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Abstract: In this paper, we look at the problem of implementing high-throughput Joint Source-
Channel (JSC) coding schemes for the transmission of binary sources with memory over AWGN
channels. The sources are modeled either by a Markov chain (MC) or a hidden Markov model (HMM).
We propose a coding scheme based on the Burrows-Wheeler Transform (BWT) and the parallel
concatenation of Rate-Compatible Modulation and Low-Density Generator Matrix (RCM-LDGM)
codes. The proposed scheme uses the BWT to convert the original source with memory into a set
of independent non-uniform Discrete Memoryless (DMS) binary sources, which are then separately
encoded, with optimal rates, using RCM-LDGM codes.

Keywords: Burrows-Wheeler Transform; hidden Markov models; Markov processes; rate adaptation;
RCM-LDGM codes

1. Introduction

When considering sources with memory, Shannon’s JSC coding theorem states that reliable
transmission is only possible if

H(S)R ≤ C, (1)

where H is the entropy rate of the source in bits per source symbol, C is the capacity of the channel
in information bits per channel use and R is the JSC code’s rate (source symbols per channel use).
A fundamental result of information theory is the Separation Theorem, which states that provided
unbounded delay, no optimality is lost by designing the joint decoder as the concatenation of an
optimal source code with compression rateH, and a capacity-achieving channel code of rate C. This
independent design of source and channel codes allows for diverse sources to share the same digital
media. Therefore, source coding and channel coding have traditionally been addressed independently
of each other.

Nevertheless, when complexity is an issue and the length of the input block is constrained, the
overall performance can be improved by using a JSC coding scheme. In this case, the joint decoder
employs the inherent redundancy of the uncompressed source [1]. The main approaches to JSC can be
categorized as follows:

• Ad hoc approaches where the channel encoder is applied to a given source compression
format [2–4]. High-level information from the source code is used in the decoding process,
which makes this approach highly dependent on the source encoder.
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• Schemes where, assuming a Markovian model for the source [5,6], the factor graph of the source
is combined with the one representing the channel code in order to perform joint decoding, such
as in [7–9] (using Turbo codes) or in [10,11] (using LDPC codes).

• Strategies where context estimation techniques such as the Discrete Universal Denoiser
(DUDE) [12] or the Burrow-Wheeler Transform [13–15] are used to help the decoding process.

To the best of our knowledge, when considering discrete sources with memory, existing JSC
schemes in the literature [7–16] are restricted to encoders that produce binary output symbols, such
as Turbo, LDPC, or Polar codes. This leads to throughputs (or spectral efficiencies) bounded by 2
binary source symbols per complex channel use. To achieve higher rates, larger alphabets must be
used for the encoded symbols. To that end, we will consider a high-throughput, hybrid analog-digital
JSC coding scheme, recently proposed for non-uniform discrete memoryless sources (DMSs) in [17,18].
This hybrid scheme is constructed by generating most of the output symbols from weighted linear
combinations of the input bits, as in Rate-Compatible Modulation (RCM), and a few of them using a
Low-Density Generator Matrix (LDGM) code. The basic idea is that the RCM scheme corrects most of
errors, leaving residual errors to be corrected by the LDGM code. Source non-uniformity is exploited at
the decoder and the encoder is optimized depending on the source non-uniformity to further improve
the system performance. In what follows we will denote these codes by RCM-LDGM. These codes
provide smooth rate adaptation in a broad dynamic range in a very simple way, adding or removing
rows to the encoding matrix.

The proposed high-throughput JSC scheme belongs to the third group of techniques. It uses
the BWT to convert the original source with memory into a set of independent non-uniform discrete
(binary) memoryless sources (DMSs). The resulting DMSs are each RCM-LDGM encoded with rates
adapted to the entropy of the corresponding DMS. It should be pointed out that the authors in [13,14]
use the BWT as a context estimation tool to help in the iterative decoding process. Specifically, they
apply the BWT at each iterative decoding step and then pass the first order probability distribution of
its output to the constituent decoders of the LDPC or Turbo codes. Differently, and different from [15],
which applies the BWT in the transmitter before coding and then uses the first order probability
distribution of the BWT output sequences to optimize the output energy of the binary modulator, the
proposed scheme uses this first order probability distribution to optimize the rates at which different
segments of the BWT output sequences are transmitted. Thus, the main contribution of this paper is
the proposal of a novel high-throughput JSC scheme for sources with memory based on the application
of the BWT and optimal rate allocation. To the best of our knowledge, for sources with memory no
high-throughput JSC system has appeared in the literature.

