are then integrated

into the model to quantify the uncertainty in both the weights (parameters) of

the model and the model output. This will allow for defining credible intervals

8

in which we can be confident of the prediction lying within a certain range

with x% probability.

A GC-LSTM model has an extensive number of uses for HCC. During the

model training process it constructs influence weights for each upstream link

leading to a given street. This allows for viewing the streets which most influ-

ence delay on their downstream links, and as a result a better understanding

of how traffic moves through the city at different times of the day. Another use

case is during events at venues such as FMG Stadium. During the matches

at FMG, several roads around the stadium are closed. This results in flow

changes in the CBD, which in turn has a flow on effect for traffic outside of

the CBD. Understanding these flows in more detail for major events will help

with traffic management, signal phasing, and planning of new infrastructure.

9

1.3 Aims of this thesis

This thesis aims to explore the use of a Bayesian deep learning model to

capture the spatial and temporal patterns present in traffic flow. Such a model

is applied in predicting the level of traffic delay across Hamilton City, with

uncertainty quantified by the addition of Bayesian layers. The three aims of

this thesis are as follows:

• Predict delay on collector and arterial roads in Hamilton city using a

spatio-temporal deep learning model

• Obtain probability distributions on delay predictions using Bayesian lay-

ers in the network

• Explore the prediction accuracy of a GC-LSTM model against an LSTM

model and varying levels of receptive fields

10

1.4 Thesis Structure

This thesis is structured as follows:

2. Deep Learning: An overview of deep learning is given, including hyper-

parameters, activation functions and types of models. Case studies are

given for CNN and RNN models on traffic delay analysis for Hamilton

City. An analysis of hyper-parameter choice is conducted along with

interactions between these parameters.

3. Spatio-Temporal Deep Learning for Transportation Networks: An overview

is given of spatio-temporal models, graph networks, and the GC-LSTM

model used for delay prediction in Hamilton City.

4. Bayesian Inference on Deep Learning: Methods are described for cap-

turing uncertainty in deep learning models. The Bayes by Backprop

algorithm is introduced for modelling uncertainty in deep learning mod-

els using variational inference.

5. Transportation Data: The structure of a traffic network is described,

along with methods for transportation data collection, and an overview

of the AddInsight system used to record traffic delay in Hamilton City.

6. Data & Measures: The traffic delay data as input to the model, and

measures used to evaluate the model accuracy.

7. Model Data & Results: Model results are given for the GC-LSTM applied

to the prediction of delay in Hamilton City, and a comparison is shown to

an LSTM model to highlight the improvement in accuracy when spatial

dependencies are considered.

8. Summary and Future Work: A summary is given for the GC-LSTM

model to predict traffic delay in Hamilton City. Future applications of the

model are given with context of current problems facing transportation

in Hamilton City.

Chapter 2

Deep Learning

Deep Learning is a subset of machine learning which encompasses neural net-

work models ’learning’ from large amounts of data [24]. Multiple layers are

often used in these models to account for non-linearity in the data. They are

able to process a wide variety of data, such as unstructured text and images. In

contrast, many machine learning algorithms leverage labelled and structured

data in a tabular form. Deep learning models utilise an algorithm known as

back-propagation and gradient descent to learn parameters in the model and

optimise prediction accuracy on a validation dataset. Below is an overview of

deep learning and the hyper-parameters used to train such a model.

2.1 Perceptron

The simple perceptron is a general computational model inspired by biological

neurons in the human brain. It consists of one or more inputs, a single layer

to aggregate the inputs, and a single input. It is the simplest form of a neural

network. Figure 2.1 shows the structure of a simple perceptron.

12

Figure 2.1: The structure of a simple perceptron [1]

A perceptron first multiplies its inputs by a vector of weights, which are then

added together to produce a weighted sum. This sum is then passed through a

chosen activation function to map the output to a desired range (such as [-1,1]

or [0,1]) [2]. An example of this is classifying the gender of a set of people

given their weight and height. Here, x1 is the height of one person, and x2 is

their weight. The simple perceptron will fit a decision boundary (hyperplane)

based on these two input vectors, as shown in Figure 2.2:

Figure 2.2: The decision boundary between height and weight data points [2]

The hyperplane in a simple perceptron consists of a weight vector w1 ∈ Rn×1,

13

and a single bias term b that determines the distance of the hyperplane from

the origin. Formally, the classification of points as below, on, or above the

hyperplane is as follows:

Above : −w′Tx
′
< b→ w

′Tx
′
+ b > 0 (2.1)

On : −w′Tx
′
= b→ w

′Tx
′
+ b = 0 (2.2)

Below : −w′Tx
′
> b→ w

′Tx
′
+ b < 0 (2.3)

The algorithm for the simple perceptron is as follows [14]:

Algorithm 2.1. 1: Initialise with a set of random weights w ∈ R(n+1)×1

2: For each data point xi, calculate a predicted class. If wTx(i) > 0, then

y
(i)
p = 1, else 0.

3: Update the weight vector w as:

4: If y
(i)
p = 0 and y(i) = 1, w = w + x(i).

5: If y
(i)
p = 1 and y(i) = 0, w = w − x(i).

6: If y
(i)
p = y(i), w = w.

7: Repeat from Step 2

8: Stop when all data points have been correctly classified.

The simple perceptron algorithm will only converge if there exists a weight

vector w that can linearly separate the two classes. If the true function is non

linear, it will fail to converge. In order to construct a deep neural network

using such non linear functions, a more complex model known as an MLP

multilayer perceptron is necessary.

2.2 Multilayer Perceptron

A multilayer perceptron (MLP), also known as a feedforward neural network,

forms the basis of many deep learning models. The goal of an MLP is to

approximate some function, f . Most commonly, we want to map this function

of f and an input x to some output y, in the form y = f(x). The MLP defines

14

this mapping based on a set of parameters θ, learning the values of θ that best

approximates the function:

y = f(x; θ) (2.4)

MLP networks are typically represented by composing multiple functions, or

layers, together [25]. This layer structure forms the foundation of deep learning

models. They are designed to approximate any continuous function and can

solve highly non-linear problems. As a result, they are often used in pattern

classification, language translation, and image recognition. Through each hid-

den layer, the values from the previous layer are transformed from the previous

layer with a weighted summation w1x1 +w2x2 + ...+wmxm. More formally, it

is written as:

a = φ(
∑
j

wjxj + b), (2.5)

where wj is the weights vector, xj are the input values, b is a bias vector, φ

is a non-linear activation function, and a is the neuron’s activation. An MLP

requires the tuning of a number of hyperparameters. This is commonly done

by evaluating the model results in the validation set, with the model accuracy

being evaluated on the test dataset. An overview of the hyperparameters in a

neural network model is given below.

2.3 Hyperparameters

Loss Function

To quantify how close the predictions are to the training labels, a loss function

is defined. This is a function used to evaluate a candidate set of weights

in relation to the objective of the model. Typically, we seek to minimise

the error. Maximum likelihood, or MLE, is one such framework which seeks

to find optimum parameter values through which the observed data is most

15

probable, through the maximisation of a likelihood function. For example, for

a Gaussian distribution the maximum likelihood estimate for the mean µ is

found by solving the likelihood function with respect to µ [26]:

f(xi;µ, σ
2) =

1

µ
√

2π
exp[−(xi − µ)2

2σ2
] (2.6)

L(µ, σ) = σ−n(2π)−n/2 exp[− 1

2σ2

n∑
i=1

(xi − µ)2] (2.7)

µ̂ =
1

n

n∑
i=1

Xi = X̄ (2.8)

Although a neural network model does not directly calculate maximum likeli-

hood, we can define a function to measure the error between the observed data

and the model output. One example of a loss function is the number of images

correctly classified by the network. In practice, making small changes to the

weights and biases won’t change this function, making it difficult to know how

much to change them. A common loss function is the quadratic cost:

MSE =
1

k

k∑
i=1

(yi − xi)2 (2.9)

where yi is the predicted value at i and xi is the equivalent observed value. This

function is commonly used in regression. Cross entropy loss is a more suitable

function for classification problems where the set of possible values is more

restricted. It more appropriately punishes incorrect classifications and usually

results in a higher prediction accuracy. As the predicted probability diverges

from the true label, the cross-entropy loss increases. In a binary classification

setting it is defined as:

L = −
2∑
i=1

yi log(pi) (2.10)

= −[y log(p) + (1− y) log(1− p)], (2.11)

where yi is the true class in the range [0,1], and p is the predicted Softmax

probability for the ith class [27]. Various factors must be considered when

16

choosing an appropriate loss function. The choice of function is highly context

dependent. Regression models typically use the MSE (Mean Squared Error)

or MAE (Mean Absolute Error), while classification problems use a score such

as the hinge loss or cross-entropy loss.

Epochs

In deep learning, one epoch is a single pass through the entire training set [28].

This includes forward and back propagation so that the model has updated the

parameters once. As the number of epochs increases the model fit improves,

although overfitting can occur with a large number of epochs. To determine

the optimal number of epochs, a small number is often chosen for the first

model run. The accuracy reached after each epoch is plotted, with the goal

to find a point where the improvements in accuracy become minimal. Further

epochs after this point will increase the run time of the model with negligible

improvements in prediction accuracy. There is also the risk of overfitting the

model, although this can be reduced with techniques such as regularisation.

Figure 2.3 shows this effect without the use of regularisation. As with most

other hyper-parameters in a deep learning model, the ideal number of epochs

is chosen by evaluating the accuracy of the validation set.

Figure 2.3: Curve fitting as the number of epochs decreases [3]

Batch Size

17

A batch is a subset of the data passed through the network. A full forward and

backward pass is made through every batch in the dataset before one epoch is

reached. The batch size is the number of training examples used in each pass

(batch). When all batches have been passed through the network, one epoch

is complete. Using a small batch size will use less memory, which becomes

important when working with large datasets. Neural networks will typically

train faster with smaller batches, although the network tends to traverse with

more variance across the parameter landscape. However, with a sufficient

epoch size it will likely converge to the same point as a model using a larger

batch size. Using a larger batch size may restrict the model from exploring

other areas of the parameter space, although an optimal learning rate can

mitigate this. Figure 2.4 below shows the effect of different batch sizes on the

exploration of the parameter landscape θ.

There are three main approaches to choosing a batch size [29]:

• Batch Gradient Descent - uses the full training set as one batch

• Stochastic Gradient Descent - each observation in the dataset is a com-

plete batch

• Mini-Batch Gradient Descent - The size of the dataset n is divided into

a number of batches b, where 1 < b < n

18

Figure 2.4: Traversal of a parameter landscape with different choices of batch

size [4]

Learning Rate

The learning rate is a hyper-parameter used in the gradient descent algorithm.

The algorithm estimates the gradient of the error and updates the weights

of the model accordingly, with the goal of moving through the parameter

landscape to minimise the loss function.

The scale to which the weights are adjusted by is known as the learning rate.

It is a small positive value typically between 0 and 1. This choice of value

for the learning rate has an impact on both the speed and accuracy of the

model convergence. If it is set too low, the model will require more epochs

to converge. It may also fail to converge or get ’stuck’ in a sub-optimal local

minima of the landscape. If it is too large, the model requires fewer epochs

but the performance of the model will vary significantly and it may finish at

a sub-optimal set of weights [5].

The learning rate for a given model is typically set through trial and error.

Different values can be iterated through between 0 and 1 and the accuracy

19

evaluated on the validation dataset. The default value for many packages in

R and Python, including Keras, is 0.01.

Figure 2.5: Traversal of a parameter landscape with different choices of learn-

ing rate [5]

2.4 Backpropagation

Backpropagation is an algorithm used in deep learning to optimise the weights

in the network. Based on the error rate introduced in the previous epoch, the

algorithm proceeds backwards through the network. It calculates the gradient

of the loss function with respect to all weights in the network.

Gradient Descent

Gradient Descent is an optimisation algorithm for finding a local minimum

of a function. In the context of neural networks, there are often thousands of

parameters each contributing to a single loss function. The goal of the gradient

descent algorithm is to minimise this loss function, meaning that the error of

the model is minimised and a high level of prediction accuracy is attained.

To find this minimum, the parameters of the model must be adjusted. Each

of this parameters in a neural network contributes to the classification step

(the fully connected layer). By using the loss function as a measurement of

20

the prediction accuracy, the parameters can be subsequently tweaked with the

goal of reducing the loss. The Gradient Descent algorithm enables this process

to happen in an efficient manner. Figure 2.6 shows this process on a complex

parameter landscape. In general terms, the algorithm proceeds as follows:

• For each training example, calculate the gradient of the cost function

with respect to every weight and bias parameter

• Calculate the average gradient for all weights and biases

• Update the weights and biases using the updating rule:

θj = θj − α
∂

∂θj
J(θ) (2.12)

Stochastic Gradient Descent performs an update of the weights for each mini-

batch of n training examples. This generally leads to more stable convergence

and allows for efficient use of matrix computation [30].

θ = θ − η ∗ ∇θJ(θ;x(i:i+n); y(i:i+n)) (2.13)

As a first step in the back-propagation algorithm, an equation for the error in

the output layer is defined as:

δLj =
∂C

∂aLj
σ

′
(zLj) (2.14)

δl = ∆aC ◦ σ
′
(zL) (2.15)

The error δl in the next layer is defined as:

δl = ((wl+1)T δl+1) ◦ σ′
(zl), (2.16)

where (wl+1)T is the transpose of the weight matrix wl+1 for the (l+1)th layer.

Intuitively, this moves the error back through the network and gives a measure

of the output at the lth layer. By using the above two equations, an equation

21

for the rate of change of the cost, with respect to any weight in the network,

can be defined.

∂C

∂blj
= δlj (2.17)

∂C

∂wljk
= al−1k δlj (2.18)

Figure 2.6: A representation of the gradient descent function [6]

Momentum

A technique commonly used in gradient descent is known as Momentum. Here,

the gradients of past steps are used as an additional input into the direction

and rate of the next step [31].

vj = η × vj − α×∆w

m∑
1

Lm(w) (2.19)

wj = vj + wj (2.20)

In the above equation, η retains the history of previous gradients with a time

window set by the momentum parameter. When the parameter is zero, η is

not used and the algorithm becomes traditional gradient descent. As it is

increased, more of the prior gradients are used as input into the algorithm. It

22

often ’accelerates’ the model, allowing for larger jumps across the landscape

where appropriate and converging the model in a shorter time span [31].

