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Summary

In this Thesis we consider high-throughput rate compatible Joint Source-
Channel Coding (JSCC) schemes based on Rate Compatible Modulation
(RCM) codes. These codes achieve JSCC capabilities by embedding source
compression into modulation through the generation of multi-level symbols
from weighted linear combinations of the input bits. The smooth rate adap-
tation is achieved seamlessly by varying the number of generated symbols.
These two properties make them advantageous over conventional Adaptive
Coded Modulation (ACM) techniques, which usually rely on unrealistic in-
stant and accurate channel estimations, and a limited set of coding and
modulation combinations to chose from.

Unfortunately, RCM codes experience performance degradation due to
the presence of error floors at high Signal-to-Noise Ratios (SNRs). These
error floors can be substantially improved by introducing Low Density Gen-
erator Matrix (LDGM) codes in parallel. The main idea is to substitute a
few RCM symbols by LDGM coded bits, forming an hybrid coding scheme
composed by the parallel concatenation of an analog RCM and a digital
LDGM code. The goal of the LDGM symbols is to correct residual errors
produced by the RCM. If properly designed, the resulting parallel RCM-
LDGM coding scheme achieves good performances while preserving the
JSCC and rate adaptation capabilities of RCM codes.

This work investigates new applications and design techniques of these
family of codes for point-to-point and multi-user communications. In that
regard, this dissertation can be divided in two different parts:

Point-to-point communications.

We begin the first part of the dissertation by proposing an EXIT chart
analysis and a bit error rate prediction procedure suitable for implement-
ing RCM-LDGM codes. The developed EXIT charts speed up the design
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method of good codes, which otherwise requires the use of time-consuming
simulations.

We continue by considering the problem of implementing high-throughput
JSCC schemes for the transmission of binary sources with memory over
AWGN channels. We propose a coding scheme that makes use of the
Burrows-Wheeler Transform (BWT) and the rate compatible RCM-LDGM
codes. The BWT is utilized to convert the original source with memory
into a set of independent non-uniform discrete memoryless binary sources,
that are then separately RCM-LDGM encoded, with optimal rates.

Finally, we consider powerline communications modelled as an additive
impulsive noise channel. For the first time in the literature, we propose
the use of RCM-LDGM codes for this type of environment. We assume
that the channel state information is available at the receiver and adapt
the decoder accordingly.

Multi-user communications.

The second part of the Thesis pays attention to the transmission of
multiple information sources over non-orthogonal Multiple Access Chan-
nels (MACs). We begin by considering that the information sources are
uncorrelated and propose a new coding scheme based on the use of an ir-
regular RCM encoder for each user. By properly designing the encoders
and taking advantage of the additive nature of the MAC, the proposed
scheme allows the simultaneous transmission of a large number of uncor-
related users at high rates, while the decoding complexity is the same as
that of standard point-to-point RCM schemes.

In the last part of the dissertation, we study the multi-user communi-
cation scenario in which the transmitted information sources are spatially
correlated. For this case, we propose another novel coding scheme that is
also comprised of a set of RCM codes, but designed differently. In order to
optimize performance, these codes are constructed aiming to preserve some
source correlation in the codewords. This is achieved by building codes
that share the same random structure and whose jointly designed weights
differ but achieve positive symbol reinforcement. Finally, we also extend
the use of LDGM codes in parallel with the proposed RCM systems in the
MAC.



Glossary

A list of the most repeated acronyms is provided below.

RCM Rate Compatible Modulation
LDGM Low Density Generator Matrix
LDPC Low-Density Parity-Check
JSC(C) Joint Source-Channel (Coding)
AMC Adaptive Coded Modulation
AWGN Additive White Gaussian Noise
EXIT Extrinsic Information Transfer
BER Bit Error Rate
PER Packet Error Rate
MAC Multiple Access Channel
CIS Correlated Information Sources
PMF Probability Mass Function
PDF Probability Density Function
MC Markov Chain
HMM Hidden Markov Model
MAP Maximum A Posteriori
SP(A) Sum-Product (Algorithm)
FG Factor Graph
SNR Signal-to-Noise Ratio
LLR Log-Likelihood Ratio
CN(D) Check Node (Decoder)
VN(D) Variable Node (Decoder)
(N)OMA (Non) Orthogonal Multiple Access
MU(D) Multi-User (Detection)
SIC Successive Interference Cancellation
CSI Channel State Information
r.v. random variable
i.i.d. independent and identically distributed
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Notation

Although all symbols are defined at their first appearance, some are re-
peated throughout the dissertation. A list of the most frequent symbols is
provided below.

N The set of natural numbers (positive integers).
R The set of (finite) real numbers.
C The set of (finite) complex numbers.
Rm×p The set of all real matrices of dimension m× p.
RN N -dimensional euclidean space.
{0, 1} The binary set.
[·]i,j Element on the ith row and on the jth column.
a mod b The remainder of dividing a with b.
N (· , ·) Gaussian distribution.
E[·] Expectation operator.
| · | Absolute value of a number or carnality of a set.
C Capacity.
H Entropy.
H Entropy rate.
PX(x) Probability mass function of the discrete random variable X.
pX(x) Probability density function of the continuous random variable X.
â Estimate of a.∑
∼ai The sum over all variables except ai.

Tj Check (or function) node j.
rj,k The messages passed from the jth CN to the kth VN.
qk,j The messages passed from the kth VN to the jth CN.
n(Tj) The set of VNs connected to CN Tj .
n(Uk) The set of CNs connected to VN Uk.
n(Uk) \ Tj The set of CNs connected to VN Uk without considering CN Tj .
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CHAPTER 1

Introduction

When Claude Shannon published his groundbreaking work A Mathemat-
ical Theory of Communication [1], which devised a mathematical frame-
work that characterized the fundamental limits of reliable communications
in point-to-point links, it established a new frontier in the field of commu-
nications. His manuscript, that founded Information Theory, continues to
lay the foundation for the development of communications, data processing
and storage, and other information technologies.

He considered the transmission of information generated by a source
to a distant receiver connected by a noisy channel and showed that this
problem can be separated into two independent sub-problems. First, he
characterized the actual amount of information H, denoted as entropy,
that the source generates. There are a set of algorithms, known as source
compression, that exploit the statistical redundancy of the source symbols
to represent the same information in fewer bits. Shannon’s theory predicted
that the limit of this compression is exactly the entropy, given in bits per
source symbol. Second, he established the maximum number of bits per
channel symbol that any transmitter can accept if these information bits
are to be recovered at the receiver side with low probability of error. This
measure is commonly referred as the capacity, C, of the channel, and is
given by the maximum of the mutual information between the input and
output of the channel, where the maximization is over all input distribu-
tion. The algorithms to achieve near the capacity transmission rates are

1
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called channel codes. As the Separation Theorem states, reliable commu-
nication of the information generated by a source is possible if and only
if H < C and it is optimal to solve each of the sub-problems individu-
ally. (Un)Fortunately for the research community, Shannon established the
previous limits, but did not provide practical ways to construct such algo-
rithms. The research community has been tirelessly looking for capacity
achieving source/channel codes ever since.

While the separation principles simplifies the original problem by divid-
ing it into two independent and more manageable sub-problems, it does not
take into consideration practical issues like complexity and delay. It is un-
practical to require all applications to compress their data before transmis-
sion, and the physical layer could lack of sufficient statistical information
to apply conventional compression techniques. Therefore, Joint Source-
Channel Codes (JSCC) are becoming more and more popular lately. These
algorithms treat the source compression and channel coding in a joint fash-
ion, and consequently, tend to perform better when complexity is an issue.
Moreover, there exist multi-user communication systems for which the sep-
aration principle does not hold, and JSCC usually exhibits an improved per-
formance. For example, the transmission of correlated information sources
over a multiple access channel falls into this category if the energy con-
straint is defined at the transmitter. Interestingly, the theoretical limit in
that case is still not known.

1.1 MOTIVATION AND OBJECTIVES

The wireless channel is time-varying and subject to disturbances such
that fading, additive noise and interference. The physical layer has to
adapt the transmission rate to these varying channel conditions. Conven-
tional Adaptive Modulation and Coding (AMC) systems achieve this by
selecting the best channel coding and modulation combinations for the es-
timated channel conditions at the sender. These combinations are selected
from a group of coding schemes that have been previously designed for
each channel condition. The set of rate/modulation combinations available
is limited, which yields to stair-shape rate curves and often results in inef-
ficient use of the spectrum. Moreover, the success of AMC depends on the
instant and accurate channel estimation on the sender, which can not be
simultaneously obtained.
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To solve these two disadvantages, authors in [2, 3, 4] published research
works on smooth and blind rate adaptation schemes. The rate adapta-
tion is smooth in the sense that it provides fine-grained rate adjustment
and blind since the channel information is not required at the sender. The
works in [2, 3] achieve this by proposing the Strider system and the Spinal
codes, respectively, whereas authors in [4] presented a novel analog cod-
ing scheme, named Rate Compatible Modulation (RCM). The work in [4]
was extended in [5] for JSCC applied to the transmission of non-uniform
sources. As illustrated in [5], RCM outperforms the throughput obtained
by conventional ACM under time-varying wireless channels, overcoming
the stair-shaped rate curves, while boosting the communication efficiency
by intelligently utilizing the data redundancy.

One major disadvantage of the analog RCM codes is that they present
error floors at high signal to noise ratios. In order to solve this drawback,
the works in [6, 7] suggested the use of digital Low-Density Generator Ma-
trix (LDGM) codes in parallel with the RCMs, aiming at reducing this error
floor. On one hand, the RCM symbols represent the majority of the coded
sequence and are able to decode most of the source block correctly. On the
other hand, the LDGM coded bit, which make up a small fraction of the
total coded sequence, are able to correct those source bits that the RCM is
unable to decode correctly. By properly designing these analog and digital
hybrid schemes, it is possible to lower the error floor while maintaining
the smooth rate adaptation and joint source-channel coding capabilities of
the RCM codes. The previously designed RCM-LDGM codes found in the
literature [6, 7] were found by a trial-error procedure, something that re-
quires a large amount of simulation time. Their robustness against channel
and source variations, together with the fact that smooth rate adaption
is possible, makes RCM-LDGM codes excellent candidates in applications
where channel and source variations are encountered.

This Thesis aims to develop new RCM-LDGM design tools and propose
their use in a variety of novel communication scenarios that include point-
to-point and multi-user communications.

1.2 OUTLINE AND CONTRIBUTIONS OF THE THESIS

This Thesis begins by detailing in Chapter 2 the required fundamental
concepts of communication theory and factor graphs, as well as providing



4 CHAPTER 1. Introduction

an overview of RCM, LDGM and parallel RCM-LDGM codes. The rest
of the dissertation is divided in two different parts: Part I (Chapters 3,
4 and 5) covers the transmission of a single source through point-to-point
communication channels, whereas Part II (Chapters 6 and 7) considers
multi-user communications.

1.2.1 CHAPTER 2

This chapter summarizes the required background to understand the
presented technical work. It includes some basic communication and graph
theory utilized in iterative decoders, and also introduces the reader to RCM
and parallel RCM-LDGM codes. This chapter aims to make the disser-
tation self-contained. However, for the sake of brevity and because the
examples considered here are generally well-known, we do not include the
Information Theory required to establish the fundamental limits of the con-
sidered communication problems. If needed, we refer the reader to [8] for
further detail in this regard.

1.2.2 CHAPTER 3 (PART I)

Chapter 3 looks at the problem of designing high rate parallel RCM-
LDGM codes over AWGN and fast fading Rayleigh channels for the trans-
mission of both uniform and non-uniform sources. The previous designs
of these codes are based on brute force approach, which requires time-
consuming Monte Carlo simulations. In this chapter we propose an EXIT
chart analysis and an asymptotic bit error rate prediction method capable
of speeding up the design of this hybrid scheme.

The research developed in this chapter has been published in the fol-
lowing journal paper:

Granada, I., Crespo, P.M. & Garcia-Frias, J. “Asymptotic BER EXIT
chart analysis for high rate codes based on the parallel concatenation of
analog RCM and digital LDGM codes”. J Wireless Com Network 2019, 11
(2019).
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1.2.3 CHAPTER 4 (PART I)

This chapter considers the problem of implementing high-throughput
(larger than 2 bits per complex channel symbol) JSCC schemes for the
transmission of binary sources with memory over AWGN channels. The
sources are modeled either by a Markov chain or a hidden Markov model.
We explore the combined use of the Burrows-Wheeler Transform (BWT),
a block-sorting algorithm frequently used in source compression, and the
rate-compatible RCM-LDGM codes. The BWT is first used to convert
the original source with memory into a set of independent non-uniform
discrete memoryless binary sources, which are then separately RCM-LDGM
encoded at optimal coding rates.

The scheme proposed in this chapter has been published in the following
journal paper:

Granada, I.; Crespo, P.M.; Garcia-Frias, J. “Combining the Burrows-
Wheeler Transform and RCM-LDGM Codes for the Transmission of Sources
with Memory at High Spectral Efficiencies”. Entropy 2019, 21, 378.

1.2.4 CHAPTER 5 (PART I)

Chapter 5 studies power-line communications, which are considered
harsh environment for data transmission due to the appearance of noise
bursts. These channels are commonly known as additive impulsive noise.
We propose the use of RCM-LDGM codes for impulsive noise channels for
the first time in the literature. In order to asses their performance, we
also propose modified versions of Middleton class A noise and Markov-
Middleton impulsive noise for which the Shannon limit is given by the
AWGN capacity.

The work developed in this chapter has been published in the following
conference paper:

I. Granada and X. Insausti, “On the Suitability of RCM-LDGM Codes
for Sending High Data Rates over Impulsive Noise Channels,” GLOBECOM
2020 - 2020 IEEE Global Communications Conference, Taipei, Taiwan,
2020, pp. 1-6.
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1.2.5 CHAPTER 6 (PART II)

The literature lacks of coding schemes suitable for non-orthogonal mul-
tiple access operating at high spectral efficiency and capable of accommo-
dating a large number of users, properties highly demanded by modern
wireless networks. In this chapter we propose a novel non-orthogonal mul-
tiple access coding scheme that is based on RCM codes, one constructed for
each user. The system is designed to take advantage of the linear nature of
theses codes and the multiple access channel to construct a MAC coding
that allows the simultaneous transmission of a large number users at high
sum-rates, while maintaining low decoding complexity.

The scheme proposed in this chapter has been published in the following
journal paper:

I. Granada, P. M. Crespo and J. Garcia-Frias, “Rate Compatible Mod-
ulation for Non-Orthogonal Multiple Access,” in IEEE Access, vol. 8, pp.
224246-224259, 2020.

1.2.6 CHAPTER 7 (PART II)

Chapter 7 considers the non-orthogonal multiple access scenario of Chap-
ter 6 but whose users transmit spatially Correlated Information Sources
(CIS). In this case, as well known, the system performance is optimized
if the codewords are designed to take advantage of the correlation among
sources in the multiple access channel. The sparse and linear nature of the
RCM codes makes them advantageous to design such codewords. There-
fore, in this chapter we propose a MAC coding system that is based on
RCM schemes.

Moreover, in order to lower the error floor of the MAC coding schemes
presented in Chapters 6 and 7, we also propose a parallel LDGM concate-
nation suitable for the MAC, similar to what is done in point-to-point links.

The research developed in this chapter has been published in the fol-
lowing journal paper:

I. Granada, P. M. Crespo, M. E. Burich and J. Garcia-Frias, “Rate
Compatible Modulation for Correlated Information Sources,” in IEEE Ac-
cess, vol. 9, pp. 65449-65465, 2021.
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1.2.7 CHAPTER 8

This last chapter concludes this dissertation summarizing the main con-
clusions and providing guidelines of future research lines of interest.

1.3 READING THIS THESIS

The reading of this dissertation does not need to be sequential, and
each of the parts (or even chapters, specially for Part I) can be read inde-
pendently. However, we highly recommend starting with Chapter 2.

Chapter 1: 
Introduction

Chapter 2: 
Backgroud Material

Chapter 3:       

EXIT Chart Analysis

Chapter 4:   
Sources with Memory 

and the BWT

Chapter 5:   
Impulsive Noise 

Channels

Chapter 6:       

Non-Orthogonal Multiple 
Access Channel

Chapter 7:   
Correlated Information 

Sources

Part I: Point-to-Point

Part II: Multi-user

Appendix A:   
Burrows-Wheeler 

Transform

Chapter 8: 
Conclussion

A
s desired

If needed

Recommended

If needed Recommended

If needed

S
um

m
ary

Summary

If needed

Figure 1.1: Block diagram detailing the dependencies between

chapters.

We provide in Fig. 1.1 a block diagram with the logical dependencies
among the chapters in case the reader decides not to read the disserta-
tion sequentially. A general relationship between chapters is established.
Chapters 3, 4 and 5 cover point-to-point communication systems (Part I),
whereas chapters 6 and 7 (Part II) consider multi-user communication sys-
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tems. Each connecting line is labeled with keywords (Recommended, As
desired, If needed, and Summary) indicating the reader how to connect
chapters. Each part contains a short common introduction aiming to pro-
vide additional context.



CHAPTER 2

Background Material

This chapter provides the reader background material needed for the fol-
lowing chapters. To do so, we review some basic concepts of Communi-
cations Theory from a Factor Graph’s perspective and present the joint
source-channel codes used throughout the Thesis. We begin considering a
point-to-point communication system.

2.1 JOINT SOURCE-CHANNEL CODING AND DECODING
OF POINT-TO-POINT COMMUNICATIONS

Let (Ω, β,P) be the underlying probability space where all the random
variables (r.v.) are defined. We use uppercase when referring to r.v. and
lowercase when referring to realizations of r.v.. In addition, we use boldface
when referring to vectors. A r.v. X is discrete if it takes values on a finite
set X (with |X | < ∞), that we denote as the alphabet, and is continuous
if it takes value in infinitely many values. For discrete r.v’s we define the
Probability Mass Function (PMF) of X as PX(x) , P{ω ∈ Ω : X(ω) = x}.
For continuous r.v’s we define the Probability Density Function (PDF) of
X as pX(x) = d

dxFX(x), where FX(x) , P{ω ∈ Ω : X(ω) ≤ x}. Whenever
the context allows the simplification, we use P (x) and p(x) for PMF and
PDF, respectively.

