

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

An Investigation of Self-Learning and
Self-Protection for Adaptive Digital

Twins

A thesis

submitted in fulfilment

of the requirements for the Degree

of

Master’s of Science (Research)

at

The University of Waikato

by

Chris Anderson

2021

Contents

1 Introduction 12

1.1 Background . 14

1.1.1 Self-Adaptive Systems 16

1.1.2 Control Theory . 16

1.1.3 State-Space Models . 17

1.1.4 Anomaly Detection . 17

1.2 Aims . 18

1.3 Structure . 19

2 Related Work 20

2.1 Digital Twins . 20

2.1.1 Digital Twins in Critical Infrastructure 21

2.1.2 Digital Twins in Critical Infrastructure for Self-Protection 23

2.1.3 Further Definition . 24

2.2 Machine Learning . 25

2.2.1 Neural Networks . 25

2.3 Self-Adaptive Control Systems 26

2.4 Systematic Literature Review 27

2.4.1 Methodology . 27

2

2.4.1.1 Manual Additions 29

2.4.2 Continuous User Training 30

2.4.3 Literature Crossover 31

2.4.3.1 Honeypots, Decoys, and Deception 31

2.4.4 Key Findings . 34

2.5 Research Gaps . 35

2.6 Conclusion . 36

3 Research Method 37

3.1 Self-Learning and Self-Protection 38

3.2 Hypotheses . 45

3.3 Summary . 46

4 Requirements and Experimental Design 47

4.1 Simulation . 47

4.1.1 Heater . 48

4.1.2 PID Controller . 50

4.1.3 Forecast Oracles . 51

4.1.4 Error Metrics . 53

4.1.5 Degradation . 54

4.2 Tested Techniques . 56

4.2.1 Base-Case . 56

4.2.2 Same-Trend . 57

4.2.3 Observer Kalman and Eigensystem Realisation 58

4.2.4 Dynamic Mode Decomposition with Control 58

3

4.2.5 Sparse Identification of Nonlinear Dynamics with Control 59

4.2.6 Recurrent Neural Network 59

4.3 Conclusion . 60

5 Self-Learning Evaluation and Analysis 61

5.1 Performance over Simulation 62

5.1.1 Retraining . 64

5.1.2 Model Stability . 70

5.2 Performance over Varying Oracle Depths 72

5.3 Conclusion . 75

6 Self-Protection Evaluation and Algorithms 77

6.1 Signal Processing . 78

6.1.1 Nyquist Frequency . 79

6.1.2 Transforms . 79

6.2 Sampling and Command Frequency 79

6.3 Heater Failure Conditions . 81

6.4 Temperature Prediction Handling 82

6.5 Input Frequency Handling . 84

6.6 Conclusion . 88

7 Engineering Design Discussion 89

7.1 Simulation . 89

7.1.1 Simulation Design Limitations 91

7.2 Overall Architectures . 92

7.2.1 Self-Learning . 94

4

7.2.2 Self-Protection . 96

7.3 Software Development Process 96

7.4 Conclusions . 99

8 Conclusion 101

8.1 Research Hypotheses . 102

8.1.1 Hypothesis 1 . 102

8.1.2 Hypothesis 2 . 103

8.1.3 Hypothesis 3 . 104

8.2 Threats to Validity . 105

8.2.1 Simulator . 105

8.2.2 Sampling . 107

8.2.3 Data Types . 108

8.3 Future Work . 108

8.3.1 Pole Placement . 108

8.3.2 Dynamic Retraining Thresholds 109

8.3.3 Compressed Sensing 109

8.3.4 Forecasting . 110

8.3.5 Non-Human-In-The-Loop 110

8.3.6 Actual Energy Systems 110

8.3.7 Prediction Testing . 111

List of Tables

2.1 Non-exhaustive list of ICS Honeypots 33

4.1 Raw Heater Variables . 49

4.2 PID + Heater Variables . 50

4.3 Techniques and Self-Learning coverage 60

5.1 Variable Weighting . 63

5.2 Error for non-retraining models 63

5.3 Temperature Error Across All Retraining Strategies 64

5.4 Temperature Error Across All Retraining Strategies with min-

imum time before retrain . 65

5.5 Total Change in DMDc A Matrix (Three Significant Figures) . 66

5.6 Total Change in DMDc B Matrix (Three Significant Figures) . 66

5.7 Temperature Error (Five Significant Figures) 73

5.8 Water Level Error (Five Significant Figures) 74

5.9 Power Error (Five Significant Figures) 75

7.1 Summary of Modules and Implementations 99

6

7.2 Summary of Example Implementations of Each Module 100

8.1 Complete Temperature Error Across All Retraining Strategies

with minimum time before retrain 124

List of Figures

2.1 Lightwire Address tagged as ICS Honeypot in Shodan (n.d.) . 32

2.2 Step-7 port (102) flagged as a honeypot and Modbus shows two

fake S7-200s in Shodan (n.d.) 32

2.3 Simplified Gap Analysis . 36

3.1 Cloud-Machine Interface . 38

3.2 Proposed Self-Learning Architecture 39

3.3 Three Pole Plot for DMDc model 41

3.4 Implemented Self-Learning Diagram 42

3.5 Self-Learning Framework Class Diagram 44

4.1 Modelled Water Heater . 48

4.2 Heater Diagram with PID . 51

4.3 Evolution of the heater over time 52

4.4 Simulated Heater Graphs . 53

4.5 Error over the first oracle’s window (n=2048) 54

4.6 Numeric Explosion with DMDc when Heater degrades to 95% 55

8

4.7 Overshoot with Same-Trend technique 57

5.1 Signed Error with Absolute A Matrix Difference over time . . 67

5.2 Absolute change in A matrix values between retraining 68

5.3 Principal Component Analysis of A matrix change over time . 69

5.4 Principal Component Analysis of A matrix over time 70

5.5 DMDc First Retrain Bode Plot — Magnitude 71

5.6 Error mean and deviation over the primary oracle (25th retrain) 72

6.1 Example of an aliased signal 80

6.2 Self-Protection by modifying PID target 83

6.3 Self-Protection by modifying raw heater output 84

6.4 Phase diagram for tank temperature 85

6.5 Phase diagram for tank temperature with interference 86

6.6 Heater Level of B̂ in frequency-domain showing oscillations

(left) and filtered frequencies (right) 87

7.1 Updated Architecture as per Figure 3.2 93

7.2 Self-Learning Architecture . 95

7.3 Self-Protection Architecture 97

7.4 Software Development Process Diagram 98

8.1 B Matrix Change . 125

9

8.2 Principal Component Analysis of B matrix change over time . 126

8.3 Absolute change in A matrix values between retraining 127

8.4 Absolute change in A matrix values between retraining 127

8.5 Principal Component Analysis of A matrix change over time . 128

8.6 Principal Component Analysis of B matrix change over time . 129

8.7 Integral of Absolute Error for DMDc Retrains with the Signed

strategies . 130

8.8 Principal Component Analysis of B matrix over time 131

8.9 Heater error only for Octuple length run 131

8.10 DMDc First Retrain Bode Plot — Phase 132

Abstract

Adaptive Digital Twins are applicable to a number of fields, including the cy-

bersecurity of industial control systems. This thesis prototypes a Self-Learning

adaptive digital twin and posits an architecture for the creation of digital twins

based on the learnings gained from the prototype. The prototype shows the

efficacy of control theoretical approaches for adaptive digital twins for both

modelling and protecting a system, and the architecture posits a generalised

method for developing adaptive digital twins.

Acknowledgements

I have been lucky to be surrounded by a group of excellent people whose

passion for their own interests is inspirational.

I would like to extend my gratitude to both of my supervisors — Dr Panos Pa-

tros and Dr Tim Walmsley — for their support and candid advice during the

thesis, to the members of the ORCA and Ahuora Labs for their friendship and

for keeping me sane, to my friends in other faculties for their advice and opin-

ions on my research, and to my family and girlfriend for their understanding,

their accommodation, and for their support.

Furthermore, I’d like to thank the University of Waikato and Project Ahuora

for funding this research. Project Ahuora is a seven-year collaborative project

funded by the New Zealand Ministry of Business, Innovation & Employment

(2020) under the Strategic Science Investment Fund. As part of the Advanced

Energy Technology platform fund, Project Ahuora is one of four currently

funded programmes and is a collaboration between the University of Auckland,

the University of Waikato, and Massey University.

Chapter 1

Introduction

Globally, 196 governments have signed the Paris Agreement (United Nations

Framework Convention on Climate Change, 2015) to limit climate change.

In 2019, Aotearoa New Zealand (NZ) passed the Climate Change Response

Amendment Act into law (Parliamentary Counsel Office of New Zealand,

2019). This legislation mandates net-zero carbon emissions by 2050 and meets

the requirements set out under the Paris Agreement. Achieving this goal re-

quires changes in every part of society. Industrial uses that generate large

quantities of greenhouse gases often have longer lifespans than consumer uses.

For example, NZ’s Ministry of Business, Innovation & Employment (2019a)

find that the average boiler system has an economic lifespan of 15 to 20 years,

though are often used for 20 to 40 years (Ministry of Business, Innovation &

Employment, 2021). Long-lived systems, such as these, take longer to switch

for low-emission versions and make retrofit solutions a more immediately vi-

able option. A problem with retrofit solutions is their security, especially when

current plants were not designed with internet connectivity in mind.

New Zealand’s energy sector, as at 2019, contributed close to 40% of the coun-

try’s total emissions, with 28% of this portion originating from process heat

— the use of energy to create hot fluids or gases produced in an Industrial

13

Control System (ICS) setting, often in the form of steam — (Ministry of Busi-

ness, Innovation & Employment, 2019a). In total, process heat contributed

nine per cent of the country’s total emissions and consumed just over a third

of the total energy demand (Ministry of Business, Innovation & Employment,

2019b, 2021). With the majority of these emissions in the process heat sector

stemming from boiler systems (Ministry of Business, Innovation & Employ-

ment, 2019a), a focus on them creates the biggest effect on emissions. This

reduction is at the heart of the motivation of this thesis.

As stated above, many sites use steam to operate, and this steam is raised

by evaporating deionised water above its boiling point (Sarco, 2018). This

process’ failure states can lead to significant economic damage or the serious

harm or loss of human life. Self-Protecting digital twins can foresee these

failures and take actions to warn or prevent them.

Digital twins — virtual models of a physical system based on real-time sensor

data — that can adapt to changes in the physical twin via Self-Learning allow

for more functional twins that can take protective actions and forecast hypo-

theticals, such as potentially malicious changes to an industrial plant that can

result in catastrophic failures. Furthermore, an adaptive digital twin promises

to create a high-fidelity simulation of the system that can vet changes to the

plant, generate low-noise event reports, and in extreme cases, take preventa-

tive measures. To date, few algorithms for adaptive digital twins have been

proposed due in no small part to the complexity and uncertainty in their

requirements. To forward these ends, this project proposes an architecture

and engineering method for creating Self-Learning and Self-Protecting Dig-

ital Twins, thereby making them adaptive. Such an adaptive digital twin

fulfills Weyns (2018)

14

Moving toward the Internet of Things (IoT) — the use of many internet-

connected sensors and actuators — in industrial control provides excellent

operational visibility, and when combined with Cloud computing, offers oper-

ational optimisation. Cloud computing would give plants access to exceedingly

large amounts of computation resources at low cost; however, allowing ICSs

access to external networks is fraught with risk (Anton, Hafner, & Schotten,

2019). There are well-founded reasons for such an inherently risky proposition

to not be adopted today, but the future adoption of such technology is pivotal

for mitigating the effects of climate change. Handling this risk by develop-

ing a framework that guarantees quality in the presence of uncertainty is a

motivating goal of this thesis.

To reiterate, securing the future of energy systems is an open problem. In

furtherance of that goal, adaptive digital twins promise to provide a system

that vets inputs, generates actionable reports, and takes measures to prevent

damage to the plant. This thesis implements a digital twin of an energy system

and uses the learnings of said implementation to contribute to the engineering

design of future digital twins.

1.1 Background

Reducing the impact of the process heat sector on the environment requires

radical changes to global energy technology. Part of this shift in operations

is the move to “Industry 4.0” — the leveraging of interconnected systems to

increase efficiency. A core challenge in connecting Industrial Control Systems

(ICSs) to external networks is the lack of security these systems were designed

around.

15

ICSs have long shelf-lives and rebuilding these systems is not often a viable

solution to improve security. Additionally, even with modern systems, the crit-

icality of industrial control systems, both economically and from a safety per-

spective, means that security needs to be watertight. For ICSs used in critical

infrastructure, the security requirement is yet more important (Gazula, 2017;

The Guardian, 2021). Unfortunately, critical infrastructure like the electric

grid stands to benefit a great deal from a radical shift in functionality. W.

Wang and Lu (2013) discuss the opportunities and challenges in Smart Grids.

While not the exact topic of this thesis, Smart Grids highlight a complex en-

ergy system that promises great advances in efficiency if the security concerns

can be assuaged.

Digital Twins promise to do exactly that. This thesis explores a framework for

Self-Learning in Digital Twins to maintain a close pairing with the physical

twin under uncertainty.

A Self-Learning system under the definition put forward in this thesis falls

under the third, sixth and seventh waves of adaption as described by Weyns

(2018), and advances goals beyond the waves insofar as handling unanticipated

change. These waves describe the evolution and interrelation of problems in

the field of self-adaptive systems. An unanticipated change in the underlying

system could have many causes, but regardless of cause, the Self-Learning

system must continue to model the underlying system faithfully to be capable

of protecting it.

The long life of industrial facilities makes mandatory a solution that can be

applied retrofit, and from machine learning to expert knowledge, Artificial

Intelligence undoubtedly plays a role in this solution. Rebuilding these plants

anew is a long term objective and not something that is economically viable

in the present.

16

1.1.1 Self-Adaptive Systems

Self-Adaptive Systems are systems that modify themselves to adapt to changes

in their environment Weyns (2021a). In computing, software often assumes

that its environment does not change, and when it does, that a human can

adapt and evolve the software instead. Self-Adaptive Systems as applied to

software allow software-intensive systems to adapt to expected changes and

variations in their environment. As a primitive example, a server hosting many

applications may choose to devote more processing time to the application

under the most load. In more complex cases, these systems can dynamically

adjust their configurations to meet changing demands.

To achieve these forms of adaptation, many Self-Adaptive Systems use mod-

els of the underlying system. These models can be created using a range of

methods, including using domain-expert knowledge or via system identifica-

tion. Of fundamental benefit to this thesis is the ability to guarantee these

models against undesirable outcomes. Van Zijl (2020) use formal methods in

their thesis to check models of autoscaling in Cloud infrastructure. The goal

of that thesis is to guarantee a model satisfies a contractually agreed level of

service to the end-user of the infrastructure. In the same vein, energy systems

have failure states that need to be guaranteed to a variety of stakeholders, and

this goal can be achieved using the mathematical verification of models.

1.1.2 Control Theory

Weyns (2018) describes the use of control theory to achieve Self-Adaptivity as

the sixth wave of Self-Adaptation. Control theoretical approaches often make

use of mathematical models of underlying systems to create feedback loops

that drive the systems toward some goal. These provide benefits over other

solutions, such as guarantees under uncertainty and mathematical stability

checking. For safety-critical systems, these features are paramount.

17

1.1.3 State-Space Models

A state-space model is a mathematical representation of a system. While

other types of model would suffice for control, this type of model is useful for

engineering self-adaptive systems as they provide a well-understood basis from

which to build upward. For the purposes of this thesis, state-space models exist

in the following discrete-time form:

x(t+ 1) = Ax(t) + Bu(t) (1.1)

Where x is the state vector representing the system at time t, u is a vector of

inputs at time t, A is a matrix that describes how the state x changes over

time, and B is a second matrix that describes how inputs affect said changes in

x. Time increments, t, advance in whole units where each unit is the reciprocal

of the sampling frequency.

|EigenV alues(A)| < 1 (1.2)

For the verification of stability in this case, the magnitude in the real and

imaginary plane of the eigenvalues of A must be below 1, as shown in Equa-

tion 1.2.

In later chapters, this thesis uses the continuous-time form x̂ = Ax + Bu as

a substitute as it allows for easy distinction between x, the current state, and

x̂, the future state.

1.1.4 Anomaly Detection

Anomaly detection is the detection of rare or out-of-distribution data. Com-

monly applied to fraud and intrusion detection (Chandola, Banerjee, & Kumar,

2009), anomaly detection takes many forms where outliers are typically prob-

lematic. This assertion is not always true, however, and some applications

18

of anomaly detection are used for change detection, such as event detection.

Though digital twin technology has potential in furthering low-noise event

reporting, this thesis focuses on the drift of a system toward a new normal.

Unanticipated changes are changes that were not explicitly defined and whose

impacts can be unpredictable. While control theory can provide guarantees

of the model in use, it does not guarantee that the model matches the real

world. Handling these changes is subtly different from the common use of

anomaly detection. Some of these changes are not anomalous and are instead

an incorrect assumption in a model. Other anomalies are not harmful and

the system can continue regardless. Changes to the real-world counterpart of

these models do occur in practice in cases such as when a heat exchanger fouls

or when boiler systems wear (Wade, 1995). These degradations are expected,

but the exact impacts on the system are hard to predict.

1.2 Aims

This thesis aims to develop an adaptive digital twin for an energy system and

to forward the engineering methods and architectures of digital twins in the

process heat sector. In furtherance of the first aim, this thesis architects and

prototypes a Self-Learning and Self-Protecting digital twin using a simulated

energy system. The use of a simulated physical twin allows for rapid pro-

totyping and the testing and solicitation of further requirements. In terms

of iteration speed, stimulated energy systems hold a few key advantages over

real-world energy systems. Including, the time investment to set up a testing

environment, the speed of development, and the rate of data collection. The

learnings of the first aim are then used to rearchitect the design of this type

of digital twin and propose an engineering method for their creation.

19

To reach these aims, this thesis proposes two research questions. These ques-

tions reflect the respective aim as laid out above.

RQ1. How to develop adaptive digital twins that incorporate Self-Learning and

Self-Protection in the process heat sector?

RQ2. How do the learnings of development expand the theory of Self-Adaptive

Systems for the engineering of adaptive digital twins?

1.3 Structure

This thesis is laid out as follows. Chapter 2 covers the related work including

the systematic literature around Digital Twins. Chapter 3 presents the method

this thesis uses and the questions it answers. Additionally, that chapter defines

Self-Learning in the context of this thesis. Chapter 4 describes the techniques

and experiment design in addition to the requirements of the work. Chapter 5

discusses the results of the work as they pertain to Self-Learning. Chapter 6

discusses the results of the Self-Protection methods built atop the Self-Learning

system. Chapter 7 discusses an updated design based on the lessons learned

during Chapters 5 and 6. Finally, Chapter 8 concludes the thesis, discusses its

limitations, and proposes avenues of future work.

Chapter 2

Related Work

This chapter covers the related work that surrounds the area of Self-Protecting

Digital Twins. This thesis proposes a definition of Self-Learning systems that

enables Self-Protection in a wide range of applications.