Activation Functions

An activation function is a mathematical function which determines the out-

put. Each neuron in the network has an activation function attached to it,

and decides if that neuron should be ’fired’ (activated) given its input. They

also normalise the output to a standard range such as 0 to 1 [32].

Because every data point fed into a neural network is passed through a large

number of neurons, these activation functions must be computationally effi-

cient. In some cases this can be simply activating the neuron based on a rule

or threshold, while in other cases a mathematical transformation is applied.

Increasingly these take the form of a non-linear function. This allows for the

learning of complex data and more accurate predictions.

There are several such functions commonly used in networks today. The most

commonly used functions are described briefly below.

Sigmoid Activation Function

The sigmoid activation function limits the output to a range between 0 and 1,

expressed along a sigmoid curve. It is a commonly used function for training

a neural network due to its capability to output probability with respect to a

given class for a binary classification task. The function’s non-linearity allows

the model to learn complex features. However, it is only able to output a

binary classification, and is computationally expensive. It also suffers from

the vanishing gradient problem, where extremely small or large inputs give

increasingly small derivatives (changes in the output). This is a common

problem with activation functions which map the output to a small range.

23

z = wTx+ b (2.21)

y =
1

1 + e−z
(2.22)

(2.23)

Figure 2.7: Sigmoid Activation Function

SoftMax Activation Function

The SoftMax function is generalised version of the sigmoid function, which is

suited for classification tasks with multiple classes. It is the preferred function

for the classification (output) layer, and gives predictions between 0 and 1 for

each possible class.

If there are k output classes and the weight vector for the ith class is w(i), then

the predicted probability for the ith class given the input vector x ∈ Rnx1 is:

P (yi = 1/x) = ew
(i)T x+b(i)∑k

j=1 e
w(j)T x+b(j)

(2.24)

Rectified Linear Unit (ReLU) Activation Function

In a ReLU function the output is equal to 0 if the input is less than or equal

to zero, or else it is equal to the input. It has multiple desirable properties - it

is computationally efficient, eliminates the ’vanishing gradient’ problem, and

24

introduces non linearity. However, when inputs approach zero, the network

cannot perform backpropagation due to the gradient of the function becoming

zero.

y = max(0, wTx+ b) (2.25)

Figure 2.8: ReLU Activation Function

Leaky ReLU

An issue seen in the ReLU function is that over the course of the algorithm

input nodes become inactive. The leaky ReLU is a variant of the ReLU func-

tion which allows for a small positive gradient when the input is below the

threshold, which acts to keep all input nodes alive and increases performance.

The prediction results are however not consistent for negative input values.

y =

wTx+ b, if x > 0

0.01x, otherwise

Choice of Activation Function

The choice of activation function for a given model is highly dependent on the

use case. Recently, variations of ReLU and Swish have been used in the top

performing models in the convolutional layers [33]. Softmax is typically only

25

used in the final layer due to its transformation of an input vector into a set

of probabilities between zero and one for each class.

2.5 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a family of deep learning algorithms

commonly used for data with a grid like topology. For example, images are

arranged in a 2D grid of pixels. They are based on a technique known as

convolution. This technique computes a weighted average of data points in

order to extract the high level features from the input data [34]. Multiple

convolution layers in the network compute different feature sets of the data -

for example the first may find edges in an image, the second finds corners and

combinations of edges, while the final layers finds higher level features such as

faces and objects.

2.5.1 CNN Layers

There are three types of layers in a CNN (Convolutional Neural Network).

A description of these layers is given below. Figure 2.9 shows the general

structure.

• Convolution Layer - Performs an operation known as a convolution. This

is a linear set of operations that multiplies the values of each pixel in the

input images by a set of filters (weights). Because the filters are smaller

than the the dimension of the input images, a dot product is taken of the

array of pixels in the current patch, resulting in a single value for each

window. The result is know as a feature map (image). This operation

allows the network to detect different types of features anywhere in the

image.

• Pooling Layer - Summarises the output of the convolutional layers and

retains the most important features. This layer down-samples the feature

26

maps, commonly using either average or max pooling. Average pooling

calculates the average value of each window of the input, while max

pooling takes the maximum value. It is typically applied in a 2x2 grid,

reducing the dimensionality of the images by 75%.

• Fully Connected Layer - Classifies the images using a non-linear func-

tion. The images are flattened into a column vector and fed into the a

feed-forward network and back-propagated through each iteration. The

chosen activation function is applied to predict the output.

Figure 2.9: Structure of the fully connected layers, showing neuron weights

used in determining the output class [7]

CNN’s are widely used in image classification and object detection of traffic

modes. Hamilton City has recently deployed micro-mobility and pedestrian

counter utilising the MobileNet algorithm, which efficiently detects objects

in a video feed and classifies them into the classes of pedestrian, cyclist or

scooter. The resulting data is valuable for understanding usage of footpaths,

shared paths and cycle lanes, including the overall trend of cyclists in the

city and the impact of new infrastructure to encourage these active modes of

transportation.

27

2.5.2 CNN Case Study - Traffic Peak Classification

A CNN model was developed to classify between the two significant traffic

peaks in the Hamilton CBD. The AM peak is defined as the period between

7am and 9am, while the PM peak is the period between 4pm and 6pm. Within

these peaks, a high level of traffic volume and delay is experienced. In the

dataset, delay is calculated for each road and directions of travel, defined as a

link, within each peak. Data from 2019 to 2020 was used, excluding the Level

3 and 4 COVID-19 lockdown periods. One heatmap for each day and peak

was created, resulting in 480 images across 2 classes. The prediction accuracy

was evaluated across 48 of these images as the validation dataset.

The model correctly predicted 94% of images from either class correctly. At

first glance, it is difficult for the human eye to distinguish between heatmaps of

the AM and PM peak. It is often not the case that the reverse flows experience

delay in the PM peak. This can be seen at Victoria St at the top of the

heatmaps. In the AM peak there is high delay on the southbound approach,

cause by high volumes of traffic coming from Fairfield Bridge and stopping at

the Mill/Victoria traffic signals. However, the northbound direction does not

experience similar delay in the PM peak. This is due to optimisation of traffic

signals at Fairfield Bridge allowing more vehicles to turn right, in addition to

a large number of vehicles able to continue straight to the Victoria/Te Rapa

traffic signals. Due to this, the delay is shifted further north and is not shown

in the heatmap. A CNN model is able to capture the areas of the network

which consistently experience high delay in each peak, and accurately predicts

the peak based on this spatial variation.

28

Figure 2.10: Delay heatmaps of the AM Peak (left) and PM peak (right) in

Hamilton

2.5.3 Hyperparameter Turning

In the training of a neural network, the optimal combination of hyperparam-

eters is often accomplished by trial and error. Two different models may each

perform best under two different sets of hyperparameters. This choice is highly

dependent on the data. Varying sets of hyperparameter combinations were

tested for the traffic peak classification model described above. Note that this

optimisation of hyper-parameters is specific to the peak classification model,

and results will differ depending on the specific model and dataset used.

29

Epochs vs Batch Size

0.80

0.85

0.90

0.95

1.00

10 15 20

Batch Size

F
in

a
l A

c
c
u

ra
c
y

Epochs

10

15

20

Figure 2.11: Batch Size vs Epochs

As seen in the above plot, 20 epochs performs best across all three batch sizes.

Ten epochs performs similarly to 15 when the batch size is set to 7 or 14, but

reduces significantly in accuracy at a batch size of 21.

30

Batch Size vs Learning Rate

0.5

0.6

0.7

0.8

0.9

1.0

10 15 20

Batch Size

F
in

a
l A

c
c
u

ra
c
y

LearningRate

1e-05

1e-04

0.001

Figure 2.12: Batch Size vs Learning Rate

The number of epochs was fixed to 20 for subsequent models. It is observed

that a learning rate of 1e-05 yields a significantly lower accuracy than higher

learning rates. The accuracy decreases as the batch size increases. Across

batch sizes, the other two learning rates result in similar accuracy. The highest

accuracy was achieved with a learning rate of 0.001, but only marginally. The

difference in accuracy between the larger two learning rates appears to increase

as the batch size increases.

31

Number of hidden layers vs Learning Rate

0.80

0.85

0.90

0.95

1.00

2 3 4

Layers

F
in

a
l A

c
c
u

ra
c
y

LearningRate

1e-05

1e-04

0.001

Figure 2.13: Hidden Layers vs Learning Rate

The batch size was fixed to seven for subsequent models. For the smallest

learning rate of 1e-05, the accuracy improves significantly as the number of

hidden layers increases. There is no significant change in accuracy across layers

for the other two learning rates. The learning rate of 0.001 yields the highest

accuracy across all iterations.

32

Number of hidden layers vs number of neurons

0.80

0.85

0.90

0.95

1.00

2 3 4

Layers

F
in

a
l A

c
c
u

ra
c
y

Neurons

32

64

Figure 2.14: Hidden Layers vs Neurons

The learning rate was fixed to 0.001 for subsequent models. There was no

significant difference in accuracy across all combinations of layers and neurons.

2.6 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a type of deep learning algorithm suited

for a sequence of values, typically in the form x = x1, x2, ..., xn. They are able

to use an internal memory state to learn and process sequences of inputs. One

of the more common variants is an LSTM - ’Long Short Term Memory’. It is

suitable for a variety of sequence based tasks, including handwriting recogni-

tion, anomaly detection, and time series analysis. RNN’s operate on a sequence

of vectors x(t) with a time step index ranging from 1 to T . These sequences

are typically batched into smaller sequences.

33

2.6.1 LSTM Cell

LSTM’s are a variant of the RNN model which use a short memory unit with

the ability to ’forget’ a part of its previously stored memory and add part of

the new information from the current input. The cells consists of three main

components: an input gate, forget gate, and output gate. This architecture is

shown in Figure 2.15.

Figure 2.15: LSTM Architecture [8]

Each gate at time step t is calculated as:

it = σ(W i[h(t−1), xt] + bi (2.26)

f t = σ(W f [h(t−1), xt] + bf (2.27)

σt = σ(W o[h(t−1), xt] + bo (2.28)

Figure 2.16 shows the architecture of a single LSTM cell. The output, ht, is

calculated from the input at previous time step ht−1 and the observation xt

at the current time step. These inputs are passed through a set of gates to

determine the output, including an activation function tanh.

34

Figure 2.16: An LSTM Cell [8]

2.6.2 GRU Cell

A GRU cell (Figure 2.17) modifies the LSTM cell by using two gates - an

Update Gate and a Reset Gate. The result is an architecture which is typically

faster to train. However, the accuracy will differ between LSTM and GRU

cells depending on the specific use case, and often both are used in the model

training process.

Zt = σ(W z[h(t−1), xt] (2.29)

rt = σ(W r[h(t−1), xt] + bf (2.30)

h̃t = tanh(W [rt × ht−1, xt]) (2.31)

ht = (1− zt)× ht−1 + zt × h̃t (2.32)

Figure 2.17: A GRU Cell [8]

35

Backpropagation through time

The Backpropagation through time (BTT) algorithm computes the gradients

for updating the weights of the network, in proportion with the derivative of

the error at each pass [35]. Using the standard backpropagation process for

an RNN results in the exploding and vanishing gradient problems, where the

gradients become close to zero and the algorithm stops updating. The hidden

state ht ∈ Rh and the output ot ∈ Rq are calculated as:

ht = Whxxt +Whhht−1, (2.33)

ot = Wqhht (2.34)

Figure 2.16 below shows the computational graph of the BTT architecture.

Figure 2.18: BTT computational graph, showing dependencies between model

variables and parameters during computation [9].

2.6.3 Case Study - Prediction of Traffic Delay

An LSTM model is used in Python to predict delay on a section of Wairere

Drive in Hamilton. One month of data is used from September 2, 2019 to

September 27, 2019. The first three weeks of the dataset are used for training,

with the following six days for validation and the final day for testing. The

data is in fifteen minute intervals. The model is run for 1000 epochs with a

36

constant learning rate of 1e-5.

50

100

150

200

Sep 27 00:00 Sep 27 06:00 Sep 27 12:00 Sep 27 18:00 Sep 28 00:00

Date

D
e

la
y
 (

s
e

c
o

n
d

s
)

Observed Delay - Wairere Drive from Resolution Drive to River Rd

Figure 2.19: Delay on Wairere Drive on September 2, 2019

The delay on the link for Friday, September 27th 2019 is shown in Figure 2.17.

It exhibits a sharp morning peak, followed by a constant delay throughout

the day, until short peaks in the school and PM periods. This AM peak is

generally seen on all weekdays in the data, although there are less occasions of

small increases in delay at other times in the day. The LSTM is expected to

capture the general pattern of the morning peak, although anomalous changes

in delay at other times of the day may not be fully captured without looking

at the spatial relationship with surrounding links.

37

100

200

Sep 27 00:00 Sep 27 06:00 Sep 27 12:00 Sep 27 18:00 Sep 28 00:00

Date

D
e

la
y
 (

s
e

c
o

n
d

s
)

Type

Actual

Predicted

Predicted vs Actual Delay - Wairere Drive from Resolution Drive to River Rd

Figure 2.20: Predicted vs Actual Delay for a section of Wairere Drive, using

an LSTM model

The MAPE for the model is 4.29%. The delay in the morning peak is mostly

captured, although is is predicted slightly later in the day. The data shows an

increase in delay in the afternoon and evening, although this is not captured

by the model.. Because these peaks were not historically seen in the training

data, the model fails to predict them It may have been caused by changes

in traffic flow on other parts of the network, such as increased volume or an

incident. It is expected that a model accounting for the spatial dependencies

will perform better on data such as the above, where delay on the network does

not always follow a predictable pattern and flow on effects are seen throughout

the network.

