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Abstract 

Milk is a complex and highly nutritive food. In Western societies, cow’s milk (CM) is most 

commonly consumed, but recent years have generated interest in milk from other species, 

especially in goat’s milk (GM). Importantly, select physical and chemical properties of milk 

are species-dependent and – thus – so are the physiological consequences of consumption of 

milk sourced from specific species. For example, variation between GM and CM protein 

impacts digestibility and gastrointestinal processes. Consumption of GM vs CM differentially 

affects levels of blood hormones regulating energy balance. Furthermore, some conflicting 

results on acceptability of GM- and CM-based foods have been reported, and it is unclear to 

what extent habituation to a specific milk type underpins these parameters. To add to the 

confusion, CM and GM are typically consumed and, therefore, studied as modified milk 

products, with one of the typical compositional alterations being done to the protein fraction in 

which the natural 20:80 whey:casein ratio is changed to resemble the 60:40 ratio of human 

milk. One of the most fundamental gaps in our knowledge regarding CM vs GM relates to the 

acceptability, palatability and satiating properties of these milks and to appetite-controlling 

brain processes triggered by CM and GM consumption. Thus, in this doctoral project, I sought 

to examine whether GM and CM diets elicit unique feeding responses in laboratory rodents 

and whether the presumed appetite differences are associated with changes in neuronal 

activation and/or gene expression in key central regions regulating food intake.  

In Specific Aim 1 of the project, I conducted a comprehensive investigation of short-term 

intake and palatability profiles of GM- and CM-based liquid and solid diets in mice and rats. 

Consumption was studied in no-choice and choice scenarios, including meal microstructure. 

Feeding experiments were followed by qPCR analysis of expression of relevant genes in the 

energy balance-related hypothalamus and brain stem, and in the nucleus accumbens, which 

regulates eating for palatability. I found that GM and CM are palatable to juvenile, adult, and 
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aged rodents. Given a choice, animals prefer GM- to CM-based diets. Analysis of meal 

microstructure using licking patterns points to enhanced palatability of and, possibly, greater 

motivation toward GM over CM. Most profound changes in gene expression after GM vs. CM 

were associated with the brain systems driving consumption for reward. The results allow me 

to conclude that, while both GM and CM are palatable, GM is preferred over CM by animals, 

and this preference is driven by central mechanisms controlling eating for pleasure. 

In Specific Aim 2 of the thesis, I investigated the impact of whey enhancement in GM protein 

fraction on appetite and feeding-related brain processes. The shift from the natural whey:casein 

ratio of ~20:80 in animal milks is done to match the 60:40 ratio of human milk. Studies show 

that 20:80 versus 60:40 whey:casein milks differently affect glucose metabolism and hormone 

release. It is unknown whether the 20:80-to-60:40 ratio adjustment affects appetite and brain 

processes related to food intake. In this set of studies I focused on the impact of the 20:80 vs 

60:40 whey:casein content in GM on food intake and feeding-related brain mechanisms in 

laboratory mice. I found that the 20:80 whey:casein GM formulation was consumed less avidly 

and was less preferred than the 60:40 GM in short-term choice and no-choice paradigms. The 

qPCR analyses in the hypothalamus and brain stem revealed that the 20:80 whey:casein GM 

intake upregulated genes involved in early termination of feeding and in an interplay between 

reward and satiety, such as MC3R, OXT, POMC and GLP1R. The 20:80 versus 60:40 

whey:casein GM intake differently affected brain neuronal activation (assessed through c-Fos, 

an immediate-early gene product) in the nucleus of the solitary tract, area postrema, 

ventromedial hypothalamic nucleus and supraoptic nucleus. Overall, the findings show that 

whey enhancement in GM promotes overconsumption of GM in no-choice and choice 

scenarios and that this increased appetite for the 60:40 GM is reflected by changes in neuronal 

activation and gene expression relevant to feeding regulatory mechanisms.  
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Specific Aim 2 results showing preference for whey-enhanced GM and corresponding changes 

in c-Fos and gene expression, do not predetermine whether the preference for the 60:40 milk 

would be retained if - instead of a highly palatable GM - a somewhat less preferred CM was 

used. Thus, in Specific Aim 3, I replicated the aforementioned feeding, gene expression and c-

Fos analyses using CM with the 20:80 vs 60:40 whey:casein. I found that mice exhibited 

preference for the 60:40 over 20:80 whey:casein CM. This preference for the 60:40 CM was 

retained even when animals had simultaneous access to the 20:80 GM. Consumption of similar 

quantities of 20:80 CM vs 60:40 CM differently affected c-Fos in the paraventricular, 

dorsomedial, arcuate and lateral hypothalamic nuclei and in the nucleus of the solitary tract in 

the brain stem and relative gene expression (melanocortin and opioid transcripts). It can be 

concluded that the 60:40 whey:casein milks are more preferred regardless of the species from 

which the milk was derived, indicating that whey:casein ratio influences preference. 

Mechanistic commonalities in the whey:casein ratio changes in CM vs GM include the 

hindbrain neuronal activity changes. Differences in hypothalamic c-Fos and gene expression 

as well as differences in no-choice feeding paradigms indicate that milk type (GM vs CM) 

influences some aspects of feeding processes driven by the shift in the whey:casein ratio. 

Overall, the data presented in this thesis indicate that GM is generally more preferred and it 

has higher acceptance than CM in laboratory animal models. This phenomenon is reflected by 

unique changes in feeding-related brain processes induced by GM vs CM. Whey enhancement 

increases preference toward milk and this effect on consumption is more profound than the 

effect of the species from which the milk was derived. In a broader context, one has to consider, 

however, that whey enhancement’s impact on feeding, brain activation and molecular 

responses might – if sustained over a longer time period - have metabolic consequences. 
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Chapter 1 

Introduction and Aims 

Food provides the necessary nutrients required for cellular respiration and function as well as 

for tissue growth and repair. When we are low in energy or specific nutrients, internal 

physiological mechanisms, including hormonal release altering brain activity, promote the 

sensation of hunger to encourage food intake. Following intake, the digestion and absorption 

of nutrients trigger alternative endocrine and neural pathways to produce satiation and attenuate 

feeding. If a food is particularly palatable, reward-related pathways will promote intake, even 

beyond the point of satiation. Foods have different compositions providing variable nutrient 

density, digestibility and complexity, which will inform the nature of the physiological 

response experienced following their intake. A foods’ specific macronutrient content, nutrient 

bioavailability and palatability will elicit unique hormonal release influencing peripheral 

systems as well as stimulating disparate pathways in the brain. These pathways create the 

sensations of hunger, satiety and reward shaping our food intake behaviours. In this way, the 

food we eat can influence what and how much we eat. 

Milk is a nutrient-complex food, primarily providing energy, macro- and micronutrients during 

infancy but which is also consumed frequently in child and adult diets in industrialised areas 

worldwide (Feskanich et al., 2003; Drewnowski & Specter, 2004; Chevalley et al., 2008; 

Drewnowski, 2011; Vissers et al., 2011; Huth et al., 2013; Cheng et al., 2019). Cow’s milk 

(CM) predominates the western milk market, accounting for approximately 82% of global milk 

production (Food and Agriculture Organization of the United Nations, 2018). Consequently, 

the majority of our understanding of the consequences of diary intake arises from studies 

examining CM or CM-derived products. Importantly, non-bovine milks are consumed readily 

in, among others, African and Asian regions, and the emerging research on unique nutritive 
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benefits stemming from the consumption of such milks, has generated interest in incorporating 

them also in the Western diet.  

Goat’s milk (GM), popular in areas reliant on arid agriculture, has garnered interest due to 

composition variations conveying unique nutritive benefits, supporting lower allergic response 

and easier digestion (Park, 1994; Bellioni-Businco et al., 1999; Haenlein, 2007; Park & 

Haenlein, 2013). Despite accounting for only 2% of global milk production, the rate of growth 

of the dairy goat industry has surpassed that of CM production, increasing 47% between 2000 

and 2018 compared to 39% growth for CM (Food and Agriculture Organization of the United 

Nations, 2018). With the predominant focus on CM products in nutrition research, less is 

known about physiological outcomes of GM consumption. 

GM and CM differ in specific macronutrient composition conferring unique milk digestion 

kinetics and nutrient availability – notably in milk protein profiles (Ambrosoli et al., 1988; 

Glantz et al., 2010; Logan et al., 2015; Maathuis et al., 2017; Wendorff et al., 2017; 

Hodgkinson et al., 2018; Freitas et al., 2019; Wang et al., 2019; Ye et al., 2019). There is also 

an indication of altered gastrointestinal (GI) endocrine function following GM ingestion 

(Rubio-Martín et al., 2017). It has been shown beyond a reasonable doubt that both nutrients 

and hormones alter brain function to regulate feeding behaviours – however, with scarcity of 

GM nutritional research little is known regarding the effects of GM on feeding and central 

function, let alone if these are unique to that which follow CM intake. 

With CM’s abundance in our Western diets, GM is often perceived as novel, having a relatively 

“strong, smelly, salty or sweet” compared to CM with a distinct “goaty” flavour (Mowlem, 

2005; Park & Haenlein, 2013). Habituation serves to confound human studies of preference 

and acceptance (Torrico et al., 2019; Cheng et al., 2020), thus the novelty of GM could 

influence acceptability. In basic animal research, milk often forms part of test diets utilised in 

analyses of feeding behaviours and physiological responses regulating intake, such as 
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condensed milk in obesogenic diets (Martire et al., 2013; Martire et al., 2014; Gomes et al., 

2018) and milk protein enrichment of high protein diets (Semon et al., 1987; L'Heureux-

Bouron et al., 2004; Zapata et al., 2018). Laboratory animals do not exhibit cultural diet 

habituation biases and they can be introduced to milk types in a controlled manner, which 

therefore allows for more accurate assessment of dietary interventions – including GM intake 

– without prior exposure influencing feeding behaviours. In addition, use of laboratory animals 

allows finer examination of brain function at the molecular and cellular level to define 

pathways involved in shaping behaviours, otherwise unachievable in human studies.  

Another consideration in the acceptability of milks is, that in human diets, animal milk is rarely 

consumed raw. The composition of commercially available milk products is often adjusted in 

manufacturing, resulting in formulations with macronutrient levels unique to the original milk. 

Often adjustments are made to target specific consequences of milk intake, such as lowering 

allergenicity through eliminating lactose (Jelen & Tossavainen, 2003). The relative content of 

major milk proteins whey and casein are often adjusted in human milk formula diets – from 

the natural 20:80 whey to casein ratio to “whey-enhanced” formulations with a 60:40 ratio. The 

limited prior research on natural and adjusted formulations suggest this switch impacts 

digestion with altered proteolysis and gastric emptying rates as well as insulin-independent, 

hormone-mediated glycaemic control (Kung et al., 2018; El Khoury et al., 2019; Ye et al., 

2019). It would seem unsurprising that modifying whey and casein influences digestion and 

post-absorptive processes as, in isolation, these fractions have unique digestion kinetics (Mahe 

et al., 1996; Boirie et al., 1997; Calbet & Holst, 2004; Bowen et al., 2006b; Boutrou et al., 

2013; Santos-Hernandez et al., 2018) eliciting different endocrine response and central 

function (Hall et al., 2003; Bowen et al., 2006a; Bowen et al., 2006b; Veldhorst et al., 2009; 

Brennan et al., 2012; Leidy et al., 2013; Sukkar et al., 2013). The peripheral response following 

formula intake could therefore influence feeding behaviours via modulation of central function, 

something observed with long term whey and casein isolate intake (Choi et al., 2009; McAllan 
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et al., 2013; McManus et al., 2015; Andreoli et al., 2016; Nilaweera et al., 2017). However, 

this is yet to described in a systematic way.  

There is paucity in nutrition research concerning milk consumption and the central and 

behavioural changes resulting from dairy intake. This thesis will bridge some gaps in our 

understanding of this issue through examining feeding and brain function in laboratory rodent 

models following CM and GM diets. Firstly, I have examined feeding patterns of GM and CM 

indicative of acceptability and preference and the underlying central function supporting intake 

determined by analysing gene expression of relevant genes in brain pathways related to feeding 

regulation. Secondly, I have detailed how common changes to the relative whey and casein 

ratio of milk affect these behaviours and central processes. Compositional difference between 

GM and CM are most notable in the protein fraction, affecting both digestion and absorption 

processes relevant to regulation of feeding. Therefore, outcomes of modified protein in formula 

will be characterised in both GM- and CM-based formulations.  

1.1 Milk Composition Across Goat and Cow Milks: Digestion and 
Absorption 

Milk is a complex and compositionally ‘dynamic’ food which delivers all the essential nutrients 

for its primary function of supporting infant growth, though consumption often extends beyond 

infancy in adult diets. When milk is included in dietary research, or in consumer diets, there is 

often a simplistic generalisation of all milk being nutritional equivalent, that all milk conveys 

near similar outcomes in nutrition digestion, absorption and post-absorptive utilisation and 

response. However, milk composition varies according to species source, maternal diet and 

lactation period (Saarela et al., 2005; Kent et al., 2006; Park, 2007; Bauer & Gerss, 2011; 

Keikha et al., 2017; Tagliazucchi et al., 2018; Verduci et al., 2019). Furthering this, 

commercially available milks are adaptations of the natural composition of raw milk through 

manufacturing techniques or with adjustment and addition of milk ingredients (Rudloff & 
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Lönnerdal, 1992; Institute of Medicine (US) Committee on the Evaluation of the Addition of 

Ingredients New to Infant Formula, 2004; Prosser et al., 2019), thus these milks could be 

considered formulations. Variations in milk or milk formulation composition have notable 

consequences for milk digestibility and uptake (Rudloff & Lönnerdal, 1992; Lien, 2003; Wada 

& Lönnerdal, 2015; Prosser et al., 2019). Furthermore, with milk providing the sole source of 

early nutrition, and as infant growth demands differ across species, milk composition also 

varies between different mammals (Park, 2007; Tagliazucchi et al., 2018). Milk macronutrient 

composition between GM and CM influences consequences of milk ingestion with altered 

digestion, utilisation and peripheral actions – especially in the protein fraction.  

1.1.1 Milk carbohydrates: Lactose and oligosaccharides 

Lactose digestion products, glucose and galactose, provide energy through glycolysis and 

aerobic respiration or are stored glycogen utilised in hypoglycaemic states (Nordlie et al., 

1999). CM carbohydrate content is slightly higher at 4.6-4.9% of milk weight compared to 

4.1% in GM (Jenness, 1974; Malacarne et al., 2002; Park et al., 2007; Park, 2010). Milk also 

contains oligosaccharides (reviewed in Bode (2012)), chains of monosaccharides that are 

indigestible and are delivered intact to the distal small intestine and colon. These promote 

intestinal flora growth and have bioactive properties including antimicrobial and 

developmental functions.  

1.1.2 Milk fats 

Milk fats are absorbed as free fatty acids and mono- and diglycerides in chylomicrons (Park & 

Haenlein, 2013). Dietary fatty acids are catabolised via beta-oxidation, providing substrates for 

the critic cycle and aerobic respiration (Houten & Wanders, 2010). While the lipid fraction is 

3.6% and 3.8% for CM and GM respectively (Wendorff et al., 2017), GM is noted for having 

a unique fatty acid profile conferring a characteristic “goaty” flavour (Park & Haenlein, 2013). 

Short- and medium-chain fatty acid content as well as smaller fat globule size potentially 
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increases fat-derived energy availability in GM through easier lipase activity (Attaie & Richter, 

2000; Park, 2007).  

1.1.3 Milk proteins 

The nitrogenous fraction of milk is largely derived from proteins, predominately from whey 

and casein protein groups. Minor milk proteins include lactoferrin, serum albumin, 

immunoglobulins, hormones, enzymes, and mucins embedded in the fat globule membrane 

(Jensen, 1995; Park & Haenlein, 2013). Other sources of nitrogen come from non-protein 

nitrogen fraction including free amino acids and amino acid derivatives, urea, uric acid, and 

nucleotides (Jensen, 1995; Park & Haenlein, 2013). Proteinaceous digesta are absorbed as 

amino acids or short peptides, primarily serving as the precursors for tissue growth and repair 

(Gorissen & Witard, 2018). CM and GM have a similar total protein content (Park et al., 2007; 

Wendorff et al., 2017) and a 20% whey and 80% casein protein ratio (Park & Haenlein, 2013). 

However, they do vary in the specific proteins within the casein fraction which impacts protein 

digestion.  

Whey proteins are soluble whilst hydrophobic caseins form micelle structures in milk solution. 

Whey proteins are resistant to gastric digestion, staying in the liquid component of milk digesta 

that is rapidly emptied into the small intestine (Jensen, 1995). Whey proteins are then digested 

by pancreatic enzymes and intestinal brush border membrane peptidases (Tomé & Debabbi, 

1998). Casein micellar structure features a- and b-caseins precipitating with calcium 

phosphate, forming a colloid core surrounded by k-casein “hairy” layer (Dalgleish, 2011). This 

hairy layer provides steric stabilisation in solution, however, it is susceptible to gastric 

proteolytic digestion and acidic conditions (Jenness, 1980). Loss of steric stabilisation leads to 

casein aggregation into curds which slows the rate of gastric emptying of casein proteins 

compared to whey (Mahe et al., 1996; Boutrou et al., 2013; Santos-Hernandez et al., 2018). 

As a result, plasma amino acid appearance is rapid, with higher but transient peaks following 
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whey intake whereas casein intake provides slower, lower and sustained state of 

hyperaminoacidemia (Boirie et al., 1997; Calbet & Holst, 2004; Bowen et al., 2006b). 

GM and CM casein content is a determining factor in each milk’s digestibility. CM contains 

high levels of αs1-casein whereas b-casein levels are higher in GM, with little to no αs1-casein 

(Wendorff et al., 2017). Rather, GM as2-casein variant is present in higher concentrations than 

αs1-casein. Exact levels of αs1-casein are genetically determined with its polymorphic gene 

having at least 17 variants, amongst which the D, F and G alleles provide milk with low αs1-

casein levels and the “null” O1 and O2 alleles produce no αs1-casein (Grosclaude & Martin, 

1997; Carillier-Jacquin et al., 2016). Additionally, casein micelles in GM are larger than in 

CM, 260 nm (Park et al., 2007) and 83-230 nm (Donnelly et al., 1984; Farrell Jr et al., 1990; 

de Kruif & Huppertz, 2012) respectively. Lower αs1-casein levels and larger micelle size of 

GM result in looser curds during digestion (Ambrosoli et al., 1988; Glantz et al., 2010; Logan 

et al., 2015; Freitas et al., 2019; Wang et al., 2019; Ye et al., 2019). Curd density determines 

digestion rate as a more dense gel macrostructure limits enzyme access to protein substrates 

(Barbé et al., 2013). Impact of this is evident with in vitro digestion of CM and GM and formula 

diets derived from these milks, with more rapid digestion and bioavailability of GM proteins 

(Maathuis et al., 2017; Hodgkinson et al., 2018).  

Products of protein digestion are largely reflective of each milks specific protein content, i.e. 

CM higher in αs1-casein derived peptides (Hodgkinson et al., 2019). However, GM and CM 

formulations are comparable in protein quality, with similar ileal digestibility and digestible 

indispensable amino acid scores (Maathuis et al., 2017). In their piglet model, Rutherfurd et 

al. (2006b) observed comparable amino acid retention between GM and CM formulations, 

except for higher glycine and tryptophan levels with CM. They also note adequate mineral 

retention with GM formula, with differences in mineral uptake again reflective of relative 

formula composition (Rutherfurd et al., 2006a). 
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1.2 Milk intake, Endocrine Response and Regulation of Feeding 

Milk composition alters digestion and relative bioavailability of nutrients, i.e. GM’s more 

easily digestible fatty acid and casein fractions. Nutrient availability modifies endocrine 

cascades, peripheral function of the GI tract and central function of brain regions regulating 

feeding. There are three basic drivers of modified intake: hunger, satiety and reward. Below, I 

describe the general processes that underpin these three broad mechanisms at peripheral and 

central levels.  

1.2.1 General regulation of feeding by hunger, satiety and reward 

Energy intake is regulated through balanced orexigenic and anorexigenic pathways that involve 

disparate sets of endocrine and neural signals (Figure 1.1). In the fasted state, the 

enteroendocrine cells of the GI tract release ghrelin (Cowley et al., 2003). Increased systemic 

circulation of ghrelin enhances GI motility and gastric secretions in anticipation of food intake 

and induces a feeling of hunger. The latter is due to interactions with ghrelin receptors, growth 

hormone secretagogue receptors (GHSR), expressed in the brain.  

The hypothalamic arcuate nucleus (ARC) is a key feeding-related region affected by ghrelin. 

The blood brain barrier prevents transit of peripheral molecules from the cerebrospinal fluid 

directly into the brain parenchyma, thus ghrelin and other peripheral hormones act indirectly 

upon the ARC (Morita-Takemura & Wanaka, 2019). Communication to the ARC concerning 

the energy status is mediated, in part, by tanycytes. These specialised glial cells of the 

ependymal layer line the third ventricle allowing active transport of hormones into the brain 

parenchyma (Collden et al., 2015; Balland et al., 2014). Additionally, the neighbouring median 

eminence mediates diffusion of hormones, including ghrelin, across the blood brain barrier due 

to more permeable fenestrated capillaries (Schaeffer et al., 2013). Peripheral factors entering 

the median eminence, either passively diffused or actively transported via tanycytes projecting 
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to the median eminence, interact with projections of the ARC to modify subsequent signalling 

(Morita-Takemura & Wanaka, 2019). 

The ARC itself contains two subpopulations of neurones that synthesise appetite regulating 

neuropeptides belonging to the melanocortin system (a major pathway regulating energy 

intake) (Sohn et al., 2013). One subpopulation of ARC neurones produces pro-

opiomelanocortin (POMC) which is processed into a-melanocyte stimulating hormone (a-

MSH). Interactions with a-MSH and melanocortin receptors 3 and 4 (MC3R; MC4R) of the 

hypothalamic paraventricular nucleus (PVN) lead to activation of anorexigenic projections to 

the brainstem and subsequent top-down attenuation of feeding (Browning et al., 2017). 

Countering this, ARC neuropeptide Y (NPY) and Agouti-related protein (AGRP) co-

expressing neurones increase feeding through tonic inhibition of POMC neurons, antagonism 

of MC3/4R in the PVN and suppression of PVN neurones (Sohn et al., 2013; Morton et al., 

2014). Ghrelin acts upon the ARC to stimulate NPY/AGRP neurones while suppressing POMC 

neurones, increasing feeding. 

Following food intake, the presence of food in the GI tract prompts release of an alternative set 

of hormones promoting satiety. These hormones induce peripheral actions promoting insulin 

release and modulating GI function, slowing gastric emptying through the “ileal brake” 

mechanism that slows nutrient transit through the GI tract to maximise absorption (Van Citters 

& Lin, 1999). Cholecystokinin (CCK) temporarily inhibits gastric emptying and acid secretion 

while stimulating pancreatic and gall bladder secretion (Raybould, 2007). Glucagon-like 

protein 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) are incretins that 

stimulate pancreatic b cells to secrete insulin (Seino et al., 2010). GLP-1 supresses glucagon 

release and gastric emptying, while GIP enhances glucagon release. Peptide YY (PYY) inhibits  
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Figure 1.1: Simplified orexigenic and anorexigenic neuro-endocrine signalling pathways controlling feeding for energy. Hypothalamic arcuate nucleus 

(ARC) neurones express pro-opiomelanocortin (POMC), processed into a-melanocyte stimulating hormone (a-MSH). a-MSH binds melanocortin 

receptors (MCRs) of the paraventricular nucleus (PVN) to suppress food intake. Alternatively, ARC neurones co-expressing neuropeptide Y (NPY) and 

agouti-related protein (AGRP) inhibit POMC neurones and PVN activity and antagonise MC3R/4R to increase intake. The brainstems nucleus of the 

solitary tract (NTS) receives hypothalamic projections, mediating top-down regulation of feeding behaviours. These systems are modulated by peripheral 

hormones. Ghrelin released from the GI tract stimulates AGRP/NPY function and inhibits POMC to increase feeding. After food intake, the GI tract 

releases cholecystokinin (CCK), peptide YY (PYY), glucagon-like protein 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP). GI 

hormones can stimulate vagal projections to the brainstems dorsal vagal complex, terminating in the NTS, dorsal motor nucleus (DMV) and area postrema 

(AP). Brainstem projections relay signals to higher brain regions – including the hypothalamus. GI hormones, insulin and leptin, secreted by adipose, act 

at the ARC to stimulate POMC neurones and inhibit NPY/AGRP neurones, suppressing feeding.
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stomach acid secretion and emptying as well as pancreatic exocrine secretion (Takei et al., 

2015).  