The remainder of this paper is organized as follows. Section 2 briefly reviews some preliminary
concepts required for the explanation of the proposed BWT-JSC scheme. Section 3 presents our
proposed JSC scheme, leaving for Section 4 the corresponding performance evaluation. Finally,
Section 5 provides the concluding remarks.

2. Preliminaries

In this section, we briefly review the statistical characterization of a binary source with memory
by Markov Models, the Burrows-Wheeler Transform, and the design of parallel RCM-LDGM codes,
which are the building blocks of our proposed BWT-JSC scheme.

2.1. Markov Sources

We consider binary sources with memory such that the stationary output sequence follows a
time-invariant, HMM with λ states {S1, . . . , Sλ}. We denote the states of the source at time k as qk.
Complete specification of a binary HHM requires the specification of three probability measures, A, B,
and π, defined as:
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• A = [aij] is the state transition probability matrix of dimension λ× λ, with aij the probability of
transition from state Si to state Sj, i.e., ai,j = P(qk+1 = Sj|qk = Si) for all k.

• B = [bj(v)] is the observation symbol probability matrix, with bj(v) the probability of getting in
the binary symbol v in state Sj, i.e., bj(v) = P(v|Sj), 1 ≤ j ≤ λ, v ∈ {0, 1}.

• π is the initial state distribution vector, with πj the probability for the initial state to be Sj, i.e.,
πj = P(q1 = Sj), 1 ≤ j ≤ λ.

Remark 1. For stationary sources, π should be taken as the stationary distribution of the chain, i.e., π = Aπ.

Remark 2. When matrix B has entries 0 and 1, the HMM reduces to a MC.

2.2. Burrows-Wheeler Transform (BWT)

The BWT [19] is a lexicographical permutation of the characters of a string such that the
transformed sequence is easier to be compressed. It is obtained from the last column of an array whose
rows are all cyclic shifts from the input in dictionary order, which tend to have long runs of identical
characters. From this last string we can recover the entire array, making the BWT reversible. The BWT
has been widely analyzed in [20–22] and employed for the general problem of data compression [23,24].
More recent contributions have focused on the applicability of the BWT to coded transmission of
Markov sources through AWGN channels via LDPC [13] and non-systematic Turbo codes [14].

Let T = {Tk}K
k=1, Tk ∈ {0, 1} denote the output block of the reversible block-sorting BWT when its

input is the block of binary source symbols {Uk}K
k=1. For sources modeled by MCs with λ states, it was

shown in [20] that the joint probability mass function, PT(t), of the random block T is approximately
memoryless and piecewise stationary, in the sense that there exist λ index sets, Li = {wi−1 . . . wi},
i = 1, . . . , λ with w0 = 1 and wλ = K + 1, and a probability distribution

QT(t) =
λ

∏
i=1

wi−1

∏
k=wi−1

Qi(tk) (2)

such that the normalized divergence between both distributions can be made arbitrarily small for
sufficiently large K, i.e.,

1
K

D(QT(t)‖PT(t))→ 0 (3)

as K → ∞.
As the block length K goes to infinity, the normalized length of the index set in expression (2)

converges to ci ∈ R, i.e., limK→∞
|Li |
K = ci.

Definition 1. Let Ti denote the binary random sequence of length Ki = ciK at the output of the BWT
corresponding to the index set Li, i = 1, . . . , λ. That is, Ti = {Tk}k∈Li

.

Observe from (2) that for large blocks of length K, the binary random symbols Tk ∈ Ti, with
k ∈ Li, can be considered independent and identical distributed (i.i.d.), with probability distribution

Qi(tk) ,

{
p0

i if tk = 0
p1

i = 1− p0
i if tk = 1

}
(4)

for some p0
i ∈ (0, 1). These approximations should be understood under the convergence criterium (3).

