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Abstract

The momentary assessment of an individual’s affective state is criti-
cal to the monitoring of mental wellbeing and the ability to instantly
apply interventions. This thesis introduces the concept of tangible
fidgeting interfaces for affective recognition from design and devel-
opment through to evaluation. Tangible interfaces expand upon the
affordance of familiar physical objects as the ability to touch and
fidget may help to tap into individuals’ psychological need to feel
occupied and engaged. Embedding digital technologies within inter-
faces capitalises on motor and perceptual capabilities and allows for
the direct manipulation of data, offering people the potential for new
modes of interaction when experiencing mental wellbeing challenges.

Tangible interfaces present an ideal opportunity to digitally enable
physical fidgeting interactions along with physiological sensor moni-
toring to unobtrusively and comfortable measure non-visable changes
in affective state. This opportunity initiated the investigation of fac-
tors that would bring about the designing of more effective intelligent
solutions using participatory design techniques to engage people in
designing solutions relevant to themselves.

Adopting an artificial intelligence approach using physiological signals
creates the possibility to quantify affect with high levels of accuracy.
However, labelling is an indispensable stage of data pre-processing
that is required before classification and can be extremely challenging
with multi-model sensor data. New techniques are introduced for
labelling at the point of collection coupled with a pilot study and
a systematic performance comparison of five custom built labelling
interfaces.
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When classifying labelled physiological sensor data, individual differ-
ences between people limit the generalisability of models. To address
this challenge, a transfer learning approach has been developed that
personalises affective models using few labelled samples. This ap-
proach to personalise models and improve cross-domain performance
is completed on-device, automating the traditionally manual process,
saving time and labour. Furthermore, monitoring trajectories over
long periods of time inherits some critical limitations in relation to
the size of the training dataset. This shortcoming may hinder the
development of reliable and accurate machine learning models. A
second framework has been developed to overcome the limitation of
small training datasets using an image-encoding transfer learning ap-
proach.

This research offers the first attempt at the development of tangible
interfaces using artificial intelligence towards building a real-world
continuous affect recognition system in addition to offering real-time
feedback to perform as interventions. This exploration of affective
interfaces has many potential applications to help improve quality of
life for the wider population.
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Chapter 1

Introduction

1.1 Background and Motivation
Mental health problems constitute a global challenge that affects a large number
of people of all ages and socioeconomic backgrounds [102]. The World Health
Organisation (WHO) [343] defines the wellbeing of an individual as being en-
compassed in the realisation of their abilities, coping with the normal stresses of
life, productive work and contribution to their community. Stress and anxiety
are one of the most prevalent mental wellbeing problems in the UK and else-
where, yet it is still under-reported, under-diagnosed and under-treated [310].
According to the Mental Health Foundation, about a quarter of the population
will experience some form of mental health problem in the course of a year [310].
Hectic modern lifestyles contribute to daily stress and a general decline in mental
wellbeing, as 59% of UK adults currently experience work-related stress [236].
This makes stress the leading cause of sickness-related absences from work, with
about 70 million days lost each year at an estimated cost of £2.4 billion [236].
Mental disorders are closely associated with fear of stigma, structural barriers
such as financial burden, and lack of available services and resources which of-
ten prohibit the delivery of frequent clinical advice and monitoring. Advances in
technologies exhibit a range of attractive properties, which facilitate the delivery
of state-of-the-art monitoring.

Computers are a ubiquitous part of life although their inability to recognise
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mental wellbeing states results in poor human computer interactions. Affective
computing [238] is computing’s relationship with human emotions, if comput-
ers can recognise their users’ behaviours including emotional experiences [242] it
may be possible for new devices to provide intuitive interventions that improve
quality of life. Expanding upon the natural affordance of touch, Tangible User
Interfaces (TUIs) describe physical computer interfaces that are able to trans-
late user actions into input events [144]. TUIs enable the interaction of digital
information through users’ existing skills and knowledge with physical objects,
making them more intuitive to use [317], [143]. Actions on physical rather than
virtual interfaces enable new forms of multi-sensory access such as fidgeting that
may help regulate stress and alleviate mental wellbeing challenges [211], [141].
Little body of work has thus far looked towards tangibles as an effective inter-
action paradigm to automatically recognise real-world affective state and offer
on-device interventions.

A vital aspect towards measuring affective state is the development of meth-
ods that can comfortably measure the non-specific responses of the body. Poor
wellbeing often results in reduced Heart Rate Variability (HRV - variation in time
between heartbeats) [165] and increased ElectroDermal Activity (EDA) [362] as
they directly correlate with sympathetic nervous system [344] [276] [281]. This
provides new opportunities to utilise non-invasive technologies for behavioural
health care in order to comfortably conduct assessments in real-time. Multimodal
interactions are currently used for a wide variety of purposes such as improving
communication but affective computing is an area where these interactions could
have a profound impact [5] [84]. By adopting a non-invasive multi physiological
sensing approach and building accurate and reliable machine learning classifica-
tion models it creates the opportunity for the automatic inference of affect in
real-world settings.

Previously there have only been humble attempts at developing affective tan-
gible interfaces that have not utilised advances in Artificial Intelligence (AI) such
as deep learning to recognising real-world mental wellbeing. Advances in deep
learning present new opportunities for the inference of wellbeing by alleviating
the need for manual feature extraction and when combined with physical manip-
ulation tools, opens the door for new forms of natural interactions and responsive

2



1. Introduction

interventions. By taking advantage of these advances this thesis explores the life
cycle of co-designing, developing and evaluating a new form of TUI defined as
tangible fidgeting interfaces. These interfaces enable real-time and momentary
access to individuals’ affective state and can provide therapeutic interventions
on-the-go to benefit the wider population. Figure 1.1 shows the system architec-
ture for affective TUIs from the co-design of the devices and collection of labelled
data to the classification of physiological signals.

Figure 1.1: System architecture showing co-design, labelling, classification, and
deployment stages.

1.2 Research Gap
The collection of physiological data in real-world environments is a challenging
proposition that has resulted in the majority of previous research primarily us-
ing controlled experimental datasets, which may not transfer to the real-world
domain [194], [248], [290], [368], [289], [169]. Most reported affect recognition sys-
tems for accurately measuring physiological parameters e.g. ElectroCardioGram
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(ECG) usually require sticky electrodes or bands which can be burdensome. Ad-
ditionally, the costs associated with these devices are usually high, limiting the
potential scalability. While commercial wearables offer the potential for real-
world physiological monitoring they have not been designed for the purpose of
affect recognition, limiting their capabilities. Commercial wearables are ham-
pered by poor sample rates, low accuracy [168], [30], [206], [234], [128], [218]
and often forgo physical sensors such as EDA, that may help provide a better
indication of health [305], [168].

Real-world labelled longitudinal data collection poses even greater challenges
as it relies on multiple users continually self-reporting, while simultaneously using
sensors for extended periods. Advances in edge computing are aiding on-device
classification but little focus has been paid to the initial collection of labelled mul-
timodal datasets. This results in studies that only consider subjects performing
well-defined acted expressions, in a very controlled condition such as watching
movie clips to elicit emotional responses [194]. Therefore, the models developed
are not robust enough for real-world recognition tasks with subject variation.
Most previous approaches have not considered real-world physiological data col-
lection, making this a novel attempt at building an entire affective recognition
system using multi-on-body senors and advances in AI.

Furthermore, while the use of AI to monitor affective state is not new, many
previous systems have used a one-size-fits-all solution [98], [10], [340], [240]. How-
ever, due to large individual differences in physiology when experiencing different
states of wellbeing personalised models may be required, especially for those with
intellectual disabilities who are often overlooked. Finally, little research has con-
sidered the possibility of automatically actuating feedback on-device in real-time
such as fidgeting mechanisms that may meet an unmet demand by helping people
feel occupied. By combining advances in edge computing and AI it is possible to
automatically activate therapeutic interventions when they are most needed.
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1.3 Aim and Objectives
To help bridge the gap between human emotional experiences and computer sys-
tems this research proposes the exploration of tangible fidgeting interfaces for
real-world, real-time continuous assessment. Multiple on-body sensors, such as
EDA, Heart Rate (HR) and accelerometers embedded within tangible devices
pave the way for continuous and non-invasive prediction of affective state.

The aim of this research is to go beyond conventional smartphone apps and
wearables by developing physical interfaces that enable the real-time inference of
real-world affect from non-invasive sensors including digital markers of physiol-
ogy and human behaviour. Initially tangible interfaces are designed to aid the
collection of real-world labelled sensor data that is required to train classifica-
tion models. This thesis then explores real-world inference using a range of deep
learning classifiers with an emphasis on developing personalised affective models
and reducing the requirement of a large dataset for training. In order to achieve
this, a set of objectives have been developed, including:

• To co-design portable tangible interfaces with the target population that
combine touch and fidgeting with physiological sensors.

• To explore embedding real-world labelling techniques within the data col-
lection component of the sensing system.

• To investigate efficient affective classification models including the explo-
ration of personalising models, taking into account data scarcity and reduc-
ing the requirement for large datasets.

• To explore the capabilities and applications of tangible interfaces in pro-
viding real-time and continuous feedback.
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1.4 Contributions
This work marks an initial attempt at developing tangible interfaces combin-
ing physical object manipulation with the monitoring of affective state through
physiological sensors. The five main contributions of this work are as follows:

• The co-design and development of tangible fidgeting interfaces with end
users through participatory design techniques and principles. In particular,
the exploration of designs, sensors and interventions and the development
of prototypes through a series of co-design workshops and focus groups.
The workshops were specifically designed to engage participants who have
intellectual disabilities, as mental wellbeing challenges for this target group
are often misattributed to their disability [102].

• Collecting well labelled data is vital to train classification models, how-
ever labelling is an indispensable stage of data pre-processing that can be
particularly challenging when applied to multimodal real-time sensor data
captured from physical devices in real-world environments. Therefore, a pi-
lot study has been conducted exploring new techniques for labelling at the
point of collection running on five custom built devices, before the collection
of a real-world labelled affective dataset utilising the developed techniques.

• The exploration of deep learning architectures to classify real-world mental
wellbeing, some of which have not previously been used for affective mod-
elling. A range of deep learning models including CNN, LSTM CapsNets,
ResNet, Encoder and others have been trained using real-world sensor data
to explore the impact different neural networks have on modelling perfor-
mance.

• The development of deep classification approaches employing on-device
Transfer Learning (TL) and the combination of multimodal sensor data
with signal-encoded images to personalise affective models and improve
performance using few labelled samples. Using the developed TL approach
the process of personalising real-world affective models and improving cross-
domain performance can be completed on-device, automating the tradition-
ally manual process saving time and labour.
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• The exploration of real-time, technological feedback performing as interven-
tions to improve quality of life. Three applications are examined; sensory
tools embedded within interfaces to promote fidgeting, automated on-body
haptic feedback issued when poor wellbeing is inferred and wireless connec-
tivity between interfaces to aid communication between children.
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1.6 Thesis Outline
This thesis is organised in the following chapters:

Chapter 2 provides a literature review exploring tangible user interfaces,
methods to monitor affective states using physiological sensors, deep learning
architectures and the application of real-time interventions.

Chapter 3 introduces the work on the design and development of affective
tangible fidgeting interfaces. The co-design approach used with people who have
intellectual disabilities is explored in addition to the resultant interfaces that were
developed.

Chapter 4 of this thesis investigates techniques to collect and label real-world
data. The development and evaluation of tangible real-time labelling techniques
is explored as sensor data cannot be labelled after the point of collection. Sub-
sequently, real-world affective data collection is completed using the developed
interfaces and tangible labelling techniques.

Chapter 5 explores the classification of mental wellbeing using a range of deep
learning classifiers. Furthermore, an on-device TL approach is devised to develop
personalised affective models aiming to improve performance and remove the
traditional challenges associated with the development of personalised models.

Chapter 6 of this thesis further investigates the use of TL with a multi-
modal signal-image encoding approach to improve accuracy when using a limited
dataset. This approach helps to reduce the traditionally challenging requirement
of collecting a large real-world affective dataset to train deep learning classifica-
tion models.

Chapter 7 discusses the potential applications of this research exploring au-
tomated interventions in addition to sensory tools and wireless communication
between interfaces.

Chapter 8 concludes the work with a summary of each contribution and
presents directions for future work.
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Chapter 2

Literature Review

Recent advances in sensors, edge computing and machine learning have enabled
the increased exploration of affective monitoring, classification and intervention.
The following chapter will review the related work regarding the monitoring of
human wellbeing starting with affective models, followed by methods to monitor
wellbeing using apps, TUIs and sensors, then reviewing advances in deep learning
to perform classification and finally exploring technological interventions. This
section is adapted from [348], previously published in IEEE Affective Computing
and [347], previously published in IEEE Sensors Journal.

2.1 Models of Affect
Affect, in psychology, refers to the underlying experience of feeling, emotion or
mood and is an integral aspect of human life [132]. There are many aspects to
monitoring affective state including measuring emotions and stress levels being
felt. Where mental health conditions are clinically diagnosed [237], emotions are
defined as psychological states brought on by neurophysiological changes, vari-
ously associated with thoughts, feelings, behavioural responses, and a degree of
pleasure or displeasure [67]. Similarly, moods are defined as affective states typ-
ically described as having either a positive or negative valence that in contrast
to emotions, are less specific, less intense and less likely to be provoked or in-
stantiated by a particular stimulus or event [35]. In contrast, mental wellbeing
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is defined as a state of well-being in which an individual realises his or her own
abilities to cope with the normal stresses of life and can be impacted by emotions
felt [343].

Numerous psychologists have developed different theories to classify emotions
ranging from small groups such as happiness and sadness [338] and pain and
pleasure [212] to groups containing a larger number of emotions. There are no
universal categories for emotions but the Ekman model [83] is commonly used,
which comprises of 6 basic emotions: sadness, happiness, surprise, fear, anger
and disgust, all of which can be distinguished through facial expressions.

Alternatively emotions can be measured dimensionally. The two most com-
monly used dimensions are arousal (from calm to excited) and valence (from
attractive to aversive). Russell [259] describes how the arousal and valence di-
mensions are defined in a circle called the circumplex model of affect that can
encompass all emotions, as shown in Figure 2.1.

Figure 2.1: Russell’s circumplex model of affect.

The Self-Assessment Manikin (SAM) Scale [38] has traditionally been used to
measure valence, arousal and dominance (from submissive to dominant) using a 9-
point pictorial representation of humans. This method can encourage engagement
with its simpler approach, allowing for the quick assessment of affective state.
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However, this approach can be challenging when collecting real-time, real-world
data as it requires the immediate completion of the scale, whenever a change in
emotions is experienced.

Finally, stress levels can be used to assess affective state by describing the
nonspecific response of the body to any demand upon it, elicited by a stressor
[277]. The stress response is mainly influenced by two aspects: first the stressor
itself and second the organism’s perceived ability to cope with the threat [105].
Stress can either be classified as a binary task (stress vs. no stress) [213], [241]
or different levels of stress can be classified (e.g. no stress - low stress - high
stress) [104].

While each of the models can be useful to capture different aspects of wellbe-
ing, this thesis captures binary stress and categorical affective states as it provides
the greatest opportunity for real-world reporting.

2.2 Methods to Monitor Affective State

2.2.1 Traditional Methods

Traditional methods used to assess mental wellbeing often use standardised clin-
ical questionnaires, typically in the form of Patient Reported Outcome Measures
(PROMs) or experience sampling [216] to understand longitudinal variability.
Examples of validated questionnaires used to measure daily life stresses and symp-
toms include the Positive and Negative Affect Schedule (PANAS) [339], Quick
Inventory of Depressive Symptomatology (QIDS) [257] and the Patient Health
Questionnaire (PHQ-9) [210]. Self-reporting is used to enable people to record
their emotions and stresses which can be assessed and monitored to help estab-
lish stressful triggers [298], [116]. However, self-reporting can take considerable
time to assess as it must be completed over a long period to gain useful in-
sights [297]. Also, symptom self-reporting can often be inaccurate due to poor
recall; for example when a study investigated how accurately individuals self-
reported the number of fruit and vegetables eaten, accuracies only ranged from
40.4% to 58% [113].

Traditionally clinical visits may also be required but these are infrequent and
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intermittent, representing a very small time window into patients’ lives, where
clinicians are challenged to decipher the possible manifestation of symptoms and
trajectory. Diagnostic interviews would be performed by psychiatrists/care pro-
fessionals by asking service users and their friends or family about their symptoms,
experiences, thoughts, feelings and the impact they are having. Diagnostic inter-
views allow for a diagnosis to be made according to standard classification systems
such as ICD-10 [353] and DSM-5 [11] and these are used in conjunction with a
biopsychosocial formulation to construct a management plan [85], [339]. Discus-
sions with trained experts lead to potentially identifying under-lying problems
and can be used as treatment by teaching people new behaviours (e.g., to cope
with stressful events). However, all of the traditional assessment methods require
people to be aware of their mental health and actively seek help, which many
often forego due to fear of social stigma and lack of available resources [328], [61].

2.2.2 mHealth Apps

With the high prevalence of smartphone ownership [244] access to treatment
which is flexible and fits in with people’s lifestyles is greatly enhanced [14]. Those
at risk of mental health problems often have difficulty accessing quality mental
health care [48] especially when symptoms first manifest [313], demonstrating the
need for more accessible help. An Australian survey found that 76% of people
would be interested in using mobile phone apps for mental health monitoring and
self-management [245], illustrating the high demand for technological solutions
because of their convenience and accessibility.

Many apps have been developed to modernise and advance existing prac-
tices of recording mental wellbeing. Numerous mental health diary apps are
available to download, although these are effectively digital representations of
existing self-reporting diaries using new techniques such as the touchscreen and
monitoring notifications [360], [154], [312]. However, using a phone in public is
more socially acceptable than completing a paper form, allowing monitoring to be
completed discreetly in real-time, unlike paper forms which are often completed
retrospectively, resulting in less accurate data being recorded [297]. A problem
many apps face is the frequency for eliciting PROMs, which may under represent
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the true symptom’s fluctuations. Given that mood is highly variable, clinically
useful information is likely to be included in the daily fluctuations of mood for
many cohorts suffering from mental disorders. Previous research demonstrates
the possibility of eliciting daily responses to assess mental health with very good
adherence over a 1 year period [314], demonstrating the feasibility of longitudi-
nal daily PROMs. This study used engagements by two cohorts diagnosed with
bipolar disorders and borderline personality disorders. More recently, chatbot
apps have been developed to assess mental wellbeing, in some cases by mimick-
ing conversation with users via a chat interface [1] thus removing the requirement
to continuously self-report. A survey conducted on 5,141 participants in the age
range 16-24 years showed nearly two thirds would be comfortable with a chatbot
giving them a diagnosis [254]. Chatbots can utilise AI to reduce their reliance
on predefined scripts and deliver individualised therapy suggestions based on lin-
guistic analysis enhancing user engagement [66].

Figure 2.2 presents the total number of global downloads and average rating
of the six most downloaded mental health apps on the Google play platform in the
UK app store as of January 2019 (’7 cups’, ’Headspace’, ’Self-help anxiety man-
agement’, ’Pacifica’, ’Calm’ and ’Daylio’). The total number of downloads varies
widely ’Headspace’, ’Calm’ and ’Daylio’ make up the vast majority of downloads
with a combined total of 25 million, whereas the next most popular apps only
amass 500,000 downloads each, showing that receiving favourable reviews does
not necessarily lead to mass downloads. Apps developed by respected organisa-
tions also do not necessarily result in popularity, ’Wellmind’ developed by the
NHS has only been downloaded around 10,000 times and received an average rat-
ing of 3.4 out of 5 on the Google Play store, reflecting users’ preference regarding
usability and functionality.

Headspace currently has over ten million downloads on the Google Play store
alone, underlining the immense popularity of mobile wellbeing apps. Headspace
provides guided meditation and has been shown to help reduce stress by 14% [81],
increase compassion by 23% [188], reduce aggression by 57% [78] and improve
focus by 14% [31]. However, most of these studies were small scale with the
longest period people were followed being just thirty days. Another research study
reported that using the app over a six-week period resulted in no improvements
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Figure 2.2: Comparison of average rating (left) and total global downloads (right)
of the six most downloaded mental health apps from the Google Play store.

in critical thinking performance [222]. Additionally, there has been no follow-up
after the initial studies and as some studies lasted as little as ten days it raises
some concerns as to whether the positive outcomes from the app may only be
apparent during an individual’s initial period of use.

Additional apps have been developed by researchers that actively aim to im-
prove mental health and wellbeing, such as mobile stress management apps that
use stress inoculation training to prepare people to better handle stressful events.
Studies show stress inoculation apps were consistently successful in reducing stress
in participants and increasing their active coping skills [324], [323]. Grassi et
al. [112] demonstrated that mHealth apps are not only capable of augmenting
traditional techniques to help monitor conditions but they can also be used to
educate users on more modern techniques to actively improve their mental well-
being.

A smartphone app, FOCUS, has been developed to proactively ask users with
schizophrenia about their mood, feelings and wellbeing multiple times each day
to provide relevant coping strategies [29]. This allows the app to go beyond
traditional self-reporting as it educates users on methods to help immediately
after an issue has been reported, which is only possible using technology that
people have continuous access to, such as smartphones. FOCUS demonstrated
a reduction in positive symptoms of schizophrenia and depression, when trialled
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by 33 participants over 4 weeks. A common issue with mental wellbeing apps is
low user engagement. However, FOCUS was used by participants on 86.5% of
days, averaging 5.2 times each day over 30 days and Oiva, a mental wellbeing
training app [4] was on average used every third day for 12 minutes over a 30
day period, demonstrating the possibility for mental wellbeing technologies to be
highly engaging.

While apps cannot be considered as an alternative to seeking professional help
some apps have been designed to work in conjunction with clinicians such as Post-
Traumatic Stress Disorder (PTSD) Coach. The app allows users to learn more
about PTSD, track symptoms, set up a support network and provides strate-
gies for coping with overwhelming emotions. 10 US veterans with PTSD were
assigned to use PTSD Coach independently while another 10 used the app with
the support of their primary-care providers [14]. At the end of the trial, seven of
the ten patients using the app with support showed a reduction in PTSD symp-
toms, compared with just three of the patients who used the app independently.
Technological solutions used with care providers show more potential for effective
treatment in the small sample trials to date although they still require users to
actively seek help [201].

Pairing apps with psychiatrists’ and psychologists’ support has been shown
to be successful resulting in a range of apps using content explicitly created by
psychiatrists. Rizvi et al. [253] developed the app DBT Field Coach to provide in-
structions, exercises, reminders, games, videos and messages to help people cope
with emotional crises. The results of that study, showed that all 22 participants
used the app frequently over at least 10 days, successfully reducing intense emo-
tions, reducing substance use cravings and improving symptoms of depression
without the need to visit a clinician [253]. This app again shows the success of
apps utilising psychiatrists and clinicians, although as this app only used content
created by psychiatrists, it improves accessibility by removing to some extent the
need to visit clinicians to access the same tools. Mobile health apps provide many
advantages over traditional techniques including improved accessibility, real-time
symptom monitoring, reduced cost and reduced barriers to access [80]. However,
one of the main short-comings of available smartphone apps is the lack of per-
sonalised features, as many treatments and strategies have to be individually
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tailored [119].

2.2.3 Tangible User Interfaces

An alternative method to enhance existing monitoring techniques is through the
use of TUIs. As TUIs are physical objects they rely on users’ knowledge of
how the physical world works for interaction [146], making them more intuitive
especially for people with less digital knowledge. Matthews and Doherty [204] and
Niemantsverdriet and Versteeg [220] have reported that people are more likely to
create stronger emotional attachments with physical devices such as TUIs rather
than digital interfaces such as apps.

Tangible devices provide a technological alternative to traditional self-reporting
allowing users to report their current mental wellbeing in real-time. Emoball [95]
is one such device that allows users to record their mood by squeezing an elec-
tronic ball, making users conscious of their current mood. While this device only
allows users to report a limited number of emotions, participants believed mental
wellbeing and education were the areas where this device could be of most use.
A smaller, portable device that works similarly is Keppi [2] which allows users to
squeeze to record low, medium or high pain as shown in Figure 2.3.

Figure 2.3: Keppi TUI used to record pain.

Another tangible approach to self-report is the mood TUI [273] which, as well
as allowing users to record their emotions, also collected relevant data from the
user’s smartphone including location and physiological data such as heart rate.
Participants found the use of a tangible interface very exciting, although when
the device was tested with users, they felt the device was too large and they
would lose motivation to continue using it for an extended period. This feedback
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shows the use of TUIs excites users, but the design and functionality of the inter-
face must be prioritised. Mood sprite [25] is another handheld device developed
to help people suffering from anxiety and stress by using coloured lights and an
infinity mirror to assist with relaxation. The device records the time users cre-
ate new sprites allowing them to be revisited much like a diary, again showing
ways in which tangible interfaces can accompany traditional techniques to make
treatment more accessible and user-centric. Similar to traditional self-reporting
diaries, the device educates users by allowing them to recall their emotions but
is more engaging with different coloured lights representing different times and
moods, promoting continued use. However, a common issue with mental wellbe-
ing tangible interfaces is that they remain largely unproven and even those that
have been trialled with users such as Mood sprite have been limited to small-scale
trails that lack statistical power.

Subtle Stone [21] is a similar tangible device that allows users to express their
current emotion through a unique colour displayed on a stone as shown in Figure
2.4. By allowing users to set their own colours for different emotions it limits the
number of people to whom users expose their emotions. Subtle Stone was tested
with eight high school students in their language class with the teacher able to
view the data in real-time using an app. The study showed the use of colours
to represent emotions was well received with students liking the anonymity it
provided along with finding it easier to use than words. Subtle Stone both allows
users to communicate their emotions privately and monitor their own emotions
over time, proving clear advantages over traditional self-reporting methods.

Figure 2.4: Subtle Stone TUI for communicating emotions.

18



2. Literature Review

A tangible interface used to detect stress in real-time without the need to
self-report is Grasp, which was tested with anxious participants in a dentist’s
office [115]. Participants were able to squeeze Grasp whenever they felt stressed
and the device detected how much pressure was exerted and displayed this data on
a mobile app. Force sensors have also been used to create a tactile ball that allows
for the manipulation of music by squeezing different areas of the ball along with
movement detected by an accelerometer [28]. The research concluded squeeze
music could successfully be used for music therapy with children as it promoted
positive emotions through tactile input and music. Sensors such as force sensors
have been shown to provide an intuitive method of interaction for TUIs and show
the possibility for additional sensors to be utilised when educating, detecting
and improving mental wellbeing, that is not possible when using smartphones or
traditional techniques.

2.2.4 Physiological Sensor Measurement

This section reviews non-invasive sensors that present the most significant oppor-
tunity to assess affective state as they can easily be embedded within tangible
interfaces and inconspicuously used in the real-world unlike ElectroCardioGrams
(ECG) or ElectroEncephaloGrams (EEG). Features can be extracted from the
sensor data to train machine learning classification models or raw data can be used
within deep learning models. Alternatively, time series data can be transformed
into images using Gramian Angular Summation Field (GASF), Gramian Angu-
lar Difference Field (GADF) and Markov Transition Field (MTF) [336]. These
signal-image encoding techniques have previously been used to improve classifi-
cation accuracy across a range of time series data including human motions and
figure shapes, improving accuracy [357], reducing Mean Squared Error (MSE) by
12.18%-48.02% [336] and outperforming state of the art time series classification
methods such as dynamic time warping and ResNet by 1.96%-10.13%.

2.2.4.1 Heart Rate (HR)

HR sensors are commonly used within wearable computing systems as they can be
embedded within a wide range of devices due to their small footprint and provide
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insights into the autonomous nervous system. Similarly, HRV is commonly used
within affective computing as it is the variation in time between heartbeats and
further represents autonomic nervous system activity. Low HRV has been shown
to be correlated with impaired parasympathic activity, higher anxiety, a variety
of depression disorders [320], [110], [217] and higher stress [250]. It is possible to
measure HR and HRV using electrocardiograms [57] but in 1997 it was found that
finger pulse amplitude decreased significantly during mental tasks [106] leading
to HRV being accurately measured using PhotoPlethysmoGraphy (PPG). This
is easier and more cost-effective to use than ECGs as it only requires one contact
point.

There have been three main forms of PPG developed: transmitted, reflected
and remote. Transmitted signals are most commonly used in medical monitor-
ing, remote signals often utilise cameras to measure changes in skin colour and
reflected signals measure the amount of backscattered light from an LED using
photodiodes above the skin voxel where each cardiac cycle appears as a peak in
the PPG signal. Reflection PPG is the the smallest and most convenient method
to measure HR and HRV within tangible interfaces [198].

2.2.4.2 ElecotroDermal Activity (EDA)

EDA is often used to train affective models to classify mental wellbeing as it
directly correlates to the sympathetic nervous system which controls rapid in-
voluntary responses to dangerous or stressful situations [276]. To measure EDA
the resistance between two electrodes is measured, most commonly where there
is a high density of sweat glands such as the palm and finger [58]. Alternatively,
near-infrared spectroscopy can be used to measure oxyhemoglobin and deoxy-
hemoglobin enabling the inference of stress with similar levels of accuracy as
EDA [306]. However, near-infrared spectroscopy cannot be used to collect data
in the real-world due to its large size and placement on the forehead.

2.2.4.3 Motion

Motion data measures movement through accelerometers, gyroscopes and mag-
netometers and can be used in addition to physiological sensor data to monitor
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mental wellbeing. Previous work has attempted to use motion data to classify
emotions achieving 81.2% accuracy across 3 classes [367]. However, similar work
has reported lower levels of accuracy when inferring emotions from motion data
alone ranging from 50% to 72% [249] [225] [137]. Instead of using motion data
alone as previous studies have researched, there is potential for it to be combined
with physiological data to assist with the classification of mental wellbeing.

2.2.4.4 Labelling Mental Wellbeing

Deep Neural Networks (DNNs), are attracting more and more attention as a
breakthrough in the advance of AI, showing high potential to accurately classify
sensory data. However, in order to train DNNs, vast quantities of sensor data
must be first collected and labelled.

The techniques used to label data vary vastly depending on the data type, as
images can be labelled offline using an automated process based on clickthrough
data, greatly reducing the effort required to create a labelled dataset [315]. Ad-
ditionally, crowdsourcing tools have been developed that enable users around the
world to label images [258], [109] and audio [179], [228], [316] while text can be
automatically labelled using the hashtags and emojis contained within posts [70]
or using natural language processing and machine learning [193]. Crowdsourcing
labels [322] is not possible with time series data which has to be labelled online,
in real-time, at the point of collection due to the nature of the data.

In pervasive sensing there are three data collection methods [360], these are:
1) Passive data sensing using smartphones or other sensors to record unlabelled
data in the background [360], often used to collect weather [175], health [156] [5]
and environmental data [360], 2) Active data sensing enables users to label the
data in real-time through self-reporting, often used to report wellbeing or physical
activity and 3) Hybrid data sensing combining both passive and active data
collection as it involves users actively labelling the passive sensor data that is
recorded in the background [154].

With sensor data researchers often manually label the activity participants
undertake [308] which typically prevents the collection of in-situ data as it re-
quires the researcher to continuously video participants’ activities so that they
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can be labelled offline. Alternatively, sensor data can be labelled using a hybrid
approach where the sensor data is continuously recorded and the user occasionally
records a label against all or part of the previously recorded data. The labelling
of human activities increasingly relies on hybrid data collection techniques to
continuously record accelerometer data as well as enable users to self-report their
current activity [178], [176].

Smartphone applications are becoming increasingly popular to label sensor
data as they provide a familiar, always accessible interface for users [360]. How-
ever, it is not possible to use smartphones to collect data when additional sensors
that are not embedded within smartphones are required e.g. EDA or HRV. It is
possible for a combination of a smartphone application (for labelling) and tan-
gible interfaces (for sensory data collection) to be used but this increases the
complexity by forcing users to use two devices, along with requiring a continuous
stable wireless connection between the devices.

2.3 Deep Learning Architectures
When developing a reliable wellbeing classification model it is imperative to find
the best classifier. A variety of classification methods have previously been em-
ployed in the affective computing domain for classifying physiological data. Ad-
vances in deep learning have resulted in the capability to classify raw sensor data
over-coming the laborious process of manual feature engineering and presenting
the extracted features to a statistical learner. There are two main neural network
types: Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs). CNNs and RNNs are structurally different and are used fundamentally
for different purposes. CNNs have convolutional layers to transform data, whilst
RNNs essentially reuse activation functions from other temporal data points. This
section discusses different deep learning architectures that demonstrate potential
to classify physiological signals.
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2.3.1 1 Dimension Convolutional Neural Network (1D CNN)

CNNs are feed forward networks that are constructed of numerous layers includ-
ing an input layer, an output layer and a hidden layer that includes convolutional
layers that make use of a set of learnable filters, pooling layers, fully connected
layers and normalisation layers, as shown in Figure 2.5. 1D CNNs utilise a
feed-forward structure like 2D CNNs, although 1D CNNs process 1 dimensional
patterns with 1-dimensional convolution operations, while 2D CNNs processes 2
dimensional patterns with 2-dimensional convolutions.