Satiation occurs with the culmination of anorexigenic post-ingestive signalling, beginning with 

peripheral processes of gastric distension, GI hormone release and nutrient absorption. These 

factors communicate status of internal milieu to the brain, subsequently altering appetite and 

feeding. This is mediated by vagus nerve stimulation, with stomach stretch triggering 

mechanoreceptors on vagal efferents while hormones and nutrients bind respective receptors 

(Jordi et al., 2013; Browning et al., 2017). These fibres project into the brainstem dorsal vagal 

complex, synapsing with neurones of the nucleus of the solitary tract (NTS), the dorsal motor 

nucleus (DMV) or area postrema (AP) and relaying status of internal milieu onto higher brain 

regions regulating feeding behaviours such as the hypothalamus and amygdala (Saper et al., 

2002; Marc et al., 2014). Additionally, the circulating hormones and absorbed nutrients act at 

third ventricle tanycytes and the median eminence to alter brain function. CCK and GLP-1 

stimulate POMC neurones (Fan et al., 2004; Shah & Vella, 2014) while PYY interacts with 

presynaptic Y2 receptors of AGRP/NPY neurones, inhibiting their action thereby disinhibiting 

POMC neurones (Holzer et al., 2012). Insulin, release stimulated by GLP-1 and GIP incretins, 

and leptin, released from adipocytes proportionally to fat mass, activates the POMC pathway 

and inhibits NPY/AGRP signalling (Cowley et al., 2001; Begg & Woods, 2013). Hormone-

mediated elevation of POMC activity leads to termination of food intake.  

Reward-driven food intake is to a large extent regulated by a disparate set of pathways from 

the aforementioned ones that control energy intake. Intake of palatable foods, as determined 

by their macronutrient composition or pleasant taste (regardless of calorie content), stimulates 

dopamine, opioid, serotonin and endocannabinoid signalling in reward-related brain regions, 

from lower brainstem regions to higher-order orbitofrontal cortex, ventral palladium and 

nucleus accumbens (NAcc) (Berridge & Kringelbach, 2015). Reward is often separated into 
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three processes, “liking” (hedonic reaction to tastants), “wanting” (incentive salience, the 

transformation of neutral stimuli into attractive and “wanted” stimuli) and associative learning 

bridging the two (Berridge & Kringelbach, 2015). Opioid signalling mediates hedonic 

responses, with opioid signalling raises the reward value of foods (Olszewski et al., 2011). 

Administration of opioid or receptor agonists increases “liking” behaviours in rats (tongue 

protrusions and paw licking). Opioid receptor agonism increases intake of palatable tastants 

including sugars, fats, non-caloric but sweet saccharin solutions as well as preferred caloric 

foods (Peciña & Berridge, 2000; Naleid et al., 2007). Antagonism, commonly done in many 

experimental trials through non-selective receptor antagonists naloxone and naltrexone, 

attenuates overconsumption of palatable foods (Lynch, 1986; Olszewski et al., 2011), and the 

anorexigenic effect is affected much more by palatability than energy density/content of a diet 

(Giraudo et al., 1993; Levine et al., 1995; Weldon et al., 1996; Glass et al., 2001). Dopamine 

signalling within the mesolimbic system, originating in the ventral tegmental area (VTA) and 

encompassing ventral striatal structures including the NAcc (Pandit et al., 2011), produces the 

“wanting” aspect of reward-driven intake (Wyvell & Berridge, 2000). “Wanting”, or incentive 

salience, is the transformation of neutral stimuli into attractive and “wanted” ones through 

associative learning (Berridge & Robinson, 2003). NAcc dopamine is involved in this process, 

with increased dopamine in the NAcc increasing incentive salience and motivation for 

palatable tastants (Evans & Vaccarino, 1986; Wyvell & Berridge, 2000; Di Chiara, 2002).  

1.2.2 Impact of milk consumption on signalling pathways regulating food 

intake 

Milk intake has largely been reported to effect pathways regulating feeding for energy, whereas 

its effects on specific mechanisms related to reward remain less known. CM has been found to 

be satiating and more effective in suppressing appetite and reducing subsequent ad libitum 

intake than other common caloric beverages like fruit juice or soft drinks (Dove et al., 2009; 
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Rumbold et al., 2015; Onvani et al., 2017). Intake is accompanied by release of GLP-1 and 

GIP (Maersk et al., 2012), incretins that stimulate insulin release, which in turn can promote 

central POMC function. However, central changes following milk intake have not been 

described – except for serotonergic and melanocortin signalling following milk proteins, 

further described in Table 1.  

Importantly, the alterations in endocrine signalling described above were documented 

following CM intake. Few studies have examined the comparative efficacy of different species 

milks in appetitive and physiological responses. Thus far, two studies have investigated GM 

and CM formulations post-absorptive endocrine response and appetitive effects. Milan et al. 

(2018) found fortified GM vs CM drinks induced similar gastric emptying rates and 

postprandial amino acid absorption accompanied by GLP-1, CCK, and insulin release. 

Participants reported no difference in hunger, fullness or desire to eat between the CM and GM 

diets. Appetite ratings relative to pre-intake baseline were supressed continuously for 75 

minutes with the CM formulation, whereas appetite suppression after GM was found at 45 

minutes then again at 90 minutes. Rubio-Martín et al. (2017) reported GM ingestion may 

support stronger satiety and suppression of hunger when compared with CM intake. Study 

participants were supplied with a breakfast of semi-skimmed milk, cheese – sourced from 

either GM or CM – with white bread. The GM breakfast reduced desire to eat and subjective 

hunger. This difference was potentially mediated by enhanced GI hormone release: GLP-1 area 

under the curve (AUC) was inversely associated with AUChunger and AUCdesire-to-eat. 

Considering the differences in hunger and satiety perception, potentially mediated by GI 

endocrine signalling, GM may elicit a unique central response in energy intake regulating brain 

regions.  

Whilst milk nutrition research has emphasised satiety and hunger following milk intake, little 

has been reported regarding milk palatability or processes related to reward system function. 
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A tastants palatability can be derived from its nutrient composition, from one macronutrient – 

such as sweet sucrose solutions (Levine et al., 2003), or through multiple nutrient constituents 

– primarily carbohydrates and fats but also proteins (Martire et al., 2013; Martire et al., 2014; 

Chaumontet et al., 2018). Milk has both a high concentration of lactose and other nutrients 

suggesting potential for high palatability. Additionally, milk is often incorporated into 

rewarding diets with condensed milks in tasty, obesogenic cafeteria diets (Martire et al., 2013; 

Martire et al., 2014) or delivered alone as a highly palatable tastant (Larson et al., 2002; 

Deacon, 2011). However, reward processes following milk have not been documented, let 

alone contrasted between GM and CM.  

In Chapter 2 of this thesis, I have examined the differences in feeding behaviours with skim 

GM and CM consumption and characterise the associated central changes related to energy and 

reward-driven intake regulation rodent models. Systematic evaluations of short- and long-term 

exposure to liquid or solid diets performed accurately assess impact of different species’ milk 

on palatability, acceptability and energy intake. With GM and CM composition altering 

digestion kinetics and observations by Rubio-Martín et al. (2017) suggesting GM may elicit 

different GLP-1 response and satiety level, these two milk types could alter brain function 

related to satiety processes. Milk also has the potential to be highly palatable, with its nutrient 

dense composition and prior use in rewarding diets. Therefore, central activity and gene 

expression in reward-related and energy regulating regions was profiled following CM and 

GM consumption. This was done in laboratory rodent models, eliminating habituation biases 

that skew human taste preferences. 

1.3 Compositional changes in milk-based diets and their 
consequences on feeding-related processes 

Whilst milk constitutes a large portion to human diets, it is rarely consumed raw (Ministry of 

Health, 2003; University of Otago & Ministry of Health, 2011). Milk composition is modified 
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during manufacturing processes or intentionally altered to exploit specific nutritive aspects of 

milk. For example, protein content of milks is often targeted in human milk diets to capitalise 

on specific health benefits – satiation of milk-based beverages or milk protein supplementation 

in weight management strategies (Tahavorgar et al., 2014; Hector et al., 2015; Verreijen et al., 

2015; Maher et al., 2019; Rafey et al., 2020), muscle development in exercise (Elliot et al., 

2006; Wilkinson et al., 2007; Reitelseder et al., 2011) and in sarcopenia (Burd et al., 2012; 

Hidayat et al., 2018) or improved immunological function, with enhanced immune response 

with modified milk diets (Rutherfurd-Markwick et al., 2005) or antioxidant production with 

milk proteins intake (Parodi, 2007).  

A common modification to milk proteins for human nutrition is the adjustment of the natural 

whey and casein profile. CM and GM naturally contain a ratio of 20:80 whey to casein (Park 

et al., 2007; Park & Haenlein, 2013) and during manufacture whey is added to increase whey 

content to reach a 60:40 ratio. This is a common adjustment attempting to match human milks 

whey to casein ratio (Rudloff & Kunz, 1997). Whey and casein proteins are known to effect 

endocrine release, GI motility and absorption and central signalling in the brain – largely 

demonstrated in adult human and also rodent studies (Hall et al., 2003; Bowen et al., 2006a; 

Bowen et al., 2006b; Choi et al., 2009; Veldhorst et al., 2009; Brennan et al., 2012; Leidy et 

al., 2013; McAllan et al., 2013; Sukkar et al., 2013; McManus et al., 2015; Andreoli et al., 

2016; Nilaweera et al., 2017). The current literature on this switch from the 20:80 whey:casein 

ratio to the adjusted 60:40 does suggest altered in vitro digestion, glycaemic control and post-

prandial hormone release in adults. (Kung et al., 2018; El Khoury et al., 2019; Ye et al., 2019) 

1.3.1 Alteration in energy intake regulation processes with whey and casein 

intake 

As described in Section 1.1.3, whey and casein digestion kinetics differ, with whey passing 

rapidly through the stomach to be quickly absorbed in the small intestine whereas casein 
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micelles being destabilised in the stomach, causing protein aggregation and slowing digestion 

and plasma amino acid absorption (Mahe et al., 1996; Boutrou et al., 2013; Santos-Hernandez 

et al., 2018). Following ingestion, whey and casein elicit release of CCK, GLP-1 and PYY 

(Bowen et al., 2006a; Bowen et al., 2006b; Brennan et al., 2012; Leidy et al., 2013). Whey 

stimulates GIP release (Hall et al., 2003) and – in direct comparison of whey and casein – 

elicits a larger secretory response of GI hormones (Hall et al., 2003; Veldhorst et al., 2009; 

Sukkar et al., 2013). Potency of the endocrine response following whey intake potentially 

relates to digestion rate. Enhancing delivery speed of casein amino acids with a constituent free 

amino acid mixture, Dangin et al. (2001) observed more pronounced insulin release than whole 

casein, though not quite to the level of whey. Further slowing of casein digestion diminishes 

endocrine response. Juvonen et al. (2011) compared low-viscosity whey and viscous casein to 

a solid gel created by cross linking casein with transglutaminase. Pronounced peaks in insulin 

and CCK followed the first two diets, whereas the gel produced a lower and sustained CCK 

release.  

Hormones released after intake of whey and casein fractions affects central processes 

regulating energy-driven food consumption. Consequently, whey and casein have been 

reported to influence relevant serotonergic and melanocortin pathways in the brain. 

Serotonergic function is modified with variation in central amino acid availability following 

whey and casein diets. Amino acids can be taken up directly into the brain across the blood 

brain barrier via facilitative transporters on neural capillaries membranes (Hawkins et al., 

2006), proportionally to dietary intake (Peters & Harper, 1985; Currie et al., 1995; Choi et al., 

1999). Choi et al. (2009) examined tryptophan (TRP) availability following protein diets 

including casein and a-lactalbumin (a whey protein) and fluctuations in serotonin synthesis. 

Whey proteins do contain higher TRP content (Sindayikengera & Xia, 2006) which was 

reflected in serum and cortical TRP levels being higher following a-lactalbumin (Choi et al., 

2009). Subsequently, cortical, hypothalamic and hippocampal serotonin synthesis rates were 
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higher following a-lactalbumin. While serotonin is an anorexigen acting through POMC 

neurons (Fang et al., 2013), whey’s potential contributing effect to satiation remains elusive as 

studies on the functional link between whey intake and serotonin system’s response have thus 

far largely focussed on the anxiolytic effect whey produces via enhanced serotonin production 

(Markus et al., 2000; Orosco et al., 2004; Scrutton et al., 2007; Vekovischeva et al., 2013).  

Altered melanocortin signalling has only been described following long-term exposure to whey 

and casein isolate diets, which may explain the heterogeneity in signalling patterns observed 

as detailed in Table 1.  

Andreoli et al. (2016) report central signalling changes which indicate that whey promotes 

satiety. Rats maintained on an obesogenic diet were transitioned onto a whey-enriched variant 

of the diet. This led to higher POMC expression within the hypothalamus, and it was 

accompanied by a reduction in food intake. Others have observed hypothalamic expression 

patterns that are typical of hyperphagia following high whey intake such as lowered POMC 

production and elevated expression of other genes that stimulate AGRP/NPY neurones. Long-

term whey consumption modifies intestinal absorption capacity, with reduced intestinal weight 

and length and expression of glucose, fatty acid and amino acid transporters (McAllan et al., 

2015; McManus et al., 2015; Nilaweera et al., 2017; Boscaini et al., 2019). This appears to 

elicit compensatory increases in food intake with a concurrently reduced hypothalamic POMC 

expression (McManus et al., 2015; Nilaweera et al., 2017), even when energy-dense high-sugar 

diets were used by Nilaweera et al. (2017). When these diets were reduced in energy content 
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Table 1: Central gene expression and physiological changes occurring with whole whey, specific whey protein or casein maintenance diets. 

Study Diet paradigm Central changes and notable physiological changes after diet exposure 

Nilaweera et al. (2017) Fifteen weeks of high or low sugar 
diet with whey enrichment 

Reduced expression of POMC, increased intake. Compensatory mechanism for 
reduced intestinal absorption efficiency occurring with whey consumption (McAllan 
et al., 2015; Nilaweera et al., 2017; Boscaini et al., 2019). Lowering sugar content of 
diet exacerbated response, in addition to elevating hypothalamic ghrelin. 

McManus et al. (2015) Thirteen weeks of low fat, casein 
enriched diet or high fat diets 
enriched with casein or lactoferrin, 
a serum protein.  

Lower hypothalamic POMC with lactoferrin enrichment, no changes in NPY or 
leptin receptor expression. Lower circulating leptin levels and increased expression 
of jejunal fatty acid transporters.  

Body weight gain was delayed with lactoferrin enrichment, however both high fat 
diet variants had higher bodyweight at thirteen weeks than the low-fat diet. 

McAllan et al. (2013) Eight weeks of high fat diet 
enriched with whey or casein 

Reduced hypothalamic expression of insulin and leptin receptors and carnitine 
palmitoyltransferase-1 (CPT1b).  

Reduced insulin and leptin receptor expression associated with insulin and leptin 
resistance and development of metabolic disorders.  

CPT1b mediates fatty acid uptake for mitochondrial b-oxidation. Reduction in 
expression leads to fatty acid accumulation (Lam et al., 2005), which has 
anorexigenic effect with central nutrient sensing, AGRP/NPY production and 
appetite suppression (Obici et al., 2003; Lam et al., 2005). 

Andreoli et al. (2016) Ten weeks preexposure to 
obesogenic phytoestrogen-free diet, 
followed by six weeks of 
phytoestrogen-free diet enriched 
with whey. 

Increased POMC expression lowered energy intake, compared to rats maintained on 
phytoestrogen free diet. However, after six weeks, both phytoestrogen free diets had 
equivalent fat mass and body weight reductions were non-significant. 
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via lowering their sugar content, the orexigenic signalling patterns were exacerbated with 

enhanced ghrelin release (Nilaweera et al., 2017). The hunger hormone ghrelin stimulates NPY 

and AGRP expression to increase feeding (Cowley et al., 2003). McAllan et al. (2013) report 

dichotomous hypothalamic expression characteristic of both appetite stimulation and 

suppression. A high-fat diet enriched with whey given to rodents for eight weeks 

downregulated hypothalamic carnitine palmitoyltransferase-1 (CPT1b), a fatty acid 

transporter, but also insulin and leptin receptors transcript levels (McAllan et al., 2013). 

Reduction of CPT1b leads to the accumulation of central fatty acids (Lam et al., 2005) which 

prompts nutrient sensing neurones to reduced AGRP/NPY activity suppressing intake (Obici 

et al., 2003; Lam et al., 2005). However, insulin and leptin receptor suppression are of 

characteristic insulin and leptin resistance (Martin et al., 2000; Obici et al., 2002). These 

conditions lead to hyperphagia, dyslipidaemia and metabolic disorders including diabetes and 

obesity (Obici et al., 2002; Grillo et al., 2007; Gruzdeva et al., 2019). The heterogeneity of 

melanocortin system function in these reports likely relates to the long-term exposure to whey 

or casein and the associated intestinal remodelling. Changes in central function immediately 

following milk protein intake are yet to be reported, though altered satiety perception with 

whey and casein would suggest some involvement of these systems. Whey is often observed 

to be more satiating than casein (Hall et al., 2003; Diepvens et al., 2008; Potier et al., 2009; 

Pal et al., 2014), with higher compensation in energy intake following intake (Hall et al., 2003). 

However, others report fractions induce similar satiety (Marsset-Baglieri et al., 2014) or that 

casein is even more effective in reducing appetite and energy intake (Abou-Samra et al., 2011). 

Variation in appetite have also been seen with test diets that utilise the combined whey/casein 

fractions. Lorenzen et al. (2012) reported no differences in participant appetite given whey 

(36g), casein (34g) or skim milk (28g casein, 7g whey) drinks followed with an ad libitum 

lunch. However, prior milk intake lowered overall energy consumption during lunch. Diepvens 



 

20 

et al. (2008) examined efficacy of different protein types in shake meals in suppressing 

appetite, finding that the whey protein increased perceived satiety and fullness more effectively 

than a mix milk-protein diet (80% casein, 20% whey). Interestingly, hormone patterns 

observed did not support a more satiating effect of whey ingestion. The mixed milk proteins 

elicited higher postprandial CCK and GLP-1 response than whey alone, though whey intake 

produced a positive correlation with insulin and both CCK and GLP-1. Importantly, diets of 

with combined whey and casein fractions elicit unique endocrine activity to isolate diets 

(Diepvens et al., 2008; Lorenzen et al., 2012), which may alter central signalling systems 

regulating feeding given GI hormone interact with and modified select brain regions expressing 

relevant receptors (Cowley et al., 2001; Fan et al., 2004; Holzer et al., 2012; Begg & Woods, 

2013; Shah & Vella, 2014) and also the impact milk protein isolates have on serotonergic and 

melanocortin systems (Choi et al., 2009; McAllan et al., 2013; McManus et al., 2015; Andreoli 

et al., 2016; Nilaweera et al., 2017).  

1.3.2 Satiety processes effected by whey and casein adjustments 

Despite extensive knowledge of how whey and casein influence satiety and hunger responses, 

there has been little documentation on how these processes are affected by adjustment of whey 

and casein ratio in milk. Given that mixed diets of milk protein produce unique effects 

compared to protein isolate diets, it cannot be assumed that consequences are exactly 

proportional to the whey or casein ratio in a diet.  

Digestion kinetics and protein bioavailability of 60:40 whey:casein formulations vary from the 

natural ratio. Protein digestion kinetics are altered in milks with the adjusted ratio. Ye et al. 

(2019) examine in vitro digestion of proteins in both CM and GM-based formulations with the 

60:40 and 20:80 whey to casein ratios. Increasing casein content increased particle size due to 

casein micellar aggregation. Higher casein content slowed gastric casein digestion of the 20:80 
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CM formula, though species differences in casein curd properties and digestion speed were 

noted in smaller particle size with GM formulations and equivalent hydrolysis rate between 

20:80 and 60:40 GM formulations. As noted with whey and casein, speed of protein digestion 

and plasma amino acid appearance can impact strength of enteroendocrine cells release of GI 

hormones (Dangin et al., 2001; Juvonen et al., 2011). Another consideration in formula protein 

alteration is that whey addition lowers protein quality with increased the abundance of 

indigestible protein products following thermal manufacturing process. Pasteurization and 

ultra-high temperature processing, intended to reduce milks microbial load to extend shelf life, 

can alter milk protein structure and bioavailability. The tertiary structure of whey proteins is 

easily destabilised with heat and form novel aggregates after thermal treatment (Jean et al., 

2006; Patel et al., 2006). Additionally, Maillard reactions of proteins glycating with reducing 

sugars block proteins lysine residues, limiting proteolytic action on glycation products and 

lowering protein availability (Wada & Lönnerdal, 2015; van Lieshout et al., 2020). Indigestible 

products remain intact through the GI tract (Sillner et al., 2019; Sillner et al., 2020) promoting 

growth of aberrant microflora (Seiquer et al., 2014; Bui et al., 2020). Added whey in formula 

diets increases the abundance of these glycation products (Prosser et al., 2019), potentially 

reducing digestibility. Proteins that are more easily digested and more readily absorbed – such 

as pre-digested hydrolysates (Calbet & Holst, 2004; Diepvens et al., 2008; Koopman et al., 

2009)– enhance hormonal release and stronger satiety. 

Changes in post-prandial glycaemia were reported in studies by Kung et al. (2018) and El 

Khoury et al. (2019) with milk drinks with modified protein ratios that were consumed 

alongside high carbohydrate cereal breakfast (Kung et al., 2018; El Khoury et al., 2019). 

Healthy adult participants were given high- or low-protein (3.1% and 9.3% of weight 

respectively) milk formulations with either 20:80 or whey-added 60:40 whey to casein ratios. 

All treatments reduced blood glucose before ad libitum pizza lunch, however intake was not 
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modified. Whey to casein ratio affected pre-lunch blood glucose, with a lower peak with the 

60:40 formulation and reduced appetite with the 20:80 milk (Kung et al., 2018). Changes in 

blood glucose were insulin independent, with treatments not eliciting changes in insulin or c-

peptide levels (El Khoury et al., 2019). Rather, elevated hormonal responses included elevated 

premeal GLP-1 with the high protein concentration and 60:40 ratio as well as enhanced pre-

meal CCK release with high protein formulations and lowered ghrelin post-meal with the 60:40 

ratio. The authors suggest that gastric emptying speed, modified by post-prandial hormones, 

determined the rate of carbohydrate intestinal delivery and absorption to produce the changes 

in blood glucose response.  

Investigations of protein in infant milk formula – which is heavily modified both in total 

content and specific protein composition to attempt to match breastfed infant growth and 

metabolism – have found negligible effects of this switch with similar growth patterns across 

infancy (Grant et al., 2005; Koletzko et al., 2009; Weber et al., 2014; Zhou et al., 2014; 

Gruszfeld et al., 2016; Totzauer et al., 2018). Janas et al. (1987) reported that formulations 

with 18:82 or 34:66 whey to casein ratio not only produced similar anthropomorphic measures 

but also similar plasma amino acid fluctuations. Importantly, these studies span across infancy, 

not detailing variation in immediate feeding responses.  

These changes in digestion and endocrine response with varying relative whey and casein 

content are unsurprising when considering that these processes are uniquely modified 

following whey and casein isolate intake. However, unlike literature concerning these milk 

protein isolates, effects on satiety and hunger central control systems has not been investigated. 