Therefore, we will model the non-stationary BWT output sequence T as the concatenation of λ

blocks of length Ki = ciK, i = 1, . . . , λ generated by λ independent DMS binary sources S1,S2 . . . ,Sλ,
with entropies

Hi = −p0
i log p0

i − (1− p0
i ) log(1− p0

i ), i = 1, 2, . . . , λ.
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By the independence of the sources and their symbols, the entropy rate of the original source can
be expressed as

H (S) =
λ

∑
i=1

Ki
K

Hi =
λ

∑
i=1

ci Hi. (5)

2.3. Parallel RCM-LDGM Codes

The N-length codeword of a parallel concatenation of RCM and LDGM x, is composed of M
RCM coded symbols and I = N −M LDGM coded bits. Next, we provide a succinct overview of the
constituent RCM and LDGM codes.

2.3.1. Rate-Compatible Modulation (RCM) Codes

RCM codes [25] are based on random projections which generate multilevel symbols from
weighted linear combinations of the source binary symbols. More precisely, an RCM code of rate K/M
is generated by an M× K sparse mapping matrix G. The non-zero entries of each row of G belong to
a multiset ±D, with D ⊂ N, the set of natural numbers (positive integers). Given the binary source
sequence u = {u1, u2, . . . , uK}, the RCM coded sequence c of length M is obtained as

c = [c1, c2, . . . , cM] = Gu

where these operations are in the real field. Finally, rate adaptation is achieved by adjusting the number
of rows in G.

2.3.2. Low-Density Generator Matrix (LDGM) Codes

LDGM codes are a subclass of the well-known LDPC codes with the particularity that the
generator matrix GL is also sparse. This allows the decoding algorithm to use the graph generated
by GL. In this paper, we consider systematic LDGM codes, whose generator matrix is of the form
GL = [IK|P], where IK is the identity matrix of size K and P is a regular K× I sparse matrix with d(v)LDGM
non-zero elements in each column. The LDGM coded sequence c of length N = K + I is obtained as

c = [c1, c2, . . . , cN ] = uᵀGL = uᵀ[IK|P] = [u1, u2, . . . , uK, x1, x2, . . . , xI ],

where u = {u1, u2, . . . , uK} is the binary source sequence to be transmitted and the operations are in
the binary field. Unlike general LDPC codes, LDGM codes suffer from high error floor [26]. However,
it has been shown that they can help to lower the error floor of other codes as explained next.

2.3.3. Parallel RCM-LDGM Code

Consider an RCM code of rate K/M generated by a matrix G, and the non-systematic part of a
high rate binary regular LDGM of rate K/I, generated by P. Then, the parallel RCM-LDGM coded
sequence x of length M + I is given by

xᵀ =

[
(Gu)ᵀ | 2 ·

(
(uᵀP mod 2)− 1

2

)]
,

where the last I symbols are encoded using a BPSK modulator. Recall that the objective of the LDGM
code is to correct the residual error of the RCM code, lowering the error floor but without degrading
the RCM waterfall region.

Finally, the coded symbols of x are grouped two by two and transmitted using a QAM modulator,
so that the spectral efficiency, ρ, is

ρ =
2 · K

M + I

binary source symbols per complex channel use.
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The performance of RCM-LDGM codes when encoding uniform and non-uniform DMSs can
be found in [17,18]. An efficient way to design these codes was shown in [27]. However, no results
have been found in the literature regarding the use of parallel RCM-LDGM codes to encode discrete
binary sources with memory. The conventional approach in this situation would be to encode the
correlated source symbols at the transmitter by the RCM-LDGM encoder, and to modify the decoder at
the receiver to exploit the correlation of the source. This may be done by incorporating the factor graph
that models the source into the factor graph of the RCM-LDGM code, and running the sum-product
algorithm [28] over the whole factor graph represented in Figure 1. We will denote this approach as
NON-BWT-JSC, and we will compare it with our proposed coding scheme defined in the next section.

Uk−1 UkU1 UK

SkSk−1 Sk+1

... ...