In general the training input data can be represented as x = [x1, x2, ...xj],
where the number of training samples is j and y is the output vector [121]. When
σ is the sigmoid activation function, w1 and w2 are weight matrices between the
input and hidden layer and the hidden and output layer respectively. Finally, b1

and b2 represent the bias vectors of the hidden and output layer respectively [364]:

h = σ(w1x+ b1] (2.1)

y = σ(w2h+ b2) (2.2)

Each convolution involves sliding a filter over the time series data although
unlike images where CNNs are traditionally used, the filters of a 1D CNN exhibit
only 1 dimension. A general form of applying the convolution for a time stamp t
is given in the following equation:

Ct = f(ωXtl/2:t+l/2 + b)|t[1, T ] (2.3)

Where C denotes the result of a convolution applied on a time series X of
length T with filter ω, bias b and a non-linear function f such as the Rectified
Linear Unit (ReLU). Weight sharing enables the same convolution to be used to
find the result for all time stamps, allowing filters that are invariant across the
time dimension to be learned.

Pooling is then performed. This can include local pooling such as max pooling
where a sliding window aggregates the input data reducing it by length T. Alter-
natively, global pooling is where the data is aggregated over the entire dimension
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Figure 2.5: 1D CNN architecture.

resulting in a single value. In addition to pooling layers, normalisation layers can
be used to help a network converge quicker.

Batch normalization can then be performed to normalise the inputs of each
layer so they have a mean of 0 and standard deviation of 1. This enables the
models to train quicker, allows for higher learning rates, makes the weights easier
to initialise [142] and prevents the internal covariate shifting across one mini-
batch training set [142]. The final layer takes the result of the convolutions and
outputs a probability distribution using the SoftMax activation function.

2.3.2 Long-Short Term Memory (LSTM)

LSTM [130] networks are a specific kind of RNN where the LSTM cells serve
as the memory units through gradient descent making them capable of learning
long-term dependencies. LSTM cells use input (I), forget (f) and output (o)
gates to regulate the flow of information, as shown in figure 2.6, helping remove
the vanishing gradient problem faced by traditional RNNs.

The LSTM network uses the sigmoid forget gate layer to evaluate the inputs
ht1 and xt and then outputs a value between 0 and 1 in the cell state to determine
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Figure 2.6: LSTM cell showing input vector (X), cell output (h), cell memory
(c) and input (I), forget (f) and output (o) gates [200].

the data to forget.

ft = σ (Wf · [ht−1, xt] + bf ) (2.4)

Next the cell decides what new information to store in the cell state. First
the input gate decides the values to update and then a tanh layer creates a vector
of values, C̃t.

it = σ (Wi · [ht−1, xt] + bi) (2.5)

C̃t = tanh (WC · [ht−1, xt] + bC) (2.6)

The old cell state C̃t−1 is now updated into the new cell state C̃t. The old cell
state is multiplied by by (f) to forget the data previously determined and then
it ∗ C̃t is added.

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.7)

A sigmoid layer then decides what parts of the cell state to output. Tanh is
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applied to the cell state and it is multiplied by the output of the sigmoid gate.

ot = σ (Wo [ht−1, xt] + bo) (2.8)

ht = ot ∗ tanh (Ct) (2.9)

Finally, a SoftMax layer follows the LSTM cell using a cross entropy loss
function to produce an output prediction vector from the classes.

2.3.3 Gated Recurrent Unit (GRU)

The use of GRU cells is becoming an increasingly popular RNN due to its sim-
pler design using only two gates; a reset gate and an update gate rather than the
three gates used by an LSTM as shown in Figure 2.7. The use of a GRU cells
can significantly reduce the time required to train models because of its simpler
structure exposing the full hidden content to the next cell. GRU models have
also been shown to out-perform LSTM networks when there is a smaller train-
ing dataset but LSTM models remember longer sequences than GRU models,
outperforming them in tasks requiring modelling long distance temporal rela-
tions [152] [153] [358] [60].

Figure 2.7: Comparison of LSTM (left) and GRU (right) cells [334].

2.3.4 Capsule Network (CapsNet)

CapsNets [129] are comprised of capsules, where each capsule encompasses a
group of neurons in a layer which perform internal computations to predict the

26



2. Literature Review

presence and instantiation parameters. Recently a 1 dimensional CapsNet has
been introduced [301] that aims to preserve hierarchical spatial relationships,
helping to learn faster and use fewer samples per class.

Figure 2.8: CapsNet encoder architecture [261].

The first 3 layers within the CapsNet are to encode, and the second 3 are to
decode. The first layer is a traditional convolutional layer followed by a Prima-
ryCaps layer as shown in Figure 2.8. The PrimaryCaps layer contains primary
capsules who take basic features detected by the convolutional layer and produce
combinations of the features. Next, the DigitCaps layer accepts inputs from all
of the capsules in the previous layer. Non-linear activations at both the Primary
and DigitCaps layer are provided by the squash function. Connections between
these two layers are dynamic and are governed by dynamic routing.

Lk = Tkmax(0,m+ − ||vk||)2 + (1− Tk)max(0, ||vk|| −m−)2 (2.10)

Dynamic routing allows weights to decide which higher level capsule the cur-
rent capsule will send its output to [261]. This is done by lower level capsules
sending their input to higher level capsules that “agree” with the input. Two
CapsNet loss functions are then used, as shown in 2.10, to equivariance between
capsules and calculate the correct DigiCap. Finally, three fully connected lay-
ers decode the vector from the correct DigitCap and provide the output of the
network as a vector.
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2.3.5 Residual network (ResNet)

A proposed architecture from [337] is a ResNet. The network is composed of three
residual blocks followed by a global average pooling layer and a final SoftMax
classifier using a cross entropy loss function, whose number of neurons is equal to
the number of classes in the dataset. Batch normalisation and ReLU activation
function follow. Each residual block is comprised of three convolutions whose
output is added to the residual block’s input and then fed to the next layer.
The fundamental feature of a ResNet is a linear shortcut to link the output of a
residual block to its input, enabling the direct flow of the gradient through the
connections and removing the vanishing gradient problem [123].

2.3.6 Time Warping Invariant Echo State Network (TWIESN)

TWIESN [307] is another RNN. For each element in an input time series, the
reservoir space is used to project this element into a higher dimensional space.
Then for each element, a ridge classifier [131] is trained to predict the class of
each time series element. During testing, the ridge classifier outputs a probability
distribution over the classes in a dataset. Then the posteriori probability for each
class is averaged assigning a label for each test set where the averaged probability
is highest.

2.3.7 Encoder

An Encoder network [279] is a hybrid CNN [337] where the global average pool-
ing layer is replaced with an attention layer, enabling invariance across all layers.
The first three layers are convolutional. Each convolution is followed by batch
normalisation and then a Parametric Rectified Linear Unit (PReLU) [122] acti-
vation function. The output of PReLU is followed by a dropout layer and a final
max pooling layer. The third convolutional layer is fed to an attention layer [19]
that enables the network to learn the most important aspects for classification.
Finally, a SoftMax classifier with a cross entropy loss function is used to produce
a predicted label from the available classes.
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2.3.8 InceptionTime

InceptionTime [91] is an ensemble of CNN models, inspired by the Inception-v4
architecture [302]. The Inception network uses a cross entropy loss function and
contains two different residual blocks comprising of three Inception modules as
shown in Figure 2.9. Each residual block’s input is transferred via a shortcut
linear connection added to the next block’s input, enabling a direct flow of the
gradient and removing the vanishing gradient problem.

Figure 2.9: The Inception module of InceptionTime [91].

The first component within the Inception module is the “bottleneck” layer.
This layer performs an operation of sliding filters of length 1 with a stride equal
to 1, allowing for longer filters than ResNet. The next layer involves sliding
multiple filters of different lengths simultaneously on the same input data. The
output of the sliding MaxPooling window is then calculated and the output of
each independent parallel MaxPooling layer is concatenated. By training the
weights of multiple inception models using filters of varying lengths, the network
is able to extract latent hierarchical features.

2.3.9 Multi Channel Deep Convolutional Neural Network
(MCDCNN)

MCDCNN is a CNN where the convolutions are applied independently on each
dimension [369]. Each dimension of input data passes through two convolutional
layers with ReLU as the activation function followed by a MaxPooling operation.
The output of the second convolutional layer for all dimensions is concatenated
over the channels axis and then fed to a fully connected layer with ReLU as the
activation function before the SoftMax classifier.
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2.4 Mental Wellbeing Classification
Deep learning algorithms have generated great impact in affective modelling.
RNNs relying on LSTM are especially valuable for use with sensor data as they
are fundamental in distinguishing similar data which differ only by the ordering of
the samples which can often dictate differences in mental health [229]. CNNs have
traditionally been used to classify images and speech, however their application
has been expanded to classify raw sensor data [202], [162]. This section explores
the different methods used to classify mental wellbeing including mobile apps,
physiological sensors including the use of TL and the exploration of real-world
classification.

2.4.1 Mobile Apps

Apps have been shown to enhance traditional PROMS-based assessment tech-
niques and by utilising the sensors within phones the capability of apps can be
further enhanced as they may provide a more holistic picture using passively
collected data. Smartphones are capable of collecting a vast amount of data
such as location, motion and phone use which can result in many features being
extracted to train machine learning algorithms. It is possible to use the data
collected from smartphones to determine emotions with a 70% accuracy utilis-
ing machine learning to process the data [365]. Automatically inferring emotions
based on smartphone use is extremely valuable in determining mental wellbeing
and can provide new clinical insights from passively monitoring users’ behaviour.
Furthermore, an app has been used to monitor social media use (Facebook and
Twitter) and capture ground truth mood data [182]. The results demonstrate
the ability to infer real-world mood from social media data with up to 95.2%
accuracy showing the possibility of monitoring wellbeing through online activity.

In addition to using the phones’ sensors to detect mental wellbeing, it may be
possible to use the phone’s touchscreen to sense stress. Using an infrared touch-
screen to measure HR it was possible to recognise stress with accuracies of 87%
and 96% across two tests, a vast improvement upon previous touchscreen based
stress detection [366]. However, infrared touchscreens are rarely used especially
within smartphones whereas the capability of measuring stress through capacitive
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touchscreens could have significant impact.
Smartphone apps have also been paired with wrist-worn sensors to infer men-

tal wellbeing by allowing a high magnitude of data to be collected [270]. The
collected data was expressed using 15 multimodal features ranging from physio-
logical data such as skin conductance to phone usage data such as screen time
duration. The 15 sets of features were then trained with a variety of classifiers
and the accuracy of the different features were examined for each classifier. The
system was capable of detecting binary stress with over 75% accuracy, with some
of the features such as increased acceleration during sleep and high evening phone
use being more beneficial than others in determining stress.

Similarly, a wrist sensor along with a mobile app and a self-reported PHQ-8
and PHQ-4 depression scores were used to quantify depression symptoms in 83 un-
dergraduate college students across two 9-week periods by measuring phone use,
heart rate, sleep and location [335]. The study concluded students who reported
they were depressed were more likely to use their phone at study locations, have
irregular sleep, spend more time being stationary and visit fewer places. They
demonstrated that they could automatically detect depression with 69.1% pre-
cision when evaluated against the PHQ-4 depression sub-scale [171], this could
potentially be improved if additional physiological sensors were included. In ad-
dition to physiological sensors, location could be used to assess mental wellbeing
as movement patterns and uncertainty in visits has been shown to be predictive
of the Quick Inventory of Depressive Symptomatology (QIDS) [232].

Alternatively apps can be developed for smartwatches. BreathWell, [329]
which has been developed for Android Wear smartwatches has been designed to
assist users in practising deep breathing to reduce stress from PTSD, although the
app has limited functionality to determine stress as it only uses the user’s heart
rate. Despite the limited functionality, all seven participants believed the app
could help them, although the extent of the trial was extremely limited. These
studies demonstrate the potentially powerful combination machine learning, sen-
sors and mobile apps provide to automatically determine stress levels.
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2.4.2 Multimodal Physiological Sensors

There are numerous sensors that when combined with sufficiently trained machine
learning classifiers can go beyond mobile apps to assess mental wellbeing in real-
time. Non-invasive physiological sensors such as EDA and HRV present the most
significant opportunity to assess mental wellbeing [281] with EDA alone detecting
stressed and cognitive load with 82.2% accuracy [276]. A CNN has been trained
to classify four emotions; relaxation, anxiety, excitement and fun using EDA
and blood volume pulse signals [202]. The deep learning model outperformed
standard feature extraction across all emotions achieving accuracies between 70-
75% when the features were fused. Furthermore, when EDA sensors were paired
with accelerometers to classify human activity and stress using logistic regression,
91% accuracy was achieved [372]. EDA, blood oxygen and HR have also been
used to classify five emotions using random forests achieving 74% accuracy [340].
When using 30 statistical features from EDA data to infer six emotions; surprise,
fear, disgust, grief, happy and angry 78.72%, 73.37%, 70.48%, 62.65%, 62.52%
and 44.93% accuracy was achieved for each of the six emotions respectively [354].
Finally, when EDA and ECG signals were combined to infer happy, sad and
neutral emotions accuracies ranged from 90.12% for happy-neutral to 93.32% for
happy-sad [68].

Both EDA and HRV were used in a wearable device to measure stress during
driving [124]. The wearable device took measurements over a 5-minute period
to detect stress levels with an accuracy of 97.4% and found that HRV and skin
conductance are highly relatable making them extremely useful in detecting men-
tal state. A minimum redundancy maximum relevance selection algorithm has
demonstrated the capability to select the optimal HRV features to train machine
learning classifier, achieving 84.4%, an increase of 10.8% over the sample base
SVM [101]. The ability to use sensors to measure HRV and skin conductance
allows for small devices to accurately determine stress levels in real-time and
should be further utilised to detect stress, anxiety and mental wellbeing. How-
ever, physiological signals do not account for the context in which the devices are
used as the context can play a significant role in the users’ perceived stress levels
meaning additional environmental sensors may also be required [300].
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EDA and HR signals have also been used to infer stressed and relaxed stated
using K Nearest Neighbour (KNN) and Fisher discriminant analysis achieving
95% accuracy stating that 5-10 second intervals are suitable for real-time stress
detection [73]. A controlled stressor experiment with 166 participants completing
puzzles to collect EDA and HRV signals when experiencing high, medium and low
stress has been conducted. A finite state machine classifier achieved 0.984, 0.970
and 0.943 F-measure scores for high, medium and low levels of stress respectively
[203].

Another non-invasive sensor that has previously been used to detect stress is
skin temperature as it can indicate acute stressor intensity [127]. One study [164]
used a wearable device that contained multiple sensors including skin conduc-
tance, skin temperature and motion and provided it to 6 people with dementia
and 30 staff in a nursing home for 2 months. The device aimed to automati-
cally detect stress and categorise it into one of five levels, the accuracy for each
of these levels varied from 9.9% to 89.4% showing an extremely wide variation.
This was due to the threshold setting: when it was raised, fewer events were
classified as stress because of the harder criteria, in turn, increasing precision.
Furthermore, when inferring six emotions HR, EDA, skin temperature and envi-
ronmental temperature were used within a wearable glove and chest belt [192].
Using KNN, direction finding and multiple back-propagation classifiers with four
features, emotions could be classified with accuracies between 72.3% and 84.1%.

Stress can also be detected from brain activity using EEG [59] as Khos-
rowabadi et al. demonstrates using eight channels to classify students’ stress
during exams with over 90% accuracy [162]. A CNN with channel selection strat-
egy, where the channels with the strongest correlations are used to generate the
training set, has also been used to infer emotions from EEG signals [247]. The
model achieved 87.27% accuracy, nearly 20% greater than a comparative model
without channel selection strategy. Similarly raw EEG signals have been used to
train a LSTM network achieving 85.45% in valence [8] and to classify stress in
construction workers with 80.32% accuracy using a gaussian support vector ma-
chine model [149]. Dynamical Graph CNNs have also been used to infer emotions
from EEG signals achieving 90.4% accuracy using subject dependent models and
an average of 79.95% accuracy with 15 subject independent models [290]. How-
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ever, the inconvenient placement and cumbersome nature of EEG sensors result
in limited use in real-world environments.

Another device aimed to detect stress using ECG, EDA and ElectroMyoGra-
phy (EMG) of the trapezius muscles [344]. Principal component analysis reduced
9 features from the sensor data to 7 principal components. 18 participants com-
pleted three different stressors; a calculation task, a puzzle and a memory task
with a perceived stress scale questionnaire completed before and after each task.
The principal components and different classifiers were used to detect stressed
and non-stressed states with an average of almost 80% accuracy across the three
tests compared with the questionnaire results. However, this study only detected
two states; stressed and non-stressed and was conducted in a controlled environ-
ment so it is not known how accurate it is in real-world setting as physiological
signals can be affected by factors other than mental wellbeing.

Furthermore, LSTM networks have been used to classify sensor data including
EDA, skin temperature, accelerometer and phone usage data to infer stress. The
LSTMmodel achieved 81.4% accuracy outperforming support vector machine and
logistic regression models [319]. LSTM networks have also been used to classify
emotions from EEG signals with 81.1% accuracy when using the context correla-
tions of the feature sequences [356]. A CNN and LSTM have been combined to
allow raw data to be classified more accurately [155], [156]. This deep learning
approach is capable of using raw data to automate the feature extraction and se-
lection. This approach to classifying emotions from physiological, environmental
and location data outperformed traditional multilayer perceptrons by over 20%.
The ad-hoc feature extraction by the CNN matched or outperformed models with
the features already extracted showing the clear advantages of using deep learning
approaches.

Sensing devices are increasing in popularity with advancements in physiolog-
ical and environmental sensors resulting in cheaper and smaller devices promot-
ing extensive use. The ability to pair machine learning algorithms with sensors
presents an enormous opportunity allowing for mental wellbeing to be detected
with accuracies exceeding 90% [162], [124]. While AI has enormous potential in
classifying affective states, it does present its own set of challenges as a large
amount of labelled data is required to train the models accurately.
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2.4.3 Transfer Learning (TL)

TL [233] is a common approach in machine learning to mitigate the problem of
scarcity of data. Caruana [54] introduced multi-task learning that uses domain
information contained in the training signals of related tasks. It is based on
the ability to learn new tasks quickly even without many samples, by relying on
previous, similar samples. TL involves pre-training a model on a task which is
similar to the target task but has significantly more training data available and
transferring the learned knowledge.

CNNs are commonly used in TL as they are initially trained on a large dataset
and then the last fully-connected layer is removed and the model is further trained
on a smaller target dataset. A pre-trained CNN alleviates the need for a large
dataset while simultaneously decreasing the time required to train the model. The
premise of TL is to improve the learning of a target task in three ways [311]: (1)
improve initial performance, (2) sharp performance growth, (3) potential higher
training performance.

TL has most commonly been used for object recognition [227], human activity
recognition [271] and speech recognition [333] although it could be used to address
the challenges of affect recognition. By using a pre-trained model from a different
domain and transferring the learned knowledge to the new domain it is possible
to improve modelling performance while training using few samples.

Previously, large ImageNets have been used to developed pretrained networks
such as VGGNet [285], Inceptionv3 [303] and mobileNetv3 [139] that contain pre-
trained object classification models. The pre-trained CNN models were employed
to compute mid-level image representations for object classification in PASCAL
VOC images [88], leading to significantly improved results. TL has enabled the
possibility to easily train new models in the visual domain using pretrained net-
works, however, sensor data is not always easily visually interpreted [280].

TL using physiological signals has previously been used to detect driver status
[177] and seizures [72]. Furthermore, an inter-subject TL approach has been
used with ECG signals to infer mental state achieving 79.26% compared with a
baseline of 67.90%, demonstrating the potential for TL to improve affective model
performance with small physiological datasets [89].
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The possibility for TL to be used to personalise affective models has previously
been explored and has helped personalise EEG signals, improving model accuracy
by 19% [368] and 12.72% [185] while also reducing the amount of data required
to train the models. TL can be used to help alleviate scarce data as by using
decision trees, data from similar subjects can be used to improve accuracy by
around 10% although if data from dissimilar subjects is used it can have a negative
impact on the model accuracy [205]. To ensure negative TL that degrades the
performance of the model does not occur, a conditional TL framework has been
developed that assesses an individual’s transferability against individual’s data
within the dataset. The conditional TL model identified 16 individuals who could
benefit from 18 individuals data within the EEG dataset, improving classification
accuracy by around 15% [189].

The inference of emotions from images and videos has also benefited from
TL approaches. When using models pre-trained on the ImageNet dataset and
testing using images of faces expressing seven emotions an accuracy of 55.6% was
achieved compared with a baseline performance of 39.13% [219]. Additionally,
audio and video have been explored to infer six emotions where the TL approach
improved base line accuracy by 16.73% [230].

Another TL approach has helped increase the classification accuracy of PTSD
using speech by 13.5% [22]. Similarly, a sparse autoencoder-based feature TL
approach has been developed to infer emotions from speech using the FAU Ai-
boEmotion Corpus dataset [27]. The autoencoder approach to find a common
structure in a small target base dataset and apply the structure to source data
improved unrated average recall from 51.6% to 59.9% with only 50 data instances
used [77]. Whispered speech has also been explored to infer emotions applying
three TL approaches; denoising autoencoders, shared-hidden-layer autoencoders,
and extreme learning machines autoencoders. Extreme learning machines autoen-
coders provide good generalisation extremely fast [140], enhancing the prediction
accuracy on a range of emotion tasks achieving up to 74.6% arousal [76]. Speech
has also been explored to improve PTSD diagnosis using TL and deep belief net-
works. The TL approach improved model accuracy from 61.53 to 74.99% [23].
Furthermore, deep belief TL networks have been used to improve the accuracy of
emotion recognition through speech cross-language [180]. TL for emotion recog-
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nition has also been used to infer wellbeing from text [283]. A RNN with full
weight transfer where the base model was trained using a Twitter dataset to clas-
sify tweets as positive or negative valence achieved an overall accuracy of 78% for
all four classes where the standard RNN achieved 72%.

2.4.4 Real-world Classification

The vast majority of previous literature has classified mental wellbeing in con-
trolled experimental conditions. Real-world environments provide many addi-
tional challenges as there can be numerous factors that influence physiology
rather than purely wellbeing such as music [166], sleep deprivation [243] and nu-
trition [359]. However, it is necessary to test models in real-world environments
to ensure their effectiveness in every day scenarios. HRV and EDA physiological
sensors present the largest opportunity for real-world mass adoption monitoring
due to their non-invasive, inconspicuous nature.

Classifying stress has been explored in the real-world [103]. Using 63 features
from blood volume pulse, HR, EDA, skin temperature and respiratory rate sen-
sors, binary stress was inferred with 83% accuracy and 3 stress levels with 72%
accuracy. When inferring stress in real-world environments binary classification
reduced to 76% but by using accelerometer data to provide context the accuracy
was increased to 92% over 1 hour periods. HRV has also been used to infer stress
over periods of 3 minutes from 45 students experiencing a stress inducing oral
exam. Using a decision tree classifier accuracies of around 80% were achieved [55].

HRV data from chestbelts along with audio, physical activity and commu-
nication data from a smartphone has similarly been used to infer real-world
stress [214]. Using the PANAS questionnaire as ground truth labels, 13 fea-
tures obtained from the smartphone data and 10 HRV features which were more
distinctive than the smartphone features, 61% accuracy was achieved for high,
medium and low stress classification. Similarly when using a chest band respi-
ratory sensor and accelerometer to infer stress using an SVM, classifier accuracy
declined from 89% in controlled conditions to 72% in the real-world demonstrat-
ing the challenges of inferring real-world mental wellbeing [138].

Multi-task learning has been used on real-world data with students reporting
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their health, stress and happiness each morning and evening [147]. The best per-
forming models were trained using 343 features extracted from EDA, skin temper-
ature and accelerometer sensors, smartphone logs and weather achieving 82.52%,
86.07% and 87.5% accuracy for health, stress and happiness respectively. Fur-
thermore, 19 participants collected EDA and HR sensor data over 5 days labelling
their valence and arousal whenever they experienced a change in emotions [125].
The model successfully classified 85% of the high and low energy emotions and
70% of the positive and negative emotions.

Similarly, to monitor mood at work a smartphone app and wearable em-
bedding an ECG, EDA, accelerometer and skin temperature sensor has been
developed [363]. 4 users used the system over a period of 11 days labelling their
emotions every 8 hours to collect the sensor data to train the KNN, decision tree
and Bagged Ensembles of Decision Trees (BE-DT) networks. When inferring
the strength of 8 emotions the BE-DT model achieved the highest performance
of 62.1% for generalised models and 70.6% for personalised models demonstrat-
ing the capability to infer real-world emotions albeit using a small test sample.
However, there remains many challenges when developing a classification model
to infer real-world wellbeing including collecting data from a large sample and
collecting ground truth labels [52].

2.5 Technological Based Interventions
An area of application still in its infancy is technologies that go beyond sensing
to additionally provide feedback helping to improve mental wellbeing. A variety
of feedback mechanisms can be used to improve wellbeing and by combining
these with real-time classification models it enables the possibility for real-time
interventions to be automatically applied.

2.5.1 Biofeedback Therapy

One method to improve mental wellbeing is bio-feedback therapy; this involves
monitoring a normal automatic bodily function and then training people to ac-
quire voluntary control of that function. Nolan et al. [221] measured HRV in
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patients with coronary heart disease as cardiac death is more likely in these pa-
tients when stressed. The study recruited 46 patients, of whom 23 undertook
HRV biofeedback involving training patients in paced breathing in order to im-
prove their HRV and stress management. The study resulted in patients showing
reduced symptoms of psychological stress and depression, proving the positive
effect of biofeedback training and controlled breathing. However, further work is
required to investigate whether these findings could be generalised within real-
world environments.

Another study [170] used biofeedback for general stress management; this
biofeedback used a game to encourage users to improve their HR and cerebral
blood flow control. This study used stress focused questionnaires, a stress marker
and a voxel-based morphometric analysis to determine stress, allowing the study
to conclude that the biofeedback helped reduce daily stress due to the increase
in regional grey matter [100]. HRV biofeedback has also been used during the
postpartum period after the birth of a child. The study [174] showed that biofeed-
back helped improve HRV and improve sleep over the 1 month period it was used
by 25 mothers. However, the lack of a control group means the study does not
definitively show the improvements were due to the biofeedback training.

Biofeedback has been shown to have a significant impact in reducing stress
during trials although its effectiveness in real-world stressful situations has not
been proven [341]. The possibility of pairing bio-feedback training with virtual
reality could allow users to practice the techniques learned through biofeedback
to reduce stress in a setting they find stressful, which would demonstrate the
effectiveness of biofeedback. Furthermore, biofeedback requires people to have
an understanding, willingness and time to train their body to acquire voluntary
control which many people do not possess. Tangible interfaces may solve many of
these problems by using sensors to analyse affective state similar to biofeedback,
and additionally provide automated feedback to improve wellbeing in real-time.

2.5.2 Real-time Feedback

Devices that sense and provide feedback ranging from tangible interfaces to
robotics have the possibility to positively impact the wider population who may
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temporarily experience mental wellbeing challenges but do not seek professional
help. Tangible devices offer the capability to improve mental wellbeing in real-
time by pairing sensors with automated feedback.

A variety of tangible mental wellbeing devices have been produced by Vau-
celle, Bonanni, and Ishii [321]. These include touch me; which contains multiple
vibrotactile motors to provide the sensation of touch, squeeze me; a vest to sim-
ulate therapeutic holding, hurt me; a wearable device that applies a moderated
painful stimuli to ground people’s senses and cool me down; a device that heats
up to ground people’s senses. From the devices developed clinicians believed
hurt me had the most potential as it could allow for the patient and therapist to
better relate to one another, by having the therapist working with the class of
pain the patient is experiencing psychologically and externalising viscerally. All
of these interfaces have specific purposes such as hurt me which may be benefi-
cial for people considering self-harming but not for people suffering from other
mental health challenges. A more general device is required for people who may
experience temporary mental wellbeing challenges.

It is possible to help improve general mental wellbeing using small devices
with real-time interventions; one such device is Squeeze, Rock and Roll [47].
This device allows users to simulate rolling behaviours as many people do with
a pen when stressed but the device gradually guides the user to reduce their
movements and their stress through dynamic tactile feedback. However, while
people acknowledged the device helped them relax no stress reduction was found,
possibly because the device offered very little feedback. Guiding users’ behaviours
is a novel approach to improve mental wellbeing although possibly less effective as
some people may find the action of rolling or twisting objects relaxing and is often
used as a coping strategy for people suffering from mental health conditions [53].

Haptic feedback is a method of providing feedback that recreates the sense of
touch through the use of motors and vibrations; this allows people to experience
real sensations which can significantly affect emotions and has been shown to
successfully improve mental wellbeing [332], [62]. Good vibes [159] used a haptic
sleeve to provide varying feedback dependent on heart rate readings. A stress test
was conducted while the sleeve used dynamic vibrations to help reduce the heart
rates of the participants by 4.34% and 8.31% in the two tests compared to the
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control group. Doppel [17] also used haptic feedback in a wearable device that
aimed to reduce stress before public speaking, measuring users’ heart rates and
skin conductance to determine stress. The speed of the vibration was dependant
on the user’s HR, providing personalised real-time feedback. When users were
told they were to present a speech the skin conductance data showed users wearing
the Doppel remained less stressed than the control group. This research shows
that haptic feedback can have a substantial positive impact in improving mental
wellbeing and is more successful than guiding user interactions. The advantage
of personalised haptic feedback is clear, but more research needs to be conducted
to establish the best rate and type of feedback for individual users.

A headband has also been developed that uses EEG combined with machine
learning to assess stress by analysing alpha and beta waves as alpha waves de-
crease when stressed [278] and then uses massage therapy to reduce stress [50].
The massage motors were tested on 4 participants with 3 of these responding well
to the feedback and becoming less stressed showing the possibility for massage
therapy to be further utilised in stress reduction devices. However, as the device
was only used by 4 participants with a 75% success rate, it is far too small to have
any statistical significance with much more research needing to be conducted to
prove it can be as effective as haptic feedback.

Communicating with others has a positive mental impact leading to research
that remotely connects people through biofeedback. When communicating emo-
tions, a range of output modalities have been explored including including visual,
haptic and audio feedback in addition to more novel feedback modalities such as
temperature, shape changing, taste and smell [184]. Haptic feedback has com-
monly been used due to its unobtrusive nature and ability to represent the feel-
ing of touch [215]. Haptic feedback can further be utilised as a breathing pacer.
Miri [208] found that the development of a personalised routine where users find
the breathing frequency comfortable was more important in relaxing users than
the placement of the feedback itself, demonstrating the benefits of haptic feed-
back to both passively calm users and actively aid relaxing breathing practices.
Similarly, shared breathing experiences through Breeze using tactile, visual and
audio feedback helped to increase the feeling of belonging between connected
participants [94]. Communication with others is vital to ensure positive mental
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wellbeing and while feedback devices that remotely connect individuals appear
to improve mental wellbeing they have only been tested in limited trials.

Many existing approaches have not classified wellbeing to issue feedback but
instead mirrored physiological reactions back to users for their reflection [264].
Visual feedback in the form of flexible wrist-worn displays have been developed
enabling users to view real-time representations of their physiology [318]. How-
ever, the use of a thermochromic displays resulted in the visualisations being
ambiguous and potential privacy concerns as other people could easily view the
wearer’s emotions.

Somaesthetics has also been used as a method of combining bodily experiences
with aesthetic appreciation, presenting many opportunities for expressing mental
wellbeing [346]. The Breathing Light [135] created an enclosed space where light
dynamically changed with the user’s breathing patterns enabling deep reflection.
The Breathing Light provided a more calming alternative for visual feedback but
may be challenging to adopt in real-world environments. Alternatively, Bright-
Hearts [163] is a biofeedback mobile app that changes patterns, colour and sound
with the user’s HR, helping people become self-aware of their wellbeing and as-
sisting them to relax as shown in Figure 2.10. Another app aimed to improve
emotional wellbeing without the use of somaesthetics, instead using momentary
photography [183]. The results demonstrated photographic features such as the
number of photos taken and the number of photos revisited were positively cor-
related with an improvement in the participant’s mood showing photography as
a simple real-time method to improve wellbeing.