9
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We consider the communications scenario depicted in Figure 2.1. In
this work, it is assumed that the source is modeled as a discrete binary K-
dimensional random vector. A message u ∈ {0, 1}K is formed by a block
of K source symbols.

Source JSC Encoder

ǫ

Channel

DPYjX(yjx)S

JSC Decoder

u x y
û

Figure 2.1: Communications scenario with joint source-channel en-

coding and decoding functions. Note that modulation

is embedded into the encoding.

The encoder ε is assumed to be an injective mapping that assigns each
message u ∈ {0, 1}K to a codeword x ∈ XN , i.e.,

ε : {0, 1}K → XN , (2.1)

where X ⊂ R is the coded symbol’s alphabet. We consider the discrete
memoryless channel

{X , PY |X(y|x),Y}
modeled by a discrete conditional probability distribution with input alpha-
bet X and output alphabet Y ⊂ R. The channel is stationary and mem-
oryless in the sense that after it is used t times with inputs {X1, . . . , Xt},
the output at time t (Yt ∈ Y) given {X1, . . . , Xt, Y1, . . . , Yt−1} is distributed
according to

P (yt|x1, . . . , xt, y1, . . . , yt−1) = P (yt|xt). (2.2)

It can be shown that when this channel is used N times without feed-
back, the memoryless property implies

PY|X(y|x) , PY1...YN |X1...XN (y1 . . . yN |x1 . . . xN ) =

N∏

t=1

PY |X(yt|xt). (2.3)

The joint probability of U, X and Y can be factorized as

P (u,x,y) = P (u) · P (x|u) · P (y|u,x), (2.4)

and since by construction U↔ X↔ Y forms a Markov chain (P (y|u,x) =
P (y|x)), the joint probability P (u,x,y) is simplified to the factorized chain
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given by

P (u,x,y) = P (u)︸ ︷︷ ︸
Source

·P (x|u)︸ ︷︷ ︸
JSCC

·P (y|x)︸ ︷︷ ︸
Channel

, (2.5)

where the first factor depends directly on the source, the second on the joint
source-channel code, and the third on the channel. Finally, the decoder
block D maps the channel output y to a message sequence û(y) = D(y),
that is,

D : YN → {0, 1}K︸ ︷︷ ︸
û(y)

. (2.6)

Given the received sequence y, the decoding function that minimizes the
block error probability P{û 6= u} is the block-wise Maximum a Posteriori
(MAP) rule and is given by

û(y) = arg max
u∈{0,1}K

P (u|y) = arg max
u∈{0,1}K

P (u,y)

P (y)
. (2.7)

Notice that the denominator P (y) is independent of u, and the numer-
ator P (u,y) is the marginal of the sought joint probability distribution of
all variables1 involved in the communication system. Thus, the previous
expression can be rewritten as

û(y) = arg max
u∈{0,1}K

∑

x∈XN
P (u,x,y). (2.8)

The solution of this problem is often computationally too expensive and
it is often relaxed. In those cases, the objective becomes to minimize the
symbol-wise error probability, i.e. P{ûk 6= uk} for each k ∈ {1, . . . ,K},
given by the symbol-wise MAP decoding rule

ûi(y) = arg max
ui∈{0,1}

P (ui|y)

= arg max
ui∈{0,1}

P (ui,y)

P (y)
= arg max

ui∈{0,1}
P (ui,y)

= arg max
ui∈{0,1}

∑

u1

· · ·
∑

ui−1

∑

ui+1

· · ·
∑

uK

∑

x∈XN
P (u,x,y)

= arg max
ui∈{0,1}

∑

∼ui

P (u,x,y) for i = 1, . . . ,K, (2.9)

1The channel outputs {Yt}Nt=1 are actually deterministic values.
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where
∑
∼ui denotes the sum over all variables except ui. In this work we

will exclusively consider the symbol-wise decoding. In order to compute it
efficiently, we need to represent the joint probability P (u,x,y) as a factor
graph and run the Sum-Product Algorithm. The next section presents
factor graphs and the Sum-Product Algorithm in detail.

2.2 FACTOR GRAPH AND THE SUM PRODUCT ALGORITHM

2.2.1 FACTOR GRAPHS

Algorithms that must deal with complicated multi-variable global func-
tions often exploit the manner in which the given functions factor as a prod-
uct of local functions, each of which depends on a subset of the variables.
Such a factorization can be visualized with a bipartite graph that is gener-
ally denoted as a factor graph [9]. As an example, let g(x1, x2, x3, x4, x5) be
a multi-variable global function of a set of variables {X1, X2, X3, X4, X5}.
This function is represented in Fig. 2.2, where the function and variable
nodes are represented in squares and circles, respectively. Function nodes
and variable nodes are connected with an edge if and only if the corre-
sponding variable is an argument of the function. Note that a factor graph
is always bipartite, i.e., edges are only allowed between vertices of different
types.

g

X2

X3X4

X5

X1

Figure 2.2: Factor graph representing the global multi-variable

function g(x1, x2, x3, x4, x5).

A Factor graph becomes interesting if the represented global function
can be factorized as a product of several local functions. Let us assume
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that the function g(x1, x2, x3, x4, x5) factors as

g(x1, x2, x3, x4, x5) = fA(x1) · fB(x2) · fC(x1, x2, x3) · fD(x3, x4) · fE(x3, x5).

In this case, the factor graph can be expanded to represent the local

X2 X3 X4 X5X1

fA fB fC fD fE

Figure 2.3: Factorized factor graph of g(·)

functions fA, fB, fC , fD, fE . That expansion is depicted in Fig. 2.3 with all
variable nodes in the top layer and the function nodes in the bottom layer.
Note that this bipartite graph is unique but can be redrawn as desired. For
convenience, let us rearrange it as in Fig. 2.4.

Factor graphs are so often used in communication systems due to the
existence of the Sum-Product Algorithm (SPA). It consist of a set of rules
and procedures for message passing over factor graphs that allows decoding
by efficiently calculating the marginals of the joint probability distribution
that characterizes the whole communication system.
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X2

X3

X4 X5X1

fA fB

fC fEfD

Figure 2.4: Rearrangement of Fig. 2.3.

2.2.2 SUM-PRODUCT ALGORITHM

The SPA is essentially a set of rules for transferring messages through
the edges of a factor graph with the goal of computing the marginals of
the global function described in it in a simply manner. Let us begin by
describing the application of the SPA over a cycle-free graph, commonly
denoted by factor tree.

The Sum-Product Algorithm over Non-cyclic Factor Graphs

Let us revisit the previous global function g(·) depicted in Fig. 2.4
factorized as

g(x1, x2, x3, x4, x5) = fA(x1) · fB(x2) · fC(x1, x2, x3) · fD(x3, x4) · fE(x3, x5),

and assume that we are interested in calculating the marginal function
ĝ1(x1), given by

ĝ1(x1) =
∑

x2,x3,x4,x5

g(x1, x2, x3, x4, x5) =
∑

∼x1

g(x1, x2, x3, x4, x5). (2.10)
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The SPA exploits the factorized structure of g(·) in such a way that the
computation of the marginals is efficiently achieved by exchanging messages
among the nodes of its factor graph under the fulfillment of certain rules.
Let us begin by defining the following terms:

• We denote by ψ(Xi) to the set of function nodes fj connected to
variable node Xi. Similarly, ψ(Xi) \ fk denotes the set of function
nodes fj connected to variable node Xi except fk. For example,
ψ(X1) = {fA, fC} and ψ(X1) \ fA = {fC} in Fig. 2.4.

• We denote by µXi→fj (xi) and µfj→Xi(xi) to the messages transmitted
from the variable node Xi to function node fj and from fj to Xi,
respectively. Note that these messages are only transmitted if fj ∈
ψ(Xi) and Xi ∈ ψ(fj).

These messages are propagated through all edges of the graph obeying the
rules imposed by the algorithm and can be reused to compute different
marginal functions. In the special case in which the factor is cycle-free, as
the considered case, each message has to be computed only once. We next
detail the rules for the computation of variable and function nodes.

Messages transmitted from variable to function nodes: The message
from variable node Xi to function node fj is computed as

µXi→fj (xi) =
∏

fk∈ψ(Xi)\fj

µfk→Xi(xi). (2.11)

Messages transmitted from function to variable nodes: The message
from function node fj to variable node Xi is computed as

µfj→Xi(xi) =
∑

Xk∈ψ(fj)\Xi

fj(xk) · µXk→fj (xk). (2.12)

Computation of the marginal functions: The desired marginal func-
tion f̂i(xi) is computed as

f̂i(xi) =
∏

fj∈ψ(Xi)

µfj→Xi(xi). (2.13)
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X2

X3

X4 X5X1

fA fB

fC fEfD

µfA→X1 µfB→X2

µX4→fD µX5→fEµX2→fC

µX3→fC

µfC→X1

µfE→X3

µfD→X3

(a)

X2

X3

X4 X5

X1

fA

fB

fC fEfD

×

×

× × ×

∑
∼{x3}

∑
∼{x3}

∑
∼{x3}

×

∑
∼{x1}

∑
∼{x2}

∑
∼{x1}

(b)

Figure 2.5: (a) Messages used for the marginalization of ĝ1(x1).

(b) Update rules of the marginalization of ĝ1(x1).

Figure 2.5 exemplifies the application of the set of rules necessary for
calculating the marginal function ĝ1(x1) by breaking the expression for
ĝ1(x1) down into its compounding factors. Let us observe that

ĝ1(x1) =
∑
x2

∑
x3

∑
x4

∑
x5

fA(x1) · fB(x2) · fC(x1, x2, x3) · fD(x3, x4) · fE(x3, x5)

= fA(x1)︸ ︷︷ ︸
µfA→X1

(x1)

·
∑

x2

∑

x3

fC(x1, x2, x3) · fB(x2)︸ ︷︷ ︸
µfB→X2

(x2)
︸ ︷︷ ︸
µX2→fC (x2)

·
∑

x4

fD(x3, x4) · 1︸︷︷︸
µX4→fD (x4)

︸ ︷︷ ︸
µfD→X3

(x3)

·
∑

x5

fE(x3, x5) · 1︸︷︷︸
µX5→fE (x5)

︸ ︷︷ ︸
µfE→X3

(x3)
︸ ︷︷ ︸

µX3→fC (x3)
︸ ︷︷ ︸

µfC→X1
(x1)

,

(2.14)

and the marginalization of X1 is given by,

ĝ1(x1) = µfA→X1(x1) · µfC→X1(x1). (2.15)

The rest of the marginals ĝ2(x2), ĝ3(x3), ĝ4(x4) and ĝ5(x5) are calculated
in a similar fashion, with all needed messages represented in Fig. 2.6.
Notice that the execution of the algorithm comprises a finite number of
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steps due to the lack of cycles in the underlying tree factor graph. However,
many coding factor graphs present cycles that this algorithm does not take
into account. In those cases, the algorithm has no natural termination and
consequently, the marginalizations are not exact.

X2

X3

X4 X5X1

fA fB

fC fEfD

µ
f
A
→

X
1

µ
f
B
→

X
2

µ
X

4 →
f
D

µ
X

5 →
f
E

µ
X

2 →
f
C

µX
3
→
fC

µ f
C
→
X
1

µ
f
E→

X
3

µ
f
D →

X
3

µ X
1
→
fC

µ
f
C →

X
2

µ
X

1 →
f
A

µ
X

2 →
f
B

µ
f
D
→

X
4

µ
f
E
→

X
5

µ
X
3→

f
E

µ
X

3 →
f
Dµ f

C
→
X
3

Figure 2.6: All necessary messages needed for calculating the

marginal functions ĝ1(x1), ĝ2(x2), ĝ3(x3), ĝ4(x4) and

ĝ5(x5). Messages that propagate upwards/downwards

are placed on the right/left side of the edges.

The Sum-Product algorithm over Cyclic Factor Graphs

The majority of the factor graphs used in communication systems have
cycles, and therefore, an exact marginalization of the global function is not
possible with this algorithm, since there are no finite number of steps in
the algorithm [10].

However, the SPA can still be executed on these factor graphs by im-
posing a termination to the iterative algorithm. This results in a inexact
calculation of the marginal functions, yielding to a sub-optimal marginal-
ization algorithm. However, it still represents a good heuristic method to
implement iterative decoders of communication systems. This assumption
has been shown to hold in many instances, yielding good results in prac-
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tice and becoming widely extended in modern coding applications such as
Turbo and LDPC coding [11].

All things considered, the decoding of a received noisy sequence pro-
ceeds, in general, according to the following scheme:

• All messages are initialized.

• Messages are updated according to an update schedule: (2.11) and
(2.12). This schedule may vary from step to step.

• After each step (or a predefined number of steps) the marginal func-
tions of the symbols to be decoded are computed: (2.13).

• A sequence is obtained by taking decisions based on the current
marginal function.

• After obtaining the sequence, a decision should be made: continue
with the decoding process until a specific number of iterations is
achieved or stop if the sequence fulfills some conditions.

2.2.3 FACTOR GRAPHS IN JSC DECODING

This Section presents the applicability of factor graphs and the SPA
to the communication problem of Section 2.1. The criteria used for de-
coding iterative algorithms is the symbol-wise MAP rule, which maximizes
the probability p(ûi|y) for each symbol ûi. This is the marginal of the
joint probability distribution of the global function (2.9) representing the
communication scenario, and is given by

ûi(y) = arg max
ui∈{0,1}︸ ︷︷ ︸
Decision

∑

∼ui

P (u,x,y).︸ ︷︷ ︸
FG (comm. scenario)︸ ︷︷ ︸

Sum−Product Algorithm︸ ︷︷ ︸
Symbol−wise decoding

(2.16)

For large block lengths this sum is computationally infeasible. However,
it can be approximated by applying the SPA algorithm to the factor graph
representing the global function P (u,x,y) and consequently, by comput-
ing efficiently the required marginals for each variable node Ui. Taking into
account that the global function P (u,x,y) can be rewritten as in (2.5), we
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derive that the factor graph of the communication systems depends directly
on the (i) local functions representing the source, the JSCC technique and
the characteristics of the channel, and (ii) the variable nodes representing
the source symbols {Ui}, the coded symbols {Xi} and the channel obser-
vations {Yi}. Therefore, expression (2.16) reduces to,

ûi(y) = arg max
ui∈{0,1}

∑

∼ui

P (u,x,y)

︸ ︷︷ ︸
SPA

= arg max
ui∈{0,1}

∑

∼ui

P (u)︸ ︷︷ ︸
Source

·P (x|u)︸ ︷︷ ︸
JSCC

·P (y|x)︸ ︷︷ ︸
Channel

.

︸ ︷︷ ︸
SPA

(2.17)
Summarizing, the process of performing a symbol-wise MAP decision

in the proposed communication scenario follows a three-stage approach:

1. The joint probability distribution P (u,x,y) is represented by a factor
graph composed of three sub-graphs representing the source, the joint
source-channel code and channel.

2. The SPA messages are passed through the factor graph.

3. The MAP decision is based on the calculated marginals.

Observe that the marginals are exact for non-cyclic graphs and approx-
imated in case of cyclic graphs. In the latter case, step 2 and 3 can be
performed iteratively, yielding successively refined estimations of ûi.

In the next sections we present examples of source models PU (u), chan-
nel models P (y|x) and the JSC codes P (x|u) used throughout this disser-
tation.

2.3 FACTOR GRAPH OF SOURCES

In this section we present two examples of the source models PU(u).

2.3.1 FACTOR GRAPH OF MARKOV SOURCES

We consider the discrete stochastic process with memory in which each
random variable depends on the preceding and is conditionally independent
of every other preceding r.v.. This temporal dependence is expressed in the
following definition.
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Definition 1. A discrete stochastic process {Sk}∞k=1 is a Markov Chain
(MC) if

PSk|Sk−1,...,S1
(sk|sk−1, . . . , s1) = PSk|Sk−1

(sk|sk−1) (2.18)

for k ∈ N. Moreover, if the the conditional probability does not depend on
k, the MC is denoted as time invariant.

Aiming to keep this dissertation as brief as possible, let us define directly
the MC generalization in which the system has unobservable hidden states,
denoted as Hidden Markov Model (HMM). Concretely, we consider a time-
invariant HMM where the r.v’s take values in the finite alphabet S =
{1, . . . ,Mλ} and denote the states of the source at time k as sk. Complete
specification of a binary HMM requires of three probability measures, A,
B, and π, defined as:

• A = [aij ] is the state transition probability matrix of dimension Mλ×
Mλ, with aij the probability of transition from state i to state j, i.e.,
ai,j = P (sk+1 = j|sk = i) for all k.

• B = [bj(u)] is the observation symbol probability matrix, with bj(u)
the probability of getting in the binary symbol u in state j, i.e.,
bj(u) = P (u|j), 1 ≤ j ≤Mλ, u ∈ {0, 1}.
• π is the initial state distribution vector, with πj the probability for

the initial state to be j, i.e., πj = P (s1 = j), 1 ≤ j ≤Mλ.

For stationary sources, π should be taken as the stationary distribution
of the chain, i.e., π = Aπ. Note that a MC can be defined as a particular
example of HMM in which the matrix B has entires 0 and 1, i.e., the
observation symbol matrix is a deterministic function.

Let us assume a discrete source with memory modeled by a HMM with
parameters A, B, and π, and whose output {Uk}Kk=1 is mapped from a
sequence of states {Sk}Kk=1 by means of the mapping T (·) defined as

Tk (sk−1, sk, uk) = T (Sk−1 = s, Sk = s′, Uk = u), (2.19)

with s, s′ ∈ {1, . . . ,Mλ} and u ∈ {0, 1}. With these function and variable
nodes, we can plot the source factor graph as in Fig. 2.7

Observe that the considered Markovian model yields a factor graph
with no cycles. Thus, the exact factorization of PU(u) is obtained in a
finite number of steps by applying the SPA.
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Sk−2 Sk−1 Sk Sk+1

Uk−1 Uk Uk+1

Tk−1 Tk+1Tk

αk(sk)βk−1(sk−1)

δk(uk) ξk(uk)

αk−1(sk−1) βk(sk)

Figure 2.7: Factor graph modeling a Markov Chain.