... ...

qk
rk

T1 T2 TM TM+1 TM+I... ...

x1 x2 xM xM+1 xM+I

M RCM symbols I LDGM symbols

SKS2S1

αk βk

ri;k qk;iRandom Connections of the RCM and LDGM Matrix

Code Factor Graph

Source Factor Graph

p(ukjsk)

p(skjsk�+1)

Figure 1. Factor graph of the parallel RCM-LDGM code incorporating the factor graph modeling
the source.

3. Proposed BTW-JSC Scheme

The main idea behind the proposed BWT-JSC scheme is to transform the original source with
memory S, into a set of λ independent non-uniform memoryless binary sources. This is accomplished
by partitioning the source sequence into blocks of length K, U(l) = {Ul·K+k}K

k=1, l ∈ N, and then
applying the BWT to each of these blocks. The corresponding output segment i, inside output block l,
is given by

T(l)
i = {Tl·K+k}

wi
k=wi−1

.

Observe that the sequence blocks T(l)
i , i = 0, 1 . . . , λ can be considered to have been generated

by a non-uniform DMS with entropy Hi, i = 1, 2, . . . , λ. Therefore, we have reduced the encoding
problem of sources with memory to a simpler one, namely the problem of JSC coding of non-uniform
memoryless binary sources, with entropies Hi. Notice that the previously mentioned RCM-LDGM
high-throughput, JSC codes for non-uniform DMS sources [17], can now be applied to each of the λ

independent sources as shown in Figure 2.
More concretely, let us consider a source with memory, S , and with entropy rate H(S), which

generates blocks of K binary symbols to be transmitted at rate R = K/N by the parallel JSC coding
system of Figure 2. Let Ti (refer to Definition 1) be the input sequence to the corresponding i-JSC code
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of rate Ri = Ki/Ni, under the constraint N = ∑λ
i=1 Ni. Denote by {SNRi}λ

i=1 the set of signal-to-noise
ratios allocated to each parallel channel. Define by

SNR =
λ

∑
i=1

Ni
N

SNRi

the average SNR over all parallel channels. The following Theorem proves that the proposed scheme
achieves the Shannon limit.

Theorem 1. Given a target rate R, the minimum overall SNR in the coding scheme of Figure 2 is achieved
when all the SNRi’s take the same value, given by the SNR Shannon limit from expression (1), i.e., SNR∗i =

2RH(S) − 1. The individual rates Ri are given by Ri =
RH(S)

Hi
, i = 1, . . . , λ.

Proof. Given a set of signal-to-noise ratios {SNRi}λ
i=1, the rates of the JSC encoders in Figure 2 are

given by the Shannon’s separation theorem as

Ri =
Ki
Ni

=
C(SNRi)

Hi
, i = 1, . . . , λ,

where by the BWT hypothesis, K = ∑λ
i=1 Ki.

We seek to minimize the average signal-to-noise ratio SNR over all the λ parallel AWGN channels,
i.e.,

SNR =
λ

∑
i=1

Ni

∑λ
j=1 Nj

SNRi =
λ

∑
i=1

Ki
N

Hi
C(SNRi)

SNRi,

under the constraint of achieving a rate

R =
K
N

=
λ

∑
i=1

Ki

∑λ
j=1 Nj

.

Please note that since K = ∑λ
i=1 Ki is fixed, the constraint in R reduces to the constraint

N =
λ

∑
j=1

Nj =
λ

∑
j=1

HjKj

C(SNRj)
. (6)

By applying the Lagrange multipliers method, we define F as

F =
λ

∑
i=1

Ki Hi
N

SNRi
C (SNRi)

+ γ

(
λ

∑
i=1

Ki Hi
C (SNRi)

− N

)
,

and by searching for an extreme of F, we obtain that the optimal SNR∗i are all equal to some value Γ.
Therefore, from constraint (6)

N =
λ

∑
i=1

Ni = ∑
i

Ki Hi
C (Γ)

=
KH (S)

C (Γ)
,

where the last equality follows from expression (5). Thus, the rate can be written as

R =
K
N

=
C(Γ)
H (S) .
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Consequently, the value of Γ is given by the signal-to-noise ratio required to achieve the same rate
R in the standard point-to-point communications system. That is,

Γ = 2RH(S) − 1.