El Khoury et al. (2019) noted altered release of GI hormones GLP-1 and CCK, which, as 

described in section 1.2.1, typically stimulate POMC pathways, promoting satiety. 

Interestingly, milk diets with varied whey and casein content have not been reported to modify 



 

23 

appetite perception, despite difference in acute whey and casein satiety response and variation 

that comes with mixed milk protein intake. Kung et al. (2018) and El Khoury et al. (2019) do 

not report differences in appetite response following the modified milk and cereal breakfast 

despite changes in hormones known to regulate appetite (Kung et al., 2018; El Khoury et al., 

2019). They suggest satiety to be confounded by intestinal discomfort with high lactose content 

of milks or the meal’s high energy content. How adjustments to whey and casein ratios in milk 

formulations has not been accurately assessed, nor is it known how post-prandial endocrine 

release impacts related feeding behaviours. 

1.3.3 Impacts of modified protein content on milk product palatability  

Aside from feeding related to energy status, foods can be consumed for their palatability. 

Modifications made to milk composition are reported to impact milk product taste, however, 

this is limited to flavour assaying or side observations in larger studies of physiological 

parameters with little understanding of how feeding or reward-related central activity is 

impacted. 

Whey and casein content have been reported to influence the palatability of milk products. 

Flavour assaying of yoghurts by Tomaschunas et al. (2012) indicated increased protein content 

and lower casein content produced less flavourful products with a yellowy appearance and 

grainier texture. These poorer sensory attributes were mitigated by increasing fat content. 

Cheng et al. (2019) similarly assessed sensory properties of increased protein and variable milk 

serum proteins (whey and other soluble minor milk proteins) and casein content in milk 

beverages. Similarly, increased serum protein concentration increased aroma, sweet aromatic, 

cooked and sulphur and cardboard/doughy flavours and yellowness. Increased casein content 

increased drink viscosity. Potier et al. (2009) gave women “cheesy” snacks with casein alone 

or a mixed snack with 66:33 whey to casein. While this study focussed more so on the energy 
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compensation following intake, with reduced intake of an ad libitum lunch and in total daily 

energy intake following snacks, authors also note participants rated the mixed snack as more 

palatable with better taste, texture and appearance. Variability in sensory attributes across 

ranges of macronutrient concentrations – including whey and casein content – emphasises the 

need for balancing composition to ensure diet acceptability.  

Altered intake and palatability of isolated factions and mixed diets are also noted in animal 

models, specifically in obese rats utilised by Pezeshki et al. (2015). Feeding patterns and 

metabolic consequences of long-term consumption of whey, casein or mixed milk protein diets 

were unique, with intake, body weight and fat mass declining more rapidly on isolate diets. 

This could in part due to alterations in circulating hormones, with the whey diet producing 

higher GLP-1 levels and insulin sensitivity than the mixed diets, but also due to relative 

palatability of isolate versus mixed protein diets. When diets were simultaneously presented 

with a lower protein control diet containing only 14% protein energy from egg white, 

consumption of mixed diet was near that of the control and significantly lowered across early 

timepoints for both isolate diets, indicating mixed protein had iso-palatability with the control 

whilst isolate diets were less palatable.  

Diet palatability varies across milk formulations, milk product and diets with variable whey, 

casein or mixed milk protein content. Importantly, palatability of milk formulations with 

adjustment of whey and casein content impacts flavour. However, it is unknown how the 

reported sensory attributes influence the control of feeding behaviours. Relative palatability of 

mixed protein diets and isolate diets appears relevant in animal modelling, impacting energy 

intake and contributing to alterations in body composition (Pezeshki et al., 2015). Thus, 

adjusting relative whey and casein content could impact palatability, and therefore 

acceptability, of milk formulations.  
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With the modifications in endocrine release following milk formulations of variable whey and 

casein content – and changes to melanocortin and serotonergic function following whey and 

casein isolates – it would not be surprising if altering the relative ratios of whey and casein in 

milk diets would impact central circuitry regulating intake for energy. Additionally, adjusting 

milk protein content impacts the palatability of milk diets, which could alter processes 

underlying feeding for reward. Thus, in understanding physiological outcomes in the switch 

from the natural 20:80 whey to casein ratio to the adjust 60:40 ratio, it would seem obvious to 

investigate if acute feeding behaviours are modified by changing whey:casein ratios and what 

central pathways underly these responses. In Chapters 3 and 4 I address this line of enquiry. 

Acceptability and preference for milk formulations containing the natural 20:80 and whey-

enhanced 60:40 ratios were examined in adult mouse models. Expanding upon this, the 

accompanying changes in activity and expression of relevant genes in energy intake-regulating 

regions of the brain were also described. These experiments were performed with both GM 

and CM derived-formulations. The species difference in whey and casein profiles, digestive 

properties and initial reports of modified post-absorptive hormonal response indicated that 

responses to modified whey and casein content could be altered dependent on milk source.  
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1.4 Aims 

The overarching aim of this doctoral research was to examine whether milk-based diets 

derived from GM or CM elicit unique feeding patterns in rodent models and whether 

differences in appetite response are mediated by central processes regulating intake. This 

project encompassed three aims: 

Specific aim one: To determine whether GM and CM based diets (liquid and solid chow) 

produced variable appetitive behaviours of acceptance and preference in mouse and rat models. 

To examine whether behaviours are accompanied by changes in expression of key genes 

associated with hedonic and homeostatic feeding regulation within relevant brain regions 

controlling intake (Chapter 2).  

Specific aim two: To determine whether adjustment of milk protein content (ratio of whey and 

casein) of GM-based infant formulations modify acute feeding behaviours (acceptance and 

preference) in the mouse model. To examine whether changes in intake of diets with variable 

protein content are accompanied by changes in neuronal activation (c-Fos) and gene expression 

of key regulatory genes in brain regions associated with appetite regulation (Chapter 3). 

Specific aim three: To determine whether adjustment of protein content (ratio of whey and 

casein) of CM-based infant formulations modify acute feeding behaviours (acceptance and 

preference) and whether adjustments to protein content alter interspecies milk diet preferences 

in the mouse model. To examine if divergent feeding patterns between CM formulations are 

accompanied by changes in neuronal activation and gene expression of key regulatory genes 

in brain regions associated with appetite regulation (Chapter 4). 
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Chapter 2 

Palatability of goat’s versus cow’s milk: insights 
from the analysis of eating behaviour and gene 

expression in the appetite-relevant brain circuits in 

laboratory animal models 

2.1 Abstract 

Goat’s (GM) and cow’s milk (CM) are dietary alternatives with select health benefits shown 

in human and animal studies. Surprisingly, no systematic analysis of palatability or preference 

for GM vs. CM has been performed to date. Here, I present a comprehensive investigation of 

short-term intake and palatability profiles of GM and CM in laboratory mice and rats. 

Consumption was studied in no-choice and choice scenarios, including meal microstructure, 

and by using isocaloric milks and milk-enriched solid diets. Feeding results are accompanied 

by qPCR data of relevant genes in the energy balance-related hypothalamus and brain stem, 

and in the nucleus accumbens, which regulates eating for palatability. GM and CM were found 

palatable by juvenile, adult, and aged rodents. Given a choice, animals prefer GM- to CM-

based diets. Analysis of meal microstructure using licking patterns points to enhanced 

palatability of and, possibly, greater motivation toward GM over CM. Most profound changes 

in gene expression after GM vs. CM were associated with the brain systems driving 

consumption for reward. It is concluded that, while both GM and CM are palatable, GM is 

preferred over CM by laboratory animals, and this preference is driven by central mechanisms 

controlling eating for pleasure.   
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2.2 Introduction 

Milk is a widely consumed, affordable, and highly nutritive food, which serves as a key source 

of, among others, protein, calcium, potassium, magnesium, and vitamins (especially A and D) 

in industrialised countries (Feskanich et al., 2003; Drewnowski & Specter, 2004; Chevalley et 

al., 2008; Drewnowski, 2011; Vissers et al., 2011; Huth et al., 2013). In Western societies, 

cow’s milk (CM) products represent the largest share of dairy available on the market, and 

cow’s skim milk varieties have become common. However, recent years have generated 

interest in milk from other species, such as goat’s milk (GM). The use of GM as an alternative 

to CM has been driven by the findings in humans and laboratory animals showing potential 

beneficial nutritive consequences of GM intake and differences in physiological responses to 

GM or CM consumption, (for review, see (Haenlein, 2007)). For example, Bellioni-Businco et 

al. (1999) reported that individuals with a CM allergy were able to drink five times more GM 

than CM before the symptoms of an allergic response appeared (Bellioni-Businco et al., 1999). 

In studies utilising rodent models, Barrionuevo et al. demonstrated that GM increases 

utilization of copper, zinc, and selenium (Barrionuevo et al., 2003). Bioavailability of iron and 

copper was found to be improved in GM-fed rodents suffering from malabsorptive syndrome 

and in healthy controls (Barrionuevo et al., 2002; Barrionuevo et al., 2003). Finally, GM 

improved bone turnover in iron-deficient rats compared to rats fed CM (Diaz-Castro et al., 

2011; Diaz-Castro et al., 2012).  

Surprisingly, little is known about GM’s acceptance and preference relative to the main dairy 

product in today’s food environment in the Western world. There is no systematic analysis of 

propensity to ingest GM and CM or relative palatability of GM vs. CM in either humans or in 

laboratory animal models. Consequently, our understanding of acceptance and palatability of 

GM compared to CM is still mainly based on anecdotal evidence and on market availability, 

both heavily influenced by local cultural or environmental aspects (such as in Western vs. 
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Asian countries) and habituation-driven intake of a specific milk type (Silanikove et al., 2010). 

This is a major gap in knowledge as palatability affects, among others, the amount of food 

eaten in a single meal, the rate of consumption, food anticipation, and satiety. It has a profound 

effect on activity of brain circuits responsible for processing energy intake (including the 

hypothalamus and brain stem) and reward (such as the nucleus accumbens; NAcc) (Olszewski 

et al., 2008; Gosnell & Levine, 2009; Olszewski et al., 2011). These parameters can, in turn, 

impact a plethora of mechanisms outside the central nervous system (CNS), via neural and 

hormonal interactions linking the brain and peripheral tissues (Agusti et al., 2018; de Kloet & 

Herman, 2018; Schwartz, 2018).  

Here, I present a comprehensive investigation of short-term intake and palatability profiles of 

GM and CM in laboratory rodent models (mice and rats) using skim milks. Consumption data 

details the acceptance (no-choice) and preference (choice) scenarios of calorie-matched milks 

and milk-enriched solid diets. Consumption data are accompanied by the analysis of expression 

of appetite-related genes in the hypothalamus and brainstem, two brain regions predominantly 

involved in energy balance control, and in the NAcc, a key site that regulates eating for 

palatability (Olszewski et al., 2008; Olszewski et al., 2011). Relative mRNA levels of genes 

involved in promoting consumption, such as those encoding neuropeptide Y (NPY), Agouti-

related protein (AGRP), ghrelin receptor, orexin, opioid peptides/receptors, and gap junction 

protein, connexin 36 (Cx36), were analysed via RT-qPCR. The analysis also included 

transcripts related to decreased appetite and termination of consumption, such as oxytocin, 

melanocortin receptors 3 (MC3R) and 4 (MC4R), and proopiomelanocortin (POMC). 

Typically, presentation of tastants that differ in palatability and composition, among other 

traits, evokes some changes in expression within this subset of genes, reflecting a different 

propensity of an animal to ingest specific diets (Olszewski et al., 2008; Olszewski et al., 2009). 

A number of physiological functions by the brain vary with age, including appetite. Weight is 
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typically gained throughout early and middle age, followed by gradual, age-associated 

anorexia. In line with that, a drive to consume food (and responsiveness to palatability) is high 

during the earlier stages of life, whereas in aged animals, anhedonia and decreased 

responsiveness to rewarding diets and to drugs that promote eating for pleasure ensue (e.g., see 

(Gosnell et al., 1983; Morley, 2013; Zink et al., 2014)). Therefore, in the following feeding 

experiments, rodents belonging to three distinct age groups: adolescents, adults, and aged 

animals, were used. It should also be noted that rats and most mammals, other than select 

groups of humans, poorly digest lactose post-weaning. Though lactase activity in adult rats is 

residual, rats fed as much as 30% lactose in their daily diet from post-weaning to day 98 had 

normal body growth or body weight course (their body weight was somewhat lower) (van de 

Heijning et al., 2015). However, in this current study focused on short-term rather than long-

term exposure to milk or milk containing chow, minimising this impact. 
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2.3 Material and Methods 

2.3.1 Animals 

Male Sprague-Dawley rats and C57Bl mice (all weaned on day 21) used in these studies were 

single-housed in a temperature-controlled (22 °C) animal facility with a 12:12-h LD cycle 

(lights on at 07:00). Standard chow (Diet 86, Sharpes Stock Feed, Wairarapa, New Zealand) 

and water were available ad libitum unless indicated otherwise. The University of Waikato 

animal ethics committee had approved the procedures (ethics approval numbers: 1020, 1043, 

and 1057), and they are compliant with the NIH Guide for the Care and Use of Laboratory 

Animals (NIH Publ., no. 80–23, rev. 1996). Feeding experiments were performed in separate 

cohorts of animals (weight-matched) unless specified otherwise. The age of animals included 

in the adolescent (5–6 weeks), adult (3–5 months), and aged (25–27 months) categories was 

based on previous publications pertaining to the aging process in rodents (McCutcheon & 

Marinelli, 2009). It should be noted that despite poor digestibility of lactose post-weaning, no 

signs of gastrointestinal discomfort or sickness were observed, which is in line with previous 

studies showing that rats fed as much as 30% lactose in their daily diet (thus, more than given 

here) for several weeks displayed good tolerance of the carbohydrate (van de Heijning et al., 

2015).  

2.3.2 Skim milk diets 

Milk diets (Dairy Goat Cooperative, Hamilton, New Zealand) were stored as powder and 

prepared immediately before use by being reconstituted in water. Composition of the milks are 

shown in Table 2.1. GM- or CM-enriched chows (Dairy Goat Cooperative, Hamilton, New 

Zealand) were refrigerated and brought to room temperature prior to administration. See 

appendix 6.1 for composition of GM and CM chow. 
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Table 2.1 CM and GM milk powder composition 

 Protein Fat Carbohydrate Ash Moisture 

CM 37.1 1.1 51 6.5 4.3 

GM 36.1 0.9 49.9 9.5 3.6 

 

2.3.3 Feeding studies 

Diet treatments given either species’ adult, adolescent and aged cohorts and the energy status 

(sated/deprived) are outlined in Table 2.2.  

Table 2.2 Schematic of skim milk diet treatment paradigms across age, energy status and 

species 

 

2.3.3.1 Episodic Intake of Individually Presented GM and CM in Sated Adult Mice and Rats 

Protocol were based on previous studies assessing episodic intake of palatable tastants 

(Olszewski et al., 2010; Herisson et al., 2014; Herisson et al., 2016). Individually housed mice 

and rats were accustomed (in homecages) to receiving one of the four isocaloric (0.6 kcal/g) 

solutions for 2 h/day on 2 days (10:00–12:00) prior to the experiments using their usual 250 

mL sized water bottles (used for all bottle scenarios) to avoid neophobia(mice: n = 8–9/group; 
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rats: 8–10/group): GM, CM, an energy-equivalent 15% sucrose solution (a reference palatable 

solution), or a 15% cornstarch suspension (a negative control for palatability; as cornstarch is 

insoluble in water, 0.3% xanthan gum was added to this liquid in this experiment as described 

previously in (Bonacchi et al., 2010)). On the experimental day, bottles with the solutions (at 

room temperature) were placed in the cages and water and chow were removed for the 2-h 

experimental session. Spillage (g) from each individual bottle was recorded before placement 

into cage. Intakes were measured after 2 h using a digital scale and expressed in grams per 

gram of body weight. This feeding experiment was conducted in a separate cohort of animals.  

2.3.3.2 Energy Deprivation-Induced Intake of Individually Presented GM and CM in Mice 

and Rats 

Mice and rats previously exposed in their homecages to GM, CM, cornstarch, and sucrose were 

deprived of standard chow overnight (food taken away at 16:00). On the next day (10:00), 

water bottles were removed and replaced with bottles (at room temperature) containing one of 

the four treatments (mice: n = 8–10/group; rats: 7–8/group). Spillage (g) from each individual 

bottle was recorded before placement into cage. Intakes were measured using a digital scale 

after 2 h and expressed in grams per gram of body weight. This feeding experiment was 

conducted in a separate cohort of animals. 

2.3.3.3 Episodic Intake of Individually Presented GM- and CM-Enriched Chow in Sated 

Adult Mice and Rats 

Rats and mice were given episodic access to the chow enriched with GM or CM according to 

the protocol described above, where, instead of GM or CM, a GM- or CM-enriched chow  was 

presented for 2 h (10:00). Standard chow pellets were removed during this 2-h meal, but water 

was left in the cages. Intake of chow pellets (at room temperature) was measured using a digital 

scale after 2 h and expressed in grams per gram of body weight. In order to assess baseline 
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intake, a control group of animals had a fresh batch of the standard chow placed in the hopper 

for 2 h (n = 7–8/group for both mice and rats). This feeding experiment was conducted in a 

separate cohort of animals.  

2.3.3.4 Energy Deprivation-Induced Intake of Individually Presented GM- and CM-Enriched 

Chow in Adult Mice and Rats 

Rats and mice previously exposed to GM- and CM-enriched chow (pre-exposure to both chow 

types was simultaneous) were deprived of standard chow overnight (food taken away at 16:00). 

On the next day (10:00), animals received either standard chow, GM- or CM-enriched pellets 

(mice: n = 7–8/group; rats: n = 8–9/group) at room temperature. Intakes were measured using 

a digital scale after 2 h and expressed in grams per gram of body weight. This feeding 

experiment was conducted in a separate cohort of animals. 

2.3.3.5 Episodic Intake of Individually Presented GM and CM in Sated Adolescent and Aged 

Rodents 

Mice and rats aged 5–6 weeks (n = 9–11/group for each species) were used in the study on 

adolescent animals, whereas 25-month old mice and 26-month old rats (n = 8–9/group for each 

species) were used as the aged cohorts. The feeding experiments utilising individually 

presented cornstarch, sucrose, GM, and CM solutions followed the protocol described above 

for the relevant studies in adult sated rodents that received one of the four solutions for 2 h. 

This feeding experiment was conducted in a separate cohort of animals. 

2.3.3.6 Episodic Intake of GM and CM Presented Simultaneously in Sated Adolescent, Adult, 

and Aged Rodents 

Mice (n = 20) and rats (n = 21) aged 5–6 weeks were used in the study on adolescent animals, 

16–18-week old mice (n = 10) and rats (n = 12) were included in the study on adults, whereas 
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25-month old mice (n = 12) and 26-month old rats (n = 11) were used as the aged cohorts. 

Adult and adolescent rats and mice had been previously exposed to GM and CM (pre-exposure 

to both milk types was simultaneous). The aged animals came from the cohorts described above 

in section 2.3.3.5, however, a week-long ‘washout’ period was allowed between the previous 

experiment and this study. First, the animals were accustomed to simultaneously receiving GM 

and CM as a two-bottle choice (bottles placed next to each other; random order) for circa 1 h 

per day on two days in their homecage. Then, on the experimental day, chow and water were 

removed from cages and GM and CM (at room temperature) were given to the animals for 2 h 

(11:00–13:00). Spillage (g) from each individual bottle was recorded before placement into 

cage. Intakes were measured using a digital scale after 2 h and expressed in grams per gram of 

body weight. This feeding experiment was conducted in a separate cohort of adolescent and 

adult animals. 

2.3.3.7 Episodic Intake of GM- and CM-Enriched Chow Presented Simultaneously in Sated 

Adult and Aged Rodents 

Mice and rats aged 18–20 weeks old mice (n = 8) and rats (n = 8) were included in the study 

on adults, whereas 25-month old mice (n = 9) and 27-month old rats (n = 10) were used as the 

aged cohorts. Adult rats and mice had been previously exposed to GM and CM chow (pre-

exposure to both chow types was simultaneous). The aged animals came from the same cohort 

as in section 2.3.3.5, again with a two-week-long washout period. First, the animals were 

accustomed to receiving simultaneously CM- and GM-enriched chow in a subdivided hopper 

in their homecages (placement of GM/CM pellets was random; standard chow was removed) 

for ~1 h per day on two days. Then, on the experimental day, after removal of standard chow, 

CM- and GM-enriched pellets (at room temperature) were given to the animals for 2 h (10:00–

12:00). Intakes were measured using a digital scale after 2 h and expressed in grams per gram 

of body weight. This feeding experiment was conducted in a separate cohort of adult animals. 
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2.3.3.8 Lickometer-Assessed Preference for Simultaneously Presented GM and CM in Sated 

Adult Rats 

Six 12-week old male rats were housed individually in cages equipped with bottles attached to 

lickometers (Lafayette Instruments, Lafayette, IN, USA). The animals were previously given 

GM and CM to prevent neophobia (the pre-exposure was simultaneous). They were 

accustomed to receiving a choice between GM and CM on two separate days for 30 min 

(random order of bottles) in lickometer cages. On the experimental day, standard chow and 

water were removed from the cages and animals were given simultaneous access to GM and 

CM (room temperature) for 30 min. The number of licks on each bottle was counted and 

analysed (Scurry Activity Monitoring software, Lafayette, IN, USA), both as total number of 

licks as well as number of licks per 5-minute interval. We also assessed the cluster number 

(number of bouts of licking—each bout was defined as continuous licking interspaced by no 

more than 0.5 s between each other) and an average cluster length (bout duration measured in 

seconds) of GM vs. CM. This feeding experiment was conducted in a separate cohort of 

animals. 

2.3.3.9 72-h Cumulative Intake of Simultaneously Presented CM- and GM-Enriched Chow 

in Adult Rats 

First, the animals were accustomed to receiving two types of chow pellets (room temperature) 

simultaneously in a subdivided hopper in their homecage (placement of pellets was random) 

for circa 2 h per day on two days. On the experimental day 1 (17:00), animals received a choice 

of either standard/CM chow (n = 9), standard/GM chow (n = 10), or GM/CM chow for 72 h 

(pellets were exchanged daily; n = 16). Cumulative 72-h intakes were recorded in grams. This 

feeding experiment was conducted in a separate cohort of animals. 
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2.3.4 Effect of 24-h CM vs. GM Consumption on Feeding-Related Gene 

Expression in the Brain Circuit 

In order to assess the effect of 24-h intake of GM and CM solutions on the expression of 

feeding-related genes in the brain, mice were given CM or GM (at room temperature) as the 

only tastant (starting at 10:00). Animals given water served as baseline controls. At 10:00 on 

the subsequent day (thus, 24 h after milk presentation), the animals were sacrificed via cervical 

dislocation. Brains were dissected out and the hypothalamus, NAcc, and brain stem excised 

and stored in RNAlater at −80 ° C until further processing. This experiment was conducted in 

a separate cohort of animals. 

Tissues were homogenised in Trizol (Ambien), 1 mL per 0.1 g tissue. 0.2 mL chloroform was 

added and samples were centrifuged at room temperature for 10 min at 10,000× g. The clear 

phase containing RNA was isolated and 0.5 mL of isopropanol was added. RNA was 

precipitated in an ice bath for 10 min then centrifuged at 4 °C for 20 min at 10,000× g. Aqueous 

phase was removed from the pellets, which were then resuspended in 0.3 mL of ethanol and 

centrifuged at 4 °C for 10 min at 10,000× g. Liquid was removed and pellets were air-dried. 