The upcoming section covers the systematic literature review that started from

an ad-hoc literature search into Digital Twins. Before that, the first section

covers Digital Twins and the working definition of Project Ahuora. Following

digital twins, the Self-Adaptive Control Systems section explains the bene-

fits of using control theory to create digital twins. Finally, the last chapter

summarises the chapter and leads to the Requirements and Design chapter.

2.1 Digital Twins

The definition used for Digital Twins until further discussion in Section 2.1.3

originates from the joint work of the National Aeronautics and Space Adminis-

tration (NASA) and the United States Air Force (USAF), in which Glaessgen

and Stargel (n.d.) lay out the groundwork for a new manufacturing, certifica-

tion, and fleet management paradigm.

21

2.1.1 Digital Twins in Critical Infrastructure

While Digital Twins are still a fairly new and upcoming area of research, they

do see use in critical infrastructure. (Bécue et al., 2018) show twins in use

as tools for both automated testing and personnel training. From the afore-

mentioned paper, the following areas were considered operational challenges

in security:

• Threat Prevention

• Detection

• Investigation

• Response

• Intellectual Property Protection

They also mention that security “must be understood as an enabler” in In-

dustry 4.0 and highlight the necessity that security is included at a design

level.

Similar to Self-Protecting honeypots, digital twinning in critical infrastructure

has a relatively small pool of authors. This pool can be divided into two

subsets: cyber-ranges and intrusion detection.

Eckhart and Ekelhart (2018a) uses digital twins and state replication to detect

intrusions in industrial control systems. Unfortunately, this approach intro-

duces latency and required a reduction in PLC scan time. In industrial control,

real-time systems are a hard requirement, so adding latency to these devices is

an issue, though not an insurmountable one. Many areas of critical infrastruc-

ture operate on time frames where these lowered scan times are acceptable;

though, the impact this approach has on patching and updating plants due

to requiring the model to update is a potential issue for industry. This paper

also highlighted that it can notice an attack after the fact. For critical ICSs,

this level of security may not be high enough. It did not deal with remedy-

22

ing the situation that arises from the event. Detecting a catastrophic event

post-calamity is of limited real-world use.

Eckhart and Ekelhart (2018b) also relied on detection after the fact. It also

appeared to rely on the virtual environment being hit, not physical hardware.

Eckhart, Ekelhart, and Weippl (2019) expanded on this framework and exam-

ple, bringing it into the realm of visualisation. This framework used by Eckhart

and Ekelhart (2018b) does have available code1.

Gehrmann and Gunnarsson (2020) proposed a framework for twinning an ar-

bitrary device. The solution relied on Cloud connections in their diagrams and

appeared to use a bidirectional synchronisation pattern. This solution also de-

tected vulnerabilities after the fact. In many cases, this would be too late to

sufficiently safeguard a legacy site. While this paper makes significant inroads

in terms of performance and overhead, it requires that the PLC synchronise

state with the twin at various points to guard against rogue stimuli target-

ing the physical twin. Provided these synchronisation points are sufficiently

spaced, it may be possible to toggle the PLC state to avoid detection.

An area of commonality of these solutions is the requirement to change the

PLC logic to enable state replication. These changes have potential side effects,

both in terms of execution time and stability, that may hinder their adoption.

Some industries, such as aviation, take an altogether different approach, fo-

cusing heavily on personnel training. Airbus (n.d.) and Boeing (n.d.) both

provide such cyber-range solutions to partners.

Additionally, both Airbus (ASCon Systems, 2017) and Boeing (The Boeing

Company, 2019) announced the use of Digital Twins; however, they utilise

them for manufacturing efficiency gains and to improve the design and safety

of future aircraft.
1https://github.com/sbaresearch/cps-twinning

https://github.com/sbaresearch/cps-twinning

23

At this time, there is little indication that the industry uses digital twinning

defensively in the real world, and even if that case does see use, it is not

widespread.

2.1.2 Digital Twins in Critical Infrastructure for Self-

Protection

Self-Protection in Critical Infrastructure is a newer area of research and is one

that is key to realising the goals of Industry 4.0. Combined with Digital Twins,

Self-Protection allows production facilities to be placed on the internet with a

high degree of security.

Unanticipated changes that seek to cause damage are, for all intents and pur-

poses, a cyber attack. Current literature focuses on machine learning ap-

proaches to address this concern; however, other avenues are under-explored.

Danny Weyns raises the issue of Self-Protection as an open challenge in Section

11.2.2.2: “Dealing with Unanticipated Change” in his book under the section

titled “Open Challenges” (Weyns, 2021a).

Self-Adaptive systems have a wider reach than solely Industrial Control System

security, and the creation of twinned, runtime models has applications rang-

ing from Smart City planning to the decarbonisation of production facilities.

These runtime models become even more potent when used to perform “What

If?” studies, as is illustrated by Schluse, Atorf, and Rossmann (2017) in their

paper that discusses using Digital Twins in conjunction with a simulator to

perform these studies. Of note is that the aforementioned paper does not use

a runtime synthesised model, and thus would struggle to handle unanticipated

changes to the modelled system.

Schroeder et al. (2021) propose a method for the creation of digital twins based

on modelling languages. Their approach describes an architecture where a

24

collection of smaller components that each fulfil a goal. These components

cover many of the common features proposed in the literature but do not give

rise to Self-Protection. Since the models are built on a static model, these

twins are not adaptive and are thus unable to Self-Protect when the physical

system changes.

2.1.3 Further Definition

Prior to this section, Digital Twins were defined based on NASA’s 2010 def-

inition. While this is a useful and apt description for the overall concept, it

pays to differentiate levels of Digital Twin functionality.

This thesis defines Digital Twins as having three tiers depending on stages of

functionality:

1. Digital Models

2. Digital Shadows

3. Digital Managers

It is this definition that this thesis will use herein.

Briefly, Digital Models are a standalone model built of a real-world system,

Digital Shadows are Digital Models that uses sensor data from their real-world

counterparts, and Digital Managers are Digital Shadows that feed data back

to the physical twin in the form of control. This definition is very similar to

the definition proposed in Kritzinger, Karner, Traar, Henjes, and Sihn (2018),

except that this definition refers to Managers over Twins to avoid confusion.

As a first step, this thesis proposes a method for the automatic creation of

Digital Shadows rather than Digital Twins under the above definition.

25

2.2 Machine Learning

Machine learning is the use of algorithms that learn to model a system us-

ing example data. These algorithms span a wide range of subcategories from

decision tree learners to neural networks. A common feature of all machine

learning algorithms is the creation of a model that can be used for prediction,

regardless of complexity. There is an argument to be made that system identi-

fication of control-theoretical models falls under this definition. Accepting this

categorisation, these models differentiate themselves by providing guarantees.

As mentioned in Gunning (2017), machine learning is a broad field, and some

methods do support forms of verification; however, there is a negative corre-

lation between accuracy and explainability. This gap is no more evident than

in the case of deep neural networks.

2.2.1 Neural Networks

Neural Networks (NNs) are a subcategory of machine learning that use layers

of updatable biases and weights to approximate a function. While neural

networks, especially Deep Learning (LeCun, Bengio, & Hinton, 2015), have

shown exemplary performance in a range of fields in recent years, they are not

without drawbacks.

Neural networks require considerable amounts of training data to generate an

accurate model. For many applications, this demand for data is satisfiable,

but for some applications, such as those later in this thesis, it is not. There

are data augmentation techniques for improving the size of datasets, but few

apply in this case.

Another downside of neural networks is the lack of transparency or verifiability

they bring. With verifiable models, both in machine learning more generally

and in other disciplines, all possible states are known. With a neural network

26

approach, the doubt that the model may suddenly behave unexpectedly cannot

be removed. Even providing guarantees within safe ranges is prohibitively

difficult, especially in the face of malicious modification, such as the one-pixel

attack by Su, Vargas, and Sakurai (2019). This doubt presents an issue for

the adoption of such techniques in critical infrastructure and is thus an area

of active research.

2.3 Self-Adaptive Control Systems

The use of control theoretical models for the creation of digital twins is a novel

step toward the synthesis of a self-adaptive system based on the live, real-world

system.

There are other approaches to modelling systems, such as the variety of meth-

ods used in Burroughs (2021), Chew, Kumar, Patros, and Malik (2020), Pa-

tros, Kent, and Dawson (2017), Podolskiy, Patrou, Patros, Gerndt, and Kent

(2020); however, these approaches usually require an expert to define them

before runtime. For the application of automatically synthesising a system

model based on real-world sensor data, prior created models are not a feasible

approach.

There are machine learning approaches that can also learn from live data.

Stream learning is a good example of such an approach, and stream anomaly

detection techniques, like (Tan, Ting, & Liu, 2011), (Dawson, Patros, & Kent,

2021), and (Podolskiy, Mayo, Koay, Gerndt, & Patros, 2019), would work

well in a security context. Machine learning approaches, while often highly

accurate, suffer from a lack of explainability (Gunning, 2017).

This is in direct contrast to control theoretical models. Frequency response and

pole locations of control models show how the model will respond to stimuli

and how the model behaves over time.

27

Work by Angelopoulos, Papadopoulos, Silva Souza, and Mylopoulos (2016)

proposes a similar Control-based Requirements-oriented Adaptation (CobRA)

method to adapt to changes of an underlying system. CobRA uses a learning

component to correct their model of the system based on measurements from

the environment. This learning component is a Kalman filter that updates to

correct the system’s understanding based on how the real system tracked.

2.4 Systematic Literature Review

This section outlines the literature review of security techniques for Critical

Infrastructure (CI). The below section will cover the techniques, the method-

ology, and the results of the review.

2.4.1 Methodology

A systematic literature review was conducted in this research. Before the

discussion of the review, it is pertinent to cover some of the decisions that

were made and influenced the findings of the review.

Firstly, the automatic portion of the literature review was conducted on Scopus

due to both Scopus’ API making mining relatively easy and to the number of

results collected.

Secondly, the automatic search did not include other papers by the same author

or papers citing the core papers when expanding its search radius. To combat

this limitation, more recent papers were prioritised.

Thirdly, the algorithm implemented to search the papers assigned a weighting

based on age and citation count in an attempt to order papers that were both

new and impactful higher than those that were either older, prominent papers

or recent, uncited papers.

28

The following is the scoring equation:

Result: Sets 1.5x multiplier if Title contains “Twin”

if Title contains “Twin” then
Twin = 1.5

else
Twin = 1.0

end
Algorithm 1: Part 1 of Scoring for Automated Literature Review

Score = (100−(CurrentY ear−PublicationY ear))×Citations×Occurrences×Twin

(2.1)

The goal of the two equations above was to sort publications in an order that

favours recent papers that occur many times as parents or children of the initial

pool of papers or are, in general, commonly cited by other papers. It further

prioritised papers whose titles contain the Twin to push Digital Twin papers

higher.

For the systematic portion of the literature review, this thesis selected 13

papers using the following keyword searches:

• digital twin AND cyber security

• digital twin AND cyber-security

• digital twin AND cybersecurity

This thesis selected these papers based on the impact, citations, abstract,

introduction, and relevance to this thesis’ research goals as stated in Chapter

2.4. This preliminary search left a group of recent papers from which to expand

the search.

From there, the automated portion of the literature review collected the ab-

stracts and metrics of related papers and ordered them for review.

29

After two expansions, the list of 539 papers was filtered by abstract.

During this process, an expansion to the search terms was necessary to capture

the research intentions of this thesis. Including the added terms, the full list

of terms was:

• digital twin AND cyber security

• digital twin AND cyber-security

• digital twin AND cybersecurity

• digital twin AND critical infrastructure

• digital twin AND critical-infrastructure

• digital twin AND process heat

This repeat yielded an additional 137 papers, bringing the total to 676 papers.

A manual search over the abstracts brought this count down to 308.

In total, fewer than 100 were not related to motivation. This total of 676 is

in line with findings by Jones, Snider, Nassehi, Yon, and Hicks (2020) that

showed only very recent widespread interest in digital twins, so it stands to

reason that there is not an overly large corpus of work.

2.4.1.1 Manual Additions

Because automatic searches may potentially miss high-value resources, the

review included some additional papers on the merits of interest or academic

relevance. This is especially true when dealing with governmental resources

from comparatively small nations, such as New Zealand, as they are unlikely

to see widespread citation outwith their country of origin.

30

Examples of such additions include Lockheed-Martin’s Cyber-Kill Chain paper

(Hutchins, Cloppert, & Amin, 2011) and a paper evaluating the efficacy of

reinforcement learning in intrusion response (Iannucci, Barba, Cardellini, &

Banicescu, 2019).

A second, smaller literature pass over the following terms added additional

context:

• Self-adaptive AND digital twins

• Self-adaptive AND digital twins AND cyber

• Self-adaptive AND honeypot

2.4.2 Continuous User Training

The Government Communications Security Bureau (GCSB) suggest in Sec-

tion 7.1.7 — Detecting Information Security Incidents — of the New Zealand

Information Security Manual (GSCB, 2020) that all agencies should “imple-

ment and maintain tools and procedures covering the detection of potential

information security incidents...”. Of the items suggested to be included in

these tools and procedures, User Awareness and Training appears to be an

area of little academic research.

Karampidis, Panagiotakis, Vasilakis, Markakis, and Papadourakis (2019) found

that 70% of enterprises they surveyed did not have scheduled awareness brief-

ings. They also found that 75% do not have a traffic analysis tool, and 70% did

not have tested backups. Regardless of the reason for this trend, it shows that

a considerable number of enterprises could strengthen their security posture.

The authors postulate that Information Technology (IT) operators in the ICS

space “do not consider [the likelihood of cyber-physical attacks] seriously”.

Čeleda, Vykopal, Švábenský, and Slavı́ček (2020) proposed a training testbed

for cybersecurity students. Citing industry issues with an insufficient quantity

31

of trained security personnel in the ICS space, this paper focused entirely on a

course to build skills in a workforce of security experts rather than to reinforce

the security posture of the workforce on the ground.

It is worthy of note that, unlike in other areas, Denial of Service (DOS) attacks

in ICSs are a critical-level vulnerability. If a controller is brought down, it has

a very real possibility of disrupting the entire site (Microsoft Corporation, n.d.;

Reuters, n.d.). Such attacks against PLCs can be performed with open-source

penetration testing tools, such as Metasploit (Wallace & Atkison, 2013).

While improved testing and training capability is vital for the security of in-

dustrial control systems, it’s not the only avenue that can be explored.

2.4.3 Literature Crossover

In this second, ancillary literature pass, this thesis focused on a combination

of four themes:

• Honeypots and Decoys

• Digital-Twins

• Self-Protection

• Critical Infrastructure

2.4.3.1 Honeypots, Decoys, and Deception

Self-Protecting Honeypots The first gap identified in this literature re-

view is that very little work exists in the space of Self-Protecting honeypots.

There is little existing research in this area, and what research there is written

by a small pool of authors, such as Pauna (2012) and Pauna, Bica, Pop, and

Castiglione (2019).

32

One of the primary benefits brought by a Self-Protecting honeypot is the ability

to gather real-world data about how Self-Protecting fair in the wild. Addition-

ally, Self-Protecting honeypots should be able to consume extra resources from

the adversarial side.

Digitally-Twinned Honeypots Honeypots based on digital twinning is a

recent research area by extension of digital twins being, themselves, a new

field (Jones et al., 2020).

Figure 2.1: Lightwire Address tagged as ICS Honeypot in Shodan (n.d.)

Figure 2.2: Step-7 port (102) flagged as a honeypot and Modbus shows two
fake S7-200s in Shodan (n.d.)

Digital Twins provide the ability to create accurate, high-interaction honey-

pots. The benefit of such a system is the increased difficulty an adversary

would face detecting the honeypot, which alters the cost-benefit tradeoff of at-

tacking the infrastructure. Zamiri-Gourabi, Qalaei, and Azad (2019) described

the ease in which some honeypots may be fingerprinted and demonstrates the

need for reduced fingerprint-ability in deployed honeypots. This point is re-

iterated by a cursory glance — Figures 2.1 and 2.2 — on the web indexing

33

platform Shodan (n.d.). Even when restricted to just New Zealand, it is rela-

tively easy to spot a Conpot (MushMush Foundation, n.d.) instance operating

on Lightwire (n.d.)’s network.

Honeypots in Critical Infrastructure Honeypots in Critical Infrastruc-

ture are not an uncommon occurrence in the literature (K. Wang, Du, Ma-

harjan, & Sun, 2017), and neither are deception campaigns. There are a few

reasons that deception makes sense in an industrial control setting.

Firstly, many systems in operation in production today are unable to use

state-of-the-art security methods. Due to the long life of infrastructure, many

plants were not built with interconnection, Cloud, or Internet of Things (IoT)

in mind. These plants, built on protocols like DNP3 and Modbus, lack any

form of security (Amoah, Camtepe, & Foo, 2016; Hayes & El-Khatib, 2013).

Secondly, honeypots can provide detailed threat intelligence about attacks in

the wild. This information can be used to strengthen areas that see high-

frequency or high-severity threats occur (Bahşi & Maennel, 2015). Deutsche

Telekom (n.d.-a) host a dashboard showing open-source intelligence (OSINT)

created from the data of both their own and community honeypots.

Honeypot Interactivity Protocols/Ports OSINT

Conpot Med 13/13 HPFeeds

GasPot (Trendmicro, 2015b) Low 1/1 None

Artillery (BinaryDefense, n.d.) Low 1/16 None

Cowrie (Oosterhof et al., n.d.) Med-High 1/1 None

Dionaea (DinoTools et al., n.d.) High 14/14 HPFeeds

T-Pot (Deutsche Telekom, n.d.-b) High 39/39 HPFeeds

Table 2.1: Non-exhaustive list of ICS Honeypots

34

As an aside in Table 2.1, Conpots maintainers merged Gaspot into Conpot

in 2015 (Trendmicro, 2015a) and instances were detected via fingerprinting

in (Zamiri-Gourabi et al., 2019). Additionally, HPFeeds is an open-source

intelligence feed that is supported by a wide range of tools.

From the academic side, many papers, such as Bernieri, Conti, and Pascucci

(2019)2 or Pauna, Iacob, and Bica (2018), do not provide code with which to

reproduce results. Additionally, some papers, like Pauna et al. (2018), evaluate

on the open internet, which, while a real-world example, lacks reproducibility.

2.4.4 Key Findings

This section lays out the key findings of the literature review. In the litera-

ture, there is a significant focus given to the areas of Intrusion Detection and

Anomaly Detection (Feng, Li, & Chana, 2017; Lai, Liu, Song, Wang, & Gao,

2016; Zhou et al., 2015). The literature also appears to have an overarching

focus on the defensive side of security. This focus is justified in the findings of

Urias, Van Leeuwen, and Richardson (2012) and Green et al. (2017).

Without investment in the development of standardised testbeds and “cy-

ber ranges”, such as Gao, Peng, Jia, Dai, and Wang (2013), Bitton et al.

(2018) and Bécue et al. (2018), penetration testing is hampered significantly

by either the cost or risk when testing on in-house deployments or production

sites, respectively. Not all testbeds are equal, however, and Gao et al. (2013)

lacks actionable results. Both Bitton et al. (2018) and Bécue et al. (2018)

are stronger, but focus on how cost and the potential impact of digital twins

impact testbeds, respectively.