38

2.7 Summary

Deep Learning algorithms are appropriate for modelling transportation data,

given their ability to handle large quantities of multi-dimensional data. Vari-

ants on the traditional multilayer perceptron allow spatial data to be captured

through the use of a convolutional process, as well as sequences of time series

observations with a recurrent structure. These models have been successfully

deployed in the collection and analysis of data in major cities, such as CNN

models in camera systems counting and classifying different modes of trans-

portation across the network.

Chapter 3

Spatio-Temporal Deep Learning

for Transportation Networks

3.1 Transportation Data and Analysis

Local road controlling authorities (RCA’s) collect large quantities of data to

record what is happening on their transport network [36]. Up until recently,

the majority of traffic data has been in the form of surveys, pneumatic tubes,

or signal detectors. Surveys are typically conducted by setting up cameras or

people at at a given location and recording the level of traffic. This is done

to give a point in time baseline of traffic flow in the area. The area may be

surveyed again following infrastructure changes in the area, to understand the

change in traffic flow and measure if a certain goal was achieved, such as a

higher number of pedestrians and a lower level of traffic. Pneumatic tubes

are another method to collect traffic volumes. They are black tubes deployed

across the roadway. By using two tubes at a short distance apart, they are

able to measure speed and classification (type of vehicle) in addition to volume.

In the case of infrastructure projects which aim to lower speeds or discourage

heavy vehicles, tubes are an effective tool to gather such data. Signal detectors

are another widely deployed system in cities. They are installed in each lane

of a signalised intersection, and primarily act to control the flow of traffic

40

through the changing of signals. The counts recorded from detectors are sent

to a central system to be analysed for trends in traffic volume and variances

in volume at each intersection approach, both spatially and temporally.

Recently, there has been an increase in collection of data for other transport

modes. This includes counts for pedestrians and cyclists, scooter data through

shared micro-mobility providers, and public transport utilisation through card

tag on/off systems such as the Bee Card [37]. Having data on every transport

mode enables RCA’s to analyse spatial and temporal variances in the usage of

each mode, and make more informed decisions on projects as a result.

Traditionally, the analysis of transport data by RCA’s has been in the form

of basic aggregations such as daily totals, year-on-year change, or mode share

proportions collected by surveys. Statistical models such as ARIMA forecast-

ing are used on occasion [38], but fail to capture the inherent complexities in

the network on both a spatial and temporal manner. While good results can

be obtained by such forecasting on traffic volume data, it is unable to show

the propagation of volume through a network or how volume on a given road

influences the surrounding area. This understanding allows for better decision

making upon analysis of the data, and reduces unforeseen events caused by

infrastructure changes made as a result of an analysis. It is often the case that

a small change to traffic signals at a given intersection can have major flow on

effects in the immediate area. This effect may be captured by modelling the

data in more complex models which can more accurately capture the network

structure.

Given their complexity and computation time, deep learning models have his-

torically not been widely used by local road controlling authorities. Devel-

opment of such models requires local domain knowledge and expertise in the

models themselves. As a result, much of the transportation data collected

41

in urban environments is not explored in detail beyond KPI calculations and

basic aggregations. As traffic sensors become more precise, cheaper to de-

ploy, and expand in scope, there is a growing need to analyse the data in a

spatio-temporal manner to better understand how traffic flows in a city. Tradi-

tionally, forecasting of traffic volume or delay has been done by either finding

historical averages in the dataset or with time series models such as ARIMA

[39]. This algorithm is commonly used in business intelligence (BI) software

via a ’one-click’ approach. This presents dangers where a prediction from the

auto analysis is used to make decisions without an understanding of how the

algorithm has come to its prediction, or if it is an appropriate algorithm to

use.

3.2 Deep Learning Models

Deep learning models have proven to be capable in capturing the highly non-

linear spatio-temporal effects in traffic forecasting [40]. Simple feed forward

neural networks were first explored for travel time estimation, and have since

been extended to several other deep learning based models including fuzzy

NN’s, recurrent, deep belief networks, auto-encoders and generative adversarial

networks (GAN’s). Recurrent neural networks in various forms, including

LSTM and GRU variants, have been successfully applied to traffic forecasting

due to their ability to capture temporal dependencies in the data. They have

been used in forecasting traffic speeds, travel time, and volume.

The Structural-RNN [41] identifies that while Recurrent Neural Network (RNN)

models are capable of modelling temporal sequence data, they lack a spatio-

temporal structure necessary for considering dependencies between space and

time. The example given in the paper is in modelling human motion where

the next sequence is a complex interaction between the previous spatial state

and the sequence of motions leading to that state.Several applications of this

42

model are in the fields of human motion, video frame and image generation.

The common structure used is known as an st-graph. It is represented with

G = (V,ES, ET), where V is the set of nodes in the network, ES is the set

of the edges, and ET is the set of edges over time. It is recognised that a

vast quantity of data fits into this structure, particularly in modelling human

activity and interactions.

DeepTransport [42] explores spatio-temporal prediction in traffic forecasting.

An end to end framework is proposed with a combined CNN-RNN approach

to obtain spatio-temporal information within a traffic network graph struc-

ture. It is noted that traditional approaches to traffic forecasting (ARIMA,

Deep Belief Networks and Stack Autoencoders) ignore the spatial relationship

present between edges in a transport network. The model takes the approach

of an intricate topological graph, identifying a set of upstream and downstream

edges which each influence each other over a series of time steps t. The Deep-

Transport model is relatively intuitive and simple to understand. It achieved

good results in traffic condition forecasting and outperforms all other models

tested.

In recent years, several novel approaches have been proposed as modifications

to the standard LSTM model. These include the bidirectional LSTM, deep

LSTM, shared hidden LSTM, and nested LSTM [43]. They are typically cre-

ated through the restructuring of an LSTM to better capture the complex

temporal dependencies present in traffic data. For example, a bidirectional

LSTM uses two independent RNN’s such that there is both backward and for-

ward information in the sequence at every time step. Many of these models

also incorporate additional data such as crashes, geographical attributes, and

weather to enhance the prediction performance.

While the LSTM based models perform well in capturing temporal depen-

43

dencies on a road, modelling the spatial relationships present in the network

is necessary for many applications in traffic forecasting. CNN’s have been

applied to traffic networks to extract spatial features, however the inherent

structure of a traffic network means that the resulting images in a CNN model

have a high amount of noise. The areas we are interested in modelling are only

present in a small proportion of the 2D images, and therefore CNN based mod-

els for traffic forecasting often result in spurious spatial relationships. There

have been attempts to convert traffic data into three-dimensional matrices to

reduce the issues present in 2D models, although they are still unable to deal

with the network structure or physical attributes of a traffic network.

A more intuitive approach in traffic forecasting is to learn the network as a

graph structure. This is a natural fit for common transport analysis such as

shortest path routing, dynamic lane assignment in peak times, and analysis

of unusual delay [44]. In deep learning these models have taken the form

of graph convolutional networks (GNN’s). GNN’s typically make use of an

adjacency matrix or Laplacian matrix to describe the relationships between

road segments. The Laplacian matrix Ln×n is defined as:

L = D − A, (3.1)

where D is the degree matrix describing the number of edges attached to each

node, and A is the adjacency matrix [45]. The elements of L are given by

Li,j =

deg(vi) if i = j

−1 if i 6= jand vi is adjacent to vj

0 otherwise

It is a symmetric positive semi-definite matrix such that it can be diagonalised

via eigen-decomposition:

44

L = U∆UT (3.2)

,where ∆ is a diagonal matrix containing the eigenvalues, U contains the eigen-

vectors of the matrix, and UT is the transpose of U . The spectral convolution

on the traffic graph is defined as the multiplication of a signal xt ∈ RN , with

a filter hθ = diag(θ) parameterised by θ ∈ RN [46]. The spectral graph convo-

lution operation is defined as:

hθ ∗G xt = UhθU
Txt = Udiag(θ)UTxt (3.3)

The Laplacian matrix provides a way to investigate the connectedness of a

graph. Graph convolution models utilising the Laplacian matrix are based on

spectral graph theory, which is the study of graph properties in relation to its

eigenvalues and eigenvectors [47]. One such model extension to spectral graph

convolution is localized spectral graph convolution (LSGC), which reduces the

learning complexity by using localised convolution operations learned from

the data [10]. An LGSC only has K parameters equal to the number of hops

from a given node, and does not need eigen-decomposition. Each convolution

operation on a centred vertex extracts the summed weighted feature of the

vertex’s K-hop neighbours.

Figure 3.1: Spectral Graph Convolution [10]

45

A Graph Convolutional LSTM (GC-LSTM) conducts convolution of a datasets’

graph structure in order to calculate a weight for a given edge. This weight

is then used as an additional input into an LSTM model, enabling prediction

based on both the spatial and temporal structure present in the data. The

remainder of this chapter is largely based upon the paper [12].

3.3 Traffic Graph

A graph is a mathematical structure describing a set of objects and how they

are connected. The objects are known as nodes, while the connections between

nodes are edges. They can be either directed or undirected [48].

Figure 3.2: A simplified graph, showing nodes as blue circles and edges as

lines. The numbers adjacent to lines represent a known characteristic of the

network, such as distance or time [11].

A graph representing a transport network is distinct in that there are no iso-

lated nodes, and the network rarely changes in structure. Node or edge at-

tributes may change dynamically in the case of traffic volume or delay, or they

may stay relatively static. A transport graph may have meaningful charac-

teristics describing the infrastructure, such as road type, length, posted speed

or number of lanes. The GC-LSTM model uses nodes to represent the traffic

sensing locations, while edges represent the intersections connecting each node

(road segment). It can be represented by an undirected graph G = V,E with

46

N nodes vi ∈ V and edges (vi, vj) ∈ E. The connections between nodes are

defined with an adjacency matrix A ∈ RN×N , in which each element Ai,j = 1

if there is an edge connecting node i and node j. The model uses these connec-

tions to find the number of hops between edges in the network. A parameter

is set in the model as k, defined as the maximum number of hops to use in the

adjacency graph when calculating the spatial weight. This is shown in Figure

3.3 for a link on Wairere Drive in Hamilton. The adjacency matrix for each k

from L can be found as A ∗ Ak.

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

Wairere Drive

Resolution Drive

Te Rapa Road
River Road

Hukanui Road

Gordonton Road

Thomas Road

Borman Road

Dis
covery Drive Ho

rsh
am

Do
wns

Roa
d New Borman Road

Sandwich Road

Rototuna Road

Totara Drive

Comries Road

Bankwood Road

Crosby Road
Bryant Road

Bar
ring

ton
Dri

ve

Te Manatu D riv
e

St James D rive

M oonlight Drive

Braid Road

Magella n Rise

Darjon Drive

Callum Brae Drive

Bramley Drive

Huntington Drive

Te H uia Drive

Wentworth Drive

Radiata Street

Endeavour Avenue

Tuirangi Street

Tramway Road

Farringdon Avenue

Cate Road

Taylor Terrace

Cumberla nd Drive

Ma taroa Cre sce
nt

Cate Road

Legend
K

1
2
3

Figure 3.3: The number of hops from each node (road segment) to the link in

black

An adjacency matrix is defined to represent the connectivity of nodes, A ∈

RN×N . Each element Ai,j represents 1 if there is an edge connecting node i

and node j, and 0 if not. Given that the current traffic state on a link will

influence the future state on that link, all links are considered self influenced.

An identity matrix I is added to A to obtained the one hop neighbourhood of

the network:

47

Ã = A+ I (3.4)

The k-hop neighbourhood of the graph is defined as the number of edge traver-

sals to travel from node i to node j. This is characterised as (A+ I)k, where k

is the number of edge traversals. However, it is not necessary to weight a nodes

k-hop neighbours by the number of hops, and as such all values of (A + I)k

are clipped to 0, 1. Values in each of the k-hop matrices are calculated as

Ãki,j = min((A+ I)ki,j, 1) (3.5)

Figure 3.4: Adjacency matrix for the Hamilton traffic network at K = 1

Figure 3.3 shows the adjacency matrix for the AddInsight network in Hamilton

City. An adjacency between each row and column at k = 1 hop is shown as

a white dot. Green dots indicate no adjacency at one hop. By multiplying

this matrix by itself, an additional set of matrices are created to limit the

field of influence to links which are reachable within the time span used in

the prediction, known as the free-flow reachable matrix (FFR). Each element

FFRt
i,j is 1 if the link j is reachable from link i within time t, under free flow

conditions. Free flow is defined as the time taken to traverse the full length

of a link at the posted speed limit, with no delay encountered on the journey.

Each road is considered self reachable and thus, each diagonal element is set

to one.

48

Notations for the traffic graph are defined in the following list:

1. G: Traffic Network Based Graph G = V,E

2. V : Set of vertices in G with the size of |V | = N

3. E: Set of edges in G with the size of |E|

4. A ∈ RN×N : Adjacency matrix of G

5. FFR ∈ RN×N : Free-flow reachable matrix

6. xt ∈ RN : Vector of delay of all graph nodes at time t

3.4 Traffic Graph Convolution

The graph convolutional layer in the model extracts localised features from

the traffic network’s graph structure. The region which affects the results of

the convolution operation is known as a receptive field. The product of the

neighborhood matrix A, the input data xt, and the trainable weight matrix

W , are used in the graph convolution operation to extract features from the

one hop neighborhood. The operation is defined as

GCk
t = (Wgck � Ak � FFR)xt (3.6)

where � is element wise matrix multiplication (the Hadamard operator), and

xt ∈ RN is the vector of traffic delay states of all nodes at time t. Wgck is a

trainable weight matrix for the kth order traffic graph convolution and GCk

is the extracted kth order traffic graph convolution feature. The result of this

operation is a sparse matrix, as Ak and FFR are both sparse matrices. The

trained weight matrix measures the interaction between edges in the graph

and subsequently allows for examination of how links in an area interact.