BioFidget [186] shown in Figure 2.11 is a self-contained device that monitors
HRV and allows users to train their breathing by blowing on the fidget spinner to
reduce stress. Twenty participants stated BioFidget helped them feel relaxed and
overall it helped the majority of users improve their HRV showing they were less
stressed. Inner Flower [117] has also been developed as an ambient device that
uses the user’s HR and HRV to create a breathing guide using visual feedback.
The results showed that breathing exercises reduced stress levels although the
ambient visual feedback had no significant impact on stress.

Additionally, somatics has been used to translate EDA data into felt expe-
riences through changes in temperature [7]. Wearer’s of the device found the
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Figure 2.10: BrightHearts app showing light pattern.

cooling sensation triggered by changing arousal levels to be pleasant. The use of
varying temperatures as feedback is a novel method that when paired with addi-
tional sensors to better monitor wellbeing could provide subtle calming feedback
that may help improve wellbeing.

A different approach to provide real-time feedback is to alert the user regard-
ing their current mental state, allowing them to take appropriate measures such
as reducing workload or taking time to relax. MoodWings [197] aimed to reduce
stress through wing actuations informing users of their current stress levels. Par-
ticipants wore the device on their arm while ECG and EDA readings were taken
to determine stress. A simulated driving experience was undertaken by partici-
pants and once stress was detected the wing movement was manually activated.
The results show that MoodWings improved the participants’ awareness of their
stress, but their awareness further increased their stress as shown by EDA data,
resulting in the device having a negative effect on users’ mental wellbeing. Over-
all this study demonstrated that sharing wellbeing data with users needs to be
carefully considered [197].

A novel approach to provide feedback is through the use of robotics such
as therapy animals which are most commonly used to reduce loneliness. One
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Figure 2.11: BioFidget TUI used to promote deep breathing.

example of a robot used for therapy is Paro; a robotic seal that was designed
as an easy to use robotic animal that encourages user interaction with its large
eyes and soft fur [282]. Tactile sensors allow Paro to understand the location
and force of users’ touch allowing for the response’s magnitude to be relevant to
the input. Studies show Paro provided extremely effective therapy as it helped
reduce stress in a day service centre for elderly adults [16], increased user’s social
interactions and improved their reactions to stress in a care home [282]. Paro
has been shown to have a great impact in helping reduce stress in elderly adults
even with its limited sensors and responses and has the potential to have a wider
positive impact on people’s mental wellbeing.

Figure 2.12: Paro therapy seal.

Although most therapeutic robots such as Paro target the elderly, a robotic
teddy aimed at reducing stress in young children at the hospital has been de-
veloped [150]. Rather than relying upon tactile interaction like Paro, this teddy
uses vocal interactions, which children preferred. The children who used the
robotic teddy spent more time playing with it than the comparative virtual or
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traditional plush teddy, they also had more meaningful interactions and their be-
haviours conveyed they were emotionally attached to the bear and not stressed.
Robotic interactions can have a positive impact on emotional experiences and
help reduce stress in both the young and the elderly. Robotic animals could be
easily adapted to incorporate additional sensors to automatically detect mental
wellbeing allowing for more personalised responses to be produced.

Feedback devices aim to advance upon sensing devices by actively improving
mental wellbeing in real-time using varying feedback mechanisms including hap-
tic, visual and auditory [94]. Many of these techniques proved to be beneficial in
improving mental wellbeing, displaying the need for more widespread adoption
of such devices. While some feedback devices incorporated sensors, very little
research has been conducted pairing physiological sensors, feedback mechanisms
and AI into devices that aim to both sense and improve mental wellbeing in real-
time. Overall, the feedback incorporated in a device requires careful consideration
and evaluation to ensure it is effective with future devices potentially employing
classification models to accurately determine when feedback should be provided.

2.6 Reflection and Challenges of Affective Tech-
nologies

2.6.1 Discussion of Existing Research

A number of systems to support mental wellbeing using apps, sensors, TUIs,
biofeedback and robotics have been reviewed. A large number of apps already
exist, with many aiming to improve traditional self-reporting tools and experience
sampling. Apps designed to elicit PROMs provide additional convenience over
traditional methods as they can be used anywhere discreetly, but self-reporting
is subjective and people may fail to report [284] or be less truthful [113] when
recording their mental state, showing the benefits of using objective measure-
ments from sensors. Mobile apps reaffirm the increasing popularity of people
wishing to monitor and improve their wellbeing using technological alternatives
to traditional techniques.
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Sensing devices are also increasing in popularity with advancements in physi-
ological sensors resulting in cheaper and smaller devices promoting extensive use.
A range of sensors have been explored measuring HR, HRV, EDA and motion.
The ability to pair machine learning algorithms with sensor data presents an
enormous opportunity allowing for affective states to be detected with accuracies
exceeding 90% [162], [124]. Integrating sensors with classification models in a
portable interface potentially enables continuous monitoring without the need to
self-report. However, while AI has enormous benefits, it does present its own set
of challenges, as a large amount of labelled data is first required to accurately
train models.

Feedback devices aim to actively improve wellbeing in real-time using varying
feedback mechanisms such as haptics, visuals and audio [94]. Haptic feedback has
been used in multiple devices and often resulted in reduced stress, in particular
when the feedback was personalised. Other feedback interfaces aimed to reduce
stress using existing techniques such as deep breathing [186], [94], or massage
therapy [56]. All these techniques proved to be beneficial, demonstrating the
need for more widespread adoption of such devices. While some feedback devices
incorporated sensors to monitor the impact the feedback had, very little research
has been conducted pairing physiological sensors, feedback mechanisms and AI
into devices that aim to both sense and improve real-world wellbeing.

2.6.2 Challenges

2.6.2.1 Privacy and Ethics

Applying therapies and translating them into digital versions is not straightfor-
ward as there are many challenges associated with mental wellbeing technologies.
Privacy is a significant issue as the majority of users want to keep their mental
health information private [39]. Users are more cautious regarding sharing their
health data making integrating the data with established e-health systems chal-
lenging [345]. Efforts such as the General Data Protection Regulation (GDPR)
in the EU and EEA have attempted to give control to citizens over their personal
data by ensuring they are able to access their data and understand how it is being
processed [87]. Ideally data processing should be completed locally to preserve
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privacy. Furthermore, care needs to be exercised regarding users’ privacy with
the data collected; ethical guidelines should be abided by, and users should be
made aware of the data being collected and how it is being processed.

2.6.2.2 Digital Competency

An issue with some of the discussed devices is users’ digital competence as elderly
adults generally lack a high level of digital skills which may be required to operate
these devices. However, one study [256] found elderly users preferred wearable
devices over mobile phones to report emotions. Furthermore, Emoball [95] is a
self-contained device and there was no evidence of digital competence affecting
user interactions, showing affective TUIs can be widely adopted.

2.6.2.3 Data Collection and User Adherence

An issue with much of the existing research is very few trials collect or test using
real-world data as people becoming artificially stressed in trials may not exhibit
the same patterns when stressed or suffer from other wellbeing challenges in real-
world situations. For real-world data collection recruiting and incentifying users
to test and provide feedback on the use of such devices can be challenging, partic-
ularly regarding users’ willingness to trial new affective technologies. Users will
be required to trial devices to ensure their effectiveness but also to collect data
enabling machine learning models to be trained. User adherence and engage-
ment is another crucial problem as users may not immediately see the benefits of
such solutions, preventing continued use. Furthermore, engaging hard to reach
communities where mental wellbeing technologies could have a profound impact
poses even greater challenges. Making the devices as small and portable as pos-
sible should encourage engagement as it allows them to be used anywhere [273].
The design of the devices must also be carefully considered for widespread use
as they must be aesthetically pleasing to ensure the promotion of continued en-
gagement [231].
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2.6.2.4 Classification

On the diagnostic side, one of the biggest issues is affective sensing: this is inher-
ently subjective and it may be difficult to infer through sensor data alone [299].
Machine learning models could be trained on an individual basis to allow for sub-
jectivity to be taken into account, but this would initially require a vast amount
of time and data to be collected from each user which may not be possible without
first developing more accessible data collection tools. Sensing mental wellbeing
not only requires accurate classification models but also accurate sensors, since
if the data recorded from the sensors is not reliable, the classification from the
machine learning model will not be accurate. However, when machine learning
classifiers were paired with off the shelf sensors, stress was detected with simi-
lar accuracy to clinical grade sensors [209] demonstrating the potential for AI to
improve accessibility to affective tools.

2.6.2.5 Portability

There are many challenges to overcome when using sensors and feedback actua-
tors in tangible interfaces to improve mental well-being. One issue is the size of
the device as it must contain sensors, a battery and feedback mechanisms which
can make the device large. There are new approaches to provide feedback includ-
ing Visio-Tactile feedback, that moves liquid metal drops in real-time between
electrodes allowing for the feedback to be dynamic and smaller [262]. However,
this is very early in development and it may not yet be possible to incorporate it
into tangible devices.

2.6.2.6 Battery Life

Assuming patients are willing to use instruments used in the domain of assessing
mental wellbeing, the underlying issue of battery life still needs to be addressed.
Often IoT devices need to remain small and contain the necessary microcontroller
and sensors leaving little room for the battery meaning it will need to be recharged
regularly. A possible solution to this would be to only enable specific sensors after
other actions have been performed; this means high powered sensors will not
have to be continually powered but an additional step is required to collect data.
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Until batteries with considerably longer battery life are developed, it will remain
impractical to continually collect vast amounts of behavioural data. Instead,
pragmatic solutions to optimise power consumption are necessary.

2.6.3 Summary of Current Gaps in the Research

1. Only few attempts are present in the literature that have looked at util-
ising multimodal real-time sensing approaches. Very often key sensors for
mental wellbeing assessment are not utilised such as EDA, either because
it’s not available in the sensing kit or due to the fact devices with EDA
sensors are often expensive [86]. Even those with multi model sensing ap-
proaches are not integrated within a full comprehensive system that also
delivers meaningful feedback to the user as instant intervention. Therefore,
the development of custom TUIs may improve accessibility to continuous
monitoring and real-time interventions.

2. Digital markers such as physiological and human behaviour sensors and
advances in edge computing present clear opportunities for real-time mo-
mentary assessment and instant intervention. However, there is an absence
of large scale real-world trials to confirm the results. Many studies have
used controlled experimental datasets to evaluate the models, not consid-
ering real-world performance. If affective states are to be inferred in in-situ
environments then real-world labelled datasets are required to train the
models. Therefore, techniques to aid the collection of real-world labelled
data need to be explored.

3. The current research demonstrates two major constraints when using deep
learning classifiers: a large dataset is required to first train the model and
individual differences make the development of a one-size-fits-all model ex-
tremely challenging. The use of new techniques such as TL presents op-
portunities to reduce the impact of these limitations and to overcome data
scarcity which is often associated with personal data.

4. Although the possibility of including feedback within interfaces to act as
interventions has been considered there has been little focus on a single
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interface that processes real-wold physiological data and provides inter-
ventions. This creates the possibility to explore new methods that auto-
matically monitor and positively impact mental wellbeing going beyond
traditional feedback mechanisms.

5. Privacy and data sharing are key concerns in the development of wellbeing
devices as health data is extremely personal. Advances in edge computing
are enabling instant monitoring whilst retaining privacy by not sharing data
and completing all processing on-device, helping to put users in control of
their wellbeing whilst also protecting their data.
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Chapter 3

In the hands of users:
Co-Designing Tangible Interfaces
to Monitor Affective State

This chapter presents the exploration of inclusive and participatory co-design
techniques and principles to engage potential users who could benefit from in-
novations in affective tangible technologies. In particular, individuals with cog-
nitive impairments participated in a co-design process via a series of workshops
and focus groups as their wellbeing is often diagnostically overshadowed and they
can traditionally find it challenging to express their emotions [102]. The work-
shops helped participants explore new technologies including sensors and feedback
mechanisms that can help monitor and potentially improve their mental wellbe-
ing. The adopted co-design approach resulted in a range of effective and suitable
interfaces being developed for varying ages.

3.1 Introduction
Traditional mental wellbeing assessment methods require people to be aware of
their mental health status and seek help which can be challenging due to social
stigma and lack of available resources [61]. The decreasing cost and increasing
capabilities of sensors and edge computing is enabling new forms of interfaces
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which are more powerful and dynamic than traditional assessment technologies.
A technological alternative that could actively monitor an individual’s affective
state and provide feedback could be extremely beneficial in improving accessibility
to mental health tools for all [51].

Recent advances in sensors, batteries and processors have resulted in an in-
crease of pervasive computing technologies. However, many interfaces only in-
clude a limited range of sensors such as those measuring motion and HR and
infrequently record this data, resulting in a dataset that may not capture all of
the wellbeing states experienced by users and is not sufficient to effectively train
machine learning classifiers. Furthermore, the vast majority of current interfaces
that monitor wellbeing do not include methods that can serve as intervention to
promote the regulation of negative emotions [114].

TUIs enable people to interact with digital data through physical objects and
are ideal to embed all of the necessary sensors and processing power [317]. Tangi-
ble manipulation presents an opportunity to develop novel devices introduced as
tangible fidgeting interfaces that go beyond traditional devices to enable unique
interaction methods and encourage continued engagement [136]. A successful
TUI is envisioned that will enable affective state to be automatically monitored
using multimodal sensors embedded within the device. The possibility of a device
to accurately monitor real-world wellbeing using sensor data, further enables the
possibility of applying digital feedback to act as interventions aiming to automat-
ically and gradually regulate emotions and improve wellbeing in real-time.

A person diagnosed with an intellectual disability [274] shows deficits in intel-
lectual functioning such as reasoning or problem solving with an IQ score often
less than 70 and deficits and impairments in adaptive functioning such as com-
munication or social skills, all during the developmental period before the age of
18 [11]. Intellectual disabilities can be divided into four levels: mild, moderate,
severe and profound where for each level the person requires more support [196].
Individuals with intellectual disabilities often experience mental wellbeing chal-
lenges but these are frequently overlooked and attributed erroneously to their
disability (diagnostic overshadowing) or classed as challenging behaviour [102].
Diagnostic overshadowing often results in a significant impact on an individual’s
likelihood of engaging with mental healthcare systems. Furthermore, many in-
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dividuals with intellectual disabilities find it challenging to express the emotions
they experience [3]. Individuals with intellectual disabilities face additional chal-
lenges in expressing their emotions, correctly interpreting social situations and
predicting the behavioural consequences of specific actions [46], [263]. This re-
search seeks to address these challenges using a co-design approach.

To ensure the proposed TUIs are effective and usable by individuals who expe-
rience mental wellbeing challenges, including those with intellectual disabilities, it
is imperative to design the interfaces with end users. An iterative co-design pro-
cess has been proposed that has been adapted to enable the designing of interfaces
and exploration of different sensing and feedback mechanisms with participants
from the Nottingham Interactive Community for Education Research (NICER)
group at Oak Field school, Nottingham, UK. The group is formed of adults with
a range of intellectual disabilities who have a wide range of experience in eval-
uating enabling technologies, including virtual environments and serious games.
This approach hopes to alleviate communication challenges faced by the target
group and gather feedback that results in the development of interfaces that can
effectively monitor real-world affective state.

The aim of the iterative co-design process was not to achieve one design with
specific sensors, instead a range of different devices was expected to be proposed
to suit the needs of all potential users including those who may experience a wide
range of limitations. The co-design process aimed to investigate the following
research questions 1) How can the co-design process be adapted to best suit the
needs of those with intellectual disabilities? 2) What are the optimal design
guidelines for prototyping affective tangible interfaces? 3) Which sensors would
be most beneficial for user interaction? 4) How do users believe on-device feedback
could help improve their mental wellbeing?

3.2 Background of Co-design
Co-design is closely connected with participatory design and is the methodology
for actively engaging people directly involved in an issue, place or process in its
design, allowing them to make a meaningful contribution to the design process
[49], [32], [134]. Co-design enables the reduction of the gap in knowledge between
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end users and researchers, allowing non-designers to become equal members of
the design team, ensuring designer subjectivity is removed and the technologies
developed are suitable for the target population [325], [269]. During the process,
design tools are used to empower all of the participants to facilitate a ‘joint
inquiry’ where ‘problem and solution co-evolve’ [295]. Co-design brings many
benefits to the design of the project by helping the researcher better understand
the challenges faced by users and any potential solutions [296], [287].

Co-designing helps solve real-world problems by bringing together people from
different backgrounds into the design process, resulting in more inclusive solu-
tions. However, to work most effectively it is important to select appropriate
methods and ways of working which need to match the project being designed
and the potential users’ capabilities and limitations. Co-design methods help
make things that are normally unobservable through traditional interviews and
focus groups available as resources for design [326], [82], [327], this can be achieved
by:

• using visual, creative methods [266].

• physically making things helping people to explore, verbalise, remember
and imagine [269].

• creating and telling stories helping to put things into context and providing
a central way of sharing and communicating. Story sharing can be visual,
verbal or include role play. [266].

Co-design can be used to promote the inclusion of people living with disabili-
ties when designing new solutions by including their personal experiences, making
them more likely to take ownership of the final outcome [272]. People with in-
tellectual disabilities may face barriers such as communication challenges when
being involved in the co-design of new assistive technologies, resulting in co-design
techniques needing to be modified to fit with participants’ abilities [34]. To help
reduce the challenges faced, a set of guidelines have previously been devised for
co-designing with people who have autism spectrum disorders [93].

Co-design has previously been used to engage individuals with cognitive dis-
abilities in successfully designing a picture-based remote communication system,
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helping the participants move from merely being passive onlookers to active par-
ticipants [71]. Similarly, co-design workshops have engaged people with assisted
living needs to develop technologies and services for new care solutions [342],
engaged autistic children in co-designing technologies [292], researched accessi-
ble apps and games [15] and helped people with complex communication needs
express themselves through art therapy [181]. Furthermore, co-design has been
used to develop mobile applications with adults who have intellectual disabili-
ties, highlighting that prototypes were required to deepen user engagement [286].
Overall, while involving users with intellectual disabilities in the design process
produces additional challenges such as additional ethical considerations [293], it
is imperative to ensure the solutions developed meet the needs of the potential
users.

3.3 Participatory Iterative Design Methodology
This instantiation of an iterative design cycle took over one year in total. Each
stage of the co-design process was conducted with the same primary researcher
and an experienced facilitator with many years experience in running co-design
workshops. All participants were members of the NICER group with varying
disabilities including Williams syndrome, Down syndrome and Autism but no
participants had significant motor skill impairments that would impact their par-
ticipation. Their role in this process was not as research subjects, they were
instead involved in identifying design opportunities relevant to their needs.

Co-designing with people with disabilities presents additional challenges - such
as issues regarding the nature of their cognitive disability, including communica-
tional and memory issues, which may challenge their full participation. However,
it is imperative for the voice of end users to be heard and many of the challenges
can be overcome by developing a co-design methodology catering for the require-
ments of people with intellectual disabilities. The early integration of people with
intellectual disabilities into the design processes aimed to prioritise their design
decisions and needs. These insights serve as guides to a joint inquiry that seeks
to address the challenges of developing TUIs to monitor affective state.

The co-design process used in the project is depicted in Figure 3.1 adapted
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Figure 3.1: Stages of iterative co-design process.

from [330], [331] where people with intellectual disabilities engaged in a part-
nership with researchers. The methodology alternates between focus groups to
gather feedback during the preparation, validation and evaluation phases and in-
teractive co-design workshops completing the fieldwork and ideation phases. A
novel aspect of this process is that it enabled feedback to be gathered at each stage
of the development process including design and prototype development. Over-
all, the co-design process was conducted in conjunction with an advisory panel of
adults with intellectual disabilities, focusing on methodological adaptations and
special supports developed to facilitate and ensure their participation. The co-
design sessions were recorded for future analysis as granted by Nottingham Trent
University, ethics application 18/19-43V2.

3.3.1 Preparation Phase

At the beginning of the co-design process an introductory preparation phase
was completed to agree on the scope and aims and objectives of the project.
Members of NICER along with teachers of young students with moderate to severe
intellectual disabilities acted as an advisory panel with a researcher, experienced
facilitator and education specialist leading the session. The focus group was
conducted over 1 hour and notes were recorded for future analysis.

An accessible introduction was completed using a presentation to introduce
participants to the concept of TUIs and the possibility for them to automatically
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monitor affective state. This was completed by showing examples of existing
interfaces such as Emoball [95] and Mood TUI [273] to help participants develop
a concrete understanding of TUIs and allow them to gain greater knowledge of
the devices to be developed. Explanations were provided of hard to understand
concepts including discussions on emotions and the technologies themselves.

After the project had been introduced participants were asked whether it was
of interest to them, and whether they would like to get involved in the subsequent
co-design workshops and they agreed and volunteered their involvement. The
NICER group is a significant stakeholder in this research, and they developed
high expectations of TUIs that could have a positive impact for the intellectually
disabled community.

3.3.2 Co-design Workshop 1

The first co-design workshop aimed to explore various designs, technologies and
requirements for affective TUIs. The workshop was conducted over 4 hours at
Nottingham Trent University to strengthen the participants’ roles as experts and
posit them as co-researchers within a university setting and was video and au-
dio recorded for future analysis. The workshop comprised of six participants;
four males and two females who have previously been involved with multiple re-
search projects and are experienced co-designers. Table 3.1 shows the Number
(N) of participants and their characteristics including those who have Williams
Syndrome (WS), Down Syndrome (DS) and Autism along with information on
their gender and level of intellectual disability as defined by their condition and
previous evaluation by professional carers and teachers.

A common issue with the development of mental wellbeing technological so-
lutions is the lack of ethical considerations [265]. To ensure the co-design work-
shops were inclusive for participants with intellectual disabilities and caused no
harm, all discussions were short and a range of interactive tasks were designed to
increase engagement. The following five design affordances used within the co-
design workshops were designed to support participants’ decisions, compensate
for their disabilities and act as conversational instruments based on established
methods [291] and previous experience [45], [42].
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Table 3.1: Co-design workshop 1 participant characteristics (age, gender disabil-
ity) for total Number of participants (N), with Williams Syndrome (WS), Down
Syndrome (DS) and Autism.

Total
(N=6)

WS
(N=1)

DS
(N=4)

Autism
(N=1)

Mean age 36 39 39.75 18
(range) (18-47) (30-47)
Gender N (%) Men 4 (66.7) 1 (100) 2 (50) 1 (100)

Women 2 (33.3) 0 (0) 2 (50) 0 (0)
Level of intellec-
tual disability N
(%)

Moderate
Severe

1 (16.67)
5 (83.33)

0 (0)
1 (100)

1 (25)
3 (75)

0 (0)
1 (100)

3.3.2.1 Introduction and Demonstration

When conducting co-design workshops with participants who have intellectual
disabilities it is imperative to ensure all participants fully understand the goal of
the workshop to improve communication. To ensure this, an experienced facilita-
tor introduced the session by clearly explaining the concept of affective tangible
interfaces.

Challenges can arise from communicating with participants and difficulties
interpreting non-verbal interactions [126], [224]. Therefore, in the co-design pro-
cesses the adage “show me don’t tell me” [49] is often used, resulting in previously
developed prototypes such as the cube shown in Figure 7.1 being demonstrated to
the participants. Concrete prototypes, create opportunities for participants with
intellectual disabilities to interact directly with the interfaces and understand the
feasibility of developing new interfaces [40]. The prototypes embedded a range of
sensors including 9 Degree of Freedom Inertial Measurement Units (9-DOF IMU)
to measure motion, Force Sensitive Resistors (FSR) to measure touch and HR
and EDA sensors to measure physiological changes.

3.3.2.2 Storyboarding and Drawing

The design of the interfaces was then explored. Previous work provides many
useful strategies for engaging individuals with intellectual disabilities in the de-
sign process such as storyboards and pictures, and avoiding open-ended ques-
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Figure 3.2: Original mental wellbeing interface prototype.

tions [37], [97], [255], [288], [355]. To help compensate for the participants’ intel-
lectual disabilities, real-time storyboarding was completed where prompts were
presented to participants to expand upon, promoting communication. During
storyboarding, participants were able to discuss their opinions on the existing
interfaces previously demonstrated and share their ideas for new interfaces.

In co-design, methods are used to help participants ‘say, do and make’ [268].
This helps us deepen our engagement with people and strengthens the insights
we are able to gather. Using this approach participants were invited to draw their
own interfaces using pen and paper to help promote ideas for new interfaces. This
enabled the participants to creatively express their design ideas without the need
to verbalise, which those with intellectual disabilities can find challenging.

3.3.2.3 Prioritising Requirement Cards

The potential features of tangible interfaces were also explored as it is imperative
to understand what features users most require to ensure successful devices are
developed. A card based approach was used that enabled participants to priori-
tise the features they believed were most required. This approach was based on
the generative research approach [267] to combine participatory exercises with
verbal discussion during the creative idea generation phase. Similar card based
approaches have previously been used due to their accessibility, familiarity and
tactile nature which can help promote communication [33]. Six cards were pro-
vided to each participant stating a specific requirement for tangible interfaces
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including: ease of use, makes me feel better, design, battery life, physical size
and understands how I am feeling. Each of the six requirements were explained
to the participants by the researcher and experienced facilitator to ensure they
fully understood the meaning of the requirements and their role in prioritising
the requirement cards.

3.3.2.4 Real-time 3D Printing

The process of showing participants with an intellectual disability how their de-
sign decisions have a direct real-world consequence in a rapid and concrete way
was developed in an earlier study and replicated here [44]. 3D modelling software
was used to demonstrate how the interfaces can be designed and printed to make
concrete the relationship between the participants’ decisions and the tangible in-
terfaces produced. A majority vote was conducted to decide on the shape to be
printed and as the workshops were conducted over several hours there was suf-
ficient time to design and 3D print a small interface, providing opportunity for
participants to provide reflection on the design. Creating the interfaces during
the workshops resulted in a deeper and more practical understanding about the
participants’ experiences [268].

3.3.2.5 Interactive Electronics

When exploring new technological solutions, providing demonstrations is neces-
sary to ensure all participants understand the functionality and how the technol-
ogy can be used, thereby improving confidence and communication [41]. During
the session a range of non-invasive, easy to use sensors that could be used in
real-world environments [6] were explored through interactive demonstrations.
This was designed to increase engagement and ensure participants understood
the functionality of the electronics by allowing them to experience the different
capabilities offered by each sensor. All electronics were made simple to operate
with the electrical circuits pre-built, as used in previous co-design studies [20], to
ensure all participants would be able to fully participate [133].

A HR sensor was first explored where participants were able to place their
finger on the sensor and lights would flash at the same rate as their pulse. An
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EDA sensor was also explored as it functions in a similar way to the HR sen-
sor with participants having to place their fingers on the sensor. An FSR was
demonstrated next, where as participants pressed harder on the sensor it caused
a haptic motor to vibrate. Finally, a 9-DOF IMU was demonstrated inside a
ball; as participants shook the ball it would vibrate. Overall, this method of
exploring the sensors promoted participants’ understanding and enabled them to
experience how the sensors will be used in future interfaces.

Varying forms of feedback acting as real-time interventions were also explored
giving participants time to reflect and express their feedback between demonstra-
tions. Visual feedback continued to be explored following the use of multicoloured
LEDs to demonstrate the HR sensor. Participants were shown multiple examples
including one device where different colours represented different emotions. Au-
ditory feedback was also demonstrated where a speaker was used to play calming
sounds from nature. Haptic feedback was the last intervention explored; four dif-
ferent feedback patterns were demonstrated to each of the participants who held
the vibration motor to experience the different sensations. The exploration of
interventions through interactive sessions enabled all participants to experience
each of the feedback mechanisms, allowing them to provide personal insights and
share their immediate impressions.

3.3.3 Prototyping

Using the feedback from the co-design workshop, initial high-fidelity prototypes
were developed using the designs, sensors and feedback mechanisms suggested.
This rapid prototype development was conducted to enable participants to phys-
ically experience their design suggestions from the workshop, promoting further
discussion and the continued refinement of the interfaces.

3.3.4 Co-analysis

During the co-analysis phase, focus groups were held where the participants who
took part in the co-design workshop, along with other members of the NICER
group and teachers of young students with intellectual disabilities, were provided
with the opportunity to give feedback on the workshop and the resultant ideas.
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Typically, the focus groups were shorter in nature than the co-design session
allowing for reflection on the outcomes of the workshops. During the co-analysis
notes were recorded for future analysis.

The various activities conducted within the workshop were discussed to anal-
yse what activities participants enjoyed and how they though the workshops could
be improved, allowing for adjustments to be made to the co-design process where
required. The group facilitator asked the NICER group members who attended
the co-design workshop to present the main activities and outcomes of the work-
shop and their implications. Volunteers presented their memories, experiences
and design preferences and this again was all recorded using an accessible story-
board format. Implications for adjustment of co-design techniques and plans for
follow up activities at the next co-design workshop were also discussed.

The initial prototypes based on the feedback gathered from the co-design
workshop were also demonstrated to participants. This allowed participants
to provide feedback and describe each functional prototype to the rest of the
group, with the experienced facilitator and researcher eliciting further feedback
on favourite designs, future design iterations and considerations.

3.3.5 Co-design Workshop 2

The second co-design workshop advanced upon the findings from the first work-
shop and co-analysis aiming to refine the developed interfaces. The workshop was
conducted over 3 hours and was audio recorded for future analysis. The workshop
comprised of 8 participants; 5 males and 3 females who again are experienced co-
designers. 5 participants previously participated in the first co-design workshop,
these included 1 with Williams syndrome and 4 with Down syndrome. Table 3.2
shows the characteristics of the participants including those who have Williams
Syndrome (WS), Down Syndrome (DS), along with information on their gender
and level of intellectual disability.

During the co-design workshop the affordances previously developed were
used. The session was introduced and the previously developed interfaces were
demonstrated to the participants, ensuring all participants were familiar with the
interfaces and understood the purpose of the co-design session. After participants
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Table 3.2: Co-design workshop 2 participant characteristics including Number
of participants (N), with Williams Syndrome (WS), Down Syndrome (DS) and
Autism.

Total
(N=8)

WS
(N=2)

DS
(N=4)

Other
(N=2)

Mean age 36.5 38.5 39.75 28
(Range) (27-47) (38-39) (30-47) (27-29)
Gender N (%) Men 5 (62.5) 2 (100) 2 (50) 1 (50)

Women 3 (37.5) 0 (0) 2 (50) 1 (50)
Level of intellec-
tual disability N
(%)

Moderate
Severe

1 (12.5)
7 (87.5)

0 (0)
2 (100)

1 (25)
3 (75)

0 (0)
2 (100)

understood the aim of the session was to refine the existing prototypes, story-
boarding was again utilised to help participants effectively communicate their
new ideas for the interfaces. However, following feedback from the co-analysis
and the challenges encountered during the first workshop participants did not
draw their own interfaces. Instead, 3D modelling was performed and partici-
pants experienced 3D printing a new interface during the workshop to help them
understand the prototyping process and ensure they understood the impact their
design decisions have on the developed interfaces.

The electronics within the interfaces were also explored with participants ex-
periencing the same sensors as previously explored to ensure the suitability of the
sensors and help gather additional feedback from new participants who hadn’t
previously experienced the electronics. Finally, potential features were not pri-
oritised using cards as conducted in the initial workshop due to this workshop
focusing on refining the ideas already produced. Instead, further discussions were
held enabling participants to express their opinions on the required functionality
and how the prototypes could be improved.

3.3.6 Product Development

Using the feedback from the second co-design workshop, the initial prototypes
were refined. Multiple refined interfaces were developed over several weeks, each
considering the feedback gathered throughout the iterative co-design process.
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These final products allow participants to experience how their design decisions
impacted the development of solutions relevant to themselves.

3.3.7 Validation

The final aspect of the iterative co-design process was to evaluate the developed
interfaces. Each of the developed interfaces were demonstrated to members of the
NICER group and teachers of young students with intellectual disabilities where
notes were taken for future analysis. The participants had the opportunity to
experience the different interfaces developed throughout the co-design process and
examine how their feedback helped influence the design and functionality of the
devices. Participants also had the opportunity to provide their final feedback on
all concepts generated, including the design and technologies within the interfaces
in addition to the co-design process itself and how it was adapted to promote
communication and idea generation.

Finally, volunteers were sought to take the TUIs home for longer term test-
ing and labelling. At the end of these label collection phases, feedback on the
usability, durability and performance of the devices in home settings was also
sought.

3.4 Results

3.4.1 Thematic Analysis

Handwritten notes, video recordings and audio recordings of the co-analysis and
co-design workshops have been analysed using thematic analysis [36]. During
thematic analysis, codes are used to describe specific topics from the recordings
and then themes are created from the codes. When conducting thematic analysis
of the data, whenever a possible feature to include or exclude was discussed, it
was coded. This approach highlighted all of the recommendations suggested by
participants during the co-design workshop and the justification of each feature.