Pellets were dissolved in 8 µL DEPC water and 1 µL DNAse buffer (dNature). Samples were 

then incubated with 1 µL DNAse (dNature) at 37 °C for 30 min. DNAse was inactivated via 

addition of stop buffer (dNature) and incubation at 67 °C for 10 min. Removal of DNA was 

confirmed via PCR using HOT FIREPol Blend Master Mix (dNature), followed with agarose 

gel electrophoresis. Concentrations of RNA were measured with a nanodrop. 

cDNA was synthesised from RNA samples with iScript Advanced cDNA synthesis kit 

(BioRad). Synthesis of cDNA was confirmed with PCR followed by agarose gel 

electrophoresis. Quantitative RT-PCR (qPCR) was used to determine relative expression levels 
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of housekeeping genes (ActB, GAPDH, β-tubulin) and of genes of interest. Reactions 

contained 4 µL of 25 ng/μL sample cDNA, 1 µL of each forward and reverse primers (5 µM), 

10 µL iTaq Universal SYBR Green Supermix (BioRad) and 4 µL MilliQ water. qPCR 

experiments were performed in duplicates alongside negative controls of MilliQ water for each 

primer pair. Amplification protocol was initiated at 95 °C for 15 min, followed by 45 cycles of 

15 s at 95 °C, 15 s at the primer-specific annealing temperature and 30 s at 72 °C. Primers used 

are detailed in Table 2.3.  

2.3.5 Data Analysis 

Analyses of qPCR data utilised BioRad CFX Manager software (BioRad); one-way ANOVA 

followed by Bonferroni’s test with the correction for multiple comparisons was used, with p < 

0.05 set as criterion of statistical significance. Feeding data from studies comparing two groups 

were analysed using a t-test, whereas comparisons between three or more groups were done 

with ANOVA followed by Bonferroni’s post-hoc test, with differences considered significant 

when p < 0.05. 
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Table 2.3 Forward and reverse primers for housekeeping and target genes used in RT-qPCR 

analyses of hypothalamic, brainstem and NAcc relative gene expression following GM and 

CM consumption 

Gene Forward Reverse 

GADPH 5′-AAGGTCATCCCAGAGCTGAA-3′ 5′-CTGCTTCACCACCTTCTTGA-3′ 

βTUB 5′-CGGAAGGAGGCGGAGAGC-3′ 5′-AGGGTGCCCATGCCAGAGC-3′ 

ActB 5′- GTGTGACGTTGACATCCGT-3′ 5′-TGCTAGGAGCCAGAGCAGTA-3′ 

POMC 5′-CCTTGTGGGTCTGTTTGA-3′ 5′-AGCAGCCTCCCGAGACA-3′ 

AGRP 5′-GGATCTGTTGCAGGAGGCTCAG-3′ 5′-TGAAGAAGCGGCAGTAGCACGT-3′ 

NPY 5′-GGTCTTCAAGCCGAGTTCTG-3′ 5′-AACCTCATCACCAGGCAGAG-3′ 

MC4R 5′-CTTATGATGATCCCAACCCG-3′ 5′-GTAGCTCCTTGCTTGCATCC-3′ 

GHSR 5′-TCCGATCTGCTCATCTTCCT-3′ 5′-GGAAGCAGATGGCGAAGTAG-3′ 

ORX 5′-GCCGTCTCTACGAACTGTTGC-3′ 5′-CGCTTTCCCAGAGTCAGGATA-3′ 

OXT 5′-CCTACAGCGGATCTCAGACTG-3′ 5′-TCAGAGCCAGTAAGCCAAGCA-3′ 

OXTR 5′-TCTTCTTCGTGCAGATGTGG-3′ 5′-CCTTCAGGTACCGAGCAGAG-3′ 

PENK 5′-CGACATCAATTTCCTGGCGT-3′ 5′-AGATCCTTGCAGGTCTCCCA-3′ 

DYN 5′-GACAGGAGAGGAAGCAGA-3′ 5′-AGCAGCACACAAGTCACC-3′ 

MOR 5′-CCTGCCGCTCTTCTCTGG-3′ 5′-CGGACTCGGTAGGCTGTAAC-3′ 

KOR 5′-CACCTTGCTGATCCCAAAC-3′ 5′-TTCCCAAGTCACCGTCAG-3′ 

PNOC 5′-AGCACCTGAAGAGAATGCCG-3′ 5′-CATCTCGCACTTGCACCAAG-3′ 

ORL1 5′-ATGACTAGGCGTGGACCTGC-3′ 5′- GATGGGCTCTGTGGACTGACA-3′ 

GLP1R 5′-ATGGCCAGCACCCCAAGCCTCC-3′ 5′-TCAGCTGTAGGAACTCTGG-3′ 

Cx36 5′-CCAGTAAGGAGACAGAACCAGAT-3′ 5′-GATGATGTAGAAGCGGGAGATAC-3′ 
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2.4 Results 

In the non-choice acceptance tests, sated adult mice and rats showed very low levels of 

consumption of a ‘bland’ cornstarch emulsion, whereas intakes of the GM (mice, F(3,30) = 

62.8, p < 0.001; rats, F(3,32) = 25.5, p < 0.001) and CM (mice, p < 0.001; rats, p < 0.001), as 

well as of the sucrose solution (mice, p < 0.001; rats, p < 0.001), were several times higher than 

of cornstarch. Energy-deprived animals had a higher baseline intake of cornstarch, but 

consumed significantly more sucrose (mice, F(3,32) = 9.77, p ≤ 0.001; rats, F(3,26) = 5.5, p = 

0.039), GM (mice, p < 0.001; rats, p = 0.0023), and CM (mice, p = 0.034; rats, p = 

0.0083; Figure 2.1 A–D). Similarly, both deprived and sated adult individuals ate more GM- 

and CM-enriched pellets than standard chow (sated mice: F(2,19) = 5.9, GM, p = 0.029 and 

CM, p = 0.011; sated rats: F(2,19) = 20.5, GM, p < 0.001 and CM, p = 0.0011; deprived 

mice: F(2,19) = 6.5, GM, p = 0.0058 and CM, p = 0.034; deprived rats: F(2,22) = 10.8, 

GM, p < 0.001 and CM, p = 0.0442; Figure 2.1E–H). Adolescent and aged sated mice and rats 

(Figure 2.2A,B,E,F) given episodic 2-h access to one of the solutions, consumed more GM 

(adolescent mice, F(3,35) = 42.7, p < 0.001; rats, F(3,36) = 16.9, p < 0.001; aged mice, F(3,29) 

= 31.2, p < 0.001; rats, F(3,29) = 18.9, p < 0.001), CM (adolescent mice, p < 0.001; rats, p < 

0.001; aged mice, p < 0.001; rats, p < 0.001) and sucrose (adolescent mice, p < 0.001; rats, p < 

0.001; aged mice, p < 0.001; rats, p < 0.001) than cornstarch. 
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Figure 2.1 Episodic 2-h consumption of individually presented (acceptance) cornstarch, 

sucrose, GM, and CM isocaloric solutions (A–D), and of standard, GM- and CM-enriched 

chow (E–H) in sated (nondeprived) and energy-deprived mice (left panel) and rats (right 

panel).*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001. 
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Figure 2.2: Episodic 2-h consumption of individually presented cornstarch, sucrose, GM, and 

CM isocaloric solutions (A,B,E,F: acceptance) and simultaneously given GM and CM 

(C,D,G,H: preference) in adolescent and aged sated mice (left panel) and rats (right panel). 

*, p ≤ 0.05; ***, p ≤ 0.001.  
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When given a 2-h episodic choice between GM and CM, all age cohorts of rats (adolescent, p < 

0.001; adult, p < 0.001; aged, p < 0.001) and adult and aged mice (p = 0.012 and 0.011, 

respectively) preferred GM (Figure 2.2C,D,G,H and Figure 2.3A,B). During a brief, 30-min 

exposure to both GM and CM in cages equipped with lickometers, adult rats exhibited a more 

robust response to GM cumulatively over that period (p = 0.01) as well as during the first (p = 

0.037) and second (p = 0.05) 5-min time interval of the meal (Figure 2.3C,D). There was a 

trend approaching significance (p = 0.088) toward an increase in the cluster number (number 

of licking bouts) of GM over CM, and a significantly greater cluster length of each GM than 

CM bout (p = 0.022; Figure 2.3E,F). In choice experiments involving GM- and CM-enriched 

chow, adult and aged rats (p = 0.009 and 0.023, respectively) and adult mice (p = 0.028) 

preferred GM chow, whereas in aged mice, a trend toward GM preference was detected (p = 

0.059) (Figure 2.4A,B). Adult rats given a 72-h uninterrupted access to a choice between GM 

and CM chow preferred GM chow (p < 0.001), while both GM (p = 0.015) and CM pellets (p < 

0.001) were preferred over standard food during a similar time of exposure (Figure 2.4C). 
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Figure 2.3: Episodic consumption of simultaneously presented GM and CM over 2-h in sated 

mice (A) and rats (B), lickometer activity during a 30-min exposure ((C): 0–30 min; (D): 5-

min intervals), the number of GM over CM licking bouts (cluster number) (E), and the cluster 

length(s) of each GM and CM bout (F) in sated rats. *, p ≤ 0.05; ***, p ≤ 0.001.  
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Figure 2.4 Consumption of simultaneously presented GM- and CM-enriched chow in adult and 

aged sated mice (A) and rats (B) over 2 h and simultaneously presented pellets (standard vs. 

GM; standard vs. CM, and GM vs. CM) over 72 h in adult rats (C).*, p ≤ 0.05; **, p ≤ 0.01; 

***, p ≤ 0.001.  
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Real-time PCR analysis after consumption of the two milk formulations (GM: 19.27 +/− 0.18 

g; CM: 18.44 +/− 0.17 g) revealed that GM upregulated in the NAcc PNOC (p = 0.0164), 

ORL1 (p = 0.0042), Cx36 (p = 0.0017), GLP1R (p = 0.0015), MC4R (p = 0.002), OXT (p < 

0.001), and GHSR (p < 0.001) genes, whereas mRNA levels of PENK were lower (though it 

did not reach significance with a p value of 0.01), compared with CM consumption. In the 

hypothalamus, MOR (p = 0.045) and KOR (p = 0.017) transcript levels were higher after GM 

consumption, and in the brain stem there was a trend toward upregulation of the MC4R (p = 

0.099) and the MC3R was upregulated (p = 0.0275; Figure 2.5). Compared to water controls, 

in the NAcc, GM affected expression of ORL1 (p = 0.012), Cx36 (p = 0.0052), GLP1R (p = 

0.0042), MC4R (p = 0.0053), OXT (p = 0.0149), and GHSR (p < 0.001); in the hypothalamus, 

ORX (p = 0.0164), KOR (p = 0.0399), and MC4R (p = 0.0403). On the other hand, 

hypothalamic expression of the MC4R gene was elevated by CM intake (p = 0.041; Figure 

2.5). 
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Figure 2.5: Relative expression of feeding-related genes in the nucleus accumbens (A), 

hypothalamus (B), and brain stem (C) of mice maintained for 24 h on GM or CM. Water served 

as a baseline tastant. a – significantly different from the water group; b – significantly different 

from the CM group. Analysis performed with ANOVA followed by Bonferroni’s test and 

corrected for multiple comparisons.  



 

61 

2.5 Discussion 

Enhanced motivation to eat in the absence of an immediate need to replenish calories or 

continuation of a meal beyond levels that restore energy balance typically occur when an 

individual is given access to food that is highly palatable. In laboratory animal models, 

similarly to what is observed in humans, a variety of tastants are perceived as palatable. Those 

include ingestants whose palatability is derived mainly from the flavour and/or postabsorptive 

effects of either a single macronutrient (e.g., sucrose-sweetened solutions) or from the complex 

contribution of multiple nutritive components (e.g., in meat rich in protein and fat) (Levine et 

al., 2003; Martire et al., 2013; Martire et al., 2014). Calorie density of food (especially when 

coupled with high energy needs of an organism) is an additional factor that affects the liking 

of and preference for a given food (Drewnowski, 1998; Olszewski et al., 2011).  

The current set of studies show that both GM and CM and milk-enriched solid diets are highly 

palatable. In no-choice acceptance paradigms, energy non-deprived rats and mice of all age 

groups (adolescent, adult, and aged) consumed GM and CM as avidly as the calorie-matched 

15% sucrose solution (used here as a positive control for a highly palatable tastant in rodents 

(for review, see (Levine et al., 2003)), while ingesting only minimal amounts of the ‘bland’ 

cornstarch. A similar phenomenon was observed in energy-deprived animals, although the 

amount by which GM, CM, and sucrose intakes exceeded that of cornstarch was not as 

pronounced as in sated rodents. That was due to the vigorous energy deficit-driven 

consumption of cornstarch and a ‘ceiling effect’ that prevents ingestion of large amounts of the 

solutions during the brief refeeding period. Importantly, GM and CM enrichment of laboratory 

chow stimulated intake in both hungry and sated animals well above the level of standard 

pellets. It indicates that both GM- and CM-derived palatability is a generalised phenomenon, 

not limited to liquid milks, but extending to solid foods that contain milk powder. This is in 

concert with the ability of other palatable tastants (including, but not limited to, fat, sucrose, 
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and select amino acids) to have a positive gustatory effect when presented as a component of 

both liquid and solid foods (Moran & Ladenheim, 2016). The fact that not only adolescent and 

adult animals, but also the aged ones, readily consume GM and CM suggests that age-related 

decline in hedonic processing (Gosnell et al., 1983; Landi et al., 2016; Tenk et al., 2017; Tomm 

et al., 2018) does not completely abolish a drive to eat milk-based diets. Instead, a slightly 

depressed intake of GM and CM at an old age parallels that reported for sweet solutions, as 

shown here and by other authors (Shin et al., 2012; Inui-Yamamoto et al., 2017; Sakai et al., 

2017). This finding is particularly relevant from the standpoint of being able to use palatable 

GM or CM as nutritionally superior alternatives to, e.g., sucrose-sweetened tastants in aged 

individuals (Morley, 2013). That adolescent rodents also consume large quantities of both milk 

types indicates that prolonged dietary habituation is not required to develop the liking of either 

GM or CM. In fact, the amounts of GM and CM ingested by juveniles were as high as the 

volume of sucrose (readily consumed in large quantities by young animals, e.g., see (Naneix 

et al., 2016)) even though the individuals had had only two brief exposures to these solutions 

prior to the experiment. 

The single-tastant scenarios above strongly suggest a high acceptance level for both GM and 

CM indicating they are palatable, but as these no-choice paradigms produced fairly similar 

feeding responses, choice studies were needed to define relative preference for these two milk 

types. Simultaneous 2-h exposure to two bottles containing GM and CM showed that adult and 

aged mice and rats as well as adolescent rats exhibit a marked preference for GM (adolescent 

mice were the only cohort in which GM and CM were iso-palatable). The preference for GM 

did not appear to be related to whether the animals’ pre-exposure to the specific diets was 

simultaneous (such as in adolescents and adults) or sequential (aged rodents). This finding was 

further expanded by employing the 30-min lickometer analysis in adult rats. It showed 

approximately four times as many licks at the bottle containing GM compared to CM during 
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the first 5 min of the meal, and twice as many licks at the GM bottle in the subsequent 5-min 

interval. Overall, the licking activity at both bottles occurred within the same timeframe with 

neither milk type being ingested in a prolonged fashion. It increases our confidence in that 

motivation to consume palatable GM rather than maintenance of a meal (due to, e.g., delayed 

satiation (Glass et al., 2001)) is the main reason for avid intake of GM. The analysis of the 

licking bouts provides additional support for this notion. The cluster number (total number of 

bouts) neared significance for GM, possibly reflecting the incentive motivational properties of 

the food stimulus; importantly, the relationship of motivation and this measure reflects post-

ingestive negative feedback (Davis & Smith, 1992; Higgs & Cooper, 1998; D'Aquila, 2010; 

Dwyer, 2012; Mendez et al., 2015). On the other hand, the average cluster length—

significantly greater for the GM formulation—typically parallels the hedonic properties 

(mainly, orosensory pleasure) of ingestive stimuli (as reviewed, e.g., in (Dwyer, 2012)). In this 

case, it is the length of clusters that appears to be the main driver for the preference for GM. A 

good example of the significance of licking bout length versus number in the context of neural 

regulation of food intake comes from studies on the endogenous opioid system. Ostlund et al. 

found that mu opioid receptor (MOR) knockout (KO) mice show alterations in sucrose licking: 

while energy-deprived wild-type mice increased burst length, relative to the nondeprived 

condition, this aspect of licking was insensitive to changes in food deprivation in MOR KOs. 

The rate of sucrose and sucralose licking in KOs was lower than in wildtype animals, providing 

evidence that the MOR was involved in processing palatability (Ostlund et al., 2013). Mendez 

and colleagues reported that proenkephalin (PENK) KOs given a sucrose solution exhibited 

fewer bouts of licking (though the length did not differ) than wild type controls, indicating a 

diminished motivation to eat (Mendez et al., 2015). Finally, studies on the involvement of 

nociceptin/orphanin FQ (NOC) revealed that NOC administration initiates new bouts of licking 

for sweet solutions, which is in line with the notion of its potential relationship to motivational 
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aspects of feeding. Interestingly, energy-deprived NOC receptor KO mice given sucrose 

showed longer bouts of licking than wild types, suggesting that, under hungry conditions, NOC 

may also affect hedonics of consumption (Mendez et al., 2016). 

The notion that satiety is not delayed by GM intake is supported by the experimental work 

exploring satiating effects of a CM- versus GM-based meal in humans. In their study, Rubio-

Martín et al. presented healthy adults with GM-based or CM-based breakfast after an overnight 

fast and obtained blood samples and appetite ratings from the subjects just before and up to 5 

h after completion of the meal. They found that that the ‘desire to eat’ rating was significantly 

lower and hunger rating tended to be lower after the GM breakfast. Interestingly, the area under 

the curve (AUC) for a satiety hormone glucagon-like peptide-1 was inversely associated with 

the AUChunger and AUCdesire-to-eat after the GM meal (Rubio-Martín et al., 2017). 

The aforementioned data obtained in human observations combined with the current results of 

our experiments in animal models suggest that even though composition differences between 

GM and CM are relatively minor, they are sufficient to significantly affect appetite-related 

parameters. It remains to be elucidated whether these effects are produced by a specific 

macronutrient component, a combination of nutritive components, and/or some physico-

chemical characteristics of each milk type (e.g., micelle structures in GM vs. CM differ in 

diameter, hydration, and mineralization) (Park et al., 2007). 

The analysis of mRNA levels of feeding-related genes sheds more light on neural processing 

underlying enhanced preference for GM over CM. One of the most striking outcomes is the 

fact that, unlike in the NAcc, which showed an increase in multiple mRNA profiles after GM 

over CM, there are relatively few significant differences in gene expression in the 

hypothalamus and brain stem. Those two brain areas serve as the foundation for the control of 

energy homeostasis and consumption-related changes in the internal milieu associated with 
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plasma osmolality, stomach distension, and defence from exposure to food-borne toxins 

(Klockars et al., 2019). In this network, the brain stem acts as the relay station between the 

periphery and the central nervous system, whereas the hypothalamus plays an endocrine role 

(by releasing, e.g., anorexigenic hormones, such as oxytocin (OXT) via the neurohypophysis) 

and innervates a number of central target sites (it includes the reciprocal connectivity with the 

brain stem, as well as multiple pathways with, among others, nigrostriatal and hippocampal 

structures). It is noteworthy that, despite the same level of intake of GM and CM over the 24-

h period, the hypothalamic expression of NPY and orexin (ORX) was lower in the GM group. 

Both ORX and NPY in the hypothalamus enhance consumption chiefly by increasing hunger 

and motivating intake of energy-dense tastants (Levine et al., 2004; Nixon et al., 2012). Thus, 

these data suggest that enhanced preference for GM over CM of the shorter choice and no-

choice scenarios does not stem from the stimulation of neural mechanisms that lead to hunger-

driven feeding. In line with the aforementioned conclusion from feeding experiments that the 

increased preference for GM vs. CM in choice scenarios is unlikely to be related to suppressed 

satiety signalling, we found that the brain stem expression of satiation promoting melanocortin 

receptors (Wirth et al., 2001; Girardet & Butler, 2014) is elevated after consumption of GM (it 

remained the same in the hypothalamus). This change in the receptor mRNA level coupled 

with the lack of a difference in the melanocortin ligand precursor gene expression 

(proopiomelanocortin, POMC) as well as in the anorexigenic OXT gene (Olszewski et al., 

2010; Olszewski et al., 2016) suggests the lack of impairment in central satiety processing after 

GM (and, surprisingly, even a somewhat greater sensitivity of the molecular network 

promoting satiety in response to GM consumption). 

Interestingly, the hypothalamic genes whose expression was elevated by GM intake were those 

encoding the MOR and kappa (KOR) opioid receptors (MOR and KOR brain stem and 

accumbal mRNA levels were also higher, though the difference did not reach statistical 
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significance). Furthermore, in the NAcc, we found overexpression of genes coding for opioid-

related NOC and this peptide’s receptor, ORL1. Opioid receptors are directly implicated in the 

regulation of feeding for reward (Glass et al., 2001; Gosnell & Levine, 2009). They are part of 

a dispersed network that includes the NAcc as one of the key sites mediating hedonic aspects 

of eating behaviour. They are also expressed throughout the ‘homeostatic’ components of the 

feeding-related circuit (Olszewski et al., 2008), including the hypothalamus and brain stem, 

where they are theorised to promote excessive consumption of palatable tastants by delaying 

meal termination. The magnitude at which opioid receptor agonists, such as butorphanol 

tartrate, dynorphin and beta-endorphin, stimulate consumption parallels the relative palatability 

of foods (Gosnell et al., 1986; Gosnell & Levine, 2009). Conversely, opioid receptor 

antagonists, e.g., naltrexone and naloxone, are particularly effective at reducing intake of tasty 

ingestants (Giraudo et al., 1993). Hence, higher expression of the MOR and KOR mRNA after 

GM is in line with the observed preference for the GM over CM. Changes in expression of 

additional NAcc genes that underscore the functional relationship between GM intake and 

reward processing include upregulation of Cx36 mRNA, as Cx36 ensures proper synchrony of 

dopaminergic pathways (Steffensen et al., 2011), and of the growth hormone secretagogue 

receptor (GHSR) mRNA, considering that the GHSR in the NAcc has been found to mediate 

hedonics of ingestive behaviour (Skibicka et al., 2013). Again, as in the case of the 

hypothalamic gene expression analysis, genes encoding molecules that promote satiety – such 

as OXT, melanocortin receptor 4, and glucagon-like peptide-1 receptor (Kanoski et al., 2016) 

– were upregulated after GM, which points to the heightened reward processing rather than 

impaired satiation as the factor propelling preference toward GM over CM. 

2.6 Conclusions 

In laboratory animal models, GM and CM are highly palatable when presented as liquids and 

as components of solid diets. Diet choice paradigms reveal preference for GM over CM in mice 
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and rats belonging to different age groups. Feeding studies and analyses of gene expression in 

the feeding-relevant brain circuit point to feeding reward as the main factor underlying 

preference for GM. The complex nutritional profile of milk varies between species. With the 

use of skim milk with low lipid content, macronutrient variation eliciting preference for GM 

over CM would be attributed to either lactose or milk protein fractions. Incorporation of milk 

into human diets comes with modification of milk composition, often with adjustment of the 

protein fraction. The predominance of CM in western societies is reflected in a bias in literature 

concerning acceptance and postprandial effects of whey and casein fractions, the two major 

milk proteins, in which CM proteins are widely utilised over other species milks. There is 

suggestion that modifying protein fractions in milk diets alters digestive and post-absorptive 

consequences. However, with differences in protein compliments between CM and GM and 

the variation in acceptance and preference observed here, little is known regarding acceptance 

of modified whey and casein content across species milks with altered patterns of intake, 

digestion, endocrine and central responses.  
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Chapter 3 

Changes in feeding and related brain activity and 
gene expression in mouse model following 

consumption of goat’s milk formulations with 

variable whey and casein content.  