49

The features extracted from different orders of k-hops from 1 to K are con-

catenated into a vector, defined as:

GC
{K}
t = [GC1

t , GC
2
t , ..., GC

K
t] (3.7)

A comparison of the traffic graph convolution (TGC) to SGC and LGSC is

shown below. The TGC performs better for spatial localisation, as it is able

to extract local features from the FFR matrix based on physical attributes

and reachable distances within set time ranges. SGC and LSGC need multiple

convolution layers, resulting in a loss of model interpretability. The TGC

operation only uses one convolutional layer allowing for easier interpretation

of its parameters.

Graph Convolution TGC SGC LSGC

Graph convolution on signal xt Wgck � ÃK � FFR Udiag(θ)UT
∑K−1

j=0 θ
′
jL

j

Weight Parameters Wgck ∈ RN×N θ ∈ RN θ
′ ∈ RK

Computation time O(N2) O(N) O(K|ξ|)

3.5 Traffic Graph Convolutional LSTM

The weights calculated by the convolution step are used an additional input

into the LSTM model, and are optimised in the gradient descent algorithm in

the same manner as the LSTM weights. If a link has a high influence on one if

its downstream links, this will be captured in the weights and used alongside

the time series sequence in the LSTM to enhance the prediction.

The final GC-LSTM model learns the complex spatio-temporal dependencies

present in the data. The gate structure of the LSTM and hidden states are

unchanged, while the input is replaced the the graph convolution features

reshaped into a vector GCK ∈ RKN [5]. The gate structure of the LSTM is

retained, and the input to each gate is replaced by the graph convolutional

50

features, reshaped into a vector GCK ∈ BKN . The gates in the network are

then defined as follow:

ft = σg(Wf ·GCK
t + Uf · ht−1 + bf) (3.8)

it = σg(Wi ·GCK
t + Ui · ht−1 + bi) (3.9)

ot = σg(Wo ·GCK
t + Uo · ht−1 + bo) (3.10)

Ct = tanh(Wf ·GCK
t + UC · ht−1 + bC) (3.11)

where · is the matrix multiplication operator, W are the weight matrices map-

ping the input for each of the three gates and the input cell state, U are the

weight matrices for the preceding hidden state, and b are the four bias vec-

tors. Each of the three gates use the sigmoid activation function σ while the

cell state uses the hyperbolic tangent function. The loss during the training

process is defined as:

Loss = L(yT , ŷT) = L(xT+1, hT) (3.12)

where L(·) is the residual between the predicted and true value.

Figure 3.5: Architecture of the GC-LSTM model [12]

The architecture of the GC-LSTM model can be seen above. On the left, the

convolution operation is performed to calculate a weight for each connected

link and all k-hops. This vector of weights is then used as input into the

standard LSTM architecture on the right. The full algorithm for the GC-

LSTM is shown below in Algorithm 3.1.

51

Algorithm 3.1. 1: Inputs: Xt = [x1, ..., xT], {Ã1, ..., ÃK},FFR

2: Parameters: Wgc1 , ...,WgcK ,WS, US, bS,WN

3: Initialize: h0 = 0 ∈ RN , C0 = 0 ∈ RN

4: For t = 1 to T do:

5: For k = 1 to K do:

6: GCk
t ← (Wgck � Ãk � FFR)xt

7: end for

8: GC
{K}
k ← [GC1

t , GC
2
t , ..., GC

K
t]

9: ht, Ct = TGC-LSTM(xt, GC
{K}
t , ht−1, Ct−1

10: end for
Return: hT

3.6 Regularisation

In order to make the generated set of features and weights more interpretable,

the model uses two regularisation operations. An L1-norm of the weight ma-

trices to the loss function is used as a regularisation term:

R1 = ||Wgc||1 =
K∑
i=1

|Wgci| (3.13)

A second regularisation operation is introduced on the features in the graph

convolution operation. It considers the impact of neighbouring nodes with

respect to a specific node must be transmitted through all nodes, between

the node of interest and the influencing node. To restrict the difference be-

tween features extracted from adjacent hops in the convolution operation, the

following term is added to the loss function at each step:

R2 = ||GCK
T ||2 =

√√√√K−1∑
i=1

(GCi
T −GC

i+1
T)2 (3.14)

52

This term ensures that features extracted from different k-hops should not

differ dramatically and thus better reflect the physical realities of the network.

The final loss function is defined as

Loss = L(hT − xT+1) + λ1R
1 + λ2R

2 (3.15)

3.7 Summary

There are several deep learning models able to capture spatio-temporal depen-

dencies in transportation data. A common approach is to model the network

as a graph, in order to define the connectivity between roads and the distance

between them. A grid based approach to the convolution of a transport net-

work encounters issues with sparsity. Spectral graph convolution and traffic

graph convolution are two approaches which model the network in a natural

way, and allow for detailed analysis of how traffic flows propagate through the

network.

Chapter 4

Bayesian Inference on Deep

Learning

While traditional neural networks perform well in regions with large amounts

of data, they are not able to express uncertainty with regions with little

data. This results in overly confident predictions in these regions. Various

approaches of Bayesian learning in neural networks have been proposed to

solve this issue.

4.1 Bayesian Inference

Bayesian inference is a method of statistical inference grounded in Bayes Rule.

It states that the probability of some event A, given that event B has occurred,

is given by [49]:

P (A|B) =
P (B|A)P (A)

P (B)
(4.1)

In the context of Bayesian parameter estimation, we aim to find the posterior

distribution of the parameters given the data:

p(θ|x) =
p(x|θ)p(θ)
p(x)

, (4.2)

where p(θ|x) is the posterior distribution, p(x|θ) is the likelihood, p(θ) is the

prior, and p(x) is the probability of the data. Often the denominator p(x)

54

involves computing an integral to normalise the posterior to a probability

distribution:

p(x) =

∫
p(x|θ)p(θ)dθ (4.3)

In some cases, such as models where a conjugate prior is available, this is

straightforward to calculate numerically. If no conjugate prior is available,

there are a wide range of computational methods for sampling from the poste-

rior. One of these is Markov chain Monte Carlo (MCMC). MCMC constructs

a Markov chain with the target posterior distribution as its equilibrium distri-

bution. By sampling from this chain for a long period of time, a sample from

the posterior is obtained. A common algorithm for this is known as Metropolis

Hastings, developed by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller

(1953). Formally, the algorithm uses a proposal distribution g(x
′|x) as the con-

ditional probability of accepting a state x
′

given x, and an acceptance ratio

A(x
′|x) as the probability of accepting the proposed state x

′
[50].

P (x
′ |x) = g(x

′ |x)A(x
′|x),where (4.4)

A(x
′|x) = min

(
1,
P (x

′
)

P (x)

g(x|x′
)

g(x′ |x)

)
(4.5)

MCMC can be used for parameter inference in any class of statistical model

where the likelihood g(x
′|x) can be evaluated. Consider a simple generalised

linear model of the form π = 1
1+exp[−(β0+β1xi)] . Here the parameters are the

intercept β0 and a single coefficient β1. The likelihood follows a Binomial

distribution of the form

L(p|x) =
n!

x!(n− x)!
px(1− p)n−x (4.6)

While MCMC is a popular method for Bayesian inference models, it is often

infeasible to use in deep learning models due to it’s computational complexity

[51].

55

4.2 Quantifying Uncertainty

The point estimate approach of traditional deep learning models may result in

over-confident predictions of data points outside of the training distribution.

This has implications in fields such as medical applications or autonomous

driving, where a failure to make a prediction or an over-confident prediction

can have undesirable consequences. A growing field in deep learning theory is

in quantifying uncertainty in model predictions by capturing the uncertainty

in the model parameters. Generally, there are two types of uncertainty present

in a model: epistemic uncertainty measures the lack of knowledge in the data,

measured by p(θ|D). This can be improved with more data. Aleatoric uncer-

tainty is due to the inherent variability, and hence uncertainty, present in the

data itself and measured as p(y|x, θ) [52]. This can be improved in the model

selection and training process. The use of Bayesian inference in deep learning

models allows us to distinguish between these two types of uncertainty.

Bayesian models specify a predictive distribution over yet unobserved data:

p(y|D, x) =

∫
p((y|w, x)p(w|D)dw (4.7)

The above defines the probability for class label y given new input x and

dataset D [33]. In practice, this integral is either numerically intractable or

computationally infeasible. As a result, sampling methods must be used to

approximate the posterior distribution and hence the predictive distribution

over new data points. One such approach is Monte Carlo dropout [53]. This

provides stochasticity in a neural network by randomly ’turning off’ weights

in each layer. This can be viewed as a Bayesian approximation to represent

uncertainty.

An alternative solution to capturing uncertainty is variational inference. The

aim is to approximate the true posterior distribution of each weight in the

56

network using an equivalent distribution function q and a latent variable Z.

This approximating distribution q(x) is compared to the true posterior p(x)

using a form of KL divergence.

4.3 Bayes via Dropout

Dropout is a procedure in the back-propagation algorithm. It randomly drops

nodes in each layer of the network when re-calculation weights, which helps to

prevent over-fitting. It also acts as a way to quantify prediction uncertainty

when used during the evaluation phase as a form of ensemble learning. By

combining the results of multiple models, the ensemble average can be found

along with the variance in predictions. It is a convenient technique for quanti-

fying uncertainty, given its simplicity to learn and little knowledge required to

implement. However, it does not fully capture uncertainty in the model and

only serves as an indication of uncertainty. It also lacks some flexibility com-

pare to other methods described below which aim to provide a fully Bayesian

approach to back-propagation [54].

4.4 Stochastic Gradient Descent

The goal of Stochastic Gradient Descent is to converge to a point estimate of

the objective function while utilising noisy estimates of the gradient [55]. It is

commonly used in mini batch gradient descent where noise is commonly seen

in single batches. The parameter update rule for the movement can be written

as:

∆θt =
εt
2

(
N

2
∆ log(p(Dt, θt)) + ∆ log(p(θt))), (4.8)

where Dt is a minibatch sampled at time t from the complete dataset, D. εt

is the learning rate at time t, N is the size of the entire dataset and n is the

size of the current minibatch.

57

There are MCMC algorithms based on the SGD algorithm, which aim to ap-

proximate the posterior distribution. It is able to find each mode of a complex

posterior landscape, given sufficient running time. However, these methods

suffer from the same computational drawbacks as MCMC, where convergence

to the posterior often takes a large memory footprint and an infeasible length

of computation. For simpler deep learning models it is a common approach.

4.5 Bayes by Backprop

Proposed in 2015, Bayes by Backprop introduces an algorithm for learning the

probability distributions over the weights of a neural network [56]. The algo-

rithm is based on a form of variational inference, where the expected lower

bound (ELBO) is found to approximate the true posterior in an optimisa-

tion based approach. The Bayes by Backprop algorithm is described in the

following section.

4.5.1 KL Divergence

The Kullback-Leibler Divergence (KL divergence) is a measure of similarity

between two probability distributions. In Bayesian terms it is a measure of in-

formation gained when revising ones belief from a prior probability distribution

Q to the posterior probability distribution P , or the amount of information

lost when Q is used to approximate P . To find a distribution Q which is closest

to the posterior P , we aim to minimise the KL divergence [57]. The measure

originated from information theory, where a common metric in information

encoding is Entropy:

H = −
N∑
i=1

p(xi)× log p(xi) (4.9)

The above formula is modified to add an approximating distribution q, and

the log difference is taken between each:

58

DKL(p||q) =
N∑
i=1

p(xi)× (log p(xi)− log q(xi)) (4.10)

This can be rewritten as the expectation of the log difference between p & q:

DKL(p||q) = E[log p(x)− log q(x)] (4.11)

DKL(p||q) =
N∑
i=1

p(xi)× log
p(xi)

q(xi)
(4.12)

Take two distributions P and Q. P is a binomial distribution with parameters

N = 2 and p = 0.4. Q is a discrete uniform distribution with parameter

p = 1/3. The KL divergence between the two distributions is calculated as

follows:

DKL(P ||Q) =
∑
x∈X

P (x) ln(
P (x)

Q(x)
) (4.13)

=
1

25
(32 ln(2) + 55 ln(3)− 50 ln(5)) ≈ 0.0852996 (4.14)

DKL(Q||P) =
∑
x∈X

Q(x) ln(
Q(x)

P (x)
) (4.15)

=
1

3
(−4 ln(2)− 6 ln(3) + 6 ln(5)) ≈ 0.097455 (4.16)

The above shows that the KL divergence is not a symmetrical formula and

depends on the order in which P and Q are specified.

4.5.2 Variational Inference

As we cannot model the posterior P (w|D) directly, we instead find the param-

eters θ of a distribution q on the weights, denoted as the variational posterior

q(w|θ). We aim to minimise the KL divergence with the true posterior [58].

This is expressed as:

= arg min
θ

KL[q(w|θ)||P (w)]− Eq(w|θ)[logP (D|w)] (4.17)

59

This is known as the variational free energy. The first term is the KL divergence

between the variational distribution q(w|θ) and the prior on the weights p(w),

and is known as the complexity cost. The second term is the expected value of

the likelihood w.r.t. the variational distribution, and is known as the likelihood

cost. We can rearrange the first term to obtain the loss function as follows,

defined as the expected lower bound (ELBO):

F (D, θ) = KL[q(w|θ)||P (w)]− Eq(w|θ)[logP (D|w)] (4.18)

= F (D, θ) = Eq(w|θ) log(q(w|θ)− Eq(w|θ) log p(w)− Eq(w|θ) log p(D|w)

(4.19)

In practice, we sample from the variational distribution q(w|θ), as all three

terms are expectations w.r.t. the variational distribution. Monte Carlo sam-

pling is used to draw samples w(i) from the variational posterior:

F (D, θ) ≈
N∑
i=1

[log q(w(i)|θ)− log p(w(i))− log p(D|w(i))] (4.20)

4.5.3 Reparameterisation

The local reparameterisation trick moves the parameters to be learned, µ and

θ, out of the distribution function for any weight w. A new parameter ε

is defined as a sample of a standard Gaussian distribution [56]. It is then

multiplied by σ and µ is added:

θ = (µ, σ2) (4.21)

ε ≈ N(0, 1) (4.22)

f(ε) = w = µ+ σ × ε (4.23)

The above two parameters of interest are incorporated into every weight value

in the network. They are learned according to the following:

60

∆µ =
∂f

∂w
+
∂f

∂µ
(4.24)

∆σ =
∂f

∂w

ε

σ
+
∂f

∂σ
(4.25)

µ (4.26)

4.5.4 Gaussian Variational Posterior

A sample of the weights w can be obtained by sampling a unit Gaussian,

shifting it by mean µ and standard deviation σ. The standard deviation is

parameterised by θ = log(1 + exp(p)), thus ensuring that it is always positive.