After coding the sessions, similar codes were grouped together to create initial
themes. Each theme contains feature suggestions or restrictions, answering the
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research questions used to create the codes. Each code was then checked within
the themes to ensure its suitability, resulting in minor changes to the themes. The
thematic analysis process resulted in seven themes being created from the codes
which were all consistent and represented the feedback gathered. For each of
the seven themes discussed, relevant excerpts from the recordings are provided to
highlight the opinions of potential users experiencing mental wellbeing challenges.
The complete list of recommendations organised by themes is shown in Table
3.4.1.7.

3.4.1.1 Design and Personalisation

When considering the design of the interfaces size was a key factor, it was stated
the interfaces should be ”not too big and not too small”. The size of the existing
cube prototype was liked by participants with them stating ”like that size” when
referring to the size of new interfaces. However, when discussing compromises
with size all participants agreed they would prefer slightly larger devices with ad-
ditional sensors, stating ”a big device with everything... would be really handy”.
Participants also wanted the ability to use it anywhere so a rechargeable battery
is necessary. Participants discussed numerous usage scenarios for the portable
interfaces including using them as work, college and at home. Participants en-
visioned carrying the device with them and possibly placing it on their desk
allowing them to use it whenever they felt necessary to help them understand
their affective state or help them relax.

When exploring the existing prototypes opinions varied as to whether the
hard 3D printed shapes or the soft interfaces were preferred. Most participants
suggested the softer devices could represent toys and be developed for younger
children while the 3D printed interfaces could be reserved for older children and
adults. The separation of devices for different age ranges had not previously
been considered but participants believed this would be beneficial to reach the
most people who may benefit from the technology. Drawing on their own past
experiences and examining the developed prototypes helped participants suggest
these new ideas that they believed would be beneficial for children to promote
inclusivity.
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The colour and personalisation of devices was repeatably mentioned by partic-
ipants and in particular it was stated the devices should ”not be black and white”
for children and participants would like the ability for the devices to ”change
different colours”. When asked whether everyone could use a similar device or
whether personalised devices would be required, participants suggested the idea
of a base interface being developed that can then be customised with cases to
make the device more personal.

3.4.1.2 User Engagement

When considering potential users of the device, children were suggested multiple
times throughout the workshops. It was agreed that younger children aged around
5-8 (middle childhood) would be engaged by softer interfaces stating ”these are for
the kids” . It was also stated that the larger soft devices may be more appropriate
for younger children with less parts to break or chew. The 3D printed interfaces
were considered less appropriate for children but would be more engaging for
older children and adults to use during everyday life due to their inconspicuous
design.

When drawing future interfaces, a novel method to personalise the interfaces
by attaching extensions that contain additional sensors or feedback was devised
to increase engagement. The addition of extensions would enable the devices to
adapt to the user enabling the most beneficial sensors and feedback to be included
on an individual basis.

3.4.1.3 Sensor Inputs

When the device inputs were explored, participants were successfully able to use
all of the tested sensors. Participants found the IMU and FSR sensors the easi-
est and most natural to use. However, not all sensors would be appropriate for
children, such as the HR sensor, as children would not be able to keep their fin-
ger in continuous contact with the sensor for the device to accurately measure
physiological changes. It was suggested that physiological sensors should be re-
served for the 3D printed interfaces and not the soft interfaces, where children in
particular may continuously move their hands preventing accurate readings from
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being recorded.
The use of accelerometers to measure motion was well received with partic-

ipants finding it useful for the device to recognise how it is being handled such
as being bounced or thrown. Accelerometers could be easily embedded within all
interfaces, with participants believing the manner in which the devices will be
interacted with will be different depending on the user’s state of wellbeing. Sim-
ilarly, FSRs to measure touch could be embedded within both 3D printed and
soft interfaces. The ability to measure touch is useful as participants believed
stroking the soft interfaces was relaxing as it simulated stroking a pet. Partici-
pants enjoyed interacting with touch to activate the feedback, such as pressing
hard to enable the visual and haptic feedback as they found this method of in-
teraction intuitive. The way in which the device was touched was also suggested
as a mechanism to indicate wellbeing, with users potentially squeezing the device
harder when angry. Overall, the touch sensors and accelerometers were preferred
by participants as they were simple to interact with and can be embedded within
all interfaces for all potential users.

The ability for the interfaces to record messages was a popular request for
the soft interfaces. Participants stated they would like to ”talk to it about how
you feel” and they would ”want it to record what is being said ... and play it
back”. Participants believed the soft toy-like interfaces could act as friends for
children where they could express their emotions. The inclusion of buttons within
the interfaces was also proposed, with participants liking the buttons to fidget
with to potentially improve wellbeing and to initiate feedback. A keyboard input
was also suggested, although inclusion of this feature would result in the keys
performing the same function as buttons. The majority of the inputs suggested
can be implemented using force sensors to measure touch, stroking and squeezing,
IMU to measure shaking, HR and EDA sensors to measure physiological changes
and buttons for fidgeting.

3.4.1.4 On-device Feedback

When considering outputs, the ability for the devices to make sounds was fre-
quently mentioned. Participants liked the audio feedback playing calming sounds
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but it was suggested that alternative sounds could also be played to improve
mood. Participants believed the ability for interfaces to play calming sounds,
music, stories or recorded messages may greatly improve wellbeing. Guided re-
laxation was also explained to participants as a potential method to assist re-
laxation, which participants preferred along with recorded messages. However, a
common criticism with the auditory feedback was the quality of the reproduced
sound. This could be improved by using a larger speaker, although this would
increase the physical size of the device to larger than what participants believed
would be comfortable.

Visual feedback was suggested multiple times throughout the workshops, sug-
gestions included ”letting people see different shapes and colours”, ”make it flash
either once or twice”, ”different colours like traffic lights”, ”lights up bright
colours” and ”disco lights”. When participants designed their own interfaces,
the majority included lights activated through either buttons or touch. Visual
feedback was the most popular choice for inclusion in the children’s interfaces
where it was suggested that lights should be included throughout the interfaces
to make them easy to see with ”different shapes and colours of lights”. Par-
ticipants found the inclusion of lights to be vital in making the interfaces more
engaging as well as helping them to feel relaxed. Varying combinations of lights
were trialled, with participants preferring light matrices enabling different pat-
terns to be displayed in addition to varying colours. However, when participants
were shown an example where different colours represented different emotions,
some were not able to understand the concept. This suggests that visual feed-
back can be used as a distraction technique aiming to improve wellbeing but not
to convey information to those with an intellectual disability.

The possibility of embedding a screen within the interfaces was suggested to
show pictures and ”sometimes show happy, sometimes show sad faces” dependent
on the participant’s inferred state of wellbeing. While participants suggested
adding a screen, they also suggested that directly showing measures of stress
through the feedback may induce additional stress, as has been previously found
[197]. Therefore, to ensure no additional stress is caused, visual feedback should
only be used to display varying patterns to aid relaxation.

All participants enjoyed experiencing haptic feedback as shown in Figure 3.3

68



3. Co-Design of Tangible Interfaces to Monitor Affective State

Figure 3.3: Participants exploring different haptic patterns during a co-design
workshop.

and preferred it in comparison to the other feedback mechanisms. Upon first ex-
periencing the haptic feedback, participants stated ”I love it” and ”it’s amazing”.
When testing different haptic patterns the majority of the participants preferred
pattern 1, which involved long subtle consistent vibrations that gradually reduced
compared with the second most popular choice, pattern 4, which involved short
sharp fast vibrations that also gradually reduced force stating ”It’s quite soft”
and ”that’s better”. The least favoured patterns included pattern 2 which grad-
ually reduced the force of the vibration in 20% steps similar to pattern 1 but
less gradual and pattern 3 which alternated between maximum force and slightly
reduced force. Participants didn’t like the stepped nature of pattern 2 and also
didn’t like the consistent high force of pattern 3 showing these sharp, powerful
vibration patterns should not be used to relax users. It is not unexpected that
pattern 1 was most preferred due to its slow gradually reducing, relaxing nature,
however it was surprising that pattern 4 was the second favoured pattern due to
its harsh nature that would not usually be considered relaxing as shown in Figure
3.4. When comparing haptic feedback patterns, one participant stated ”all the
rest are harder number four is soft”, showing that it may be necessary to per-
sonalise haptic patterns on an individual basis. Participants also suggested the
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haptic feedback patterns should remain slow, potentially slower than the user’s
heartbeat, to ensure they are relaxing. A possible challenge with haptic feedback
is users becoming accustomed to the sensation, although the continuous variation
of patterns 1 and 4 helped to alleviate this issue with users believing it would
help them become more aware of their emotions and help them remain calm.

Figure 3.4: Percentage of vibration amplitude for the four tested vibration pat-
terns.

Finally, participants made suggestions regarding the ability of the devices to
move and change shape. Participants requested the ability for the interfaces to
change shape, stretch or ”become rounder”. Flexible electronics may enable the
interfaces to move in this way using motors, although changing shape remains
challenging for 3D printed devices.

Overall, participants suggested numerous outputs for the design of future de-
vices. Based upon user feedback, haptic feedback is a key intervention that should
continue to be explored as all participants found it relaxing and preferred similar
vibration patterns. Visual, haptic and auditory feedback can all be embedded
within future devices, although shape shifting may be more challenging and the
addition of a screen would require careful consideration to ensure it does not
induce further stress. Overall, participants believed by including these feedback
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mechanisms future interfaces could improve their mental wellbeing in real-time.

3.4.1.5 Design Requirements

During the first workshop participants also explored the requirements of affective
tangible interfaces. Table 3.3 shows the order in which five participants prioritised
the requirements as one participant was unable to complete the task.

Table 3.3: 5 Participants’ tangible interfaces priorities as ordered during the co-
design workshop from highest to lowest priority.

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5
Ease of use Battery life Makes me feel

better
Size Battery life

Makes me feel
better

Makes me feel
better

Understands
how I am
feeling

Makes me feel
better

Ease of use

Design Ease of use Ease of use Understands
how I am
feeling

Size

Battery life Design Size Battery life Design
Size Understands

how I am
feeling

Design Ease of use Understands
how I am
feeling

Understands
how I am
feeling

Size Battery life Design Makes me feel
better

Each requirement, was given a score dependent on the order in which each
participant placed the requirement, where the highest priority was given a score
of six and the lowest one. The most prioritised requirement was makes me feel
better (22), closely followed by ease of use (21), then battery life (19), size (16),
understands how I feel (14) and finally design (13). This shows that the partic-
ipants all value the feedback the device could provide to make them feel better
as the highest priority. However, this would first require the device to under-
stand how the individual is feeling which was second least prioritised feature,
possibly showing a lack of understanding of the ”understands how I am feeling”
requirement. This is not unsurprising as this requirement is the most complex
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and requires the understanding that a computer model is capable of interpret-
ing affective state. Ease of use was the second highest rated priority showing
it to be highly valued amongst all participants. Battery life and size followed,
although this greatly varies between participants, with some participants rating
them as the highest priority and others rating them as the lowest priority. The
lowest overall priority was design which was unexpected as participants enjoyed
exploring the different prototypes suggesting they see makes me feel better as the
overall design goal.

3.4.1.6 Design Limitations

During the workshops numerous limitations were discussed but all participants
considered it highly important that the interfaces did not appear as a medical
device in order to reduce stigma. When a participant previously used medical
sensors they stated ”I felt awful, I was panicking...the first time I thought I’m
not doing this”. This makes it vital that any physiological sensors and feedback
mechanisms within the interfaces are non-invasive, easy to use and inconspicuous,
as to not induce additional stress. As the sensors explored during the workshops
were all small and unobtrusive, participants believed they were ideal to monitor
real-world affective state. By developing wellbeing interfaces for the general pop-
ulation, as well as for those experiencing mental health challenges, it will reduce
the associated stigma by ensuring the devices are suitable for all.

When exploring haptic feedback, all participants liked the varying haptic pat-
terns but when initially experiencing the full powered haptic motor, it was ”too
much” for one participant, while another did not like the noise when the motor
vibrated against the table. This demonstrates that while haptic feedback was
enjoyed and should be explored, the haptic patterns played within the devices
can have a major impact on enjoyment and wellbeing. On the other hand, when
the haptic motor was embedded within a large soft toy one participant could not
feel the motor, showing a careful balance is required to ensure the haptic feedback
can be felt within the interfaces but is not overpowering.

Finally, participants stated they would like to have all of the sensors and
feedback within one device, however this would drastically decrease battery life
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and increase the size and cost of the interface. The soft interfaces contain ample
space to embed a variety of sensors and feedback. However, the 3D printed
interfaces are very limited in space especially if they are designed to be small
enough to use in the real-world, resulting in only those sensors and feedback
preferred by the majority of participants being included.

3.4.1.7 Cognitive Barriers

During the workshops cognitive barriers was a theme that appeared throughout,
mainly through lack of communication. Frequently, participants would require
prompting when discussing specific topics, for example when explaining which
sensors would be most appropriate for use. There was a large variation in the
communication skills within the group, with some participants elaborating on
their feedback in great detail and others who frequently replied with one-word
answers, simply nod or shake their head or always agree with the other partic-
ipants. These are challenging issues to overcome as some participants may not
feel comfortable in expressing their opinions in groups. However, the involvement
of an experienced facilitator who understood the commonly occurring communi-
cation issues for this group, the use of Makaton symbols where appropriate along
with the interactive activities during the co-design workshops, helped improve
communication with all participants.

Providing initial prototypes for participants to explore aided their understand-
ing of potential uses for the devices, helping them to communicate new ideas and
features and the interactive sessions were all received extremely positively. These
sessions helped participants gain a clearer understanding of the interfaces and the
technologies used within them, helping many to better communicate their ideas
and hence provide qualitative data to help answer the research questions.

Drawing new interfaces helped some participants creatively express their ideas
that they were not able to verbally communicate such as the sensors and feed-
back they believed were most important to include, although other participants
struggled to draw an example device. Allowing participants to express themselves
non-verbally through 3D printing during the workshops helped demonstrate how
the interfaces are developed and encouraged all participants to consider how dif-
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ferent shaped interfaces could be used. This process helped participants make
a concrete connection between their design decisions (their drawings) and how
this had a direct impact on the outcome (3D printed interface) [44]. Ranking
features of the interfaces was slightly more challenging for some participants,
although after additional guidance the majority of participants successfully pri-
oritised the features. This helped them express what functionality they believed
was most important without needing to verbally communicate. Finally, exploring
the sensors and feedback was enjoyed by all and the analysis showed it greatly
improved attention and engagement in addition to aiding the understanding of
each technology. Demonstrating how the electronics work aided participants’
understanding of how the devices are developed and helped them make realistic
suggestions regarding the design of future tangible interfaces.

Table 3.4. Themes and guidelines devised from thematic analysis
Theme Guideline Description

Design and
Personalisa-
tion

Battery life The interfaces must include a recharge-
able battery that can power the de-
vice throughout the day where it can
be used in real-world environments but
must also remain small enough to fit
within the interfaces.

Colour The interfaces should be developed in a
variety of colours enabling them to feel
personal.

Shape A variety of shapes including 3D
printed interfaces and softer interfaces
such as children’s toys should be devel-
oped to cater for a wide variety of users
experiencing differing challenges.

Continued on next page
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Table 3.4. Themes and guidelines devised from thematic analysis
Theme Guideline Description

User Engage-
ment

Children Soft children’s toys should be devel-
oped that embed the necessary child
friendly electronics and interventions
such as visual and haptic feedback to
improve engagement.

Extensions A fundamental interface could be de-
veloped that can then be expanded
upon to customise the sensors and feed-
back on an individual basis.

Sensor Inputs Physiological Sensors to measure physiological
changes such as HR and EDA should
be utilised to help monitor affective
state but their use may not be suitable
in soft children’s interfaces.

Motion The use of IMUs to measure motion can
easily be embedded within all interfaces
and may show how device interactions
differ with wellbeing state.

Touch The ability to recognise where and how
hard the device is touched may help
infer wellbeing, with stroking possibly
providing relaxation.

Buttons Buttons to promote fidgeting or to ac-
tivate feedback should be included to
improve individuals’ wellbeing.

Microphone It may be possible to infer affect via
voice although this imposes privacy
concerns.

Continued on next page
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Table 3.4. Themes and guidelines devised from thematic analysis
Theme Guideline Description

Feedback Auditory Calming sounds, guided relaxation,
stories or voice recordings could be
played to aid relaxation.

Haptic Calming haptic feedback patterns can
be played when a user is stressed to
help improve wellbeing.

Visual Lights can be displayed in various
shapes and colours to convey informa-
tion or act as a distraction to calm
users.

Tactile Interactions The possibility for interfaces to physi-
cally move or change shape could pro-
vide therapeutic tactile feedback.

Limitations Size The interfaces need to remain small
enough to be portable while also em-
bedding the required sensors and feed-
back. Individuals may have their own
preferences concerning which sensors
and types of feedback function most ef-
fectively, resulting in personalised de-
vices.

Stigma It is vital the interfaces do not resem-
ble medical devices to make them ubiq-
uitous and reduce stigma as the inter-
faces should benefit anyone experienc-
ing mental wellbeing challenges.

Continued on next page
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Table 3.4. Themes and guidelines devised from thematic analysis
Theme Guideline Description

Haptic sensation Haptic feedback should be felt within
the interfaces but it must not be over-
powering to ensure it has a positive im-
pact on wellbeing.

Cognitive bar-
riers

Prototypes The development of initial prototypes
aided the understanding of the func-
tionality required within the interfaces,
helping to improve communication.

Interactivity Interactive sessions improved engage-
ment and enabled greater communica-
tion regarding the design, sensors and
feedback for the wellbeing interfaces.

3.4.2 Product Development

A number of prototypes were developed and categorised into soft toys for young
children aged 5-8 (middle childhood) as this is when children develop relevant
social, emotional and cognitive skills [118] [260] and 3D printed interfaces for
older children (8+) and adults. Age is an important factor to consider when
developing tangible interfaces to ensure they are accessible and engaging, helping
to reduce stigma with affective tools. Privacy was a key consideration when
developing the interfaces. Therefore, the interfaces do not communicate with
any external devices as all data processing and storage is local. Additionally,
microphones were not included within the interfaces to capture audio data as the
continuous recording of voice to infer wellbeing is highly sensitive and may raise
privacy concerns [172]. Speakers were also dismissed due to the requirement for
large speakers to play better quality audio.

Initially, the soft children’s prototypes were developed. Learning from the
feedback gathered, physiological sensors were omitted from these interfaces, in-
stead only touch and motion interactions would be measured. An FSR sensor

77



3. Co-Design of Tangible Interfaces to Monitor Affective State

was initially explored to measure touch, however the rigid shape of the sensor and
limited contact space reduced its potential utility. Conductive fabrics were then
explored as an alternative capacitive sensor to measure resistance. Conductive
fabric can be shaped to cover the entirety of the interface enabling all touch in-
teractions to be detected. Using conductive fabric as a capacitive sensor enables
the location and pressure of interactions to be measured with the same accuracy
as an FSR sensor, while additionally enabling all of the interface’s surface to be
monitored. To measure motion, a 9-DOF IMU continued to be used as its small
size and inclusion of an accelerometer, gyroscope and compass provides a large
sample of data to monitor interactions.

Next, the 3D printed interfaces were developed for older children and adults.
The physiological sensors (HR and EDA) explored during the co-design workshops
performed well and would be beneficial for monitoring affect, however the large
size of the EDA sensor was problematic. A conductive PLA used to 3D print
the interfaces was tested as the possibility of printing a conductive surface would
enable the surface of the interface itself to function as a skin conductance sensor.
However, after exploring multiple conductive filaments, none were sufficiently
conductive to function as an EDA sensor. It is possible to use other conductive
materials to measure skin conductance rather than conductive filament, although
when using conductive fabric as an EDA sensor the resistance was noticeably
lower than the original EDA sensor. Due to the limited nature of conductive
materials to function as a reliable EDA sensor, the original sensor in addition
to the HR sensor were soldered to the microcontroller, creating the electrical
components for the 3D printed interfaces as shown in Figure 3.5.

Figure 3.5: HR sensor connected to a breadboard used during the co-design work-
shops (left) compared with soldered sensors within the 3D printed cube (right).
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During the prototyping stage a ball was first developed, this provided ample
space to include all of the electronics but also presented its own set of challenges.
The foam filling of the ball resulted in any haptic sensations being lost meaning
only visual feedback was included using multi-coloured LEDs. A Soft teddy was
explored next which presented similar challenges to the ball, different designs were
explored including adapting the prototype demonstrated to participants although
the design of this soft toy made it challenging to measure touch. Instead, a new
design was selected and the sensors were successfully embedded to measure touch
and motion interactions. Finally, a soft cushion was developed that may provide
comfort similar to the soft toys but for older children or adults. The conductive
fabric based conductance sensor was implemented within the cushion to test its
real-world usability. However, embedding all of the sensors within a cushion was
more challenging than the toys requiring careful holes to be cut for the buttons,
cables, LED to show when the cushion was on, and power switch. The ability
for a cushion to measure skin conductance may simplify the process of collecting
physiological sensor data but the sensor was less reliable when tested due to the
conductive fabric losing connection with the microcontroller.

Figure 3.6: Early prototyping with soft toys.

A range of different shapes were considered for the 3d-printed interfaces as
shown in Figure 3.7. After considering the various shapes, cubes were initially
developed along with the torus selected during the co-design workshop. Initially
the cube was printed with sharp edges and was too large to comfortably hold
in one hand. The design was changed to include rounded edges and was made
smaller while remaining possible to include all of the sensors. The size of the holes
for the sensors and buttons had to be carefully designed to ensure they would
be usable when encased in the interfaces. The placement of the physiological
sensors within the interfaces was also given particular attention to ensure the
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user’s thumb and fingers would be ideally placed to rest on the sensors. Learning
from the development of the cube the other interfaces were simpler to develop,
a range of interfaces were printed with some including less sensors to make the
interface smaller such as a cuboid and others exploring new designs such as the
pebble to make the interface easier to hold.

Figure 3.7: Shapes considered for 3D printed interfaces.

Fidgeting tools were also suggested for the interfaces. When experiencing
poor mental wellbeing, people often fidget with objects as fidgeting is a natural
response that helps regulate stress [211], [141]. Previous research shows squeezing
interactions are preferred by children when angry but boredom was the most
prevalent emotion to trigger fidgeting and clicking was preferred when bored
[65]. This demonstrates that the fidgeting buttons enjoyed during the co-design
workshops are a beneficial addition and should be embedded within affective TUIs
resulting in the development of tangible fidgeting interfaces.

All of the sensors were connected to either an Atmega32u4 based microcon-
troller due to its small size or a raspberry pi 3 due to its more capable processor.
A battery was also connected with each of the devices providing over 10 hours of
continued use, in addition to an SD card reader to record all of the data.

Overall, nine prototypes were developed including both 3D printed shapes and
soft interfaces. A soft ball and teddy were designed to cater for children, while
a soft cushion embedded a large EDA sensor created from conductive material
to enable its performance to be evaluated. The 3D printed interfaces included
2 cubes as these are easy to hold, a cuboid, a sphere containing sleeves to place
fingers within, a spheroid designed to ensure the user’s thumb will rest on the HR
sensor and their palm will touch the EDA sensor in addition to the torus shape
selected to print during the second co-design workshop. The sensors within each
device are shown in Table 3.4.
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Table 3.4: Description of the 9 developed wellbeing TUIs and the embedded
electronics for real-world sensor data collection.

Device Image Description
Ball A soft ball embedding 9-DOF IMU to

measure motion and capacitive sensor
to measure touch with multi-coloured
LEDs to perform visual feedback

Cube
(touch)

A 3D printed cube embedding 9-DOF
IMU, capacitive touch, HR and EDA
sensors with haptic feedback

Cube (but-
tons)

A 3D printed cube embedding 9-DOF
IMU, fidgeting buttons, HR and EDA
sensors with haptic feedback

Teddy A soft teddy embedding a 9-DOF IMU
and capacitive touch sensor with visual
feedback

Torus A 3D printed torus embedding HR,
EDA, 9-DOF IMU and capacitive
touch sensors with haptic feedback

Cushion A soft cushion embedding EDA, 9-DOF
IMU and capacitive touch sensors with
haptic and visual feedback

Cuboid A 3D printed cuboid embedding 9-DOF
IMU and capacitive touch sensors with
visual feedback

Sphere A 3D printed sphere embedding HR,
EDA and 9-DOF IMU sensors with
haptic feedback

Pebble A 3D printed spheroid embedding HR,
EDA and 9-DOF IMU sensors with
haptic feedback
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3.5 Discussion
This co-design study has explored the design and development of TUIs to monitor
real-world affect. A co-design methodology was adopted based on previous re-
search with participants whose mental wellbeing can often be diagnostically over-
shadowed and who commonly have difficulty in expressing their emotions [102].
This co-design process promotes the role that people with intellectual disabilities
have in acting as collaboration partners.

This research has many implications for both affective recognition technolo-
gies and the process of co-designing technologies with people who have intellectual
disabilities. The five developed affordances aimed to increase individuals’ auton-
omy [187] and promote communication within the workshops. It is hypothesised
that participants’ investment in the co-design process resulted from their abil-
ity to recognise the practical applications of affective technologies whilst also
appreciating the impact that they may have on the daily lives of diverse user
populations.

When co-designing with people who have intellectual disabilities it is vital
to gradually unfold their creative potential to encourage meaningful participa-
tion [199]. Therefore, a number of activities were mediated with education pro-
fessionals and conducted within each workshop that were designed to elicit design
input and opinions, reach consensus and check understanding, such as the priori-
tisation of requirements.

A number of probes (instructional and conversational instruments) were also
used during the co-design process to aid inclusivity [291]. Design probes were
used such as demonstrations and hands on experiences with existing prototypes,
sensors and actuators to serve as conversational instruments. During conversa-
tions design probes were iterated in conjunction with co-design participants, for
example it was explained to participants that including all sensors in each design
would lead to a TUI that was physically large. Furthermore, all information such
as notes and video recording was collected in a structured way for subsequent
analysis and major outcomes were recorded on a note board in picture form and
simple sentences as a joint record of achievement, that was easy to understand
for the entire design team.
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Mixed probes were also used as the co-design session lasted from morning
to early afternoon, allowing probes to incorporate physical (drawing, prioritising
cards) and digital (3D modelling, exploration of electronics) elements and provide
continuity between exploration and prototype testing. This meant that ideas
captured from the whole team could be storyboarded and 3D printed all in one
day, to make concrete the connection between design decisions and embodiment
to support cognitive accessibility.

During the ideation phase, the production of prototypes was completed in
a stimulating and playful environment, free from pressures that intimidate and
block the creativity of the participants, including the use of design kits (drawing
materials, cards, electronic components and sensors) as facilitating tools. The
participants have previously been involved in the design of enabling technologies
and hence they bring experience and expectations to be central to design decisions
at co-design workshops.

These probes along with the five developed affordances and the inclusion of
analysis and validation phases ensured participants were able to fully participate
and provide valuable feedback. The feedback gathered from the co-design pro-
cess resulted in the development of multiple affective interfaces for real-world
monitoring.

3.5.1 Research Questions

The following sections use the analysis from Section 3.4.1 and feedback from the
evaluation session where participants experienced the final developed interfaces
to answer the four research questions.

3.5.1.1 How can the co-design process be adapted to best suit the
needs of those with intellectual disabilities?

Co-designing for people with severe, profound and complex intellectual disabili-
ties has shown additional challenges as not all tasks were successfully completed
by all participants - such as drawing a new interface design. Significant com-
munication challenges were also present. However, the majority of the tasks
were completed successfully, particularly the interactive activities within the co-
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design workshops, involving exploring sensors and feedback mechanisms and the
3D printing of new interfaces to immediately show participants the results of
their design decisions. These interactive activities helped maintain engagement,
improved understanding of new concepts and improved communication within
the workshops. By combining interactive sessions with storyboarding to gain
feedback, it has been possible to gain valuable insights, aiding the design and
development of future affective interfaces.

Overall, the co-design approach adopted addressed the limitations experi-
enced by people with intellectual disabilities (e.g. communication and working
memory), enabling them to participate more effectively. This approach takes a
practical stance in guiding how co-design methods can be made to work in realis-
tic settings and adjusted to the needs of participants who experience intellectual
disabilities.

3.5.1.2 What are the optimal design guidelines for prototyping affec-
tive tangible interfaces?

The results from this study show there is no one-size-fits-all solution to the design
of mental wellbeing interfaces. Instead, different devices should be developed for
different age ranges with soft devices for young children and 3D printed interfaces
for older children and adults. However, all devices should remain inconspicuous
and not appear as medical devices to help reduce stigma.

During the evaluation participants stated that the interfaces developed thus
far are suitable for potential users. During the time participants experienced
the devices they stated that their use made them feel happy, in particular the
fidgeting buttons helped them feel calmer. Teachers and end users agreed, liking
the shapes of the 3D printed interfaces in addition to the ubiquitous nature of
the devices with the sensors being embedded within objects such as cushions and
teddies. Overall, the devices were found to be suitable for their intended purpose
of monitoring affective state and collecting real-world data.
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3.5.1.3 Which sensors would be most beneficial for user interaction?

A range of non-invasive sensors were explored using co-design sessions to measure
physiological changes and physical interactions. Physiological sensors measuring
HR, HRV and EDA present the greatest opportunity to automatically monitor
wellbeing due to their correlation with the sympathetic nervous system and non-
invasive nature. However, the analysis shows touch and motion sensors should be
included within all devices due to their simplicity and ease of use, with the more
complex physiological sensors reserved for 3D printed interfaces for older children
and adults. Overall, the sensors included within the developed interfaces were
considered suitable to collect real-world sensor data and affective state.

3.5.1.4 How do users believe on-device feedback could help improve
their mental wellbeing?

A range of feedback actuators to serve as interventions and improve wellbeing
were explored including haptic, visual and auditory feedback in addition to fid-
geting tools. The co-design workshops helped establish the requirements such as
the preference for fidgeting buttons and haptic feedback to improve wellbeing.
Participants believed these feedback mechanisms have great potential to improve
wellbeing with some participants finding the fidgeting aspects of the final tangible
fidgeting interfaces especially relaxing. This demonstrates the use of the device
and the fidgeting buttons themselves can serve as a benefit of using the artifact
without the need for additional feedback mechanisms.

Visual feedback patterns were also enjoyed by users but it is not possible to
use this feedback to convey information to users with intellectual disabilities and
whilst the use auditory feedback was suggested to play stories and calming sounds,
the quality of the sound is of high priority. Visual feedback, slow haptic feedback
and fidgeting buttons were found most relaxing and have been embedded within
the developed prototypes to act as real-time interventions.

85



3. Co-Design of Tangible Interfaces to Monitor Affective State

3.6 Conclusion
Inclusive co-design workshops and focus groups have been conducted to rethink
the user design approach of affective TUIs. Adjustments to traditional co-design
techniques included demonstrations, real-time 3D printing, prioritising cards and
interactive electronics to enable successful and practical co-design with people
with intellectual disabilities. In particular, the 3D printing of new interfaces
improved engagement, ensured participants understood the discussed technolo-
gies and demonstrated how their decisions influenced the final designs. Thematic
analysis of the qualitative data outlined many recommendations and resulted in a
range of new interfaces being developed. In the future additional methods of anal-
ysis could continue to be explored such as Interpersonal Process Recall [43] where
the recorded co-design session is played back to participants as a stimulus for re-
call and reflection, allowing them to expand upon or clarify their comments. Also,
the use of fictional inquiry [291] could be explored to imagine how co-designers
with intellectual disabilities may use their devices to express and communicate
their emotions and how this process might support their future design decisions.
Overall, the participatory process has enabled the successful design and develop-
ment of TUIs for real-world data collection and affect recognition.
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Chapter 4

Tangible Techniques for
Real-World Labelling and
Collection of Wellbeing Sensor
Data

To build an accurate and reliable affect recognition system a large labelled dataset
is first required to train the model. However, collecting a real-world labelled
dataset is a challenging proposition as sensor data must be labeled at the point
of collection. Even though real-world physiological sensor data is notoriously
challenging to collect due to body movements impacting sensor data [52] and
the challenging propositions of labelling at the point of collection, it is vital
to collect data in different settings, and not just controlled ’synthetic’ data from
experiments to ensure the model and device can successfully operate in the ”wild”
(naturalistic settings). This chapter seeks to address the challenges of labelling
real-time sensor data by exploring on-device methods of labelling for inclusion
within the developed tangible interfaces, resulting in the collection of a real-
world labelled affective dataset. This section is adapted from [352], previously
published in Personal and Ubiquitous Computing.
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4.1 Introduction
Labelling data is not a trivial task, especially as the promise of affective TUIs
is to make the possibility of ubiquitous wellbeing inference a reality. However,
the labelling of sensor data is essential to enable classification models to be de-
veloped. Real-time emotions are often reported using the Ecological Momentary
Assessment (EMA) [284], however this requires answering multiple questions of-
ten using a mobile app which is not suitable for labelling sensor data while using
a TUI. Currently, real-time sensor data labelling is an unwieldy process with
limited tools available and poor performance characteristics that can lead to the
performance of the machine learning models being compromised. So far, most
of the attention has been focused on the processing power of edge computing
devices [108] [223] and little attention has been paid on how to obtain clean and
efficient labelled data to train models [178].

