
EDITORIAL
Vitamin A in Nonalcoholic Fatty Liver Disease: A Key Player in an
Offside Position?
onalcoholic fatty liver disease (NAFLD) has become
Nthe most common liver disease at a global scale and
is strongly associated with the obesity and metabolic syn-
drome epidemic.1 NAFLD embodies a spectrum of liver
conditions that may progress from an apparently benign
accumulation of lipids (steatosis) to inflammatory stages
accompanied by hepatocellular damage known as nonalco-
holic steatohepatitis (NASH). In a significant number of
patients NASH progression can lead to cirrhosis and hepa-
tocellular carcinoma development.2 In fact, NASH will soon
surpass alcoholic liver disease as the leading transplant
indication for all patients.2 The clinical and socioeconomic
burden of NAFLD has spurred extraordinary research ac-
tivity on this disease.3 The mechanisms of NAFLD devel-
opment appear complex and multifarious.4 A systemic
dysregulation of energy metabolism characterized by excess
dietary intake of fat and carbohydrates, insulin resistance,
enhanced de novo hepatic lipogenesis, and increased hepa-
tocyte uptake of fatty acids results in the hepatic accumu-
lation of toxic lipids, hepatocellular death, and parenchymal
inflammation.5 In addition, compromised expression and
activity of transcription factors such as liver X receptor,
farnesoid X receptor, peroxisome proliferator-activated re-
ceptors a and g, sterol response element binding protein-1c,
and carbohydrate response element binding protein, key
regulators of lipid and glucose metabolism, are also involved
in NAFLD progression.6 Chronic parenchymal injury and
inflammation trigger a potent tissue repair reaction domi-
nated by the transdifferentiation of quiescent hepatic stel-
late cells (HSCs) into extracellular matrix-producing
myofibroblasts, which drive liver fibrosis.4 Inflammation
and fibrosis are key risk factors for liver disease progression
in NASH, and together with the transcription factors
mentioned above, they encompass major potential targets
for NASH therapy.3,4

Chronic liver diseases (CLD), including NAFLD, are
commonly associated with nutrient and vitamin deficiencies
such as those of vitamins D and A.7,8 In the broad context of
NAFLD pathogenesis, vitamin A sits at a critical crossroad
between metabolic regulation and HSC activation and thus
may be regarded as a pivotal factor.9 Indeed, HSCs represent
the principal systemic reserve of retinol. After passing
through the hepatocytes, dietary retinol is mostly taken up
and stored as retinyl-palmitate esters (RE) in lipid droplets
characteristic of quiescent HSCs.10 In response to liver
injury HSCs become activated and rapidly loss their vitamin
A contents in a process that has been mechanistically linked
to CLD progression and the onset of vitamin A deficiency
(VAD).10 On the other hand, on conversion into retinoic
acids (RA) vitamin A exerts potent systemic regulatory
Cellula
effects on many physiological processes including lipid and
carbohydrate metabolism. This is achieved through RA
binding to retinoid X receptor (RXR) and retinoid acid re-
ceptor (RAR) transcription factors, which operate in direct
or indirect coordination with the metabolic transcription
factors previously mentioned.8,9 Experimental and clinical
findings indicate that normal RA signaling is important to
prevent NAFLD,10 and that patients carrying the NAFLD risk
variant of patatin-like phospholipase domain-containing
protein 3 (PNPLA3-I148M) have low serum retinol concen-
trations.11 Moreover, low serum and hepatic retinol levels,
taken as indicators of VAD, have been observed in NAFLD
patients in association with disease progression.8 These
findings strongly suggest the presence of a pathogenic VAD
in NAFLD. However, the ultimate mechanisms determining
the nature of this vitamin A inadequacy are not fully un-
derstood. In this issue of Cellular and Molecular Gastroen-
terology and Hepatology Saeed et al12 provide clarifying
experimental insights into this matter that may be relevant
for patients’ management.

The authors implement 2 complementary models of
NASH, mice fed with a high-fat and high-cholester-
ol–containing diet and leptin-deficient ob/ob mouse. In both
models a reduction in hepatic retinol levels was confirmed
in correlation with NASH progression, but most importantly,
a significant increase in hepatic retinyl palmitate was found
(Figure 1A). This is a relevant observation, because RE are
the most abundant form of vitamin A in the body, and their
hepatic accumulation would suggest that in spite of reduced
serum retinol levels a true VAD does not occur in NASH.
This finding seemed at variance with previous reports that
showed a reduction in hepatic RE in NAFLD models and
patients.13,14 However, as the authors demonstrate,
different experimental procedures for RE extraction from
lipid-laden liver tissue may account for such discrepancy.
This observation raises a general note of caution for future
studies addressing vitamin A metabolism in fatty livers.
Another important finding of this work was the realization
that hepatic accumulation of retinyl palmitate in NASH took
place in hepatocytes, not in HSCs, which are their natural
cellular depot. This situation was attributed to the over-
expression in hepatocytes of lecithin-retinol acyltransferase
(Lrat), coding for the main enzyme in RE synthesis.
Increased hepatic LRAT expression has been previously re-
ported in NAFLD patients.15 However, Saeed et al12 provide
an interesting observation by showing that in primary he-
patocytes (Figure 1B), but not in primary HSCs, Lrat
expression can be induced by palmitate, and that retinyl-
palmitate accumulated when cells were co-treated with
retinol. Conversely, in HSCs, palmitate enhanced the
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Figure 1. Nonalcoholic fatty liver disease results in disturbed hepatic vitamin A metabolism. (A) Feeding a high-fat and
high-cholesterol (HFC) diet, or leptin deficiency (ob/obmice), leads to reduced hepatic retinol levels and to the accumulation of
retinyl esters in mice. (B) Incubation of primary rat hepatocytes with palmitate results in up-regulation of expression of lecithin-
retinol acyltransferase (Lrat), the main enzyme in retinyl ester synthesis normally expressed in hepatic stellate cells. When
primary rat hepatocytes are incubated with retinol and palmitate, retinyl palmitate is readily synthetized and accumulated.
These responses contribute to understand the in vivo findings showing increased LRAT staining and vitamin A–laden auto-
fluorescent vesicular structures found in parenchymal liver cells from HFC-fed mice.
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expression of Pnpla3, which is endowed with RE hydrolase
activity. The specific mechanisms underlying the differential
effects of palmitate on Lrat and Pnpla3 expression in he-
patocytes and HSCs still need to be worked out. Yet, this
work contributes to explain the accumulation of vitamin A
in hepatocytes previously found in human fatty liver.16

From a broader perspective, the study of Saeed et al
would also identify novel pathogenic mechanisms for
palmitate in NAFLD. The ectopic accumulation of retinyl
esters in hepatocytes and the overall dysregulation of
vitamin A metabolism, likely impacting on RAR/RXR
signaling networks, should now be added to the list of toxic
stimuli mediated by this fatty acid.5,17 Although many as-
pects of vitamin A metabolism in NAFLD remain to be
clarified, this experimental report provides insightful in-
formation that may help guide future NAFLD treatment
strategies.
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