3.1 Abstract 

In the previous chapter, preference for goat’s milk (GM) over cow’s milk (CM) was shown in 

laboratory animal models in choice scenarios. Across different ages, animals exhibited avid 

consumption of GM-based liquid and solid diets. Preference was driven with reward-related 

signalling in opioidergic and dopaminergic systems. In this chapter, I describe the 

modifications to feeding behaviours and central signalling following GM-derived formulations 

with natural and adjusted whey to casein content. Adjustment of protein content in animal milk-

based formulations is done to modify protein and energy levels, to ensure adequate amino acid 

intake and to affect satiety. The shift from the natural whey:casein ratio of 20:80 in animal milk 

formulations for adults and for infants is oftentimes done to reflect the 60:40 whey:casein ratio 

of human milk. Recent studies show altered digestion and metabolic parameters accompany 

modified whey:casein – in vitro and adult studies showed that 20:80 versus 60:40 whey:casein 

milks differently affect casein proteolysis rate, glucose metabolism and hormone release; these 

data are supported by animal model findings. Importantly, it is unknown whether the 

adjustment from the 20:80 to 60:40 ratio affects appetite and brain processes related to food 

intake. The current set of studies therefore focused on the impact of the 20:80-to-60:40 

whey:casein content shift in GM-derived formulation on food intake and feeding-related brain 

processes in the adult organism. In laboratory mice the 20:80 whey:casein GM formulation 

was consumed less avidly and was less preferred than the 60:40 formulation in short-term 
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choice and no-choice feeding paradigms. Appetite changes were reflected by altered hindbrain 

and hypothalamic mRNA expression of genes relevant to feeding, including the melanocortin 

system. They were also associated with changes in brain neuronal activation patterns assessed 

by the analysis of an immediate early gene product, c-Fos, in the nucleus of the solitary tract, 

area postrema, ventromedial hypothalamic nucleus and supraoptic nucleus. It is concluded that 

the shift from the 20:80 to 60:40 whey:casein ratio in GM-derived formulations affects short-

term feeding and relevant brain processes. 

3.2 Introduction 

In Chapter 2, variation in intake of goat’s milk (GM) and cow’s milk (CM) was described in 

laboratory animals. Rat and mice models exhibited avid consumption of GM over CM in both 

liquid and solid diets and across a range of ages. Analysis of relative gene expression in key 

brain regions regulating feeding noted altered expression of reward-related genes in 

opioidergic, dopaminergic and oxytocin-related pathways. Elevated consumption of GM 

driven by reward reinforces species difference in consummatory outcomes, previously 

described in variable digestion and peripheral post-absorptive nutrient and hormone status. 

Chapter 2 serves as the first description of modified acceptance and preference with GM and 

CM, expanded upon in the next two chapters examining impact of modifying protein content 

of milk on appetitive behaviours.  

Milk and dairy products constitute a significant proportion of a typical diet and the nutritional 

benefits associated with their consumption stem from, among others, the macronutrient profile 

of milk, including the unique protein composition (Anderson & Moore, 2004; Chen et al., 

2014; Hirahatake et al., 2014; Pasiakos, 2015). Milk proteins consist primarily of whey and 

casein (Jahan-Mihan et al., 2011). Unlike the 60:40 whey:casein ratio of human milk, the 

protein fraction of animal milks (such as bovine and caprine milk predominantly available on 
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the consumer market) has the natural whey:casein ratio of approximately 20:80 (Park & 

Haenlein, 2013); and thus milk formulations used in human nutrition – most commonly infant 

formulas – are often whey-enhanced to match the 60:40 ratio (Goedhart & Bindels, 1994; 

Lönnerdal, 2003; Heird, 2007).  

It is well established that proteins, including those present in milk, affect appetite, body weight 

and metabolic parameters (Anderson & Moore, 2004; Zemel, 2004; Jahan-Mihan et al., 2011). 

Importantly, data show that whey and casein generate distinct physiological and appetitive 

responses by interacting with specific transporters and receptors in the gut, affecting nutrient 

absorption, modifying gastric emptying and gastrointestinal (GI) hormone release (Boirie et 

al., 1997b; Dangin et al., 2003; Anderson & Moore, 2004; Jahan-Mihan et al., 2011). Whey 

and casein have unique digestion kinetics and post-absorptive effects. Digestion of whey is 

rapid compared to casein: casein proteins aggregate into curds (Luiking et al., 2016; Wang et 

al., 2018), delaying delivery of constituent metabolites to the intestine (Boirie et al., 1997b; 

Marsset-Baglieri et al., 2014; Meyer et al., 2015; Dalziel et al., 2017). Plasma amino acid 

levels reflect digestion speed, with whey intake inducing higher, immediate increases in 

circulating amino acids (Boirie et al., 1997a; Hall et al., 2003; Calbet & Holst, 2004) and casein 

having delayed and lower but sustained hyperaminoacidemia (Boirie et al., 1997a).  

Consequently, whey and casein differentially influence the release of some consumption-

regulating hormones, which – in turn - likely produces a unique downstream central nervous 

system response, including activity of relevant brain systems that control appetite. While both 

fractions produce hypophagia via peptide YY (PYY) and its interaction with the Y2 receptor 

(Reidelberger et al., 2013; Zapata et al., 2018), whey is a much more potent enhancer of 

cholecystokinin (CCK), glucagon-like protein 1 (GLP-1) and glucose dependent insulinotropic 

polypeptide (GIP) release (Hall et al., 2003; Marsset-Baglieri et al., 2014; Hoefle et al., 2015; 
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El Khoury et al., 2019). As plasma amino acids and gastrointestinal hormones influence 

feeding either through direct or vagal-mediated action on central pathways (Gietzen et al., 

1989; Blouet et al., 2009; Gartner et al., 2018a; Gartner et al., 2018b; Heeley et al., 2018), 

scarce prior literature indeed suggests differing effects of whey and casein at central feeding-

related circuits, with e.g. whey more effectively modulating serotoninergic activity (Orosco et 

al., 2004; Choi et al., 2009) and expression of select energy homeostasis regulatory genes 

(Potier et al., 2009; Andreoli et al., 2016; Nilaweera et al., 2017). Altered feeding patterns 

resulting from consumption of either fraction alone have been reported (Hall et al., 2003; 

Marsset-Baglieri et al., 2014; Pal et al., 2014; Singh et al., 2016).  

While evidence delineating the physiological responses to individually presented whey and 

casein exists, human or laboratory animal studies evaluating the physiological impact of those 

fractions ingested in milk formulations in two commonly encountered ratios, i.e., whey:casein 

60:40 and 20:80, are very scarce. This gap in knowledge is particularly surprising considering 

that these are common ratios in both adult and infant dairy-based nutrition, and one should not 

simplistically assume that the effect of combined whey and casein in milk formulation would 

be either negligible or merely ‘proportional’ to their adjusted content. In their 2019 study, (El 

Khoury et al., 2019) found that in healthy adults given a 60:40 versus 20:80 whey:casein milk 

beverage, a higher whey:casein ratio milk ingested along with high-carbohydrate cereal 

decreased postprandial glycemia in an insulin-independent manner, primarily through delayed 

gastric emptying (El Khoury et al., 2019). The authors also observed the preprandial glucose 

peaks to be lower and GLP-1 plasma levels to be elevated after ingestion of milk with the 60:40 

ratio. In line with that, obese rats showed greater improvements in glucose tolerance when fed 

whey than those given whey plus casein (Nilsson et al., 2007; Pezeshki et al., 2015). 
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Even though the search for an improved whey:casein ratio has been largely spurred by the 

intent to improve eating behavioural, nutritional and metabolic consequences of protein 

consumption, surprisingly, very little is known about potential appetite-related feeding and 

neural consequences that the departure from the natural 20:40 toward 60:40 whey:casein 

protein ratio in animal milk formulation may produce. This gap in knowledge is particularly 

critical since it can be presumed that the distinct feeding and neuroendocrine effects shown for 

whey and casein alone likely contribute to unique appetite-related changes induced by 

consumption of a formulation containing whey:casein combination at the ratio of 20:80 versus 

(whey-enhanced) 60:40. Surprisingly, the potential effects of such modification have never 

been studied. Therefore, the current study utilising adult laboratory mice was designed to 

determine whether an adjustment of the whey:casein ratio in protein-matched milk formulation 

from 20:80 to 60:40 (a) affects palatability and acceptability of the milk formulation in short-

term feeding paradigms, (b) whether it evokes a different pattern of activity in feeding-related 

brain sites after ingestion of the matched amount of one of the formulas, and (c) whether it 

promotes changes in expression of hypothalamic and brainstem genes critical in food intake 

regulation. Given the fractions’ differences in post-ingestive effects, it was speculated that 

appetite changes come through central mechanisms uniquely affected by modifications in 

whey-to-casein content. A standard caprine milk-based formula with the 20:80 versus 60:40 

whey:casein ratio was used in the studies. 
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3.3 Material and Methods 

3.3.1  Animals  

Adult male C57Bl mice were single-housed in a temperature-controlled (22 °C) room with a 

12:12 hour LD cycle (lights on 0900). Animals had ad libitum access to standard chow (Diet 

86, Sharpes Stock Feed, Wairarapa, New Zealand) and tap water unless stated otherwise. 

Groups were weight-matched. The procedures were approved by the University of Waikato 

animal ethics committee (approval #1057).  

3.3.2 Milk formulations 

The formulations were GM-based (Dairy Goat Cooperative, Hamilton, New Zealand). The 

control GM formula contained the natural protein ratio of 20% whey and 80% casein (20:80 

GM) whereas the novel formula had 60% whey and 40% casein (60:40 GM). They were stored 

as powder and prepared immediately before use by being reconstituted in water. All animals 

were pre-exposed to the formulas prior to the trials in order to prevent neophobia. Composition 

of formulations are detailed in Table 3.1.  

Table 3.1: Nutritional composition of GM formulations per 100 ml 

 kJ Protein (g) Whey protein (%) Fat 
(g) 

Carbohydrate (g) 

20:80 GM 278.1 1.3 20.0 3.5 7.5 

60:40 GM 275.5 1.4 60.0 3.5 7.1 

 

3.3.3 Feeding studies 

GM-based formulation treatment paradigms for adult mice are outlined in Table 3.2 
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Table 3.2: Schematic of GM-based formulation treatment paradigms in adult mice 

 

3.3.3.1 Preference for the simultaneously presented GM formulas  

Mice (n=7-8/group) were acclimatised to two-bottle presentation of the formulations on two 

separate occasions one week prior to the trial. On the experimental day at 10:00, chow and 

water were removed from the cages and mice were simultaneously given access to two bottles, 

one containing the 20:80 GM formulation and the other, the 60:40 GM solution. Intake was 

measured after 2 hours by weighing the bottles and the data were expressed in grams. 

3.3.3.2 Energy deprivation-induced 2-hour intake of each GM formulation presented 

individually along with standard chow  

Mice (n=10/group) were deprived overnight of chow; water was available during that time. At 

10:00 they were given access to standard chow and a bottle containing either the 20:80 GM 

formulation or the 60:40 GM solution for 2 hours. Water was removed during the 2-hour meal 

as the formulas were the source of both calories and water. In an additional control scenario, 

in order to determine the impact of the formulations on consumption of standard chow, another 

group of mice (n=10) was refed with chow, but instead of either formulation, they received a 

bottle of water. Chow and fluid consumption was determined at the end of the 2-hour meal. 
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3.3.3.3 Intake of the formulas presented independently for 24 hours 

During a 24-hour pre-exposure period, to reduce neophobia, a water bottle in each cage was 

replaced with a bottle containing either the 20:80 GM formulation or the 60:40 GM test solution 

(chow was available). On the experimental day, both chow and water were removed (start at 

09:00) and a bottle containing either the 20:80 or the 60:40 GM formulation was placed in the 

cage. The formulations were the only source of both calories and fluid for the next 24 hours. 

Afterwards, formulation intake was measured in grams.  

3.3.4 Neuronal activation in feeding-related hypothalamic and brainstem 

areas after consumption of the same amount of the 60:40 GM versus 

20:80 GM formulation.  

Protooncogene c-fos is an immediate gene product elevated during activation of the neurone, 

with peak expression 30-60 minutes post-stimuli (Morgan & Curran, 1991), allowing tracing 

of central activity following food intake. The purpose of this experiment was to assess whether 

consumption of the same amount of the 60:40 GM formula induces a different pattern of 

neuronal activation in areas of the hypothalamus and brain stem that are crucial in the 

regulation of food intake compared to the 20:80 GM formula. 

Water and standard chow were removed from the cages and animals were presented with either 

20:80 or the 60:40 GM formulation (n=8) for 1 hour and allowed to drink ~1 g/g BW . Mice 

were then anaesthetised with intraperitoneal 35% urethane and perfused with saline (10 ml) 

followed by 50 ml of 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (pH 7.4) one 

hour after termination of diet exposure. Brains were dissected and postfixed in PFA at 4 °C 

overnight. Coronal 60 μm vibratome (Leica, Germany) sections were processed for c-Fos 

immunostaining. The sections were incubated in 3% H2O2 in 10% methanol (in tris-buffered 
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saline (TBS); pH 7.4) for ten minutes, then overnight in rabbit anti-c-Fos antibody (1:3000; 

Synaptic Systems, Goettingen, Germany) at 4 °C. Then sections were incubated for 1 hour in 

the secondary biotinylated goat-anti-rabbit antibody (1:400; Vector Laboratories, USA) and 

for 1 hour in avidin-biotin complex (1:800; Vector Laboratories, USA) at room temperature. 

0.05% DAB, 0.01% H2O2 and 0.2% nickel sulphate (Sigma, USA) were used to visualise cFos-

positive nuclei. All incubation utilised a mixture of 0.25% gelatin and 0.5% Triton X-100 

(Sigma, USA) in TBS. TBS was also used for intermediate rinsing. Sections were mounted 

onto gelatinised slides, dried and dehydrated in ascending concentrations of ethanol, soaked in 

xylene and embedded in and embedded in Entellan (Merck, Germany). Manual counting of c-

Fos immunoreactive nuclei was performed bilaterally in all regions (4-5 sections/animal) by a 

person blinded to group allocations at 10x and 40x magnifactions on Nikon microscope. 

Densities of c-Fos positive nuclei/mm2 were averaged per group.  

3.3.5 Hypothalamic and brainstem gene expression following 24-hour 

exposure to the 20:80 GM vs 60:40 GM formula  

Upon completion of the 24 hour 20:80 or 60:40 GM formula exposure (as described in Section 

3.3.3.3), the animals were sacrificed at 09:00 by cervical dislocation and the brain stem and 

hypothalamus were dissected. They were stored in 1 ml RNALater (Invitrogen, USA) at room 

temperature for 1 hour and then at -80°C until processing. 

Upon thawing, the tissue was transferred from RNALater to TRIzol (Life Technologies, USA; 

1ml/100mg tissue) and mechanically homogenised. Chloroform (0.2ml/100mg tissue) was 

added and samples were centrifuged at 4 °C for 20 minutes at 10,000× g. The clear phase 

containing RNA was siphoned, 0.5ml isopropanol was added and samples were put on ice for 

10 minutes. Samples were centrifuged again at 4 °C for 20 minutes at 10,000× g. The aqueous 
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phase was removed from the pellets which were resuspended in 0.3ml ethanol and centrifuged 

at 4°C for 10 minutes at 10,000× g. Ethanol was removed and the pellets were air-dried. 

8 µL of DEPC H2O and 1 µl of DNAse buffer (dNature, New Zealand) was added to the pellets. 

These were incubated with 1 µl DNAse (dNature, New Zealand) at 37 °C for 30 minutes. 

DNAse was inactivated with 1 µl stop buffer (dNature, New Zealand) addition and incubation 

at 67°C for 10 minutes. Removal of genomic DNA was confirmed via PCR using HOT 

FIREPol Blend Master Mix (dNature, New Zealand), then agarose gel electrophoresis. RNA 

concentrations were measured with a nanodrop. 

cDNA was synthesised from RNA using iScript Advanced cDNA synthesis kit (BioRad, New 

Zealand), confirmed with PCR followed by agarose gel electrophoresis. RT-qPCR determined 

relative expression levels of housekeeping genes (ActB, β-tubulin, H3B) and genes of interest. 

Reactions contained 4 µl of 25 ng/μl sample cDNA, 1 µl of each forward and reverse primers 

(5 µM), 10 µl iTaq Universal SYBR Green Supermix (BioRad, New Zealand) and 4 µl MilliQ 

water. Reactions were performed in duplicates alongside MilliQ water negative controls for 

each primer pair. Amplification protocol was initiated at 95 °C for 15 minutes, followed by 45 

cycles of 15 seconds at 95°C, 15 seconds at the primer-specific annealing temperature and 30 

seconds at 72 °C. Primers used are detailed in Table 3.3.  

Table 3.3: Forward and reverse primers for housekeeping and target genes used in RT-qPCR 

analyses of hypothalamic and brainstem relative gene expression following GM formulations 

Gene Forward Reverse 

ACTB 5′-AGTGTGACGTTGACATCCGT-3′ 5′-TGCTAGGAGCCAGAGCAGTA-3′ 

BTUB 5′-CGGAAGGAGGCGGAGAGC-3′ 5′-AGGGTGCCCATGCCAGAGC-3′ 

H3B 5′-CCTTGTGGGTCTGTTTGA-3′ 5′-CAGTTGGATGTCCTTGGG-3′ 

MC4R 5′-CTTATGATGATCCCAACCCG-3′ 5′-GTAGCTCCTTGCTTGCATCC-3′ 
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POMC 5′-GACACTGGCTGCTCTCCAG-3′ 5′-AGCAGCCTCCCGAGACA-3′ 

NPY 5′-GGTCTTCAAGCCGAGTTCTG-3′ 5′-AACCTCATCACCAGGCAGAG-3′ 

KOR 5′-CACCTTGCTGATCCCAAAC-3′ 5′-TTCCCAAGTCACCGTCAG-3′ 

MOR 5′-CCTGCCGCTCTTCTCTGG-3′ 5′-CGGACTCGGTAGGCTGTAAC-3′ 

DYN 5′-GACAGGAGAGGAAGCAGA-3′ 5′-AGCAGCACACAAGTCACC-3′ 

OXT 5′-CCTACAGCGGATCTCAGACTG-3′ 5′-TCAGAGCCAGTAAGCCAAGCA-3′ 

ORX 5′-GCCGTCTCTACGAACTGTTGC-3′ 5′-CGCTTTCCCAGAGTCAGGATA-3′ 

PNOC 5′-AGCACCTGAAGAGAATGCCG-3′ 5′-CATCTCGCACTTGCACCAAG-3′ 

OPRL1 5′-ATGACTAGGCGTGGACCTGC-3′ 5′-GATGGGCTCTGTGGACTGACA-3′ 

 

3.3.6 Statistical analyses 

Food intake and immunohistochemistry data were analysed with unpaired student’s t-test for 

two-group comparisons. In the case of the feeding study where three groups were compared 

with each other, a one-way ANOVA followed by Tukey’s post-hoc test with a correction for 

multiple comparisons was used. Analyses of qPCR data were performed with BioRad CX 

Manager software (BioRad, New Zealand), followed by unpaired student’s t test. Differences 

were considered statistically significant at p < 0.05. 

3.4 Results 

During a 2-hour two-bottle test in which the animals had a choice between the 20:80 and 60:40 

GM formulations, mice showed a significantly lower preference for the 20:80 formulation 

(Figure 3.1, p<0.0001), When the formulations were given independently (no choice between 

the formulas) along with the standard chow for 2 hours to overnight-deprived mice, the animals 

that had access to the 60:40 solution drank more than the mice given the 20:80 formula (Figure 

3.2, p=0.019). Chow intake did not differ between the two groups. Importantly, the comparison 

with the group that received water instead of a formula revealed that both formulas were 

preferred over water (F(2,27)=15.40; water vs 20:80 GM – p=0.034; water vs 60:40 GM – 
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p<0.001). Chow intake was lower in the formula groups than in water-given mice showing a 

strong trend approaching significance (water vs 20:80 GM – p=0.058; water vs 60:40 GM – 

p=0.065). Finally, in the 1-hour and 24-hour no-choice exposure to the 20:80 versus 60:40 GM 

formulations, mice drank equal volumes during the 1-hour exposure and less of the 20:80 GM 

solution in 24-hour exposure (Figure 3.3, P<0.001). 

 

Figure 3.1 Non-deprived animals consume less of the 20:80 whey:casein formulation than of 

the 60:40 GM formula during a 2-h episodic exposure of simultaneously presented diets. *** 

P ≤ 0.001. 

 

Figure 3.2: Mice overnight-deprived of food and refed for 2 h with 20:80 whey:casein GM 

formula + chow or with the 60:40 whey:casein GM formulation + chow or with water + chow 

most avidly ingested the 60:40 formula followed by the 20:80 GM solution and water. a – 
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significantly different from water intake; b – significantly different from 60:40 GM formula; c 

– significantly different the 20:80 GM formula intake. Significant when p<0.05. 

 

Figure 3.3: Mice given for 1 hour (left) or 24 hours (right) a single bottle of 20:80 or adjusted 

60:40 GM formulations avidly consumed the 60:40 formula during the 24 hour period. *** - 

P ≤ 0.001. 

A decrease in cFos immunoreactivity was observed in the hypothalamic supraoptic nucleus 

(SON; P=0.025) as well as the ventromedial hypothalamus (VMH; P=0.008) and the rostral 

nucleus of the solitary tract (rNTS; P=0.0308) after 1-hour exposure to the 20:80 whey:casein 

GM formula compared to the 60:40 diet (Figure 3.4). Increases in cFos IR were noted in the 

area postrema (AP, P=0.0066) and the caudal portion of the nucleus of the solitary tract (cNTS; 

P=0.0165). 

Real-time PCR analyses showed an increase in brainstem relative expression of the 

melanocortin receptor 3 (MC3R; p=0.03), orexin (ORX; p=0.028), oxytocin (OXT; p=0.003) 

and pro-opiomelanocortin (POMC; p=0.014) genes following consumption of the 20:80 GM 

formulation compared to the 60:40 formula (Figure 3.5). Increased expression of glucagon-like 

peptide-1 receptor (GLP-1R; p=0.033) and ORX (p=0.027) in the hypothalamus was also 

found with exposure to the 20:80 GM 20:80 formulation.
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Figure 3.4: c-Fos immunoreactivity in brain sites related energy homeostasis increased in the supraoptic nucleus (SON), ventromedial 

hypothalamus (VMH) and rostral nucleus of the solitary tract (rNTS) and decreased in the area postrema (AP) and caudal nucleus of the solitary 

tract (cNTS) following the intake of the 60:40 versus 20:80 whey:casein GM formulation in mice that ingested equal volume of fluid during a 1-

hour session. Photomicrographs depict c-Fos in hypothalamic (A, B) and hindbrain (C-E) areas with significant change was noticed (20:80 GM 

formula: left panels; 60:40 formula: right panels). PVN – paraventricular nucleus; DMH – dorsomedial hypothalamic nucleus; ARC - arcuate 

nucleus; LHA – lateral hypothalamic area; DMV - dorsal motor nucleus of the vagus; iNTS – intermediate nucleus of the solitary tract; otr – optic 

tract; 3v – third ventricle; cc – central canal; * - P ≤ 0.05; ** - P ≤ 0.01. 
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Figure 3.5: Relative expression of feeding-related genes in the brain stem (top) and 

hypothalamus (bottom) after 24-hour consumption of the 20:80 whey:casein GM formulation 

versus the 60:40 whey:casein test solution. Lower brainstem expression of melanocortin 

receptor 3 (MC3R), orexin (ORX), oxytocin (OXT) and pro-opiomelanocortin (POMC) was 

observed after the 60:40 formulation consumption. Lower expression of glucagon-like protein 

1 receptor (GLP-1R) and ORX was noted in the hypothalamus after exposure to this diet. * - 

P ≤ 0.05; ** - P ≤ 0.01. 
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3.5 Discussion 

While adequate protein intake ensures availability of amino acids, especially the essential ones, 

and thus supports basic functioning of the organism, excessive protein load may promote 

adverse effects, such as acidosis or hypercalciuria potentially resulting in kidney disease. It is 

not surprising, therefore, that intake of protein is a highly regulated process. On the one hand, 

hunger increases a drive to seek all macronutrients, including protein. However, ingestion of 

high-protein food triggers early termination of consumption by promoting rapid satiation; and 

diets very high in protein are perceived as less palatable and their acceptability is relatively 

low. Although the phenomenon of protein intake control has been well described in human and 

laboratory animal studies, surprisingly little is known about the impact of modifications in 

protein fraction ratios on appetite. This lack of information is particularly critical in the context 

of adjusting whey:casein ratios from 20:80 content (i.e., closely resembling animal milks 

predominant on the consumer market, such as bovine and caprine) to 60:40 in milk 

formulations.  