The techniques used to label data vastly vary dependant on the data type as
images can be labelled using an automated process based on clickthrough data,
greatly reducing the effort required to create a labelled dataset [315]. Crowd-
sourcing labels is often employed for images and audio data tagging as it is most
commonly processed offline [322]. Web based apps have been developed that
enable people from around the world to highlight and label objects within im-
ages [258]. Outsourcing the labelling of image, video and audio data is gaining
popularity although this is not possible for time series data as activities cannot
be deduced from the raw data meaning real-time labelling techniques must be
developed [179].

When collecting data in the real-world, outside the confines of the research lab
a participant could be doing anything from driving a car to eating in a restaurant.
A hybrid data collection approach is most suitable when collecting sensor data due
to the subjectivity of the data. Using a hybrid data collection approach allows
self-reporting to be combined with the passive collection of sensor data [273].
Smartphone applications are a popular method to label real-time data although
recently the use of new smartphone labelling techniques such as NFC and volume
buttons have shown to be intuitive and popular when using an application is
inconvenient [360]. It is crucial to label sensor data in real-time, because unlike
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images and audio it is not usually possible to label the data after the point of
collection without the real-time context. Longitudinal data collection poses even
greater challenges as it relies on multiple users continually self-reporting, while
simultaneously wearing sensors for extended periods. These challenges may result
in limited labelled data which significantly impacts model accuracy.

The labelling rate of sensor data can dictate which labelling approach to
choose as data that frequently changes may require a higher labelling rate along
with a more convenient approach. The sample size is another factor that can
dictate labelling approach as the labelling of images can be automated or crowd-
sourced whereas a large sample size of sensor data requires recruiting many par-
ticipants for an extended period. The best approach to label data often funda-
mentally depends on the data and source type being recorded. Labelling at the
point of collection is highly accurate as it is real-time, cost effective, time effective
and enables in-situ sensor data to be collected. Thus far however labelling at the
point of collection has had limited use mainly consisting of smartphone appli-
cations and its feasibility and performance has not been evaluated. There are
numerous scenarios where labelling sensor data at the point of collection would
result in the most effective and accurate data but there is currently no established
framework.

The use of TUIs embedding different labelling methods present significant
opportunities for the real-time labelling of sensor data. These interfaces can
embed a variety of sensors enabling the collection of in situ data. TUIs can
vary in size and shape but the developed interfaces from the co-design workshops
contain ample space to include the necessary sensors in addition to a real-time
labelling mechanism. On-device labelling simplifies the process of self-reporting
by not requiring additional materials, such as questionnaires, and its ease of
access promotes frequent labelling. When providing participants with tangible
interfaces to collect a wide array of sensory data, embedding a labelling method
directly into the device simplifies the labelling process. This concept creates a
simple, tangible, easy to use method to label sensor data in real-time and in-situ
aiming to improve the quantity and reliability of labelled data.

This chapter presents two main contributions. The first is the development of
LabelSens, a new framework for labelling sensor data at the point of collection,
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promoting the adoption of labelling techniques that can achieve higher perfor-
mance levels. Five prototypes are presented utilising different tangible labelling
mechanisms along with a comparative mobile app. A pilot study aims to explore
the impact different labelling techniques embedded within TUIs has on the accu-
racy of labelling, label rate, usability and classification performance. Using the
data from the study a comprehensive performance comparison and analysis of
the prototypes is then provided. Looking beyond the data collection stage, the
classification accuracy of different labelling techniques is examined. The second
contribution is the collection of a real-world affective dataset. Using the results
from the experimental LabenSens study, tangible labelling techniques are em-
bedded with the co-designed tangible interfaces to enable the real-time labelling
of affective state. The methods used and challenges encountered when collecting
real-world labelled physiological data are then explored.

4.2 LabelSens Feasibility Study
Labelling data at the point of collection provides many benefits including low
cost, reduced time and the ability to label in real-world environments. TUIs
present many opportunities to embed unique physical labelling techniques that
may be easier to use than comparative virtual labelling techniques frequently
used. Furthermore, TUIs provide ideal interfaces to directly embed a magnitude
of sensors, negating the need for participants to carry the sensors in addition to
a separate labelling mechanism.

TUIs can vary in shape and size ranging from small wearables to physical de-
vices that are designed to be frequently interacted with. This enables a wide array
of opportunities to embed sensors within a variety of objects which when com-
bined with machine learning classifiers could be used to infer behaviour change,
emotions, movement and more. However, before machine learning models can
be trained labelled data is first required. By embedding a labelling technique
along with the sensors within TUIs it ensures the sensor data and label are both
being collected in real-time aiming to improve data collection rates and accuracy.
This novel approach to in-situ labelling provides an easy to use interface that
facilitates the collection of real-time labelled data.
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Figure 4.1 demonstrates the concept of the LabelSens framework; pairing time
series sensors with a physical labelling technique inside a TUI to collect in-situ
labelled sensor data.

Figure 4.1: LabelSens framework: real-time sensor data fused with a label.

4.2.1 LabelSens Method

An experiment has been conducted that aims to explore the feasibility of self-
labelling tangible techniques and the accuracy in which tangible techniques can
label sensor data. The controlled collection of physiological data where people
experience a variety of different emotions using each of the labelling techniques
would be extremely challenging, inconsistent and time consuming. Instead, an
initial pilot study has been conducted where tangible labelling mechanisms have
been used to label physical activities from accelerometer sensor data which is
more easily replicable whilst still requiring real-time labelling. This study en-
ables each user to test all of the labelling mechanisms by completing different
physical activities, not requiring users to experience different emotions to test
the labelling approaches. Five new prototypes are presented that each contain
a unique labelling technique along with a comparative mobile application that
will be used to label human activities (walking, climbing downstairs and climb-
ing upstairs) as these activities are frequently used in human activity recognition
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studies [252], [18], [9], [251], [160]. The developed labelling techniques are as
follows:

• Two adjacent buttons (press one button for climbing upstairs, press the
other button for climbing downstairs and press both buttons simultaneously
to record walking)

• Two opposite buttons (press one button for climbing upstairs, press the
other button for climbing downstairs and press both buttons simultaneously
to record walking)

• Three buttons (one button each for climbing upstairs, climbing downstairs
and walking)

• FSR to measure touch (Light touch for walking, medium touch for climbing
downstairs, hard touch for climbing upstairs) with LED to visualise the
label selection

• Slide potentiometer (slide to the left for climbing downstairs, slide to the
middle for walking and slide to the right for climbing upstairs)

• An Android mobile application provided on a Google Pixel 3 smartphone
with 3 virtual buttons to label walking, climbing downstairs and climbing
upstairs.

Each TUI is a 6cm * 6cm * 6cm 3d printed cube that contains a labelling
technique combined with the required sensor and microcontroller. The size of the
TUI could be reduced dependent on the labelling technique used and the sensors
required but here all interfaces were the same size to reduce bias. The embedded
electronics include:

• Arduino Nano microcontroller. Due to its small size, open source nature
and wide compatibility with sensors.

• IMU to record motion data. An IMU with 9 degrees of freedom has been
used as it integrates an accelerometer, a magnetometer and a gyroscope to
provide better accuracy and additional data.
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• Micro SD card reader to locally record the IMU sensor data along with the
user inputted label.

It is envisioned that TUIs will be used to label a maximum of 5 classes to
ensure users are not overwhelmed and can sufficiently label at all times. Addi-
tional buttons could be added e.g. 1 button each for up to 5 classes but as only 3
activities are being classified the impact of having varying number of buttons (2
or 3) can be explored. The mobile app provides visual feedback once a label has
been selected and presents easier opportunities to include more labels but users
may still be overwhelmed by numerous virtual buttons. The buttons and slide
potentiometer also enable users to easily visualise the activity they are labelling
and feel tangible feedback whereas when using the touch sensor it is difficult
to distinguish between the three levels of force. To visualise the selected label a
multicoloured LED has also been incorporated into the touch device that changes
from green to yellow to red when the device is touched with low, medium and
high force. Figure 4.2 shows the electronic circuit and the developed TUI for the
three buttons and slider interfaces.

The mobile application was developed for the Android operating system and
was tested using a Google Pixel 3. The application consisted of three virtual
buttons in the centre of the screen labelled ”downstairs”, ”walking” and ”upstairs”.
When a button is pressed the text at the top of the screen changes to show the
currently selected label. Finally, at the bottom of the screen are two additional
virtual buttons to begin and end the recording of data. The sensor data along
with its label is then saved to a CSV file stored on the phone’s internal storage.
A challenge when developing the mobile app for data labelling is the frequency
of the data as the gyroscopic data had a significantly lower frequency than the
accelerometer data resulting in the reduction of data sampling frequency.

This pilot study involved ten participants using all of the developed interfaces
containing the 5 different labelling techniques and mobile app while undertaking
walking, climbing upstairs and climbing downstairs over a set route to ensure
sufficient data was collected for all three activities. Participants were instructed
that the label should only be recorded when commencing a new activity and if
an incorrect label is recorded then the correct label should be recorded as soon
as possible to simulate real-world labelling. Ideally the labeling system should
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Figure 4.2: Example of two electronic circuits and interfaces with three buttons
and slider labelling mechanisms.

be unobtrusive; in a way that the process of labeling the data should not alter
or affect the data being collected. Therefore participants were not accompanied
during the data collection period to realistically simulate in-situ data collection
which is the fundamental purpose of these interfaces. No issues arose during data
collection with each participant understanding how to use each of the interfaces
and successfully collecting data from all devices. The three activities allowed for
each participant to experience the different labelling techniques as well as collect
sensor data which can be used to examine the accuracy and performance of each
labelling technique.
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4.2.2 Results

4.2.2.1 Labelling Rate

The maximum labelling rate of the devices is a key factor in deciding a labelling
technique as some forms of sensor data can frequently change, requiring a new
label to be recorded multiple times every minute. To measure the maximum
rate at which it is possible to label data a preliminary experiment was conducted
where participants were instructed to use each interface continuously for 2 minutes
to record the maximum number of label changes possible. Participants were
instructed to label each of the available labels as much as possible to assess the
ease of use of labelling using each interface. Figure 4.3 shows the total number
of times each label was recorded on each of the devices during the preliminary
experiment.

Figure 4.3: Maximum labelling rate for each label per device during the prelimi-
nary labelling rate experiment.

The devices with only 2 buttons showed the lowest data rate for each of the
three labels because of a delay that was required to prevent mislabelling when
simultaneously clicking both buttons to record the third label. The delay ensures
that if a user releases one button slightly before the other when pressing both
buttons to record the third label, the third label will still be recorded rather than
the label for the button released last. The app shows a higher labelling rate than
the devices with two buttons but is not significantly greater due to the difficulty
in pressing virtual buttons that can easily be missed in comparison with physical
buttons.
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Three buttons resulted in significantly more data recorded although very little
data was recorded for one of the buttons possibly due to the third button being
more difficult to reach as each button is located on a different face of the cube.
The touch sensor recorded a high labelling rate for all three labels as to reach
label 2 (high setting) by pressing the sensor the user must first record label 0
and 1 as they increase the force exerted. The slider demonstrated high labelling
rates for label 0 and label 2 but not label 1 because it is easiest to slide the slider
from one end to the other but the slider was rarely located in the middle of the
device long enough for the label to be recorded. This shows the touch and slider
techniques are easy to label the extreme values but intermediary values are more
challenging to frequently label. If all labels need to be frequently labelled then
buttons may be the best labelling technique although the position of the buttons
can greatly impact the ease at which labelling can occur.

Figure 4.4: Comparison of total maximum label changes vs in-situ label changes
per device.

It is also vital to compare the number of times the label changed over the
2-minute period to evaluate how simple it is to change label for each technique.
Figure 4.4 shows the slider recorded the most label changes overall because of
the simplicity to navigate between the labels, followed by two opposite buttons
which is surprising due to its low labelling rate. This demonstrates that while
the use of buttons does not result in the highest labelling rate it is simple to
switch between the different labels and should be used when the label will change
frequently. Touch, three buttons, the mobile app and two adjacent buttons all
performed similarly well showing there is little difference in accessing all of the
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labels when using these devices.
Once all participants used each device to label walking, climbing downstairs

and climbing upstairs the data was extracted, enabling comparisons to be es-
tablished. The route participants were instructed to follow would require 11
label changes if followed correctly. Figure 4.5 shows the average number of label
changes compared with the correct number of label changes. The average rate
at which labels were changed from one label to another during the collection
of physical activity data shows three buttons recorded fewest in-situ labelling
changes at 5.6 significantly lower than the correct number of label changes (11)
which is surprising but potentially shows the difficulty in accessing all of the
buttons. Two opposite buttons had the highest overall rate of in-situ labelling
changes with an average 17.6 labels recorded. Labelling via touch had a con-
sistently high rate of label changes for users but this again could be due to the
requirement of looping through all of the labels to reach the desired label. The
mobile app achieved a slightly higher rate than three buttons and slider but still
lower than the actual number of labels that should have been recorded showing
the potential benefits of tangible labelling methods. Overall the slider and three
buttons produced the lowest rate of label changes during data collection showing
these labelling techniques should not be utilised with data that requires frequent
labelling changes because of the difficulty in accessing all three labels. Two ad-
jacent buttons recorded the most accurate number of labels showing the ease of
accessing the buttons increased the accuracy of labelling.

Figure 4.5: Total number of in-situ label changes per device.
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Table 4.1 shows the total number of in-situ recorded samples from all partic-
ipants for each of the devices. Touch and slider have the highest total number
of samples recorded as when using these labelling techniques each label must
be cycled through to change the label. Two opposite buttons has the smallest
number of labels which is to be expected as a delay had to be added after a
button press to prevent incorrect labelling. Because of the delay it was expected
that two adjacent buttons would similarly have a low data rate but it achieved
a higher rate than three buttons, possibly, because of the difficulty in accessing
the three different buttons on different faces of the cube. This shows the posi-
tion of the buttons has a greater impact on the number of labels recorded than
the number of labelling interfaces embedded into the device. The comparative
mobile app performed better than the buttoned devices but not as well as the
slider or touch interfaces demonstrating the benefit of TUIs when a high labelling
rate is required. While all interfaces recorded more walking labels than any other
label as expected due to the route having more walking than stairs, the app had
the fewest downstairs labels recorded demonstrating the difficulty in accessing
virtual buttons. Similarly, two adjacent buttons had a smaller proportion of up-
stairs and downstairs labels which is surprising as these labels are the easiest to
access (by clicking a single button) compared with labelling walking that required
both buttons to be pressed simultaneously. It is also likely that the touch and
slider interfaces have more downstairs samples than upstairs samples as down-
stairs must first be cycled through to reach either the walking or upstairs label.
Overall, the dataset collected is large enough to train classification models and a
sufficient number of samples have been collected from all three classes.

4.2.2.2 Deep Learning Classification

In order to identify the three activities from the sensor data collected, deep neural
networks have been used to develop three predictive models. The performance of
the three supervised, deep learning algorithms were tested to classify the sensor
data into the three activity classes. A multilayer RNN [235] with LSTM [130], a
multilayer RNN with GRU [142] and multilayer RNN with a stacked LSTM-GRU
were selected due to their high performance and capabilities in classifying time
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Table 4.1: Number of in-situ samples collected per labelling interface for each of
the 3 labels.

Downstairs Walking Upstairs total
Slider 5910 10828 3657 20395

Two Adjacent Buttons 2441 9364 2132 13937
Touch 3188 14551 2442 20181

Three Buttons 2197 6688 2635 11520
Two Opposite Buttons 1537 2214 2285 6036

App 2066 10324 4316 16706
Total 17339 (19.5%) 53969 (60.8%) 17467(19.7) 88775

series data.
The dataset collected from each of the five interfaces and mobile app was

used to train the three models over 10 epochs with 10-fold cross-validation. The
9 degree of freedom sensor data used as input data for the model was collected
using a sample rate of 7Hz. The initial learning rate of the model was set to
0.0025, using a batch-size of 32 and an overlapping window size of 100 with
an overlap of 20. Figure 4.6 shows the accuracy of each model. The stacked
LSTM-GRU displayed little impact compared with the LSTM. Meanwhile, the
GRU outperformed the LSTM and stacked models for most labelling techniques
with the exception of two adjacent buttons where the LSTM network achieved
the highest accuracy of all the labelling techniques at 92.8%. The overall GRU
accuracies ranged between 68.5% and 89% demonstrating the impact different
labelling techniques have on a dataset and thus the accuracy of a classification
model.

The two adjacent buttons labelling technique achieved the highest accuracy
of all the devices which is unexpected due to its complex nature where 2 buttons
represent 3 labels. The second most accurate device, touch, was also unexpected
due to the more complex interaction required of pressing the device using varying
levels of force to record the different labels. It is possible that the more complex
action forced users to have a greater focus on labelling their activity resulting in
more accurate labelling. This however may not be sustained if the device was
to be used for several days. Even though three buttons and the slider labelling
techniques resulted in the lowest changing labelling rate, they achieve consistently
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Figure 4.6: Comparison of deep learning techniques on the combined data col-
lected from each devices.

high accuracies in the three trained models. This demonstrates that although it
may be more difficult to collect fast changing data with these techniques, the
collected data is reliable and capable of producing accurate classification models.
The mobile app again performed moderately achieving 77.8% accuracy which
although is not as high as touch, two adjacent buttons or three buttons it is
greater than the slider and two opposite buttons interfaces.

Figure 4.7, shows the accuracy and loss of the combined user test data for all
of the labelling interfaces during each epoch when trained using the GRU model.
The loss for each of the models gradually decreases but the loss for the touch and
slider decrease significantly as would be expected due to these interfaces achieving
the highest overall accuracy.

Figure 4.7: Comparison of training accuracy and loss when using GRU on the
total data collected for each device.
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It is possible that the datasets may contain potential biases for example if
one user was particularly poor at labelling with one device it may significantly
impact the quality of the training dataset. To evaluate potential bias and explore
differences between users, the GRU model was used to train subject independent
models from the data collected using each interface as shown in figure 4.8.

Figure 4.8: GRU model accuracy when individually trained on the first 5 users’
data.

There are extremely wide variations in model accuracy ranging from 33.3% to
97.1%. Two opposite buttons and three buttons demonstrate the widest variation
in model accuracy with accuracies reduced to 42.9% for user 1 using two opposite
buttons and 33.3% for the same user using three buttons. As the lowest accuracies
were all performed by the same user it indicates that this user experienced more
difficulty using the interfaces than the other users. However, two opposite buttons
also demonstrated poor accuracy (42.9%) when trialled by user 5, thus it shows
that this interface results in poorer data collection as the models from the same
user achieved consistently high accuracies for all other interfaces ranging from
74.2% to 87.5%. When comparing average model accuracy for each user it shows
some users can result in significantly better data collection and therefore model
accuracy, for example the overall accuracy between all interfaces for user 2 was
85.4%. The mobile app, two adjacent buttons, touch and slider all achieved high
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levels of accuracy when tested with each user’s data demonstrating the reliability
for those interfaces to consistently collect accurately labelled data. The touch
interface achieved the highest overall accuracy at 97.1% when trained using data
collected by user 4, although the data from the other interfaces collected by
user 4 did not result in as high accuracy demonstrating that user preference
and familiarity with an interface plays an important role in the quality of data
collected.

Classification accuracy alone does not provide an informed overview of the
most beneficial labelling technique. The F1-score, a harmonic average of the
precision and recall, for each label and device has been calculated, as shown
in Table 4.2. Overall, the walking label, has consistently higher precision and
recall compared with the upstairs label which has the lowest F1-scores. The
mobile app demonstrates good precision and recall when classifying upstairs but
extremely poor precision and recall when classifying downstairs, potentially due
to more mislabeling occurring when labelling climbing downstairs. The slider,
two adjacent buttons and touch show the highest F1-scores which demonstrate
their consistency as useful labelling techniques. Even though three buttons had a
higher accuracy than slider, its F1-score is extremely low when labelling up-stairs,
demonstrating its unreliability in classifying this class.

Table 4.2: F1-Score for each physical activity label when trained using each of
the labelling interfaces.

Downstairs Walking Upstairs
Slider 70% 82% 69%

Two Adjacent Buttons 82% 91% 75%
Touch 69% 94% 83%

Three Buttons 59% 80% 30%
Two Opposite Buttons 58% 75% 42%

App 23% 60% 82%

Cochran’s Q test was performed to evaluate the three different models (L=3)
for each labelling technique, providing a chi squared value and Bonferroni ad-
justed p-value. Cochran’s Q test is used to test the hypothesis that there is
no difference between the classification accuracies across multiple classifiers dis-
tributed as chi squared with L-1 degrees of freedom. Cochran’s Q test is similar
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to one-way repeated measures ANOVA and Friedman’s test but for dichotomous
data as the classification will either be correct or incorrect and can be applied
across more than two groups unlike McNemar’s test [75].

Table 4.3: Cochran’s test and F test comparing the developed classification mod-
els for each labelling interface.

COCHRAN’S
Q CHI2

COCHRAN’S
Q P-VALUE

F TEST F-TEST
P-VALUE

Slider 1.4 0.498 0.699 0.498
Two Adjacent But-
tons

7.167 0.028 3.76 0.026

Touch 7.457 0.025 3.729 0.025
Three Buttons 6.143 0.046 3.136 0.046
Two Opposite But-
tons

2.533 0.282 1.277 0.285

App 13.241 0.001 6.852 0.001

Assuming a significance level of α=0.05, Cochran’s Q test shows for touch,
two adjacent button, three buttons and the mobile app the null hypothesis can be
rejected as all three classifiers perform equally well. For the remaining labelling
techniques, the null hypothesis has failed to be rejected showing there is a signifi-
cant difference for the classifiers on those datasets. The F test was also performed
to compare the three classifiers as it is regarded analogous to Cochran’s Q test.
Assuming the same level of significance the slider rejects the null hypothesis in
addition to two adjacent buttons confirming Cochran’s results.

Cochran’s Q test shows there is a significant difference between the three
models when trained on the two opposite buttons and slider datasets but does
not show where the differences lie. To see which models contain the significant
differences the McNemar test was performed to compare the predictive accuracy
of each model using the two datasets.

Table 4.4 shows the resulting p values when McNemar’s test was performed.
There is a significant difference between all of the models for both two oppo-
site buttons and slider with the largest difference being between LSTM and the
stacked network for both datasets. This demonstrates that both the labelling
technique and the network architecture result in significant differences in the
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Table 4.4: McNemar’s test comparing the 2 opposite buttons and slider classifi-
cation models.

Two opposite buttons Slider
GRU LSTM Stacked GRU LSTM Stacked

GRU NA 0.228 0.125 NA 0.286 0.596
LSTM 0.228 NA 0.546 0.286 NA 0.845
Stacked 0.125 0.546 NA 0.596 0.845 NA

models’ accuracy and reliability.

4.2.3 Evaluation of LabelSens

To ensure the effectiveness of the labelling techniques it is also vital to gain users’
preference. 50 users were asked which labelling technique they preferred. Figure
4.9 shows the results from the 50 users with 22% preferring three buttons as
it was simple to understand and use due to there being one label per button
although this labelling technique did not result in accurate models. Similarly
22% of people preferred two adjacent buttons with the mobile app following,
which is surprising as majority of people are familiar with mobile apps so it
would be expected to be the most popular. The users found three buttons and
two adjacent buttons to be simpler to operate than the mobile app due to the
physical buttons which are quicker and easier to press than the virtual button on
the app which were often missed. Two opposite buttons followed again possibly
due to the simplicity and familiarity of buttons to label data. The slider was
well received but the granular control made the middle label more difficult to
access meaning careful consideration had to be made to ensure actions were being
correctly labelled. Finally, the fewest number of people preferred the touch based
labelling technique due to the complexity of having to touch with varying levels of
pressure to correctly label the data. However, touch did result in highly accurate
models showing that while the increased attention required is not preferred it does
ensure accurate data labelling but this may not be sustained over long periods.

While the user preference of labelling technique does not correlate with the
accuracy achieved for each method it shows the benefits of using buttons as they
are well-received by users and also achieved high classification accuracy. A lower
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Figure 4.9: Comparison of 50 users’ labelling preference.

number of buttons than labels is well received by users and achieves the highest
accuracy, but the number of buttons must remain similar to the number of labels
to ensure users do not experience confusion when labelling. The position of the
buttons has also shown to impact user preference. In terms of labelling rate and
model accuracy, two adjacent buttons were preferred by users and resulted in
24.3% higher model accuracy than two opposite buttons which had a higher total
number of recorded in-situ labels but a lower labelling rate. It is imperative to
balance user preference with the rate at which the data needs to be labelled and
the accuracy required from the model when selecting an appropriate labelling
technique.

Novel labelling methods including the slider and touch displayed their own
strengths and weaknesses. Labelling using touch resulted in high model accuracy
and labelling rate but was the least favoured by users. If accurate labelling is
required for only short periods labelling via touch could be ideal. The slider was
liked by users and had the highest labelling rate but achieved the second worse
accuracy of all the devices at 73.4% showing the slider is best for continually
changing or granular data that would be more difficult to label with buttons.

Surprisingly the mobile app was not the most popular labelling technique even
though participants were more familiar with apps than the other interfaces. The
data collected from the mobile app shows it achieved only a moderate labelling
rate and model accuracy despite participants’ familiarity. A possible reason why
the mobile app did not result in the most accurate data is that virtual buttons can
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be easier to miss than physical mechanisms. However, when used in real world
environments apps are easier to deploy but solely using an app does not allow for
any additional sensors that are not embedded within the smartphone to be used.
Apps possess many benefits when used to label motion data including ease of
access but when additional sensors are required such as physiological sensors to
monitor affective states using apps for labelling is not recommended over physical
labelling techniques.

One of the most significant challenges encountered was the inconsistent quality
of labelled data as when collecting in-situ data to train machine learning models
it is not possible to ensure all users are successfully labelling their actions. By not
accompanying users during the labelling process the experiment more replicated
in-situ data labelling resulting in the different labelling rates experienced even
though all users were instructed to walk the same route. Additionally, as users
had to repeat the experiment five times to enable them to use each device, their
labelling rate may change as they become more familiar with the experiment. To
combat this, users were provided with the devices in varying orders preventing
the same device from being used by all users at the same stage of the experiment.
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4.3 Data Collection for Tangible Fidgeting In-
terfaces

The tangible labelling techniques developed pave the way for real-world labelled
sensor data collection. The collection of labelled affective data is traditionally
challenging as it data must be labelled at the point of collection. However, the
developed affective tangible interfaces discussed in Chapter 3 and the evaluation
of physical methods to label data demonstrate the capability to collect accurate
real-world labelled sensor data.

A data collection approach has been co-designed with NICER group members
and teaching support staff. The possibility of labelling real-world affective state
from participants with intellectual disabilities creates many possibilities to reduce
diagnostic overshadowing but also includes additional challenges regarding par-
ticipants’ ability to recognise and label their wellbeing. Previously, individuals
with autism and Asperger’s disorder have labelled their real-world emotions [161]
and the development of tangible labelling techniques should further simplify the
labelling process.

Initially, it was explained to all participants that before a computer model can
infer their emotions, sensor data along with self-reported labels were required to
train the models. Participant were provided with the opportunity to experience
each of the tangible labeling techniques. All participants preferred buttons to
the other labelling techniques stating ”I do think they would be better” as they
were the easiest to use to represent different states of wellbeing. Using differ-
ent coloured buttons to label emotional states is easy to use for all participants
but the number of labels would be limited to ensure simplicity for those with
intellectual disabilities. While some participants suggested three labelling but-
tons for positive, neutral and negative affective states, the majority found this
too complex and preferred the simple labelling option of two buttons represent-
ing positive and negative emotions as they are working at a developmental level
where a simplification of emotions is required.

The findings from the exploration of tangible labelling techniques resulted in
the inclusion of two buttons, one green and one red to label positive and negative
states of mental wellbeing respectively, representing a single item wellbeing index
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[309]. However, to resolve the limitations of on-device labelling mechanisms while
ensuring the interfaces are still easy to use, the use of a paper diary was also used,
allowing for a larger range of emotional states to be captured and to ensure the
on-device labelling techniques are used correctly. Potential emotions and their
representations for inclusion within the diaries were discussed and co-created,
with emojis being favoured by the majority of participants to represent different
emotions.

4.3.1 Experimental Setup

Six participants with intellectual disabilities each used one of the developed tangi-
ble interfaces incorporating the tangible labelling buttons over a two-week period
in real-world environments. This differs from many previous studies that collected
controlled experimental data or included specified activities during the data col-
lection period to artificially impact wellbeing [194], [248], [290], [368], [289], [169].
Participants were instructed to use the red and green buttons to label negative
and positive states of affect each time they used the interface. The label would
then be stored along with the sensor data from each session of use. Participants
were also instructed to correct their labelling as soon as possible if they acciden-
tally mislabelled their wellbeing. In addition to being given a device to use in
their home and work environments, each participant was provided with a diary
to record their emotions as shown in Figure 4.10.

Figure 4.10: The emotions used in the diary enabling participants to record
additional labels.

To ensure the diary was easy to use, five emotions (happy, neutral, sad,
stressed and frustrated) were represented using emojis, ensuring emotions from
each of the four quadrants from Russell’s circumplex [259] were included. Each
page of the diary consisted of three sets of emotions enabling labelling each morn-
ing, afternoon and evening of the data collection period.

108



4. Real-time Labelling of Sensor Data

4.3.2 Experimental Observations

After the two-week data collection period the devices along with the diaries were
collected for analysis. One participant had to be immediately excluded due to
the unexpected circumstance of their dog chewing the device. The remaining five
participants completed their diaries and successfully used the device every day
during the two-week period.

Participants used the interfaces for varying lengths of time with some partic-
ipants using the device for a few minutes and others using it for several seconds
at a time. Participants were instructed to label each session of use with some
participants labelling before using the device and others after. Before the data
could be explored it had to be cleaned to match the sensor data with the recorded
label. When cleaning the data any sessions without a label were removed, if a la-
bel was recorded near a session (either before, during or directly after) the entire
session was recorded with that label and if multiple labels were recorded in quick
succession the last label was aligned with the sensor data as participants were in-
structed to correct the label if they accidentally mislabelled a session of use. If a
label was recorded but no physiological sensor data was recorded (potentially due
to fidgeting motions while interactive with the interface) then the accelerometer
data was aligned with the recorded label but the physiological sensor data was
removed. After cleaning the data all sessions of sensor data had a label aligned
with them enabling further evaluation.

Upon evaluation of the diaries and the on-device labels it was shown that
three of the five remaining participants were consistently reporting their emotion
as happy or neutral throughout the two-week data collection period and never
reported a negative state of wellbeing. One of the participants who recorded
negative emotions only recorded two instances of such affect states during the
two-week period, while the final participants added text to justify their selection
of emotion and subsequently reported the most negative states. A potential
explanation to the overwhelmingly positive recorded emotions suggested by an
experienced teacher of students with intellectual disabilities is that participants
with an intellectual disability are often keen to please researchers and give positive
responses to questions. This demonstrates that the collection of overly positive
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labels is not due to participants not understanding the task but rather a pleasing
desire which can be addressed through additional training.

When comparing the button labels with the diary entries some anomalies were
discovered where the red button had been pressed to record a negative emotion,
but a positive emotion was reported in the diary. This potentially shows the
difficulty of using buttons to label data as participants may use the buttons
as a fidgeting tool rather than their intended purpose to label the data. The
participant who recorded two negative emotions frequently changed their label
in a short period of time confirming that buttons were potentially purely viewed
as methods of interaction rather than a labelling technique. At other times the
same participant recorded a label for around 30 seconds then recorded a different
label for over a minute showing either their emotion changed frequently, or it
took an extended period for the participant to correctly label their wellbeing
state. A potential challenge is that when users are stressed they may not pay
much attention to correctly labelling their wellbeing states. Overall, the lack of
negative emotions during this data collection trial in both the diaries and the on-
device labels resulted in a biased dataset which is not sufficient to train machine
learning classifiers and demonstrates that participants require further training on
how to use the interfaces and labelling methods.

4.3.3 Evaluation of the Data Collection

After the data collection trial, members of the NICER group including those who
participated in the data collection trial provided their feedback and evaluated
the labelling methods. Participants stated they enjoyed using the devices with
the majority taking it with them to use outside of their home. Some participants
stated they placed it on their desk when at work or college so that it was always
within reach and used it whenever they felt it was required as even without
any technological interventions participants believed the act of fidgeting with the
device helped improve their wellbeing. Other participants carried it with them
in their pocket or bag showing the portability of the interfaces helps increase
engagement and promotes device use.