Forward and Backward recursions

The application of the SPA to the factor graph in Fig. 2.7 yields two
natural recursions that are often called forward and backward. The first one
αk(·) as a function of αk−1(·), and the second βk−1(·) as a function of βk(·).
Before proceeding with the details, let us define the following notation2:

• ξk(uk): extrinsic soft information of the variable node Uk.

• αk(sk), βk−1(sk−1): forward and backward variables, that are defined
as message from Tk to Sk and from Tk to Sk−1, respectively.

• δk(uk): a posteriori information of the variable node Uk.

And the update rules for the recursions are given by

αk(sk) =
∑

∼sk

αk−1(sk−1) · Tk(sk−1, sk, uk) · ξk(uk) (2.20)

βk−1(sk−1) =
∑

∼sk−1

βk(sk) · Tk(sk−1, sk, uk) · ξk(uk), (2.21)

where Tk (sk−1, sk, uk) is the kth function node of the HMM. Note that
the values α0(·) and βK(·) are required, and are obtained from the initial

2Note that they correspond to the SPA messages µUk→Tk (uk), µTk→Sk (sk),
µTk→Sk−1(sk−1) and µTk→Uk (uk).
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and final conditions of the described MC source. For the HMM sources
considered here, Tk (sk−1, sk, uk) is given by

Tk (sk−1, sk, uk) =





P (sk), for k = 0
P (uk|sk−1), for k = K

P (sk|sk−1)P (uk|sk−1), otherwise,
(2.22)

and the a posteriori information for the input variable node Uk is computed
as

δk(uk) =
∑

∼uk

αk−1(sk−1) · Tk(sk−1, sk, uk) · ξk(uk) · βk(sk). (2.23)

Finally, the sought marginal is given by the product of all messages
arriving at the node representing the variable to be marginalized, i.e.,

PUk(uk) =
∑

∼uk

PU(u) = δk(uk) · ξk(uk). (2.24)

2.3.2 FACTOR GRAPH OF NON-UNIFORM SOURCES

We consider the simple, yet interesting case, where the source is modeled
as a binary independent and identically distributed (i.i.d.) discrete time
random process, i.e., whose the output Uk ∈ {0, 1} given (U1, . . . , Uk−1) is
distributed according to

PUk|U1,...,Uk−1
(uk|u1, . . . , uk−1) = PUk(u) =

{
p u = 0

1− p u = 1
,∀k ∈ N.

(2.25)

By non-uniform we mean that the binary alphabet {0, 1} has distribution
(1 − p; p). Thus, in this simple case, the a posteriori information of the
variable node Uk, δk(uk), is given by

δk(uk = 1) = p

δk(uk = 0) = 1− p. (2.26)

Since it is constant, it is often denoted as a priori probability. Finally,
the factor graph of this simple source model is depicted in Fig. 2.9.



Factor Graphs of Channels 23

Uk

δk

Figure 2.8: Factor Graph of a non-uniform source.

2.4 FACTOR GRAPHS OF CHANNELS

In this section we are interested on the conditional probability PY|X(y|x).

2.4.1 GAUSSIAN CHANNEL MODEL

Consider the use of a single carrier passband communication system to
send i.i.d. real symbols {Xt}t∈N across a white Gaussian passband channel.
Assume that the Xt symbols generated by the encoder belong to some one-
dimensional real constellation A.

In order to adapt the transmitted symbols to the passband modulator,
one needs to consider two consecutive symbols Xt = (X2t−1, X2t) drawn
from the two-dimensional constellation A2 = A × A. In what follows we
use the standard notation

Xt = (XI
t , X

Q
t ), (2.27)

where the upper letters I and Q stand for in-phase and quadrature compo-
nents, respectively.

It is well known that the sample vector Y t ∈ R2 at output of the
passband demodulator, is a sufficient statistic to detect the symbol Xt and
is given by

Y t =

(
Y I
t

Y Q
t

)
=

(
XI
t

XQ
t

)
+

(
ZIt
ZQt

)
= Xt + Zt, t ∈ N, (2.28)

where {Zt}∞t=1 is an i.i.d. sequence of two-dimensional Gaussian random
vectors of zero mean and covariance matrix N0 ·I2, with I2 the 2×2 identity
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matrix. In here, N0 denotes the two-sided Power Spectral Density (PSD)
level of the additive white Gaussian noise random process.

Therefore, the conditional PDF of the Gaussian vector, Y t given the
symbol Xt is given by

PY |X(y|x) =
1

N0π
exp

(
−‖y − x‖

2

N0

)
. (2.29)

Observe that if we use complex notation, expression (2.28) results in
what is called the complex AWGN channel

Ỹt = X̃t + Z̃t, t ∈ N, (2.30)

where
X̃t = XI

t + i ·XQ
t (2.31)

now belongs to the one-dimension complex constellation, AC = A× i · A ⊂
C, and the i.i.d. complex Gaussian random variables {Z̃t}

Z̃t = ZIt + i · ZQt (2.32)

are circularly symmetric complex random variables.

The energy per two real-dimensions (or one-complex dimension), Es, is
defined as

Es = E(‖X‖2) = 2 · E(X2), (2.33)

and the Signal to Noise Ratio is defined as

SNR =
Es
N0

, (2.34)

that is, the ratio between the energy per two real-dimension 2-D (or one
complex-dimension 1-C) and the variance of the noise per 2-D.

Note that due to the independence of the Gaussian noise random compo-
nents ZIt = Z2t−1 and ZQt = Z2t at the output of the passband demodulator
in (2.28), one can simplify the model (2.28) by considering two consecutive
uses of the following one-dimension real AWGN channel

Yt = Xt + Zt, (2.35)

where t takes values in the natural numbers N. In this dissertation, and for
the sake of notation, we will use this simplify one-dimensional real AWGN
channel, depicted in Fig. 2.9.
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Xt

Yt

Figure 2.9: Factor Graph of the considered AWGN channel.

2.4.2 RAYLEIGH FAST FADING CHANNEL MODEL

In a fast-fading Rayleigh channel the sequence complex symbols {X̃t}
in the AWGN complex channel (2.30) is pairwise multiplied by an i.i.d.
sequence of complex circular symmetric Gaussian random variables {H̃t}
with variance3 E(|H̃t|2) = 1, modelling the fading. That is,

Ỹt = H̃t · X̃t + Z̃t, t ∈ N. (2.36)

Therefore, the conditional PDF (in complex notation) given the fading
coefficient h̃ and the complex symbol x̃, is given by:

P
Ỹ |X̃,H̃(ỹ|x̃, h̃) =

1

πN0
exp


−

∥∥∥ỹ − h̃ · x̃
∥∥∥

2

N0


 . (2.37)

Note that when perfect channel state information is known at the re-
ceiver (coherent detection), the output of the demodulator can be multi-
plied by H̃∗t , and the above Rayleigh fast fading channel (2.36) becomes a
time-varying AWGN complex channel

Ỹt = |H̃t|2 · X̃t + Z̃t, t ∈ N, (2.38)

where |H̃t|2 is exponential distributed with unit variance, i.e.,

p|H̃t|2(h) = e−h h > 0, t ∈ N. (2.39)

3The complex circular symmetric Gaussian random variable H̃t, t ∈ N, can be written

as H̃t = 1√
2
·
(
V It + i · V Qt

)
where V It and V Qt , are independent real Gaussian r.v’s of

zero mean and variance 1
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Note that the average SNR is still the same as before, but the instan-
taneous SNR at any given time instant is now

SNRt = |h̃t|2 ·
Es
N0

, (2.40)

where h̃t denotes a realization of the random variable H̃t.

2.5 EXTENSION TO MULTI-USER CODING AND DECOD-
ING

We consider the communications scenario depicted in Figure 2.10, where
the information produced by λ discrete binary random vectors is transmit-
ted to the same receiver through a shared channel. The message of user i
ui ∈ {0, 1}Ki is formed by a block of Ki source symbols.

Source JSC Encoder 1

ǫ
Channel

DPYj(X1
;:::;Xλ)(yjx

1 : : : ;xλ)

S1

JSC Joint Decoder

u1 x1

y
û1

Source JSC Encoder λ

Sλ
uλ xλ

ûλ

1

ǫ λ

Figure 2.10: Multi-user communication scenario with independent

encoding and joint decoding functions.

The λ encoders {ε1, . . . , ελ} are assumed to be injective mappings that
each assigns its message ui ∈ {0, 1}Ki to a codeword xi ∈ XN , i.e.,

εi : {0, 1}Ki → XN . (2.41)

Note that we allow the encoders to encode source blocks of different lengths
(and consequently, at different rates). The encoded sequences {x1, . . . ,xλ}
are then all transmitted through the discrete memoryless channel

{X 1, . . . ,X λ, PY |X1,...,Xλ(y|x1, . . . , xλ),Y}

modeled by a discrete conditional probability distribution with input al-
phabet X × . . . × X ⊂ Rλ and output alphabet Y. As in Section 2.1, the
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channel is stationary, memoryless and used without feedback. Thus, when
it is used N times, its distribution is given by

PY|X1,...,Xλ(y|x1, . . . ,xλ) =
N∏

t=1

PYt|X1
t ,...,X

λ
t
(y|x1

t , . . . , x
λ
t ). (2.42)

The joint probability of (U1, . . . ,Uλ), (X1, . . . ,Xλ) and Y can be fac-
torized as

P (u1, . . . ,uλ,x1, . . . ,xλ,y) =

P (u1, . . . ,uλ) ·
λ∏

i=1

P (xi|ui) · P (y|u1, . . . ,uλ,x1, . . . ,xλ) =

P (u1, . . . ,uλ)︸ ︷︷ ︸
Multi−terminal Sources

·
λ∏

i=1

P (xi|ui)
︸ ︷︷ ︸
Ind. Encoders

· P (y|x1, . . . ,xλ),︸ ︷︷ ︸
Shared channel

(2.43)

where the last equation holds because (U1, . . . ,Uλ) ↔ (X1, . . . ,Xλ) ↔ Y
forms a Markov Chain, that is, P (y|u1, . . . ,uλ,x1, . . . ,xλ) = P (y|x1, . . . ,xλ).
The first factor depends on the multi-terminal source, the second on the
independent JSC encoders and the last on the multiple access channel.

The joint decoder block D maps the channel output y to λ message
sequences {û1

m(y), . . . ûλm(y)}, that is,

D : YN → {0, 1}K1

︸ ︷︷ ︸
û1(y)

× . . .× {0, 1}Kλ .︸ ︷︷ ︸
ûλ(y)

(2.44)

Given the received sequence y, the decoding objective (the relaxed ob-
jective of iterative decoders) is to minimize the symbol-wise error proba-
bility, i.e. P{ûik(y) 6= uik} for all i and k, given by the symbol-wise MAP
decoding rule

ûik(y) = arg max
uik∈{0,1}

P (uik|y)

= arg max
uik∈{0,1}

P (uik,y)

P (y)
= arg max

uik∈{0,1}
P (uik,y)

= arg max
uik∈{0,1}

∑

∼uik

P (u1, . . . ,uλ,x1, . . . ,xλ,y). (2.45)



28 CHAPTER 2. Background Material

2.5.1 MULTI-TERMINAL SOURCE MODEL

The multi-terminal sources considered in this dissertation are modeled
by an stochastic process {Uk}∞k=1 composed by λ − dimensional random
vectors Uk , (U1

k , . . . , U
λ
k ), whose components take values from the al-

phabet {0, 1}. Concretely, we focus on the spatial multi-terminal sources
that have no memory, and hence, the output vectors have no temporal
correlation. Their joint probability distribution is given by

PU

(
(u1

1, . . . , u
λ
1), . . . , (u1

K , . . . , u
λ
K)
)

=
K∏

k=1

PU(u1
k, . . . , u

λ
k). (2.46)

We will also distinguish two types of multi-terminal sources: the spa-
tially correlated and the uncorrelated ones. A multi-terminal source is said
to be uncorrelated (without spatial correlation) if its output components
are independent, i.e., their joint probability distribution satisfies

PU

(
u1, . . . , uλ

)
, PU1,...,Uλ

(
u1, . . . , uλ

)
=

λ∏

i=1

PU i
(
ui
)
. (2.47)

Conversely, if the above condition does not hold, the multi-terminal
source is said to be correlated.

2.5.2 MULTIPLE ACCESS CHANNEL

In this section we are interested on the conditional probability

PY|X1,...,Xλ(y|x1, . . . ,xλ).

2.5.2.1 Gaussian MAC

The Gaussian multiple access channel considered in this dissertation is
modeled by the sampled baseband (real) link input-output relation

{X1, . . . , Xλ} → Y (2.48)

given by

Yt =
λ∑

i=1

Xi
t + Zt, ∀t ∈ N, (2.49)
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XC
t

X1
t Xλ

t
b b b

Yt

Figure 2.11: Factor Graph of the multiple access channel at time t.

where again, the additive Gaussian noise {Zt}∞t=1 are i.i.d Gaussian random
variables of zero mean and variance N0.

For this channel, the conditional PDF is given by

P
(
y|x1, . . . , xλ

)
=

1√
πN0

exp


−

(
y −

λ∑
i=1

xi
)2

N0


 . (2.50)

For convenience we depict the MAC channel as the Factor Graph in
Fig. 2.11, where we define the new variable node XC

t = X1
t + . . .+Xλ

t , i.e.,
the MAC symbol before considering the Gaussian noise.

2.5.2.2 Rayleigh fast fading MAC

We consider the Rayleigh fast fading MAC channel where the complex-
domain baseband representation relation between the input and the output

{X̃1, . . . , X̃λ} → Ỹ (2.51)

is given by

Ỹt =

λ∑

i=1

H̃ i
t · X̃i

t + Z̃t,∀t ∈ N. (2.52)

As for the point-to-point Rayleigh case of Section 2.4.2, the additive
Gaussian noise {Z̃t}∞t=1 are i.i.d circularly symmetric complex Gaussian
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random variables of zero mean and variance N0. The fading components

{H̃ i
t}, for i = 1, . . . , λ and t ∈ N, are modeled as i.i.d. circularly symmetric

complex Gaussian random variables of unit variance (as in Section 2.4.2).

For this channel model, we define the variable node X̃C
t as the complex-

domain baseband representation of the MAC channel output symbols before
considering the noise, given by

X̃C
t = H̃1

t · X̃1
t + . . .+ H̃λ

t · X̃λ
t .

The conditional PDF (in complex-domain representation) is given by

P
(
ỹ|x̃1, . . . , x̃λ, h̃1, . . . , h̃λ

)
=

1

πN0
exp


−

∥∥∥∥ỹ −
λ∑
i=1

h̃i · x̃i
∥∥∥∥

2

N0


 . (2.53)

Whenever the context allows us to do so, we will drop the widetilde in
Ỹt, H̃t and Z̃t and refer to them by Yt, Ht and Zt.

2.6 PARALLEL RCM-LDGM CODES

In this section we present a detailed description of the JSCC PX|U(x|u)
that are utilized during the dissertation. For convenience we change the
notation from time t to symbol j.

2.6.1 RATE COMPATIBLE MODULATION CODES.

RCM codes were proposed by Cui in [4, 5] to achieve rate adaptation
by generating multi-level symbols from weighted linear combination of the
input bits as if Fig. 2.12. RCM symbols are used to form the constellation
directly, without the need of any labeling, by placing them two-by-two.

In essence, RCM codes embed source compression into modulation
through the mentioned generation of multi-level symbols from weighted
linear combinations of randomly chosen input bits. This process is realized
by using a random mapping matrix with real-valued entries.

The schematic diagram of an RCM is presented in Fig. 2.13 and is
represented by a bipartite graph where the edges connecting input bits
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Figure 2.12: Illustration of RCM: source bits are mapped to multi-

level symbols through weighted sum operations. Sym-

bols are paired two-by-two to form a QAM constella-

tion.

and RCM symbols have associated weights. These symbol-to-bit edges
are randomly chosen. Specifically, If W = {w1, w2, . . . , wdr}, with {wi} ∈
N ∀i ∈ {1, . . . , dr}, is the design weight multi-set of an RCM code, then, its
RCM symbols are generated as the sum of 2 ·dr randomly chosen input bits
weighted by the values in ±W = {w1, w2, . . . , wdr ,−w1,−w2, . . . ,−wdr}.
Notice that a multi-set is a generalization of the concept of a set that,
unlike a set, allows multiple instances of the multi-set’s elements. The
selection of this multi-set determines the characteristics of the mapping
and the number of input bits, 2 · dr, added in each multi-level symbol.

Let G, of size4 M × K, be the incidence sparse matrix of the RCM
graph, where rows represent coded symbols, columns represent input bits
and the nonzero entry (j, k) is the weight associated to the edge connecting
symbol j with input bit k. The RCM encoding is performed as follows:
First, the source information blocks are partitioned into blocks of length K

4Here we use M instead of N when considering only RCM codes, but it also refers to
the coded sequence length.
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U1 U2 U3 U4 UK−1 UK
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w1 −wdr w1 −wdr

Figure 2.13: Bipartite graph representation of an RCM code.

denoted by u, and then, the jth RCM symbol, xj , is obtained as

xj = [Gu]j =
K∑

k=1

gj,kuk, j ∈ {1, . . . ,M}, (2.54)

where [ · ]j is the element at row j, gj,k denotes entry (j, k) of matrix G, and
the operations are in the real field. Each multi-level symbol takes values in
the finite symbol alphabet Φ = {φ1, φ2, . . . , φ|X |}.

The design of good RCM codes follows three constraints:

1. Constraint 1: G should be regular in rows.
In order to achieve a fixed constellation, all sum operations of the
generated RCM symbols should have the same weights. Therefore, G
has to be regular in rows, i.e., each row contains the same number of
non-zero entires drawn from a fixed weight multi-set.