2Additionally, this paper arguably falls within the realm of Digital Twins

35

Davis and Magrath (2013) survey cyber ranges and testbeds and categorise

them into various areas, such as testbed technology and use case. A key

finding in this paper was that many current testbeds utilise either simulation

or emulation with an overall focus on training. Another fundamental point

raised was the implementation and monetary cost associated with large scale

deployments of these testbeds.

Holm, Karresand, Vidström, and Westring (2015) also surveyed testbeds in-

tending to answer four research questions. In their survey of 30 Industrial

Control System (ICS) testbeds, 16 had vulnerability analysis as their key ob-

jective. Education and the evaluation of defence mechanisms ranked joint

second with nine testbeds a piece. Another finding from this paper is that

only 11 testbeds in this study attempt to verify fidelity with only four being

based on standards.

2.5 Research Gaps

The following items were identified as research gaps in the literature review:

• Self-Protecting Digital Twins

• Testing Methodology for ICS Systems

• Framework for Fidelity Analysis of ICS testbeds (Holm et al., 2015)

• Automated Security Testing using twinned CPSs

• Hardware-directed decoys or twins

• A scalable, digitally twinned cyber-range

Additionally, Asghar, Hu, and Zeadally (2019) state that current ICS security

solutions carry a high cost, both in terms of implementation and maintenance

cost. For this reason, this thesis begins by discussing an approach to enabling

internet connectivity of industrial control facilities aided by Self-Protecting

Digital Twins.

36

Figure 2.3: Simplified Gap Analysis

A Digital Twin capable of Self-Protection and Self-Healing can tackle some of

the key areas of future research raised by the aforementioned paper, such as

reduced implementation time and increased adaptability under uncertainty.

2.6 Conclusion

In summary, there are many avenues of research still to be fully explored in the

area of Digital Twins. This thesis focuses on their uses in the Self-Protection

of dynamic energy systems.

One of the challenges of Digital Twins for Self-Protection is maintaining an ac-

curate model of the physical twin when said system is subject to change. Weyns

(2021b) envisions the use of learning techniques, such as Bayesian networks or

Machine Learning, to keep runtime control models up-to-date in response to

uncertainty. In response, this thesis describes a Self-Learning framework that

aims to dynamically maintain an accurate, within defined tolerances, model

required for such Self-Protection.

Chapter 3

Research Method

From the gaps in the literature highlighted in Chapter 2, this thesis started by

conceptualising a Digital Twin-enabled Cloud-Machine Interface (CMI). This

interface creates a human-in-the-loop system that leverages the Digital Twin

paradigm and lessen the attack surface. A barrier to using Cloud computing

to optimise plant efficiency is the possible attack surface that connecting a

plant to the internet exposes. By running “What If?” tests on the digital twin

and passing the updated state to a human operator, the CMI aims to reduce

the risk of compromise for twinned infrastructure.

Figure 3.1 depicts this proposed concept of a CMI that uses digital twins

as a method of validating the legitimacy of data received from the Cloud.

Using control theoretical approaches to digital twins provides guarantees and

explainability, both of which are necessary for Industrial Control.

In Figure 3.1, the connection that the CMI uses to interface with the Human-

Machine Interface (HMI) has an electric disconnect to allow the HMI to isolate

the network at any moment. The CMI interfaces with a read-only network

splice to retrieve live system data, with the HMI to send vetted suggestions,

and with the Cloud to retrieve suggestions. The digital twins perform “What

If?” tests on optimisations from the Cloud to ensure safe operation.

38

Figure 3.1: Cloud-Machine Interface

In this interface, no Cloud optimisation suggestion is deployed directly. The

digital twin vets the suggestions before presenting them to the human operator

for the final decision.

This chapter outlines the research questions that this thesis tackles, the def-

initions used in achieving those ends, and how the experiments and systems

function. To the best of the knowledge of this thesis, the Self-Learning archi-

tecture presented herein is a novel contribution.

3.1 Self-Learning and Self-Protection

The definition of Self-Learning in the context of Self-Adaptive Systems is only

vaguely defined. Machine Learning aptly describes the above cases, and in fact,

many use techniques well regarded to fall under that umbrella, such as neural

networks and genetic algorithms. Self-Learning, in the context of a system

that adapts to its environment, should be able to adapt to said environment.

The above mentioned approaches are trained once at creation and do not

39

adapt; instead, Self-Learning is used to denote a system that learns without

external aid. In common machine learning parlance, this class of approaches

are referred to as unsupervised learning (Ghahramani, 2004).

Instead, this thesis posits a framework for creating Self-Learning systems that

learn from and adapt to their environments. A framework for a generic system

such as this Self-Learning system should also be generic. To those ends, this

thesis argues for the definition of Self-Learning as a system of the following

components: the monitoring component, the modelling component, the verifi-

cation component, the imagining component, the falsification component, and

the reconsidering component. These components enable for the substitution

of implements of each module while retaining the overall Self-Learning nature.

This thesis’ solution involves fully re-identifying the model to incorporate fun-

damental changes that were unanticipated at design time. This is in contrast to

CoBRA that, as mentioned in Section 2.3, builds a Kalman filter to transform

and adapt to the data it reads from the system.

Figure 3.2: Proposed Self-Learning Architecture

These additional terms are defined below and their interrelation is depicted

in Figure 3.2. The implementations of these terms depend on the underlying

techniques that constitute the overall system.

40

The Monitoring Module provides the system the ability to monitor its sur-

roundings. In this thesis’ case, it is the ability of a digital twin to read live

data from its physical twin.

The second module — the Modelling Module — provides the system the

ability to generate a model of the physical twin based solely on inputs and

state of that twin. This property draws an analogy to the ability to formulate

beliefs based on observations. There are a plethora of ways to attain this

property. Many of the aforementioned papers implement unique modelling

techniques, and in fact, almost all techniques under the umbrella of Machine

Learning should fit this bill.

As part of this modelling, the system needs to be capable of verification, pro-

vided by the Verification Module. The ability of a system to verify itself is

necessary to ensure that the model is stable and correct. For control theo-

retical systems, there exist defined verification techniques, such as frequency

response plots and pole plots. Some Machine Learning algorithms, such as

decision tree learners, can be audited, but even these lack guarantees on sta-

bility. An example of pole plots showing stability is depicted in Figure 3.3.

The three poles in this figure have a distance of slightly less than one, which

means the system will slowly converge.

Determining model correctness is, at least partially, domain-specific. For ex-

ample, in the area of process-heat, a model that describes a change in internal

energy without energy entering or exiting the system violates the first law of

thermodynamics. For some domains, the aforementioned sanity check may not

be feasible. Another example is whether the model is logically consistent.

41

Much like a human using their knowledge of a subject to estimate “What

If?” scenarios, the Imagining Module relates to the capability of a system

to imagine a future state based on forecasted inputs. The imagining module

also covers such a system’s ability to produce said forecasted inputs through

a variety of substitutive means. In this thesis’ case, the forecasting is handled

by one of two oracles as covered later in Section 4.1.3. These oracles allow the

system to see future states and ask limited “What If?” questions.

Figure 3.3: Three Pole Plot for DMDc model

The Falsification Module, alternatively the Validation module, allows the

system to determine how far from reality an imagined value is after reality

reaches that point. It is the ability to realise that the beliefs, which are the

predictions in this case, one holds are incorrect. If where the system imagined

itself to be is sufficiently different from where it ended up, the system needs to

reevaluate its beliefs. As this definition pertains to digital twins, it refers to the

ability of the digital twin to compare its imagined values to the physical twin’s

true values. Continuing from the prior example on the imagining module, the

system then gets an answer to the “What If?” question.

42

In the below figure, solid lines represent the control flow and dotted lines

represent data flow.

Figure 3.4: Implemented Self-Learning Diagram

Finally, the Reevaluation Module provides a system’s ability to update its

model based on how the system progressed in reality. This state only occurs

if the system was previously falsified. As depicted in Figure 3.2, a model that

does not support a partial update may instead recreate itself. The reevaluation

module may choose not to update a model in cases such as the new model

failing non-functional requirements.

43

As shown in Figure 3.4, part of the duty of the Monitoring component is to

read sensor data from the system — the simulator — and update the stored

history. The Monitoring Module then passes control flow to the Falsification

Module.

The Falsification Module first requests predictions from the Imagining Module,

then it compares the predictions to ground truth from the knowledge store.

The falsification data is then passed to the Reevaluation Module.

The Reevaluation Module checks if the Model was falsified and whether the

model should be retrained. Some other considerations in this module are

restricting the module from retraining the model too often, especially if re-

training has a high cost. When training a new model, the control is passed

on to the Modelling Module; otherwise, control is returned to the Falsification

Module. In the event that control is returned to the Falsification Module, it

then calls on the Self-Protection Module.

If the control flows to the Modelling Module, said module handles fully or

partially updating a copy of the model, depending on what the Reevaluation

Module decided was necessary. Once the copy of the model of the system is

updated, the module passes it to the Verification Module for verification.

The Verification Module verifies the model, and if it passes verification, com-

mits it to the knowledge store. Upon a verification failure, the control flow

returns to the Modelling Module to resolve potential issues. In this thesis,

verification and feedback were human-in-the-loop designs that required man-

ual intervention. The experiments in Chapter 5 and Chapter 6 do not wait

for the human-in-the-loop to act and simply continue regardless, though the

latter chapter does discuss automatically reacting.

44

Lastly, the Self-Protection Module handles preventing the real system from

venturing into these states. In this thesis, this module engages to prevent the

system from exceeding 100°C. Section 6.3 discusses the states in further detail.

Figure 3.5: Self-Learning Framework Class Diagram

Figure 3.5 shows an example class diagram for Self-Learning. Where applica-

ble, the classes shown in the figure do not include the “Self-” prefix in their

class names. Of note in this diagram is the SystemModel class. SystemModel

is an interface that any implementation of a model must implement to be

compatible with the Modelling Module.

These classes are minimal: they do not try to cover every possible end-use.

Instead, they provide a starting point from which to build additional function-

ality, such as model adjustment. The diagram depicts Self-Protection without

member variables or methods as it lies outwith the scope of Self-Learning.

45

3.2 Hypotheses

Before moving on to cover the research questions in further sections, there are

a few terms that need defining in the context of digital twins. The first term

this thesis defines is Self-Learning as it is a precursor to both Self-Protection

and Self-Healing in digital twins.

Other research uses the term Self-Learning in many different ways. In Al–

Habaibeh and Gindy (2001), the authors use automated sensor and signal

processing to create a self-learning system to detect degradation and failure

of machining equipment. The application of self-learning in that paper is in

determining which sensors are most representative of a fault. The use case of

that paper is similar to the case laid out later in this chapter; however, the

key difference is that this thesis’ approach focuses on enabling a digital twin

that can handle unanticipated changes of the physical twin.

Zhao et al. (2021) use Self-Learning to refer to a system that learns which

parts of its training data hold the most relevance. The training is conducted

on real-world data, as per a Digital Shadow, but it is only run during a training

phase and is not a continuous process.

Indeed, the use of Self-Learning to refer to an algorithm that learns without ex-

pert knowledge is fairly common. Both of the above examples appear to fit this

classification, and so do Oliveira-Neto, Han, and Jeong (2013), Jang (1992),

and Wei et al. (2021). Peng Wen, Zhang Dianhua, and Gong Dianyao (2012)

uses the term to represent an online, proportional control strategy guided by

mass-flow equations.

46

As Self-Learning is a precursory challenge to Self-Protection, this thesis needs

to ascertain a fit-for-purpose Self-Learning architecture before moving on to

Self-Protection. As such, this thesis plans to answer the following research

questions:

H1. Is the proposed software architecture for Self-Learning Systems fit-for-

purpose?

H2. Are the proposed Self-Learning algorithms fit-for-purpose as applied to

Dynamical Energy Systems?

H3. Assuming adequate Self-Learning, are the proposed Self-Protection al-

gorithms fit-for-purpose?

3.3 Summary

In summary, this thesis focuses on fit-for-purpose Self-Learning methodologies

and algorithms. A fundamental part of the aforementioned definition of Self-

Learning is being able to update the model in use. As Filieri et al. (2017)

mentions in their Section 5 subheading “Automatic synthesis and update of

controllers”, the ability to dynamically create and update models at run time

is an open challenge, and this thesis investigates methodologies that aim to

achieve exactly that.

Chapter 4

Requirements and Experimental

Design

This section covers the requirements and design of the simulator, the oracles,

and the experiments. For the reproduction of results, where applicable and

when not otherwise stated, all randomness is pseudorandom and the seed shall

be zero (0).

4.1 Simulation

To test both the first and second research question, this thesis uses a water

heating simulation written in Python 3. Without a real-world boiler to model

nor a built simulator for these experiments, this thesis builds a water heater

rather than a boiler due to the equations used being faster to implement.

Overall, this choice should not alter the validity of the findings as the proposed

framework is not implementation-specific.

The simulation makes use of a deterministic random number generator (RNG),

meaning that runs with a given seed value always progress identically, which

allows for direct comparisons between Self-Learning and Self-Protection strate-

48

gies. Additionally, the simulator runs at a fixed 100-hertz internal rate, and

the test harness samples the system at 0.1 hertz.

Although the simulation is not overly true to real-world industrial boilers —

boiling is considered a failure state by the simulation — it does allow testing

hypotheses, which is what is important in this context.

The design of the heater is detailed in the following sections.

4.1.1 Heater

The first component of the simulation is the heater itself. The heater consists

of a water tank, a heating element, an inflow pipe, and an outflow pipe.

Figure 4.1: Modelled Water Heater

In all tests, the tank is configured as having an upper limit of 75 litres and a

minimum of five litres. The heating element is relatively large for the amount

of water at 20,000 watts. The size of the heating element gives the heater fast

dynamics and creates a need for a good twinning solution. Many boilers in

the energy sector have slower dynamics than this heater, so provided a Digital

Twin can be synthesised for the heater, it should apply to slow systems.

While the Digital Twin of this heater should generalise to slower systems, some

pertinent assumptions are listed. First, the water in the heater mixes perfectly.

49

While not true on short time scales, water does mix over longer time scales,

and these long scale trends will amortise. Second, the Twin has complete

visibility to both the internal state and the inputs of the heater, which is

not always true in real-world applications. As discussed in Section 4.1.2, this

implementation does change which input and state values are exposed, but

that does not completely mitigate this limitation.

On the note, Table 4.1 depicts the variables of the heater.

Inputs and Outputs Internal State

Water Inflow Rate Water Volume

Inflow Temperature Water Temperature

Water Outflow Rate Heater Maximum Power

– Heater Output Level

Table 4.1: Raw Heater Variables

The simulation uses the same seeded RNG to influence the inflow and outflow

rates. The logic for water inflow is simplistic: if and only if the tank is not full,

water can flow. Water outflow is equally simplistic with the only difference

being that it checks that the tank is not empty. Despite the simplicity, the

simulation does

The boiler updates its temperature using the following equations:

AvgHeat =
Tw ∗ Vw + Ti ∗ Vi

Vw + Vi

(4.1)

where Tw and Vw are the temperature and volume of water in the tank, and

Ti and Vi are the temperature and volume of the input water.

HeatGain =
Hp ∗Hc

4200 ∗ Vw

(4.2)

where Hp is the heaters maximum power, Hc is the heater output level, and

Vw is the water volume in the tank.

50

In the below algorithm, HeatLoss is a small amount of lost temperature.

Result: Temperature and Volume are updated

Volume -= OutFlow * 0.5

Temperature = AvgHeat + HeatGain - HeatLoss

Volume -= OutFlow * 0.5

Volume += InFlow

Algorithm 2: On Tick Boiler Update

In Algorithm 2, the Volume is modified by OutF low both before and after

the temperature update. The reason for this is that in-flowing water, InF low,

is already computed analytically, and so should be handled after the update,

where out-flowing water is not, and thus splitting it into two helps avoid biasing

the update due to sample timing.

4.1.2 PID Controller

A proportional-integral-derivative (PID) controller handles the heater output

level. This controller is tuned by hand and is far from perfect, adding further

challenge and motivation to the Self-Protection use case. Figure 4.2 depicts

how this PID controller is implemented in respect to the water heater.

Inputs and Outputs Internal State

Water Inflow Rate Water Volume

Inflow Temperature Water Temperature

Water Outflow Rate Heater Output

Target Temperature –

Table 4.2: PID + Heater Variables

51

The effect of the PID controller is that the boiler is that there is now an

additional input variable — the PID’s target temperature. The internal state

also shrinks with HeaterMaximumPower and HeaterOutputLevel becoming

a single value representing the current operating power in watts.

Figure 4.2: Heater Diagram with PID

The values in Table 4.2 are used by all twinning techniques in the comings

chapters. The change to monitored variables should better reflect real-world

scenarios, even if these are still fairly best-case examples.

4.1.3 Forecast Oracles

The implementation of the simulator uses two forecast oracles. The first of

these oracles, as depicted in the lower graph of Figure 4.4 by the first of two

coloured bars, is a perfect representation of the future. As seen in the upper

graph, the simulator is running ahead of the twin, which provides the first

oracle window with a perfectly accurate set of future inputs. In this window,

the only variable is the model in use as the forecasted values are perfect.

52

Figure 4.3: Evolution of the heater over time

In the second oracle, the last value of the first oracle is replicated over the entire

window. This oracle emulates a poorly performing forecasting algorithm. The

benefit of using a constant value over the window is that it shows the temporal

dynamics of the model in use.

From the perspective of the model, the oracles both represent future values.

The oracles only provide the input and output data, and the model must

propagate the state correctly to predict future trends. This thesis only runs

the simulator in the future to provide ground-truth values.

Figure 4.4 uses a Dynamic Mode Decomposition with Control (DMDc) model

that shows good temporal dynamics and resistance to poor forecasting. As a

note, this thesis does not cover the use of forecasting algorithms, but they do

form an integral part of real-world implementation.

53

Figure 4.4: Simulated Heater Graphs

4.1.4 Error Metrics

A secondary benefit of the simulator running in the future is that the error can

be computed at various points over the first oracle’s window. In the results

section, all results pertaining to model error use the error over a single time

step.

As shown in Figure 4.5, the error over oracles of various lengths remains rel-

atively constant. This figure measures the error of each step rather than the

accumulated error. The tighter the 95th percentile confidence interval — de-

picted in blue — and the flatter the line, the better the model is handling state

propagation. In this case, DMDc was the model in use.

This graph is the aggregate of a sliding window of results rather than stochastic

predictions against a fixed ground truth. For this reason, these graphs are

representative of the initial 10,240 seconds of the simulation. More graphs

showing error over the oracle window appear in Chapter 6.

54

Figure 4.5: Error over the first oracle’s window (n=2048)

4.1.5 Degradation

As an operative question in this thesis is to adapt to unanticipated changes

in the underlying system, the heater degrades over time. It does so in several

ways:

Firstly, the heater’s maximum power degrades over time. When this degra-

dation starts and how long it takes to reach maximum degradation are both

randomly selected from a Gaussian distribution added to a constant.

Secondly, the interpolation rate of the heater in response to the PID controller

slows, leading to longer dynamics over time. Both the time to start and the

onset time are selected the same way as above. This lag time exists to simulate

a heating element that cannot immediately change in power level, such as gas-

fired boilers.