The current study shows for the first time that a shift from the 20:80 to 60:40 whey:casein ratio 

in a formulation affects short-term consumption. Also intake of the 60:40 whey:casein milk 

produces a different neuronal activation pattern in feeding-related brain areas and a different 

expression of genes regulating food consumption in the hypothalamus and brain stem than does 

the 20:80 whey:casein standard formulation.  

Notably, in both the 2-hour and 24-hour exposure paradigms, regardless of the presence of 

other tastants, the 60:40 whey:casein formulation was consumed in larger quantities and it was 

preferred over the 20:80 ratio. This consistent outcome across the paradigms employed in this 

basic research project serves as compelling evidence in that a shift from the 20:80 to 60:40 

whey:casein ratio influences acceptability of and preference for milk formula in the short-term 

and it may potentially translate to long-term consequences for energy homeostasis. Structural 
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differences between whey and casein and, thus, disparate digestive and postabsorptive 

responses they evoke, to some extent explain how a change in the proportion of these two 

fractions contributes to feeding. Casein micelles coalesce in the stomach and form a curd, 

whereas whey passes through the stomach intact (Luiking et al., 2016; Wang et al., 2018). The 

relative speed of whey digestion is reflected in absorptive processes where more rapid 

availability of amino acids increases rate of uptake. Whey produces rapid transient peaks in 

plasma amino acid content whereas delayed gastric emptying of caseins produces a slower but 

prolonged elevation of amino acids (Boirie et al., 1997a; Hall et al., 2003; Calbet & Holst, 

2004). Whey-enhanced formulations are more susceptible to heat-induced protein 

glycation (Meyer et al., 2011; Prosser et al., 2019) that may reduce their digestibility (Wada & 

Lönnerdal, 2015) and perturb the gut bacteria (Seiquer et al., 2014). Not surprisingly, 

anorexigenic hormone levels vary upon whey versus casein consumption (Blouet et al., 2009; 

Potier et al., 2009; Pal et al., 2014; Meyer et al., 2015; Andreoli et al., 2016; Singh et al., 

2016). For example, addition of whey to diets fed to obese rats increases PYY mRNA 

expression and secretion as well as feeding; and the reduction in food intake is reversed by 

PYY receptor-2 antagonists. Changes in brain activity have been noted in serotonergic and 

energy regulating pathways (Semon et al., 1987; Travers, 2002; Seiquer et al., 2014; Stratford 

et al., 2017; Jinno et al., 2020), though the latter ensues after long-term feeding.  

In the context of the general understanding of whey and casein influence on feeding-related 

mechanisms, the data obtained here further support the notion that while each of the protein 

fractions alone specifically alters appetite and appetite-related physiological parameters, actual 

effects of the combined fractions cannot be simplistically extrapolated as proportional to the 

mere whey:casein ratio. In fact, generalization of appetitive and metabolic effects of whey and 

casein may be far from possible unless studied in conjunction with specific ratios and with 

specific foods in which these fractions are used. Indeed, data obtained in previous reports in 

which only one fraction or the other was added to diets or administered as a preload, are 
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confusing and oftentimes contradictory. For example, some authors suggested that whey might 

be suppressing food intake more effectively than casein (Hall et al., 2003; Pal et al., 2014). On 

the other hand, Marsset-Baglieri et al. (2014) found that a liquid snack of whey or casein alone 

or in combination was effective in suppressing appetite in overweight subjects compared to a 

maltodextrin control snack, however, there was no difference in satiation potency between the 

protein groups (Marsset-Baglieri et al., 2014). Potier et al. (2009) gave adult subjects a cheesy 

snack containing either casein or whey+casein (66:33) as a meal preload (Potier et al., 2009). 

While the preloads lowered intake at the subsequent meal, no differences were observed 

between the casein and whey+casein groups.  

In order to identify the feeding-related physiological consequences of the departure from the 

conventional 20:80 to the ‘whey-enhanced’ 60:40 ratio, activation and neuronal activation 

changes were examined in the hypothalamic and hindbrain circuits relevant to appetite 

regulation. In the brainstem, c-Fos immunoreactivity was increased in the rostral nucleus of 

the solitary tract (rNTS) and decreased in the area postrema (AP) and caudal nucleus of the 

solitary tract (cNTS). Immediate response to the 60:40 whey:casein content appears to 

incorporate gustatory-related signalling through increased rNTS activation, a region with 

significant gustatory and sensory input (Rinaman, 2010). The rNTS displays enhanced activity 

following oral delivery of strong flavoured tastants, such as sweet sucrose, bitter quinine, or 

sour citric acid (Harrer & Travers, 1996; King et al., 1999; Travers, 2002; Stratford et al., 

2017). Additionally, activity in the cNTS suggests a role of visceral input contributing to 

appetitive behaviours. Vagal efferents terminating in the cNTS and the relative permeability of 

the blood brain barrier in the brain stem allow the combined visceral sensation and circulating 

nutrients to modulate activity of broader brain pathways (Horst et al., 1989; Rinaman, 2010). 

The NTS projects extensively to energy homeostasis-related and appetite regulating regions 

including the PVN, LHA and DMH (Horst et al., 1989). 
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In the hypothalamus, the 20:80 whey:casein formulation intake was associated with reduced 

neuronal activity in the supraoptic nucleus (SON) and the ventromedial hypothalamus (VMH). 

The reduced Fos in these two areas may at first seem counterintuitive. Classically, the SON 

has been linked with satiety processing as it is targeted by appetite suppressing cocaine-

amphetamine-regulated-transcript, CCK and GLP-1 and it releases – among others - 

anorexigenic oxytocin (Marsset-Baglieri et al., 2014; Stanstrup et al., 2014; Hoefle et al., 

2015). However, it should be noted that a greater level of c-Fos immunoreactivity in the SON 

has been linked with palatable high-sugar diet consumption (Hume et al., 2017). Furthermore, 

oxytocin has been also suggested to be relevant to hedonic feeding and food preferences, 

particularly in relation to sugar consumption. As for the VMH, neurons in this area are able to 

sense glucose, with some being excited by an increase in glucose concentration, while others 

inhibited by it, the phenomenon specific to subdivisions of this hypothalamic region (Kang et 

al., 2004). It is important to note that an increase in the activity of VMH neurons has been 

observed in rats upon sweet taste receptor stimulation with palatable caloric sucrose and non-

caloric saccharin solutions (Rao & Prabhakar, 1992). Therefore, it is possible that the higher c-

Fos levels observed in the VMH and SON in animals exposed to the 60:40 formula is a 

consequence of enhanced palatability of the whey-enhanced formulation. 

The relative gene expression analyses in the hypothalamus and brain stem following 24-hour 

exposure to the standard 20:80 versus 60:40 formulation revealed that the 20:80 ratio produced 

higher mRNA expression levels of anorexigenic genes such as MC3R, OXT and POMC in the 

brainstem and GLP1R in the hypothalamus. This suggests that consumption of the 20:80 

whey:casein formula is associated with changes in expression in the melanocortin, OXT and 

GLP-1 systems, the key players in ensuring early termination of food intake (and in the case of 

OXT – a possible interplay between the rewarding and satiating effects of the diets that differ 

in the whey:casein ratio; a hypothesis to follow up on with direct manipulation of OXT 

signalling alongside milk diet intake.  
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3.6 Conclusions 

Feeding behaviours in mouse laboratory models is affected with the switch from the 20:80 to 

60:40 whey:casein in GM-based formulations. The latter is more readily accepted and preferred 

in choice scenarios. Altered feeding is accompanied by unique central function following either 

ratio. Notably, hindbrain activity suggests a strong gustatory and visceral response to formula 

intake. Different activity and expression of genes in hypothalamic structures suggest heighten 

satiety signalling with elevated melanocortin, OXT and GLP-1 system function with 20:80 

intake – and a potential link of OXT signalling and SON and VMH activity to sweet tastant 

ingestion.  

This set of studies focussed solely on response to GM-derived formulation. However, the 

variation in whey and casein profiles between GM and CM alters related peripheral processes. 

GM-specific casein content creating a looser curd in gastric conditions, facilitating easier 

proteolysis and accelerated gastric emptying compared to CM. Gastric digestion patterns of 

GM and CM formulations with modified whey:casein also exhibit species difference, with slow 

digestion of high casein CM formula mitigated in high casein GM formulations. However, 

comparative description of post-absorptive differences is scarce, with limited description of 

altered endocrine and circulating nutrient levels following these species milk intake. Chapter 3 

extends the current observations of altered feeding with GM formulations to examine response 

of the mice model to CM-derived formulations with the natural 20:80 and adjusted 60:40 

whey:casein ratios. I also re-examine GM preference in cross-species presentations described 

in Chapter 2, giving animals choice of formulations with the same or different ratio but sourced 

from different species to explore how species preference is modified with protein fraction 

adjustments.  
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Chapter 4 

Whey:casein adjustment in cow’s milk from 20:80 to 

60:40 affects food intake, brain stem and 

hypothalamic gene expression and neuronal 

activation whilst superseding preference for goat’s 

over cow’s milk. 

4.1 Abstract 

As described in Chapter 3, rodents display higher preference for whey-enhanced goat’s milk 

(GM) formulations (i.e., with a 60:40 whey:casein ratio) over a 20:80 whey:casein GM. 

Changes in feeding-related brain activity (defined through c-Fos mapping) and relative 

expression of genes accompanied this enhanced preference. However, it is unknown whether 

the heightened preference for the 60:40 milk would be retained if - instead of a highly palatable 

and preferred GM - a somewhat less preferred (albeit, still palatable) cow’s milk (CM) was 

used. Thus, in this chapter, I replicated feeding paradigms and analyses of brain gene 

expression and c-Fos IR with CM formulations with the natural 20:80 and adjusted 60:40 

whey:casein ratios. Mice given CM formulations exhibited higher preference for the 60:40 over 

20:80 whey:casein CM ratio. This elevated preference from the 60:40 CM was retained even 

when animals had simultaneous access to the 20:80 GM formulation. Consumption of similar 

quantities of 20:80 vs 60:40 CM differently affected cFos IR (in the paraventricular, 

dorsomedial, arcuate and lateral hypothalamic nuclei and in the nucleus of the solitary tract in 

the brain stem) and relative gene expression (the melanocortin and opioid system transcripts). 

It can be concluded that the 60:40 whey:casein milk formulations are palatable and they are 

more preferred regardless of the species from which the milk was derived, indicating that whey 

enhancement is a potent driver of milk overconsumption. Mechanistic commonalities in the 
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whey:casein ratio changes in CM versus those described for GM in Chapter 3 include the 

observed hindbrain neuronal activity changes. Differences in hypothalamic c-Fos IR and gene 

expression patterns as well as minor differences in no-choice feeding paradigms indicate that 

the species from which milk was derived modifies some feeding-related processes driven by 

the shift in the whey:casein ratio.  

4.2 Introduction 

As described in detail in the introductory section to Chapter 3 of this thesis, not only is the 

protein content of a diet important, but so is the actual composition of the protein fractions. In 

milk-based diets, two protein fractions are of particular significance: whey and casein. Apart 

from their presence alone, it is in fact their ratio that impacts on a number of ingestive and post-

ingestive processes related to, among others, gut, (neuro)endocrine, and metabolic functions 

(Kung et al., 2018; El Khoury et al., 2019; Ye et al., 2019). This altered physiological response 

to different whey:casein ratios is intuitive, given the outcomes of whey and casein intake are 

disparate – “fast” whey passes through the stomach and is absorbed quickly producing rapid, 

high peaks of plasma amino acids accompanied by strong hormonal release (Hall et al., 2003; 

Veldhorst et al., 2009; Sukkar et al., 2013) whilst “slow” casein clots in the stomach, extending 

digestion and amino acid absorption and – consequently - producing an (arguably) weaker 

hormonal response (Mahe et al., 1996; Boirie et al., 1997; Hall et al., 2003; Calbet & Holst, 

2004; Bowen et al., 2006; Choi et al., 2009; Veldhorst et al., 2009). Ye et al. (2019) observed 

altered gastric digestion with natural and adjusted milk formulations. Higher casein content in 

20:80 whey:casein cow’s milk (CM) formulations resulted in larger casein aggregates, slowing 

gastric digestion of proteins (Ye et al., 2019). Studies involving blood analyses (e.g. Kung et 

al. (2018); El Khoury et al. (2019)) have found altered hormonal response following cereal 

breakfasts served with CM with the natural versus adjusted whey:casein ratios. When given 

prior to ad libitum lunch, the 60:40 whey:casein milk produced lower blood glucose levels 
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whereas the 20:80 ratio, lower appetite (Kung et al., 2018). Lower blood glucose was insulin-

independent, likely being a result of delayed gastric emptying and post-prandial release of 

GLP-1, CCK.  

Furthermore, changes in whey and casein content affect the brain. It has been shown that post-

meal brain processing, particularly in serotonergic pathways, in individuals given milk protein 

(Choi et al., 2009; McManus et al., 2015; Andreoli et al., 2016; Nilaweera et al., 2017) is 

modified when whey and casein fractions are given in combination (Diepvens et al., 2008; 

Potier et al., 2009; Lorenzen et al., 2012; Marsset-Baglieri et al., 2014; Pezeshki et al., 2015). 

In my data presented in Chapter 3,I found that the whey-enhanced GM was more avidly 

consumed than the 20:80 GM formulation and that this was associated with unique gene 

expression and c-Fos immunoreactivity (IR) changes in feeding-related circuits. Specifically, 

intake of the 20:80 GM formulation downregulated melanocortin receptor 3 (MC3R), pro-

opiomelanocortin (POMC) and oxytocin (OXT) transcripts in the hypothalamus and glucagon-

like peptide 1 (GLP-1) receptor (GLP1R) mRNA in the hindbrain. Brainstem c-Fos in the 

rostral and caudal nucleus of the solitary tract (rNTS; cNTS) and hypothalamic ventromedial 

nucleus (VMH) were impacted by the whey:casein ratio shift. 

One has to consider, however, that the appetite and brain processing changes (presented in 

Chapter 3) upon an adjustment of the whey:casein ratio from the natural 20:80 to 60:40 as well 

as the previous report on whey/casein effects on the serotonergic system, do not take into 

account whether a similar response would be achieved if the whey:casein adjustment was done 

in a milk derived from another species. In other words, a plausible scenario that should be taken 

into account is that the milk ‘vehicle’ for whey:casein may affect a plethora of mechanisms 

induced by the two protein fractions. This is particularly important since GM formulations have 

different digestion patterns, with natural and adjusted ratios having comparable hydrolysis rates 

with smaller particulates than the 20:80 CM formulation (Ye et al., 2019). GM has relatively 
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lower concentrations of as1-casein, thus forms a looser curd in gastric conditions which is more 

easily digested (Ambrosoli et al., 1988; Glantz et al., 2010; Logan et al., 2015; Freitas et al., 

2019; Wang et al., 2019; Ye et al., 2019). As a consequence, post-absorptive and satiety 

response to GM intake is unique to that of CM. In line with that, a greater reduction in the 

desire to eat and subjective hunger has been shown in individuals given GM- than CM-based 

breakfast (Rubio-Martín et al., 2017), and this outcome was speculated to be related to GLP-1 

signalling and circulating triglyceride levels. Furthermore, as described in Chapter 2 of this 

thesis, central processes and feeding behaviours also differ in response to GM vs CM in 

laboratory rodents: Mice and rats prefer GM-based diets and expression of several feeding-

related genes is affected by consumption of those milk types. 

Given that variations in appetite for GM vs CM are underpinned by unique central processing 

following ingestion of each milk type, in the current Chapter of the thesis, I ask whether the 

heightened preference for the 60:40 whey:casein ratio in GM reported in Chapter 3 would 

persist if, instead of the GM, a CM-based formulation was given to the animals. Therefore, this 

chapter examines the response in animals fed with CM rather than GM formulations with 

natural 20:80 whey-to-casein ratio (control), vs the adjusted 60:40 ratio to examine (a) whether 

the modification of the whey:casein ratio affects palatability- and acceptability-related feeding 

parameters, (b) whether amount-matched consumption of either formulation elicits unique c-

Fos IR in feeding-related brain sites, and (c) whether 20:80 vs 60:40 whey:casein CM 

consumption leads to changes in expression of key regulatory genes in the hypothalamus or 

brainstem. Finally, animals’ preference for GM over CM (described in Chapter 2) was re-

evaluated in the context of the two whey:casein ratios to understand whether these ratios 

supersede the palatability and acceptability of GM. 
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4.3 Material and Methods 

4.3.1 Animals 

Adult male C57Bl mice (AgResearch, Hamilton, New Zealand) were single-housed in a 

temperature-controlled room (22°C) with a 12:12 LD cycle (lights on at 0900). Animals had 

ad libitum access to standard chow (Diet 86, Sharpes Stock Feed, Wairarapa, New Zealand) 

and tap water unless stated otherwise. Groups were weight-matched. The studies were 

approved by the University of Waikato animal ethics committee (ethics approval number 

1057).  

4.3.2 Milk formulations  

CM- or GM-based milk formulations (Dairy Goat Cooperative, Hamilton, New Zealand) had 

the natural ratio of 20% whey and 80% casein (control solutions: 20:80 CM; 20:80 GM), 

whereas experimental formulations contained 60% whey and 40% casein (60:40 CM; 60:40 

GM). For composition, refer to Table 4.1. Formulations were powdered and reconstituted in 

tap water immediately before exposure. All animals were pre-exposed to the diets prior to the 

feeding trials to prevent neophobia. 

Table 4.1: Nutritional composition of prepared CM and GM formulations per 100 mL 

 kJ Protein (g) Whey protein (%) Fat (g) Carbohydrate (g) 

20:80 CM 286.5 1.6 20.0 3.8 7.3 

60:40 CM 273.5 1.4 60.0 3.4 7.2 

20:80 GM 278.1 1.3 20.0 3.5 7.5 

60:40 GM 275.5 1.4 60.0 3.5 7.1 

 

4.3.3 Feeding studies 

CM-based formulation treatment paradigms for adult mice are outlined in  
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Table 4.2  
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Table 4.2: Schematic of CM-based formulation treatment paradigms in adult mice 

 

4.3.3.1 Preference for simultaneously presented CM formulations 

Mice (n=7/group) were acclimatised to the two-bottle presentations in two separate sessions 

one week prior to the trial. On the experimental day at 10:00, chow and water were removed 

from cages and mice were given access to two bottles, containing either 20:80 or 60:40 CM 

formulations. Formulation intake after two hours was measured in grams. 

4.3.3.2 Preference of CM or GM formulations with 20:80 or 60:40 whey:casein ratios  

The two-bottle scenario in Section 4.3.3.1 was repeated, with mice (n=7/group) receiving 

access to CM or GM formulations with the control vs adjusted whey:casein ratio (20:80 CM 

vs 60:40 GM; 60:40 CM vs 20:80 GM) or with the same whey:casein ratio (20:80 CM vs 20:80 

GM; 60:40 CM vs 60:40 GM). Formulation intake after two hours was measured in grams. 

4.3.3.3 Intake of CM formulations in a 1-hour exposure paradigm 

Mice (n=8/group) had water and chow removed from cages at 08:00, and animals were then 

given a single bottle of control 20:80 adjusted 60:40 CM for one hour. Formulation intake was 

measured in grams. 

4.3.3.4 Intake of individually presented CM formulations in a 24-hour exposure paradigm 

On the experimental day, both chow and water were removed (at 09:00) and a bottle containing 

either the control 20:80 or the whey-adjusted 60:40 CM formulation was placed in the cage 



 

103 

(n=8/group). The formulations were the only source of both calories and fluid for the next 24 

hours. Afterwards, intake was measured in grams.  

4.3.4 Neuronal activation in feeding-related hypothalamic and brainstem 

areas after consumption of the same amount of the 60:40 versus 20:80 

CM formulation.  

The purpose of this experiment was to assess whether consumption of the same amount of the 

20:80 vs 60:40 whey:casein CM milk formulation (as described in described in 4.3.3.1 and akin 

to the c-Fos experiment presented in the previous chapter pertaining to GM) induces a different 

pattern of neuronal activation in the hypothalamus and brain stem, areas that are crucial in the 

regulation of food intake.  

One hour after exposure to the 20:80 or 60:40 CM formulation, mice were anaesthetised with 

35% urethane i.p. Animals were perfused with saline (20 mL) followed by 50 mL of 4% 

paraformaldehyde (PFA) in 0.1 M phosphate buffer (pH 7.4). Brains were removed and 

postfixed overnight in PFA at 4 °C. Coronal 60 μm sections created via vibratome (Leica, 

Germany) were processed for c-Fos immunostaining. Sections were incubated in 3% H2O2 in 

10% methanol (in TBS; pH 7.4) for ten minutes, then overnight in rabbit anti-Fos antibody 

(1:3000; Synaptic Systems, Goettingen, Germany) at 4°C. Tissues were incubated in goat-anti-

rabbit secondary antibody (1:400; Vector Laboratories, USA) then in avidin-biotin complex 

(Vector Laboratories, USA) at room temperature for an hour each. Peroxidase was visualised 

with 0.05% DAB, 0.01% H2O2 and 0.2% nickel sulfate (Sigma, USA). All incubation solutions 

utilised 0.25% gelatin and 0.5% Triton X-100 (Sigma, USA) in TBS. Intermediate washes 

were in TBS. Sections were mounted on gelatinised slides, dried and dehydrated with 

ascending concentrations of ethanol followed by xylene and subsequently embedded with 

Entellan (Merck, Germany). c-Fos IR nuclei were counted manually and bilaterally in all 
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regions (4-5 sections/animal) by a person blinded to group allocations at 10x and 40x 

magnifactions on Nikon microscope. Densities recorded as c-Fos positive nuclei/mm2 were 

averaged per group.  

4.3.5 Hypothalamic and brainstem gene expression following 24-hour 

exposure to the 20:80 CM vs 60:40 CM formulations  

Following 24-hour individual exposure to 20:80 or 60:40 CM formulation that results in the 

consumption of the same amount of the milk solutions (as described in section 4.3.3.4, 

n=8/group), mice were sacrificed via cervical dislocation at 09:00 and the brain stem and 

hypothalamus were dissected and stored for one hour in 1mL RNAlater (Invitrogen, USA) at 

room temperature and then at -80°C until processing. 

Thawed samples were transferred from RNAlater into TRIzol (Life Technologies, USA; 

1mL/100mg tissue). Following mechanical homogenisation, chloroform was added 

(0.2ml/100mg tissue). Samples were centrifuged for 20 minutes, 10,000× g at 4 °C. The clear 

phase was siphoned and RNA was precipitated with addition of 0.5mL of isopropanol with 

10minute ice bath incubation. Samples for were centrifuged again at 4°C for 20 minutes at 

10,000× g. Pellet was retained and washed in 0.3mL of ethanol and centrifuged at 4°C for 10 

minutes at 10,000× g. The ethanol was removed and pellet air dried.  

1 µL of DNAse buffer (dNature, New Zealand), 1 µL DNAse (dNature, New Zealand) and 8 

µL of DEPC water was added to the pellet and incubated at 37°C for 30 minutes, followed by 

67°C for 10 minutes with 1 µL stop buffer (dNature, New Zealand). Absence of DNA was 

confirmed with HOT FIREPol Blend Master Mix (dNature, New Zealand) PCR and agarose 

gel electrophoresis. RNA concentrations were determined with a nanodrop. 

Reverse transcription synthesised cDNA with iScript Advanced cDNA synthesis kit (BioRad, 

New Zealand) and was confirmed with PCR and gel electrophoresis.  
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RT-qPCR determined relative expression of housekeeping genes (ActB, β-tubulin, H3B) and 

genes of interest. Reaction mixes containing 4 µL of 25 ng/μL sample cDNA, 1 µL each of 

forward and reverse primers (5 µM), 10 µL iTaq Universal SYBR Green Supermix (BioRad, 

New Zealand) and 4 µL MilliQ water. Reaction were run in duplicate with MilliQ water 

negative controls for each primer pair. Amplification protocol was 95 °C for 15 minutes, 

followed by 45 cycles of 15 seconds at 95°C, 15 seconds at the primer-specific annealing 

temperature and 30 seconds at 72°C. Primers sequences used are detailed in Table 4.3.  