Despite the fact that the weight set is fixed, they should be randomly
placed in order to create many symbols enabling the rateless property.
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2. Constraint 2: G should be as regular as possible in regards to its
columns.
Since RCM codes can be viewed as a coded modulation scheme, it
is important to measure its free distance dfree. Since the all-zero bit
sequence generates an all-zero codeword, dfree is given by

dfree = min
u∈{0,1}K

‖Gu‖2. (2.55)

The minimum is usually taken with source sequences u with only one
bit 1. In this case, the minimum is given by ‖G[:,i]‖2, where G[:,i]

is the ith column of G. Thus, G should be constructed such that
mini ‖G[:,i]‖2 is maximized.

3. Constraint 3: The weight setW should create diverse symbol values.
The information carried in the multi-level symbols is upper bounded
by the entropy of these symbols. In particular, if we denote by X
the random symbol with possible outcomes {φ1, φ2, . . . , φ|X |}, which

occur with probability {PX(φi)}|X |i=1, at the output of the encoder,
then

H(X) = −
|X |∑

i=1

PX(φi) logPX(φi) ≥ R, (2.56)

where H(X) is the entropy of the RCM symbols and R is the RCM
code rate.

Construction of RCM encoding matrices

In this section we present the construction of the generation matrix G
such that it has good properties at varying values of M through an example.
If dr = 8, and assuming K divisible of by dr, then the construction of matrix
G is given by the following steps:

1. Construct the K/2×K matrix G0 as

G0 =




Π(Aw3) Π(Aw4) Π(Aw1) Π(Aw2)
Π(Aw1) Π(Aw2) Π(Aw3) Π(Aw4)
Π(Aw4) Π(Aw3) Π(Aw2) Π(Aw1)
Π(Aw2) Π(Aw1) Π(Aw4) Π(Aw3)


 ,
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where Π(·) denotes random column permutations of a matrix, and
Awl is a K/8×K/4 sparse matrix given by:

Awl =




wl −wl 0 0 0 0 . . . 0 0
0 0 wl −wl 0 0 . . . 0 0
0 0 0 0 wl −wl . . . 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
0 0 0 0 0 0 0 wl −wl




with wl ∈ W, for l ∈ {1, . . . , dr}.

2. Vertically stack as many G0 as needed (and only as many rows as
needed from the last one) until the required M × K G matrix is
obtained.

2.6.2 LOW DENSITY GENERATOR MATRIX CODES

Random-like codes with iterative decoding such as Turbo codes [13] and
low-density parity check (LDPC) codes [14, 15, 16] have been widely stud-
ied and are known to be able to approach capacity. The third and fourth
generation (3G and 4G) of communication standards utilizes Turbo codes,
while they are replaced by LDPC codes in 5G. Turbo and LPDC codes
present high complexity in their decoding and encoding, respectively. This
presents some challenges when employing them in some practical applica-
tions and leads the way to new random-like codes with low encoding and
decoding complexity.

Low-Density Generator Matrix codes, or LDGM codes, are a random-
like binary subclass of LDPC codes with a sparse generator matrix GL,
which allows to lower the encoding complexity. Moreover, since they uti-
lize their encoding sparse matrix for decoding, have also low decoding com-
plexity. Unlike standard LDPC codes, regular LDGM codes have excellent
performance. However, LDGM codes have been historically disregarded
due to their high error floors [16]. Later, authors in [17, 18] showed that
LDGM codes can achieve performances similar to the state of the art codes
if properly adapted. Moreover, the work in [19] shows that the parallel
concatenation of two regular LDGMs codes can reduce the error floor sig-
nificantly. The idea in [19] is to use a powerful low rate code in parallel
with a high rate code. The low rate code is capable of correcting most of
the errors, while the high rate code is designed to eliminate as many of the
residual errors as possible. In light of their excellent performance, in this
thesis we focus on systematic LDGM codes.
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We denote by systematic to LDGM codes, whose generator matrices

are of the form GL =

[
IK
P

]
, where IK is the identity matrix of size K and

P is a I ×K random-like sparse matrix whose non-zero entries are 1s. The
matrix P is characterized by the pair (dl, dc), which denote the number of
nonzero elements of a column and of a row, respectively. Given a block of K
information bits u, the LDGM coded Binary Phase-Shift Keying (BPSK)
modulated sequence x, of length N = K + I and encoded with rate K

K+I ,
is given by

x = 2 ·
(([

IK
P

]
u mod 2

)
− 1

2

)
=

[x1, x2, . . . , xK︸ ︷︷ ︸
systematic

, xK+1, xK+2, . . . , xK+I︸ ︷︷ ︸
non−systematic

]>, (2.57)

where operations are in the binary field. Notice that the sequence x
consists of the BPSK modulated source bit block {x1, x2, . . . , xK} and of
the non-systematic I LDGM coded BPSK modulated symbols given by
{xK+1, xK+2, . . . , xK+I}.

2.6.3 PARALLEL RCM-LDGM CODES

The parallel concatenation of RCM and LDGM codes was first proposed
in [6, 7] in order to lower the error floor exhibited by RCM codes. The main
idea is to substitute a few analog RCM coded symbols by LDGM binary
symbols so that the LDGM symbols are able to correct residual errors
produced by the RCM code. This generates the hybrid scheme of Fig.
2.14 with two different sub-blocks, one them analog (RCM) and the other
digital (LDGM). At the receiver, the RCM and LDGM sub-blocks perform
decoding jointly using belief propagation/message passing. Interestingly
enough, this parallel concatenation preserves the smooth rate adaption of
RCM codes, since LDGM codes can also have rateless [20] properties.

A parallel RCM-LDGM code of rate K/N , with N = M + I, con-
sists of a parallel concatenation of an RCM code of rate K/M with the I
non-systematic coded binary symbols of a systematic LDGM code. Given
a block of K information bits u, the RCM-LDGM coded sequence x is
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Figure 2.14: Encoder diagram of the parallel concatenation of an

RCM sub-block and an LDGM code.

obtained as

x =

[
Gu

2
(
(Pu mod 2)− 1

2

)
]

=

[x1, x2, . . . , xM︸ ︷︷ ︸
RCM

, xM+1, xM+2, . . . , xM+I︸ ︷︷ ︸
LDGM

]>, (2.58)

where G is the RCM generator matrix of Section 2.6.1 and P is the non-
systematic part of the LDGM generator matrix. Finally, the M RCM
symbols and the I BPSK modulated LDGM coded bits are grouped two-
by-two and transmitted using a (Quadrature Amplitude Modulation) QAM
modulator, so that the spectral efficiency, ρ, is

ρ =
2 ·K
M + I

(2.59)

bits per complex channel symbol.

2.6.4 DECODER OF THE PARALLEL RCM-LDGM CODES

In this section we present the details of the SPA applied to the factor
graph sketched in Fig. 2.15 that models the RCM-LDGM parallel concate-
nation. In order to link the notation utilized in RCM decoding with the
previously developed FG theory, let us begin by providing some clarifica-
tions and/or definitions, connecting the previously developed graph theory
with the notation encountered in the RCM-LDGM literature.

• The Variable Nodes (VN) represent source bits {U1, . . . , UK}.
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U1 U2 U3 UK−1 UK

T1

x1

T1

x2

TM

xM

TM+1

xM+1

TM+I

xM+I

RCM symbols LDGM symbols

b b b b b b

b b b

rj,k qk,j

Figure 2.15: Factor graph of a parallel RCM-LDGM code. Note

that the source’s and channel’s FG are not plotted.

• The function nodes (also referred as Check Nodes (CN)) represent
the coded symbols {x1, . . . , xN}.

• CNs {Tj}M+I
j=M+1 (in pink) are LDGM and their function Tj(·) is the

same as in standard LDGM coding.

• RCM CNs (in blue), {Tj}Mj=1, are more complex and their function
Tj(·) requires the use of direct convolutions, due to the arithmetic
additions involved in the generation of these symbols.

• Messages µTj→Uk : The messages passed from the jth CN to the kth

VN are denoted by rj,k.

• Messages µUk→Tj : The messages passed from the kth VN to the jth

CN are denoted by qk,j .

• Sets Tj ∈ ψ(Uk) \ Tj : The set of CNs connected to VN Uk without
considering CN Tj are denoted by n(Uk) \ Tj .

• Sets Ui ∈ ψ(Tj) \ Uk: The set of VNs connected to CN Tj without
considering VN k are denoted by n(Tj) \ Uk.
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One complication that this decoder addresses is that the messages usu-
ally exchanged in RCM are PMF., whereas Log Likelihood Ratio (LLR)
messages are normally used in LDGM codes. As the source bits are binary,
the PMF. can be represented by LLR values. Thus, the messages can be
easily exchanged between the RCM sub-block and the LDGM sub-block
by just using LLR values. The LLR values are only converted to a PMF.
representation when updating the RCM CNs.

The details of the decoding algorithm are provided below. At each
iteration t, and for a predefined number of iterations tmax, the sum-product
algorithm is implemented by the sequential execution of the following steps:

• STEP 1. q
(t)
k,j: Message passing from variable nodes, {Uk}Kk=1,

to RCM and LDGM check nodes {Tj}M+I
j=1 .

q
(t)
k,j =

∑

i∈n(Uk)\Tii

r
(t−1)
i,k + log

(
δ

(t−1)
k (uk = 1)

δ
(t−1)
k (uk = 0)

)
, (2.60)

where r
(0)
i,k = 0 for k ∈ {1, . . . ,K}, i ∈ n(Uk) \Tj and δ

(t−1)
k (uk) is the

posteriori information for the input variable node Uk is computed at
time t− 1 from the source’s factor graph.

• STEP 2. r
(t)
j,k: Message passing from RCM and LDGM check

nodes, {Tj}M+I
j=1 , to variable nodes {Uk}Kk=1.

– Computation at RCM check nodes {Tj}Mj=1:

Observe that the RCM symbol xj =
∑
i
gj,iui can be rewritten

as the sum of two terms given by xj = aj,k + gj,kuk, where
aj,k =

∑
i∼k

gj,iui and
∑
i∼k

means the sum over all i except k. In

AWGN channels, given the received channel symbol yj = xj +

zj = aj,k + gj,kuk + zj , the message r
(t)
j,k is calculated as

r
(t)
j,k = log




∑
v∈Φ

P (t)(aj,k = v) · e−(yj−v−gj,k)2/N0

∑
v∈Φ

P (t)(aj,k = v) · e−(yj−v)2/N0


 , (2.61)

where the sum in v is over the RCM symbol alphabet Φ. Notice
that P (t)(aj,k = v), the probability of aj,k = v at iteration t, is
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calculated in a straightforward manner by convolving the PFM
of the terms in the summation, obtained from the LLR messages

q
(t)
k,j . An efficient way to implement these convolutions in a zig-

zag manner is explained in [5].

– Computation at LDGM check nodes {Tj}M+I
j=M+1: As in

standard LDGM codes, the LLR message transmitted from the
jth check node to the variable node Uk is given by

r
(t)
j,k = −2atanh


tanh

(
−γj

2

) ∏

i∈n(Tj)\Uk

tanh


−

q
(t)
k,i

2




 ,

(2.62)

where γj =
(yj + 1)2 − (yj − 1)2

N0
is the channel LLR value.

• Decision: At the end of the iterations, when t = tmax, an estimate
of uk can be calculated as

ûk =





1,

(
∑

i∈n(Uk)

r
(tmax)
i,k + log

(
δ

(tmax)
k (uk = 1)

δ
(tmax)
k (uk = 0)

))
> 0

0, otherwise

(2.63)

Note that the following algorithm can be used for only RCM codes by
just setting I = 0.
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This first part of the dissertation considers the point-to-point transmis-
sion of the information generated by a single source. Concretely, we look
for new design methods and applications to the RCM and parallel RCM-
LDGM codes presented in Section 2.6.1. Recall that what made these codes
interesting in the first place was (i) their joint source-channel coding capa-
bilities, (ii) the way in which they embed the source compression directly
into modulation by building simple linear combinations, (iii) the capacity
of these codes to adapt their rate seamlessly by varying the number of
generated symbols. Before explaining the proposed point-to-point coding
schemes or design methods, aiming to provide further context to the utilized
codes, let us start by discussing the related work on (i) joint source-channel
coding, (ii) coded modulation and (iii) rate adaptation, as well as provide
background information on compressive sensing theory, since the core of
RCM is a new Random Projection (RP) code inspired by the Compressive
Sensing (CS) theory.

Joint Source-Channel Coding

The transmission of information produced by binary single sources is
usually separated into two independent sub-problems, named source and
channel coding. This procedure simplifies the construction of the system,
since the source encoder can be optimized without any knowledge of the
channel statistics, while the channel encoder can be optimized irrespec-
tively of the source. If required, each encoder can be adjusted leaving the
other unchanged. However, many schemes treat the source compression
and channel coding in a joint fashion under a unified resource constraint
and/or toward a common optimization problem. This family of algorithms
are called Joint Source-Channel Codes (JSCC) and, for point-to-point com-
munications, are classified into two categories.

• Works in the first category apply to multimedia (such as video or
image) transmission. For example, authors in [21, 22, 23] exploit the
rate distortion behavior of the source and study optimal rate allo-
cation schemes aiming to minimize the expected distortion, whereas
the goal in [24] is to optimize the power consumption. Other works,
such as [25] pair stronger channel codes to more important content,
designing Unequal Error Protection (UEP) schemes for progressively
encoded sources. The JSC coding works in this last group studied
in the literature include the use of different codes, such as the rate-
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compatible LDPC codes in [26], and rate-free Raptor codes, both over
GF(2) [27] and GF(4) [28].

• The second category considers the use of the same code for both
source compression and protection of a single source. Regular channel
codes have been shown to work for source compression if concatenated
with the block sorting Burrows-Wheeler Transform (BWT), such as
LDPC codes [29], Raptor codes [30] and Turbo codes [31]. Further-
more, authors in [32] use two concatenated independent LDPC codes
in the transmitter: one for source coding and the other for channel
coding, with a joint belief propagation decoder. The works in [33] and
[34] design Turbo codes for the transmission of non-uniform binary
sources over noisy channels. However, none of the previous examples
can achieve smooth rate adaptation.

Coded Modulation

The RCM code is essentially an enhanced coding modulation scheme
for high spectral efficiencies with embedded source compression. There-
fore, the following briefly reviews related work on coding and modulation.
Ungerboeck [35, 36] was the first to propose an scheme of coded modu-
lation, that he denoted as Trellis-Coded Modulation (TCM). The goal of
that scheme is to maximize the minimum free Euclidean distance by in-
troducing trellis coding and set partitioning in the physical layer. Another
coded modulation scheme is Multi-Level Coded (MLC) modulation [37, 38],
which divides the channel coding into as many independently designed lev-
els as modulation bits. MLC present the advantage that any binary code
designed on Hamming distance can be used.

When Rayleigh channels are considered, the code’s robustness becomes
vital. In order to address this issue [39] proposed Bit-Interleaved Coded
Modulation (BICM) and later, authors in [40] presented an information
theoretic analysis of BICM. On one hand, bit interleaving increases the
channel diversity which is equivalent to increasing the Hamming distance.
On the other hand, infinite depth interleaving tackles the mismatch decod-
ing issue [41].

The invention of capacity-achieving turbo codes [42] and the rediscovery
of LDPC codes [43, 44] boosted the development of contemporary coded
modulation, which are able to approach the Shannon limit at the designed
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SNR. However, they lack rate adaptation capabilities, and must rely on
separate adaptive modulation to change the rate when the channel changes
greatly. In addition, in order to achieve capacity performance, infinite block
coding length and high complexity are usually required.

Rate Adaptation

The capacity of communication systems to adapt their coding rate,
modulation order and power allocation based on varying channel conditions
is denoted as rate adaptation. Among these techniques, the most researched
and practically used is Adaptive Modulation and Coding (AMC) [45, 46,
47, 48]. However, ACM suffers from two important disadvantages. On
one hand, the rate and modulation selection is based on a predefined set
of combinations, whose limitation results in stair-shaped rate curves. On
the other hand, the rate selection is highly dependent on an accurate and
instantaneous channel estimate, which cannot be obtained simultaneously
in reality.

Hybrid automatic repeat request (HARQ) [52] is a supplemental tech-
nique to AMC to combat the uncertain wireless conditions. In event of a
decoding fail, type-I HARQ [49] discards the received data, whereas the
incremental redundancy scheme, named type II HARQ [50, 51], combines
it with the re-transmitted data. Type II HARQ is able to provide smoother
rate adaptation utilizing either a rate compatible code, such as punctured
Turbo code [53] or alternative rate-less codes, such as Raptor code [54].
However, the range of rate adaptation is still limited.

Aiming to achieve smooth and blind rate adaption, Gudipati and Katti
[2] proposed a new scheme called Strider, which automatically achieves
almost the optimal rate adaptation by adding a Minimum Distance Trans-
former (MDT) after the existing encoding and modulation. The free dis-
tance of the constellation is adapted to suit the estimated channel con-
ditions. In parallel, Spinal codes were proposed in [3], which are able
to cope with time-varying channel conditions by sequentially applying a
pseudo-random hash function to the message bits to produce a sequence of
coded symbols for transmission. However, all these schemes assume that
the transmitted data is already compressed. Otherwise, the end-to-end
performance would suffer significant degradation.
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Compressive Sensing

The RCM coding scheme consists of a bit-to-symbol mapping that con-
verts the input source bits into multi-level symbols through weighted lin-
ear combinations. Essentially, this is a Compressive Sensing (CS) [55, 56]
scheme applied to a binary input. Thus, in the sequel we review CS theory
and emphasize its relation to channel coding.

The CS theory, presented in [57, 56, 58] by Candes, Romberg, Tao
and Donoho, states the sparsity of a signal can be exploited to recover
it from far fewer samples than required by the NyquistShannon sampling
theorem [59], i.e., an n-dimensional signal having a sparse or compressible
representation can be reconstructed from m linear measurements even if
m < n [60], [56]. The reason is that the actual information of the sparse
signal can be represented with only a few significant components. Examples
of signals having sparse representation are images or speech signals.

Traditionally, CS considers sparse signals in RN and dense projection
matrices G ∈ RM × RN . The original signal can be reconstructed by ap-
plying convex relaxation [61, 62], l1-minimization [63], matching pursuit
[64, 65, 66], iterative threshold methods [67], and subspace pursuit [68].
Although it is possible to extend these algorithms to binary signals and/or
sparse projection matrices, their greedy iterative algorithm makes the de-
coding complexity very high.