55

The simulation allows a maximum of 60% degradation. When the power degra-

dation causes the heater to be incapable of reaching the target, the DMDc

model becomes highly inaccurate. This inaccuracy does cause a retrain that

solves the issue, but it affects the graph scale. This particular case is inter-

esting as it does show the retraining working. In the tests conducted in this

thesis, the heater reaches full degradation at approximately 248,550 seconds.

The instability occurs considerably after said point, as shown in Figure 4.6,

and produces warnings relating to numeric stability of the matrices.

With the graph scale ranging so drastically, it becomes hard to pick out small-

scale inaccuracies in the model. Considering that the degradation of the heater

is still a large, unanticipated change, this thesis limits degradation to 60% —

an 8,000-watt maximum output power. This is sufficient to demonstrate the

Self-Learning properties of the system.

Figure 4.6: Numeric Explosion with DMDc when Heater degrades to 95%

56

4.2 Tested Techniques

This thesis evaluates several techniques against the heater defined in Sec-

tion 4.1. Each technique is discussed in detail below. Some techniques are

not tested and will be discussed in the limitations section.

Before moving to definitions, this thesis defines an axis of conformity for each

of the six attributes. Monitorability, Modellability, Verifiability, Falsifiability

are binary. Either the system supports it, or it does not. For both Imagin-

ability and Reevaluability, any given system can have either full, partial, or no

conformity. Imaginability can have partial conformity in the form of a system

that can only predict the future using state data without factoring in input

and output data. Reevaluability can also have partial conformity insofar as

partially conforming systems do not support partial updates to models and

instead require recreating the model.

The reason that Imaginability has partial conformity is that a model that does

not use input and output data cannot perform “What If?” experiments where

the question revolves around changes to inputs or outputs.

Table 4.3 depicts the techniques as they sit in terms of conformity.

4.2.1 Base-Case

The Base-Case technique assumes that the state at time t will be identical

to t − 1. This technique does not make any use of input or output state

information and is therefore only partially capable of Imagining.

As this technique does not create a model, it is incapable of Modelling, Veri-

fication, and Reevaluation.

57

Figure 4.7: Overshoot with Same-Trend technique

4.2.2 Same-Trend

The Same-Trend technique assumes that the state at time t will be as follows:

t = (t− 1) + ((t− 1)− (t− 2)) (4.3)

This technique offers surprisingly good accuracy due to the long response times

and high linearity of the system; however, it does suffer from overshooting in

long-range predictions, as shown below.

In Figure 4.7, the physical twin has plateaued from close to 100°C down to

the target temperature of 95°C, while the digital twin predicts it would have

dropped to around 90°C. At the end of the long-range forecast, this tech-

nique predicts close to 85°C. If the physical twin were allowed to continue, it

would drop slightly below 95°C before trending back towards it. The Same-

Trend technique causes this behaviour by being unaware of the PID driving

the physical twin.

58

4.2.3 Observer Kalman and Eigensystem Realisation

The Observer Kalman Identification (OKID) (Juang, Phan, Horta, & Long-

man, 1993) and Eigensystem Realisation Algorithm (ERA) (Juang & Pappa,

1985) technique — known herein as OKID + ERA— uses the two namesake al-

gorithms to create a state-space model of the system. This thesis implements

this technique by creating many models and ranking them with a heuristic

function to determine the best. The process of creating multiple models gen-

erates twenty models, of which only around ten are valid, and the heuristic

function is a simple count of the number of stable poles.

OKID + ERA fully conforms to Monitorability, Verifiability, and Imaginability

as it creates a model. It does not support partial model updates, however, and

therefore partially conforms to Reevaluability.

Of issue with OKID + ERA is the inability to model the PID controller in-

volved in the simulation. Where the two techniques described below are both

capable of modelling an underlying controller as evidenced by the “with Con-

trol” suffix, OKID + ERA is not, and that leads to significant error.

4.2.4 Dynamic Mode Decomposition with Control

The Dynamic Mode Decomposition with Control (DMDc) (Proctor, Brunton,

& Kutz, 2016) algorithm creates a state-space model that encapsulates un-

derlying controllers, such as the PID controller in the simulation. As DMDc

creates a state-space model, it covers the same conformity as OKID + ERA.

Demo, Tezzele, and Rozza (2018) wrote the DMDc implementation used in

this thesis.

59

4.2.5 Sparse Identification of Nonlinear Dynamics with

Control

The Sparse Identification of Nonlinear Dynamics with Control (SINDYc) (Brun-

ton, Proctor, & Kutz, 2016) does not build a state-space model and therefore

does not naively meet the Verifiability requirement. Given SINDYc’s construc-

tion, verification is possible.

De Silva et al. (2020) wrote the SINDYc implementation used in this thesis.

4.2.6 Recurrent Neural Network

Using Tensorflow (Martı́n Abadi et al., 2015), this thesis implements a recur-

rent neural network based on two, 1024-cell LSTM (Hochreiter & Schmidhu-

ber, 1997) layers with dropout followed by two dense layers. The first dense

layer has 256 neurons, and the second is the output layer that produces the

predicted state.

Networks, in general, support Monitorability, Imaginability, and full Reevalu-

ability. That is to say that they can model a system, imagine future states

based on inputs and outputs, and both partially and fully recreate the afore-

mentioned model.

Where networks fall short is in Verifiability. As shown in Gunning (2017),

explainability in Artificial Intelligence is negatively correlated with predictive

accuracy. While networks perform well, they lack explainability, and without

explainability, it is exceeding challenging to mathematically prove stability

and correctness.

60

As an aside, this thesis ran experiments using Tensorflow 2.2.0, which does

not support weight updates after serialisation; however, Tensorflow 2.4.0 and

greater do support it. This limitation does not prevent proving the concept

but does preclude running tests in this configuration as tests occur after seri-

alisation.

4.3 Conclusion

In conclusion, this thesis proposes a redefinition of Self-Learning that includes

six core attributes. To the best of this thesis’ knowledge, no current definition

of such a system that can adapt to unanticipated changes exists. A more in-

depth discussion of stability measures is featured in the results chapters for

supported models.

As depicted in Table 4.3, few current techniques have the requirements of a

Self-Learning system. It should be noted that this table omits Monitorability

and Falsifiability as the test harness implements these requirements.

Technique Modelling Verification Imagining Evaluation

Base-Case – – Partial –

Same-Trend – – Partial –

OKID + ERA Yes Yes Full Partial

DMDc Yes Yes Full Partial

SINDy Yes Yes1 Full Partial

Recurrent Network Yes – Full Full

Table 4.3: Techniques and Self-Learning coverage

For state-space models, such as OKID + ERA and DMDc, there exist sup-

plementary techniques to allow full conformity in Reevaluability. These tech-

niques are discussed in Chapter 8.3 — Future Work.

Chapter 5

Self-Learning Evaluation and

Analysis

This chapter discusses the efficacy of proposed Self-Learning algorithms and

the retraining of system models. The inputs and outputs of the system —

shown in Table 4.2 — along with the creation of an ancillary data, such as

matrices, are described in the prior chapter.

For completeness, all test iterations used an Intel® Core™ i7-8700 and an

NVIDIA® GeForce® GTX 1050 Ti. In terms of software, all tests used Python

3.8.

Do note that this thesis only performs experiments once, unless otherwise

stated, as the simulator is deterministic and produces the same results every

time. This determinism also applies in terms of different hardware: better

hardware will only complete the experiments faster.

62

5.1 Performance over Simulation

In this section, this thesis tests retraining as used in Self-Learning. To achieve

retraining, this thesis uses four falsification strategies: time-based, absolute

error-based, signed error-based, and step error-based.

The time-based strategy uses the passage of time since the last successful

retraining to determine if the model has become stale. Although this strategy

could be dynamic, this thesis enforces a retraining every six simulated hours.

The absolute error-based strategy accumulates the magnitude of the system’s

error. This value always increases in the presence of error until the retraining

threshold is reached. This thesis sets this threshold at 200 as it performed well

in testing.

In contrast with the above strategy, the signed error-based strategy accumu-

lates the error while respecting its direction, leading to some errors cancelling

out. Because error can cancel itself out, this strategy has a comparatively low

threshold of 100 when compared with the absolute error strategy. The thresh-

old for this approach should be below the absolute error threshold otherwise

it will never be reached; however, the exact value chosen by this thesis has

no special relation to absolute error and a half of that metrics threshold was

merely convenient and performant.

Finally, the step-based error strategy only considers if the last prediction was

sufficiently far from the actual values. This strategy exists to quickly bail from

wildly inaccurate models. This thesis sets the threshold for this strategy at

two as it only triggers when the weighted error for a single step is large.

63

When evaluating the error, a multiplicative weighting — depicted in Table 5.1

— is applied to the delta between the true and predicted values before the

Self-Falsifying implementation decides on falsification. Weighting the values

emphasises the primary predictive attribute used in Self-Protection. Errors in

Heater Output Power are not as valuable for falsification as the range of values

is two orders of magnitude larger.

Variable Multiplier

Temperature 1.1

Water Level 1.0

Power 0.01

Table 5.1: Variable Weighting

As the Base-Case and Same-Trend do not feature retraining, those results will

not be in Table 5.3 below and are instead listed in Table 5.2.

Error Type Base Follow

Temperature 3320.3 1126.7

Water Level 399.33 581.47

Power 7366.1 175.33

Table 5.2: Error for non-retraining models

The graphs below use the total accumulated error. Even though the simulator

resets the tracked error, the accumulated error remains the same.

Do note that Table 5.4 is not complete and similar values between Table 5.3

removed for brevity. A complete version of this table is available in the Ap-

pendix Table 8.1. For all removed OKID values, they shared an error of 2.45e9

rather than 2.37e9.

64

Strategy DMDc OKID SINDYc

No Retraining 5622.5 1.36e9 3320.3

Step 5622.5 2.37e9 3320.3

Signed 2890.8 2.34e9 3320.3

Sign., Step 2552.5 2.37e9 3320.3

Absolute 2692.9 2.37e9 3320.3

Abs., Step 2624.1 2.37e9 3320.3

Abs., Sign. 2675.9 2.37e9 3320.3

Abs., Sign., Step 2629.5 2.37e9 3320.3

Time 2804.9 2.92e9 3320.3

Time, Step 2668.8 2.37e9 3320.3

Time, Sign. 2693.3 2.34e9 3320.3

Time, Sign., Step 2604.3 2.37e9 3320.3

Time, Abs. 2760.6 2.37e9 3320.3

Time, Abs., Step 2585.7 2.37e9 3320.3

Time, Abs., Sign. 2698.6 2.37e9 3320.3

All 2573.0 2.37e9 3320.3

Table 5.3: Temperature Error Across All Retraining Strategies

5.1.1 Retraining

Note that the recurrent neural network results are omitted from many tests due

to poor performance after retraining. In part, this performance is likely due

to insufficient training data being present during retraining. When retraining,

the neural network has access to the last 1300 steps of history, and it segments

this dataset further into a 9:1 split for training and testing data. Without

more data, the recurrent neural network is unable to completely retrain and

partial updates do not function as mentioned in Section 4.2.6.

65

Strategy DMDc OKID

Step 5622.5 2.45e9

Signed 2545.3 2.45e9

Sign., Step 2877.8 2.45e9

Absolute 2699.0 2.45e9

Abs., Step 2629.4 2.45e9

Abs., Sign. 2683.4 2.45e9

Abs., Sign., Step 2636.1 2.45e9

Time, Sign. 2742.7 2.45e9

Time, Sign., Step 2610.1 2.45e9

Time, Abs. 2766.7 2.45e9

Time, Abs., Step 2591.1 2.45e9

Time, Abs., Sign. 2706.1 2.45e9

All 2610.1 2.45e9

Table 5.4: Temperature Error Across All Retraining Strategies with minimum
time before retrain

The rest of this subsection covers how this thesis handled retraining for DMDc.

To measure retraining stability, this thesis uses a mix of visual metrics, such as

the below Principal Component Analysis (PCA) graphs, and comparisons of

retraining strategies. Tables 5.5 and 5.6 demonstrate the amount of a change

seen by the DMDc matrices during retraining. For both tables, the rows rep-

resent input data and the columns represent the impact on the state variables

as a result of x̂ = Ax + Bu where x̂ is the new state, A is the discrete-time

state matrix and B is the discrete-time transition matrix.

Given that the degradation of the system applies mostly to the heater power,

the largest changes being those that modified the power state lines up. The

two changing components of the underlying system are the heater power and

interpolation rate degrading. Both of these components directly affect the

dynamics of the internal power variable.

66

— Temperature Water Level Power

Temperature 0.00154 0.00138 1.04

Water Level 1.10 0.899 19.7

Power 0.0000181 0.0000101 0.00934

Table 5.5: Total Change in DMDc A Matrix (Three Significant Figures)

— Temperature Water Level Power

In Flow Rate 0.0690 0.155 2.54

In Flow Temperature 0.00148 0.00197 0.271

Target Temperature 1.50 1.23 25.1

Out Flow Rate 0.120 0.0416 17.8

Table 5.6: Total Change in DMDc B Matrix (Three Significant Figures)

For example, the widest difference for DMDc in Table 5.4 is from the No

Retraining entry at 5622.5 to the Signed strategy entry at 2545.3. This result

shows that retraining, in this instance, can reduce error by 54.7% in the best-

recorded case. On average, the reduction falls to 48.9%, including both Step-

based only cases where the improvement was 0.0%. Excluding those cases

gives a reduction of 52.3%.

The Step-based strategy is not useless, however, and aids the Signed strategy

in Table 5.3. Interestingly, this does not apply to Table 5.4. The helping is

further illustrated in Figure 5.1 where the Step strategy causes some of the

largest changes in A matrix values. In this figure, the size of the bars — both

those at the bottom and those on the line — represents the magnitude of the

change in the A matrix.

67

Figure 5.1: Signed Error with Absolute A Matrix Difference over time

To visualise how the A and B matrices for DMDc changed, this thesis performs

PCA on said matrices and demonstrates the clustering that occurs during the

end of the portion of the test runs in Figure 5.3. This area lines up with a

trough shown in Figure 5.2. The equivalent absolute change graph and the

visualisation for the B matrix is shown in Appendix Figures 8.1 and 8.2.

In all of the 3D figures, the scale to the left of the vanishing point ranges from

0 to 120.

68

Figure 5.2: Absolute change in A matrix values between retraining

The index of each point is represented by a coloured dot that ranges from

green to red where green is the lower indices and red, the higher. In both

cases, the PCA visualisations show a clustering late on in the data. While the

final few points of both cases show a trend away from the cluster, note that the

graph scale on that axis is 1e−16. Additionally, Appendix Figure 8.5 shows

the result of a longer run. This run encompassed eight times the duration

and shows a similar result. The graph is not identical because the longer run

enforced a minimum time between retraining while the initial run did not.

This thesis also performed tests using the best performing retraining strategy,

the Signed strategy. These images have been omitted because they show is

largely identical to the more frequently retrained runs. The difference being

that the Signed strategy only meaningfully retrained at the beginning of the

run when the underlying system was changing and not after the system reached

steady-state. This trend is shown in Appendix Figure 8.7.

69

Figure 5.3: Principal Component Analysis of A matrix change over time

The aforementioned PCA visualisations show the PCA of the difference be-

tween each matrix after each retraining. Figure 8.8 shows the PCA of the

A matrices themselves over an octuple length run. In this visualisation, the

model converges on a small region after only a few iterations after changing

fairly drastically over the beginning iterations, which lines up with the retrain-

ing magnitudes in Appendix Figure 8.9.

70

Figure 5.4: Principal Component Analysis of A matrix over time

5.1.2 Model Stability

In the framework outlined in the previous chapter, Self-Verification checks

the model for correctness and stability. In this thesis, the verification step

involves a human in the loop and does not check for correctness. Additionally,

verification was only implemented for the DMDc model.

The human-in-the-loop can validate the model stability by checking pole place-

ment and comparing the bode plots to the dominant frequencies in the input

and output data. Figure 3.3 shows the pole placement graph for DMDc with

a 0.1 Hz sampling rate. Figure 5.5 shows the magnitude half of the bode plot

and the phase plot can be found in Appendix Figure 8.10. Both figures follow

the same layout as Table 5.6.

71

Figure 5.5: DMDc First Retrain Bode Plot — Magnitude

In Figure 5.5, there is a peak in magnitude of frequency response around

0.0001 Hz. In no cases do higher, non-aliased frequencies cause spurious spikes

in response, and given that the dominant frequencies in the simulator reside

at or around 0.00015 Hz, the model should be resistant to higher-frequency

manipulation. The implications of this resilience and these results are discussed

in the next chapter — Chapter 6.

As already mentioned in Chapter 3, another model stability check is pole

location, and as depicted in Figure 3.3, which is of the same DMDc system as

this discussion uses, the poles lie within a unit circle and are thus stable and

converging.

72

5.2 Performance over Varying Oracle Depths

A discussion on the fitness-for-purpose of Self-Learning algorithms would be

incomplete without also covering the ability to imagine future states. As such,

this thesis touches on this in this section. To do so, this section presents three

tabular summaries of the errors over a perfect oracle using multiple modelling

techniques. For each table, the name of the best solution is bold, as are the

individual best error mean and variance metrics. Unlike in Section 5.1, the

following experiments used oracle depths greater than one, where a depth of

one is, in effect, not an oracle.

The OKID and ERA model is omitted from these results as it generated a

mean error of 7.4592e60. As mentioned in Section 4.2.3, this result is not

unexpected. The inability to model the controller causes significant drift from

the ground truth, and this drift is accumulated over the entire oracle.

Figure 5.6: Error mean and deviation over the primary oracle (25th retrain)

73

These metrics represent area under the means and deviations — as shown in

Figure 5.6 or earlier in Figure 4.5 — respectively. The data in this figure are

shown as “DMDc 25” in the below tables. In Tables 5.7, 5.8, and 5.9, Integral

Error represents the total area under the mean line, and Integral Error Variance

represents the total area between the mean and two standard deviations. For

integral values, lower is better.

Type Integ. Error Integ. Var.

Base 0.39207 426.64

SINDYc 0.39207 426.64

Same-Trend 5.7667 601.98

DMDc 0 271.81 295.12

DMDc 1 53.228 897.46

DMDc 2 34.106 994.42

DMDc 10 16.645 334.39

DMDc 25 1.9841 296.28

Recurrent 365.65 963.35

Table 5.7: Temperature Error (Five Significant Figures)

As in Figure 4.5, each technique listed below used 2048 samples for every one

of the 150 steps into oracle. Each technique is tested with identical input and

ground-truth data.

When considering the best solution of each table, this thesis adds the error

variance to the mean twice and uses the lowest result. This result represents

the total area contained within the 95th percentiles in the above-mentioned

figures.

74

Note that the SINDYc and the base case have identical results. This is not

a mistake: the test runs in question are repeatable and continue to yield

identical results. Instead, it is due to the implementation of SINDYc seemingly

modelling the same dynamics as the base case. The results here form a trend

that continues in later results.

Type Integ. Error Integ. Var.