The variational parameters are θ = (µ, p). The sample of weights hence be-

comes w = t(θ, ε) = µ+ log(1 + exp(p)) · ε, where · is pointwise multiplication.

The algorithm proceeds as follows to update the variational parameters µ and

p [56]:

1. Sample ε N(0, 1)

2. Let w = µ+ log(1 + exp(p)) ◦ ε

3. Let θ = (µ, p)

4. Let f(w, θ) = log q(w|θ)− logP (w)P (D|w)

5. Calculate the gradient with respect to the mean as ∆u = ∂f(w,θ)
∂w

+ ∂f(w,θ)
∂µ

6. Calculate the gradient with respect to the standard deviation parameter

p as ∆p = ∂f(w,θ)
∂w

ε
1+exp(−p)

∂f(w,θ)
∂ε

7. Update the variational parameters as µ← µ− α∆µ, p← p− α∆p

4.5.5 Prior Distribution

A simple Gaussian distribution can be used to define the prior:

61

P (w) =
∏
i

N(wi|0, σ2
p) (4.27)

logP (w) =
∑
i

logN(wi|0, σ2
p) (4.28)

Alternatively, [56] recommends a Gaussian scale mixture prior, defined as the

weighted sum of two zero-centered Gaussian distributions. The variance of the

second mixture component is smaller than the first, giving a heavier tail in the

prior density than a plain Gaussian prior. This is found to concentrate many

of the weights around zero.

P (w) =
∏
i

(πN(wi|0, σ2
1) + (1− π)N(wi|0, σ2

2)) (4.29)

logP (w) =
∑
i

log(πN(wi|0, σ2
1) + (1− π)N(wi|0, σ2

2)) (4.30)

π, σ2
1, σ

2
2 are hyperparameters and are not learned during training. The vari-

ational posterior is a Gaussian distribution with mean vector µ and variance

vector σ2:

q(w|θ) =
∏
i

N(wi|µ, σ2) (4.31)

log q(w|θ) =
∑
i

logN(wi|µ, σ2) (4.32)

4.5.6 Network Training

During each forward pass (epoch) in the model, a sample is drawn from the

variational posterior distribution. The cost function is evaluated against this

sample, with the likelihood term being evaluated at the end of the forward pass.

During the backpropagation process, the gradients of µ and σ are calculated

so that their values can be updated. For numeric stability, the network is

instead parametrized with p and transformed with the softplus function to

obtain σ = log(1 + exp(p)). This step ensures that σ is always positive.

62

0.00

0.25

0.50

0.75

1.00

1.25

-2 0 2

Mean

P
ro
b

Figure 4.1: Weight One

0.00

0.25

0.50

0.75

1.00

1.25

-2 0 2

Mean

P
ro
b

Figure 4.2: Weight Two

Above is an example of two randomly sampled weights, showing the initial

prior in dark grey against their subsequent distributions across each batch of

100 epochs in increasing shades of blue. The final model at 300 epochs is shown

in dark blue. Each weight can be seen to converge to its posterior distribution

along with a decreasing standard deviation.

4.5.7 Prediction Uncertainty

To obtain a credible interval over the prediction, samples are drawn from the

variational posterior distribution, which approximates the true posterior. For

each of these samples a prediction is calculated and the mean and standard

deviation is found. The standard deviation is used to calculate a credible

interval over each point prediction. In regions of the dataset with high un-

certainty, either through a large variation in observed data or a lack of data

points, this uncertainty is represented through a wide credible interval. This

effect is shown in Figure 4.3.

63

Figure 4.3: The variation in prediction uncertainty across regions of a dataset

4.6 Bayesian Deep Learning in PyTorch

There are several Python libraries which use the Bayes by Backprop algorithm

to create a distribution over weights in the model. One such library is Blitz

[59].The library provides an example of an LSTM model utilising Bayesian

layers, shown below. The closing stock price for IBM is predicted for the final

750 days given 11 years of historical data. The results are shown in Figure 4.4.

64

Figure 4.4: The predicted vs actual stock price for IBM across 750 days, and

the 90% credible interval shown in green

4.6.1 LSTM Model on Delay Data using Blitz

Delay for the section of Wairere Drive in Hamilton City (from Resolution Drive

to River Rd) was evaluated with a 90% credible interval. The model was run

across 300 epochs with a batch size of 8. These parameters were chosen after

testing the validation dataset across a range of hyper-parameters and choosing

an optimal point between computation time and model accuracy.

65

Figure 4.5: Predicted vs actual delay for Wairere Drive, with predicted delay

shown in red

The model accurately predicts inter-peak volumes and manages to capture the

general trend in the data. However, it under-predicts the peaks. It also appears

to predict a significant PM peak on Sunday, although it accurately predicts the

low delay seen on Saturday. The 90% credible interval is sufficiently narrow

and correctly models greater uncertainty in the peak periods where delay can

vary by significant levels.

66

4.7 Summary

Bayesian Inference in Deep Learning can be accomplished with several models,

including Dropout ensembles, MCMC, and Variational Inference. In practice,

dropout is a common method to easily obtain an idea of model uncertainty

through ensemble averaging. However, it does not fully capture model uncer-

tainty. MCMC is commonly used in statistical inference models, but when

applied to deep learning models quickly becomes infeasible computationally.

Variational Inference allows uncertainty to be modelled in a deep learning

framework through an optimisation approach. While it does not model the

true posterior in the case of MCMC, it offers a sufficient approximation in

most deep learning models and can be achieved with less computation time.

Chapter 5

Transportation Data

A transport network consists of a number of intersections and roads connecting

the intersections. It carries different modes of traffic to and from zones, defined

as origins and destinations. Hamilton City collects a variety of data on the

use of the network. One such dataset is traffic volumes. This is collected in a

variety of ways. One method is using sensors embedded in lanes of signalised

intersections, also know as detectors [60]. These detectors record the count

of vehicle passing over them. Typically, this data is aggregated to a count

of vehicles at a given intersection (site) or road (link). Another method for

recording volumes is with pneumatic tubes [61]. These typically take the form

of rubber tubes laid across a roadway, and are also able to record vehicle

classification via the gap between axles as well as speeds. It is best practice

to collect data on every main transportation mode - heavy vehicle, bus, light

vehicle, cyclist, pedestrian, or micro-mobility device. This data is commonly

used to inform mode share, defined as the proportion of each mode using a given

part of the network. In recent times there has been an increasing focus on cities

to change the observed mode share to see increased volumes of certain modes

such as cyclists and scooters. Following an infrastructure intervention such as

cycleway or shared path, the goal is to increase the volume of cyclists and/or

pedestrians, resulting in a mode share shift towards these modes and away from

vehicles. In areas where pedestrians are prioritised such as a central business

68

district, measures such as raised platforms, signalised pedestrian crossings, and

off street pathways are used to encourage walking while discouraging vehicular

thoroughfare [59].

Another dataset commonly used in transportation analysis is travel times.

This data can be collected in a variety of ways including cameras, Bluetooth

sensors and number plate recognition. HCC uses a system called AddInsight

[18] which utilises Bluetooth sensors to detect devices in vehicles and record

the travel time between sites in the network. This data is recorded as the travel

time on a given link. An attribute called delay is then calculated based on the

observed travel time. It is typically the difference between an expected travel

time and the observed travel time. If a vehicle is expected to take x seconds

to travel along a link and it is observed to have taken y seconds, the delay d

is calculated as d = y − x. Travel time data is an important data source in

major cities and provides vital information on the performance of the transport

network. It is used to alert operators to high levels of delay, which may be

caused by a variety of factors such as a crash, unusually high traffic volume,

or a traffic signal fault. The historical data allows for analysis of the trends in

delay on each part of the network, which when paired with equivalent traffic

volume data provides insight into how the network is changing in accordance

with increased population growth and new developments for both housing

and employment. By identifying parts of the network with high delay, action

such as traffic signal optimisation, construction of roundabouts or signals, and

future road planning can be carried in out a more informed manner.

5.1 AddInsight Delay Data

Addinsight is an Intelligent Transport System (ITS) that collects floating car

data from road network deployed hardware and performs vehicle re-identification,

allowing for travel time calculation of individual vehicles and for road segments

69

(links). It then performs real time travel time prediction based on historical

data so that unusual congestion is reported as a possible incident. This travel

time data is saved to a database to allow for analysis of trends and patterns.

As of June 2021, HCC has deployed 170 sensors across all collector, arterial

and state highway roads (Figure 5.2). The connections between these sensors

follow road segments in a directional manner. There are approximately 570

links within the city boundary, with the majority recording travel time data

since November 2018. In addition to travel time and delay data, the identi-

fication of vehicles allows for tracking journeys across the network, including

their origin and destination to a block granularity. This data provides a better

understanding of how vehicles travel around the transport network. For each

link in the network, the AddInsight software is able to show which roads were

used to get to the given link, as well as where those journeys subsequently

travelled to. This data can be potentially be used in a spatio-temporal deep

learning model for analysing the effects of interruptions on the network such

as closures or crashes. Refer to Section 7 for more detail and model results.

Recording travel times requires sensors mounted along the road where each

vehicle/probe can be detected and report back a unique identifier. When a

probe is detected again at a different location (re-identified) the travel time

and speed can be calculated by comparing the time at which the probe was

detected by both sensors. Addinsight sensors in Hamilton City supports MAC

addresses from Bluetooth devices such as car stereos, with new detection types

such as BT-LE (Bluetooth Low Energy) and Wi-Fi currently being explored.

Analysis of the capture rate currently shows 20% of vehicles on the network

are being detected with AddInsight sensors. This capture rate is shown in

Figure 5.1. The red bars show the count of vehicles captured using AddInsight

sensors, with the teal bars showing the total volume of vehicles captured using

in ground detectors (via the SCATS system). The technology is able to capture

a consistent rate of vehicles across a week.

70

Figure 5.1: The capture rate of two links on Tristram St in the Hamilton CBD

Date Link ID Travel Time Delay

1/6/2021 16:45 304 273 195

1/6/2021 17:00 304 316 238

1/6/2021 17:15 304 389 311

Table 5.1: An example of travel time and delay data recorded by AddInsight

Table 5.1 shows a sample of recorded travel time and delay for the link between

Pukete Rd and River Rd, via Wairere Drive. Both travel time and delay are in

seconds. Note that the free flow travel time for this link is 78 seconds, with the

recorded delay calculated as the free flow time subtracted from the observed

delay.

71

Figure 5.2: AddInsight Network, showing links (blue lines) and sensors (orange

dots)

5.2 AddInsight Traffic Graph

The site and link structure of the AddInsight network in Hamilton City is

naturally represented as a graph G = V,E with N nodes vi ∈ V and edges

(vi, vj) ∈ E. The connections between nodes are defined with an adjacency

matrix A ∈ RN×N , in which each element Ai,j = 1 if there is an edge connecting

node i and node j. See Figure 5.3 for an example of a generic graph. The

number of edges that must be traversed to travel from node a to node b is

called the number of hops - for example node 3 below is 2 hops from node 1,

as there is first a traversal from node 1 to node 2, followed by a traversal from

node 2 to node 3. The set of nodes which required k traversals from a given

node a is known as the set of k-hops for node a. Links which feed into a given

link are denoted as upstream links, while those which follow on from a given

link are denoted as downstream links. Each node a has a set of i nodes at

k = 1...n traversals, where n is the furthest number of traversals required to

reach any other node in the network, for node a. In terms of spatial influence,

72

it is expected that nodes at set k = 1 will influence node a at the next recorded

time interval, with increasing values of k will influence the node at increasing

time interval lengths. Additionally, if data is not recorded for a certain set, a

model which utilises the graph structure will lack information that could be

used to inform a prediction y for a given node at time t. This effect is explored

further in Section 7.

Figure 5.3: A graph of nodes and edges, with an attribute attached to each

edge.

5.3 Northern Links Model

To analyse the effect of links which lack spatial information in the GC-LSTM,

a subset of links in Hamilton City was first used in the GC-LSTM model.This

subset was taken as the set of links above the cross-city connector, or the

section of Whatawhata Rd beginning at Newcastle Rd to the western end of

Fifth Ave meeting Wairere Drive (Figure 5.4). The data for the links bordering

the cross-city connector does not include any links to their south, or at k = 1

hop. Some links at one traversal north from this set are lacking data from links

at k = 2 hops. As the value of k increases, the influence of the missing data

will decrease due to higher weighting given to direct upstream and downstream

links. Figure 5.5 shows the set of links in the northern model with missing

data at k = 2 hops. Section 7.3 provides an analysis of the northern links

model against the performance of the full model, in which the links directly

73

above the cross-city connector have additional spatial information.

Figure 5.4: The green links are the spatial extent of the northern model, while

links in white are excluded

Figure 5.5: Links with missing data at k = 2 hops

Chapter 6

Data & Measures

6.1 Delay Data

The delay on a link (road segment) is dependent on a number of factors, due

to the complex spatio-temporal interaction of traffic. A given link is influenced

by its set of upstream links, and in turn influences its own downstream links.

Each upstream link has a different weighting which varies across the day.

In addition to the spatial correlation present in the road network, the delay at

a given time ti at a link Ln is determined by the sequence of delay at times

T = ti−1, ti−2, ..., ti−n. To accurately determine the delay at a given link and

time of day, both the graph structure and short term time series data need

to be considered. This can be achieved by the use of a neural network which

integrates both convolutional and recurrent layers.