CS can be used as a JSCC scheme [69, 70, 71, 72, 73]. The works in
[70] and [73] study the energy performance of CS and show its robustness
against channel fading and noise. The application of CS to compress cor-
related sources and protect the measurements under noisy channels was
studied in [69, 71, 72], where it was shown that CS decoders can provide
trade-offs between rate and decoding complexity. CS-based JSCC schemes
have continuous rate-distortion performance in a noisy Gaussian channel.
However, these works consider highly-sparse real-valued sensor readings of
wireless sensor systems, whose decoding is based on computation-intensive
convex optimization, due to the traditional use of CS techniques. There-
fore, the applicability of such schemes for the transmission of generic binary
symbols seems impractical.

By applying several restrictions to reduce its complexity, a less tradi-
tional application of CS is to use them as conventional channel codes. For
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example, Sudocodes [74] can be used as erasure codes for real-valued data
and reduce the encoding and decoding complexity by limiting the projec-
tion matrices to be sparse binary. The first to consider binary sources in CS
were Wu et al. [75] and Liu et al. [76], who also derived close-form decod-
ing solutions. However, they only considered the noiseless case. Authors in
[77] provided a solution to decode noisy CS based on the belief propagation
algorithm, but only considered projection matrices whose entries are drawn
from Rademacher distribution.

We begin this part of the Thesis by proposing an EXIT chart analysis
for RCM-LDGM codes in Chapter 3, with the purpose of speeding up their
design. Chapter 4 considers the transmission of sources with memory, for
which we build a joint source-channel coding scheme utilizing the Burrows-
Wheeler transform and RCM-LDGM codes. The novelty of the proposed
scheme lies in its high throughput and rate compatibility capabilities that
it inherits from its constituent codes. Finally, in Chapter 5 we propose the
use of RCM-LDGM codes for impulsive noise channels.
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CHAPTER 3

EXIT Chart Analysis

In this chapter we propose the design of parallel RCM-LDGM codes using
an EXIT chart analysis. The goal of these methods is to speed up the
design procedure, avoiding time-consuming Monte Carlo simulations that
are currently needed when designing RCM-LDGM codes (see [6, 7]). We
consider the transmission of memoryless non-uniform binary sources (refer
to Section 2.3.2) over AWGN and fast Rayleigh channels (refer to Section
2.4).

3.1 INTRODUCTION

EXIT charts were first introduced in [78] to study the iterative decod-
ing behavior of two or more constituent decoders. They can be used to
predict the asymptotic converge of a code, and to obtain an estimate of
the lowest SNR needed for convergence, as well as an indication about the
required number of decoding iterations for convergence, resulting in a great
tool for designing iterative codes. For example, authors in [79] proposed
a curve fitting procedure based on EXIT charts to design an LDPC code
valid for modulation and detection. Given the iterative nature of the con-
sidered codes, the EXIT charts present a good method to visually explore
the iterative exchange of information that occurs in the decoders of these
schemes.

49
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It should be mentioned that the authors in [4] were the first to use
EXIT charts for RCM codes. However, the EXIT analysis for pure RCM
codes is not straightforward to apply to the parallel RCM-LDGM coding
scheme, since two different types of check nodes, RCM and LDGM, have to
be considered (refer to Fig. 2.15). There are many works in the literature
that consider multi-edge type EXIT charts. For example, the work in [80]
utilizes this type of EXIT charts to design the bit mapping for LDPC coded
BICM schemes, whereas authors in [81] optimize the bit mapping of LDPC
coded modulation with APSK constellations. However, RCM-LDGM codes
present the added difficulty of mixing analog and digital check nodes, and,
therefore, strategies developed in [80, 81] can not be directly applied. In
this chapter we present a novel EXIT chart for RCM-LDGM codes and
a BER prediction analysis based on EXIT charts that was not previously
considered in the literature for this type of codes.

3.2 RCM-LDGM EXIT CHARTS

The model for the EXIT chart is depicted in Fig. 3.1. As it can be
seen, it is composed by two constituent decoders: the Variable Node De-
coder (VND), composed by all source variable nodes, and the Check Node
Decoder (CND), composed by RCM and LDGM check nodes. Note that
RCM check nodes work in the real field, whereas LDGM check nodes work
in the binary field. As shown in Section 2.6.4, the decoder interchanges
LLR messages between VNs and CNs. We model these LLR messages as
outcomes of real-valued r.v’s E (output from either a VND or a CND) and
A (input to either a VND or a CND), which are super-scripted by (vn) or
(cn) depending on the decoder. For example, E(vn) models the extrinsic
information produced at the VND whereas A(vn) is the a priori information
arriving at the VND. Similarly, E(cn) and A(cn) are the (produced) extrin-
sic and (arrived) a priori information on the CND, respectively. In order
to characterize the behavior of each consistent decoder, a function of the
mutual information I(E;U) between the extrinsic output E and the binary
source U (with distribution (p1; p0)) is obtained. The input of this function
is given by the mutual information I(A;U) between the decoder’s a pri-
ori input A and U . These mutual information are obtained by numerical



RCM-LDGM EXIT charts 51

CND VNDchannel
RCM-LDGM Y

encoder
source

A (vn)

E (vn)A (cn)

E (cn)

U

I(U ;E(cn ) ) = I(U ;A(vn ) )

I(U ;A(cn ) ) = I(U ;E(vn ) )

X

decoder

bU

Figure 3.1: Model for EXIT chart analysis. The Factor Graph of

the VND and CND is given in Fig. 2.15.

integration given by

I(L;U) = p0

∫ ∞

−∞
fL(ξ|0)log2

(
fL(ξ|0)

p0fL(ξ|0) + p1fL(ξ|1))

)
dξ

+ p1

∫ ∞

−∞
fL(ξ|1)log2

(
fL(ξ|1)

p0fL(ξ|0) + p1fL(ξ|1))

)
dξ, (3.1)

where L ∈ {A,E} and fL(ξ|u)1, for u = 0, 1, is the conditional PDF of L
given U , which depends on the decoder under consideration. In the sequel,
we will denote I(L;U) for a VND or a CND as IL,VND = I(L(vn);U) or
IL,CND = I(L(cn);U), respectively. Finally, fL(ξ|u) depends on the con-
stituent decoder under consideration. In the next sections we show the
calculations of fA(vn)(ξ|u), fA(cn)(ξ|u), fE(vn)(ξ|u) and fE(cn)(ξ|u).

Before deriving the EXIT chart for the parallel RCM-LDGM code, let

us define p
(vn)
RCM and p

(cn)
RCM as the average percentage of links connected

to an RCM CN (from the sum of RCM and LDGM edges) arriving at the
VND and CND, respectively.

3.2.1 VND EXIT CURVE FOR RCM-LDGM CODES

The EXIT curve of the VND is given by the transfer characteristic
between IE,VND = I(E(vn);U) and IA,VND = I(A(vn);U). Note that the
realizations of r.v’s E(vn) and A(vn), are the messages exchanged in the

1In this chapter we denote the PDF of the r.v. X by fX instead of pX to avoid
confusions with p1 and p0, which stand for the probabilities of the nonuniform source.
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sum-product algorithm, {rj,k} and {qk,j}, respectively. In order to evaluate
these mutual informations from (3.1), the conditional PDF of the a priori
A(vn) and the extrinsic E(vn) at a variable node decoder, given U , have to
be found.

Calculation of IA,VND

For RCM-LDGM codes, we have to consider two types of a priori mes-

sages arriving at the VND, A
(vn)
RCM and A

(vn)
LDGM , which correspond to the

messages arriving from an edge connected to an RCM and an LDGM,
respectively. For convenience, the work in [82] modeled the considered con-
ditional PDFs as the PDF of the LLR random variable obtained at the
output of a virtual AWGN channel when its inputs are uniform binary
source symbols U , i.e.,

Y = U +N, N ∼ N
(
0, σ2

)
. (3.2)

Assuming this model, A
(vn)
RCM can be expressed as

A
(vn)
RCM = log

(
P (u = 1|Y )

P (u = 0|Y )

)
=

2U − 1

2σ2
+
N

σ2
.

By assuming the same for A
(vn)
LDGM , A

(vn)
RCM and A

(vn)
LDGM are expressed as

A
(vn)
RCM |U ∼ N

(
(2u− 1)σ2

R,A/2, σ
2
R,A

)
(3.3)

A
(vn)
LDGM |U ∼ N

(
(2u− 1)σ2

L,A/2, σ
2
L,A

)
, (3.4)

where σ2
R,A and σ2

L,A represent the inverse of the variance of the two differ-
ent virtual channels, that act as parameters. The main challenge of having
two different types of CNs, is that the mutual information IA,VND will now
depend on two variables, σ2

R,A and σ2
L,A. Notice, however, that although

A
(vn)
R |U and A

(vn)
L |U can be considered independent, their variances are

coupled due to the way the SPA generates the messages. Good knowledge
(high values of LLR) of messages coming from one type of CN will likely
be accompanied of similar messages from the other type of CN. Therefore,
aiming to simplify the analysis by obtaining IA,VND as a function of just
one variable, we look for the relation between σ2

R,A and σ2
L,A and try to

express one as a function of the other.

Calculating numerically the exact coupling between σ2
R,A and σ2

L,A, as

a function σ2
R,A = f(σ2

L,A,SNR), for the range of SNR of interest (i.e., the
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Figure 3.2: Examples of σ2
R,A versus σ2

L,A curves obtained by Monte

Carlo simulations for two different RCM-LDGM codes

considering A (fast fading Rayleigh channel) and B

(AWGN channel).

SNRs belonging to the waterfall region of the code), is computationally
expensive, which is counter to the objective of EXIT chart analysis. For-
tunately, simulation results like the ones in Fig. 3.2 have shown that this
dependency can be approximated linearly.

Therefore, in what follows we will assume that σ2
R,A = f(σ2

L,A) can be

approximated in the range of SNR of interest by σ2
L,A =

σ2
R,A

κ , yielding

A
(vn)
RCM |U ∼ N

(
(2u− 1)

σ2
R,A

2
, σ2

R,A

)
(3.5)

A
(vn)
LDGM |U ∼ N

(
(2u− 1)

σ2
R,A

2 · κ ,
σ2
R,A

κ

)
. (3.6)

The constant κ scales the variance of the distribution of A
(vn)
LDGM with re-

spect to the variance of A
(vn)
RCM , and is obtained as explained in Section

3.2.2. Once κ is found, and utilizing (3.5) and (3.6), the corresponding
conditional PDF of A(vn)|U , is obtained as

A(vn)|U ∼ fA(vn)(a|u) =

f
A

(vn)
RCM

(a|u)p
(vn)
RCM + f

A
(vn)
LDGM

(a|u)(1− p(vn)
RCM ), (3.7)
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and finally, IA,VND is calculated from f
A

(vn)
RCM

as a parametric expression of

σ2
R,A by applying (3.1).

3.2.1.1 Calculation of IE,VND

Once fA(vn)(a|u) is calculated, the conditional distribution of the extrin-
sic r.v. E(vn) at the variable node decoder can be computed. Notice that
there are two types of LLR messages: (i) ones passed on an edge connect-

ing a VN to an RCM check node (modeled as a r.v. denoted as E
(vn)
RCM ),

and (ii) others passed on an edge connecting a r.v. to an LDGM check

node (modeled as r.v. E
(vn)
LDGM ). From the corresponding connections of

the factor graph, we obtain

E
(vn)
RCM = A

(vn)
RCM + . . .+A

(vn)
RCM︸ ︷︷ ︸

(d
(v)
RCM−1) i.i.d r.v’s

+A
(vn)
LDGM + . . .+A

(vn)
LDGM︸ ︷︷ ︸

dl i.i.d r.v’s

+ log

(
p1

p0

)

(3.8)

E
(vn)
LDGM = A

(vn)
RCM + . . .+A

(vn)
RCM︸ ︷︷ ︸

d
(v)
RCM i.i.d r.v’s

+A
(vn)
LDGM + . . .+A

(vn)
LDGM︸ ︷︷ ︸

(dl−1) i.i.d r.v’s

+ log

(
p1

p0

)
,

(3.9)

where d
(v)
RCM and dl are the average (and exact) number of connections

between each VN and RCM and LDGM check nodes, respectively. The

corresponding conditional PDFs of the extrinsic LLR messages, E
(vn)
RCM and

E
(vn)
LDGM , are

fRCM (e|u) = N
(

(2u− 1)
σ2
R,E

2
+ log

(
p1

p0

)
, σ2

R,E

)

fLDGM (e|u) = N
(

(2u− 1)
σ2
L,E

2
+ log

(
p1

p0

)
, σ2

L,E

)
,

respectively, where

σ2
R,E = σ2

R,A

(
d

(v)
RCM − 1 +

dl
κ

)
,

σ2
L,E = σ2

R,A

(
d

(v)
RCM +

dl − 1

κ

)
.
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Again, since we have two types of extrinsic messages, the overall conditional
PDF of the extrinsic LLR random variable E(vn)|U is obtained as

E(vn)|U ∼ fE(vn)(e|u) =

fRCM (e|u)p
(cn)
RCM + fLDGM (e|u)(1− p(cn)

RCM ). (3.10)

Finally, applying (3.1) IE,VND is also calculated from f
E

(vn)
RCM

as a parametric

expression of σ2
R,A.

3.2.2 COMPUTING κ

κ is computed by Monte Carlo simulation through the following iterative
procedure:

1. Start with an initial value of κ in (3.6) (such as κ = 1), and select
a value of σ2

R,A so that the corresponding value of the mutual infor-
mation computed by the PDF in (3.5) is in the range (0.5,0.9). For
the value of σ2

R,A under consideration, generate the extrinsic messages
passed from the VN to the RCM and LDGM check nodes according
to (3.8) and (3.9), respectively.

2. Obtain the empirical conditional PDFs of the extrinsic LLR messages
passed from each LDGM and RCM check nodes to the VN numerically
by running the SPA and using the above generated extrinsic messages.

3. Define κ1 as the ratio between the variances of the empirical condi-
tional distributions of RCM and LDGM check nodes obtained in step
2.

4. Repeat the previous 3 steps, using κ1 as the initial value for κ, until
the value of κ1 in step 3 is close enough to the value of κ1 in the
previous iteration.

5. Set κ = κ1 in the distribution (3.6).

Figure 3.3 shows a graphical example of the steps followed to find κ. The
initial empirical conditional PDFs (i.e., when κ = 1) are shown in Fig. 3.3a.
As it can be observed, none of the LLR messages is appropriately modeled
at this point, since the initial value for κ (κ = 1) was chosen arbitrarily.



56 CHAPTER 3. EXIT Chart Analysis

-10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ARCM
(vn)  empirical PDF

ARCM
(vn)  modeled PDF

ALDGM
(vn)  empirical PDF

ALDGM
(vn)  modeled PDF

(a) iteration 1

-10 0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ARCM
(vn)  empirical PDF

ARCM
(vn)  modeled PDF

ALDGM
(vn)  empirical PDF

ALDGM
(vn)  modeled PDF

(b) iteration 2

Figure 3.3: Example of the iterative procedure to find κ. The his-

tograms (conditioned to U = 1) obtained by Monte

Carlo simulations are plotted in blue and the corre-

sponding modeled conditional PDFs in red (refer to

(3.5) and (3.6)). a Iteration 1. b Iteration 2.

Note that since κ = 1, the modeled A
(vn)
RCM is equal to A

(vn)
LDGM . The value

of κ obtained in step 3 is 29, and the corresponding empirical conditional
distributions are shown in the Fig. 3.3b. Notice that for this value of κ, the
messages are better modeled by (3.5), (3.6). This second iteration results
in κ = 26. Although not shown, after continuing to perform iterations
we obtain κ =≈ 34 repeatedly, which will be set as the final value. We
have found that in all simulated cases the number of iterations required for
κ0 ≈ κ1 is around three.

3.2.3 CND EXIT CURVE FOR THE RCM-LDGM CODES

From the fact that the a priori information A(cn) at the check node
decoder is equal to the extrinsic information E(vn) at the variable node

decoder (refer to Fig. 3.1), the PDF f
(cn)
A (a|u) of A(cn) is given by the

PDF in (3.10), interchanging E with A

A(cn)|U ∼ fA(cn)(a|u) =

fRCM (a|u)p
(cn)
RCM + fLDGM (a|u)(1− p(cn)

RCM ), (3.11)

so that IA,CND = IE,VND.
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To compute IE,CND, we need to find the conditional PDF fE(cn)(e|u) of
the extrinsic LLR E(cn) at the CND. This is done by running Step 2 of the
sum-product algorithm (see Section 2.6.4) and setting qk,i = a, where a are
realizations of a random variable A(cn) with conditional PDF (3.11). The
empirical conditional PDF fE(cn)(e|u) is now found by the histogram of the
realizations {rj,k}.

Remark : Observe that the EXIT Curve of VND only depends on the

values of d
(v)
RCM , and dl. On the other hand, the EXIT Curve of the CND

depends on all the parameters of the code and source, i.e., {W, SNR, d
(v)
RCM ,

dl, p0, M , I}.

3.2.4 TRAJECTORIES OF ITERATIVE DECODING AND DE-
CODING THRESHOLD

To account for the iterative nature of the decoding process, both the
VND and CND transfer characteristics should be plotted into a single dia-
gram. As long as the SNR is large enough so that both transfer curves do
not intersect, the iterative process will achieve its maximum mutual infor-
mation values, given by the source’s entropy, (H(p0), H(p0)), consequently
achieving a low BER. The smallest SNR value for which both curves do not
intersect is defined as the decoding threshold, and represents the minimum
SNR required to decode without errors an infinite length code with the
given configuration. Therefore, the code design problem reduces to find a
code configuration, i.e., weight sets W, and parameters I and dl, such that
the decoding threshold is as close as possible to the corresponding SNR
Shannon limit. Practical codes are finite-length and the SNR required for
low BER is larger than the theoretical decoding threshold. However, sim-
ulations show that the BER vs SNR behavior of finite-length codes is con-
sistent with the decoding threshold of their infinite length counterpart. For
more details on this procedure, we refer to the simulation results section.