4.3.6 Statistical analyses 

Unpaired Student’s t test for two-group comparisons was used to analyse food intake and 

immunohistochemistry data. Analyses of qPCR data were performed with BioRad CX 

Manager software (BioRad, New Zealand), followed by unpaired Student’s t test. Differences 

were considered statistically significant at p < 0.05. 

Table 4.3: Forward and reverse primers for housekeeping and target genes used in RT-qPCR 

analyses of hypothalamic and brainstem relative gene expression following CM formulations 

Gene Forward Reverse 

ACTB 5′-AGTGTGACGTTGACATCCGT-3′ 5′-TGCTAGGAGCCAGAGCAGTA-3′ 

BTUB 5′-CGGAAGGAGGCGGAGAGC-3′ 5′-AGGGTGCCCATGCCAGAGC-3′ 

H3B 5′-CCTTGTGGGTCTGTTTGA-3′ 5′-CAGTTGGATGTCCTTGGG-3′ 

MC4R 5′-CTTATGATGATCCCAACCCG-3′ 5′-GTAGCTCCTTGCTTGCATCC-3′ 

POMC 5′-GACACTGGCTGCTCTCCAG-3′ 5′-AGCAGCCTCCCGAGACA-3′ 

NPY 5′-GGTCTTCAAGCCGAGTTCTG-3′ 5′-AACCTCATCACCAGGCAGAG-3′ 

KOR 5′-CACCTTGCTGATCCCAAAC-3′ 5′-TTCCCAAGTCACCGTCAG-3′ 

MOR 5′-CCTGCCGCTCTTCTCTGG-3′ 5′-CGGACTCGGTAGGCTGTAAC-3′ 

DYN 5′-GACAGGAGAGGAAGCAGA-3′ 5′-TCAGAGCCAGTAAGCCAAGCA-3′ 

OXT 5′- CCTACAGCGGATCTCAGACTG-3′ 5′-TCAGAGCCAGTAAGCCAAGCA-3′ 

ORX 5′-GCCGTCTCTACGAACTGTTGC-3′ 5′-CGCTTTCCCAGAGTCAGGATA-3′ 

PNOC 5′-AGCACCTGAAGAGAATGCCG-3′ 5′-CATCTCGCACTTGCACCAAG-3′ 
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OPRL1 5′-ATGACTAGGCGTGGACCTGC-3′ 5′-GATGGGCTCTGTGGACTGACA -3′ 

 

4.4 Results 

Mice given a choice between the 20:80 and 60:40 whey:casein ratio CM formulations more 

avidly consumed the whey-enhanced formulation (P<0.0001,Figure 4.1). This was also 

observed in milk cross-species (i.e., GM vs CM) simultaneous presentations of formulations 

with different whey:casein ratios (20:80 CM vs 60:40 GM; 60:40 CM vs 20:80 GM), where 

the 60:40 ratio was preferred regardless of species from which milk was derived (P<0.0001; 

Figure 4.2AB). When presented with formulations of the same whey:casein ratio (20:80 CM 

vs 20:80 GM; 60:40 CM vs 60:40 GM), GM formulations were preferred, significantly so for 

the 60:40 GM over 60:40 CM (P=0.0112) and with a trend approaching significance in the case 

of the 20:80 CM/GM combination (P=0.1210; Figure 4.2CD). In non-choice scenarios 

involving 1-hour and 24-hour tastant availability, there was no difference in the intake of 20:80 

and 60:40 CM formulations (Figure 4.3). 

 

Figure 4.1 Non-deprived animals consume less of the 20:80 CM whey:casein formulation than 

of the 60:40 CM formulation during a 2-h episodic exposure of simultaneously presented diets. 

*** P ≤ 0.001. 
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Figure 4.2: Two bottle choice tests of CM or GM formulations. In milk cross-species 

presentation with different whey:casein ratios (A: 20:80 CM vs 60:40 GM; B: 60:40 CM vs 

20:80 GM), the adjusted 60:40 ratio formulations were consumed avidly regardless of species. 

In cross species presentation with the same whey:casein ratios (C: 20:80 CM vs 20:80 GM; D: 

60:40 CM vs 60:40 GM), the GM formulation were preferred in 60:40 choice. * - P ≤ 0.05; 

*** P ≤ 0.001 

 

Figure 4.3: Individual presentation of cow’s milk formulations for 1-hour (left) and 24-hour 

(right) produced similar intake of control 20:80 and whey-adjusted 60:40 CM formulations. 
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Intake of a similar amount of 20:80 vs 60:40 CM formulation over a 1-hour meal affected c-

Fos IR in 6 out of 13 sites following one-hour exposure to 20:80 or 60:40 CM formulations 

(Figure 4.4). Animals that consumed the 60:40 formulation had fewer c-Fos positive nuclei in 

the hypothalamic paraventricular nucleus (PVN; P=0.0046), dorsomedial hypothalamic 

nucleus (DMH; P=0.024), arcuate nucleus (ARC; P<0.001), lateral hypothalamic area (LHA; 

P<0.001), and in the caudal nucleus of the solitary tract (cNTS; P=0.0063) compared to the 

20:80 whey:casein CM-fed conspecifics. Higher c-Fos IR in the 60:40 than 20:80 whey:casein 

CM group was found in the rostral portion of the NTS (rNTS; P=0.0081).  

Mice consuming the 60:40 whey:casein CM formulation for 24 hours had increased brainstem 

expression of the melanocortin receptor 3 (MC3R; P=0.006) and opioid-like receptor 1 

(OPRL1, P=0.005) genes as well as reduced hypothalamic expression of neuropeptide Y (NPY) 

(Figure 4.5). Decreases in hypothalamic melanocortin receptor 4 (MC4R; P=0.067) and orexin 

(ORX; P=0.056) expression following 60:40 CM approached, but did not reach, significance.  

 

Figure 4.4: cFos immunoreactivity was higher in the rostral nucleus of the solitary tract (rNTS) 

and lower in the paraventricular nucleus (PVN), dorsomedial hypothalamic nucleus (DMH), 

the arcuate nucleus (ARC), lateral hypothalamic area (LHA) and caudal nucleus of the solitary 

tract (cNTS) following intake of the CM formulation with the natural 20:80 whey:casein (20:80 
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CM) compared to whey-adjusted 60:40 whey:casein ratio (60:40 CM). SON – supraoptic 

nucleus; VMH – ventromedial hypothalamic nucleus; NacS – nucleus accumbens shell; NacC 

– nucleus accumbens core; DMNV – dorsal motor nucleus of the vagus; AP – area postrema; 

iNTS – intermediate nucleus of the solitary tract; * - P ≤ 0.05; ** - P ≤ 0.01; *** - P ≤ 0.001. 

 

Figure 4.5: Brain stem (top) and hypothalamic (bottom) relative gene expression following 24 

hour consumption of the control 20:80 vs 60:40 CM formulation. 60:40 CM formulation intake 

was associated with increased expression of the melanocortin receptor 3 (MC3R) and opioid-

like receptor 1 (OPRL1) mRNA in the brainstem and reduced neuropeptide Y (NPY) gene 

expression in the hypothalamus. * - P ≤ 0.05; ** - P ≤ 0.01. 
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4.5 Discussion 

Data presented in the previous Chapter 3 showed that laboratory mice more avidly consume 

GM with the adjusted 60:40 compared to the natural 20:80 whey:casein ratio and that this is 

associated with unique changes in feeding-related circuitry in terms of c-Fos immunoreactivity 

and expression of feeding-related genes. The studies included in the current Chapter expand on 

these findings by determining that the whey-enhanced ratio is more preferred to 20:80 even in 

another type of milk, namely in the bovine formulation, the milk known for gustatory and 

ingestive characteristics distinct from GM. Acute appetitive impacts with the shift from the 

natural to adjusted ratio in the CM-based formulation are accompanied by changes in neuronal 

activity in feeding regulatory regions and in relative expression of genes in relevant signalling 

pathways.  

Milk, including CM, is a palatable tastant and animals readily consume it even in the absence 

of energy needs (as shown, e.g., in Chapter 2). However, this set of data indicates that a 

whey:casein ratio modification in the protein fraction of CM affects preference for CM. In the 

feeding experiment that involved a choice between CM formulations containing the 20:80 vs 

60:40 whey:casein ratios, laboratory mice consumed approximately four times more of the 

whey-adjusted CM than of the natural 20:80 formulation. This profound preference for the 

60:40 CM was achieved in the paradigm that relied on merely 2 hours of the formulation 

presentation, thereby reflecting a greatly heightened drive to consume this solution. This level 

of the difference is indeed high: for example previous studies employing short-term, 

simultaneous presentations of isocaloric and isopalatable liquids containing fat vs sugar or 

different types of sweet solutions have shown differences within 10% of the consumed volume 

(Olszewski et al., 2010; Herisson et al., 2014), and a potent pharmacological treatment 

specifically aimed at affecting preference was able to make animals consume twice as much of 

one solution than the other (Herisson et al., 2014). Elevated consumption of the 60:40 
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formulation over the 20:80 ratio was similarly observed with GM-based formulations in 

Chapter 3, where mice also strongly preferred the adjusted GM formulation to a similar degree. 

Repetition of this pattern reaffirms the importance of whey:casein ratio on the palatability of 

milk formulations regardless of the species source.  

It should be noted that in the feeding experiment involving a non-choice presentation of CM 

containing either 20:80 or 60:40 whey:casein, we did not see a significant difference in 

consumption. However, a difference in intake is less frequently seen in paradigms that rely on 

a single tastant presentation than in choice paradigms. This is the case even with highly 

palatable tastants (e.g. sweet and fat solutions (Olszewski et al., 2010; Herisson et al., 2014)) 

or in fasted, and thus highly motivated, states (Kimura et al., 2003).  

The fact that short-term intake volumes of individually presented formulations were similar to 

the total volume consumed in choice paradigms as well as to the short-term palatable sucrose 

solution intake in Chapter 2 and in previous studies from our laboratory (Gartner et al., 2018), 

indicates that CM formulations regardless of their whey:casein ratio are palatable. 

Interestingly, unlike the GM-based 60:40 whey:casein formulation which was consumed in 

greater quantities than 20:80 even in the non-choice scenario, significantly so after 24 hours 

(see Chapter 3), this effect was absent in CM. This may suggest the additive effect of the more 

palatable whey:casein ratio and – as shown in Chapter 2 – the more preferred milk type (GM), 

was apparent through enhanced consumption even in the paradigm that did not involve a 

choice. 

Importantly, in cross-species milk formulation comparisons, the preference for GM over CM, 

observed with skim milks in Chapter 2, persisted somewhat with formulations with the same 

whey to casein ratio. Mice presented with the formulations derived from GM and CM with 

adjusted 60:40 ratio consumed significantly more of the GM formulation. A similar but 

nonsignificant trend for GM preference was observed with the 20:80 formulations, an 
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interesting observation as the protein composition of the 20:80 formula more closely resembles 

that of the skim milks in Chapter 2 that were not adjusted for protein content. It highlights the 

potential role of fat (both that was added in formulations and that was removed with skim 

milks) making species milks more palatable. It should be emphasised that alteration in 

whey:casein ratio supersedes preference derived from the species from which milk was 

sourced. When mice were provided with formulations of different whey and casein content, 

they displayed more avid consumption of the 60:40 GM or CM formulations over the 

alternative species 20:80 option. Most notably, whey:casein shifted the GM over CM 

preference with avid 60:40 CM formulation consumption over that of the 20:80 GM. This 

indicates the whey:casein ratio is a potent driver of consumption (and, potentially, 

overconsumption) of milk. Despite the potential synergistic effect between the milk type and 

whey:casein driving intake in non-choice paradigms, whey:casein appears to have the most 

critical impact on the preference for these solutions.  

Taking into account differences in preference for the 60:40 vs 20:80 whey:casein CM 

formulations, it is not surprising that consumption of similar amounts of each of the tastants 

resulted in a different response of brain circuitry in terms of c-Fos immunoreactivity (IR) as 

well as gene expression.  

The analysis of c-Fos IR in the hindbrain revealed that the animals given a more preferred 

60:40 whey:casein CM formulation had a higher level of neuronal activation in the rostral 

portion of the NTS (rNTS). Elevated activation of this area has been associated with oral 

delivery of flavoured tastants, e.g., sweet sucrose, bitter quinine, or sour citric acid (Harrer & 

Travers, 1996; King et al., 1999; Travers, 2002; Stratford et al., 2017), and therefore it is quite 

plausible that the 60:40 whey:casein CM elicits a more profound sensory response at the 

hindbrain level. On the other hand, c-Fos in the caudal portion of the NTS (cNTS), which 

integrates visceral input relayed by vagal efferents (Horst et al., 1989; Rinaman, 2010), was 
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lower after the 60:40 whey:casein CM intake. One can therefore speculate that the combination 

of sensory and visceral processing at the NTS level contributes to elevated intake of the 60:40 

whey:casein CM. Importantly, the combined findings from this chapter and from Chapter 3 

indicate that NTS c-Fos IR in response to the 60:40 vs 20:80 milk is the same regardless of the 

species from which the milk was derived. Therefore, the NTS may be a common denominator 

for elevated consumption of formulations with the enhanced whey content. 

Several hypothalamic regions displayed suppressed c-Fos IR after 60:40 whey:casein CM 

consumption. Most notably, it was observed in the PVN, which receives rich cNTS input and 

hosts neurons synthesising a number of anorexigenic peptides including oxytocin and CRH. 

And it was approximately five-fold lower in the ARC, which encompasses cells producing an 

appetite suppressant alpha-MSH. This might potentially link a propensity to ingest greater 

amounts of the 60:40 whey:casein CM with downregulation of mechanisms that prevent 

overeating. The 60:40 whey:casein CM also produced a less robust c-Fos response in the DMH, 

which has been linked with CCK-driven appetite suppression (Bellinger & Bernardis, 1984; 

Kobelt et al., 2006), as well as well as with the LHA which mediates cannabinoid-and orexin-

mediated hyperphagia (Thorpe et al., 2006; Perez-Morales et al., 2012) and appetite-

suppressing GABAergic signalling (Turenius et al., 2009). 

One should note that unlike the NTS c-Fos IR which was – as shown in this chapter and in 

Chapter 3 – the same in both CM and GM formulations, hypothalamic c-Fos mapping produced 

different results depending on the species from which milk was sourced. It can likely be 

contributed to the combined effect of the whey:casein ration and the unique characteristics of 

GM vs CM (as delineated in Chapter 2).  

Finally, the qPCR analysis of transcript levels in the brainstem and hypothalamus underscores 

a unique functional relationship between the feeding-relevant mechanisms and whey:casein 

ratio in the CM protein fraction. Most notably, consumption of the 60:40 whey:casein CM was 
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associated with a strong trend toward decrease in the anorexigenic MC4R expression in the 

hypothalamus and significant upregulation of the receptor for orexigenic nociceptin/orphanin 

FQ in the brain stem, which is in line with the more avid intake of the 60:40 formulation. 

Surprisingly, expression of hypothalamic NPY and orexin was lower, whereas brain stem 

MC3R was higher in the whey-enhanced formulation group, however, it may be either 

unrelated to feeding (e.g., in the case of ORX, it may be associated with wakefulness) or it may 

reflect a combined effect of species source and whey:casein content on broader post-ingestive 

peripheral mechanisms (which is likely considering some alignment between GM vs CM-

induced gene expression, e.g., in ORX and MC transcripts). 

In conclusion, laboratory mice display preference for the whey-enhanced CM formulation, and 

this phenomenon is underpinned by changes in brain neuronal activity and gene expression. 
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Chapter 5 

General Discussion and Perspectives 

Food provides nutrients needed for the proper functioning of cells, tissues and, consequently, 

of the organism. Food intake has to therefore meet the body’s energy and nutrient requirements. 

As such, feeding behaviour is regulated by neural and endocrine activity which promotes 

consumption during energy or nutritional deficit and suppresses feeding upon meeting those 

demands. The GI tract and other secretory organs and tissues, such as the pancreas and adipose 

tissue, release hormones that – appropriate for the fed and fasted state – modify/adjust feeding 

behaviour. Peripheral factors relevant to energy balance influence brain activity through direct 

interaction with centrally expressed receptors for circulating nutrients and hormones (both 

orexigenic and anorexigenic) or through vagal projections to the hindbrain. This leads to 

upstream activity and molecular changes within central pathways which regulate feeding. 

Alongside processes regulating energy homeostasis, palatability of ingestants elicits signalling 

in the reward system, as well as, via an interconnected network, in broader feeding regulatory 

circuits targeted by projections from reward areas.  

Milk or milk-based foods are near ubiquitous in Western diets. Although milk, from an 

evolutionary point of view serves as a food during early life, it is commonly incorporated into 

adult diets, significantly contributing to daily energy intake and being a source of both nutrients 

and palatability. This can either be in close-to-natural forms of milk or in milk formulations 

and milk-based products that are modified to target certain health-related outcomes, i.e., 

lactose-free hypoallergenic milks, milk-based weight loss or high-protein sport drink diets, and 

whey-enhanced formulations. In addition to the issue that milk gets incorporated into our 

dietary repertoire in such different forms, one should consider an oftentimes neglected fact that 

the composition and physical characteristics of milks derived from different species vary, too. 

These differences are so profound that, as delineated in the Introduction to this thesis, 
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consumption of milk sourced from different species, e.g., goats versus cows, generates unique 

post-ingestive processes including digestion kinetics and endocrine responses. For example, 

comparing CM - the most commonly consumed, and therefore studied, milk type in Western 

societies – with GM, shows digestion differences related to protein fractions. While similar in 

total protein content, GM and CM vary in whey and casein (Park et al., 2007; Wendorff et al., 

2017). GM contains higher b-casein and as2-casein and reduced as1-casein concentrations 

(Grosclaude & Martin, 1997; Carillier-Jacquin et al., 2016; Wendorff et al., 2017). In gastric 

conditions, casein micelle structure collapses leading to coalescence of casein proteins into a 

curd (Jenness, 1980). Lowered as1-casein content in GM produces a looser curd (Ambrosoli et 

al., 1988), facilitating easier casein proteolysis (Barbé et al., 2013) and more rapid emptying 

of GM casein products into the intestinal lumen than CM (Maathuis et al., 2017; Hodgkinson 

et al., 2018). Variation in absorption rate influences subsequent endocrine cascade and appetite, 

with Rubio-Martín et al. (2017) reporting a GM breakfast with semi-skimmed milk, cheese and 

white bread lowering a desire to eat and hunger more so than a CM breakfast, also associated 

with altered GI GLP-1 release. 

The data obtained in the course of my experimental work show for the first time that GM is 

ingested more avidly than CM by mice and rats and that this phenomenon has physiological 

underpinnings in terms of feeding-relevant neural responses. As the studies were conducted in 

two standard laboratory species (rats and mice) and – moreover – in animals that belonged to 

distinct age categories (adolescent, adult, aged), the consistent feeding outcomes lend credence 

to generalising the conclusion regarding preference for GM over CM across key laboratory 

animal models. The set of studies in Chapter 2 (Palatability of goat’s versus cow’s milk: 

insights from the analysis of eating behaviour and gene expression in the appetite-relevant brain 

circuits in laboratory animal models) bridges some of the gaps in the current literature 

regarding how a species from which milk was sourced, specifically bovine and caprine milk, 

affects intake and preference for this milk. I found that, while both GM and CM are highly 



 

120 

palatable, GM is preferred and more readily consumed. Increased intake and preference for 

GM appears to be due to a higher hedonic value rather than impaired/delayed satiety, as 

suggested by expression of reward- and satiety-related genes. 

Both CM and GM were found to be palatable across no-choice paradigms in my experimental 

work. When presented separately in animals being in a fed or fasted state, consumption of milks 

was comparable to the palatable positive control of a sweetened solution. Consumption of these 

three palatable liquids exceeded that of the “bland” cornstarch. High palatability of milks was 

also confirmed with solid diets enriched with milk. Laboratory rodents showed elevated 

consumption of milk-containing chows compared to standard (‘bland’) chow during episodic 

presentations. Both milks were also highly palatable across the three age groups examined 

(adolescent, adult and aged) with elevated intake of CM and GM equivalent to the palatable 

sweetened water. While the aged animals exhibited slightly lowered intake of palatable 

solutions than the adult or adolescent groups, one should note that in both humans and non-

human animals, aging is associated with an increased prevalence of anhedonia (Lampe et al., 

2001), and that includes reduced consumption of palatable diets (Herrera-Pérez et al., 2008; 

Shin et al., 2012; Inui-Yamamoto et al., 2017; Sakai et al., 2017). While intake for palatability 

was indeed mildly suppressed in the aged rats and mice, they still displayed elevated intake of 

milk, which indicates that the animals retain sensitivity to the pleasant consequences of milk 

consumption despite the overall lowered hedonic responsiveness to foods during old age. 

Though the results have been obtained in animal studies, they nonetheless serve as an important 

clue for possible human interventions in that a palatable and nutritive tastant, namely milk, can 

be treated as a dietary tool helping in mitigating anhedonic consequences of aging. 

Whilst both milks were found to be palatable, this research also identified differences in the 

context of preference. In regard to relative palatability, simultaneous presentations of GM and 

CM diets (liquid formulations and solid chow) underscored a near-uniform preference for GM. 
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Preference for GM in a liquid form was higher than that for CM in mice and in rats, with the 

only exception being adolescent mice that ingested similar amounts of GM and CM. In 

simultaneous presentations of CM- and GM-enriched chows, adult and aged rats and adult mice 

preferred goat milk-enriched pellets; aged mice showed a trend toward GM preference. 

Lickometer feeding patterns strongly support the notion of the elevated GM preference, with 

four-fold increase of licks of skim GM within the first five minutes of exposure, persisting with 

a two-fold increase in the following five minutes. Licking microstructure analysis showed a 

high bout number and an extended bout length for goat milk. The observed increase in the 

initial GM intake, bout number and duration parallels licking patterns of highly palatable 

solutions (Davis & Smith, 1992; Davis & Perez, 1993; Spector et al., 1998; Glass et al., 2001), 

suggesting that heightened palatability of GM drives the intake of this milk type.  

Despite both CM and GM being common foods on a global scale our understanding of potential 

differences in palatability and acceptability of these milks is extremely limited and relies 

mainly on anecdotal evidence. It appears that, prior to this experimental work, no other 

laboratory animal study utilising CM and GM diets had directly compared preference for and 

relative intake of these milks. Nor have human studies performed any in-depth analysis of 

participants’ preferences for GM versus CM, other than providing very limited notions, such 

as that GM is perceived as novel with a unique “goaty” taste (Mowlem, 2005; Park & Haenlein, 

2013, Rubio-Martín et al., 2017; Milan et al., 2018). It should be emphasised though that in 

the context of human observations preferences are strongly biased by habituation. The 

aforementioned human studies were conducted in geographic locations in which CM is 

predominantly consumed (Western diet) and, therefore, where exposure to CM is extremely 

unlikely to constitute a new experience, whereas GM may more often be met with 

unfamiliarity. Foods with familiar gustatory perception (flavours and textures) are generally 

preferred (Torrico et al., 2019; Cheng et al., 2020). Habituation is a nearly unavoidable 

confounding factor in human study designs, needing either cohorts naïve to or with equal 
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exposure to both milk types. Considering this, the use of animal models in the current studies 

allowed us to examine whether differences in preference for GM vs CM exist at all in 

individuals (animals) whose prior exposure to both milk types could be controlled and, thus, 

devoid of the habituation bias. In fact, the very consistent preference for GM across various 

models in our experiments is so striking that – taking into account the mainly anecdotal 

evidence of a somewhat negative perception of GM in human subjects with lifetime exposure 

to primarily Western diets - it may be of interest to examine whether early-life habituation to 

CM or GM in laboratory rodents would also affect their GM-vs-CM preference later in life. 