The use of the two embedded buttons to label the data was considered ap-
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propriate and easy to use. However, nearly all participants found the stressed
and angry emojis used in the diaries difficult to understand. The use photo real-
istic images of faces [26] was proposed, which may be easier to understand than
emojis. Alternatively, it was suggested to change the colours of the emoji faces,
where the happy emoji would be green and the angry emoji red.

The frequency of the self-reporting was also problematic as the diary only
allowed participants to record their emotions over long periods of time, such
as one label for the morning or afternoon. However, when stress or anger was
experienced it was only for a short or transient period, but as the individual
felt happy for majority of the time frame it resulted in positive emotions being
recorded. To resolve this issue it was suggested that the diaries could ask for
participants’ affective states to be recorded during the past hour as this should
increase the frequency of emotional variation. Users could also be instructed
to use the device whenever they feel stressed or angry as these emotions don’t
usually last very long. This should help increase the frequency of data collection
related to poor mental wellbeing states being collected, allowing for the successful
training of machine learning classifiers.

Additionally, it was suggested that parents or carers could help provide in-
sights into the mental wellbeing states of participants by completing their own
questionnaires to expertly label participants’ affective states, and justifying each
emotion reported. However, the presence of a paid carer may pressure users into
responding more positively and if parents and carers only complete questionnaires
infrequently they will not capture the transient periods of time where users may
experience negative emotions. Further training will be required to ensure that
all participants with an intellectual disability understand each emotion as there
is the need to first train them in understanding and recognising their different
emotions before going onto record these as labels.

4.3.4 Revised Data Collection

The data collection approach was revised to obtain more accurate labels. The
development of new labelling diaries continued to be discussed and designed with
the participants and education specialists through focus groups over two design
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cycles, resulting in two new diaries being created both removing the previous
time frames. The first used photo realistic images of a person expressing five
emotions: happy, calm, sad, shocked and angry [26]. The second diary contin-
ued using emojis but rather than emojis expressing specific emotions it displayed
five emojis that scaled from happy to sad with the colour gradually changing
from green to red as shown in Figure 4.11 based on the Self-Assessment Manikin
scale [99]. Before commencing a second data collection trial to collect additional
real-world labelled sensory data, the two new diary styles were shown to partic-
ipants. After exploring both designs the majority of participants preferred the
photo realistic diary and hence this was used for labelling all future data. This
was slightly surprising as those with autism may display and recognise facial af-
fect differently [158] although all participants correctly understood each of the
represented emotions.

Figure 4.11: Updated data labelling diaries using photo realistic images (top) and
five point emoji scale (bottom).

15 participants (9 Males and 6 females) were then asked to partake in a second
data collection trial, 9 of whom have complex intellectual disabilities. Additional
training on how to use the devices was performed with the help of education
specialists including a head teacher with over 40 years experience in special ed-
ucation. Each of the emotional states were clearly explained to participants as
there was previously difficulty establishing the difference between the stress and
frustration states. These two states were subsequently changed to shocked and
angry emotions which participants found easier to understand. Participants were
also trained to correctly label their wellbeing by reaffirming their labelling was
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private and that their honesty was valued, showing they didn’t need to provide
positive labels to please the researchers.

Participants were informed they were to use the device as frequently as possi-
ble throughout their normal daily life, in particular when experiencing a change
in emotions, (labelling a minimum of 3 times per day), keeping the device with
them for as much time as possible. Participants were also instructed to frequently
label their affective states, especially when their emotion might change to ensure
a wide range of labels connected to different affect states are collected as this
was problematic with the previous data collection trial. Once the participants
understood the requirement for increased labelling frequency, the interfaces were
then selected by the participants themselves.

All participants used the interfaces during their daily life to collect real-world
labelled affective data over a period of at least one week. After participants used
the devices, the interfaces were collected so that the data could be analysed and
used for computational analysis. The on-device labels have been used to explore
the data as participants used the on-device labelling buttons more often than
the diary due to their convenience. Also, when using the diaries participants
regularly used only two emotions, one to represent negative emotions and one
to represent positive emotions, matching the labelling buttons. Out of the nine
participants with intellectual disabilities, the data collected from five participants
was insufficient to train classification models as either the devices were not used
sufficiently or all of the recorded labels were positive emotions resulting in biased
datasets. The remaining participants all successfully used the devices to collect
physiological data in addition to motion data and labels.

The number of positive and negative samples and percentage of positive and
negative labelled events recorded from each of the remaining ten interfaces is
shown in Table 4.5. The data shows users 1, 2, 3, 4, 5 and 8 used their devices
the most collecting a large number of both positive and negative samples. Users
6, 9 and 10 collected mostly positive samples during the data collection period but
also collected sufficient negative samples to train machine learning models. User
7 collected the least the number of samples, using the device the least although
as both positive and negative samples were collected it remains possible to utilise
this data.
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Exploring the labelled events (each time a user recorded a new label) shows
that all participants recorded a mixture of positive and negative labelled sessions
with an average of 15 labelled sessions per user during the data collection period.
Users 1, 2, 4, 8, 9 and 10 recorded more positive events than negative events
with the highest ratio being 66.6% positive events and 33.3% negative events
demonstrating sufficient negative events were still recorded. The duration of
each session widely varied with participants who recorded fewer sessions (users
1, 2, 3, 7, 9 and 10) generally using the device for longer periods of time, often
several minutes. Whereas participants who recorded more labelled events (users
4, 5, 6 and 8) generally used the device for shorter periods of time ranging from
several seconds to a few minutes. This shows the interfaces were used in two
distinct ways either frequent short usage sessions or less frequent longer sessions
although both interaction methods resulted in a number of positive and negative
events allowing for the data to be used to train classification models.

Table 4.5: Comparison of positive and negative real-world emotional state sam-
ples for all 10 users.

Positive
samples

Negative
samples

Positive
label
events

Negative
label
events

User 1 30765 33482 66.6% 33.3%
User 2 29206 32760 66.6% 33.3%
User 3 18637 32002 50% 50%
User 4 80743 8400 60% 40%
User 5 27394 24253 50% 50%
User 6 4928 1355 43.7% 56.3%
User 7 211 796 50% 50%
User 8 12568 15184 52.9% 47.1%
User 9 9438 1329 60% 40%
User 10 15874 796 66.6% 33.3%

When exploring the real-world EDA data collected from the 10 users, Figure
4.12 shows the negative state of wellbeing has a clear wide distribution point
whereas the distribution for the positive state of wellbeing is more dispersed,
further demonstrated by the significantly lower median. Similarly, when exploring
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HRV both states share the same distribution pattern but lower HRV has a much
wider distribution when experiencing negative emotions and the median HRV is
higher when experiencing positive emotions. This data demonstrates that the
real-world physiological data collected from the tangible interfaces behaves as
would be expected when experiencing poor wellbeing.

Figure 4.12: Comparison of real-world HRV data (left) and EDA data (right)
collected using the tangible interfaces.

The additional training shows improved data collection results with labelled
sensor data collected for most participants, although issues such as biased data
and insufficient data from some participants were still encountered. When con-
ducting wellbeing data collection trials with participants who have intellectual
disabilities, it is vital to first ensure they have a full understanding of how to
use the interfaces to record their wellbeing, as well as encouraging the frequent
labelling of different wellbeing states to ensure the data collection is successful.

4.4 Conclusion
TUIs are ideal interfaces to infer affective state but first real-world labelled data
must be collected to train the classification models. To address this issue and
collect in-situ labelled sensor data five labelling techniques have been embedded
into TUIs: two opposite buttons, two adjacent buttons, three buttons, slider and
touch along with a comparative mobile application. The interfaces were used by
participants to label three physical activities enabling the performance of each
technique to be evaluated. It is vital to compare different labelling techniques as
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machine learning models can only be as accurate as the labelled data they are
trained on.

During the pilot study participants used the six labelling techniques to collect
data which was then used to train various RNNs. The results demonstrate that
while a touch interface resulted in a high labelling rate and high model accuracy,
it is the least favoured by users due to the high level of attention required to
use the device. The mobile app was popular with users due to its familiarity
but only achieved the fourth highest accuracy. The slider resulted in high user
preference and labelling rate but poor model accuracy while two adjacent buttons
achieved both high user preference and the highest model accuracy showing it is
the most beneficial technique for sensor data collection. Based on these results 2
adjacent buttons was selected as the labelling technique to be embedded within
the affective tangible interfaces as this approach simplifies the labelling of real-
world sensor data.

Following the pilot study, the process of collecting real-world labelled affective
data was explored. Two labelling buttons were embedded within the co-designed
tangible interfaces due to their simplicity and effectiveness during the pilot study.
The initial affective data collection trial demonstrated the challenges of collecting
a real-world labelled dataset. After re-evaluating the data collection method, ad-
ditional training was provided to users and by using on-device labelling, frequent
accurate labelling was successfully completed during the second real-world data
collection trial.

Overall, tangible labelling techniques within TUIs address many of the chal-
lenges facing the collection of in-situ, time series sensor data collection. Two
adjacent buttons have been used within the tangible interfaces to enable users to
label their mental wellbeing in real-time. This labelling approach encouraged the
accurate collection of real-world affective labelled data that can then be used to
train classification models.
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Chapter 5

Mental Wellbeing Recognition
using On-Device Transfer
Learning

This chapter presents work applied to the real-world physiological wellbeing data
collected using the developed tangible interfaces. This data is first leveraged to
train 8 subject-independent deep learning models based on a leave-one-out cross
validation approach. The use of TL is then explored to train individual affec-
tive models on-device, increasing model performance by developing personalised
models using small labelled datasets. This section is adapted from [347], previ-
ously published in IEEE Sensors Journal and [350] previously published in IEEE
International Smart Cities Conference 2021.

5.1 Introduction
The ability to infer affective states from sensors is an exciting proposition, as
it could enable better real-world management of wellbeing. Non-invasive phys-
iological sensors are ideal to infer affect as they can easily be embedded within
TUIs, presenting a significant opportunity for wide role real-world adoption, un-
like many previous approaches often using EEGs which are challenging to widely
adopt outside of controlled experiments [8], [185]. The classification of mental
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wellbeing is a time series classification task which takes the physiological signals
as input and outputs a label for each sequence. Deep learning presents many
opportunities for advancing the classification of mental wellbeing as models can
be trained using raw sensor data unlike machine learning classifiers that first
require features to be extracted, which is often domain-driven and can be a time-
consuming process. CNNs have traditionally been used to classify 2D data such
as images but these networks are also employed towards extracting features from
1-dimensional sensor data as they can learn from raw time series data without
first requiring feature extraction [107].

Affective states are often personal with individuals experiencing large varia-
tions in physiological parameters, despite experiencing the same state of mental
wellbeing. Furthermore, those with intellectual disabilities often have their men-
tal wellbeing challenges misattributed to their disability, thus making the real-
isation of a generalised model additionally challenging [102]. Advances in deep
learning have helped increase affective modelling performance, however the ma-
jority of previous work has not considered the personalisation of models or the
possibility of the models being used in different domains [98], [10], [340], [240]. For
example a model developed using a controlled experiment dataset may not per-
form as accurately when used in real-world environments. Therefore, it is essential
to develop personalised, subject-independent models for real-world monitoring as
when working with a heterogeneous population there are numerous factors such
as age, gender, disabilities and diet that result in a variation of physiological
data [240].

Little research has explored the development of personalised affective models
using non-invasive sensors that can be used in real-world environments. TL can
help the development of personalised models by training a base model using
labelled data from a different domain and transferring the learned knowledge to
the new target domain [54], [233]. However, developing a custom model for each
user remains a labour and time intensive task preventing real-world adoption. To
address the challenge of real-world affective data collection and the development
of personalised models an on-device TL approach has been devised. While the
use of TL to improve modelling performance is not new conceptually, this TL
approach for real-world physiological signal modelling helps address many of the
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traditional challenges by:

1. Exploring real-world, personalised affective modelling using few labelled
samples from non-invasive physiological sensors. Thus, reducing the chal-
lenging proposition of longitudinal, real-world, labelled wellbeing data col-
lection usually required to train affective models.

2. Removing the labour and time intensive process of developing personalised
models by completing the TL process on-device using the custom-built tan-
gible interfaces.

To achieve personalised affective models the development of an initial source
model followed by the on-device TL approach to personalise the model is pro-
posed. This approach hopes to alleviate many of the challenges traditionally
associated with affective modelling such as the requirement of large datasets,
enabling accurate real-world wellbeing inference.

5.2 Transfer Learning Framework
This work formulates model adaption as a cross-domain, personalisation TL prob-
lem. Here, a source model trained on a dataset collected from a controlled stressor
experiment is adapted to classify real-world affective state using an individual’s
labelled physiological sensor data. While a TL approach may assist personalising
models and improving performance across multiple domains, it has traditionally
relied on collecting the target domain data in advance to then complete the re-
training before the updated model can be exported. A new approach has been
devised where the target user provides only a few labelled samples over a short
period of time and TL is then performed to personalise the model on-device.
Collecting a small labelled dataset and then personalising models on-device sim-
plifies the process of developing personalised, cross-domain models as the device
does not need to be returned for the TL model to be developed. It is antici-
pated that the personalised cross-domain models will improve the accuracy in
which real-world wellbeing can be inferred. The following sections discuss the
data collection for the source model and the real-world wellbeing data as well as
the on-device transfer learning methodology.
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5.2.1 Controlled Stressor Experiment (Source Model Data
Collection)

Before the source stressor model could be developed, the stressed and relaxed
physiological data first had to be collected. A lab-based stressor experiment has
been conducted where participants’ various emotions were stimulated using the
Montreal stress test [74]. This experiment induced stress in 20 healthy partic-
ipants aged 18-50 between June - September 2019 as approved by Nottingham
Trent University human ethics board, application number 600. To allow the
effects of stress and mental arithmetic to be investigated separately the experi-
ment had three test conditions; rest, control and experimental. Each participant
was initially briefed before completing a 3-minute rest period where participants
looked at a static computer screen where no tasks were displayed. This was fol-
lowed by 3 minutes of the control condition where a series of multiplication mental
arithmetic questions were displayed which participants answered, followed by an-
other 3-minute rest period. Participants then completed the stressor experiment
where the difficulty of the questions increased and the time limit of the tasks
was adjusted to be 10% less than the average time taken to answer questions
during the training, taking it just beyond the individual’s mental capacity. The
time pressure along with a progress bar showing their progress compared with
an artificially inflated average were both designed to induce stress during the
10-minute experiment. Finally, participants completed a 3-minute rest session
and answered questions on their subjective experience of task load (NASA Task
Load Index) [120], mental effort (Rating Scale Mental Effort) [371], emotional
wellbeing (Self-Assessment Manikin) [38] and stress (visual analogue scale) [111].

Sensors: Participants wore hand-held non-invasive sensors on their fingers.
The sensors recorded HR Beats Per Minute (BPM), raw HR amplitude, HRV,
and EDA, each sampled at 30Hz to collect physiological data while experiencing
relaxed and stressed states of mental wellbeing.

The subjective experience data from the post-experiment questionnaire is
shown in Table 5.1. The results show that participants experienced high levels
of mental and temporal demand, effort and mental effort but remained slightly
positive with an average valence of 6.57. The average stress store was 5.36 which
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Table 5.1: Controlled stressor experiment subject experience from the NASA Task
Load Index (NASA-TLX), Rating Scale Mental Effort (RSME), Self-Assessment
Manikin (SAM) and Visual Analogue Scale (VAS).

Type Feature Description Average
TaskLoad
(NASA-
TLX)

Mental De-
mand (0: low
- 10: high)

How much mental and perceptual
activity was required (e.g. thinking,
deciding, calculating, remembering,
looking, searching, etc.)?

8.29

Physical De-
mand (0: low
- 10: high)

How much physical activity was re-
quired (e.g. pushing, pulling, turn-
ing, controlling, activating, etc.)?

3.07

Temporal De-
mand (0: low
- 10: high)

How much time pressure did you feel
due to the rate or pace at which the
task or task elements occurred?

6.69

Effort (0: low
- 10: high)

How hard did you have to work
(mentally and physically) to accom-
plish your level of performance?

6.86

Performance
(0: poor - 10:
good)

How successful do you think you
were in accomplishing the goals of
the task set by the experimenter (or
yourself)?

4.21

Frustration
(0: low - 10:
high)

How insecure, discouraged, irritated,
stressed and annoyed versus secure,
gratified, content, relaxed and com-
placent did you feel during the task?

4.93

Mental
Effort
(RSME)

MentalEffort
(0: none -
10: extreme
effort)

How high was the mental effort for
the tasks you just finished?

7.07

Emotion
(SAM)

Valence (1 -
9)

How do you feel at this moment?
(unhappy - happy)

6.57

Arousal (1 -
9)

How do you feel at this moment?
(calm - excited)

4.64

Stress
(VAS)

Stress (0: not
- 10: very
stressed)

How stressed do you feel? 5.36
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is lower than expected especially when participants stated they experienced high
levels of mental effort, although is higher than previous similar studies [169]. The
low subjective stress scores could potentially be explained by participants mis-
understanding the question and answering how stressed they felt at the time of
completing the questionnaire rather than the experiment as multiple participants
asked for clarification regarding this. Overall, participants experienced high lev-
els of effort and mental and temporal demand during the experiment showing it
is likely that high levels of stress were experienced.

Figure 5.1: Comparison of one user’s stressed (red) and relaxed (green) data
collected from one the controlled stressor experiment for HR (top), HRV (middle)
and EDA (bottom).

A similar number of samples were collected of both relaxed and stressed data,
helping to reduce bias in the classification model. The controlled experiment
dataset resulted in a total of 417251 sensor data samples when relaxed and 475232
data samples when stressed. The dataset contains HR (mean 79.4BPM, Standard
Deviation (SD) 11.6BPM), HRV (mean 773.8ms, SD 152.6ms) and EDA (mean
320.4kΩ, SD 158kΩ) physiological sensor data. While time series data is tradi-
tionally challenging to classify by sight there are clear trends displayed such as
when participants were resting the average HR was 76.9 (SD 10.5) compared with
81.6 when stressed (SD 12.1) showing an elevated HR when stressed. Similarly
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HRV reduced from 795.4ms (SD 149ms) when resting to 754.9ms (SD 152.6ms)
when stressed. Finally EDA significantly reduced when stressed from 345.3kΩ
(SD 152.6kΩ) to 298.6kΩ (SD 159.5kΩ). Figure 5.1 shows a sample of stressed
and relaxed physiological data for one user who completed the controlled stres-
sor experiment demonstrating trends such as lower EDA and higher HR when
stressed. However, this was not true of all participants with some experienc-
ing more pronounced physiological changes than others, reinforcing the need for
personalised models.

Figure 5.2: Summarising the controlled experiment EDA and HR data when
participants were relaxed (left panel) vs data when participants were stressed
(right panel).

To evaluate the physiological changes during the experiment, the HR (BPM)
and EDA data is represented in Figure 5.2 as they demonstrated the greatest
level of change between the rest and stressed states. Figure 5.2 shows that when
stressed the distribution of the HR and EDA data is highly concentrated within
two clustered areas compared with the relaxed data which is more sporadically
dispersed. The dispersed data demonstrates that HR may still be high and EDA
low when relaxed but this occurs much less frequently. Overall, the trends from
the dataset show that EDA is an important indicator of stress and when paired
with HR and HRV can show clear patterns of stressed and relaxed emotions.
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5.2.2 Real-World Mental Wellbeing Trial (Target Model
Data Collection)

The data collected from the data collection trial in Chapter 4, where a total of 15
participants were provided with a custom-built device for one week to collect real-
world wellbeing data, has been used to enable the development of personalised
models. The devices contained the same HR, HRV and EDA sensors sampled
at 30Hz as used in the controlled experiment, in addition to accelerometers and
gyroscopes to measure motion. These sensors were used due to their non-invasive
nature, usability in real-world environments and direct correlation with the sym-
pathetic nervous system. The on-device labelling method was used to label the
sensor data. During the data clean-up process a nearby label (either immediately
after or before) the sensor data was used as the label. If no label was recorded
the data was removed and if a long session of use was recorded (potentially due
to fidgeting while interacting with the interface) the data was manually analysed
to see if multiple labels were recorded where the data could be split if not the
entire session was labelled with the nearby label. If no physiological data was
recorded but motion data was present the same process was completed to label
the motion data and the physiological data was disregarded.

Nine of the fifteen participants had complex intellectual disabilities result-
ing in mental wellbeing issues often being diagnostically overshadowed by their
disabilities, making a personalised solution extremely valuable. After examining
and removing biased or insufficient data, the data from six participants with no
disabilities (users 1, 2 3, 6, 7 and 8) and four participants with intellectual dis-
abilities (users 4, 5, 9 and 10) has been used to examine deep learning affective
models. The distribution of the data per participant is reported in Section 4.3.4.

5.2.3 On-device Model Personalisation

The stressed and relaxed data collected from 20 participants completing the con-
trolled experiment has been used to train a source 1D CNN which will be adapted
to perform the TL approach. The input data included HR, HRV and EDA data
all sampled a 30Hz which was divided into segments of fixed lengths with an
input vector of size 32 X 5. An overlapping sliding window strategy has been
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adopted to segment the time series data with a window size of 100 samples and
a step of 20 chosen experimentally, by testing different window sizes from 10 to
400. The model was trained over 50 epochs with a batch size of 128, achieving
82.5% accuracy when classifying stressed and non-stresses states using hold-out
validation with a 20% test split. The network architecture consists of multiple
1-dimensional convolutional layers followed by max pooling operations with a
stride of 2 as shown in Figure 5.3. Batch normalisation layers are included along
with a dropout layer with a rate of 0.5 to prevent overfitting before the softmax
activation function. To compare performance, an LSTM network was trained
using the same data for 50 epochs with a batch size of 128 achieving 65.5% accu-
racy, resulting in the 1D CNN being selected to perform the TL approach. This
reduction in accuracy could be caused by LSTMs generally not being successful
for short-time, frequently changing, and non-periodical data [167], such as data
on wellbeing.

Figure 5.3: 1D CNN architecture.

The data collected from the tangible interfaces by the target users was used
to personalise and adapt the source model to classify real-world positive and
negative states of mental wellbeing as shown in Figure 5.4. The real-world data
was labelled with the self-reported wellbeing states and when segments contained
data from both classes a majority vote was used to label all of the data within
the segment with the same label. The TL approach was applied on-device using
each user’s real-world data to re-train and adapt the source controlled stressor
model. In order to achieve the transfer, the source network was frozen, the fully
connected layer was removed and two fully connected layers were added, forming
an adaption layer. The CNN was then re-trained on-device with the user’s labelled
data containing HR, HRV, EDA, accelerometer and gyroscope data sampled at
30Hz using the same window size (20) resulting in an embedded vector of size
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160X9 before the fully connected layers.
The TL approach fine-tuned the models and updated the weights to develop

personalised affective models. However, overfitting is a common problem when
training CNNs using small datasets such as an individual’s personal data and
refers to a model that models the training data too well. Specifically, overfitting
refers to a model that fits exactly against its training data therefore making it
unable to accurately classify unseen data. This prevents the generalization of the
model, limiting its use on new data. To help overcome overfitting, dropout layers
have been included within the network that randomly ignore 50% of neurons
during training [294]. Using dropout layers makes the training process noisy,
forcing nodes within a layer to probabilistically take on more or less responsibility
for the inputs therefore helping to overcome challenges when training CNNs using
small personal datasets.

Figure 5.4: Transfer learning approach transferring learned knowledge from the
source model trained using controlled stressor data to the target model classifying
real-world mental wellbeing.

The TL personalisation approach where the model was re-trained with an
individual’s data to classify positive and negative states of affect was completed
on-device using the custom built tangible interfaces. Each device contained a
Raspberry Pi 3, with 1GB of RAM and a 1.2GHz quad core CPU for processing
due to its affordability, compact nature and being sufficiently powerful to perform
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TL. Using the Raspberry Pi it is possible to apply the TL approach, adapting
the source model for the target user’s real-world wellbeing data, on-device. This
approach enables the model to infer real-world affective state rather than stress
from the controlled experiment while simultaneously personalising the model for
improved accuracy.

The on-device processing was slower than expected taking an average of 25
minutes to train the model using the TL approach due to the Raspberry Pi being
resource-constrained. However, as this training only needs to be completed once,
this is not a major limitation and remains quicker and simpler than returning the
devices to train the model offline and then returning the device to users with the
personalised model embedded.

5.3 Method
The real-world data consisting of HR (BPM), HRV, HR (amplitude), EDA and
motion (accelerometer and gyroscopic) collected from the tangible interfaces was
first cleaned and normalised before being used to train eight deep learning models
to classify positive and negative states of wellbeing. Four of the tested networks
(ResNet, TWIESN, Encoder and MCDCNN) have been previously explored using
time series data [145] however, their effectiveness for affective modeling has not
been explored. These four models have been compared with an additional four
models (1D CNN, LSTM, CapsNet and Inception) to evaluate their affective mod-
elling performance. Each model has been tested using Leave-One-participant-Out
Cross Validation (LOOCV) to develop subject independent models, enabling com-
parisons with the personalised TL models. This method of testing accurately
measures model performance on an individual basis and better simulates real-
world performance.

In addition to comparing multiple deep learning classifiers the TL approach
was also completed. Once each of the participants had used their device to collect
a personal labelled dataset and the on-device TL approach had been performed,
each user’s individual model was tested using 10-fold cross validation. It is impor-
tant to assess the performance of the model trained using a small dataset using
a resampling technique such as k-fold cross validation as it allows for a better
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estimate of the performance of the model on unseen data, helping to establish
whether overfitting has occurred.

5.4 Results

5.4.1 Multivariate Physiological Models

5.4.1.1 Deep Learning Models

The real-world physiological data (HR (BPM), HRV, HR (amplitude) and EDA)
was used to train each of the aforementioned deep learning networks. The results
for each model tested using LOOCV is shown in Table 5.2 where the highest
accuracy for each user is highlighted.

Table 5.2: Comparison of 8 deep learning models’ accuracy tested on individual
users’ physiological data.

User 1D
CNN

LSTM Caps-
Net

Res-
Net

TWIESN Encoder Inception MCD-
CNN

1 74.1% 64.2% 53.1% 67.8% 59.8% 47.9% 68.8% 47.9%
2 85.1% 68.4% 58.5% 59.6% 54.4% 47.1% 59.3% 56%
3 72.5% 66.7% 63.2% 35.9% 25.4% 36.8% 36% 36.8%
4 85.5% 56.4% 67.7% 33.5% 52.5% 9.4% 36.4% 9.5%
5 86.2% 74.7% 53.1% 51.1% 52.7% 53% 45.8% 53%
6 83% 55% 81% 24.8% 22.7% 21.6% 25.6% 78.4%
7 81.1% 50% 17.4% 83.3% 21% 21% 81.6% 21%
8 85.3% 68.3% 54.8% 40.2% 43.2% 45.3% 43.2% 54.7%
9 83.8% 59.9% 88% 47.4% 87.6% 87.7% 43.5% 87.7%
10 87% 71% 53.3% 27.1% 94.9% 57.9% 29.7% 95.2%
avg 82.4% 63.4% 59% 47.1% 51.4 42.77% 47% 54%

The results show that for the physiological model the 1D CNN outperformed
all other models for the majority of users, achieving between 72.5% and 87%
accuracy (SD 5.1) with an average of 82.4%. This shows that wellbeing is highly
personal as there was a 14.5% variation in accuracy between users when tested
using the same 1D CNN model. The 1D CNN achieved 19% higher average
accuracy than the next best performing model (LSTM), which is surprising as
RNNs are commonly used with time series data.
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The results show a wide variation in accuracy between the models when using
the same data. For the physiological models the average standard deviation
between models was 20.1. Four users (4, 6, 7 and 10) experienced higher standard
deviance between models than the average deviation, with user 7 experiencing
the greatest deviation of 30.7 with a 65.9% variance in model accuracy.

Similarly, there was a wide variation between users when tested with the same
model, with an average standard deviation of 17.96. CapsNet outperformed the
1D CNN by 4.2% for user 9, achieving an overall accuracy of 88%, while ResNet
outperformed the 1D CNN for user 7 by 2.2% and MCDCNN achieved the highest
overall accuracy of 95.2% for user 10. While there is a 14.5% range of accuracy
for the 1D CNN, the two next best performing physiological models, LSTM and
CapsNet show much wider variation of 24.7% for LSTM (SD 7.82) and 70.6%
for CapsNet (SD 19.06). The model accuracy for CapsNet ranges between 17.4%
to 88% and while the 17.4% accuracy is an outlier, all other models achieved
higher performance with the same user’s data. Similarly, model accuracy for
MCDCNN ranged between 9.5% and the highest overall accuracy achieved, 95.2%
demonstrating a wide range of 85.7% (SD 27.56). This demonstrates that while
CapsNet and MCDCNN can be used to infer wellbeing, their high volatility results
in inadequate subject-independent models.

5.4.1.2 Personalised TL Model

When performing the TL approach each personalised model was initially trained
using only physiological sensor data (HR, HRV, EDA). However, it was not pos-
sible to apply the TL approach for user 7 due to this user recording the lowest
number of samples which whilst sufficient to test using LOOCV was not sufficient
to train the personalised model without extreme bias and overfitting.

The accuracies of the personalised models for the remaining nine target users
ranged between 84% and the highest overall performing model at 99.6% with an
average accuracy of 92.3%, as shown in Table 5.3. The Area Under the Curve
(AUC) shows the degree to which the model is capable of distinguishing between
the two classes (positive and negative states of wellbeing). The AUC scores
range between 86.2% and 99.6% with an average of 91.9%, remaining similar to
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accuracy. The personalised TL model for each user outperformed their respective
best performing non-TL model, demonstrating the potential for mental wellbeing
to be more accurately classified using personalised models.

Table 5.3: Comparison of 9 target users’ multivariate physiological model accu-
racy and AUC using the transfer learning approach.

Accuracy AUC
User 1 84% 86.2%
User 2 90.4% 90.6%
User 3 99.6% 99.6%
User 4 95.8% 91.6%
User 5 90.6% 90.7%
User 6 93.5% 92%
User 8 89% 89%
User 9 91% 95%
User 10 97% 92%
Average 92.3% 91.9%

To ensure the TL approach had successfully learned the new real-world do-
main, the original source model trained using the controlled stressor data was
tested using the target users’ real-world data. The average accuracy achieved was
48.77%, representing a significant reduction in accuracy. These results demon-
strate the model developed to classify stress is not capable of classifying real-
world affective state, as while stress is an example of a negative affective state
there are numerous other negative affective states that elicit different physio-
logical responses. These results confirm the TL approach has greatly improved
cross-domain performance, enabling more accurate inference of real-world mental
wellbeing.

The aim of using TL was to additionally personalise the models. To demon-
strate model personalisation, each of the target users’ models were used to classify
the data from all of the other users. The results show an average 36.09% reduc-
tion in accuracy when a user’s personalised model was tested with alternative
users’ data. This demonstrates the TL approach has developed cross-domain
personalised models as there is a significant accuracy improvement when the per-
sonalised model is tested using the matching user’s data.
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5.4.2 Mutivariate Motion and Physiological models

5.4.2.1 Deep Learning Models

Motion data (accelerometer and gyroscopic) was also collected from the interfaces,
however the motion data from three of the devices was corrupted and therefore
not usable to train models, resulting in 7 users. Table 5.4 shows the results for
each of the deep learning models when trained using physiological and motion
data. The 1D CNN model again outperformed all other models for the majority
of users, achieving an average accuracy of 71.7%, although there was an 10.7%
reduction in average accuracy compared with the physiological 1D CNN model.
However, the CapsNet model achieved the highest accuracy of both models for
user 7 and TWIESN for user 9.

Table 5.4: Comparison of 8 deep learning models’ accuracy tested on individual
users’ physiological and motion data

User 1D
CNN

LSTM Caps-
Net

Res-
Net

TWIESN Encoder Inception MCD-
CNN

4 87% 52.6% 9.4% 79.7% 54.5% 62.2% 28.9% 49.7%
5 79% 57.8% 53.1% 47.4% 53% 52.8% 50.3% 53.9%
6 81.1% 72.3% 81% 45.6% 21.7% 24.2% 41.7% 78.4%
7 72% 29.2% 82.6% 40.2% 25.2% 21% 79.2% 79%
8 54.8% 49.2% 45.2% 36.7% 45.2% 44.9% 39.9% 36.9%
9 50% 59.9% 12% 42.3% 87.6% 80% 42.8% 80.4%
10 78.3% 71% 50% 59.1% 95.1% 77.7% 49.3% 95%
avg 71.7% 56% 47.6% 50.1% 54.6% 51.8% 47.4% 67.6%

Combining the physiological data with motion resulted in overall reduced
performance although increased accuracy for user 4 by 1.5%. When comparing
the best performing model for each user between the physiological and combined
physiological and motion models, it shows there is a wide variation between a
30.8% decrease and a 1.5% increase in performance with an average decrease of
5.66% for the combined models.