Remark : The EXIT chart for a pure RCM code can be calculated as a

particular case of the parallel LDGM-RCM by taking p
(vn)
RCM = p

(cn)
RCM = 1.

3.2.5 PREDICTING THE BER FROM THE EXIT CHART

For those SNR values smaller than the decoding threshold, the EXIT
chart can be used to obtain an estimate on the BER after an arbitrary
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number of iterations. Following the sum-product algorithm, let us define
the decision variable of VN k as sk, given by the sum of all LLR messages
rj,k that were passed over a single edge connecting a CN, j, with the cor-

responding VN, k, i.e., sk =
∑

j∈n(Uk) rj,k + log
(
p1
p0

)
. As assumed in the

previous sections, the messages rj,k can be considered to be a realization

of the independent Gaussian random variables A
(vn)
RCM and A

(vn)
LDGM . Thus,

the conditional PDF of Sk given U is

S|U ∼ N
(
µS(u), σ2

S

)
,

with σ2
S = σ2

R,A ·
(
d

(v)
RCM ·+dl

κ

)
, and µS(u) = (2u − 1)

σ2
S
2 + log

(
p1
p0

)
. The

BER performance is now obtained as

P(ûk 6= uk) = p0 · P (S > 0|U = 0) + p1 · P (S ≤ 0|U = 1) . (3.12)

Observe that

P (S > 0|U = 0) = 1−Q
(
µS(0)

σS

)
and,

P (S ≤ 0|U = 1) = Q

(
µS(1)

σS

)
,

where Q(ξ) is the Q function

Q(ξ) =
1√
2π

∫ ∞

ξ
e−

y2

2 dy.

3.3 NUMERICAL RESULTS

In this section, we evaluate the proposed EXIT chart analysis and BER
prediction method of Section 3.2 for both AWGN and fast fading Rayleigh
channels. We begin by considering the AWGN channel. Subsection 3.3.1
presents some mutual information trajectories of actual codes on the cor-
responding EXIT charts. In Subsection 3.3.2, we compare the BER predic-
tions obtained using these charts with the BER obtained by Monte Carlo
simulations. In Subsection 3.3.3, the EXIT analysis is used to obtain codes
that approach the Shannon theoretical limit. Finally, the extension to
Rayleigh channels is considered in Subsection 3.3.4.
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3.3.1 TRAJECTORIES

We begin in Fig. 3.4 by showing the EXIT chart of a pure RCM code
with weight set W = {2, 3, 4, 8} and spectral efficiency ρ = 7.4 for three
different SNR values, 17, 18 and 20.25 dB, and for a non-uniform source
with entropy H(p0) = 0.72 (p0 = 0.8). Notice that the variable node
curve (which is valid for all SNRs) ends at the point (H(p0), H(p0)) as
it should be. Also plotted in the figure are the Monte Carlo simulated
mutual information trajectories of this code with block length K = 37000
(and M = 10000). Each trajectory is plotted using the same color as
their corresponding SNR’s EXIT chart CN curve, and they end where the
corresponding CN and VN curves intersect. In addition, the contour lines of
the corresponding simulated BERs are also shown. For example, at SNR=
17 dB the BER of the code is 5.5 · 10−2 and, as observed, the blue curve of
the EXIT chart intersects the VN decoder curve very close to the 5.5 ·10−2

contour line. Similarly, for SNR= 18 dB and 20.25 dB, the simulated BERs
are 3.3 · 10−2 and 2.2 · 10−3, respectively. Again, the intersections between
CN and VN curves occur very close to the corresponding BER’s contour
lines. Note however, that none of these SNRs allow the channel to be open.
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Figure 3.4: EXIT chart, BER contour lines and mutual information

trajectory for a pure RCM code of ρ = 7.4 when trans-

mitting a non-uniform source with entropy H(p0) =

0.72 over an AWGN channel.
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Similarly, Fig. 3.5 shows the EXIT chart and mutual information trajec-
tories for the RCM-LDGM code obtained by substituting 200 RCM symbols
by 200 LDGM coded binary symbols (with dl = 1) in the previous RCM
configuration.
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Figure 3.5: EXIT chart and mutual information trajectory of a

RCM-LDGM code when transmitting a non-uniform

source with entropy H(p0) = 0.72 over an AWGN chan-

nel.

Observe that by introducing these 200 LDGM coded bits, we avoid the
previous intersection of the curves at SNR 20.25 dB, improving in this way
the BER at 20.25 dB. The corresponding mutual information trajectory
at SNR 20.25 is shown in Fig. 3.5. Since the channel is open, it reaches
its maximal value i.e., (0.72, 0.72). It turns out that SNR=20.25 is the
smallest SNR that allows the channel to remain open, and as such, it is the
corresponding decoding threshold of the given code. In the same figure, the
trajectory at SNR=19.25 dB is also shown, but in this case the channel is
closed and and does not reach the maximum value.

3.3.2 BIT ERROR RATE FROM THE EXIT CHARTS

As explained in section 3.2.5, an estimated BER can be assigned to
each point of the VND curve of the EXIT chart. Therefore, the BER of
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a particular code at a given SNR is obtained from the value of the point
where the CND and VND curves intersect.

In this section we will consider two different RCM-LDGM configurations
with ρ = 4 given by K = 25000, M = 12365, I = 135, with dl 1 and 2.
Moreover, we will consider three different sources with p0 = 0.5, p0 =
0.8 and p0 = 0.95 and three different weight sets W = {1, 1, 1, 1, 2, 2},
{1, 1, 2, 2, 4, 4} and {2, 2, 3, 3, 4, 4}. Recall that the VN curve of the EXIT

chart depends on M , I, dl, and d
(v)
RCM , whereas the CND curve depends

also on the actual values of W and on the SNR.

Figure 3.6a shows the EXIT chart of the configuration with dl = 1
for the different weight sets and two SNR values, 10 and 12 dB. The plot
shows the BER estimated values at the intersecting points. For example,
for the configuration described above with {1, 1, 1, 1, 2, 2} the estimated
BERs are 1.5 · 10−2 at SNR= 10 dB and 5 · 10−4 at SNR= 12 dB. When
{1, 1, 2, 2, 4, 4}, the estimated BERs are 2.2 · 10−2 at SNR= 10 dB and
3 ·10−3 at SNR= 12 dB. Finally, for {2, 2, 3, 3, 4, 4} we obtain 9.5 ·10−3 and
4·10−4, respectively. Similarly, Fig. 3.6b shows the EXIT curves at SNR= 4
and 6 dB for the configuration with dl = 2 with their estimated BER values
when transmitting a source with p0 = 0.95. Since H(0.95) = 0.28 the VN
curve ends at point (0.28,0.28).

In order to corroborate our BER predictions, Fig. 3.7 compares the
BER curves obtained by Monte Carlo simulation with those obtained by
the EXIT charts BER estimation, as it is done in Fig. 3.6. As it can be seen
in the figure, the prediction are accurate for both uniform and non-uniform
sources.

The parameters of these codes have not been optimized and therefore,
they present a large gap to the corresponding Shannon limits given by
10 · log10(2ρ·H(S) − 1), which correspond to 0.91, 8.06 and 11.76 dB for
p0 = 0.95, p0 = 0.8 and p0 = 0.5, respectively. In the next section we will
obtain near capacity high spectral efficiency codes using the EXIT chart
analysis.
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Figure 3.6: EXIT chart and predicted BER at the crossing points

for different SNR values. a for a non-uniform source

with p0 = 0.8 and the configuration with dl = 1. b for

a non-uniform source with p0 = 0.95 and the configu-

ration with dl = 2.
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Figure 3.7: Predicted (dashed line) and Monte Carlo simulated

(continuous line) BER vs SNR curves for the RCM-

LDGM codes. a-c The configuration with dl = 1. d-f

The configuration with dl = 2.
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3.3.3 DECODING THRESHOLD BASED DESIGN

The idea behind the design method is to start with a pool of possible
codes having the required rate, and then obtain the EXIT charts for the
source of interest. The codes with the lower decoding threshold or those
whose curves intersect closer to the maximum point (H(p0), H(p0) are kept.
The resulting subset of codes are then tuned-up by slightly changing their
designed parameters. We have observed the following trends:

1. For sources with smaller entropy, larger RCM weight sets,W, tend to
work better, since the sum-product algorithm is aided by the a priori
probability.

2. When designing the LDGM part of the code, there is a trade-off
regarding the number I of LDGM binary symbols. By increasing I,
more residual errors are corrected in the the waterfall region, making
it steeper. However, larger SNRs are required to reach this waterfall
region.

3. The range for parameter dl is between 1 and 5. The larger parameter
I is, the larger value for dl can be selected.

Next, we provide EXIT chart design examples for an RCM-LDGM code
with a spectral efficiency ρ = 7.4 for the transmission over AWGN channels
of three memoryless sources with a priori probabilities p0 = 0.5, p0 = 0.8
and p0 = 0.95. The corresponding Shannon limits are at 22.25 dB, 15.97
dB and 5.24 dB, respectively. Table 3.1 shows the best codes obtained by
the EXIT chart analysis for a code length K=37000 bits.

The corresponding EXIT charts and real trajectories of the designed
codes are plotted in Fig. 3.8. Note from Fig. 3.8c that when transmitting

Table 3.1: Best configurations obtained by the EXIT chart analysis

for AWGN channels.

p0 K M I dl W Decoding Threshold.

0.5 37000 9800 200 1 {2, 3, 4, 8} 24.15 dB
0.8 37000 9720 280 4 {2, 2, 3, 3, 4, 8} 18.2 dB
0.95 37000 9200 800 3 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 7.25 dB
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Figure 3.8: EXIT chart and real trajectories of the designed codes

for AWGN channels and sources with c p0 = 0.5, b

p0 = 0.8 and a p0 = 0.95.

the uniform source (p0 = 0.5), the channel between both EXIT curves
remains open at SNR=24.15 dB (1.9 dB from the Shannon limit) and,
consequently, the received blocks should be decoded with a low probability
of error. However, if this same code were used to transmit the symbols
generated by the non-uniform source (p0 = 0.8) by only modifying the a
priori probability to 0.8 in the SPA, the decoding threshold would decrease
to 20.15 dB (refer Fig. 3.5). This is still 4 dB away from the Shannon
limit. The optimized code for this source is given in Table 3.1. Notice that
the gap is reduced to 2.23 dB (refer to Fig. 3.8b). This clearly shows that
when transmitting binary symbols generated by a non-uniform source, the
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channel code behaves like a joint source-channel code and, therefore, it has
to be designed according to the source. Finally, Fig. 3.8a plots the EXIT
chart of the best found configuration when transmitting the non-uniform
source with p0 = 0.95. The decoding threshold is only 2.01 dB away from
the Shannon limit.
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Figure 3.9: BER vs SNR behavior of the obtained codes for p0 =

0.5, p0 = 0.8 and p0 = 0.95. The Shannon limits

(continuous lines) and the predicted decoding thresh-

old (dashed lines) are plotted as vertical lines.

In order to corroborate that the codes obtained from the EXIT chart
analysis perform as expected, Fig. 3.9 plots the BER vs SNR curves ob-
tained by Monte Carlo simulations, as well as the theoretical decoding
thresholds for the designed codes (shown as vertical dashed lines), and the
corresponding Shannon limits (vertical black lines). Note from the Monte
Carlo simulations that the code designed for p0 = 0.5 is 1.9 dB away from its
Shannon limit for a BER= 10−5, while the codes optimized for the sources
with p0 = 0.8 and p0 = 0.95 present both a gap of 2.3 dB with respect to
the Shannon limits. The figure indicates that the decoding threshold ob-
tained from the EXIT chart analysis very accurately predicts the waterfall
region. For the source with p0 = 0.5, the gap between the decoding thresh-
old and the waterfall region at BER=10−5 is not appreciable, whereas for
the sources with p0 = 0.8 and p0 = 0.95 these gaps are 0.1 dB and 0.3 dB,



Numerical Results 67

respectively. An explanation for the gap increase is that for non-uniform
sources longer blocks are required to maintain stationarity.

Table 3.2: Computational time required to predict a BER vs SNR

point in Fig. 3.9.

BER EXIT chart
Monte-Carlo simulation

reduction factor
average convergence time per block blocks for 10 errors

10−3 10s 229s 1 22.9
10−4 10s 113s 3 33.9
10−5 10s 96s 27 259.2
10−6 10s 85s 270 2295

Table 3.2 summarizes the simulation time, as well as the computational
time of the EXIT chart analysis, required to obtain the BER vs SNR points
of the code K = 37000, M = 9800, I = 200, dl = 1 and W = {2, 3, 4, 8}.
As shown in the table, the EXIT chart analysis is much faster than the
simulations, making the search by trial and error feasible.

3.3.4 EXTENSION TO FAST FADING RAYLEIGH CHANNELS

We now look at the behavior of the EXIT chart analysis when consid-
ering fast fading Rayleigh channels. Note that the only modification that
has to be introduced in this case is in step 2 of the SPA algorithm (see
Section 2.6.4). Specifically, since we are assuming perfect CSI at the re-
ceiver, the fading factor that multiplies the coded RCM-LDGM symbols
(i.e., realizations of i.i.d. exponential random variables of Section 2.4.2)
has to be provided to the decoder.

As in the previous AWGN case, we focus on the EXIT chart design for
codes of spectral efficiency ρ = 7.4 bits per complex dimension and with
sources having a priori probabilities p0 = 0.5 p0 = 0.8, and p0 = 0.95.
The corresponding SNR Shannon limits are 24.7 dB, 18.3 dB, and 6.8 dB,
respectively. Figure 3.10 is similar to Fig. 3.8, except that we now consider
fast fading. It plots the EXIT charts and real trajectories of the good codes,
specified in Table 3.3, which have been selected by our EXIT chart analysis.
The EXIT chart channels are open at SNRs close to the Shannon limits.
This is shown in Fig. 3.11, where the BER predictions and the actual Monte
Carlo simulations are presented for different values of SNR. Note that the
gaps to the Shannon limits are within 3 dBs, and that the BER predictions



68 CHAPTER 3. EXIT Chart Analysis

are very close to the results obtained by simulations, corroborating that the
proposed EXIT chart analysis is also well suited for fast fading Rayleigh
channels.
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Figure 3.10: EXIT chart and real trajectories of the designed codes

for fast Rayleigh channel and sources with c p0 = 0.5,

b p0 = 0.8 and a p0 = 0.95.
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Table 3.3: Best configurations obtained by the EXIT chart analysis

for fast fading Rayleigh channels.

p0 K M I dl W Decoding Threshold.

0.5 37000 9600 300 3 {2, 3, 4, 4, 8} 27.7 dB
0.8 37000 9240 760 5 {2, 2, 3, 3, 4, 8} 21.3 dB
0.95 37000 9480 520 4 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9.55 dB
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Figure 3.11: BER vs SNR obtained by Monte Carlo simulations

for fast fading Rayleigh channels. The Shannon limits

(continuous lines) and the predicted decoding thresh-

old (dashed lines) are plotted as vertical lines.

3.4 DISCUSSION

We have shown that RCM-LDGM codes are very well suited for im-
plementing high rate joint source-channel coding schemes for transmitting
uniform and non-uniform binary memoryless sources in both AWGN and
Rayleigh fast fading channels. Good performance is obtained if the codes
are designed according to the source’s non-uniformity. The search of good
design parameters was previously perform by brute force approach, using
time-consuming Monte Carlo simulations. In this chapter we have devel-
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oped an EXIT chart analysis and a design methodology suitable to speed
up this procedure by up to a factor of ≈ 103.

The effectiveness of our proposed EXIT chart and the BER prediction
capabilities have been verified through BER simulations, in which the es-
timated decoding thresholds lie very close to the real waterfall regions and
the BER prediction is very accurate for those cases in which both curves
intersect.



CHAPTER 4

Sources with Memory and the
BWT

This chapter looks at the problem of implementing high-throughput JSCC
schemes for the transmission of binary sources with memory, modeled by
Markov chain (MC) or a hidden Markov model (HMM) (defined as in Sec-
tion 2.3.1), and transmitted over AWGN channels (refer to Section 2.4.1).

4.1 INTRODUCTION

When considering sources with memory, Shannon’s JSC coding theorem
states that reliable transmission is only possible if

H(S) ·R ≤ C, (4.1)

where H is the entropy rate of the source in bits per source symbol, defined
as

H(S) , lim
k→∞

H(U1, . . . , Uk)

k

and H is the entropy, C the capacity of the channel in information bits
per channel use and R is the JSC code’s rate (source symbols per complex
channel use).

The proposed coding scheme is based on a combination of the Burrows-
Wheeler Transform (BWT) [83] and the rate-compatible parallel RCM-

71
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LDGM codes. The BWT is a block sorting algorithm that has been widely
analyzed in [84, 85, 86] and employed for the general problem of data com-
pression [87, 88]. As explained in the introduction of Part I, the applicabil-
ity of the BWT to coded transmission of sources modeled by Markov chain
and transmitted through AWGN channels has been investigated in the lit-
erature. Authors in [89] combine the BWT and segmentation of piecewise
stationary memoryless sources with recently proposed methods of discrete
denoising, whereas [90] utilize the context based redundancy left in channel
coded data to improve channel decoding of non-systematic turbo codes.

Later, the work in [31] proposed a source-controlled Turbo coding scheme
in which different energy allocation techniques are employed for the coded
symbols based on the first order probability distribution of the binary sym-
bols at the output of the BWT. Our scheme is also source-controlled, but
different from [31] in the sense that it uses this first order probability dis-
tribution to optimize the rates at which the different segments of the BWT
output sequences are transmitted. This optimal rate allocation is facili-
tated by the use of RCM-LDGM codes, which, additionally, provide high-
throughput transmission capabilities.

4.2 BURROWS-WHEELER TRANSFORM (BWT)

The BWT is a lexicographical permutation of the characters of a string
such that the transformed sequence is easier to be compressed. As explained
in detail in the Appendix A, the BWT is obtained from the last column of
an array whose rows are all cyclic shifts from the input in dictionary order,
which tend to have long runs of identical characters. The BWT, unlike other
ordered based transformations, is reversible, i.e., the input string (and all
intermediated cyclic shifts) can be recovered from the output string.