Base 0.11911 21.296

SINDYc 0.11911 21.296

Same-Trend 17.248 358.10

DMDc 0 280.37 454.11

DMDc 1 0.76662 17.031

DMDc 2 0.24930 17.914

DMDc 10 1.6035 33.936

DMDc 25 1.4677 26.190

Recurrent 50.112 17.035

Table 5.8: Water Level Error (Five Significant Figures)

The reason for the uneven progression of retrained DMDc state-space models

is that each represents a different period of the simulation state. These periods

are well depicted in Figure 5.1. The majority of the DMDc values depicted in

the three tables mentioned above are from the initial period where the state-

space model changes significantly. Model 25 occurs shortly into the stable

region and is the third model that was triggered by the time-based strategy.

This stable region is also visible as the cluster of Figure 5.3.

For Self-Protection, the most important state variable is the temperature, as

this variable has a defined failure state. As shown in Table 5.7, DMDc model

25 performs the best in temperature error despite having neither the lowest

integral error nor the lowest integral error variance.

75

Type Integ. Error Integ. Var.

Base 2.1151 1096.4

SINDYc 2.1151 1096.4

Same-Trend 10.069 1423.3

DMDc 0 101.10 1355.3

DMDc 1 366.24 9975.0

DMDc 2 335.97 10099

DMDc 10 352.22 4242.0

DMDc 25 17.711 1327.4

Recurrent 3590.5 1822.4

Table 5.9: Power Error (Five Significant Figures)

Note in these results the comparatively high performance of the base case

and SINDYc. In all three variables, these two techniques performed the best

in integral error and well in integral error variance, being close to the best

performer in that metric as well. This result is likely due to the dynamics

being slow enough that changes between samples are minor.

5.3 Conclusion

In conclusion, the results in this chapter present a compelling argument for the

fitness-for-purpose of the framework laid out in Chapter 3 and the algorithms

used in this chapter as applied to dynamic energy systems.

In testing the Falsification and Evaluation modules, this chapter has shown the

performance benefits of retraining control models with a range of thresholds.

Without retraining, the prebuilt DMDc model would have been unable to

model the changing dynamics of the system. Without multiple strategies, the

retraining may have been too sparse or too frequent to provide benefit, as

evidenced by the difference between the rows of Table 5.3.

76

The ability to check model stability is a boon of using control theory, and

as such, this chapter covered a rudimentarily implementated of Verification

module. Despite the human-in-the-loop nature of this module, the system

could be automated.

Finally, this chapter explored the ability of the tested digital shadow to Self-

Imagine. This sufficiently accurate imagination allows the system to predict

future states and enables a form of Self-Protection that is discussed in the next

chapter.

Chapter 6

Self-Protection Evaluation and

Algorithms

This chapter covers Self-Protection and input frequency handling. This thesis

implements both of these features as human-in-the-loop interactions; there-

fore, discussions of automated actions are reserved for Section 8.3.5 under

Future Work. The automated actions that do occur in the below sections are

rudimentary but serve as an example from which to build atop in the future.

The first experiment covers the case where an input causes the system to enter

a failure state. In 1982, a Siberian gas pipeline exploded as a result of a cyber-

attack that caused over-pressurisation. This attack involved resetting pump

speeds to maintain flow rates greater than the controller intended, leading

to a failure of the physical pipeline (Gazula, 2017). While there are benefits

in connecting plants to the internet, it is cases such as these that show why

detecting and preventing dangerous trends in a system is required.

The second experiment covers the need to detect trends that degrade a system

without directly leading to failure. Motivated by the same cause as the first

experiment, the second analyses the frequencies of input and output data and

how that data influences the system. The motivation for this experiment is

78

the infamous case of Stuxnet. In 2010, the Iranian nuclear reactor at Natanz

suffered damage to its centrifuges caused by excessive oscillations in speed.

The cause of these oscillations was a computer worm named Stuxnet (Gazula,

2017). While the centrifuges were not directly put into failure state as per the

Siberian pipeline case, the oscillations in speed did nevertheless cause damage.

Because the digital shadow of the simulator is capable of Self-Learning, dis-

turbances arising from the system are minimised and the impacts of both of

these experiments are isolated from underlying changes in the system.

In previous tests and as mentioned in Section 4.1.3, the simulator ran ahead of

the real predictions to provide true input and output data as if the forecasting

were perfect. A problem arises, however, in the event that control actions

need to be performed since the simulator has already processed beyond the

time step for which the control arrived. To handle this issue, while retaining

the accurate input and output data, the simulator recomputes future states

every time a control action is taken. In essence, the simulator becomes able to

time travel. When a control signal arrives, the simulator reverts time to the

appropriate time step, applies the action, and returns back to the future from

whence it came.

The impact being that for experiments in this section, an external component

can modify the system. In practice, the time travel invalidates the future data

and the simulator builds a new history that encompasses any changes resulting

from the external influence.

6.1 Signal Processing

Before discussing the Self-Protection techniques, this thesis introduces the con-

cept of Nyquist Frequency and mentions two transforms used by the second

Self-Protection technique.

79

6.1.1 Nyquist Frequency

In signal processing, the Nyquist frequency is the frequency above which signal

aliasing occurs in an input signal. It is defined as one half the frequency of the

sampling rate. Provided the highest frequency in a given input signal is below

the Nyquist frequency, it is free from aliasing. An example of this aliasing is

covered in Section 6.2. There are some cases, discussed in Chapter 8, where a

signal can be reconstructed with fewer samples.

6.1.2 Transforms

The two transforms used in this thesis are the Chirp Z-Transform (CZT)

and the Fast-Fourier Transform (FFT). Note that both of these methods are

discrete-time transforms as the systems in this thesis are in discrete-time.

The Chirp Z-Transform takes a time-domain signal and expresses it in the

frequency domain. It is a more general form of the aforementioned FFT that

makes a very similar transform. The CZT can be used to compute pole lo-

cations and the region of convergence of a transfer function (Shilling, 1972);

however, this thesis did not complete the computation of the latter for the

input data, so the FFT alone would have been sufficient.

6.2 Sampling and Command Frequency

The sampling rate for the simulation is 0.2 hertz. Whilst the sampling rate is

customisable, this chapter uses one sample every five simulated seconds. Due

to an oversight in designing the simulator, the command rate is currently fixed

to the sampling rate. The import of this limitation makes it worth mentioning

ahead of the two Self-Protection methods as it affects them both.

80

For the first method, the limitation means that any actions taken, such as

moving the target temperature, are processed once per five seconds. Largely,

this limitation does not adversely interfere with the protection technique.

Figure 6.1: Example of an aliased signal

However, the second method is impacted more. The inability to issue com-

mands faster than the sample rate limits the ability to create oscillations above

the aliasing limit of the sampling rate with meaning. It is possible to feed a

higher frequency signal into the system, but as the aliasing in issuing com-

mands occurs at the exact time as in sampling the system, it is somewhat

meaningless as a signal above the Nyquist frequency is aliased by definition,

and as such, no longer controls the system as intended.

Figure 6.1 shows the impacts of an aliased signal. The upper diagram shows

the raw signal with red crosses showing the sampling points at one-fifth the

frequency. The upper signal is oscillating at five times the Nyquist frequency

of the sampling rate. The lower diagram shows the reconstructed waveform,

and it is this signal that the simulator can read. The issue with the command

frequency being limited to the bottom diagram’s sampling frequency is that it

is impossible to issue commands that achieve the upper diagrams oscillations.

81

For this system where the sampling rate is 0.2 hertz, the Nyquist frequency is

0.1 hertz.

6.3 Heater Failure Conditions

In the heater system, there are three internal variables with temperature being

the only variable that can result in a failure that Self-Protection can affect.

For water level, the heater implements “hardware” high- and low-level cutoffs.

If the water reaches the high-level alarm, the inlet valve is instantly closed.

If the water reaches the low-level aram, the outlet valve is instantly closed.

In both cases, the valves return to normal operation when the cutoffs are no

longer in effect.

For heater power, it is possible that the boiler sufficiently degrades — as is

mentioned in Section 4.1.5 — or outright fails. Since this variable is the main

control axis, if it is uncontrollable, then the entire system is uncontrollable:

a heater without sufficient energy entering will be unable to reach the target

temperature. The only possible action to take in such a scenario is to warn a

human operator.

In the case of temperature, allowing the water to reach 100°C would be con-

sidered a failure mode. The simulator has three ways of modifying the tem-

perature by way of modifying the heater. The first is changing the PID target

temperature; the second, the heater level; and the third, the raw heater output.

In the experiments below, without intervention, the water temperature would

reach a failure at around 3200 seconds due to the PID controller being slightly

modified from the one used in Chapter 5. This chapter doubles the PID’s

integral weighting as otherwise the temperature grazes, but does not exceed,

100°C.

82

6.4 Temperature Prediction Handling

This section discusses the only automated portion of Self-Protection tested

in this thesis. The Temperature Prediction method works by predicting the

future using both oracles mentioned in Section 4.1.3. Both of these oracles

predict 15 steps for a total of 30 steps or 150 seconds. As mentioned in that

section, the first oracle has perfect information and the second assumes no

changes to the inputs or outputs in the system. Both oracles are used in full

when accumulating a variable referred to herein as the limiter. This variable

is used by each method to limit the heater and prevent it from exceeding the

maximum safe temperature.

When the end of the second oracle exceeds the safe maximum temperature,

the simulation increases the limiter by 32. Additionally, for every predicted

step where the temperature exceeds the safe maximum, the simulator further

increments the limiter. When no prediction exceeds the safe maximum, the

variable decays by 10% every step. This decaying is visible in Figure 6.2,

where the target temperature interpolates back to the set temperature. This

smoothed response is present in all methods but is most evident here. The

amount the limiter is increased by is arbitrary, and the response it causes

is further modified by the methods. For example, the PID method scales

the limiter by two when reducing the target temperature, but the heater level

method uses the same limiter variable to reduce the heater’s output in hundred-

watt increments.

The first two methods have an almost functionally identical outcome: both

cause the heater to reduce output while respecting relevant delays. Setting the

PID target to zero will quickly produce a zero heater level, but the reaction

will be delayed by the PID in addition to the delay in the heating element

acting normally and could lead to a reaction that is too slow to prevent failure.

Although the simulated version of this method — shown in Figure 6.2 — reacts

83

Figure 6.2: Self-Protection by modifying PID target

fast enough. Directly modifying the heater level is an effective way of reducing

the heater power, and it bypasses the PID delay while remaining true to the

simulation.

Lastly, modifying the heater output directly is only useful for one situation:

modelling an emergency stop. Cutting off the heater immediately has no

delay period but also no controllability. When allowed more granularity than

a binary on-off, this method — as depicted in Figure 6.3 — behaves much like

the aforementioned heater level method minus the delay.

In the case of the PID, the temperature levels off at the target temperature

of 95°C, whereas with both the heater level and the raw heater output, the

levelling off occurs above the target temperature. The former method achieves

the target temperature better in this case as the Self-Protection component

is modifying, by proxy of briefly moving the target, the PID controllers state.

The other two methods modify the underlying system and leave the PID con-

troller unmodified. It will eventually converge on the target temperature, but

the modified integral weighting makes this process take some time.

84

Figure 6.3: Self-Protection by modifying raw heater output

It should be noted that the Self-Protection shown in this section is a proof-of-

concept to validate the proposed design. The results are not meant to prescribe

how Self-Protection should be implemented, merely what it may look like. As

mentioned above, the methods are basic: they use what is in effect an untuned

integral controller, but they do still prevent the system from exceeding safe

limits. Additionally, due to the sampling frequency, it is not possible to only

measure the system in flight. One measurement could be sufficiently far away

from failure to satisfy a check, only for the system to encounter failure before

the next reading occurs.

6.5 Input Frequency Handling

The second form of Self-Protection implemented is the input frequency han-

dling experiment. This type of protection is aimed at oscillating changes to

the system’s target temperature. By quickly moving the set target, the sys-

tem may itself oscillate in a way that would cause damage, and although this

85

example system is not affected in terms of degradation by repeated changes,

others are. In this experiment, the oscillation moves the target temperature

between 25 and 125 degrees at 0.05 hertz.

This experiment generates a graph of magnitude and phase for the input and

output data. Because retraining may modify the B matrix, the graph data is

the product of the B matrix and inputs, as given in Equation 6.1 as an array

of B̂ vectors, where B is the B matrix, u is each input-output vector, and B̂

is each resulting vector.

B̂ = B · u (6.1)

The array of B̂ vectors then undergoes a Chirp Z-transform (Rabiner, Schafer,

& Rader, 1969) into the frequency-domain. The magnitude and the phase of

the frequency-domain data create Figures 6.4 and 6.5. The magnitude graphs

have been omitted for brevity as the disturbances as easier to spot in the phase

plot.

Figure 6.4: Phase diagram for tank temperature

86

The primary differences between Figure 6.4 and Figure 6.5 is the expected

spike around 0.03 hertz to around 0.05 hertz. These are the phase graphs, so

there isn’t much to analyse here aside from where the oscillation frequencies

sit. This thesis detects these frequencies using a human-in-the-loop design,

though automating the process is possible. Analysing a known-good signal

for a ground-truth would provide enough context to determine anomalous fre-

quencies, especially if only frequencies that cause instability in the model need

considering.

Figure 6.5: Phase diagram for tank temperature with interference

Detection is but one half of protection a system, however. The protection

component works by removing frequencies within a range. In this case, that

range is 0.035 to 0.055 hertz. To remove the range, the simulation converts the

input data from the heater into the frequency domain and sets the frequencies

within the range to zero before transforming back to the time domain. To

remain consistent with the z-transform performed to detect the frequency, the

removal function transforms the data using Equation 6.1 before removing the

frequencies. The data cannot be immediately returned as it is still in B̂ form;

however, the original data format can be restored by reapplying Equation 6.1

with the inverse of B, B−1.

87

Figure 6.6 shows the effects of this transform. Both sides of the graph in the

frequency domain are symmetrical, so the positive frequencies are omitted.

As mentioned in Section 5.1.2, the dominant frequencies of this heater reside

at around 0.00015 hertz, which shows as a comparatively tall spike centred

around zero. In the left portion of the figure is another, smaller peak at 0.05

hertz that disappears in the right portion. The presence of the oscillating

frequency also causes minor distortions that are most noticeable between the

two peaks.

Figure 6.6: Heater Level of B̂ in frequency-domain showing oscillations (left)
and filtered frequencies (right)

This section does not modify the input and output signals generated for use

in the heater directly, so no accuracy results can be provided as this method

is not applying anything to the underlying system. In an ideal world, it would

be, but for now, that is left as future work and is discussed in Section 8.3.

88

6.6 Conclusion

The Self-Protection methods outlined in this chapter are somewhat basic but

provide a starting point for further research. Firstly, the prediction Self-

Protection method demonstrates a proof-of-concept fail-safe for use with Digi-

tal Twins. Even in a contrived and primitive form, the system handled failure

cases and kept the system under control. The oracles used in Self-Protection

can predict further into the future than the 150 seconds. The accuracy of an

increased oracle size was shown earlier in Figure 5.6, and it relevant due to

the non-linear accuracy across the window. For example with DMDc, if the

window length increased from 150 to 300, a linear increase would cause the

95th percentiles to double. In the aforementioned figure, this scaling does not

occur, and the 95th percentiles fall short of doubling.

Secondly, the frequency filtering Self-Protection method discusses the use of

input filtering for improving the resilience of the system. As mentioned above,

the inability to apply filtering to the underlying system limits any conclusions

that can be drawn about the efficacy of this method for that purpose, though

the filtering does clean up the signal as expect and so should be applicable.

Interestingly, the oscillations introduced in Section 6.5 have an adverse impact

on the functionality of Section 6.4. The oscillations cause the prediction to

momentarily exceed 100°C, which spuriously triggers the Self-Protection mech-

anisms. In actuality, the system continues with only minor fluctuations in the

heater level. Because the filtering technique is applied before the predictions

are computed, the removal of these frequencies stabilises the predictions and

removes the spurious activations.

Chapter 7

Engineering Design Discussion

This chapter discusses some of the shortcomings of the design of both the

simulator and the overall Self-Learning architecture and proposes further en-

gineering design methodologies going forward. These updated architectural

designs are based on the limitations of and the lessons learned from the cre-

ated system in this thesis. Note that this chapter only discusses architectural

limitations that are relevant to the future development of digital twins. Further

discussion of more general, out-of-scope limitations is saved for the Section 8.2.

7.1 Simulation

The use of a simulator in this thesis serves as an efficient and highly effective

prototyping tool. For Self-Learning systems, rapid prototyping is a valuable

tool as building a Self-Learning system is deeply involved. Doubly so when fac-

toring in the complexity in configuring a real-world steam boiler for this task.

Depending on the exact requirements of each physical twin, certain methods

may be unsatisfactory. A robust simulator allows the methods and overall

implementation of the Self-Learning system to be tested before attempting to

twin a real-world system.

90

The benefit here is that twinning a real-world system is far from trivial. Not

only does testing on a real energy system, whether a boiler or an automotive

engine, burn fossil fuels, it can also result in the downtime of the system.

Each iteration of the Self-Learning system may require additional operation

and downtime, something that is unlikely to be granted in a production envi-

ronment.

Furthermore, for Self-Protecting systems, the state the physical twin must be

in to cause a self-protection event is inherently risky, and the uncertainty of the

system or the implementation makes this proposition doubly so. To deal with

this risk, the physical twin would need isolation and rigorous risk assessment

before each test, in addition to code correctness validation.

These challenges slow the creation of self-learning digital twins to the extreme.

By contrast, simulators enable much faster iteration and the ability to test in a

safe environment. They do add an additional threat to their validity insofar as

a twin of a simulator can only be as accurate as the simulator, but nonetheless,

they allow that testing and validation be carried out in a safe environment.

From a design standpoint, a simulator used in the creation of digital twins

benefits from the ability to “time travel”. In Chapter 6, this thesis mentioned

that the simulator was extended to enable the simulator to both generate future

data for the first forecast oracle and to act in the present, and by acting in the

present, to change said future data. In Chapter 6, this extension involved the

simulator being able to restore past states and recompute the future. While

the implementation used in this thesis was not efficient, the algorithm itself is

as the Self-Protection system seldom acts on every sample. For the majority of

samples, the system observes and only incurs any computation penalty when

it must act. This design further enhances the performance of the simulator.

91

7.1.1 Simulation Design Limitations

The simulator, as implemented in this thesis, has several limitations due to the

nature of its ad-hoc construction. None of these limitations affect the results of

the thesis and serve instead to make further development harder. This section

addresses these limitations

The simulator was built around the core concept that it would be modelled by

a digital shadow. Largely, the design functioned in that regard; however, limi-

tations become more apparent when adding Self-Learning and Self-Protection

features.

The simulator referred to in the prior chapters is actually two subsystems that

operate together: the engine system that manages the registered components

and handles advancing time, and the heater simulation module that registers

with the engine and handles heating virtual water. A core premise of this

design was allowing multiple components to pass data between each other,

and although this functionality is not used in the thesis, it is used in the

improved design.

Firstly, the simulation module should be split apart as, as it stands, it is

a monolithic design that encompasses too many responsibilities. Chiefly, it

handles not just the dynamics but also the generation of disturbances and

input data. This design became a considerable obstacle for Self-Protection in

conjunction with the inability to save the simulator state, as discussed later.