75

0

25

50

75

00:00:00 10:00:00 20:00:00

Time

A
v
e

ra
g

e
 D

e
la

y
 (

s
e

c
o

n
d

s
)

Figure 6.1: Observed delay on Wairere Drive, showing a large morning peak

Eight weeks of data were extracted for the entire network of sensors in Hamil-

ton City, from August 1, 2019 to September 30, 2019. The data is in fifteen

minute intervals for each link, for a total of 533 links. The variables present

in the model are the time interval, link ID, travel time (seconds) and delay

(seconds), with the latter two being an average of all observations in the given

interval.

Date ID TravelTime AverageDelay

01/07/2019 07:00 442 110 21

01/07/2019 07:15 442 112 23

01/07/2019 07:30 442 118 29

01/07/2019 07:45 442 121 32

01/07/2019 08:00 442 120 31

Table 6.1: An example of recorded data from the AddInsight system used in

the GC-LSTM model

The average delay is subsequently adjusted to a new variable named ’pro-

76

portional delay’, which scales the observed delay according to an adjusted

expected delay. This expected delay is calculated as the median of all mini-

mum travel times over a month in the given fifteen minute period. This gives

a more reasonable value for a ’baseline’ travel time, due to the expected travel

time present in the data showing erroneous values in times with little traffic.

The delay variable is then recalculated as the difference between the observed

travel time and adjusted expected travel time. The proportional delay is then

calculated as a scaled variant of the delay:

dp =
t

t− d
− 1 (6.1)

where d = the adjusted delay based on the re-calculated expected travel time,

and t = the observed travel time in the given time period. This adjusted delay

in shown in Table 6.2.

Date ID PropDelay

01/07/2019 07:00 371 0.462

01/07/2019 07:15 371 0.477

01/07/2019 07:30 371 0.492

01/07/2019 07:45 371 0.543

01/07/2019 08:00 371 0.527

Table 6.2: Adjusted delay (proportional delay) for Link 371

6.2 Accuracy Measures

Two accuracy measures are defined to evaluate the results of the model. The

first is the MPE, or mean percentage error. This is defined as:

MPE =
1

N

n∑
i=1

yt − ŷt
yt

∗ 100%, (6.2)

77

where yt is the observed delay and ŷt is the predicted delay. A positive value

indicates a trend towards over-prediction in the model, while a negative value

indicates under-prediction. Additionally, an additional measure is defined as

the percentage of predictions within 10% of the observed delay. 10% is the

approximate and acceptable error rate for the recording of traffic volume and

delay, and therefore is chosen as the target range for which the majority of

predictions should be within. This accuracy measure is referred to as P .

Chapter 7

Results

The optimal number of epochs was set by running the model for 500 epochs

and plotting the validation loss. The convergence point was determined to be

300 epochs, at which point the decrease in validation loss is outweighed by

the increased computation time. Each epoch took between 55 seconds and

one minute to run, for a total running time of approximately 190 minutes.

The total dataset used was Monday September 2, 2019 to Friday September

27, 2019. Weekends were included, as the model is able to pick up the re-

curring pattern of the difference in delay between weekdays and weekends.

The prediction range was the final day of the four week range, with the first

two weeks used to train the model and the following thirteen days used as a

validation set. The learning rate was set to 1e-5, which was chosen through

running the model over a range of learning rates and evaluating the validation

set accuracy. The batch size was set to 48 after running the model through a

number of batch sizes from 16 to 96, and evaluating the balance of validation

loss against computation time. See Section 7.3 for more detail on batch size

optimisation.

79

Model Peak MPE P

LSTM AM 0.22 74.3%

LSTM Inter 0.06 87.1%

LSTM PM 0.13 74.2%

GC-LSTM AM 0.12 80.4%

GC-LSTM Inter 0.05 88.6%

GC-LSTM PM 0.11 79.7%

Table 7.1: Results for the full GC-LSTM model

Table 7.1 shows the results for both the LSTM model and the full GC-LSTM.

Overall, the model performed well across all times of day, with an MPE close

to zero and the majority of the predictions within an acceptable +/- 10%

error rate. The GC-LSTM model outperformed the LSTM for all time ranges,

highlighting the increased precision when incorporating the spatial dependence

of the traffic network. The difference in accuracy between the LSTM and

GC-LSTM is highest during the peaks, showing that the links have a higher

influence on their downstream links during these time periods than in off-peak

periods.

80

0

2

4

6

8

0 2 4 6

Prop Delay

P
re

d
ic

te
d

 P
ro

p
 D

e
la

y

Predicted vs Actual Delay - GC-LSTM

Figure 7.1: Predicted vs actual values for the GC-LSTM

]

0

2

4

6

8

0 2 4

Prop Delay

P
re

d
ic

te
d

 P
ro

p
 D

e
la

y

Predicted vs Actual Delay - LSTM

Figure 7.2: Predicted vs actual values for the LSTM

A sample of the observed vs predicted delay is shown in Figure 7.1, with the

equivalent results for an LSTM shown in Figure 7.2. There is little evidence of

increasing variance and the observations are closely bound to the dotted line,

indicating high accuracy at all levels of delay. The point in the upper right

corner appears to be an anomaly caused by an incident on the road network.

81

0.00

0.02

0.04

0.06

-25 0 25 50

MPE

D
e

n
s
ity

Actual vs Predicted Delay - MPE Distribution

Figure 7.3: Distribution of the MPE across all links

Even at this high level of delay, the predicted value is extremely close to the

observed delay. In comparison, the LSTM also exhibits high accuracy but has

a higher variance and error than the GC-LSTM. As observed delay increases,

the LSTM model tends to overpredict, while the GC-LSTM model is still able

to predict accurately without clear over or under-prediction. These periods of

unusually high delay tend to occur as a flow on effect of an incident on the

network. This shows the value in using a model which is able to capture such

spatial dependencies. The GC-LSTM is able to capture delay seen on upstream

links, which then propagates through the network to the given link on Wairere

Drive. As described in Section 3.4, the model achieves this by assigning weights

to upstream links defined by the adjacency matrix and restricted by the K

parameter and FFR matrix. As these weights are another input into the

LSTM model, they can be trained through the back-propagation process, and

the model is subsequently able to capture the influence of upstream links on

any given link.

The distribution of the percentage error (MPE) between observed and pre-

82

dicted values (Figure 7.3) shows a normal distribution centred close to zero.

The majority of points are within the acceptable level of +/-10%. There are a

few observations with an over-prediction up to 73%, although this error occurs

predominantly for predictions on low levels of existing delay. In practice, such

a model is primarily used for prediction at high levels of delay, as the majority

of traffic delay analysis at HCC is conducted during peak times.

-20

0

20

40

0 2 4 6

Proportional Delay

M
P

E

Delay vs MPE

Figure 7.4: Observed proportional delay vs MPE

Figure 7.4 shows the observed delay against the MPE. High variance in the

MPE is seen at low levels of delay. This is to be expected, given the tendency

for the MPE measure to take on extreme values when the input is close to zero.

The absolute difference in observed vs predicted delay in this area is quite low,

and within the range of a few seconds in a real-world context. At high values of

observed delay, the MPE remains centered at zero. The observations with high

error values also occur for links with low levels of traffic and short roadway

lengths. Due to these attributes, these links experience a high variance in

observed delay.

83

7.1 Prediction on Wairere Drive

0

50

100

150

00:00:00 10:00:00 20:00:00

Time

A
v
e

ra
g

e
 D

e
la

y
 (

s
e

c
o

n
d

s
)

Type

Actual

Predicted

Resolution Drive to River Rd

Actual vs Predicted Delay - Wairere Drive 27/09/2019

Figure 7.5: Predicted vs actual delay on Wairere Drive, between Resolution

Drive and River Rd, on 27/09/2019

Prediction accuracy is evaluated on a key link (371) in the north of Hamilton

City (Figure 7.5). The link runs westbound from Resolution Drive to River

Rd. Its destination intersection, Wairere/River, is the busiest intersection in

Hamilton with a peak of 70,000 vehicles a day. The other approaches at this

intersection also experience high traffic volumes throughout the day, led by

significant population growth in the north of the city as well as proximity to

key shopping centres and employment zones. As a result, Link 371 experiences

significant delay in the morning peak.

The GC-LSTM model is able to capture this morning peak, as well as much

of the variance in delay in the remainder of the day. This is due to the spatial

information captured from downstream links where a morning peak was ob-

served at t − n minutes, n ∈ [5, 10, 15]. This demonstrates the improvements

in prediction accuracy in cases where there are occurrences on the network

not typically seen, caused by a number of factors in traffic flow such as an

84

unusually high volume, incidents, or road closures. This information can only

be captured in a model taking into account the spatial dependencies in the

network.

7.2 Quantifying Uncertainty

0.0

2.5

5.0

7.5

2000 2200 2400

Date

P
re

d
ic

te
d

 P
ro

p
o

rt
io

n
a

l D
e

la
y

Resolution Drive to River Rd via Wairere Drive, September 23rd-27th 2019

Predicted Delay with 90% Credible Interval

Figure 7.6: Predicted delay with 90% credible intervals shaded in grey

For any given link in the model, the upper and lower bounds at a specified

credible interval can be obtained. Above is the 90% credible interval for Link

371 on Wairere Drive, shown in grey shading. This link typically experiences

high delay in the school and PM peak. As seen above, the credible interval

remains at a similar width throughout the day, indicating high prediction

certainty even during peak periods. As the vast majority of traffic analysis is

carried out for these peak periods, having a narrow credible interval allows for

more certain decision making and accounting for possible variation around the

model prediction.

85

7.3 Northern Model

Table 7.2 shows the prediction accuracy of links in the northern model, for

links with missing spatial data at k ∈ (1, 2, 3), against the full GC-LSTM

model of all links in the network. There is a clear improvement in accuracy

for these links across all time periods, further highlighting the benefits of the

graph convolution operation.

Model Peak P

Northern AM 77.4%

Northern Inter 87.2%

Northern PM 76.8%

Full AM 80.4%

Full Inter 88.6%

Full PM 79.7%

Table 7.2: The P measure for the northern model and the full model, across

periods of the day.

86

7.4 Hyperparameters

0.743
0.781 0.794 0.804

0.0

0.2

0.4

0.6

0.8

0 1 2 3

K

P
P Measure by Levels of K Parameter

Figure 7.7: Model accuracy by levels of the K receptive field parameter. K = 0

is a standard LSTM.

0.00

0.02

0.04

0.06

-50 0 50 100

MAPE

D
e

n
s
ity

K (Receptive Field) One Two Three K One Two Three

MAPE Distribution by K Parameter

Figure 7.8: The MPE distribution by levels of the K parameter

Figure 7.7 (above) shows the change in P measured as the proportion of pre-

dictions within 10% of the observed delay, against varying levels of the K

87

parameter. K controls the receptive field in the model, and is equal to the

number of hops from a given link that the model is using to calculate spatial

weights. At K = 1, the model is using links directly connected to a given link.

At K = 2, the model is also including links at 2 hops from the link, and so on.

There is a large improvement in accuracy from one to two hops, and a smaller

gain at three hops. Beyond three, there is negligible improvement in the model,

and this is offset by a significantly longer running time. The number of links

used to model spatial dependency for a given link increases exponentially with

each increase in K, and therefore a balance is needed between model accuracy

and the size of the receptive field.

Figure 7.8 (above) shows the distribution of the MPE measure across each link

in the model. As K increases, the distribution decreases in variance and moves

closer to a mode value of zero.

AM Inter PM

0 1 2 3 0 1 2 3 0 1 2 3

0

25

50

75

100

K

P
e

rc
e

n
ta

g
e

 o
f

p
re

d
ic

tio
n

s
 w

ith
in

 1
0

%
 o

f
a

c
tu

a
l d

e
la

y

K Connectivity vs Predictions within 10%

Figure 7.9: P viewed against k-connectivity and peak periods

Figure 7.9 shows P against levels of K-connectivity, where k = 0 indicating

a link missing a direct upstream link, and k = 3 indicating a link missing an

upstream link at 3 or more k-hops. The inter-peak period of 10-11am is the

88

most accurate of the three peaks, while AM and PM exhibit similar accuracy.

As k-connectivity increases, the prediction accuracy slightly increases across

all three peaks, further highlighting the benefits of the GC-LSTM model over

the standard LSTM.

Iterations of the model were run from a batch size of 16 to 64. Smaller batch

sizes have a longer running time than larger batch sizes, although they typically

converge at a faster rate. Finding an optimal batch size must be a balance

between convergence time and model running time, and can vary substantially

between datasets and models. Figure 7.10 shows the convergence of rate of

three batch sizes.

0.00000

0.00025

0.00050

0.00075

0.00100

0 50 100 150

Epoch

V
a

lid
a

tio
n

 L
o

s
s

Type

48

64

96

Batch Size vs Validation Loss

Figure 7.10: Validation loss against three batch sizes of 48, 64 and 96

Additionally, the K parameter to set the size of the receptive field also has a

significant effect on model running time. A K value of three was determined

to be the optimal level, as increasing it further has minimal effect on accuracy

while substantially increasing the running time of the model.

89

0e+00

1e-04

2e-04

3e-04

4e-04

5e-04

0 100 200 300

Epoch

L
o

s
s

Training Loss

Figure 7.11: Training loss over 100

epochs

1e-04

2e-04

3e-04

4e-04

0 100 200 300

Epoch

L
o

s
s

Validation Loss

Figure 7.12: Validation loss over 100

epochs

Figures 7.11 and 7.12 show the validation loss of the model across 300 epochs.

The model had total running time of 335 minutes or 5 1/2 hours. Increasing the

size of the training dataset and reducing the batch size substantially increases

the learning time but only marginally improves the test accuracy of the model.

7.4.1 Summary

The GC-LSTM model demonstrates a noticeable improvement in prediction

accuracy over a standard LSTM. This highlights the strong spatial dependen-

cies present in the dataset, and corresponds with the intuition of traffic flow

propagation through the network. Links up to 3 hops from a given link have

an influence on delay, with links further upstream having a negligible effect.

The model is able to accurately capture high levels of delay in the AM and

PM peak, while the LSTM model is unable to capture the full extent of the

observed delay. In addition, periods of high delay which are not usually ob-

served on a link are able to be captured through the spatial structure of the

network, where this delay is first seen on links upstream in the network. A

credible interval can be constructed through the integration of Bayesian layers

in the network, which are able to produce probability distributions over each

weight and subsequent prediction in the model.