Let T = {Tk}Kk=1, Tk ∈ {0, 1}, denote the output block of the reversible
block-sorting BWT when its input is the block of binary source symbols
{Uk}Kk=1, Uk ∈ {0, 1}. For sources modeled by MCs with Mλ states, the
joint probability mass function, PT(t), of the random block T is approx-
imately memoryless and piecewise stationary [84], in the sense that there
exist Mλ index sets, Li = {wi−1 . . . wi}, i = 1, . . . ,Mλ with w0 = 1 and
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wMλ
= K + 1, and a probability distribution

QT(t) =

Mλ∏

i=1

wi−1∏

k=wi−1

Qi(tk) (4.2)

such that the normalized divergence between both distributions can be
made arbitrarily small for sufficiently large K, i.e.,

1

K
D(QT(t)‖PT(t))→ 0 (4.3)

as K →∞.

As the block length K goes to infinity, the normalized length of the
index set in expression (4.2) converges to ci ∈ R, i.e., limK→∞

|Li|
K = ci.

Definition 2. Let Ti denote the binary random sequence of length Ki =
ciK at the output of the BWT corresponding to the index set Li, i =
1, . . . ,Mλ. That is, Ti = {Tk}k∈Li.

Observe from (4.2) that for large blocks of length K, the binary random
symbols Tk ∈ Ti, with k ∈ Li, can be considered i.i.d. with probability
distribution

Qi(tk) ,

{
p0
i if tk = 0

p1
i = 1− p0

i if tk = 1

}
(4.4)

for some p0
i ∈ (0, 1). Note that these approximations should be understood

under the convergence criterium (4.3). Consequently, we model the non-
stationary BWT output sequence T as the concatenation of Mλ blocks of
length Ki = ciK, i = 1, . . . ,Mλ generated by Mλ independent DMS binary
sources S1,S2 . . . ,SMλ

, with entropies

Hi = −p0
i log p0

i − (1− p0
i ) log(1− p0

i ), i = 1, 2, . . . ,Mλ.

By the independence of the sources and their symbols, the entropy rate of
the original source can be expressed as

H (S) =

Mλ∑

i=1

Ki

K
Hi =

Mλ∑

i=1

ciHi. (4.5)
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4.3 PROPOSED BTW-JSC SCHEME

The proposed BWT-JSC scheme starts by transforming the original
source with memory S, into a set of Mλ independent non-uniform mem-
oryless binary sources. This is accomplished by partitioning the source
sequence into blocks of length K, U(l) = {Ul·K+k}Kk=1, l ∈ N, and then ap-
plying the BWT to each of these blocks. The corresponding output segment
i, inside output block l, is given by

T
(l)
i = {Tl·K+k}wik=wi−1

.

Recall from (4.4) that the sequence blocks T
(l)
i , i = 0, 1 . . . ,Mλ can be

considered as generated by a non-uniform DMS with entropy Hi, i =
1, 2, . . . ,Mλ. Thus, we reduce the encoding problem of sources with mem-
ory into a simpler one, namely the problem of JSC coding of non-uniform
memoryless binary sources, with entropies Hi. Notice that RCM-LDGM
codes can now be applied for each of the Mλ independent sources as shown
in Fig. 4.1.
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Figure 4.1: BWT-based proposed communication system.

More concretely, let us consider a source with memory, S, and with en-
tropy rate H(S), which generates blocks of K binary symbols to be trans-
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mitted at rate R = K/N by the parallel JSC coding system of Fig. 4.1.
Let Ti (refer to Definition 2) be the input sequence to the corresponding
i-JSC code of rate Ri = Ki/Ni, under the constraint N =

∑Mλ
i=1Ni. De-

note by {SNRi}Mλ
i=1 the set of signal-to-noise ratios allocated to each parallel

channel. Define by

SNR =

Mλ∑

i=1

Ni

N
SNRi

the average SNR over all parallel channels. The following Theorem proves
that the proposed scheme achieves the Shannon limit.

Theorem 1. Given a target rate R, the minimum overall SNR in the
coding scheme of Fig. 4.1 is achieved when all the SNRi’s take the same
value, given by the SNR Shannon limit from expression (4.1), i.e., SNR∗i =

2RH(S)−1. The individual rates Ri are given by Ri = RH(S)
Hi

, i = 1, . . . ,Mλ.

Proof. Given a set of signal-to-noise ratios {SNRi}Mλ
i=1, the rates of the JSC

encoders in Fig. 4.1 are given by the Shannon’s separation theorem as

Ri =
Ki

Ni
=
C(SNRi)

Hi
, i = 1, . . . ,Mλ,

where by the BWT hypothesis, K =
∑Mλ

i=1Ki.

We seek to minimize the average signal-to-noise ratio SNR over all the
Mλ parallel AWGN channels, i.e.,

SNR =

Mλ∑

i=1

Ni∑Mλ
j=1Nj

SNRi =

Mλ∑

i=1

Ki

N

Hi

C(SNRi)
SNRi,

under the constraint of achieving a rate

R =
K

N
=

Mλ∑

i=1

Ki∑Mλ
j=1Nj

.

Please note that since K =
∑Mλ

i=1Ki is fixed, the constraint in R reduces
to the constraint

N =

Mλ∑

j=1

Nj =

Mλ∑

j=1

HjKj

C(SNRj)
. (4.6)
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By applying the Lagrange multipliers method, we define F as

F =

Mλ∑

i=1

KiHi

N

SNRi

C (SNRi)
+ γ

(
Mλ∑

i=1

KiHi

C (SNRi)
−N

)
,

and by searching for an extreme of F , we obtain that the optimal SNR∗i
are all equal to some value Γ. Therefore, from constraint (4.6)

N =

Mλ∑

i=1

Ni =
∑

i

KiHi

C (Γ)
=
KH (S)

C (Γ)
,

where the last equality follows from expression (4.5). Thus, the rate can
be written as

R =
K

N
=

C(Γ)

H (S)
.

Consequently, the value of Γ is given by the signal-to-noise ratio required
to achieve the same rate R in the standard point-to-point communications
system. That is,

Γ = 2RH(S) − 1.

We conclude that

SNR
∗

= SNR∗i = 2RH(S) − 1

and

Ri =
Ki

Ni
=
C(SNR

∗
)

Hi
=
RH (S)

Hi
. (4.7)

Remark 1. Observe that the BWT-JSC is asymptotically optimal in the
sense that can achieve the SNR Shannon limit given by the Separation
Theorem.

4.4 CONVENTIONAL NON-BWT APPROACH

In order to compare the performance of the proposed BWT-JSC strat-
egy, we explain in this section the conventional coding scheme that results
from using a standard encoder block and modifying the decoder to exploit
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the source’s statistics. This exploitation is achieved by attaching the factor
graph that models the MC source, shown in Fig. 2.7, to the factor graph
of the coding scheme (refer to Fig. 2.15). The resulting FG is depicted in
Fig. 4.2.

U1 U2 U3 UK−1 UK

x1 x2 xM
xM+1 xM+I

RCM symbols LDGM symbols

b b b b b b

b b b

S0 S1 S2 b b b SK−2 SK−1

T1 T2 TKT3 TK−1

rj,k qk,j

ξk δk

αk βk

Figure 4.2: Factor graph of the parallel RCM-LDGM code with the

source’s factor graph attached.

Finally, the symbol-wise decoding is performed by applying the SPA
over the entire factor graph, where messages ξk, αk, βk and δk are calcu-
lated as explained in Section 2.3.1 and rj,k and qk,j as in Section 2.6.4 and
interchanged obeying the rules detailed in Section 2.2.2.

4.5 RESULTS

In this section, we evaluate the proposed BWT-JSC scheme, comparing
its performance with the conventional approach described in Section 4.4,
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that we will denote as NON-BWT-JSC. Without any loss of generality, the
spectral efficiency of the communication system has been set to 7.4 binary
source symbols per complex channel use, and the source block length to
K = 37000. Thus, the total number of coded symbols at the output of the
JSC encoder is N = 10000. We begin by specifying the Markov sources
considered in this chapter.

4.5.1 MARKOV SOURCES AND THEIR OUTPUT PROBA-
BILITY PROFILE

We consider three 2-state (Mλ = 2) Markov sources, the first two mod-
eled by MCs, with entropy rates 0.57 and 0.80 bits per source symbol, and
the third modeled by a HMM with entropy rate 0.73. For the sake of no-
tation, they will be referred as S1, S2 and S3. Table 4.1 summarizes their
corresponding Markov parameters.

Table 4.1: Markov Source Parameters.

Source Matrix A Matrix B Vector π Entropy H

S1 a11 = 0.90 a22 = 0.70 b11 = 1.0 b22 = 1.0 [0.75 0.25] 0.57
S2 a11 = 0.80 a22 = 0.50 b11 = 1.0 b22 = 1.0 [0.71 0.29] 0.8
S3 a11 = 0.90 a22 = 0.90 b11 = 0.5 b22 = 0.995 [0.5 0.5] 0.73

Figure 4.3 shows the probability mass function PT(t) (refer to (4.4)) of
the binary random block T of length K = 37000 at the output of the BWT
for sources S1, S2, and S3. Observe that due to the fact that sources S1

and S2 follow a 2-state MC behavior, the BWT will produce approximately
two i.i.d. segment T1 and T2. This is clearly shown in Figs. 4.3a and
4.3a, with segments of length (K1 = 9020, K2 = 27980) with first order

probabilities (p
(1)
0 ≈ 0.3, p

(2)
0 ≈ 0.9) for S1 and (K1 = 26500, K2 = 1050)

with probabilities (p
(1)
0 ≈ 0.2, p

(2)
0 ≈ 0.5) for S2. On the contrary, the

source S3 is characterized by a 2-state HMM, and the hidden property has
the effect of increasing the number of apparent states, should the HMM
source be approximated by a pure MC. This is observed in Fig. 4.3c,
where a 6-state MC source would fairly approximate the statistics of source
S3. In this case, the first order probabilities of segments T1 − T6 of sizes
(K1 = 9250, K2 = 5250, K3 = 3000, K4 = 2500, K5 = 1500, K6 = 15500)
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are given by p
(1)
0 ≈ 0.55, p

(2)
0 ≈ 0.63, p

(3)
0 ≈ 0.71, p

(4)
0 ≈ 0.78, p

(5)
0 ≈ 0.84

and p
(6)
0 ≈ 0.9.

Note that all partitions, specially the last one, are decided manually.
The property in (4.3) is asymptotic and we consider finite size blocks. More-
over, in some cases the first order probabilities of some consecutive segments
(or segment candidates) are very close and it is not worthy to divide further.
For example, the segment T6 of S3 could possibly be further segmented, but
it would lead to negligible benefit or even be counterproductive, since these
small segments would have to be encoded.
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Figure 4.3: First order probability profiles of the output blocks of

the BWT for example sources (a) S1, (b) S2 and (c)

S3.
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4.5.2 NUMERICAL RESULTS

In this section, we present the results obtained by Monte Carlo simu-
lation for the proposed BWT-JSC and the conventional NON-BWT-JSC
coding schemes. Observe that due to the BWT block, in our proposed
scheme a single error at the output of the decoders will be propagated after
applying the inverse-BWT. Therefore, to make a fair comparison, the re-
sults are presented in the form of Packet Error Rate (PER), i.e., P{û 6= u}.
Notice that in the NON-BWT strategy, due to the way in which the the in-
formation is forward and backward propagated in the source’s factor graph,
a bit in error is likely to produce errors in the preceding/following bits,
leading to error bursts. Thus, the PER performance comparisons seems
reasonable.

It should be mentioned that for the correct recovery of the original trans-
mitted source block, the inverse-BWT at the receiver side needs to know
the integer J with the exact position where the original End of File symbol
has been moved by the BWT at the transmitted side (refer to Appendix A).
Therefore, this additional information should also be transmitted. Notice
that for a 37000 block length, this position can be addressed by adding 16
binary symbols. In this work, we have considered this rate loss as negligible,
but in real scenarios it must be taken into account.

Figure 4.4 shows the PER vs SNR curves obtained by Monte Carlo sim-
ulations for the example sources (a) S1, (b) S2 and (c) S3 when using both
the proposed system (BWT-JSC) and the conventional approach (NON-
BWT-JSC) as a reference. In the proposed scheme, as stated in Section
4.3, after performing the BWT, each of the resulting Mλ independent non-

uniform i.i.d. segments Ti(p
(i)
0 ) i = 1, . . .Mλ (refer to Fig. 4.3), are encoded

by Mλ separated RCM-LDGM JSC codes of rates Ri as given by Theorem
1. The codes used for each DMS in the BWT-JSC approach, as well as the
one used in the conventional NON-BWT-JSC scheme are summarized in
Table 4.2, which have been designed utilizing the EXIT charts of Chapter
3 and brute force approach, respectively.

Observe from Figs. 4.4a and 4.4b that for sources S1 and S2, represented
by a MC, our BWT-JSC scheme outperforms the NON-BWT-JSC approach
by about 4.2 and 2.3 dB’s, respectively. One reason behind this large
improvement lies in the fact that in the NON-BWT-JSC system, the FG
of the decoder, results from a parallel concatenation of two sub-graphs:
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Figure 4.4: Obtained PER vs SNR curves for the NON-JSC-BWT

and JSC-BWT schemes when sources (a) S1; (b) S2

and (c) S3 are considered. The corresponding Shannon

limits are plotted in vertical lines.

The RCM-LDGM code and MC source sub-graphs (refer to Figure 4.2).
Consequently, in the overall FG decoder a large amount of cycles between
both sub-graphs appear, degrading in this way the performance of sum-
product algorithm, even if a large number of iterations is used. However,
in the proposed scheme, these cycles do not occur since in this case the
sources are memoryless and non-uniform. The contribution of the sources
sub-graphs is just to introduce the a priori probabilities of the non-uniform
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sources into the variable nodes of the corresponding RCM-LDGM factor
sub-graphs.

Let us now consider the HMM source S3 with entropy rateH(S3) = 0.73
and output probability profile as shown in Figure 4.3c. As mentioned be-
fore, the BWT output of source S3 can be approximated by 6 memory-
less non-uniform sources {Ti}6i=1, with blocks of lengths K1 ≈ 9250,K2 ≈
5250,K3 ≈ 3000,K4 ≈ 2500,K5 ≈ 1500,K6 ≈ 15000. Some of these
blocks have short lengths, which is detrimental for the performance of
the corresponding RCM-LDGM codes. To solve this problem, we build
larger segments T̃i that keep the same statistical properties as previous
segments. In this approach, named BWT-JSC-κ, we put together κ con-

secutive output blocks of the BWT to form the new segments as T̃
(l)
i =

{T (l·κ)
i , . . . ,T

(l·(κ+1)−1)
i } for i = 0, 1, . . . ,Mλ and l ∈ N. This is, in fact,

similar to applying the BWT to source blocks of length κ ·K, but we have
opted to joint consecutive output segments due to the quadratic computa-
tional complexity of the implemented BWT. The RCM-LDGM codes used
to the transmit these segments have the same rate as before, but in this
case their input and output block lengths are scaled by κ, i.e., K̃i = κ ·Ki,
M̃i = κ ·Mi and Ĩi = κ · Ii, i = 0, 1, . . . ,Mλ, respectively.

As before, Figure 4.4c plots the PER versus SNR curves for both strate-
gies BWT-JSC (solid curves) and NON-BWT-JSC (dashed curves). When
plotting the performance of the BWT-JSC-κ approach, two different cases
have been considered, κ = 1 and κ = 6. Please note that when κ = 1 the
scheme is the same as in previous MC examples. On the other hand, by
concatenating 6 consecutive BWT output segments (κ = 6), we force the
length of smallest segment to be 9000. Notice that for κ = 6 the proposed
scheme outperforms the conventional approach by 2.3 dB. However, due to
the bad performance of the short block-length RCM-LDGM codes, when
κ = 1 the performance is similar to that of the conventional approach.
This clearly shows that by concatenating BWT segments the system per-
formance improves thanks to the avoidance of blocks with short lengths.

As summarized in Table 4.3, the proposed scheme clearly outperforms
the conventional approach, and the PER vs SNR curves are only about 3
dB away from the Shannon limits.
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Table 4.2: Design parameters (refer to Section 4.4) used for sources

(a) S1, (b) S2 and (c) S3.

W M I dl

BWT-JSC K1 = 9020 {1, 1, 1, 2, 2} 3705 55 5

K2 = 27980 {1, 1, 1, 1, 2, 2, 2, 2} 6140 100 5

NON-BWT-JSC K = 37000 {2, 2, 3, 3, 4, 7} 9860 140 5

S1

W M I dl

BWT-JSC K1 = 26500 {2, 2, 3, 3, 4, 8} 6310 110 5

K2 = 10500 {2, 3, 4, 7} 3490 90 5

NON-BWT-JSC K = 37000 {2, 3, 4, 4, 7} 9940 60 3

S2

W M I dl

BWT-JSC-κ

K1 = 9250 {2, 3, 4, 4, 7} 3376 29 7

K2 = 5250 {2, 3, 4, 4, 7} 1839 19 7

K3 = 3000 {2, 3, 4, 4, 7} 935 37 7

K4 = 2500 {2, 3, 4, 4, 7} 673 35 6

K5 = 1500 {2, 2, 3, 3, 4, 7} 351 18 6

K6 = 15500 {2, 2, 2, 3, 3, 4, 4, 7, 7} 2632 56 6

NON-BWT-JSC K = 37000 {2, 2, 3, 3, 4, 8} 9880 120 3

S3

Table 4.3: Summary of numerical results. Labels BWT-JSC and

NON-BWT-JSC represent the SNR required for a PER

of 10−3 with each scheme.

Entropy Rate Shannon Limit BWT-JSC(-κ) NON-BWT-JSC

S1 0.57 12.57 dB 15.8 dB 20 dB

S2 0.80 17.78 dB 20.9 dB 23.25 dB

1 6

S3 0.73 16.15 dB 21.8 dB 19.55 dB 21.8 dB
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4.6 DISCUSSION

The BWT is able to transform the source redundancy caused by mem-
ory into an equivalent redundancy produced by a non-uniform and non-
stationary first order distribution. This fact, paired with sequence segmen-
tation, promotes the idea of employing coding techniques for i.i.d. discrete
memoryless sources based on the first order stationary probability distri-
bution of the segmented output of the BWT.