We conclude that
SNR∗ = SNR∗i = 2RH(S) − 1

and

Ri =
Ki
Ni

=
C(SNR∗)

Hi
=

RH (S)
Hi

. (7)

Remark 3. Observe that the BWT-JSC is asymptotically optimal in the sense that can achieve the SNR Shannon
limit given by the Separation Theorem.

S

H(S)

bU
BWT

BWT

U

Z

AWGN

C2

+T2

H2

K2 N2

Z

AWGN

C1

+
1-JSC

T1

H1

K1 N1

Z

AWGN

Cλ

+Tλ

Hλ

Kλ Nλ

bT1

bT2

bTλ

...
...

inverse
K K

S=P P=S
2-JSC

λ-JSC

1-JSC

2-JSC

λ-JSC

encoder

encoder

encoder

decoder

decoder

decoder

Figure 2. BWT-based proposed communication system. Please note that K = ∑λ
i=1 Ti.

4. Results

In this section, we evaluate the proposed scheme, comparing its performance with the conventional
NON-BWT-JSC approach described in Section 2.3, which is based on a single code. Without any loss
of generality, the spectral efficiency of the communication system has been set to 7.4 binary source
symbols per complex channel use, and the source block length to K = 37,000. Thus, the total number
of coded symbols at the output of the JSC encoder is N = 10,000. We begin by specifying the Markov
sources used in the simulations.

4.1. Simulated Sources and Their Output Probability Profile

Three different 2-state (λ = 2) Markov sources have been chosen. Two are modeled by MCs, with
entropy rates 0.57 and 0.80 bits per source symbol, whereas the third is modeled by a HMM with
entropy rate 0.73. For the sake of notation, they will be referred as S1, S2 and S3. Table 1 summarizes
their corresponding Markov parameters.
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Table 1. Markov Source Parameters.

Source Matrix A Matrix B Vector π Entropy H
S1 a11 = 0.90 a22 = 0.70 b11 = 1.0 b22 = 1.0 [0.75 0.25] 0.57
S2 a11 = 0.80 a22 = 0.50 b11 = 1.0 b22 = 1.0 [0.71 0.29] 0.8
S3 a11 = 0.90 a22 = 0.90 b11 = 0.5 b22 = 0.995 [0.5 0.5] 0.73

Figure 3 shows the probability mass function PT(t) (refer to (4)) of the binary random block T of
length K = 37,000 at the output of the BWT for sources S1, S2, and S3. Observe that due to the fact that
sources S1 and S2 follow a 2-state MC behavior, the BWT will produce approximately two i.i.d. segment
T1 and T2. This is clearly shown in Figure 3a,b, with segments of length (K1 = 9020, K2 = 27,980)
with first order probabilities (p(1)0 ≈ 0.3, p(2)0 ≈ 0.9) for S1 and (K1 = 9020, K2 = 27,980) with

probabilities (p(1)0 ≈ 0.2, p(2)0 ≈ 0.5) for S2. On the contrary, the source S3 is characterized by a
2-state hidden Markov model, and the hidden property has the effect of increasing the number
of states, should the HMM source be approximated by a pure MC. This is observed in Figure 3c,
where a 6-state MC source will fairly approximate the statistics of source S3. The partition into 6
segments has been decided by the authors based on significant change in the a priori probability
of the bits forming the segments. In this case, the first order probabilities of segments T1 − T6

of sizes (K1 = 9250, K2 = 5250, K3 = 3000, K4 = 2500, K5 = 1500, K6 = 15,500) are given by
p(1)0 ≈ 0.55, p(2)0 ≈ 0.63, p(3)0 ≈ 0.71, p(4)0 ≈ 0.78, p(5)0 ≈ 0.84 and p(6)0 ≈ 0.9.
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(a) S1
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Figure 3. First order probability profiles of the output blocks of the BWT for example sources (a) S1,
(b) S2 and (c) S3.
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4.2. Numerical Results