This might be a worthwhile endeavour especially in light of the data showing that animal milk-

based formula intake in early infancy modifies later dairy preference in humans (Mennella & 

Beauchamp, 2002; Maslin et al., 2016). One might even speculate – though this hypothesis is 

quite premature - that the onset of a preference for a given milk may occur already during the 

pre-weaning phase: rodent maternal diet during lactation is known to affect food preferences 

once the pups reach adult age (Carlin et al., 2013; Gugusheff et al., 2015).  

Accordingly, it should be acknowledged animals used in this study consumed their dams milk 

as neonates. Rodent milk differs in composition from the test diets examined here, varying 

across species and strain (Treadway et al., 1986; Del Prado, et al., 1997; Bautista, et al., 2021; 

Boumahrou et al., 2009, Godbole, et al., 1981; Görs, et al., 2009; Ragueneau, 1987). 

Notability, whey:casein ratio is near the 20:80 ratio and a β-casein ratio closer to CM 

(Wendorff et al., 2017; Boumahrou et al., 2009). No controls for pre-programming of 

preferences concerning milk diets conveyed during the neonatal period are used in these 

studies. Potentially, this could be achieved with earlier postnatal interventions where manual 

milk administration replaces milk supply from dams and later life feeding patterns and 

preferences are evaluated in the offspring. This would ascertain whether preferences observed 

in these studies are indeed confounded by neonate exposure to dams’ milk. 



 

123 

The analyses of brain gene expression accompanying intake of GM and CM found disparate 

effects of the consumption of each milk type at the central level. Intake of GM induces more 

robust activation of hedonic pathways, possibly indicating that increased intake and preference 

for GM over CM is related to reward. Alongside this, in pathways involved in feeding for 

energy GM promoted expression of satiety genes and suppression of hunger-related genes, thus 

suggesting that the heightened intake of GM was not due to abnormal hunger-satiation 

processing. It is well known that reward-driven intake is mediated by interconnected regions 

activated following ingestion of palatable foods, from lower brain stem areas to higher order 

orbitofrontal cortex, ventral palladium and NAcc (Berridge & Kringelbach, 2015). Following 

palatable food intake, dopaminergic, opioid and endocannabinoid signalling in these areas is 

enhanced, and so is the expression of genes that encode relevant neurotransmitters, their 

receptors and associated signalling factors. Opioid signalling is associated with hedonic 

stimulation, especially the “liking” component of reward-driven consumption (Berridge & 

Kringelbach, 2015), and an increase in the opioid tone promotes intake of palatable tastants, 

from the simple, single-macronutrient, calorie-dilute ingestants to the preferred, highly caloric 

and nutritionally complex foods (Lynch, 1986; Giraudo et al., 1993; Levine et al., 1995; 

Weldon et al., 1996; Peciña & Berridge, 2000; Glass et al., 2001; Naleid et al., 2007; Olszewski 

et al., 2011). Dopamine signalling within the mesolimbic system (originating in the ventral 

tegmental area and encompassing ventral striatal structures including the NAcc (Pandit et al., 

2011)), produces the “wanting” of a rewarding tastant (Wyvell & Berridge, 2000), and 

connexin-36 (Cx36) mediates synchronicity within dopamine neuronal networks (Steffensen 

et al., 2011). Importantly, the results presented here show that GM consumption increased 

expression of mu (MOR) and kappa (KOR) opioid receptors in the hypothalamus, and also 

caused a trend toward their upregulation in the NAcc and brainstem. Additionally, dopamine 

receptor transcript levels were affected following GM, alongside the changes in Cx36 

expression. Auxiliary modulation of the reward system by GM might also be linked with other 
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feeding-related transcripts in the NAcc, including GHSR, PNOC and OPRL (Perelló & 

Zigman, 2012; Skibicka et al., 2013; Hardaway et al., 2016; Statnick et al., 2016; Hernandez 

et al., 2021). Thus, the response of the reward system to GM is relatively vast, involving a 

diverse repertoire of genes and, importantly, these findings are congruent with the outcomes of 

food intake experiments which found GM to be more palatable/preferred than CM.  

As mentioned above, gene expression studies indicate that GM consumption does not affect 

expression of hunger- and satiety-related genes adversely, i.e., in a manner that would suggest 

impaired hunger-satiety processing in response to GM exposure. Upregulation of anorexigenic 

melanocortin system-associated genes, MC3R and MC4R, as well as reduced expression of 

orexigenic NPY and ORX transcripts following GM intake is expected considering that milk 

provides calories (Levine et al., 2004; Nixon et al., 2012). Furthermore, elevated OXT 

expression following GM indicates both GM palatability (as OXT is typically released with 

intake of palatable food, especially that containing carbohydrates) and maintenance of a satiety 

response (Amico et al., 2005) (Miedlar et al., 2007) (Mullis et al., 2013; Herisson et al., 2014).  

Our meal microstructure lickometer analysis supports this notion of preserved satiety with GM 

intake with similar timeframes of attenuation of consumption between GM and CM suggesting 

that elevated preference for GM was not due to delayed satiation (Glass et al., 2001). In line 

with this finding, prior studies in human subjects report no deficit in satiety to GM or CM diets. 

Milan et al. (2018) reported equivalent perceived satiety and appetite as well as circulating 

levels of appetite-regulating hormones in participants given fortified GM or CM drinks. Rubio-

Martín et al. (2017) even suggest that GM-based breakfast heightens satiety compared to CM 

breakfast: the subjects in that study reported a reduced desire to eat and subjective hunger, and 

those questionnaire data were elegantly paralleled by GLP-1 and triglyceride levels. Overall, 

higher intake of GM does not stem from impaired satiety processing and can be attributed to 
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palatability and the consequences at the reward system’s level may be viewed as a promising 

parameter for possible translational applications of this finding to human dietary interventions.  

While it is clear, at least in animal models, that GM is more preferred than CM, it is important 

to reiterate the fact that Western diets rarely rely on unmodified milk, but rather utilise milk 

products that have undergone processing. These modifications are likely to affect a number of 

characteristics of milk, leading to altered palatability and acceptability. Therefore, one cannot 

declare a priori that all GM-based milk formulations are more palatable and more avidly 

consumed than CM-derived tastants. Considering this crucial caveat, I continued my work on 

feeding responses to CM and GM by focusing on formulations that had incorporated one of the 

most common compositional adjustments: the natural 20:80 whey:casein ratio found in bovine 

and caprine milks was whey-enhanced to 60:40 in order to match the typical whey:casein ratio 

of human milk. In Chapter 3 (Changes in feeding and related brain function in mouse model 

following consumption of infant formulations with variable whey and casein content) and 

Chapter 4 (Whey:casein adjustment in cow’s milk from 20:80 to 60:40 affects food intake, 

brain stem and hypothalamic gene expression and neuronal activation, and it supersedes 

preference for goat’s over cow’s milk), I furthered GM and CM comparisons with formulations 

differing in the whey:casein ratio.  

That a shift in whey:casein may significantly impact intake of milks that differ in this parameter 

seemed quite intuitive considering a disparate impact that each of the fractions has on eating-

related behavioural and physiological processes. Whey and casein fractions have unique 

digestion, with “fast” whey passing through the stomach and into the intestine whilst “slow” 

casein aggregating there. The resulting absorption features early and high peaks in plasma 

amino acids with whey and slower, lower and longer elevated levels with casein. Endocrine 

response to whey has been described as more pronounced. Long-term preliminary studies on 

whey and casein intake published prior to the commencement of this research have shown a 



 

126 

possible link with serotonergic and melanocortin signalling. Interestingly, when whey and 

casein are consumed together, GI endocrine release is unique to that seen with isolates and not 

necessarily proportional to either fraction’s contribution (Diepvens et al., 2008; Lorenzen et 

al., 2012). Studies that have examined the acute digestive, endocrine and appetitive responses 

to natural and adjusted whey:casein ratios indicate that such modifications influence satiety-

related processes. Ye et al. (2019) demonstrated in vitro that elevating casein content in CM 

increased micelle aggregate size thereby slowing 60:40 CM formula digestion. 20:80 and 60:40 

GM formulations, having similar particle size and digestion rates, differed in the rate of protein 

digestion and in amino acid plasma spikes (Dangin et al., 2001; Juvonen et al., 2011), 

particularly notable with casein (Juvonen et al., 2011). Appetite and endocrine functions 

following natural and whey-adjusted CM formulations were examined in studies by Kung et 

al. (2018) and El Khoury et al. (2019). Following formulation intake as part of a cereal-based 

breakfast, the 60:40 ratio produced a lower plasma glucose peak (Kung et al., 2018). Glycaemic 

regulation was insulin-independent, relating rather to gastric emptying speed altered by GI 

hormone release, modifying the rate of glucose absorption and thereby blood glucose levels 

(El Khoury et al., 2019). Furthermore, human subjects reported reduced appetite with the 20:80 

formulation (Kung et al., 2018).  

The observations in humans are strongly supported by the outcomes of the studies presented in 

this thesis. In the feeding studies in Chapters 3 and 4, I observed that preference was heavily 

impacted by whey:casein ratios. Chapter 3 utilised GM-based formulations with the natural 

20:80 and adjusted 60:40 whey:casein ratios whilst Chapter 4 examined response to CM-based 

formulations with the same ratios. In choice scenarios, mice avidly consumed the adjusted 

60:40 formulations over 20:80 with both GM- and CM-derived formulations. The four-fold 

increase in 60:40 intake compared to the 20:80 formulation indicates a strong influence of 

whey:casein ratio on palatability, given that in previously published choice paradigms using 

highly palatable tastants of sugar and fat, intake disparity is within 10% of the total volume 
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(Olszewski et al., 2010; Herisson et al., 2014). This high palatability of the 60:40 whey:casein 

is reaffirmed in the choice paradigms in Chapter 4. When mice were given simultaneously two 

milk formulations of the same whey:casein ratio but from a different species source (i.e. CM 

20:80 vs GM 20:80 or CM 60:40 vs GM 60:40), animals preferred GM formulations, consistent 

with preferences observed in Chapter 2 with skim milks. However, this species source-based 

milk preference was superseded by the whey:casein ratio when animals were given alternate 

ratios from two different species. Specifically, when given a choice between the CM 

formulation with the 60:40 ratio and the GM formulation with the 20:80 ratio, animals avidly 

consumed the CM formulation despite GM preference in the whey:casein matched scenarios.  

The data in the single tastant tests are largely consistent with the notion of heightened 

palatability of 60:40 milks. In Chapter 3, mice given a single bottle of GM (either 60:40 or 

20:80) for 24 hours had higher intake of the 60:40 formulation whilst in Chapter 4, though mice 

given a single bottle of either 60:40 or 20:80, CM had equal intake in the same paradigm with 

CM formulations. This suggests that palatability of GM and of the 60:40 ratio could have a 

additive effect, promoting elevated consumption above that of the two CM formulations. This 

may explain why, in the cross-source milk presentations in Chapter 4, there was the significant 

preference for 60:40 GM over 60:40 CM, while there was only a trend for 20:80 GM over 

20:80 CM preference. It is also possible, given the lack of fats in the skim milk comparisons in 

Chapter 2, that inclusion of species milk lipids or added fats in formulations may change 

palatability of these species milks.  

One of the questions that may arise based on the results of these studies is whether whey 

enhancement is therefore a desirable modification of milk content. It should be considered that 

GM is already palatable and, therefore, its intake is associated with a rewarding value that by 

itself is sufficient to promote consumption. Thus, when choosing a diet with the aim of 

elevating food intake, replacing CM with GM might be an optimal intervention. This is because 
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by combining either CM or GM with whey enhancement (and thus departing from the natural 

whey:casein ratio and elevating feeding even further), an increase in calorie intake may be so 

high that it would produce a greater risk of bringing about unwanted metabolic consequences 

through delivering a diet with more of an obesogenic potential. This issue certainly needs to be 

investigated in-depth in future studies involving long-term exposure to milks that differ in 

whey:casein ratios to assess their impact on energy homeostasis.  

One should also note that a departure from a natural 20:80 whey:casein ratio in milk is not 

without consequences for brain activation and for gene expression. Though CM and GM 

formulations were examined by me in two separate projects (Chapter 3 and 4) dedicated to 

each milk type (either CM or GM) makes direct statistical comparison impossible, there are 

clear commonalities and differences that can be attributed to whey:casein ratio and to the 

species source of a given milk, respectively. In fact, the nucleus of the solitary tract (NTS) 

appears to be a common denominator for neuronal activity changes induced by whey 

enhancement. Regardless of whether GM or CM, the intake of the whey:casein 60:40 milk 

formulation increases c-Fos IR in the rostral portion of the NTS (rNTS) and decreases the 

density of c-Fos-positive neurons in the caudal portion of this nucleus (cNTS). Given whey 

and casein fractions have such unique digestive and absorption kinetics, it is intuitive that 

adjusting the ratio would elicit activity in the cNTS as this area is responsive to visceral input 

(including vagal) as well as to the circulating nutrient status (Horst et al., 1989; Johnson & 

Gross, 1993; Rinaman, 2010). The rNTS activity is quite interesting as it aligns well with the 

findings showing differences in palatability/preference between the whey:casein ratios from 

our animal experiments as well as from some human studies utilising a formula (Kung et al., 

2018) or yoghurt (Tomaschunas et al., 2012; Cheng et al., 2019). Importantly, the rNTS 

receives gustatory and sensory input and displays reactivity to specific tastes (Harrer & 

Travers, 1996; King et al., 1999; Travers, 2002; Rinaman, 2010; Stratford et al., 2017).  
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Interestingly, the hypothalamus was the region where c-Fos mapping after 20:80 vs 60:40 

formula intake produced a differential pattern of activity that was dependent on the species 

from which a milk was sourced. In GM-fed animals, the whey-enhanced formulation affected 

c-Fos only in the SON and VMH. On the other hand, in the CM experiment, I found a change 

in neuronal activation in the PVN, LHA, DMH and ARC, and the change in activity was 

opposite depending on the species (in GM, whey enhancement caused an increase, whereas in 

CM, a decrease in c-Fos immunoreactivity). c-Fos observations are accompanied by changes 

in relative gene expression in the two studies. Transcript level changes in the hypothalamus 

between groups given 60:40 vs 20:80 milks are notably different in the CM study than in the 

GM study, whereas the brainstem profiles have at least some similarities between the two 

studies (e.g., in melanocortin receptor, orexin or dynorphin genes – showing either significance 

or trend approaching significance). Considering the role of the hypothalamus in energy 

homeostasis control, these data should be therefore viewed as an additional impetus to conduct 

long-term studies that focus on potential metabolic consequences of whey enhancement. 

Furthermore, these outcomes serve as evidence that a departure from the natural whey:casein 

ratio in milk is not a neutral change in terms of altering short-term feeding responses as well 

as the relevant central mechanisms that govern ingestive behaviour.  

5.1 Limitations 

This work has highlighted new findings regarding control of food intake following milk 

consumption, specifically variations in feeding behaviour and central processes with different 

milk types. These are the first studies to examine such outcomes of the context species source 

and common modifications in milk proteins made in manufacture of milk diets in a systematic 

way. However, it is important to note the limitations of these studies conclusions. 

Several limitations are noted including the translation of rodent studies to humans. There are 

benefits for animal models in dietary research compared to humans, such as high level of 
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control over factors impacting intake and metabolic processes such as lifestyle, genomic 

variability and diet compliance, and the availability of techniques allowing for closer 

examination physiological processes, such as invasive tissue collection. However, innate 

differences in biology between our species and that of laboratory models does limit 

extrapolation from diet and metabolic studies (Lai, et al., 2014; Chalvon-Demersay, et al., 

2017; Hintze, et al., 2018; Suleiman, et al., 2020). The use of animal models has eliminated 

the biases in preferences occurring with pre-exposure one would expect within a population 

through use of animal models. Whilst this gives methodological accuracy for unbiased milk 

species preferences, this may not necessarily translate to human populations as perceptions of 

novel foods, especially milks, are biased by what is standard within a culture (Torrico et al., 

2019; Cheng et al., 2020; Mennella & Beauchamp, 2002; Maslin et al., 2016; Mowlem, 2005; 

Park & Haenlein, 2013). Therefore, observed preferences in intake and related changes in 

neuronal activity and gene expression may not necessarily represent any given human 

population due to difference in biology between species and innate preferences of any given 

individual.  

Alongside this, the most obvious confounding factor in milk preferences studies would be 

giving rodents lactose-rich diets as they exhibit lactose intolerance following weaning (De 

Angelis, et al., 1984; Labrie, et al., 2016). Rats have displayed poor digestibility and 

intolerance of diets with higher lactose contents around 20-30% (De Angelis, et al., 1984; van 

De Heijning, et al., 2015). Given lactose content of test diets used here had high lactose content, 

rodent lactose intolerance could impact the palatability of these diets. Lactose intolerance 

studies examined chronic intake of high lactose, noting the outcomes of lower absorption, 

altered carbohydrate and lipid metabolism and increased incidence of diarrhoea (De Angelis, 

et al., 1984; Alexandre, et al., 2013; van De Heijning, et al., 2015). However, acute impact of 

short periods of lactose intake is relatively unknown. Diet studies were preceded with brief pre-

exposure to the diets to prevent hyponeophagia and milk diets were avidly consumed and 
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highly palatable, comparable to sweet sucrose solutions. This would suggest that animals did 

not experience malaise after the pre-exposure session, as they did not display aversion for the 

diets. Indeed, high palatability was observed across all age groups examined in Chapter 2, 

notable as intestinal lactase in rodents decline with age and would make the any negative post-

prandial effect more pronounced (Labrie, et al., 2016). This suggests minimal negative side 

effects from lactose intake on palatability, but this could be confirmed with conditioned taste 

avoidance studies with milk diets, ensuring no malaise results from short episodic intake. 

Another limitation to be considered in these studies is use of appropriate controls. Suitable 

control diets that account for complex macronutrient profile of milk diets as well as for 

variations that occur in naturally sourced diets are difficult to achieve. Controls used in Chapter 

2 for the preference studies included sucrose and cornstarch whilst gene expression studies 

utilised isovolumetric water intake. The former served as palatable and unpalatable caloric 

controls. Near equal intake to sucrose and higher intake than cornstarch solution was noted. 

This pattern persisted even in low energy, food deprived state, indicating that these skim milks 

were highly palatable and not just rewarding for their caloric content. Water served as a control 

for the gene expression study in Chapter 2. It serves as a non-caloric control, accounting for 

gene expression associated with intake volume, thirst abolition and gastric distension (Traub, 

et al., 1996; Sun, et al., 2006; Tang, et al., 2006; Sabbatini, et al., 2008), given its isovolumetric 

consumption. However, water as a control does not account for changes resulting from nutritive 

components of diets, where isocaloric solutions and compositionally matched diets may serve 

as better controls. These nutritive components are harder to control for, as the test diets in all 

three chapters have complex macronutrient profiles which are naturally sourced.  

An isocaloric solution of sucrose or cornstarch, or other commonly used carbohydrate solutions 

such as glucose, may provide a caloric control but would not accurately match metabolic 

outcomes of lactose (Alexandre, et al., 2013; Mohammad, et al., 2011; Roser, et al., 2009; 
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Krishna, et al., 2020) nor would these solutions, or a lactose or galactose control, account for 

the changes that would come from consumption of the other macronutrients present in the milk 

solutions. One could consider other milks or milk-based diets as controls, such as rat and human 

milks, or commercially available infant formulations and milk shake replacement diets. These 

solutions have complex blend of nutrients more closely resembling test diet composition 

compared to single nutrient solutions. However, these would not account for effects of species 

macronutrient differences or added ingredients in different milk-based diets.  

Another aspect constricting controls is the natural variability in milk composition, with changes 

in composition dependent on genetics and animal breed (Scholtens, et al., 2020; Bainbridge, et 

al., 2016; Lim, et al., 2020), health status (Al-Farha, et al., 2017; Gonçalves, et al., 2020; 

Novac & Andrei, 2020), lactation period (Zhang, et al., 2020; Kljajevic, et al., 2018), fodder 

intake and nutrient supplementation during lactation (Thoh, et al.,2017; Murney, et al., 2019; 

Muir, et al., 2015; Ariza, et al., 2019) and environmental changes (Kljajevic, et al., 2018; 

Bertocchi, et al., 2014). Accurately reflecting these variations in a macronutrient-matched 

control is near impossible.  

Given the limitations of accurate controls for milk diets, direct comparison of formulations 

were made in Chapters 3 and 4. 

Compositional variation also contributes to flaws in these studies regarding replicability and 

validity. Milks used here are pooled from multiple animals and farms which may 

counterbalance some of the aspects influencing composition described about, though may still 

vary from batch to batch. This highlights issues in study replicability faced by all naturally 

sourced diet studies. Additionally, there are some variations in test diets macronutrient 

composition used in Chapters 3 and 4. Whilst these studies aimed to manipulate whey and 

casein contents of the milk diets, there were other changes in composition such as a ~10% 

difference in fat content in the CM formulations, a ~13% and ~7% difference in total protein 



 

133 

content as well as a ~1% and ~5% carbohydrate difference in the CM and GM formulations 

respectively. Whilst these changes are smaller in comparison to the intentional changes in whey 

and casein contents of these diets (~90% and ~78% difference in whey and casein, respectively, 

in CM formulations, ~105% and ~60% difference in whey and casein, respectively, in GM 

formulations), these variations could impact brain activity and gene expression profiles (Hu, et 

al., 2018). Therefore, a role of other macronutrient variations in changes attributed to whey 

and casein manipulation cannot be discounted.  

Another component that could be influencing histological and gene expression outcomes is 

intake volume. Gastric distension influences activity in the hypothalamus and brain stem 

(Traub, et al., 1996; Sun, et al., 2006; Tang, et al., 2006; Sabbatini, et al., 2008) as will as 

caloric load (Lazzarino, et al., 2017; Lazzarino, et al., 2019; Xu, et al., 2007). There was not a 

significant difference in intake of skim milks (or water control) or of CM-based formulations 

prior to histological testing and gene expression analyses in Chapters 2 and 4. While these 

studies were not strictly calorie controlled, it is unlikely that intake volume would have greatly 

impacted the results from these chapters. However, in Chapter 3, whilst 2-hour GM-

formulation consumption for histological analyses had similar intake, the 24-hour intake of the 

60:40 formula was significantly larger than the 20:80 formula. Interestingly, higher caloric 

intake should induce higher expression of satiety-related genes, however, the 20:80 formula 

had reduced expression of anorexigenic POMC and OXT. It is unclear, then, how intake 

volume has influenced gene expression in this chapter. Follow up studies are attempting to 

control for this variability from ad libitum consumption through intragastric delivery of 

isovolumetric boli.  

5.2 Conclusions 

The overarching aim of this doctoral research was to examine whether laboratory rodents 

display different preference for GM versus CM-based diets and whether it is associated with 



 

134 

different responsiveness of brain systems controlling eating for energy and/or reward. The 

findings of these studies are: 

- GM and CM liquid and solid diets are highly palatable. 

- GM is preferred over CM by rats and mice and across different age groups (adolescent, 

adult and aged). 

- GM intake elevates expression of dopaminergic and opioidergic genes in the NAcc, 

suggesting a functional relationship between GM intake and reward. 

- GM intake also upregulates some melanocortin system genes, indicative of a link with 

satiety processing. 

- Whey enhancement is associated with elevated intake of and preference for milk 

regardless whether sourced from goats or cows.  

- Whey:casein ratio manipulation supersedes impact of a species from which the milk 

was sourced on the preference for a formulation.  

- Intake of 20:80 and 60:40 whey:casein milk formulations is accompanied by alterations 

in neuronal activity and gene expression in key regions regulating food intake 

- Both CM and GM formulations induce hindbrain activity associated with gustatory and 

visceral sensations, relating to manipulating the whey:casein ratio. 

- Differences in gene expression and activity of hypothalamic nuclei following GM or 

CM formulations indicate that a species from which the milk was sourced impacts food 

intake-related processes.  
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Chapter 6 

Appendix 

6.1 Composition of CM- and GM-enriched chow 
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