Self-Protection must be able to influence input and output data to function.

As the simulation module sits very deep in the overall architecture and acts

immediately on the generated inputs, it was not feasible to modify it without

redesigning the system.

92

A better approach is to create a second module — the disturbance module —

that computes input and output data with an API sufficient to modify how

input and output data look before the simulation module acts on that data.

Secondly, the system should gracefully save its state and should be able to pre-

dict future states without impacting the current state. The simulation module

does not support either, but Python’s pickle utility can work around this limi-

tation. Because pickle serialises the entire object, however, it makes influencing

input and output data impossible as it would be immediately overridden by

the object being deserialised during a rollback.

The final change to the design would be explicit support for modification. Some

supporting functions support modifying the system by calling user-defined

functions. These functions allow for rapid prototyping beyond that of using

an inherited model of simulator alone and extending this functionality to the

entire system doubles down on this flexibility.

The limitations aside, however, the simulator enabled this thesis to conduct

the work of the previous two chapters. Connecting to and actuating a physical

energy system is a complex endeavour, and one best left for future work where

resources are less constrained.

7.2 Overall Architectures

The lessons of the past two chapters identified a series of changes to the archi-

tectures of Self-Learning and Self-Protection. Additionally, there are further

changes to how the requirements of the system are elicited. Before moving on

to discuss the changes in the architectures, this section covers the requirement

changes.

93

The use of simulation in this thesis enabled the rapid prototyping to elicit

further requirements of Self-Learning and Self-Protection. Due to the time in-

vestment required to get a physical energy system operational for these exper-

iments, and the inevitable scheduling issues that occur with a shared resource,

the use of a simulator allowed for an implementation that was iteratively tested

during development. Without a simulator, the difficulty of this iterative test-

ing would slow to an extreme. Additionally, the simulator can host future

optimisation experiments without impacting the running energy system. Note

that these experiments refer to testing other configurations of adaptive digital

twins and not process optimisations that would ideally be tested on the digital

twin itself.

Furthermore, the simulator allows for exploratory dives into the requirements

of the system. Initial requirements for Self-Learning were considered when this

thesis architected and implemented the simulator; however, iteration is a vital

step in developing software designs, and the inability to test quickly would have

hindered that. During the prototyping and testing of the simulator with both

Self-Learning and Self-Protecting, this thesis proposes additional requirements

that are addressed in the updated architectures.

Figure 7.1: Updated Architecture as per Figure 3.2

94

Figure 7.1 shows an updated overall self-adaptive system architecture for Self-

Learning and Self-Protecting adaptive digital twins. The Reflection module

between Self-Learning and Self-Protection is a meta-control module that en-

ables further adaption at a Self-Learning and Self-Protection configuration

level. For example, the reflection module could switch the implementation of

the modelling module if the overall system is not performing well.

From here on in, this section leverages the lessons learned in the prior chap-

ters and proposes updated, fit-for-purpose Self-Learning and Self-Protection

architectures.

7.2.1 Self-Learning

The Self-Learning framework remains largely the same, but for clarity, Self-

Protection is removed from the diagram. Self-Protection is its own bespoke

subsystem, and its presence detracts from the presentation of the core idea:

Self-Learning.

In the amended Figure 7.2, the Monitoring module is a bespoke subsystem that

reads from the physical twin. This decoupling helps facilitate the solution for

the limitation raised in Section 6.2. By making the Self-Learning system —

for which the Monitoring module is the entry point — a separate system, the

locked sampling rate issue disappears by design. A second and potentially

more impactful benefit is that this decoupled system mirrors the real-world

design goals of Digital Twin-based Cloud Machine Interface.

95

Figure 7.2: Self-Learning Architecture

In contrast to the implementation in Chapter 5 where the physical system

drove the Self-Learning modules in synchrony. The design in this section

is not synchronous with the physical twin, which mirrors what a real-world

implementation would necessarily be.

96

7.2.2 Self-Protection

The architecture for Self-Protection is not discussed in detail in Chapter 3. So

instead of refining the Self-Protection design, this section proposes a general

Self-Protection architecture in Figure 7.3. This architecture builds on CoBRA,

as mentioned in Section 2.3, with regards to the filter stack on the physical

twin’s target and sensor data. This stack can contain any arbitrary number

of filters, including none. As in CoBRA, this stack could include a Kalman

filter, or as in Section 6.5, it could include a frequency filter.

Additionally, Self-Protection in the form shown in Section 6.4 is split into two

components, including a second stack of modifiers. As with the previous stack,

these modifiers are executed sequentially by the Protection module, which then

updates input filters or engages protection actions in physical twin.

In difference from the implementation in Chapter 6, the Protection module

is now a bespoke entity that sits decoupled from the physical twin and the

Self-Learning system, though it does rely on the model from the Self-Learning

system.

7.3 Software Development Process

This thesis posits the following software engineering process for the devel-

opment of adaptive digital twins. Firstly, the data that can reasonably be

collected from the physical twin should be identified including how frequently

this data is available, how reliable it is, and what form it takes. The monitoring

implementation requires this information if it is to be successful.

97

Figure 7.3: Self-Protection Architecture

Secondly, the simulation of the system should be constructed that mirrors the

physical twin. At the same time, effort into preparing the physical system for

twinning can begin in parallel. This step enables the software development

process to begin in earnest. This thesis assumes that both preparation and

iteration time for the physical system are slower than that of the simulation.

98

The software process can iterate in the design and implementation of the mod-

ules put forth in Figures 7.2 and 7.3 based on the simulation. This process

acknowledges that the simulation is unlikely to be perfect or to capture the

complexity of the physical system in full, but it does allow for the bulk of the

software development process to occur where without it, this process would

not. Essentially, this process enables the rapid prototyping and timely devel-

opment of adaptive digital twins.

Figure 7.4: Software Development Process Diagram

When the physical is prepared to be twinned, offline data collection should be

captured and introduced as a testing dataset for the in-development digital

twin. From here, the digital twin’s Self-Learning component can process real-

world data as it would in deployment. The Self-Protection module does still

require the simulator at this stage in development, however, as it cannot modify

the future of the replayed data.

99

When the Self-Learning component is considered stable, it can begin to twin

the physical system. As this component cannot modify the physical twin,

beginning twinning with only that component active carries minimal risk.

In short, Figure 7.4 details the above process visually.

7.4 Conclusions

This chapter concludes the discussion of the design of the simulator and the

Self-Learning and Self-Protection frameworks. In the case of the simulator,

the benefits of using a rapid prototyping platform outweigh the potential neg-

atives. In both Self-Learning and Self-Protection, the updated designs refine

the concept and address limitations found during this thesis at a design level.

Furthermore, as mentioned in Section 7.2, the use of simulations to proto-

type and rapidly ascertain and refine missed requirements prove to be a useful

method for the solicitation of requirements for digital twins.

Module Implementation

Monitoring Via Simulator

Falsifying Ad-Hoc

Imagining Forecast Oracles

Reevaluation Technique-dependant

Modelling Technique-dependant

Verification Manual

Table 7.1: Summary of Modules and Implementations

100

As shown in Table 7.1, many implementations were ad-hoc or manual. Only

the reevaluation and modelling modules were tested in an interchangeable

form. The monitoring and falsifying modules were not changed because they

are closely matched to the system rather than the technique. For a different

simulator or for a real system, these modules would need to change. The

imagining and verification modules were not tested as both lie outwith the

scope of this thesis and are left as future work.

Table 7.2 below shows three example implementations for four of the modules.

The examples methods for implementing the monitoring and the reevaluation

have been omitted as both depend on external variables. The monitoring mod-

ule implementation depends on the system being twinned and the reevaluation

module implementation depends on the modelling module implementation.

These are examples as this thesis only investigated the efficacy of a variety of

modelling implementations as shown in Section 4.2.

Falsifying Imagining Modelling Verification

Threshold Same-Trend System Ident, Pole Placement

Adaptive Threshold State-Space Domain Expert Domain Expert

Machine Learning (ML) ML ML Model Checking

Table 7.2: Summary of Example Implementations of Each Module

Chapter 8

Conclusion

Realising reduced greenhouse gas emissions from the energy-intensive process

heat sector requires retrofit solutions. While replacing existing energy sys-

tems is not economically viable, improving operational efficiency provides an

immediate benefit on the road to furthering renewable energy systems.

Energy systems, among other critical infrastructure, are prime targets for moti-

vated and sophisticated cyberattacks. To leverage Cloud computing in the op-

timisation of energy system operations, security challenges must be addressed.

The usage of Cloud computing, and the serious flexibility it provides, depends

on building robust and safe systems.

In Chapter 3, this thesis conceptualised a Cloud-Machine Interface for connect-

ing the Cloud to industrial plants. Digital Twins played a pivotal role in this

interface as they provide a robust and provable model with which to test Cloud

optimisation suggestions. To handle unanticipated changes or model inaccu-

racy, Digital Twins require Self-Learning properties, and it is these properties

for which this thesis proposes and tests a definition.

102

8.1 Research Hypotheses

In Section 3.2, this thesis asked three hypotheses in furthering the definition

of Self-Learning. These hypotheses are restated below.

H1. Is the proposed software architecture for Self-Learning Systems fit-for-

purpose?

H2. Are the proposed Self-Learning algorithms fit-for-purpose as applied to

Dynamical Energy Systems?

H3. Assuming adequate Self-Learning, are the proposed Self-Protection al-

gorithms fit-for-purpose?

8.1.1 Hypothesis 1

In furthering Research Question 2, Hypothesis 1 discusses the engineering

design of adaptive digital twins. This hypothesis asks what a fit-for-purpose

architecture for Self-Learning systems looks like. To answer this question, a

definition of fitness-for-purpose in this context needs discussion. Through this

lens, a system is fit-for-purpose if it can adapt to unanticipated changes in

a system that it is modelling. The framework described, implemented and

evaluated in answering Hypothesis 2 in Section 8.1.2 shows a system that fits

this description; however, it lacks refinement.

An improved version of the engineering design is discussed in Chapter 7. There

are two main points of import in that design: the use of simulated energy

systems, and the compartmentalised adaptive digital twin framework. The use

of simulated energy systems allows for the rapid prototyping of adaptive digital

twin designs to close in the optimal configuration before applying it to a real

system. This approach cuts down the iteration time, reduces risk, and vitally,

allows preparations of the real energy system to continue in parallel with design

considerations. Secondly, the use of a compartmentalised framework allows

103

for easily substituted components. For cases where safety criticality is not a

high-priority factor, machine learning techniques could stand-in for the control

theoretical techniques used in Chapters 5 and 6.

In summary, the answering of Hypothesis 1 contributes to Research Question 2

and the second aim of this thesis. The design discussion in Chapter 7 posits an

approach to the development of adaptive digital twins that furthers the theory

of self-adaptive systems as used in digital twins. This method is not intended

to be an authoritative solution; instead, it is proposed as a single, possible

avenue that can excel in some cases and falter in others. In the same vein, as

there are myriad sorting algorithms where the best for a given use case can

be chosen, this thesis contributes an algorithm for the development of digital

twins.

8.1.2 Hypothesis 2

Fitness-for-purpose in the context of Hypothesis 2 is the ability to adapt to

reasonably conceivable real-world changes in the physical energy system. For

reference, this thesis’ energy system was a heater system that degraded in

terms of the maximum heater output and the speed of heater output change.

The digital shadow created in Chapter 5 followed the Self-Learning method-

ology laid out in Section 3.1. In testing, this model-based digital shadow was

able to consistently model the physical system more accurately than the base

case that assumed nothing changed. The test case that assumed the system

continued to move in the derivative direction did outperform the modelled

techniques in temperature error. For the avoidance of doubt, it also at least

matched the modelled techniques in water level error and beat them in heater

output power.

104

The reason for the “Same-Trend” technique performing as well as it did is

discussed later in Section 8.2.1. To summarise, the experiments are conducted

with a single step into the future, which benefits techniques that perform well

in short term predictions, such as the “Same-Trend” technique. Longer-term

prediction leans more heavily on the ability to model a system, and this leaning

is highlighted in Section 5.2. Additionally, the “Same-Trend” approach falls

short in Self-Protection as discussed in the next hypothesis.

The techniques used in Chapter 5 demonstrate the foundations of fit-for-

purpose Self-Learning algorithms and methodologies as applied to dynamical

energy systems and contribute to Research Question 1. As the physical sys-

tem degrades and its dynamics change, the techniques in the aforementioned

chapter adapt to the changes and continue to accurately model the system.

8.1.3 Hypothesis 3

Fit-for-purpose Self-Protection algorithms and methodologies are techniques

that use Self-Learning to handle situations that could cause damage to the

physical hardware. In Chapter 6, this thesis demonstrated two example meth-

ods of Self-Protection for energy systems.

The first technique, predicting the future and avoiding failure cases, uses the

oracles to a greater extent. The limitation discussed at the end of Section 8.2.1

needs addressing before additional work on this technique can be evaluated in

a more grounded manner. This limitation is addressed in Section 8.3.4, and

a second piece of future work — Section 8.3.7 — rounds out the final addi-

tion required to gather comparable metrics. In this method’s current form,

it has shown the promise and the ability of various modelling techniques in

handling failure cases but lacks objective data to prove each techniques rela-

tive efficacy. Notably, Dynamic Mode Decomposition with Control (DMDc)

performed better than the “Same-Trend” case mentioned in the discussion

105

of the above hypothesis as that technique’s accuracy varies wildly when the

prediction is sufficiently far into the future.

The input frequency filtering technique in Section 6.5 generates frequency data

over the history of the digital shadow and removes select frequencies. In the

tested implementation in this thesis requires a human to select these frequen-

cies; however, this implementation is sufficient for showing that removing fre-

quencies from the input signal can be beneficial. There was a decrease in

overall model accuracy with a filtered signal compared to the unmodified sig-

nal; however, the modified oscillating signal causes a drastic increase in error

and causes the first Self-Protection to trigger fail-safes spuriously. It should

be noted that the decrease in model accuracy with a filtered signal is likely

caused by the oscillating signal still affecting the heater but no longer affecting

the Modelling process, which would cause the Modelling process to, in essence,

be acting in inaccurate data from the start.

In summary, the two proposed Self-Protection techniques show promise when

based on the ability of a Digital Shadow to learn and adapt to unanticipated

changes in the physical twin. Answering this hypothesis contributes to Re-

search Question 1, and in combination with Hypothesis 2, answers it.

8.2 Threats to Validity

This thesis addresses the limitations in its discussions in this section. The

limitations are grouped by the category they impact.

8.2.1 Simulator

One major limitation of the methods tested was the lack of testing with

batched, non-neural-network approaches, such as decision trees, or stream

106

learning algorithms. Offering these techniques in addition to those provided in

Section 4.2 renders a more complete answer to the efficacy of the Self-Learning

framework.

Batch learning models like decision trees are explainable. Whilst the exact

level of explainability depends, among other factors, on the size of the tree,

it is possible to enumerate and check all possible outcomes. Do note that the

models referred to here are not bagged or boosted as these techniques reduce

their explainability (Gunning, 2017). Decision trees, such as the type proposed

by Liang, Zhang, and Song (2010), also perform well in terms of retraining and

updating speed.

Stream Learning has a concept called “Concept Drift” (Gama, Žliobaitė, Bifet,

Pechenizkiy, & Bouchachia, 2014). Concept drift is a movement in the underly-

ing system being modelled. The implementation of retraining in Section 5.1.1

bearing a similarity to concept drift is no accident: Concept drift satisfies the

Self-Learning requirement of Falsifiability. In many ways, stream learners sat-

isfy a large portion of the Self-Learning framework and, as such, are excellent

testing candidates, excluding, of course, the difficulty of proving guarantees

and stability.

Another limitation in the simulation portion of this thesis is the deviation from

real-world process heat energy systems. In real-world boilers, water is heated

past its boiling point to raise steam, and this difference changes a considerable

amount in terms of the dynamics of the physical system. For one, the failure

states of a boiler are different from those of a heater. Secondly, a boiler has

non-linear dynamics compared to the heater’s linear dynamics. Although these

differences exist, the toy example of a heater demonstrates the Self-Learning

framework for linear systems at the very least.

107

A further limitation in this portion of the thesis is the length of the oracles

generated in Section 5.1. In this section, all evaluations of error were carried

out by comparing the simulation to the model as it stepped forward in time

without using any oracle data. In essence, these comparisons occurred at

an oracle depth of one, and while there is a good reason for doing so, it

gives an advantage to some techniques over others. The reasons for using

this oracle depth is to eliminate the effects of the oracle from the results and

because in real-world situations, only the first prediction would be comparable

to the physical system for retraining. The downside of this depth is that some

techniques, such as DMDc, perform comparatively better with deeper oracles,

at least in temperature and water level predictions.

Lastly, the simulator is responsible for generating the input and output data

it uses. This lack of separation causes an issue that is discussed above in

Section 8.1.3 whereby the simulator is not affected by the impacts of filter-

ing select frequencies from the system. The want to solve this limitation is

mentioned in Section 8.3.6.

8.2.2 Sampling

As mentioned in Section 6.2, the current implementation of the simulator locks

the control action rate to the sampling rate and vice versa. As a result, it is

not possible to test the detection of higher frequency inputs or the impacts of

allowing state updates more frequently than those updates can issue control

actions. Disconnecting these rates would provide additional data points for

heterogeneously sampled systems, though it is likely only to affect the Fre-

quency Self-Protection method. A more complete analysis of the benefits of

this approach is discussed in the aforementioned section.

108

Secondly, the Frequency Self-Protection method discusses the use of input

filtering for improving the resilience of the system. As mentioned in Section 6.5,

the inability to apply filtering to the underlying system limits any conclusions

that can be drawn about the efficacy of this method for that purpose, and

though the filtering does clean up the signal, the system’s stability remains to

be more thoroughly tested.

8.2.3 Data Types

This thesis uses exclusively numeric data. It is worth noting as the finding

within this thesis may not apply directly to categorical applications, such as

in work by Chew et al. (2020).

8.3 Future Work

As with any research, this thesis leaves a variety of future avenues to research.

Below is a non-exhaustive list of future works. Further Self-Protection is not

discussed below as it is a far larger topic than the future work of this thesis.

8.3.1 Pole Placement

As explained in Section 4.2.3 and 4.2.4, OKID and ERA together and DMDc

both create state-space models. Further, as discussed in Section 5.1.2, State-

space models can be checked for stability in a few ways. The method of import

in this context is checking the pole placement of the system. For the discrete-

time systems used in this thesis, stable poles lie within a unit circle of origin

on the real and imaginary axes, as shown in Figure 3.3. This technique is not

limited only to detecting stability, however, and can be used to move the poles

of a system into stability.

109

During the longer retraining runs, a subset of the DMDc models generated

poles outwith a unit circle. These models were not used as they were rejected

by the Verification module of the Self-Learning framework; however, in the flow

in Figure 3.4 shows that Verification module can feedback to the Modelling

module, and in this case, the model could be “cured” by moving the poles back

into stability.

8.3.2 Dynamic Retraining Thresholds

In this thesis, the thresholds of the four strategies mentioned in Section 5.1

were static, but the thresholds do not need to be so. From better tuned

manual or automatic thresholds to machine learning, there is no limit to the

complexity nor the variety of methods that would satisfy the intent of the

Reevaluation module. Future work in this vein could explore the use of control-

based techniques, among a plethora of others, to dynamically move thresholds

or replace the thresholds with an entirely different piece of logic.