In this section, we present the results obtained by Monte Carlo simulation for the proposed
BWT-JSC and the conventional NON-BWT-JSC coding schemes. Observe that due to the BWT block,
in our proposed scheme a single error at the output of the decoders will be propagated after applying
the inverse-BWT. Therefore, to make a fair comparison, the results are presented in the form of Packet
Error Rate (PER) versus SNR. It should be mentioned that for the correct recovery of the original
transmitted source block, the inverse-BWT at the receiver side needs to know the exact position where
the original End of File symbol has been moved by the BWT at the transmitted side. Therefore, this
additional information should also be transmitted. Please note that for a 37,000 block length, this
position can be addressed by adding 16 binary symbols. In this work, we have considered this rate
loss as negligible, but in real scenarios it must be taken into account.

Figure 4 shows the PER vs SNR curves obtained by simulations for the example sources (a) S1,
(b) S2 and (c) S3 when using both the proposed system (BWT-JSC) and the conventional approach
(NON-BWT-JSC) as a reference. In the proposed scheme, as stated in Section 3, after performing
the BWT, each of the resulting λ independent non-uniform i.i.d. segments Ti(p(i)0 ) i = 1, . . . λ (refer
to Figure 3), are encoded by λ separated RCM-LDGM JSC codes of rates Ri as given by Theorem 1.
The codes used for each DMS in the BWT-JSC approach, as well as the one used in the conventional
NON-BWT-JSC scheme are summarized in Table 2.

12 14 16 18 20 22 24

SNR

10-3

10-2

10-1

100

P
E

R

(a) S1

12 14 16 18 20 22 24

SNR

10-3

10-2

10-1

100

P
E

R

(b) S2

12 14 16 18 20 22 24

SNR

10-3

10-2

10-1

100

P
E

R

(c) S3

Figure 4. Obtained PER vs SNR curves for the NON-JSC-BWT and JSC-BWT schemes when sources
(a) S1; (b) S2 and (c) S3 are considered. The corresponding Shannon limits are plotted in vertical lines.
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Observe from Figure 4a,b that for sources S1 and S2, represented by a MC, our BWT-JSC scheme
outperforms the NON-BWT-JSC approach by about 4.2 and 2.3 dB’s, respectively. The reason behind
this improvement lies in the fact that in the NON-BWT-JSC system, the Factor Graph (FG) of the
decoder, results from a parallel concatenation of two sub-graphs: The RCM-LDGM code and MC
source sub-graphs (refer to Figure 1). Consequently, in the overall FG decoder cycles between both
sub-graphs appear, degrading in this way the performance of sum-product algorithm. However, in
the proposed scheme, these cycles do not occur since in this case the sources are memoryless and
non-uniform. The contribution of the sources sub-graphs is just to introduce the a priori probabilities of
the non-uniform sources into the variable nodes of the corresponding RCM-LDGM factor sub-graphs.

Let us now consider the HMM source S3 with entropy rateH(S3) = 0.73 and output probability
profile as shown in Figure 3c. Note from this figure that the BW transformation of source S3 can be
approximated by 6 memoryless non-uniform sources {Ti}6

i=1, with blocks of lengths K1 ≈ 9250, K2 ≈
5250, K3 ≈ 3000, K4 ≈ 2500, K5 ≈ 1500, K6 ≈ 15,500. Some of these blocks have short lengths, which
is detrimental for the performance of the corresponding RCM-LDGM codes. To solve this problem,
we build larger segments T̃i that keep the same statistical properties as previous segments. In this
approach, named BWT-JSC-κ, we put together κ consecutive output blocks of the BWT to form the
new segments as T̃(l)

i = {T(l·κ)
i , . . . , T(l·(κ+1)−1)

i } for i = 0, 1, . . . , λ and l ∈ N. This is, in fact, similar
to applying the BWT to source blocks of length κ · K, but computationally it is more efficient. The
RCM-LDGM codes used to the transmit these segments have the same rate as before, but in this case
their input and output block lengths are scaled by κ, i.e., K̃i = κ · Ki, M̃i = κ · Mi and Ĩi = κ · Ii,
i = 0, 1, . . . , λ, respectively.