Chapter 8

Summary & Future Work

8.1 Summary

There is a vast quantity of transportation data recorded by RCA’s across all

modes of transport. In particular, traffic delay and volume is continuously

analysed in order to detect trends in traffic flow and identify areas of the net-

work with high levels of delay. Due to the complex spatio-temporal interaction

seen in traffic flow, models which take this interaction into account are best

suited to modelling traffic volume and delay on the network. This is demon-

strated by the use of a GC-LSTM model for Hamilton City to predict delay.

The model shows a clear improvement over a standard LSTM, and is able to

predict unforeseen changes in delay on links. Links up to three hops from a

given link are shown to have an influence on delay. By modelling the network

in a graph structure, these spatial dependencies can be captured and used in

the model.

By capturing uncertainty in the model predictions, greater confidence can be

given to decisions made from the model. Uncertainty can be captured in a deep

learning model by estimating the true posterior of each weight in the network.

This is done through the use of the Bayes by Backprop algorithm, which uses a

form of variational inference to optimise a variational distribution q(x) against

91

the true posterior, p(x). By maximising the evidence lower bound (ELBO),

an approximation to the posterior distribution is obtained. The result is a

probability distribution on each prediction in the model calculated from the

posterior distribution of weights in the model. A desired credible interval can

then be obtained.

The resulting GC-LSTM model with Bayesian layers offers a robust model for

predicting traffic delay in Hamilton City. The results can be analysed to gain

a better understanding of how traffic delay propagates through the network, in

addition to the spatio-temporal interactions present in the data. The proba-

bility distributions obtained on the predictions offer a level of confidence when

making decisions based on the data, and as a result better outcomes for the

community when planning infrastructure.

8.2 Imputation of Traffic Volume Data

The GC-LSTM framework can be extended to several models at HCC which

would benefit from a combined spatio-temporal approach. One such model is in

the imputation of traffic counts. At signalised intersections in Hamilton City,

inductive sensors in each lane records vehicle counts, in addition to algorithms

which control the timing of signal phases based on gaps between vehicles,

volumes, and approach prioritisation settings. The sensors will go offline on

occasion, resulting periods of missing data at random intervals and duration.

The data from these sensors is used to quantify the level of traffic on roads and

intersections, including the identification of peak periods, daily total volumes,

and long term trends in traffic volume. When analysing data from these sensors

it is important to be aware of missing data, as counts may be under-reported if

a daily total is calculated with the presence of missing data. It is expected that

the volumes recorded by other sensors at the same intersection are correlated

to some degree to the sensor with missing data. Additionally, sensors at nearby

92

intersections may have some degree of correlation and can be used to inform

the imputation of the missing data. Data from these sensors combined with

the historical data from the sensor with missing data can be used to improve

the current LSTM based model. An adjacency matrix can be constructed such

that sensors directly upstream or downstream from sensors at adjacent sites

can be marked as adjacent, as well as sensors at the same intersection. The

spatial weights generated from the GC-LSTM model can be used to further

inform traffic patterns on top of the historical time series data at the sensor

being imputed. The non-linearity of this model and complexity of the data

indicate that a deep learning model will be more appropriate over other spatio-

temporal prediction models. The data is recorded in five minute intervals at

over 1100 sensors at 113 intersections, resulting in millions of data points per

day. Each sensor may potentially use over a hundred parameters which are

correlated, as complex intersections have at least 24 sensors and up to 96

sensors at surrounding sites.

Figure 8.1: Periods of missing counts at an intersection in Hamilton, in five

minute intervals

Figure 8.1 shows the periods of missing data from 5pm to 12am on one day

at the Peachgrove/Te Aroha intersection. This intersection has 18 sensors,

although sensors 5 to 18 had a complete dataset and thus have been left out of

the chart for simplicity purposes. The second period of missing data at sensor

93

3 may be informed by the complete dataset at that time interval from the

remaining detectors. The second period of missing data at sensors 1, 2 and 3

may be informed by the present data at detector 3 along with the remaining

detectors 5 to 18. While the historical time series data at a given sensors may

be sufficient in many cases to accurately impute the data, often the sensors

will be offline for extended periods. In this case, an LSTM model is expected

to underperform in comparison to a GC-LSTM model, which is able to utilise

data from nearby sensors to enhance the prediction.

8.3 Prediction of the effect of road closures

Road closures are a recurring necessity in urban areas. Transportation in-

frastructure must be regularly maintained in order to keep a high standard

of roads, footpaths and supporting infrastructure. It is often the case that

a full road closure is the preferred option to minimise the duration of works

and carry it out to an acceptable standard. When closures are carried out on

vital roads in the network this has a significant flow on effect to surrounding

roads [62]. In addition to the posted detour route, drivers will often seek out

alternative routes if the closure is for an extended period of time. These alter-

native routes before the closure see a certain level of traffic volume and delay

and often have little variation in these variables. A small change in volume

can have a significant effect on resulting delay, and a further effect on delay for

the remaining journey. Currently the effect of such infrastructure changes are

determined by a land use transport model. However, this model is designed

to work on a macro level and is only able to model large scale effects of new

infrastructure. It also does not have the ability to use observed sensor data to

capture what is currently happening on the network.

The ability to predict the change in traffic volume and delay and surrounding

roads will be beneficial for HCC when planning road closures. For example, if

94

a certain increase in delay is expected on a road perpendicular to a planned

closure (as it is likely a preferred alternative route), signals on that route can be

adjusted in advance to prepare for the increased traffic volume. Determining

the likely routes to be taken by vehicles in the presence of a road closure is

often complex, as it is related to the destination of each individual’s journey.

People will often make a route choice based on a combination of expected traffic

volume, delay, and the shortest distance to their destination. AddInsight data

records individual vehicle journeys through the network including their origin

and destination (to a block level). Given vehicles that travel through a certain

section of road, the destination of these vehicles can be analysed and used

as an input into the likely alternative routes. This data can also be used to

plan the posted detour route. Given the ability of a GC-LSTM model to use

data from upstream links to inform a given link’s delay, this may extend to

analysing the effects of closing a link (road). The direct upstream links to a

closed link are expected to see a significant increase in delay. The volume from

these links is now distributed across alternative downstream links to the one

which is closed. The proportion of this traffic is often not shifted evenly to

these links, and will vary by the time of day. If most traffic in the morning

peak uses the closed link to travel into the CBD, and the CBD is located to

the south-east of the link, the traffic is expected to shift to the links which will

have less travel time to the CBD. Depending on the structure of the network,

this may be the set of links directly east of the closed link, or it may be a

different set of links with more capacity and higher speed limit. This complex

interaction and shift in traffic volume may be modelled in a deep learning

approach, with the spatio-temporal effects captured by a GC-LSTM model.

A future application of the GC-LSTM model described in this report will be

adapting it to analyse and predict the effect of road closures. The model will

be trained on the historical dataset of road and lane closures in order to cap-

ture the resulting change in delay on the network. The journey data will be

95

investigated in this process, and modelled in such a way that for a given link

and time of day, the most common destinations can be captured and used as

an input into the model. There are a large number of planned road closures

in Hamilton City over the next few years, resulting from an increased focus in

the long-term plan to shift mode share (the distribution of transport modes

used for a journey) and increase maintenance on the road network. Several of

these closures have resulted in negative feedback by the public, often alongside

statements that sufficient analysis has not been carried out to quantify the ef-

fects of a closure [63], [62]. The ability to understand the likely increase in

volume and subsequent delay on surrounding roads is hugely beneficial when

consulting on such changes with the public. Additionally, the bayesian infer-

ence used in the delay prediction model can be applied to the road closure

model to quantify the uncertainty on the predictions. Obtaining a probability

distribution on traffic volume and delay change will allow staff to make de-

cisions of road closures with more confidence, and allows for accounting any

variance seen from the prediction following the closure. Currently, estimates

on traffic volumes are provided as a single figure with no allowance for any

variation around the estimate. A Bayesian model allows for the creation of a

credible interval around each prediction and the formation of statements using

a chosen probability percentage.

8.4 Mode Share Quantification

Waka Kotahi/NZTA has developed a plan to grow the usage of public trans-

port, cycling and walking as alternative modes of transport [64]. This is

known as mode shift. The percentages of journeys using a certain type of

transportation is known as mode share [65]. Shifting mode share towards al-

ternative modes (public transport, walking, cycling, and micro-mobility) has

been passed on from Waka Kotahi to city councils to incorporate in their long

term plans. As a result, shifting mode share is a priority for HCC and has been

96

incorporated in future transportation projects [66]. Cycleways, shared paths,

bus lanes, and suitable walking infrastructure are now considered in all major

infrastructure projects along with the ability to collect data on each mode to

quantify the shift in mode choice. Two systems have been recently deployed to

classify transportation modes on the network. The first, Briefcam, is able to

classify different types of vehicles, pedestrians, and cyclists. The second, MAP

counters, will be deployed roadside and on shared paths. They will count and

classify pedestrians, cyclists, micro-mobility (scooters and skateboard), and

wheelchair users. The rollout of these devices will result in over 100 devices on

the network recording data on each transportation mode. This is in addition

to SCATS detectors for recording vehicle volumes, AddInsight for recording

delay and sample volumes, and before/after surveys done to support projects.

This vast amount of data can be used to quantify mode share on the network,

although this can only be done to a high level of accuracy in the locations

where the devices are deployed. A GC-LSTM may be used to extend mode

share estimation to parts of the network with only a subset of observed data.

For example, areas of the transport network near those with high cyclist usage

are expected to be correlated in some way, depending on the supporting infras-

tructure. Additionally, quantifying the uncertainty in mode share estimation

is important when making decisions based on the data. A narrow credible

interval allows for more confidence when reporting on observed mode share,

and also allows for ruling out a non-significant change in the share of certain

modes if a change is observed.

97

Figure 8.2: Mode share of active modes on Rostrevor St, during its closure in

May and June

Figure 8.2 shows the mode share on a closed road in the Hamilton CBD over

a Wednesday. The mode share for cyclists is highest during the morning and

evening peaks, while pedestrians dominate at midday.

References

[1] Towards Data Science, “Perceptron learning algorithm: A graphical

explanation of why it works,” 2018. https://towardsdatascience.

com/perceptron-learning-algorithm-d5db0deab975.

[2] Srikumar, V., “The perceptron algorithm,” 2018. https:

//www.cs.utah.edu/~zhe/pdf/lec-10-perceptron-upload.pdf.

[3] Bhande, A., “What is underfitting and overfitting in machine

learning and how to deal with it,” 2018. https://medium.com/greyatom/

what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76.

[4] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow, 2nd Edition. Newton: O’Reilly Media, Inc., 2019.

[5] Jordan, J., “Setting the learning rate of your neural network,” 2018.

https://www.jeremyjordan.me/nn-learning-rate/.

[6] Ojha, S., Santos, K., “Implementing parallelism using different

architectures,”

https://shashank-ojha.github.io/ParallelGradientDescent/.

[7] Sreenivas, A., “Indian sign language communicator using convolutional

neural network,” 2020. https:

//www.researchgate.net/publication/343263135_Indian_Sign_

Language_Communicator_Using_Convolutional_Neural_Network.

[8] Colah, “Understanding lstm networks,” 2015.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[9] Dive into Deep Learning, “8.7. backpropagation through time,”

https://d2l.ai/chapter_recurrent-neural-networks/bptt.html.

[10] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural

networks on graphs with fast localized spectral filtering,” 2017.

[11] Real Statistics using Excel, “Graph theory,” https://www.

real-statistics.com/other-mathematical-topics/graph-theory/.

https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975
https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975
https://www.cs.utah.edu/~zhe/pdf/lec-10-perceptron-upload.pdf
https://www.cs.utah.edu/~zhe/pdf/lec-10-perceptron-upload.pdf
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://www.jeremyjordan.me/nn-learning-rate/
https://shashank-ojha.github.io/ParallelGradientDescent/
https://www.researchgate.net/publication/343263135_Indian_Sign_Language_Communicator_Using_Convolutional_Neural_Network
https://www.researchgate.net/publication/343263135_Indian_Sign_Language_Communicator_Using_Convolutional_Neural_Network
https://www.researchgate.net/publication/343263135_Indian_Sign_Language_Communicator_Using_Convolutional_Neural_Network
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://d2l.ai/chapter_recurrent-neural-networks/bptt.html
https://www.real-statistics.com/other-mathematical-topics/graph-theory/
https://www.real-statistics.com/other-mathematical-topics/graph-theory/

99

[12] Z. Cui, K. Henrickson, R. Ke, Z. Pu, and Y. Wang, “Traffic graph

convolutional recurrent neural network: A deep learning framework for

network-scale traffic learning and forecasting,” 2019.

[13] Hamilton City Council, “Transport choices and road safety,” 2021.

https://www.hamilton.govt.nz/our-services/transport/

movingaround/Pages/default.aspx.

[14] Infometrics, “Hamilton city economic profile,” 2020.

https://ecoprofile.infometrics.co.nz/Hamilton%2BCity/

Population/Growth.

[15] Hamilton City Council, “Annual report 2019/20,” 2020.

https://www.hamilton.govt.nz/our-council/

council-publications/annualreport/Documents/Annual%20Report%

202020-Final%20with%20initials.pdf.

[16] Wikipedia, “Level of service (transportation),” 2021. https:

//en.wikipedia.org/wiki/Level_of_service_(transportation).

[17] Hamilton City Council, “2021-31 long-term plan. (2021),” 2021.

https://www.hamilton.govt.nz/our-council/10-year-plan/Pages/

default.aspx.

[18] AddInsight, “Addinsight - traffic intelligence system,”

https://addinsight.com.au/.

[19] H. Rue, A. Riebler, S. H. Sørbye, J. B. Illian, D. P. Simpson, and F. K.

Lindgren, “Bayesian computing with inla: A review,” 2016.