8.3.3 Compressed Sensing

As mentioned in Section 8.2.2, the simulator locked the control action rate

and sampling rate together. If the sampling rate is lower than the action rate,

aliasing will occur and the samples will be unable to detect frequencies above

the Nyquist frequency. In Section 6.1.1, this thesis mentioned that signals

can be reconstructed with fewer samples in select cases. Provided the Fourier

basis of the signal is sparse and samples are not evenly spaced, Compressed

Sensing (Donoho, 2006) allows for the reconstruction of a signal higher than

the apparent aliasing limit. The benefit of compressed sensing is that the exact

timing of samples in the real world may vary enough to enable better signal

recovery from the physical system, provided the clock is accurate enough.

110

8.3.4 Forecasting

As mentioned in Section 4.1.3, the simulator uses two forecasting oracles: one

perfect and one simplistic. These two oracles represent the two ends of the

spectrum of working forecasters. A natural extension to the work done in

this thesis would be to utilise forecasting techniques that are more faithful to

real-world use, such as machine learning.

8.3.5 Non-Human-In-The-Loop

The removal of the Human-In-The-Loop portion of both Self-Protection meth-

ods in Chapter 6 would create a self-contained and automated system. From

the system frequency responses in Section 5.1.2 to the input frequencies in

Section 6.5, much of the data required is already in the simulation. What

remains to remove the human-in-the-loop is research into the best method to

stably remove frequencies that can cause damage and ignore those that have

no effect.

Secondly, to remove humans from the loop in the verification module, robust

verification for the chosen model needs to be built. A single, comprehensive

approach for all models is unlikely to be attainable as each system has different

failure and success modes. For example, in the simulation, heating water above

100°C was a failure state, but in a boiler, that same state is a requirement for

its functioning.

8.3.6 Actual Energy Systems

Addressing the real-world energy system limitation mentioned above in Sec-

tion 8.2.1, a future step in the vein of this research is the use of a real en-

ergy system, possibly simulated but preferably data from a physical system.

111

Putting Self-Protection aside for a moment, using a simulator that replays

real boiler data allows for the testing in Chapter 5 to be applied to real-world

systems. However, testing Self-Protection is more complicated as it requires,

at least to go beyond simply detecting problematic situations, the ability to

influence a running system.

8.3.7 Prediction Testing

The prediction testing method used in this thesis does not generate metrics

to evaluate the performance of each technique. Using the implementation of

the first oracle used by this thesis allows the testing of prediction techniques

without external influence from the forecasting method. To evaluate prediction

techniques, the implementation requires considering the cases to test and the

metrics to collect.

Bibliography

Al–Habaibeh, A., & Gindy, N. (2001). Self-Learning Algorithm for Automated

Design of Condition Monitoring Systems for Milling Operations. The In-

ternational Journal of Advanced Manufacturing Technology, 18(6), 448–

459. doi:10.1007/s001700170054

Airbus. (n.d.). CyberRange. Retrieved August 13, 2020, from https://airbus-

cyber-security.com/products-and-services/prevent/cyberrange/

Amoah, R., Camtepe, S., & Foo, E. (2016). Securing DNP3 broadcast com-

munications in SCADA systems. IEEE Transactions on Industrial In-

formatics, 12(4), 1474–1485.

Angelopoulos, K., Papadopoulos, A. V., Silva Souza, V. E., & Mylopoulos, J.

(2016). Model Predictive Control for Software Systems with CobRA. In

Proceedings of the 11th international symposium on software engineering

for adaptive and self-managing systems (pp. 35–46). SEAMS ’16. doi:10.

1145/2897053.2897054

Anton, S. D. D., Hafner, A., & Schotten, H. D. (2019). Devil in the detail:

Attack scenarios in industrial applications. In 2019 ieee security and

privacy workshops (spw) (pp. 169–174). IEEE.

ASCon Systems. (2017). Digital Twin is about to rollout by Airbus. Retrieved

August 13, 2020, from https://ascon-systems.de/en/digital-twin-is-

about-to-rollout-by-airbus/

https://dx.doi.org/10.1007/s001700170054
https://airbus-cyber-security.com/products-and-services/prevent/cyberrange/
https://airbus-cyber-security.com/products-and-services/prevent/cyberrange/
https://dx.doi.org/10.1145/2897053.2897054
https://dx.doi.org/10.1145/2897053.2897054
https://ascon-systems.de/en/digital-twin-is-about-to-rollout-by-airbus/
https://ascon-systems.de/en/digital-twin-is-about-to-rollout-by-airbus/

113

Asghar, M. R., Hu, Q., & Zeadally, S. (2019). Cybersecurity in industrial con-

trol systems: Issues, technologies, and challenges. Computer Networks,

165, 106946. doi:https://doi.org/10.1016/j.comnet.2019.106946

Bahşi, H., & Maennel, O. M. (2015). A Conceptual Nationwide Cyber Situa-

tional Awareness Framework for Critical Infrastructures. In S. Buchegger

& M. Dam (Eds.), Secure it systems (pp. 3–10). Cham: Springer Inter-

national Publishing.

Bécue, A., Fourastier, Y., Praça, I., Savarit, A., Baron, C., Gradussofs, B., …

Thomas, C. (2018). CyberFactory#1 — Securing the industry 4.0 with

cyber-ranges and digital twins. In 2018 14th ieee international workshop

on factory communication systems (wfcs) (pp. 1–4).

Bernieri, G., Conti, M., & Pascucci, F. (2019). MimePot: a Model-based Hon-

eypot for Industrial Control Networks. In 2019 ieee international con-

ference on systems, man and cybernetics (smc) (pp. 433–438).

BinaryDefense. (n.d.). Artillery. Retrieved August 10, 2020, from https : / /

www.binarydefense.com/

Bitton, R., Gluck, T., Stan, O., Inokuchi, M., Ohta, Y., Yamada, Y., … Shabtai,

A. (2018). Deriving a Cost-Effective Digital Twin of an ICS to Facilitate

Security Evaluation. In J. Lopez, J. Zhou, & M. Soriano (Eds.), Com-

puter security (pp. 533–554). Cham: Springer International Publishing.

Boeing. (n.d.). Cyber-Range-in-a-Box. Retrieved August 13, 2020, from https:

//www.boeing.com/defense/cybersecurity-information-management/

Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Sparse identification of

nonlinear dynamics with control (SINDYc). IFAC-PapersOnLine, 49(18),

710–715.

Burroughs, S. (2021). Towards predictive runtime modelling of Kubernetes mi-

croservices (Doctoral dissertation, Hamilton, New Zealand). Masters.

Retrieved from https://hdl.handle.net/10289/14091

Čeleda, P., Vykopal, J., Švábenský, V., & Slavı́ček, K. (2020). KYPO4INDUS-

TRY: A Testbed for Teaching Cybersecurity of Industrial Control Sys-

https://dx.doi.org/https://doi.org/10.1016/j.comnet.2019.106946
https://www.binarydefense.com/
https://www.binarydefense.com/
https://www.boeing.com/defense/cybersecurity-information-management/
https://www.boeing.com/defense/cybersecurity-information-management/
https://hdl.handle.net/10289/14091

114

tems. In Proceedings of the 51st acm technical symposium on computer

science education (pp. 1026–1032). SIGCSE ’20. doi:10.1145/3328778.

3366908

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Sur-

vey. ACM Comput. Surv. 41(3). doi:10.1145/1541880.1541882

Chew, C. J.-W., Kumar, V., Patros, P., & Malik, R. (2020). ESCAPADE:

Encryption-Type-Ransomware: System Call Based Pattern Detection.

In M. Kutyłowski, J. Zhang, & C. Chen (Eds.), Network and system

security (pp. 388–407). Cham: Springer International Publishing.

Davis, J., & Magrath, S. (2013). A Survey of Cyber Ranges and Testbeds

Executive.

Dawson, M., Patros, P., & Kent, K. B. (2021). Multi-tenant cloud elastic

garbage collector (U.S. Patent No. 10,990,519).

de Silva, B., Champion, K., Quade, M., Loiseau, J.-C., Kutz, J., & Brunton, S.

(2020). PySINDy: A Python package for the sparse identification of non-

linear dynamical systems from data. Journal of Open Source Software,

5(49), 2104. doi:10.21105/joss.02104

Demo, N., Tezzele, M., & Rozza, G. (2018). PyDMD: Python Dynamic Mode

Decomposition. The Journal of Open Source Software, 3(22), 530. doi:https:

//doi.org/10.21105/joss.00530

Deutsche Telekom. (n.d.-a). Sicherheitstacho (security dashboard). Retrieved

August 10, 2020, from https://www.sicherheitstacho.eu

Deutsche Telekom. (n.d.-b). T-pot. Retrieved August 10, 2020, from https :

//dtag-dev-sec.github.io/

DinoTools et al. (n.d.). Dionaea. Retrieved August 10, 2020, from https://

github.com/DinoTools/dionaea

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information

Theory, 52(4), 1289–1306. doi:10.1109/TIT.2006.871582

Eckhart, M., & Ekelhart, A. (2018a). A Specification-Based State Replication

Approach for Digital Twins. In Proceedings of the 2018 workshop on

https://dx.doi.org/10.1145/3328778.3366908
https://dx.doi.org/10.1145/3328778.3366908
https://dx.doi.org/10.1145/1541880.1541882
https://dx.doi.org/10.21105/joss.02104
https://dx.doi.org/https://doi.org/10.21105/joss.00530
https://dx.doi.org/https://doi.org/10.21105/joss.00530
https://www.sicherheitstacho.eu
https://dtag-dev-sec.github.io/
https://dtag-dev-sec.github.io/
https://github.com/DinoTools/dionaea
https://github.com/DinoTools/dionaea
https://dx.doi.org/10.1109/TIT.2006.871582

115

cyber-physical systems security and privacy (pp. 36–47). CPS-SPC ’18.

doi:10.1145/3264888.3264892

Eckhart, M., & Ekelhart, A. (2018b). Towards Security-Aware Virtual En-

vironments for Digital Twins. In Proceedings of the 4th acm workshop

on cyber-physical system security (pp. 61–72). CPSS ’18. doi:10.1145/

3198458.3198464

Eckhart, M., Ekelhart, A., & Weippl, E. (2019). Enhancing Cyber Situational

Awareness for Cyber-Physical Systems through Digital Twins. In 2019

24th ieee international conference on emerging technologies and factory

automation (etfa) (pp. 1222–1225). doi:https://doi.org/10.1109/ETFA.

2019.8869197

Feng, C., Li, T., & Chana, D. (2017). Multi-level Anomaly Detection in Indus-

trial Control Systems via Package Signatures and LSTM Networks. In

2017 47th annual ieee/ifip international conference on dependable sys-

tems and networks (dsn) (pp. 261–272).

Filieri, A., Maggio, M., Angelopoulos, K., D’ippolito, N., Gerostathopoulos, I.,

Hempel, A. B., … Vogel, T. (2017). Control Strategies for Self-Adaptive

Software Systems. ACM Trans. Auton. Adapt. Syst. 11(4). doi:10.1145/

3024188

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A

Survey on Concept Drift Adaptation. ACM Comput. Surv. 46(4). doi:10.

1145/2523813

Gao, H., Peng, Y., Jia, K., Dai, Z., & Wang, T. (2013). The Design of ICS

Testbed Based on Emulation, Physical, and Simulation (EPS-ICS Testbed).

In 2013 ninth international conference on intelligent information hiding

and multimedia signal processing (pp. 420–423).

Gazula, M. B. (2017). Cyber warfare conflict analysis and case studies (Doc-

toral dissertation, Massachusetts Institute of Technology).

https://dx.doi.org/10.1145/3264888.3264892
https://dx.doi.org/10.1145/3198458.3198464
https://dx.doi.org/10.1145/3198458.3198464
https://dx.doi.org/https://doi.org/10.1109/ETFA.2019.8869197
https://dx.doi.org/https://doi.org/10.1109/ETFA.2019.8869197
https://dx.doi.org/10.1145/3024188
https://dx.doi.org/10.1145/3024188
https://dx.doi.org/10.1145/2523813
https://dx.doi.org/10.1145/2523813

116

Gehrmann, C., & Gunnarsson, M. (2020). A Digital Twin Based Industrial Au-

tomation and Control System Security Architecture. IEEE Transactions

on Industrial Informatics, 16(1), 669–680. doi:10.1109/TII.2019.2938885

Ghahramani, Z. (2004). Unsupervised learning. In O. Bousquet, U. von Luxburg,

& G. Rätsch (Eds.), Advanced lectures on machine learning: Ml summer

schools 2003, canberra, australia, february 2 - 14, 2003, tübingen, ger-

many, august 4 - 16, 2003, revised lectures (pp. 72–112). doi:10.1007/978-

3-540-28650-9_5

Glaessgen, E., & Stargel, D. (n.d.). The digital twin paradigm for future NASA

and US Air Force vehicles. In 53rd aiaa/asme/asce/ahs/asc structures,

structural dynamics and materials conference 20th aiaa/asme/ahs adap-

tive structures conference 14th aiaa (p. 1818). doi:10.2514/6.2012-1818

Government Communications Security Bureau. (2020). New Zealand Informa-

tion Security Manual v3.3. Retrieved from https://www.nzism.gcsb.

govt.nz/

Green, B., Lee, A., Antrobus, R., Roedig, U., Hutchison, D., & Rashid, A.

(2017). Pains, Gains and PLCs: Ten Lessons from Building an Industrial

Control Systems Testbed for Security Research. In 10th USENIX work-

shop on cyber security experimentation and test (CSET 17), Vancouver,

BC: USENIX Association. Retrieved from https ://www.usenix .org/

conference/cset17/workshop-program/presentation/green

Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced

Research Projects Agency (DARPA), nd Web, 2(2).

Hayes, G., & El-Khatib, K. (2013). Securing modbus transactions using hash-

based message authentication codes and stream transmission control pro-

tocol. In 2013 third international conference on communications and in-

formation technology (iccit) (pp. 179–184).

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Comput. 9(8), 1735–1780. doi:10.1162/neco.1997.9.8.1735

https://dx.doi.org/10.1109/TII.2019.2938885
https://dx.doi.org/10.1007/978-3-540-28650-9_5
https://dx.doi.org/10.1007/978-3-540-28650-9_5
https://dx.doi.org/10.2514/6.2012-1818
https://www.nzism.gcsb.govt.nz/
https://www.nzism.gcsb.govt.nz/
https://www.usenix.org/conference/cset17/workshop-program/presentation/green
https://www.usenix.org/conference/cset17/workshop-program/presentation/green
https://dx.doi.org/10.1162/neco.1997.9.8.1735

117

Holm, H., Karresand, M., Vidström, A., & Westring, E. (2015). A Survey of

Industrial Control System Testbeds. In S. Buchegger & M. Dam (Eds.),

Secure it systems (pp. 11–26). Cham: Springer International Publishing.

Hutchins, E. M., Cloppert, M. J., & Amin, R. M. (2011). Intelligence-driven

computer network defense informed by analysis of adversary campaigns

and intrusion kill chains. Leading Issues in Information Warfare & Se-

curity Research, 1(1), 80.

Iannucci, S., Barba, O. D., Cardellini, V., & Banicescu, I. (2019). A Perfor-

mance Evaluation of Deep Reinforcement Learning for Model-Based In-

trusion Response. In 2019 ieee 4th international workshops on founda-

tions and applications of self* systems (fas*w) (pp. 158–163).

Jang, J. S. R. (1992). Self-learning fuzzy controllers based on temporal back-

propagation. IEEE Transactions on Neural Networks, 3(5), 714–723.

doi:10.1109/72.159060

Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising

the Digital Twin: A systematic literature review. CIRP Journal of Man-

ufacturing Science and Technology. doi:https://doi.org/10.1016/j.cirpj.

2020.02.002

Juang, J.-N., & Pappa, R. S. (1985). An eigensystem realization algorithm for

modal parameter identification and model reduction. Journal of guid-

ance, control, and dynamics, 8(5), 620–627.

Juang, J.-N., Phan, M., Horta, L. G., & Longman, R. W. (1993). Identification

of observer/Kalman filter Markov parameters-Theory and experiments.

Journal of Guidance, Control, and Dynamics, 16(2), 320–329.

Karampidis, K., Panagiotakis, S., Vasilakis, M., Markakis, E. K., & Papadourakis,

G. (2019). Industrial CyberSecurity 4.0: Preparing the Operational Tech-

nicians for Industry 4.0. In 2019 ieee 24th international workshop on com-

puter aided modeling and design of communication links and networks

(camad) (pp. 1–6).

https://dx.doi.org/10.1109/72.159060
https://dx.doi.org/https://doi.org/10.1016/j.cirpj.2020.02.002
https://dx.doi.org/https://doi.org/10.1016/j.cirpj.2020.02.002

118

Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital

Twin in manufacturing: A categorical literature review and classification.

IFAC-PapersOnLine, 51(11), 1016–1022. 16th IFAC Symposium on In-

formation Control Problems in Manufacturing INCOM 2018. doi:https:

//doi.org/10.1016/j.ifacol.2018.08.474

Lai, Y., Liu, Z., Song, Z., Wang, Y., & Gao, Y. (2016). Anomaly detection

in Industrial Autonomous Decentralized System based on time series.

Simulation Modelling Practice and Theory, 65, 57–71. Analyzing and

Visual Programming Internet of Things. doi:https://doi.org/10.1016/j.

simpat.2016.01.013

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),

436–444. doi:10.1038/nature14539

Liang, C., Zhang, Y., & Song, Q. (2010). Decision tree for dynamic and un-

certain data streams. In Proceedings of 2nd asian conference on machine

learning (pp. 209–224). JMLR Workshop and Conference Proceedings.

Lightwire. (n.d.). Trusted Rural Broadband for Waikato & BOP, Lightwire.

Retrieved August 10, 2020, from https://www.lightwire.co.nz/

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, … Xiaoqiang Zheng. (2015). TensorFlow: Large-scale ma-

chine learning on heterogeneous systems. Software available from ten-

sorflow.org. Retrieved from https://www.tensorflow.org/

Microsoft Corporation. (n.d.). Hackers hit Norsk Hydro with ransomware. The

company responded with transparency. Retrieved August 13, 2020, from

https : / / news .microsoft . com / transform / hackers - hit - norsk - hydro -

ransomware-company-responded-transparency/

Ministry of Business, Innovation & Employment. (2019a). Process heat in New

Zealand. Available at: https://www.mbie.govt.nz/assets/8c89799b73/

process-heat-current-state-fact-sheet.pdf.