Table 2. Design parameters (refer to Section 2.3) used for sources (a) S1, (b) S2 and (c) S3.

D M I d(v)
LDGM

BWT-JSC K1 = 9020 {1, 1, 1, 2, 2} 3705 55 5

K2 = 27980 {1, 1, 1, 1, 2, 2, 2, 2} 6140 100 5

NON-BWT-JSC K = 37000 {2, 2, 3, 3, 4, 7} 9860 140 5

S1

D M I d(v)
LDGM

BWT-JSC K1 = 26500 {2, 2, 3, 3, 4, 8} 6310 110 5

K2 = 10500 {2, 3, 4, 7} 3490 90 5

NON-BWT-JSC K = 37000 {2, 3, 4, 4, 7} 9940 60 3

S2

D M I d(v)
LDGM

BWT-JSC-κ

K1 = 9250 {2, 3, 4, 4, 7} 3376 29 7

K2 = 5250 {2, 3, 4, 4, 7} 1839 19 7

K3 = 3000 {2, 3, 4, 4, 7} 935 37 7

K4 = 2500 {2, 3, 4, 4, 7} 673 35 6

K5 = 1500 {2, 2, 3, 3, 4, 7} 351 18 6

K6 = 15500 {2, 2, 2, 3, 3, 4, 4, 7, 7} 2632 56 6

NON-BWT-JSC K = 37000 {2, 2, 3, 3, 4, 8} 9880 120 3

S3

As before, Figure 4c plots the PER versus SNR curves for both strategies BWT-JSC (solid curves)
and NON-BWT-JSC (dashed curves). When plotting the performance of the BWT-JSC-κ approach,
two different cases have been considered, κ = 1 and κ = 6. Please note that when κ = 1 the scheme
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is the same as in previous MC examples. On the other hand, by concatenating 6 consecutive BWT
output segments (κ = 6), we force the length of smallest segment to be 9000. Notice that for κ = 6
the proposed scheme outperforms the conventional approach by 2.3 dB. However, due to the bad
performance of the short block-length RCM-LDGM codes, when κ = 1 the performance is similar to
that of the conventional approach. This clearly shows that by concatenating BWT segments the system
performance improves thanks to the avoidance of blocks with short lengths.

As summarized in Table 3, the proposed scheme clearly outperforms the conventional approach,
and the PER vs SNR curves are only about 3 dB away from the Shannon limits.

Table 3. Summary of numerical results. Labels BWT-JSC and NON-BWT-JSC represent the SNR
required for a PER of 10−3 with each scheme.

Entropy Rate Shannon Limit BWT-JSC(-κ) NON-BWT-JSC

S1 0.57 12.57 dB 15.8 dB 20 dB

S2 0.80 17.78 dB 20.9 dB 23.25 dB

1 6

S3 0.73 16.15 dB 21.8 dB 19.55 dB 21.8 dB

5. Conclusions

A new source-controlled coding scheme for high-throughput transmission of binary sources with
memory over AWGN channels has been proposed. The proposed strategy is based on the concatenation
of the BWT with rate-compatible RCM-LDGM codes. The BWT transforms the original source with
memory into a set of independent non-uniform discrete memoryless binary sources, which are then
separately encoded, with optimal rates, using RCM-LDGM codes. Simulations show that the proposed
scheme outperforms the traditional strategy of using the FG of the source in the decoding process
by up to 4.2 dB for a spectral efficiency of 7.4 binary source symbols per complex channel use and a
source with entropy rate 0.57 bits per source symbol. The resulting performance lies within 3 dB of the
Shannon limit.
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Abbreviations

The following abbreviations are used in this manuscript:

BWT Burrows-Wheeler Transform
DMS Discrete Memoryless Source
JSC Joint Source-Channel
MC Markov Chain
HMM Hidden Markov Model
RCM Rate-Compatible Modulation
LDGM Low-Density Generator Matrix
LDPC Low-Density Parity Check
AWGN Additive White Gaussian Noise
QAM Quadrature Amplitude Modulation
SNR Signal-to-Noise Ratio
PER Paquet Error Rate
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