The combined motion and physiological models demonstrated high deviations
between models, similar to the physiological models, with the average standard
deviation between models being 19.6 ranging from 6.2 to 25.4. The high devia-
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tion between models when tested on the same data shows the importance model
selection has on performance.

5.4.2.2 Personalised TL Model

To explore whether motion data has an impact on the personalisation of affective
state, the motion data was combined with the physiological data to train the
target personalised models.

Table 5.5: Comparison of 6 target users’ multivariate physiological and motion
model accuracy and AUC using the transfer learning approach.

Accuracy AUC
User 4 96.3% 86.9%
User 5 89.2% 89.2%
User 6 90.3% 86.6%
User 8 91% 91%
User 9 96% 98%
User 10 98% 99%
Average 93.5% 91.8%

The results in Table 5.5 demonstrate that by combining the physiological and
motion data accuracies between 89.2% to 98% can be achieved with an average
accuracy of 93.47%. The combined physiological and motion TL models outper-
formed the physiological TL models for four out of the six users (user 4, 8, 9 10)
and all models again outperformed the non-TL equivalent 1D CNN, increasing av-
erage accuracy by 22.37%. User 9 demonstrated the largest increase in accuracy,
increasing from 50% to 96% when using the personalised model. This demon-
strates that unlike in traditional deep learning models the inclusion of motion
data with the TL models increased model accuracy, potentially demonstrating
the manner in which users interacted with the interfaces is unique between users
and can be used to indicate changes in wellbeing state.

132



5. Real-World Mental Wellbeing Recognition using On-Device
Transfer Learning

5.4.3 Univariate Models

5.4.3.1 Deep Learning Models

As the 1D CNN outperformed all other models for the majority of users, this
model was further explored to examine the impact training using each individual
data source has on performance. The 1D CNN was again tested on a subject-
independent basis using LOOCV for each of the 10 users with either the HR
(BPM), HRV, EDA or motion data used to train the models, as shown in Table
5.6.

Table 5.6: Comparison of univariate 1D CNNs accuracy tested using LOOCV on
10 individual’s HR (BPM), HRV, EDA or motion data.

User HR HRV EDA Motion
User 1 60% 66% 75% N/A
User 2 65% 62% 86% N/A
User 3 63% 56% 86% N/A
User 4 50% 56% 72% 86%
User 5 78% 78% 77% 80%
User 6 74% 75% 77% 73%
User 7 69% 66% 75% 28%
User 8 74% 75% 80% 27%
User 9 68% 71% 70% 69%
User 10 61% 59% 77% 74%
Average 66.2% 66.4% 77.5% 62.4%

The results show that high model accuracy up to 86% can be achieved using
only one data source with EDA being the most accurate univariate model for the
majority of users, achieving an average accuracy of 77.5%. This demonstrates
the importance of using EDA sensors when inferring wellbeing. However, HRV
was the highest performing univariate model for user 9 and while the motion
models achieved the lowest average accuracy of 62.4%, it was the most accurate
univariate model for users 4 and 5, demonstrating the possibility of inferring
wellbeing from motion data alone.

Surprisingly the EDA univariate models for users 1, 2 and 3 all outperformed
the comparative multivariate physiological 1D CNNs by 0.9%, 0.9% and 13.5%
respectively. However, the average overall accuracy for the univariate models
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does not outperform the average accuracy of 82.4% for the multivariate model,
demonstrating multivariate models are most applicable for the majority of users.
Overall, these results show that while multivariate physiological models provide
the highest accuracy for the majority, univariate affective models can improve
performance for individual users.

5.4.3.2 Personalised TL Model

Developing personalised mental wellbeing classification models using TL from
only motion data has also been explored as the inclusion of motion data with the
TL approach in Section 5.4.2.2 increased model performance. The motion data
captured from users 4, 5, 6, 8, 9 and 10 was used to perform TL and develop
personalised models. The univariate motion TL models outperformed each of the
non-TL univariate CNNs for all users other than user 5. The TL models achieved
an average accuracy of 88.05% ranging between 72.4% and 97% as shown in
Table 5.7, compared with the average non-TL univariate motion model accuracy
of 62.4%.

Table 5.7: Comparison of 6 target users’ univariate motion models using the
transfer learning approach.

Accuracy AUC
User 4 89.1% 72.3%
User 5 72.4% 72.6%
User 6 82.8% 75.4%
User 8 90% 90%
User 9 97% 89%
User 10 97% 89%
Average 88.1% 81.4%
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Figure 5.5 shows the confusion matrices for user 5, the worst performing uni-
variate and combined physiological and motion models. The confusion matrices
confirm there were misclassification errors for both classes, although the majority
of errors misclassified negative states of wellbeing as positive.

Figure 5.5: Comparison of confusion matrix for user 5 physiological and motion
TL model (left) and univariate motion TL model (right).

While the motion univariate models were the worst performing TL models,
surprisingly each user’s model accuracy remained high when no physiological sen-
sor data was used. These personalised models show the largest difference between
accuracy and AUC, with the AUC on average 6.67% lower, demonstrating the
greater level of misclassification errors. However, the motion univariate TL mod-
els outperformed the non-TL physiological univariate models in Table 5.6 for 4 of
the users (users 4, 8, 9 10), further demonstrating the potential to infer wellbeing
from motion data alone.

5.5 Discussion
The results demonstrate that overall 1D CNNs offer the highest affective modeling
performance due to their low volatility and that a large dataset is not necessary
to accurately infer real-world mental wellbeing. Instead, a small labelled dataset
and TL can be applied on-device, addressing the challenging proposition of lon-
gitudinal affective data collection. The TL approach has shown to consistently
improve model performance, demonstrating its ability to personalise affective
models and increase cross-domain performance. Furthermore, its ability to infer
the real-world mental wellbeing of those with intellectual disabilities may help
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reduce diagnostic overshadowing.
The highest accuracy was achieved using the TL 1D CNN fusing physiological

and motion data, demonstrating the importance of using HR, HRV, EDA and
motion data when inferring affective states. These TL models achieved an average
accuracy of 93.47%, 22.37% higher than the comparative 1D CNN trained without
the TL approach using LOOCV with significantly more samples, as shown in
Figure 5.6. However, the accuracy of the models for users 5 and 6 decreased in
comparison with the purely physiological TL models, showing that the inclusion
of additional motion data does not necessarily increase model performance for all
users.

Figure 5.6: Comparison of average accuracy from 1D CNN models compared with
personalised TL models.

Model accuracy remained similarly high when classifying mental wellbeing
using only physiological data with the TL approach although it resulted in an
average performance decrease of 1.57% in comparison with the physiological and
motion TL models. The comparative non-TL CNN trained using the same physi-
ological data resulted in a 9.5% average reduction in accuracy, again demonstrat-
ing the benefits of the TL approach. When the personalised models were trained
with other users’ data there was a 36.09% reduction in accuracy, confirming the
TL approach successfully personalised the models. Furthermore, when the real-
world datasets were tested using the source controlled experiment model there
was a 43.55% reduction in accuracy confirming the TL approach also enabled
the model to adapt cross-domain from controlled stress recognition to real-world
affect recognition.
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When using solely motion data to infer wellbeing, an average accuracy of
88.05% was achieved using the TL approach, outperforming all univariate non-TL
models, although reducing average multivariate physiological and motion model
performance by 5.42%. While this is lower than models trained using physiological
data, it is higher than expected, with user 9 achieving their highest respective
accuracy at 97% using the univariate motion TL model. Figure 5.7 shows the
accuracy using the univariate TL model remained similar to the other TL models
for users 8, 9 and 10 although there was a larger reduction in accuracy for users
4, 5 and 6.

Figure 5.7: Comparison of accuracy for each user’s TL model.

To investigate whether there is a distinct pattern of device motion between
different states of wellbeing the total acceleration from the accelerometer data was
calculated using 5.1, enabling exploration between the two states of wellbeing.

|⃗a| =
√

a2x + a2y + a2z (5.1)

Figure 5.8 shows the distribution of the total acceleration across positive and
negative states of wellbeing. The vast majority of total acceleration was between 1
and 1.2 where the negative state of wellbeing had a much wider distribution when
the total acceleration was 1, had a smaller interquartile range and a lower me-
dian value. This demonstrates that the interactions with the interfaces changed
with state of mental wellbeing, possibly as people fidget when experiencing poor
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wellbeing [211] [141]. This may be beneficial for future wellbeing devices such as
wearables as they can infer wellbeing while remaining physically small by embed-
ding fewer sensors.

Figure 5.8: Violin chart comparing total acceleration between positive and neg-
ative states of wellbeing.

The ability to collect a labelled, real-world, personal dataset using custom-
built devices and perform the TL approach on-device significantly simplified the
process of developing personalised models. While the devices were mostly used as
anticipated, the lack of negative wellbeing states reported by some participants
resulted in their elimination from the study. However, as a personalised model was
developed for each user, the requirement of a large dataset, which is traditionally
challenging to collect was reduced.

The TL approach was successfully completed on-device using a Raspberry Pi
and while the initial training of the personalised models took an average of 25
minutes, the models were then able to infer real-world mental wellbeing. This
approach means future devices could be provided to the wider population to
infer real-world wellbeing without the need to first collect large labelled datasets,
greatly improving accessibility to personalised affective models. In the future, it
would be beneficial to explore edge computing devices other than the Raspberry
Pi to reduce the time required to train the model and perform the TL approach.
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5.6 Conclusion
The personal, labelled, real-world data collected from the developed tangible
interfaces has been used to train 8 deep learning subject-independent classifiers to
infer affective state including CNN, CapsNet, ResNet, LSTM, TWIESN, Encoder,
Inception and MCDCNN. Furthermore, a novel method for personalising affective
models using a TL approach has been applied on-device to improve performance
and adapt a source 1D CNN to infer real-world affect.

The results showed that the 1D CNN outperformed all other classification
models for the majority of users, achieving an average accuracy of 82.4%. Uni-
variate 1D CNN models, trained using a single data source were also explored,
demonstrating EDA alone can achieve high performing models with an average
accuracy of 77.5%. Surprisingly the univariate models for 3 users outperformed
their comparative multivariate physiological models, demonstrating the potential
to infer mental wellbeing from a single data source.

When applying the TL approach using physiological and motion data to clas-
sify positive and negative states of affect, an average accuracy of 93.5% was
achieved. The TL approach not only enabled the model to adapt from a con-
trolled stressor experiment to real-world affect recognition but also successfully
personalised the models. Training a source model using a controlled dataset
and then performing TL on-device, enabled high performing models without the
challenging proposition of longitudinal real-world data collection.

Overall the TL approach only required a small sample of labelled data saving
time, labour and money, while also improving model performance and operating
across different domains. Advances in edge computing have enabled this per-
sonalised TL approach to be trained and run on-device, enabling the accurate
inference of real-world affective state.
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Chapter 6

Combining Deep Transfer
Learning and Signal-image
Encoding for Multimodal Mental
Wellbeing Classification

It is impractical, time consuming and extremely challenging to collect large real-
world datasets of individuals’ wellbeing to train deep learning classifiers as it relies
on users labelling their wellbeing for extended periods. To help address this issue
a second TL approach has been developed to negate the requirement of having
a large affective dataset to train deep learning classification models. This chap-
ter explores signal-encoded images trained using a TL approach combined with
an additional CNN trained using physiological sensor data, to improve affective
modelling performance using limited data.

6.1 Introduction
Time series data from multiple modalities such as physiological and motion sensor
data have proven to be integral for measuring mental wellbeing. However, the
performance of machine learning models deteriorates considerably when training
data is scarce, even more so with deep learning models. This lack of sufficient sta-
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tistical power often hinders the progress of AI applications in monitoring and un-
derstanding wellbeing, since collecting longitudinal and annotated training data
is very challenging [176]. This is due to the following reasons:

1. User availability, incentivisation and willingness to participate in longitudi-
nal studies (or increasing study drop-outs beyond the first few months) [173]

2. Privacy, ethics and data protection issues [370], [239]

3. Data integrity and accuracy [195]

4. Cost and availability of monitoring devices [275]

5. Requirement to set up the device and extract the data by expert personnel
needing specialized equipment [361]

6. Time consuming nature of real-time self labelling

In order to address these well reported problems, TL is often used [54]. Pre-
trained models can be used to encompass methods that discover shared charac-
teristics between prior tasks and a target task, reducing the necessity for large
datasets [233]. Furthermore, previous research shows that fast changing, con-
tinuous sensor data such as accelerometer data can be transformed into RGB
images which can then be used to train deep learning models [336]. Although the
premise of presenting time series data as images is promising in extracting multi-
level features and improving classification accuracy, most of the previous work
only considered encoding univariate time series data as one image for a single
channel of a CNN input [336], [357], [157]. This research proposes the combina-
tion of physiological sensor data with signal-encoded images in a TL model to
tackle the challenging problem of monitoring the trajectory of wellbeing.

The use of signal-image encoding is explored to classify wellbeing using three
techniques; GASF, GADF and MTF [336]. To address the limited sample size of
wellbeing data a new CNN-TL-based approach has been developed to alleviate
many challenges when classifying small datasets. This framework uses the signal-
encoded images in a novel pre-trained TL model combined with a 1D CNN trained
using physiological sensor data. Furthermore, the possibility of performing TL to
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classify stress from physiological data is explored by initially training a 1D CNN
using a large physical activity dataset and then applying the learned knowledge to
the target dataset. These approaches aim to use TL in addition to signal-encoded
images to overcome problems with small training datasets, thus improving on the
performance of conventional deep learning methods. Table 6.1 summarises the 2
proposed approaches.

Table 6.1: Description of the two proposed TL methodologies to overcome data
scarcity.

1-Dimensional CNN TL
Model

Image Encoding TL Model

1) Train a 1D CNN using a large
time series dataset

1) Encode multivariate time se-
ries data as coloured images

2) Freeze the source model and re-
move the final layers

2) Leverage pre-trained object
recognition models to apply a TL
approach using the coloured im-
ages

3) Adapt the source model by
training new fully connected lay-
ers with stressor dataset and up-
dating the model weights

3) Train a 1D CNN to per-
form wellbeing classification from
physiological data

4) Utilise the model to classify
stress

4) Concatenate the pre-trained
TL model with the 1D CNN to
classify mental wellbeing

6.2 Data Collection
In this work, three different datasets have been used containing data from phys-
iological, environmental and motion sensors, along with their labels. The first
dataset uses physiological data from the controlled stressor experiment described
in section 5.2.1, the second dataset shown in Section 6.2.1 collected physiological
and environmental real-world data along with self-reported labels and the third
dataset detailed in Section 6.2.2 is a publicly available human activity dataset
containing accelerometer data [176].
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6.2.1 EnvBodySens

Experiment setup: EnvBodySens is a dataset that has been previously collected
by [202] that consists of 26 data files collected from 26 healthy female participants
(average age of 28) walking around the city centre in Nottingham, UK on specific
routes. The participants were asked to spend no more than 45 minutes walking
in the city center. Data was collected in similar weather conditions (average
20◦C), at around 11am. Participants were asked to continuously report how they
felt based on a 5-point predefined emotion scale as they walked around the city
centre experiencing general daily life stressors such as loud environmental noises
and crowded environments. The 5-step SAM Scale for Valence from Banzhaf et
al. [24] was adopted using a smartphone app developed for the study simplifying
the continuous labelling process. The screen auto sleep mode on the mobile
devices was disabled, so the screen was kept on during the data collection process.
Data from six users were excluded due to logging problems. For example, one
user was unable to collect data due to a battery problem with the mobile phone
and another user switched the application off accidentally.

Sensors: The dataset is composed of non-invasive physiological data (HR,
EDA, body temperature, acceleration) sampled at 8Hz, environmental data (noise
levels, Ultra Violet (UV) and air pressure) also sampled at 8Hz, time stamps and
self reports. The data was logged by the EnvBodySens mobile application on
Android phones, connected wirelessly to a Microsoft wrist Band 2 [207] that was
provided to participants to collect the physiological and environmental data.

The EnvBodySens dataset resulted in 29965 samples for state 1, 35333 samples
for state 2, 106210 samples for state 3, 77103 samples for state 4 and 106478
samples for state 5. Figure 6.1 shows the EDA (mean 1455.2kΩ, SD 2870.5kΩ)
and HR (mean 74.5BPM, SD 11.8BPM) for all participants when experiencing
each of the five self-reported states of valence from 1 being most positive to 5
being most negative.
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Figure 6.1: EnvBodySens EDA data for reported emotional states from 1 (posi-
tive) to 5 (negative).

The distribution in Figure 6.1 demonstrates that as users record poorer states
of wellbeing, the average EDA value decreased. The EDA data collected behaves
as expected with the median EDA value gradually decreasing as users experience
worsening wellbeing.

Figure 6.2: EnvBodySens HR data for reported emotional states from 1 (positive)
to 5 (negative).

However, Figure 6.2 shows wellbeing levels do not impact the distribution of
HR like EDA; instead the distribution of HR remains relatively similar for all
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wellbeing states. Reported wellbeing state 2 has the highest distribution of HR
reaching over 120 Beats Per Minute (BPM) even though this is the second most
relaxed state. As users experienced worsening wellbeing the upper adjacent values
are reduced, which is unexpected as when users experienced poor wellbeing they
are more likely to have increased HR [304]. The outlier HR data in states 1 and 2
that go beyond 180BPM are most likely artifacts of the data due to sensor error,
demonstrating that there is little change in HR over the 5 states of wellbeing.
This demonstrates that HR alone as used in most commercial wearables, may
not be sufficient to monitor affective state, requiring additional data modalities
such as HRV and EDA. Overall, the EDA data behaves as expected while there
is little to distinguish HR during the different states of wellbeing.

Figure 6.3: Total number of label changes per participant.

During the data collection process, 5345 self-report responses rated from 1
(most positive) to 5 (most negative), where sufficient samples for each rating
were collected (1-8.44%, 2-9.95%, 3-29.91%, 4-21.71%, 5-29.99%). Data was suc-
cessfully collected from all classes but class imbalance from an individual’s dataset
may impact the performance of the model. Figure 6.3 shows the total number
of label changes per participant during the data collection, with each participant
entering an average of 37.35 label changes. The number of samples collected by
each user for each class was explored to ensure there wasn’t significant bias. Each
user successfully collected data for each of the five classes showing similar pat-
terns to the complete dataset, with the majority of users collecting more data for
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classes 3, 4 and 5. Therefore, the percentage of the data each user collected per
class was calculated with an average standard deviation was 0.15 showing that
while there is a small class imbalance, no user has a significant class imbalance
that would impact the classification model. No single user collected significantly
more or less data than the average user with the number of samples collected
between users having a standard deviation of 0.01 with the size of each user’s
dataset ranging from 3.1% to 6.8% of the total dataset.

6.2.2 The Human Activity Recognition Using Smartphones
Data Set (WISDM)

Experiment setup: This dataset has been published by Kwapisz JR, Weiss GM,
Moore SA (2011) [176]. The dataset comprises of 36 participants performing
six physical activities (walking, walking upstairs, walking downstairs, sitting,
standing and jogging) while carrying the provided Android-based smartphone in
their front trouser leg pocket. The 36 participants resulted in 1,098,207 data
samples being collected consisting of 39% walking, 31% jogging, 11% walking
upstairs, 9% walking downstairs 6% sitting and 4% standing.

Sensors: The dataset comprises of accelerometer data from the embedded
sensor within the Android phone sampled at 20Hz. A graphical user interface
was included within the custom Android application enabling users to label the 6
prespecified physical activities (walking, jogging, walking upstairs, walking down-
stairs, sitting and standing) when commencing a new activity and to end the data
collection.

This external dataset is freely available at:
http://www.cis.fordham.edu/wisdm/dataset.php

6.3 Methods
Using the three aforementioned datasets, two TL approaches are proposed to help
improve accuracy and reduce the requirement of large datasets when classifying
mental wellbeing:
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1. Training a base model on a large human activity dataset and transferring
the learned knowledge to a 1D CNN trained using the controlled experiment
dataset to classify stress.

2. Using signal-image encoding to transform accelerometer data into images
and then applying a novel CNN-TL-based approach combined with a sepa-
rate 1D CNN trained using the remaining sensor data to classify real-world
affective state.

6.3.1 Modality Transformation

An image is comprised of pixels which can be conveniently represented in a matrix
with a colour image containing three channels; red, green and blue for each pixel,
compared with grayscale images that contain only one channel. Transforming
time series data into images can help extract multi-level features [336] and improve
classification accuracy [357], [157].

This study aims to explore the use of signal-image encoding and the addition
of TL with time series data. Therefore the continuous, fast changing datastream
of accelerometer data must first be transformed into images. It is not plausible
to transform the physiological data into images due to its static nature where
HR and EDA can often remain constant for several seconds resulting in no data
being encoded. Three methods of modality transformation using accelerometer
data are utilised: GADF, GASF and MTF.

Wang and Oates transformed time series data into images using Gramian
Angular Field (GAF) [336]. First, the data was normalised between -1 and 1 by
applying 6.1. The normalised data is then encoded using the value as the angular
cosine and the time stamp as the radius r with 6.2, where ϕ is the angle polar
coordinates, ti is the time stamp, N is a constant factor to regularize the span of
the polar coordinate system and X̃ represents the re-scaled time series data [357].

x̃i
−1 =

(xi −max(x)) + (xi −min(x))

max(x)−min(x)
(6.1)

{
ϕ = arccos (x̃i) ,−1 ≤ x̃i ≤ 1, x̃i ∈ X̃

r = ti
N
, ti ∈ N

(6.2)
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GASF = [cos (∅i + ∅j)] (6.3)

= X̃ ′ · X̃ −
√

I − X̃2
′
·
√

I − X̃2 (6.4)

GADF = [sin (∅i − ∅j)] (6.5)

=
√

I − X̃2
′
· X̃ − X̃ ′ ·

√
I − X̃2 (6.6)

The normalized data is then transformed into polar coordinates instead of the
typical Cartesian coordinates. After transformation, the vectors are transformed
into a symmetric matrix called the Gramian Matrix. There are two ways to
transform the vectors into a symmetric matrix: GASF and GADF as shown from
6.3 to 6.6 where ∅ is the angle polar coordinates. These methods preserve the
temporal dependency, with the position moving from top-left to bottom-right
with time.

M =


wij|x1∈qi,x1∈qj · · · wij|x1∈qi,xn∈qj

wij|x2∈qi,x1∈qj · · · wij|x2∈qi,xn∈qj
... . . . ...

wij|xn∈qi,x1∈qj · · · wij|xn∈qi,xn∈qj

 (6.7)

Alternatively, images can be generated using MTF where the Markov matrix
is built and the dynamic transition probability is encoded in a quasi-Gramian
matrix as defined in 6.7. Given a time series x and its q quantile bins each xi

is assigned to the corresponding bins, qj (j ∈ [1, q]). A q X q Markov transition
matrix (w) is created by dividing the data into q quantile bins. The quantile
bins that contain the data at time stamp i and j (temporal axis) are qi and qj.
The information of the inter-relationship is preserved by extracting the Markov
transition probabilities to encode dynamic transitional fields in a sequence of
actions [336]. A comparison of identical X, Y, Z and total acceleration data
transformed as GASF, GADF and MTF can be seen in figure 6.4.
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Figure 6.4: An example of raw accelerometer data (X, Y, Z and average motion)
transformed using MTF, GASF and GADF.

6.3.2 Model Architecture

Two TL approaches are explored to classify the mental wellbeing data collected
from the controlled stressor experiment and the EnvBodySens datasets.

6.3.2.1 1-Dimensional CNN TL Model

The first TL approach aims to improve the accuracy of stress recognition using
the controlled experiment dataset. A source 1D CNN is first trained using the
accelerometer data from the WISDM dataset for activity recognition and then a
TL approach is applied to transfer the learned general characteristics of time series
data towards the smaller controlled stressor dataset. The model is trained over
10 epochs with a batch size of 128. Batch normalisation has been used within
the network to normalise the inputs of each layer and a dropout layer with a
rate of 0.5 was added before the maxpooling layer to prevent overfitting. The
pooling layers subsample the data, reducing the number of weights within that
activation. Finally, the fully-connected layers where each neuron is connected to
all the neurons in the previous layer are used to calculate class predictions from
the activation.

When training the physiological model using TL, the source model is imported
without its last layer with dense layers then added to enable the new model to
learn more complex functions from the HR (BPM), raw HR signal (amplitude),
HRV and EDA data. The dense layers used the ReLU activation function and the
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final layer, which contains two neurons, one for each class (stressed and relaxed)
used the Softmax activation function. Hold-out validation is used to test this
approach by using a randomly selected 20% test split to test the model and
calculate accuracy. This approach aims to reduce overfitting and improve the
accuracy in which stress can be classified from a limited sample by transferring
the weights from the source model.

6.3.2.2 Image Encoding TL Model

This second approach proposes the novel combination of a 2D CNN utilising
TL with signal-encoded images and a 1D CNN model to improve the accuracy of
mental wellbeing classification from the EnvBodySens dataset. TL first requires a
pre-trained model; for this work multiple pre-trained object recognition networks
have been explored. Given that the majority of pre-trained models for TL have
been trained on images it is beneficial to train these networks using signal encoded
images from the continually changing motion data and not the physiological data
which can often remain static resulting in little data being encoded.

This approach transforms the accelerometer data from the EnvBodySens
dataset into images using GADF, GASF and MTF, resulting in a total of 17,750
images for each encoding technique. These images are then used as input (size 64
X 64 X 3) to train a 2D CNN consisting of 2 convolutional layers, polling layer,
dropout layer and fully connected layer over 10 epochs to classify 5 states of well-
being by exploring 7 pre-trained models (Xception, VGG19, ResNet, NasNet,
DenseNet, DenseNet V2 MobileNet) to apply the TL approach. An overlapping
sliding window strategy has been adopted to segment the motion data with a
window size of 100 samples and a step of 20 chosen experimentally, resulting in
an embedded vector of size 4X4 being fed into the fully connected layers. An
additional 1D CNN model using the same parameters as the aforementioned 1D
CNN is trained using the remaining sensor data from the EnvBodySens dataset
(HR, EDA, body temperature, acceleration, noise, UV and air pressure). Batch
normalisation and dropout layers with a rate of 0.5 have also been utilised. These
two models are frozen and then the concatenated feature vector is fed into two
fully-connected layers as shown in figure 6.5.
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Figure 6.5: Combinatory model consisting of 1D CNN trained using raw phys-
iological sensor data (top) and a 2D CNN using a transfer learning approach
trained using accelerometer encoded images (bottom).
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The use of TL to transfer weights from pre-trained image classification models
and the use of dropout layers help to prevent overfitting, where a model fits
exactly against its training data and is unable to classify new data. The use of
methods to prevent overfitting is necessary as while the EnvBodySens includes
data from 20 participants, deep learning models typically require vast datasets
to accurately classify without overfitting.

Hold-validation using a 20% test split has been used to test the model using
around 284,000 sensor data samples for training and 71,000 for testing. Ad-
ditionally, Leave-One-participant-Out Cross-Validation (LOOCV) has also been
utilised to test the TL approach on a subject-independent basis. This is where
the model is trained with 19 users’ data then tested on the remaining user’s data
(19926 average data samples) to better simulate how the model would be used in
the real-world to infer an individual’s wellbeing.

6.4 Results

6.4.1 1D CNN TL Stress Model - WISDM & Controlled
Stressor Data

As the controlled stressor experiment only collected physiological data (HR BPM,
raw HR amplitude, HRV, EDA) it is not possible to use the same modality
transformation techniques to transform fast changing motion data as used with
the EnvBodySens dataset. However, it is possible to perform TL by initially
training a similar model and then using a TL approach to adapt the model with
the target stressor dataset.

Initially a 1D CNN model was trained using the physiological data from the
controlled experiment dataset, achieving a baseline accuracy of 82.5%. To eval-
uate whether TL can improve model performance the same network architecture
was trained using the larger WISDM dataset consisting of accelerometer data for
six human activities, achieving 91% accuracy.

The activity recognition model was then used to apply the TL approach. Once
the model had been re-trained with the target controlled stressor dataset an accu-
racy of 91% was achieved using a 20% test split, an 8.5% accuracy improvement
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Figure 6.6: Confusion matrix of 1D CNN using TL to infer stressed and relaxed
states of wellbeing from the controlled stressor dataset.

over the non-TL 1D CNN approach as shown in figure 6.6. This demonstrates
the potential of TL to have a significant impact in improving the classification
accuracy of stress recognition without the need to collect extremely large datasets.

6.4.2 Image Encoding Transfer Learning Model - Env-
BodySens

The second approach used the EnvBodySens dataset to explore the multi-class
problem of classifying five emotional states using the signal-image encoding TL
model. Seven pre-trained models (Xception, VGG19, ResNet, NasNet, DenseNet,
DenseNet V2 MobileNet) were used to explore the TL approach for the three
methods of signal-image transformation (GADF, GASF MTF). Each of the ap-
proaches used transformed the motion data from the EnvBodySens dataset to
images using a TL approach paired with a 1D CNN to train the remaining time
series data from the EnvBodySens dataset. The final testing accuracy using the
20% test data split are reported for each model in Table 6.2.

6.4.2.1 Comparison of Data Modalities

The data modalities were investigated to explore which modalities most con-
tributed towards the classification of mental wellbeing. When all sensor data
(HR, EDA, UV, body temperature, air pressure and noise) was used to train
the 1D CNN combined with the TL approach for the signal-image transformed
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Table 6.2: Comparison of accuracy for different pre-trained deep learning models
adapted for mental wellbeing classification through TL trained using only phys-
iological data (HR EDA) or all data (HR, EDA, UV, body temperature, air
pressure and noise).

GASF GADF MTF
Physiological All Physiological All Physiological All

Xception 0.975 0.96 0.977 0.971 0.972 0.956
VGG19 0.984 0.952 0.98 0.94 0.964 0.95
ResNet 0.963 0.955 0.978 0.937 0.964 0.972
NasNet 0.977 0.965 0.983 0.963 0.967 0.964
DensetNet 0.975 0.977 0.985 0.971 0.97 0.977
MobileNetV2 0.981 0.97 0.981 0.954 0.979 0.97
MobileNet 0.98 0.967 0.968 0.955 0.974 0.959
No TL 0.98 0.974 0.974 0.963 0.975 0.968

motion data, the model classified the 5 emotional states with accuracies between
93.7% and 97.7%. The 1D CNN was also trained using only physiological data
(HR EDA) to examine the impact not including environmental data has on
model performance. When using the TL approach for motion data and a 1D
CNN trained using only physiological data, the model accuracy increased to the
highest achieved accuracy of 98.5% when using GADF to transform the mo-
tion data and DenseNet to perform TL, as shown in figure 6.7. Furthermore,
when comparing the highest accuracy for each pre-trained CNN the physiological
model consistently outperformed the model trained using all modalities. This
demonstrates the importance of physiological data when determining wellbeing
state, unlike environmental data which resulted in more misclassification errors,
in particular class 5 the poorest mental wellbeing state.

To evaluate whether the signal-image encoding TL approach improves model
performance all sensor data (HR, EDA, noise, UV, body temperature, air pressure
and accelerometer data) was used to train the 1D CNN model without performing
TL or signal-image encoding. The 1D CNN achieved 93% accuracy, an overall
reduction in accuracy compared with the TL model. Furthermore, when the same
1D CNN was trained again using only physiological data, the model achieved 94%
accuracy, as shown in figure 6.8, a 4.5% reduction in accuracy. This demonstrates
that image encoding and TL can increase overall model accuracy but performance
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Figure 6.7: Confusion matrix for DenseNet model trained using HR, EDA and
GADF (left), GASF (middle) and MTF (right) encoded motion data.

is highly dependent on the additional sensor modalities used to train the network.

Figure 6.8: Confusion matrix of CNN model without TL when trained using
all data achieving 93% accuracy (left) and only physiological and motion data
achieving 94% accuracy (right).

6.4.2.2 Comparison of Pre-trained Models

To explore whether the high accuracy achieved was influenced by the pre-trained
model used in the TL approach, other pre-trained CNNs were tested using the
same GASF, GADF and MTF transformed images. As shown in table 6.2 Den-
sNet achieved the highest accuracy for the GADF transformed data although
VGG19 achieved the highest accuracy for GASF data and MobileNetV2 for MTF
data. This demonstrates that the pre-trained model selected has little impact on
performance with the average variance between the best and worst performing
model for all 3 image encoding techniques being only 1.77% for the physiological
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models and 2.87% for the models trained using all sensor data.