[20] D. Townsend and C. Nel, “Traffic prediction at signalised intersections

using integrated nested laplace approximation,” 2021.

[21] D. Townsend, “Validation and inference of agent based models,” 2021.

[22] L. Jospin, W. Buntine, F. Boussaid, H. Laga, and M. Bennamoun,

“Hands-on bayesian neural networks – a tutorial for deep learning

users,” 07 2020.

[23] Wikipedia, “Transport network analysis,” 2021.

https://en.wikipedia.org/wiki/Transport_network_analysis.

[24] IBM, “Ibm - deep learning,”

https://www.ibm.com/cloud/learn/deep-learning.

[25] DeepAI., “Multilayer perceptron,” 2018. https://deepai.org/

machine-learning-glossary-and-terms/multilayer-perceptron.

https://www.hamilton.govt.nz/our-services/transport/movingaround/Pages/default.aspx
https://www.hamilton.govt.nz/our-services/transport/movingaround/Pages/default.aspx
https://ecoprofile.infometrics.co.nz/Hamilton%2BCity/Population/Growth
https://ecoprofile.infometrics.co.nz/Hamilton%2BCity/Population/Growth
https://www.hamilton.govt.nz/our-council/council-publications/annualreport/Documents/Annual%20Report%202020-Final%20with%20initials.pdf
https://www.hamilton.govt.nz/our-council/council-publications/annualreport/Documents/Annual%20Report%202020-Final%20with%20initials.pdf
https://www.hamilton.govt.nz/our-council/council-publications/annualreport/Documents/Annual%20Report%202020-Final%20with%20initials.pdf
https://en.wikipedia.org/wiki/Level_of_service_(transportation)
https://en.wikipedia.org/wiki/Level_of_service_(transportation)
https://www.hamilton.govt.nz/our-council/10-year-plan/Pages/default.aspx
https://www.hamilton.govt.nz/our-council/10-year-plan/Pages/default.aspx
https://addinsight.com.au/
https://en.wikipedia.org/wiki/Transport_network_analysis
https://www.ibm.com/cloud/learn/deep-learning
https://deepai.org/machine-learning-glossary-and-terms/multilayer-perceptron
https://deepai.org/machine-learning-glossary-and-terms/multilayer-perceptron

100

[26] Brooks-Bartlett, J., “Probability concepts explained: Maximum

likelihood estimation,” 2018. https://towardsdatascience.com/

probability-concepts-explained-maximum-likelihood-estimation-c7b4342fdbb1.

[27] Michael A. Nielsen, “Neural networks and deep learning, determination

press,” 2015. Accessed: 2021-04-01.

[28] Towards Data Science, “Epochs vs batch size vs iterations,” 2017.

https://towardsdatascience.com/

epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9.

[29] itdxer, “What is batch size in neural network? [online forum post],”

2018. https://stats.stackexchange.com/questions/153531/

what-is-batch-size-in-neural-network.

[30] Wikipedia, “Stochastic gradient descent,” 2021.

https://en.wikipedia.org/wiki/Stochastic_gradient_descent.

[31] Kathuria, A., “Intro to optimization in deep learning: Momentum,

rmsprop and adam,” 2018. https://blog.paperspace.com/

intro-to-optimization-momentum-rmsprop-adam/.

[32] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation

functions: Comparison of trends in practice and research for deep

learning,” 2018.

[33] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation

functions,” 2017.

[34] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a

convolutional neural network,” in 2017 International Conference on

Engineering and Technology (ICET), pp. 1–6, 2017.

[35] Britz, D. , “Recurrent neural networks tutorial, part 3 –

backpropagation through

time and vanishing gradients,” 2015. http://www.wildml.com/2015/10/

recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/.

[36] NAP. , “Multimodal transportation planning data: Compendium of

data collection practices and sources,” 1997.

https://www.nap.edu/read/6341/chapter/4.

[37] Waikato Regional Council, “Bee card - how it works,”

https://beecard.co.nz/Pages/HowItWorks.

https://towardsdatascience.com/probability-concepts-explained-maximum-likelihood-estimation-c7b4342fdbb1
https://towardsdatascience.com/probability-concepts-explained-maximum-likelihood-estimation-c7b4342fdbb1
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://stats.stackexchange.com/questions/153531/what-is-batch-size-in-neural-network
https://stats.stackexchange.com/questions/153531/what-is-batch-size-in-neural-network
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/
https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/
http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
https://www.nap.edu/read/6341/chapter/4
https://beecard.co.nz/Pages/HowItWorks

101

[38] S. V. Kumar and L. Vanajakshi, “Short-term traffic flow prediction

using seasonal ARIMA model with limited input data,” European

Transport Research Review, vol. 7, June 2015.

[39] Microsoft, “Forecasting with arima,” https://appsource.microsoft.

com/en-us/product/power-bi-visuals/wa104380888?tab=overview.

[40] Yin, X., Wu, G., Wei, J., Shen, Y., Qi, H., Yin, B. , “Deep learning on

traffic prediction: Methods, analysis and future directions,” 2020.

https://arxiv.org/abs/2004.08555.

[41] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-rnn: Deep

learning on spatio-temporal graphs,” 2016.

[42] X. Cheng, R. Zhang, J. Zhou, and W. Xu, “Deeptransport: Learning

spatial-temporal dependency for traffic condition forecasting,” 2019.

[43] Eswarsai, “Exploring different types of lstms,” 2021.

https://medium.com/analytics-vidhya/

exploring-different-types-of-lstms-6109bcb037c4.

[44] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A

survey,” 2021.

[45] Wikipedia, “Laplacian matrix,” 2021.

https://en.wikipedia.org/wiki/Laplacian_matrix.

[46] T. N. Kipf and M. Welling, “Semi-supervised classification with graph

convolutional networks,” 2017.

[47] ERoughgarden, T., Valiant, G., “Cs168: The modern algorithmic

toolbox lectures 11: Spectral graph theory, 1,” 2021.

https://web.stanford.edu/class/cs168/l/l11.pdf.

[48] Wikipedia, “Graph theory,” 2021.

https://en.wikipedia.org/wiki/Graph_theory.

[49] Gois, A., “Introduction to bayesian inference,” 2020.

https://towardsdatascience.com/

introduction-to-bayesian-inference-18e55311a261.

[50] C. P. Robert, “The metropolis-hastings algorithm,” 2016.

[51] T. Papamarkou, J. Hinkle, M. T. Young, and D. Womble, “Challenges

in markov chain monte carlo for bayesian neural networks,” 2021.

https://appsource.microsoft.com/en-us/product/power-bi-visuals/wa104380888?tab=overview
https://appsource.microsoft.com/en-us/product/power-bi-visuals/wa104380888?tab=overview
https://arxiv.org/abs/2004.08555
https://medium.com/analytics-vidhya/exploring-different-types-of-lstms-6109bcb037c4
https://medium.com/analytics-vidhya/exploring-different-types-of-lstms-6109bcb037c4
https://en.wikipedia.org/wiki/Laplacian_matrix
https://web.stanford.edu/class/cs168/l/l11.pdf
https://en.wikipedia.org/wiki/Graph_theory
https://towardsdatascience.com/introduction-to-bayesian-inference-18e55311a261
https://towardsdatascience.com/introduction-to-bayesian-inference-18e55311a261

102

[52] Laumann, F., “What uncertainties tell you

in bayesian neural networks,” 2019. https://towardsdatascience.com/

what-uncertainties-tell-you-in-bayesian-neural-networks-6fbd5f85648e.

[53] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:

Representing model uncertainty in deep learning,” 2016.

[54] L. V. Jospin, W. Buntine, F. Boussaid, H. Laga, and M. Bennamoun,

“Hands-on bayesian neural networks – a tutorial for deep learning

users,” 2020.

[55] C. Nemeth and P. Fearnhead, “Stochastic gradient markov chain monte

carlo,” 2019.

[56] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight

uncertainty in neural networks,” in Proceedings of the 32nd

International Conference on International Conference on Machine

Learning - Volume 37, ICML’15, p. 1613–1622, JMLR.org, 2015.

[57] Wikipedia, “Kl divergence,” 2021. https://en.wikipedia.org/wiki/

Kullback\OT1\textendashLeibler_divergence.

[58] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:

A review for statisticians,” Journal of the American Statistical

Association, vol. 112, no. 518, pp. 859–877, 2017.

[59] piEsposito, “Blitz - bayesian layers in torch zoo,” 2019.

https://github.com/piEsposito/blitz-bayesian-deep-learning.

[60] NSW, “Traffic signal design,”

https://roads-waterways.transport.nsw.gov.au/

business-industry/partners-suppliers/documents/guidelines/

complementary-traffic-material/tsdsect11v13-i.pdf.

[61] Diamond Traffic Products., “Road tube,”

https://diamondtraffic.com/technicaldescription/117.

[62] Stuff, “Pedestrian friendly city street - genius or folly?,” 2021.

https://www.stuff.co.nz/national/124980332/

pedestrianfriendly-city-street-closure--genius-or-folly.

[63] Stuff, “Five cross roads: Dozen of cross residents,” 2021.

https://www.stuff.co.nz/motoring/news/124889778/

five-cross-roads-dozens-of-cross-residents-road-closure-possibility-for-hamilton-cycleway-angers-residents.

https://towardsdatascience.com/what-uncertainties-tell-you-in-bayesian-neural-networks-6fbd5f85648e
https://towardsdatascience.com/what-uncertainties-tell-you-in-bayesian-neural-networks-6fbd5f85648e
https://en.wikipedia.org/wiki/Kullback\OT1\textendash Leibler_divergence
https://en.wikipedia.org/wiki/Kullback\OT1\textendash Leibler_divergence
https://github.com/piEsposito/blitz-bayesian-deep-learning
https://roads-waterways.transport.nsw.gov.au/business-industry/partners-suppliers/documents/guidelines/complementary-traffic-material/tsdsect11v13-i.pdf
https://roads-waterways.transport.nsw.gov.au/business-industry/partners-suppliers/documents/guidelines/complementary-traffic-material/tsdsect11v13-i.pdf
https://roads-waterways.transport.nsw.gov.au/business-industry/partners-suppliers/documents/guidelines/complementary-traffic-material/tsdsect11v13-i.pdf
https://diamondtraffic.com/technicaldescription/117
https://www.stuff.co.nz/national/124980332/pedestrianfriendly-city-street-closure--genius-or-folly
https://www.stuff.co.nz/national/124980332/pedestrianfriendly-city-street-closure--genius-or-folly
https://www.stuff.co.nz/motoring/news/124889778/five-cross-roads-dozens-of-cross-residents-road-closure-possibility-for-hamilton-cycleway-angers-residents
https://www.stuff.co.nz/motoring/news/124889778/five-cross-roads-dozens-of-cross-residents-road-closure-possibility-for-hamilton-cycleway-angers-residents

103

[64] NZTA, “Nzta - keep cities moving,” 2020. https://www.nzta.govt.nz/

walking-cycling-and-public-transport/keeping-cities-moving/.

[65] Wikipedia, “Modal share,” 2021.

https://en.wikipedia.org/wiki/Modal_share.

[66] Stuff, “Hamilton street to become cycle friendly,” 2021.

https://www.stuff.co.nz/waikato-times/news/125374725/

student-highway-suburban-hamilton-street-to-become-cyclefriendly-in-34m-bid-to-better-connect-university-with-city.

https://www.nzta.govt.nz/walking-cycling-and-public-transport/keeping-cities-moving/
https://www.nzta.govt.nz/walking-cycling-and-public-transport/keeping-cities-moving/
https://en.wikipedia.org/wiki/Modal_share
https://www.stuff.co.nz/waikato-times/news/125374725/student-highway-suburban-hamilton-street-to-become-cyclefriendly-in-34m-bid-to-better-connect-university-with-city
https://www.stuff.co.nz/waikato-times/news/125374725/student-highway-suburban-hamilton-street-to-become-cyclefriendly-in-34m-bid-to-better-connect-university-with-city

104

Appendix

!(

!(

!(
!(
!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(
!(!(

!(

!(
!(

!(!(
!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(
!(

!(

!(!(!(

!(
!(!(

!(!(

!(

!(

!(
!(!(

!(
!(
!(

!(!(
!(

!(
!(

!(!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(!(!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

Ruakura

Peacocke

Rototuna

Rotokauri

Temple View

23

39

26

Legend
CityBoundary

!(AddInsight Site
AddInsight Link

Figure 8.3: Complete map of the AddInsight Network within the Hamilton

City boundary. Links are in dark blue, sites are in orange.

	Introduction
	Motivation
	Background
	Aims of this thesis
	Thesis Structure

	Deep Learning
	Perceptron
	Multilayer Perceptron
	Hyperparameters
	Backpropagation
	Convolutional Neural Networks
	CNN Layers
	CNN Case Study - Traffic Peak Classification
	Hyperparameter Turning

	Recurrent Neural Networks
	LSTM Cell
	GRU Cell
	Case Study - Prediction of Traffic Delay

	Summary

	Spatio-Temporal Deep Learning for Transportation Networks
	Transportation Data and Analysis
	Deep Learning Models
	Traffic Graph
	Traffic Graph Convolution
	Traffic Graph Convolutional LSTM
	Regularisation
	Summary

	Bayesian Inference on Deep Learning
	Bayesian Inference
	Quantifying Uncertainty
	Bayes via Dropout
	Stochastic Gradient Descent
	Bayes by Backprop
	KL Divergence
	Variational Inference
	Reparameterisation
	Gaussian Variational Posterior
	Prior Distribution
	Network Training
	Prediction Uncertainty

	Bayesian Deep Learning in PyTorch
	LSTM Model on Delay Data using Blitz

	Summary

	Transportation Data
	AddInsight Delay Data
	AddInsight Traffic Graph
	Northern Links Model

	Data & Measures
	Delay Data
	Accuracy Measures

	Results
	Prediction on Wairere Drive
	Quantifying Uncertainty
	Northern Model
	Hyperparameters
	Summary

	Summary & Future Work
	Summary
	Imputation of Traffic Volume Data
	Prediction of the effect of road closures
	Mode Share Quantification