Ministry of Business, Innovation & Employment. (2019b). Process Heat in New

Zealand: Opportunities and barriers to lowering emissions. Available at:

https://dx.doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
https://dx.doi.org/https://doi.org/10.1016/j.ifacol.2018.08.474
https://dx.doi.org/https://doi.org/10.1016/j.simpat.2016.01.013
https://dx.doi.org/https://doi.org/10.1016/j.simpat.2016.01.013
https://dx.doi.org/10.1038/nature14539
https://www.lightwire.co.nz/
https://www.tensorflow.org/
https://news.microsoft.com/transform/hackers-hit-norsk-hydro-ransomware-company-responded-transparency/
https://news.microsoft.com/transform/hackers-hit-norsk-hydro-ransomware-company-responded-transparency/
https://www.mbie.govt.nz/assets/8c89799b73/process-heat-current-state-fact-sheet.pdf
https://www.mbie.govt.nz/assets/8c89799b73/process-heat-current-state-fact-sheet.pdf

119

https://www.mbie.govt.nz/dmsdocument/4292-process-heat-in-new-

zealand-opportunities-and-barriers-to-lowering-emissions.

Ministry of Business, Innovation & Employment. (2020). Process heat in New

Zealand. Available at: https://www.mbie.govt.nz/science-and-technology/

science-and-innovation/funding-information-and-opportunities/investment-

funds / strategic - science - investment - fund / ssif - funded - programmes /

university-of-waikato/. Accessed: 22/Mar/2021.

Ministry of Business, Innovation & Employment. (2021). Process heat in New

Zealand. Available at: https://www.mbie.govt.nz/building-and-energy/

energy-and-natural-resources/low-emissions-economy/process-heat-in-

new-zealand/.

MushMush Foundation. (n.d.). Conpot. Retrieved August 10, 2020, from https:

//github.com/mushorg/conpot

Oliveira-Neto, F. M., Han, L. D., & Jeong, M. K. (2013). An Online Self-

Learning Algorithm for License Plate Matching. IEEE Transactions on

Intelligent Transportation Systems, 14(4), 1806–1816. doi:10.1109/TITS.

2013.2270107

Oosterhof, M. et al. (n.d.). Cowrie. Retrieved August 10, 2020, from https:

//github.com/cowrie/cowrie

Parliamentary Counsel Office of New Zealand. (2019). Climate Change Re-

sponse (Zero Carbon) Amendment Act 2019. Available at: https://www.

legislation.govt.nz/act/public/2019/0061/latest/whole.html.

Patros, P., Kent, K. B., & Dawson, M. (2017). SLO Request Modeling, Re-

ordering and Scaling. In Proceedings of the 27th annual international

conference on computer science and software engineering (pp. 180–191).

CASCON ’17. Markham, Ontario, Canada: IBM Corp.

Pauna, A. (2012). Improved self adaptive honeypots capable of detecting rootkit

malware. In 2012 9th international conference on communications (comm)

(pp. 281–284).

https://www.mbie.govt.nz/dmsdocument/4292-process-heat-in-new-zealand-opportunities-and-barriers-to-lowering-emissions
https://www.mbie.govt.nz/dmsdocument/4292-process-heat-in-new-zealand-opportunities-and-barriers-to-lowering-emissions
https://www.mbie.govt.nz/science-and-technology/science-and-innovation/funding-information-and-opportunities/investment-funds/strategic-science-investment-fund/ssif-funded-programmes/university-of-waikato/
https://www.mbie.govt.nz/science-and-technology/science-and-innovation/funding-information-and-opportunities/investment-funds/strategic-science-investment-fund/ssif-funded-programmes/university-of-waikato/
https://www.mbie.govt.nz/science-and-technology/science-and-innovation/funding-information-and-opportunities/investment-funds/strategic-science-investment-fund/ssif-funded-programmes/university-of-waikato/
https://www.mbie.govt.nz/science-and-technology/science-and-innovation/funding-information-and-opportunities/investment-funds/strategic-science-investment-fund/ssif-funded-programmes/university-of-waikato/
https://www.mbie.govt.nz/building-and-energy/energy-and-natural-resources/low-emissions-economy/process-heat-in-new-zealand/
https://www.mbie.govt.nz/building-and-energy/energy-and-natural-resources/low-emissions-economy/process-heat-in-new-zealand/
https://www.mbie.govt.nz/building-and-energy/energy-and-natural-resources/low-emissions-economy/process-heat-in-new-zealand/
https://github.com/mushorg/conpot
https://github.com/mushorg/conpot
https://dx.doi.org/10.1109/TITS.2013.2270107
https://dx.doi.org/10.1109/TITS.2013.2270107
https://github.com/cowrie/cowrie
https://github.com/cowrie/cowrie
https://www.legislation.govt.nz/act/public/2019/0061/latest/whole.html
https://www.legislation.govt.nz/act/public/2019/0061/latest/whole.html

120

Pauna, A., Bica, I., Pop, F., & Castiglione, A. (2019). On the rewards of self-

adaptive IoT honeypots. Annals of Telecommunications, 74(7-8), 501–

515.

Pauna, A., Iacob, A., & Bica, I. (2018). QRASSH - A Self-Adaptive SSH

Honeypot Driven by Q-Learning. In 2018 international conference on

communications (comm) (pp. 441–446).

Peng Wen, Zhang Dianhua, & Gong Dianyao. (2012). Optimization of roll-

gap self-learning algorithm in tandem hot rolled strip finishing mill. In

2012 24th chinese control and decision conference (ccdc) (pp. 3947–3950).

doi:10.1109/CCDC.2012.6243107

Podolskiy, V., Mayo, M., Koay, A., Gerndt, M., & Patros, P. (2019). Maintain-

ing SLOs of Cloud-Native Applications Via Self-Adaptive Resource Shar-

ing. In 2019 ieee 13th international conference on self-adaptive and self-

organizing systems (saso) (pp. 72–81). doi:10.1109/SASO.2019.00018

Podolskiy, V., Patrou, M., Patros, P., Gerndt, M., & Kent, K. B. (2020). The

Weakest Link: Revealing and Modeling the Architectural Patterns of Mi-

croservice Applications. In Proceedings of the 30th annual international

conference on computer science and software engineering (pp. 113–122).

CASCON ’20. Toronto, Ontario, Canada: IBM Corp.

Proctor, J. L., Brunton, S. L., & Kutz, J. N. (2016). Dynamic mode decompo-

sition with control. SIAM Journal on Applied Dynamical Systems, 15(1),

142–161.

Rabiner, L., Schafer, R., & Rader, C. (1969). The chirp z-transform algorithm.

IEEE Transactions on Audio and Electroacoustics, 17 (2), 86–92. doi:10.

1109/TAU.1969.1162034

Reuters. (n.d.). UPDATE 1-Hydro’s Norwegian aluminium plant faces months

of reduced output. Retrieved August 13, 2020, from https : / / www .

reuters.com/article/norsk-hydro-outages/update-1-hydros-norwegian-

aluminium-plant-faces-months-of-reduced-output-idUSL8N21K4L7

https://dx.doi.org/10.1109/CCDC.2012.6243107
https://dx.doi.org/10.1109/SASO.2019.00018
https://dx.doi.org/10.1109/TAU.1969.1162034
https://dx.doi.org/10.1109/TAU.1969.1162034
https://www.reuters.com/article/norsk-hydro-outages/update-1-hydros-norwegian-aluminium-plant-faces-months-of-reduced-output-idUSL8N21K4L7
https://www.reuters.com/article/norsk-hydro-outages/update-1-hydros-norwegian-aluminium-plant-faces-months-of-reduced-output-idUSL8N21K4L7
https://www.reuters.com/article/norsk-hydro-outages/update-1-hydros-norwegian-aluminium-plant-faces-months-of-reduced-output-idUSL8N21K4L7

121

Sarco, S. (2018). The Steam and Condensate Loop: Effective Steam Engineering

For Today. Spirax Sarco Limited.

Schluse, M., Atorf, L., & Rossmann, J. (2017). Experimentable digital twins

for model-based systems engineering and simulation-based development.

In 2017 annual ieee international systems conference (syscon) (pp. 1–8).

doi:10.1109/SYSCON.2017.7934796

Schroeder, G. N., Steinmetz, C., Rodrigues, R. N., Henriques, R. V. B., Ret-

tberg, A., & Pereira, C. E. (2021). A Methodology for Digital Twin

Modeling and Deployment for Industry 4.0. Proceedings of the IEEE,

109(4), 556–567. doi:10.1109/JPROC.2020.3032444

Shilling, S. A. (1972). A study of the chirp Z-tranform and its applications

(Doctoral dissertation). Masters. Retrieved from http://hdl.handle.net/

2097/7844

Shodan. (n.d.). Shodan.io. Retrieved August 10, 2020, from https ://www.

shodan.io

Su, J., Vargas, D. V., & Sakurai, K. (2019). One Pixel Attack for Fooling

Deep Neural Networks. IEEE Transactions on Evolutionary Computa-

tion, 23(5), 828–841. doi:10.1109/TEVC.2019.2890858

Tan, S. C., Ting, K. M., & Liu, T. F. (2011). Fast Anomaly Detection for

Streaming Data. In Proceedings of the twenty-second international joint

conference on artificial intelligence - volume volume two (pp. 1511–1516).

IJCAI’11. Barcelona, Catalonia, Spain: AAAI Press.

The Boeing Company. (2019). Welcome to Boeing’s factory of the future. Re-

trieved February 3, 2021, from https : / /www .boeing . com/ features /

innovation-quarterly/feb2019/btj-global.page

The Guardian. (2021). Natanz ‘sabotage’ highlights Iran’s vulnerability to

cyber-attacks. Available at: https://www.theguardian.com/world/2021/

apr/12/natanz-nuclear-facility-sabotage-iran-vulnerability-to-cyber-

attacks.

https://dx.doi.org/10.1109/SYSCON.2017.7934796
https://dx.doi.org/10.1109/JPROC.2020.3032444
http://hdl.handle.net/2097/7844
http://hdl.handle.net/2097/7844
https://www.shodan.io
https://www.shodan.io
https://dx.doi.org/10.1109/TEVC.2019.2890858
https://www.boeing.com/features/innovation-quarterly/feb2019/btj-global.page
https://www.boeing.com/features/innovation-quarterly/feb2019/btj-global.page
https://www.theguardian.com/world/2021/apr/12/natanz-nuclear-facility-sabotage-iran-vulnerability-to-cyber-attacks
https://www.theguardian.com/world/2021/apr/12/natanz-nuclear-facility-sabotage-iran-vulnerability-to-cyber-attacks
https://www.theguardian.com/world/2021/apr/12/natanz-nuclear-facility-sabotage-iran-vulnerability-to-cyber-attacks

122

Trendmicro. (2015a). GasPot Integrated Into Conpot, Contributing to Open

Source ICS Research. Retrieved August 10, 2020, from https ://blog.

trendmicro.com/trendlabs-security-intelligence/gaspot-integrated-into-

conpot-contributing-to-open-source-ics-research/

Trendmicro. (2015b). The GasPot Experiment: Unexamined Perils in Using

Gas-Tank-Monitoring Systems. Retrieved August 10, 2020, from https:

//documents.trendmicro.com/assets/wp/wp_the_gaspot_experiment.

pdf

United Nations Framework Convention on Climate Change. (2015). Paris Agree-

ment. Available at: https://unfccc.int/process-and-meetings/the-paris-

agreement/the-paris-agreement.

Urias, V., Van Leeuwen, B., & Richardson, B. (2012). Supervisory Command

and Data Acquisition (SCADA) system cyber security analysis using a

live, virtual, and constructive (LVC) testbed. In Milcom 2012 - 2012 ieee

military communications conference (pp. 1–8).

van Zijl, M. (2020).Model checking for cloud autoscaling using WATERS (Doc-

toral dissertation, Hamilton, New Zealand). Masters. Retrieved from

https://hdl.handle.net/10289/13602

Wade, K. C. (1995). Steam generator degradation and its impact on contin-

ued operation of pressurized water reactors in the United States. Energy

Information Administration/Electric Power Monthly, 66, 36.

Wallace, N., & Atkison, T. (2013). Observing Industrial Control System At-

tacks Launched via Metasploit Framework. In Proceedings of the 51st

acm southeast conference. ACMSE ’13. doi:10.1145/2498328.2500067

Wang, K., Du, M., Maharjan, S., & Sun, Y. (2017). Strategic Honeypot Game

Model for Distributed Denial of Service Attacks in the Smart Grid. IEEE

Transactions on Smart Grid, 8(5), 2474–2482.

Wang, W., & Lu, Z. (2013). Cyber security in the smart grid: Survey and

challenges. Computer networks, 57 (5), 1344–1371.

https://blog.trendmicro.com/trendlabs-security-intelligence/gaspot-integrated-into-conpot-contributing-to-open-source-ics-research/
https://blog.trendmicro.com/trendlabs-security-intelligence/gaspot-integrated-into-conpot-contributing-to-open-source-ics-research/
https://blog.trendmicro.com/trendlabs-security-intelligence/gaspot-integrated-into-conpot-contributing-to-open-source-ics-research/
https://documents.trendmicro.com/assets/wp/wp_the_gaspot_experiment.pdf
https://documents.trendmicro.com/assets/wp/wp_the_gaspot_experiment.pdf
https://documents.trendmicro.com/assets/wp/wp_the_gaspot_experiment.pdf
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://hdl.handle.net/10289/13602
https://dx.doi.org/10.1145/2498328.2500067

123

Wei, Q., Liao, Z., Song, R., Zhang, P., Wang, Z., & Xiao, J. (2021). Self-

Learning Optimal Control for Ice-Storage Air Conditioning Systems via

Data-Based Adaptive Dynamic Programming. IEEE Transactions on In-

dustrial Electronics, 68(4), 3599–3608. doi:10.1109/TIE.2020.2978699

Weyns, D. (2018). Engineering Self-Adaptive Software Systems – An Orga-

nized Tour. In 2018 ieee 3rd international workshops on foundations

and applications of self* systems (fas*w) (pp. 1–2). doi:10.1109/FAS-

W.2018.00012

Weyns, D. (2021a). An Introduction To Self-Adaptive Systems: A contemporary

software engineering perspective. Wiley.

Weyns, D. (2021b). An Introduction To Self-Adaptive Systems: A contemporary

software engineering perspective. Wiley.

Zamiri-Gourabi, M.-R., Qalaei, A. R., & Azad, B. A. (2019). Gas What? I Can

See Your GasPots. Studying the Fingerprintability of ICS Honeypots in

the Wild. In Proceedings of the fifth annual industrial control system

security (icss) workshop (pp. 30–37). ICSS. doi:10.1145/3372318.3372322

Zhao, Z., Shen, L., Yang, C., Wu, W., Zhang, M., & Huang, G. Q. (2021).

IoT and digital twin enabled smart tracking for safety management.

Computers and Operations Research, 128, 105183. doi:https://doi.org/

10.1016/j.cor.2020.105183

Zhou, C., Huang, S., Xiong, N., Yang, S., Li, H., Qin, Y., & Li, X. (2015).

Design and Analysis of Multimodel-Based Anomaly Intrusion Detection

Systems in Industrial Process Automation. IEEE Transactions on Sys-

tems, Man, and Cybernetics: Systems, 45(10), 1345–1360.

https://dx.doi.org/10.1109/TIE.2020.2978699
https://dx.doi.org/10.1109/FAS-W.2018.00012
https://dx.doi.org/10.1109/FAS-W.2018.00012
https://dx.doi.org/10.1145/3372318.3372322
https://dx.doi.org/https://doi.org/10.1016/j.cor.2020.105183
https://dx.doi.org/https://doi.org/10.1016/j.cor.2020.105183

Appendix

Strategy DMDc OKID SINDYc

No Retraining 5622.5 1.36e9 3320.3

Step 5622.5 2.45e9 3320.3

Signed 2545.3 2.45e9 3320.3

Sign., Step 2877.8 2.45e9 3320.3

Absolute 2699.0 2.45e9 3320.3

Abs., Step 2629.4 2.45e9 3320.3

Abs., Sign. 2683.4 2.45e9 3320.3

Abs., Sign., Step 2636.1 2.45e9 3320.3

Time 2804.9 2.92e9 3320.3

Time, Step 2668.8 2.45e9 3320.3

Time, Sign. 2742.7 2.45e9 3320.3

Time, Sign., Step 2610.1 2.45e9 3320.3

Time, Abs. 2766.7 2.45e9 3320.3

Time, Abs., Step 2591.1 2.45e9 3320.3

Time, Abs., Sign. 2706.1 2.45e9 3320.3

All 2610.1 2.45e9 3320.3

Table 8.1: Complete Temperature Error Across All Retraining Strategies with
minimum time before retrain

125

Figure 8.1: B Matrix Change

Longer Run Retraining Images

The following images are generated from longer, 1,048,576 step sequences to

show the system at steady state for an elongated period of time. Do note

that the following figures were generated using the minimum retrain time set-

ting, whereas the other images shown in Section 5.1.1 were able to retrain

immediately if the retrain strategies kicked in.

Bode Plots

126

Figure 8.2: Principal Component Analysis of B matrix change over time

127

Figure 8.3: Absolute change in A matrix values between retraining

Figure 8.4: Absolute change in A matrix values between retraining

128

Figure 8.5: Principal Component Analysis of A matrix change over time

129

Figure 8.6: Principal Component Analysis of B matrix change over time

130

Figure 8.7: Integral of Absolute Error for DMDc Retrains with the Signed
strategies

131

Figure 8.8: Principal Component Analysis of B matrix over time

Figure 8.9: Heater error only for Octuple length run

132

Figure 8.10: DMDc First Retrain Bode Plot — Phase

	Introduction
	Background
	Self-Adaptive Systems
	Control Theory
	State-Space Models
	Anomaly Detection

	Aims
	Structure

	Related Work
	Digital Twins
	Digital Twins in Critical Infrastructure
	Digital Twins in Critical Infrastructure for Self-Protection
	Further Definition

	Machine Learning
	Neural Networks

	Self-Adaptive Control Systems
	Systematic Literature Review
	Methodology
	Manual Additions

	Continuous User Training
	Literature Crossover
	Honeypots, Decoys, and Deception

	Key Findings

	Research Gaps
	Conclusion

	Research Method
	Self-Learning and Self-Protection
	Hypotheses
	Summary

	Requirements and Experimental Design
	Simulation
	Heater
	PID Controller
	Forecast Oracles
	Error Metrics
	Degradation

	Tested Techniques
	Base-Case
	Same-Trend
	Observer Kalman and Eigensystem Realisation
	Dynamic Mode Decomposition with Control
	Sparse Identification of Nonlinear Dynamics with Control
	Recurrent Neural Network

	Conclusion

	Self-Learning Evaluation and Analysis
	Performance over Simulation
	Retraining
	Model Stability

	Performance over Varying Oracle Depths
	Conclusion

	Self-Protection Evaluation and Algorithms
	Signal Processing
	Nyquist Frequency
	Transforms

	Sampling and Command Frequency
	Heater Failure Conditions
	Temperature Prediction Handling
	Input Frequency Handling
	Conclusion

	Engineering Design Discussion
	Simulation
	Simulation Design Limitations

	Overall Architectures
	Self-Learning
	Self-Protection

	Software Development Process
	Conclusions

	Conclusion
	Research Hypotheses
	Hypothesis 1
	Hypothesis 2
	Hypothesis 3

	Threats to Validity
	Simulator
	Sampling
	Data Types

	Future Work
	Pole Placement
	Dynamic Retraining Thresholds
	Compressed Sensing
	Forecasting
	Non-Human-In-The-Loop
	Actual Energy Systems
	Prediction Testing