6.4.2.3 Comparison of Signal-Image Encoding Techniques

The signal-image encoding technique also impacted model performance. GASF
and GADF outperformed MTF for each pre-trained model, where GADF achieved
the highest performance for four of the pre-trained models and GASF for the
remaining three. The average accuracy for the GADF physiological model was
97.9% compared with 97.6% for GASF and 97% for MTF showing negligible
variations in performance between the different techniques.

6.4.2.4 Subject-Independent Models

As the GADF signal-encoding technique slightly outperformed the other encoders,
it was used to explore subject-independent physiological models. Table 6.3 shows
the accuracy achieved for each of the 20 users when the model was tested using
LOOCV with each individual’s physiological data. The accuracies range between
36.4% for user 1 and 77.7% for users 16 and 17. The outlier low accuracy for
user 1 is due to corrupt EDA data which continually recorded null readings.
The remaining users demonstrate more consistent accuracies and while lower
than when tested using hold-out validation, they demonstrate the possibility of
inferring wellbeing on an individual basis.

Table 6.3: Comparison of subject-independent classification accuracy for 20 users
using the TL approach with GADF encoded images.

User Accuracy User Accuracy
1 0.364 11 0.709
2 0.698 12 0.734
3 0.702 13 0.723
4 0.683 14 0.738
5 0.666 15 0.749
6 0.752 16 0.777
7 0.736 17 0.777
8 0.706 18 0.753
9 0.737 19 0.690
10 0.636 20 0.763
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The subject-independent models were also trained without the TL approach
while still transforming signals into images to explore whether performance im-
provements were due to TL. A 2D CNN was implemented to train the signal
encoded images which was concatenated with the 1D CNN trained using the
physiological data. The results show TL increased average accuracy by 0.55% for
all users which falls within the margin of error, demonstrating no overall perfor-
mance improvement. However, the TL approach never degraded the performance
of individuals’ models and achieved up to a 4% increase in accuracy showing it
can be beneficial and should continue to be used.

6.5 Discussion
A new CNN-TL-based approach towards affective state classification has been
introduced that goes beyond previous signal-image encoding frameworks by in-
corporating TL in addition to a separate 1D CNN. This research demonstrates
that a signal-image encoding TL approach can improve the performance in which
five affective states can be classified, achieving up to 98.5% accuracy using hold-
out validation and an average of 72.3% using LOOCV. This outperforms many
previous real-world affect recognition systems [55], [214], [138], [363] including a
previous stacked machine learning approach using the same EnvBodySens dataset
which achieved an accuracy of 86% [156] and a combined CNN and RNN using the
same dataset that achieved 94.9% accuracy [155]. Furthermore, a TL approach to
alleviate limited wellbeing data by transferring knowledge from a model trained
using a large physical activity dataset improved accuracy to 91% when classifying
stress.

The results have demonstrated that the integration of TL as part of the newly
proposed methodology, extending standard deep learning algorithms can greatly
improve the classification of affective state. In particular, the combinatory ap-
proach of encoding accelerometer data as images using GADF, GASF and MTF
then using a pre-trained model to perform TL and combining this model with a
1D CNN trained using physiological data, has improved the accuracy with which
affect can be classified. The encoding technique used was shown to have a minor
impact in model accuracy demonstrating GADF was most effective for the ma-
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jority of the models. Similarly, the pre-trained model used to perform TL had a
limited impact on model performance with an average difference of only 2.32%
between the different models. However, TL only slightly improved performance
by an average of 0.55% when testing using subject-independent models, demon-
strating the transformed images had a greater impact on model performance than
TL.

Furthermore, solely using physiological and motion data resulted in the high-
est accuracy (98.5%), outperforming models additionally trained using environ-
mental data. This suggests that environmental factors such as noise and UV are
more challenging to use for affect recognition even when paired with physiological
data. The reduced performance may be due to the intricate information in the
environmental data already being captured inherently in the physiological and
motion data for example poor weather having a negative impact on mood.

When testing using LOOCV the subject-independent accuracies are lower
than subject-dependent accuracies. The average accuracy of the subject-independent
physiological models excluding user 1 was 72.3% (SD 0.038), compared with
98.5% for the subject-dependent model both using GADF to transform the signals
and a DenseNet pre-trained model. This likely reflects that different individu-
als have different patterns of physiology when experiencing the same state of
wellbeing and that similar levels of activity are perceived differently in terms of
valence [314] demonstrating similar results as other studies [148], [190], [13].

An additional TL approach involved training a 1D CNN using a human activ-
ity dataset and then performing TL to adapt the model using physiological data
from a controlled stressor experiment. This TL approach improved model accu-
racy by 8.5% over the source model achieving 91% accuracy, again demonstrating
the benefits of TL approaches. However, this model did not perform as well as
the image encoded TL model even though it was only classifying two classes in
controlled conditions compared with five states of real-world affect. This demon-
strates the vital role motion data encoded as images plays in improving wellbeing
classification, although it may not always be possible to collect motion data such
as during the controlled stressor experiment where participants were stationary.

Overall, three multivariate datasets were used as benchmark datasets to eval-
uate the TL approaches. This work demonstrates that by using the proposed
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approaches it is possible to capitalize on two modalities to accurately classify
wellbeing on a 5-point Likert scale. The results have demonstrated that TL ap-
proaches are appropriate for modeling affective states especially when training
data is scarce. These TL approaches have outperformed previous models us-
ing the same EnvBodySens dataset built on ad-hoc extracted features [156] and
2 dimensional CNNs [155]. These findings showcase the potential for TL and
signal-encoded images to improve affective multimodal modeling.

6.6 Conclusion
Recent developments in tangible interfaces and edge computing are producing
sensory datasets as people are going about their daily activities. However, accu-
rately classifying these limited datasets can be a challenging proposition. In this
chapter, a scenario of wellbeing classification using small multimodal datasets has
been presented. Although these types of time series datasets can help us under-
stand people’s wellbeing, current recognition techniques are not efficient enough
to tackle data scantiness. TL offers an automated way to utilise the learning
outcomes from larger datasets to help overcome these challenges. This research
has demonstrated the advantages of employing a combinatory TL approach for
raw multimodal sensor data modelling.

Based on experimental results, the proposed frameworks employ two TL mod-
els using three multimodal sensor datasets. The first approach trained a 1D CNN
model using the WISDM dataset and performed a TL approach to adapt the
model for the target stress dataset of physiological signals. This model achieved
91% accuracy, a 8.5% improvement over the same 1D CNN trained without TL.
The second model used the proposed framework combining a TL approach using
signal encoded images with a 1D CNN. Accelerometer data was transformed into
RGB images using GADF, MTF and GASF. This data was subsequently used to
train a 2D CNN using pre-trained models to apply a TL approach. This model
was concatenated with a 1D CNN architecture trained using raw physiological
sensor data and resulted in increased performance, achieving up to 98.5% accu-
racy. Overall, incorporating a TL signal-image encoding approach in addition to
a 1D CNN helped further improve model performance with limited data.
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Chapter 7

Research Applications and
Real-Time Interventions

This chapter explores and presents a number of applications of this research that
pursue the design of tangible fidgeting tools as enjoyable, non-intrusive interfaces
for monitoring and improving mental wellbeing. In particular, three potential
applications are considered for two target groups, these are: 1) iFidgetCube [347]
- a graspable device that can help tackle stress and anxiety for the general pop-
ulation, 2) Fidget watch - an adapted version of tangible fidgeting interfaces
that leverages wearable technology for ease of use and portability and 3) Tang-
Toys [349] - smart toys that can communicate and support children. This section
is adapted from [347], previously published in IEEE Sensors Journal, [349], previ-
ously published in Proceedings of the 2020 ACM International Joint Conference
on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM In-
ternational Symposium on Wearable Computer and [351] previously published
in UbiComp/ISWC 2018 - 2018 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing and Proceedings of the 2018 ACM International
Symposium on Wearable Computers.

160



7. Applications and Interventions

7.1 Introduction
Limited attention has been given to the design of technological solutions for indi-
viduals who might benefit from self-support wellbeing tools. Existing technologies
commonly range from online therapy programs (e.g., Computerised Cognitive Be-
havioural Therapy (CBT)) for depression [79]) and self-help systems, to designs
that supplement psychotherapy by providing additional content to support mind-
fulness [69] and remote monitoring [226]. These systems are limited to the mon-
itoring of clients using sensors while relying on users to act, be able to recognise
and verbalise, or self-report accurate information in relation to their health and
physiological status. Users often do not, or may not, know how to respond, there-
fore automatically providing specific direct physical feedback may ameliorate this
effect. In addition, the ability to access vulnerable and underserved groups have
made it possible to design more effective interventions that can be tailored to
their needs, where technology can have a life-changing impact.

When stressed, people commonly fidget with physical objects such as pens.
TUIs can help promote fidgeting as it is a natural response that demonstrates the
potential to regulate stress [96], [211], provide a distraction which can significantly
reduce anxiety [141] and improve information retention [90]. Recently, fidgeting
cubes have begun to increase in popularity; they are small plastic cubes whose
sides provide sensory tools to facilitate fidgeting and help normalise stimming
(self-stimulatory behavior such as tapping or clicking). Previous work has found
that within fidgeting tools most users preferred squeezing (89%) and stretching
(79%), but this was closely followed by clicking, pressing and tapping (71%)
which could easily be embedded within TUIs [65]. Sensory tools embedded within
interfaces may assist people suffering from a range of mental health conditions to
relax and provide a distraction, as 79% of children who fidgeted did so to regulate
their emotions [65].

Tangible Fidgeting Interfaces (TFIs) have been introduced as physical fidget-
ing devices that enable repetitive physical interaction while also enabling objec-
tive sensor measurement. By including fidgeting mechanisms within TUIs they
can act as a distraction to any wellbeing challenges encountered, which is often
used as a coping strategy to reduce stress [53], [151]. These fidgeting interfaces
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can also be coupled with the developed deep learning algorithms to infer and im-
prove real-world mental wellbeing. TFIs can provide aesthetically pleasing user
interfaces in any form, enabling them to ubiquitously become part of everyday
interactions. They can be of any shape (e.g. cube, ball or polytope) and can be
made of hard or soft material (squeezable ball or clicking tool). These digitally
enabled fidgeting mechanisms offer a variety of sensory actions catering for a wide
range of needs in a small, unobtrusive design providing a distraction and unmet
need for people experiencing anxiety or stress.

By developing handheld TFIs that embed physiological sensors, it is possible
to develop monitoring devices that encourage engagement and improve wellbeing.
Therefore, three research applications have been developed taking advantage of
physical interactions with TUIs to promote fidgeting, automatically apply calm-
ing haptic feedback in real-time and aid communication between children between
through play.

7.2 Applications

7.2.1 iFidgetCube

The first application of this research is the development of iFidgetCube, a TFI
in the shape of a cube whose various sides can provide multiple sensory tools
to interact with, similar to traditional fidget cubes. This small plastic cube
provides sensory tools to interact with such as buttons, as shown in figure 7.1.
Unlike traditional fidgeting cubes, iFidgetCube embeds a microcontroller and
non-invasive sensors to digitise and enable the real-time monitoring of physiology
and fidgeting interactions. This presents the first device combining traditional
fidgeting cubes with a microcontroller and non-invasive physiological sensors.

Multiple physiological sensors are included within the interfaces to monitor
real-time changes. Physiological sensors measuring HR, HRV EDA are embedded
on opposite faces of the cube, allowing two fingers to be placed to comfortably
hold the device while simultaneously recording sensor data.
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Figure 7.1: iFidgetcube showing labelling buttons, fidgeting buttons, HR sensor
and EDA sensor.

The iFidgetCube contains 3 buttons that can be used for fidgeting similar to
fidgeting toys along with a 9-DOF IMU to capture the fidgeting motion of inter-
actions. The IMU is a MPU-9265 and consists of an accelerometer, a gyroscope,
and a magnetometer operated at 3.3v, footprint of 22 × 17 mm and connected
to a ATmega32u4 based processor to process all of the data with a footprint of
28.8 × 33.1 mm, powered by a small size 3.7v lithium polymer battery as shown
in figure 7.2.

Figure 7.2: TFI electronic schematic.
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7.2.1.1 Evaluation

During the real-world data collection discussed in Section 4.3, 4 participants ex-
perienced the fidgeting cubes. During a focus group participants stated they
enjoyed using the physical interfaces, finding them easy to handle and engag-
ing unlike other physiological sensing devices. The interfaces were described as
”calming” and ”relaxing” due to being able to fidget by moving the devices as
well as pressing the buttons.

Real-world trials with the devices enabled the collection of labelled physio-
logical sensor data used to train the developed classification models. During the
data collection period, users consistently moved the interfaces and used the fid-
geting buttons, demonstrating their simplicity and effectiveness. Users believed
using the fidgeting buttons helped them relax and improved their mental wellbe-
ing however due to the nature of the device it was not always possible to use the
physiological sensors while fidgeting.

7.2.2 Fidget Watch

The second research application extends the use of fidgeting tools by additionally
exploring the feasibility of wellbeing classification models activating instant haptic
feedback upon changes in wellbeing, in the form of subtle vibrations experienced
as a tap on the wrist.

A watch has been developed that embeds physiological sensors measuring
HR, HRV and EDA in addition to incorporating fidgeting buttons similar to
the iFidgetCube. The Fidget watch is smaller and easier to use during daily
activities than iFidgetCube and also includes haptic feedback in the form of
vibrating motors that are small in size and require very low power to operate.

The Fidget watch incorporates Bluetooth to connect to a custom built An-
droid application. Due to the resource constrained nature of the device it is not
capable of running the developed classification models on-device. Instead, the
physiological data is continuously transmitted wirelessly to the Android app that
is capable of running in the background without requiring any action from the
user to ensure the data is always received. The app inputs the physiological
data into the developed personalised classification model and when poor mental
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wellbeing is inferred automatically activates calming haptic feedback.

Figure 7.3: Example of a Fidget watch (left) and connected mobile application
(right).

Utilising a mobile application to run the classification model helps the wear-
able interface remain small by reducing the processing power required. The appli-
cation allows the user to wirelessly pair their Fidget watch, enabling the continu-
ous transmission of all physiological data in the background. The application also
enables users to view the current classification output on a scale from poor mental
wellbeing to positive mental wellbeing as well as the percentage predicted by the
classification model, as shown in Figure 7.3. Once poor wellbeing is inferred the
haptic feedback is actuated at a frequency of 20% lower than the participant’s
HR [159] between 40BPM and 65BPM [63] as used in previous studies to simu-
late a subjective state of calmness [64]. The personalised haptic feedback aims to
passively calm users whilst also actively alerting users of their current wellbeing
allowing them to reflect.
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The Fidget watch has been trialled in laboratory settings to test its function-
ality where it was found to continuously monitor wellbeing due to its on-body
placement and allowed for easy access to the fidgeting buttons. Overall, this
device combines the real-world application of mental affective state classification
with the automatic delivery of tangible interventions to improve wellbeing.

7.2.3 Tangible Toys

Children’s toys represent another ideal embodiment for TUIs as they provide
sufficient space for the electronics and encourage tactile interactions. Although
a limited number of TUIs for mental wellbeing have previously been developed
by researchers, many of these were not engaging for children and often contained
physiological sensors which prevented physical interactions commonly used by
children to interact with objects such as toys. An interface that can actively
monitor and enable the communication of a user’s physical interactions and well-
being would be beneficial for all.

Few sensor based interfaces have been designed for children even though they
traditionally find it challenging to communicate their mental wellbeing [246].
The ability for children to communicate their wellbeing is vital as children with
difficulties communicating are more at risk in terms of social acceptance and bul-
lying [191]. Furthermore, better relationships and communication with friends
offers protection against poor mental health in the future [92]. This research ap-
plication introduces Tangible Toys (TangToys) with the aim of enabling children
to communicate wellbeing through embedded sensors and feedback actuators.
The devices embed sensors used to measure physical interactions and mental
wellbeing along with Bluetooth Low Energy (BLE) to enable real-time commu-
nication. Through the use of BLE TUIs can communicate with one another,
enabling real-time communication networks to be developed. The ability for de-
vices to communicate with each other enables children to communicate when
socially distant and the ability to discover other nearby users.

TangToys can vary in shape, size and material. The four TangToys developed
have been designed for younger children aged 5-7 as this is when children develop
self-conscious emotions and develop an emotional front [260], they include 2 soft
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teddies, a soft ball and a cushion. As children physically interact with TangToys
in the same way as traditional toys all of the interfaces are suitable for children
and encourage engagement by resembling familiar toys.

Each TangToy includes a microcontroller and micro SD card to record all
interactions along with BLE 4.2 for communication. A range of sensors can be
used to monitor children’s interactions with the toys including capacitive sensors
to measure touch and 9-DOF IMU to measure motion. Physiological sensors were
not embedded within the toys as younger children may not understand how to
operate the sensors and they may hinder physical interactions whilst playing with
the toy.

In addition to the sensors, TangToys can provide real-time feedback activated
by wireless communication with other TangToys. Haptic feedback has been in-
cluded within some of the developed prototypes issuing a physical sense, resem-
bling touch and providing comfort which can improve mental wellbeing [62], [17].
Additionally, visual feedback in the form of multi-coloured LEDs has been in-
cluded within the soft ball and teddy prototypes.

7.2.3.1 Communication Framework

Embedding sensors within toys that can communicate with one another through
BLE offers many new opportunities for real-time interactions. BLE 4.2 has a
range of around 50m allowing TangToys to communicate with one another in
locations such as playgrounds. Two opportunities are presented for real-time
digital social interaction between TangToys.

By utilising Peer to Peer (P2P) communication it is possible for two connected
devices to directly communicate with each other. This method of communication
helps friends who may be nearby but socially distanced to provide physical com-
munication that is not possible with other devices. When a child plays with a
TangToy the capacitive sensor and accelerometer data measuring touch and mo-
tion respectively can be actuated on the paired interface through the embedded
haptic and visual feedback to simulate physical communication. The connected
friend can then react to this communication by interacting with their device al-
lowing friends to wirelessly support one another through physical interactions.

167



7. Applications and Interventions

Table 7.1: Encoded haptic patterns for different states of wellbeing to be activated
on connected TangToys based on touch and motion interactions.

Variable Positive wellbeing Neutral wellbeing Negative wellbeing
Touch Low to Med in-

tensity, no sud-
den changes

Irregular fluctuations.
Inconsistent frequency
changes and ampli-
tude

Fluctuations more
pronounced returns
to shifting baseline
erratically

Motion Low activity.
Activity fairly
smooth

Consistently Low to
Med level of fluctua-
tions and frequency of
changes. Amplitude
mostly Low to Med

High activity. Oc-
casionally in bursts.
Baseline is irregular

Haptic
pat-
tern

Low frequency,
low intensity

Low to Med frequency High frequency, high
intensity

The range of feedback offered differs depending on the interactions with the
paired devices as shown in Table 7.1. For example, if a child is aggressively shak-
ing their TangToy or touching it harshly this can result in prolonged sharp haptic
feedback patterns being played on the paired device and red visual feedback. This
enables friends to physically communicate how they are feeling and provide com-
fort to one another by replying with soft, gentle interactions to provide comfort
and a sense of presence, as shown in Figure 7.4.

Figure 7.4: Two children playing using TangToys.

Each TangToy can also use its Bluetooth capabilities to broadcast its presence
to other TangToys. When a TangToy detects another device nearby this can
initiate feedback being issued to alert the child of other nearby children. This
allows a child to find other children who may require support when not near
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their friends to facilitate P2P communication. These children can then interact
with the devices to form a support group to communicate their wellbeing to each
other. The feedback actuated when detecting other devices can be impacted
by the number of nearby interfaces. For example, if a single child is detected
nearby, more subtle haptic feedback is issued compared with more pronounced
feedback when multiple TangToys are nearby. Similarly, the colour displayed
on the TangToy can change dependent on the number of users located nearby
to alert the user visually. Using this method of interaction does not enable the
same capabilities as the P2P communication, but enables each device to interact
automatically with other nearby devices, and afford a sense of ’togetherness’.

7.2.3.2 Empirical Evaluation

TangToys have been presented in focus groups to members of the NICER group
and teachers to provide feedback on the design and functionality of the interfaces.
Teachers considered the methods used to interact with TangToys suitable for
children and believed the way in which children interact with the toys will likely
indicate their wellbeing. Additionally, teachers liked the design of the toys as they
appear similar to other toys helping to reduce stigma. Overall, the participants
reported the design, sensors and communication capabilities were all suitable for
children and believed TangToys would promote the communication of wellbeing
between friends.

7.3 Conclusion
Overall, three real-world applications have been developed to monitor and im-
prove mental wellbeing. iFidgetCube provides a simple method to both monitor
physiological changes and simultaneously provide a fidgeting interface as a pre-
ventative mechanism to aid relaxation and ease restlessness. The Fidget watch
incorporates physiological sensors and fidgeting mechanisms within a wearable
interface utilising personalised models to automatically activate haptic feedback
when poor wellbeing is inferred. Finally, TangToys present a new opportunity to
monitor children’s physical interactions which may help provide an indication of

169



7. Applications and Interventions

their mental wellbeing. The ability for TangToys to communicate with one an-
other provides a non-intrusive means for children to communicate their wellbeing
through play.

These research applications demonstrate the potential for tangible interfaces
to monitor real-world affective state and actuate interventions in real-time. In
particular, the Fidget watch demonstrates the potential to classify real-world
physiological data and automatically activate real-time interventions when re-
quired. Overall, these applications including fidgeting mechanisms and haptic
feedback help to automatically improve real-world mental wellbeing and demon-
strate the benefits of tangible interfaces, the developed classification models and
real-time feedback.
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Chapter 8

Conclusion and Future Work

This thesis has presented the design of novel TUIs and the development of classi-
fication models to advance the understanding and measurement of affective state
in real-world environments. This final chapter provides a general discussion of the
work, a summary of the different contributions, potential areas of improvement
and future work.

8.1 Conclusion
This thesis has contributed to the development of methods to improve the classifi-
cation of real-world affective state using non-invasive physiological sensors embod-
ied within co-designed tangible interfaces. In particular, this thesis has studied
how TUIs can help advance the real-world measurement of affect by exploring:

1. The co-design of TUIs with people who have intellectual disabilities that
go beyond existing devices to offer continuous monitoring and feedback
mechanisms.

2. The exploration and use of tangible labelling methods to enable the collec-
tion of in-situ physiological labelled data which is notoriously challenging
to collect.

3. The implementation of two transfer learning approaches to personalise
affective models on-device and reduce the necessity for large real-world
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datasets to accurately train deep learning classifiers.

4. The development of three research applications acting as preventative inter-
ventions to improve wellbeing by providing calming sensory tools, issuing
real-time haptic feedback and aiding the communication of children’s well-
being.

To investigate the use of TUIs for mental wellbeing, several explorations,
experiments, and real-life studies have been conducted. Based on these efforts,
this section summarises the main findings.

Participants with intellectual disabilities often have their wellbeing challenges
misattributed to their disability [102]. To help develop solutions relevant to them
and the wider population, they were invited to help co-design TUIs for affective
state recognition as existing devices cannot continuously, accurately and unob-
trusively measure physiological changes in-situ. Chapter 3 explores the methods
developed within a series of co-design workshops to engage people with intel-
lectual disabilities in the development of TUIs, including the use of interactive
sessions to explore the design process in addition to the sensors and feedback
mechanisms used within the interfaces. The participants’ contributions resulted
in the development of numerous tangible interfaces including 3D-printed inter-
faces for older children and adults embedding physiological sensors and soft toy
devices for children measuring touch and motion interactions.

Before the developed interfaces could be leveraged for real-world data collec-
tion, methods to gather accurate self-reported data in real-world environments
were required. This is vital for improving our understanding of affective state due
to the inability to label sensor data after the point of collection. The developed
LabelSens framework discussed in Chapter 4, explores multiple tangible labelling
methods that could be incorporated into the co-designed interfaces to simplify the
labelling process. Evaluation of the framework resulted in labelling buttons being
embedded within all of the developed interfaces to enable participants to label
in real-time. The interfaces were then used by participants to collect real-world
labelled affective data.

Choosing an appropriate model to effectively classify real-world affect us-
ing physiological signals is a challenging proposition. Physiological signals often
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consist of time series data with a variation over a long period of time and de-
pendencies within shorter periods. Furthermore, physiology is inherently unique
to an individual, especially those with intellectual disabilities, limiting the appli-
cation of generic models. Therefore, Chapter 5 proposed the development of a
TL approach to personalise affective models. Initially, a source CNN was trained
using controlled stressed and relaxed data, the model was then adapted using the
TL approach to personalise and adapt it for the real-world domain. The results
show adopting the TL approach significantly increased model performance with
the multivariate physiological and motion affective model achieving an average
accuracy of 93.5% compared with the comparative non-TL 1D CNN accuracy
of 71.7%. Leveraging motion data helped improve multivariate physiological
model accuracy and enabled the development of univariate motion TL models
that achieved an average accuracy of 88.1%, demonstrating the importance of
motion in real-world affect inference. Furthermore, by utilising advances in edge
computing the TL approach was applied on-device. This enabled participants to
self-label for only a few days before the model could be personalised to greatly
improve accuracy. Empowering sensors with this TL approach in portable in-
terfaces paves the way for continuous real-world monitoring without the need to
self-report.

While advances in deep learning are helping advance the accuracy in which
affective states can be classified, large datasets of multiple users over long peri-
ods of time are usually required to accurately train the models [176]. Therefore,
many studies in the domain of affective computing have developed models from
controlled experimental data as the collection of real-world labelled sensor data is
challenging. Chapter 6 presents a second TL approach that alleviates some of the
challenges imposed by deep learning architectures. The signal-image encoding TL
approach transformed accelerometer data into images which were used to adapt
a pre-trained image classification model, this was then combined with a separate
CNN used to train the remaining physiological sensor data. When tested with
20 users self-reporting their emotional wellbeing on a 5-point Likert scale, per-
formance was enhanced, resulting in up to 98.5% accuracy. Subject-independent
models using the same approach resulted in an average of 72.3% (SD 0.038) ac-
curacy. This methodology demonstrates improved accuracy and helps alleviate
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the requirements for large affective datasets with deep learning classifiers.
This research has resulted in the development of many real-world applica-

tions, discussed in Chapter 7 that leverage the co-designed tangible interfaces
and developed classification models. Children’s mental wellbeing is more impor-
tant than ever before with an increasing number of children experiencing high
levels of stress [12]. Therefore, TangToys have been developed to help promote
physical communication through play, benefiting those who find it difficult to
verbalise their emotions. This technological solution helps children communicate
digitally and receive support from one another as advances in networking and
sensors have enabled the real-time transmission of physical interactions. Further-
more, iFidgetCubes have been constructed combining physiological sensors with
tactile engagement through fidgeting, enabling repetitive interaction methods to
tap into an individual’s psychological need to feel occupied and engaged. Finally,
a Fidget watch has been developed that combines repetitive calming interactions
with physiological sensors, enabling automatic inference using a custom mobile
app. By developing a wearable and connecting it to an Android application it is
possible to continuously and unobtrusively monitor affective state by utilising the
developed classification models. If the model infers poor wellbeing, personalised
haptic feedback is automatically issued to promote relaxation. These interfaces
demonstrate the real-world applications of this research to automatically monitor
affective state and provide instant interventions.

Overall, this work has systematically demonstrated that the development of
custom TUIs and tangible labelling techniques has aided the collection of real-
world wellbeing data. Furthermore, the two TL frameworks proposed demon-
strate the ability to personalise affective models and reduce the reliance of large
datasets for deep affective modelling. Tangible interfaces and the TL frameworks
demonstrate numerous potential applications to monitor real-world affective state
and provide therapeutic interventions such as fidgeting tools and real-time hap-
tic feedback. This work has the potential to greatly improve access to tools that
assess real-world wellbeing including for those with intellectual disabilities.
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8.2 Challenges and Future Work
This thesis presents a step towards real-world affective measurement using the
developed tangible interfaces and TL approaches. While the findings of this
research are encouraging there are ways in which this work can be extended
and improved upon. This section acknowledges the limitations and provides
suggestions for future work.

8.2.1 Datasets

While the personalised TL results using the real-world data are encouraging, they
are by no means sufficient. This is because the dataset is too small to suggests
that the affect recognition systems can generalise to unconstrained wellbeing in
the wild. To properly test the boundaries of the proposed systems, they need
to be trained on datasets that are large scale and continue to accurately mimic
real-life situations.

While the datasets used include physiological sensor data and are representa-
tive of a typical affective modelling scenario, the TL approaches could be tested
on diverse datasets with more participants and for longer periods of time in var-
ious real-world scenarios to ensure their performance is sustained.

8.2.2 Mental Health Recognition

The developed systems monitor affective state but in the future it may be bene-
ficial to further explore the classification of specific mental health conditions. A
possible future direction would be to study the detection of anxiety or autism,
to help clinicians in medical diagnosis. Currently, the manner in which a patient
is diagnosed is based on individual assessment where as the number of patients
increases so does the need for accurate diagnosis. Standardisation of the diag-
nosis task using the developed models could greatly help doctors or counsellors
provide personalised care to the most at risk patients.
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8.2.3 Model Architecture

The developed TL approaches utilise CNNs as they were shown to outperform the
various other models tested. However, with advances in network architectures,
new neural networks could continue to be explored utilising the developed TL
approaches to further increase affective modelling performance.

8.2.4 Edge Computing

On-device processing presents many future opportunities for this research. Presently,
resource-constrained edge computing interfaces such as the Raspberry Pi have
been used to develop personalised models. However, the limited processing power
of the device limits its capabilities and its large size prevents its use in on-body in-
terfaces. Advances in edge computing may reduce the size of computing devices
and remove the reliance of mobile apps, potentially enabling a small wearable
interface to perform real-time classification on-device.

8.2.5 Sensors

As part of the analysis, several types of wearable signals have been considered
with a focus on the use of non-invasive physiological sensors that can be used un-
obtrusively in the real-world. In the future, additional contextual and behavioural
sensor data could be collected to help better capture different changes. However,
the size and invasive nature of the sensors will have to be carefully considered to
ensure the devices remain functional in real-world environments.

8.2.6 COVID-19

A limitation of this research is the relatively small sample sizes used during the
data collection trials. However, due to the global pandemic of COVID-19 it has
not been possible to conduct further experiments involving human participants.
In the future, it would be beneficial to trial the developed interfaces and classifi-
cation models with a larger number of participants. It would also be beneficial to
trial the applications of this research including the iFidgetCube, tangible toys and
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Fidget watch with additional participants using real-world longitudinal studies
to explore the impact of these real-time interventions.

8.3 Summary of Contributions
The research detailed in this thesis makes several original contributions which are
summarised below.

8.3.1 Co-designing Tangible User Interfaces

• A range of TUIs to monitor real-world mental wellbeing have been devel-
oped with potential end users. The co-design process was adapted to suit
the needs of the participants with intellectual disabilities and ensure de-
signer subjectivity was removed. The use of interactive sessions enabled
target users to express their decisions and ensured designs were suitable for
future users.

• The co-designed interfaces and data collection methodology was evaluated
through multiple focus groups, ensuring the suitability to monitor real-
world affective state using the developed interfaces and non-invasive phys-
iological sensors.

8.3.2 Real-world Labelled Data Collection

• Tangible methods to label data in real-time have been explored and eval-
uated as sensor data cannot be labelled after the point of collection. The
results demonstrate the benefits of using 2 adjacent buttons to collect reli-
able and accurate labelled data.

• The tangible labelling methodology and co-designed interfaces enabled the
successful collection of a real-world labelled physiological affective dataset
that can be used to train classification models.
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8.3.3 Deep Transfer Learning Approaches

• Personalising affective models using an on-device TL approach improved
individual model performance by an average of 21.8%, including those with
intellectual disabilities. The ability to perform this approach on-device
using few labelled samples significantly simplified the process of developing
personalised models and paves the way for ubiquitous personalised affective
modelling.

• Developing an image-encoding TL approach to classify five states of real-
world mental wellbeing helped overcome problems with small datasets when
training deep learning models. This approach resulted in up to 98.5% accu-
racy, thus improving the performance of conventional deep learning meth-
ods.

8.3.4 Real-time Interventions

• The real-world inference of mental wellbeing provides many opportunities to
issue feedback that serves as interventions. Three research applications have
been developed including: iFidgetCube - providing a fidgeting interface as
a preventative mechanism, TangToys - enabling children to communicate
through physical interactions and afford a sense of togetherness and Fidget
watch - combining fidgeting tools with real-time classification to activate
personalised haptic feedback.

• The ability to run classification models on-device using edge computing
or using mobile apps enables automated real-world monitoring using the
developed models. Real-world inference has enabled interventions such as
haptic feedback to be issued, aiming to improve wellbeing in real-time.
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