Based on the previous fact, we have proposed a source-controlled coding
scheme for the transmission of binary sources with memory over AWGN
channels that makes use of the BWT and sequence segmentation tech-
nique. The output set of independent non-uniform discrete memoryless
binary sources are separately encoded at optimal coding rates based on
their source entropy. We design specific RCM-LDGM codes for these non-
uniform sources at the optimal rates using the EXIT charts of Chapter
III.



CHAPTER 5

Impulsive Noise Channels

In this chapter we address the problem of sending high data rates over
additive impulsive noise channels, for which we propose the use of RCM-
LDGM codes for the first time in the literature.

5.1 INTRODUCTION

Power-line networks present an interesting alternative for no-new-wires
scenarios where there is an electrical power distribution wiring available.
These networks were not designed for data communication. Therefore, their
electrical characteristics and nature make them a harsh environment for
this purpose [91, 92]. The impulsive nature of the noise has a time-varying
behavior that produces noise bursts with a duration on a scale from mi-
croseconds to milliseconds [93], with significant implications on data trans-
mission, causing problems for the realization of power-line communications
with high rate and high reliability. Consequently, unlike other communi-
cation channels, the power-line channel cannot be modeled as an AWGN
channel [94, 95, 96, 97].

Authors in [98, 99] introduced the Middletons Class A noise model as a
statistical model for such impulsive noise. Middleton Class A noise model
assumes independent impulse emissions that are Poisson-distributed in time
and it is one of the most known impulsive noise models due to its simplicity.
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However, the Middleton Class A noise model is not appropriate for model-
ing practical impulsive noise, which often occurs in bursts. Later, the work
in [100] proposed the Markov-Middleton model, which takes into account
the noise memory and allows modeling the bursty behavior of impulsive
noise.

The statistical feature of these impulsive channel models is much dif-
ferent from that of Gaussian noise. Therefore, the conventional receivers
exhibit a degraded performance, since they have been optimized for AWGN
channels. Spaulding and Middleton proposed in [101, 102] receivers for co-
herent and incoherent detectors in additive white class A noise (AWAN)
channels. Later, the authors in [103] proposed a turbo decoding suitable
for these channels, in which they modified the channel LLR value to suit
the class A noise environment. The rest of the original turbo decoder does
not need to change. The calculation of these channel values for Class A
noise is too difficult, since it involves infinite series of non-linear functions.
However, authors in [103] proposed an approximation using Jacobian log-
arithm [104]. The same strategy is applied in [105] for LDPC codes. In
order to improve the spectral efficiency and error performance, authors in
[106] study the application of BICM with iterative decoding in the Class-
A impulsive noise environment. Since the maximum likelihood decoding
of BICM is too complicated to implement in practice, they use a subop-
timal iterative method with soft-output demodulator and the single-input
single-output decoder. They also show in their following work [107] that
BICM-ID is more effective than the Orthogonal Frequency Division Multi-
plexing (OFDM) technique in combating the impulsive noise. During this
chapter, we consider that the channel state information is available at the
receiver,and model the impulsive noise wit modified version of the Middle-
ton Class A noise and Markov-Middleton model.

5.2 IMPULSIVE NOISE CHANNEL MODELS

In this chapter we consider the communication scenario of Section 2.1,
with noise sample vector z = (z1, . . . , zN )> ∈ RN×1, whose entries are
drawn independently but not identically distributed. The entry zj is mod-
eled as a zero mean Gaussian random variable with variance σ2

j for j ∈
{1, . . . , N}. We consider the following two modes of the impulsive noise:
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• Modified version of the Middleton Class A noise. The noise sample zj ,
for j ∈ {1, . . . , N}, is drawn from a zero-mean Gaussian distribution
of variance σ2

j , where σ2
j = σ2 if there is no impulse at sample j, and

σ2
j = ν2 >> σ2 if there is an impulse at sample j. The arrival of

impulses is modeled as a Poisson-process. Observe that in this case,
we refer to the variance of the AWGN noise as σ2, without impulse.
For more details about the Middleton Class A noise model please
refer to [98, 99, 108].

• Markov-Middleton model. The noise samples zj , for j ∈ {1, . . . , N}
are drawn independently but the probability density function of the
j-th noise sample is ruled by a four state hidden Markov model. At
a given state s ∈ {0, 1, 2, 3}, the corresponding noise sample is drawn
from a zero-mean Gaussian distribution of variance ν2

s , with ν2
0 <

ν2
1 < ν2

2 < ν2
3 . We consider that the state s = 0 corresponds to the

absence of impulses and therefore we set ν2
0 = σ2. For more details

on this impulsive noise model please refer to [100].

Notice that both models of impulsive noise considered draw zero-mean
Gaussian samples independently, with variances picked from a finite set of
possible values depending on whether there is an impulse or not.

From the information theoretic point of view, the channel can be viewed
as a set of parallel Gaussian channels, each with noise variance σ2

j . Consid-
ering that there is no channel state information at the transmitter’s side,
all the channels are assigned the same average energy per symbol Es and
therefore, the capacity C of such a channel is given by (see, e.g., [109,
Section 9.4])

C =
1

2N

N∑

j=1

log2

(
1 +

Es
σ2
j

)

bits per channel use. Let ΥN be the random variable that counts the
number of impulses per N channel uses, and assume that

lim
N→∞

E[ΥN ]

N
= 0. (5.1)

It is easy to show that in such a case, for large enough N ,

C → 1

2
log2

(
1 +

Es
σ2

)
,
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that is, the capacity of the channel without impulsive noise. For the re-
mainder of this chapter, let us define the SNR as Es

σ2 , i.e., the ratio in the
absence of impulsive noise. We will also keep condition (5.1), because this
will let us assess the performance degradation of the RCM-LDGM codes
due to impulsive noise.

5.3 ADAPTED DECODER

In this preliminary work on impulsive noise channels, we consider that
the channel state information is known at the receiver, i.e., the decoder
has knowledge about the values σ2

j for j ∈ {1, . . . , N}. Taking this into
account, the decoding is performed by applying the standard sum-product
algorithm of Section 2.6.4 with the particularity that the operations at each
CN j are adapted to the Gaussian noise component σ2

j , for j ∈ {1, . . . , N}.

5.4 NUMERICAL RESULTS

This chapter considers a high data rate scenario with spectral efficiency
of 7.4 bits per complex channel symbol, using an RCM-LDGM encoder.
In particular, we used an RCM code, of rate K/M and weight set W =
{2, 3, 4, 7}, in parallel with the non-systematic part (of length I) of a dl = 2
degree LDGM. The parallel concatenation is constructed so that the LDGM
coded symbols (I symbols) represent the 1.6% of the total coded sequence
of length N = M+I. A total of 3 different block lengths are considered with
N = 2000, 10000 and 30000. The source block length K is appropriately
scaled to achieve the target spectral efficiency.

As it was mentioned in Section 5.2, under the assumption given in (5.1)
and for a spectral efficiency of 7.4 bits per channel use, the SNR capacity
limit for the considered channels is SNR≥ 22.25 dB. Therefore, in order to
show the suitability of RCM-LDGM codes over impulsive noise channels, we
will compare the performance of these codes in an AWGN channel (without
impulsive noise) and in a channel where the noise follows the considered
impulsive noises models. For the latter case, we will consider that the
decoder of Section 2.6.4 is adapted according to 5.3.

In Figs. 5.1 to 5.5, continuous lines represent the performance of these
codes in an AWGN channel. On the other hand, dashed lines represent
simulations with Middleton Class A noise (Figs. 5.1 and 5.2) or Markov-
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Middleton model noise (Figs. 5.3 to 5.5), marked with circles when the
optimal decoder is used and with crosses when the conventional AWGN
decoder is used. Finally, the 3 different block lengths, N = 30000, N =
10000 and N = 2000, are differentiated by colors blue, red and black,
respectively.

5.4.1 MODIFIED VERSION OFMIDDLETON CLASS A NOISE

We consider a channel with Middleton Class A noise with ν2 = 500σ2.
The arrival of impulses is modeled as a Poisson-process, and the expected
number of impulses per N channel uses is set to E[ΥN ] = Nα, with α ∈
[0, 1). In our numerical simulations we have considered 2 cases with α = 1/2
and α = 1/3.
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Figure 5.1: BER vs SNR performance obtained by Monte Carlo

simulations for the modified version of Middleton Class

A noise with α = 1/2

Figure 5.1 shows the BER vs SNR performance for the case with α =
1/2. As it can be seen, the larger N the better performance they achieve
even in an AWGN channel. When the Middleton Class A noise is consid-
ered, it is observed that for a block length of 2000 symbols there is a big
performance degradation when comparing to the AWGN scenario. This
gap is closed as we increase the block length, and for N = 30000 it is ob-
served that the performance degradation is only 0.1 dB. Similar results are
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shown in Fig. 5.2 for α = 1/3. In this case the gap is insignificant even for
N = 10000.
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Figure 5.2: BER vs SNR performance obtained by Monte Carlo

simulations for the modified version of Middleton Class

A noise with α = 1/3

5.4.2 MODIFIED VERSION OF THE MARKOV-MIDDLETON
MODEL

In this subsection we consider that the impulsive noise follows a Markov-
Middleton model. As it was introduced in Section 5.2, the noise samples
are ruled by a four state HMM with transition matrix

Π = (1− ε)14×1

(
p0 p1 p2 p3

)
+ εI4,

where 14×1 is the 4×1 matrix of ones, ε ∈ (0, 1) determines the correlation
between noise samples,

ps =
as

s!
3∑
s=0

as

s!

is the probability of entering state s for s ∈ {0, 1, 2, 3} and

a = −a0 log
(

1−N
1−β
β

)

with a0 > 0 and β > 1 being parameters that control the impulse rate. It is
easy to show that as long as β > 1, (5.1) holds. Finally, the noise produced
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at state s has variance

ν2
s = σ2

(
1 +

s

aγ

)
s ∈ {0, 1, 2, 3},

where γ > 0 controls the power of the impulses.

In our numerical results we have set a0 = 0.8, γ = 0.2, ε = 0.9, and we
have considered three different values for β, namely, β = 2.5, β = 2.1 and
β = 1.7.
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Figure 5.3: BER vs SNR performance obtained by Monte Carlo

simulations for the Markov-Middleton model with β =

2.5

Figure 5.3 shows the BER vs SNR performance for the case with β =
2.5. The AWGN curves are the same as for the previous figures. When
Markov-Middleton noise is considered, it is observed that for block length
N = 2000 there is also a big performance degradation when comparing to
the AWGN scenario. For N = 10000 the gap is reduced to 0.1 dB. Finally,
there is almost no gap for N = 30000. The case with β = 2.1 is shown in
Fig. 5.4. In this case, the gap for N = 10000 increases to about 0.3 dB at
a BER of 10−4.

Finally, we have considered the case with strong impulsive noise by
setting β = 1.7. We have observed that in this case N = 30000 was
not long enough for the proposed RCM-LDGM code. For that reason, we
have slightly modified the RCM-LDGM code so that the LDGM symbols
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Figure 5.4: BER vs SNR performance obtained by Monte Carlo

simulations for the Markov-Middleton model with β =

2.1

represent the 2.8% of N and we have increased the LDGM degree dl to
3. Results are shown in Fig. 5.5. Notice that this new RCM-LDGM code
has a worse BER vs SNR performance in the AWGN scenario, as it is not
optimized for AWGN. However, with this stronger LDGM we are able to
achieve a gap of 0.2 dB for N = 30000 (The gap is 0.4 dB if compared
with the optimal RCM-LDGM for an AWGN channel). The shorter block
lengths show a bigger gap in this case.

As a bottom line, it can be observed in both cases that the conventional
RCM-LDGM decoder (without the adaption at the CNs), designed for an
AWGN channel, leads to a huge performance degradation in the presence
of impulsive noise.
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Figure 5.5: BER vs SNR performance obtained by Monte Carlo

simulations for the Markov-Middleton model with β =

1.7

5.5 DISCUSSION

This chapter proposes the use of the parallel RCM-LDGM concatena-
tion for harsh communication environments with impulsive noise channels,
such as power-line communications. As for other existing codes used in
these channels, the receiver has to adapt its decoder according to the chan-
nel statistics. Otherwise, the performance exhibits a big degradation.

In order to asses the performance of these codes, we have developed two
modified versions of the well-known Middleton class A noise and Markov-
Middleton noise models, in which the expected number of impulses per N
channel uses tends to 0 as N increases. Under that condition, it is easy to
show that the capacity of the impulsive noise channel tends asymptotically
to the AWGN capacity. By utilizing this result, we have shown by Monte
Carlo simulations that the parallel RCM-LDGM codes are able to perform
within 2.5 dB of the Shannon limit, if the block lengths are large enough.
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Multi-User Communications
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In this second part of the dissertation we consider multi-user communi-
cation systems. Specifically, we extend the RCM and parallel RCM-LDGM
coding schemes to the multiple access channel. Before delving into the
proposed schemes and with the aim of providing some context, we begin
by including a general overview of multiple access and joint source-channel
coding techniques.

In the evolution of wireless communications, from the first generation
to the actual 5G, the multiple access scheme has been one of the key tech-
nology to distinguish different generations. Frequency Division Multiple
Access (FDMA) was used in 1G, Time Division Multiple Access (TDMA)
in 2G, Code Division Multiple Access (CDMA) in the third generation and
Orthogonal Frequency Division Multiple Access (OFDMA) in 4G. In these
conventional multiple accesses schemes, different users are assigned to or-
thogonal resources in time, frequency or code domain to avoid or alleviate
inter-user interference.

However, the ever increasing connectivity and throughput demands of
current 5G and future 6G is making the spectral efficiency to become one
of the key challenges of such explosive data traffic. The rapid develop-
ment of the Internet of Things (IoT) is forcing wireless systems to handle
massive connectivity users (or devices) demanding low latency. Moreover,
some of these inexpensive devices require computationally light solutions.
It is essential to improve the actual technology to meet these requirements.
In this part of the dissertation we focus on the promising Non-Orthogonal
Multiple Access (NOMA), that aims to solve some of these challenges for
5G and beyond. What differs NOMA from conventional Orthogonal Multi-
Access (OMA) technologies is that it can can accommodate many more
users via non-orthogonal resource allocation. Recent research pieces show
that NOMA systems outperform OMA schemes in multiple scenarios, such
as downlink systems [110], visible light communication systems [111] and
short packet communications [112]. Therefore, NOMA is playing an im-
portant role in 5G [113, 114, 115] and will be one of the key technologies
enabling the upcoming 6G networks [116].

NON-ORTHOGONAL MULTIPLE ACCESS (NOMA)

We focus on NOMA, which achieves massive connectivity and is able
to increase system throughput. NOMA allows users are able to trans-
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mit their information sharing frequency and time intervals. Most of these
techniques fall into one of these two sub-categories [125], namely, power-
domain and code-domain NOMA. This last utilizes user-specific spreading
sparse sequences or non-orthogonal cross-correlation spreading sequences,
and examples that fall into this sub-category are Low Density Diffusion
(LDS) [117, 118], Sparse Code Multiple Access (SCMA)[119] and Multi-
User Shared Access (MUSA)[120]. On the other hand, power-domain NOMA
attains multiplexing by utilizing superposition coding, while Multi-User
(MU) detection algorithms are used at the common receiver. The coding
schemes considered in this Thesis fall into the power-domain category.

MULTI-USER DETECTION ALGORITHMS

NOMA allows controllable interference by non-orthogonal resource al-
location, achieving larger spectral efficiency and low transmission latency.
However, it increases the decoding complexity, since the receiver is respon-
sible for detecting the desired signals, utilizing Multi-User (MU) detection
algorithms.

We start by discussing the more dominant NOMA scheme, in which
different users are allocated different power levels according to their chan-
nel conditions to obtain the maximum system throughput. Such power
allocation is usually accompanied by the Successive Interference Cancella-
tion (SIC) technique, which exploits differences in signal strength among
the signals of interest in order to successively decode information arriving
from different users. Starting from the strongest, each signal is decoded by
treating the remaining as noise and then subtracting it from the received
combined signal. Techniques that make use of SIC are well documented in
the literature [121, 122], with recent research in this field focusing specif-
ically on resource allocation. For example, authors in [123] optimize the
power allocation in wireless powered communication networks to satisfy
the minimum data requirements for each user. In [124] they also studied
the optimal power allocation coefficients from a user fairness perspective.
However, this widely utilized MU technique also presents some disadvan-
tages. First, it generally requires large differences in the received power of
different users, requiring very unequal power allocations. Second, it suffers
from a trade-off between performance gain and implementation complexity
[125], since the decoding complexity increases with the number of users
involved in the communication system.
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An alternative MU algorithm that has recently experienced a rise in
popularity is non-SIC, in which the multiple users are jointly decoded at the
receiver. These MU algorithms present better performance than SIC in sev-
eral scenarios. For example, authors in [126] show that non-SIC NOMA is
more effective than traditional SIC NOMA for sending correlated informa-
tion sources because, in the latter, the correlated information is not received
by all users. Another example is power-balanced scenarios, where SIC does
not work well. Authors in [127] presented a novel non-SIC NOMA archi-
tecture for near power-balanced scenarios, named Network-Coded Multiple
Access, in which they jointly considered physical-layer network coding and
the MU detection boosting the throughput. Similarly, [128] combines Bit-
Interleaved Coded Modulation (BICM) with Iterative Demapping (ID) and
decoding for Multi-User (MU) detection to create MU-BICM-ID systems,
which achieve any point on the upper boundary of the MAC capacity region
at high rates. However, the complexity of mentioned examples increases
substantially with the number of users, yielding to systems with only 3 and
2 simultaneous users.

DISTRIBUTED JOINT SOURCE-CHANNEL CODING OF COR-
RELATED SOURCES

Unlike in the point-to-point case of Part I, the use of separate source
and channel codes can entail significant performance losses if the multi-
ple users transmit the information produced by correlated sources. For
example, in the unrealistic approach of defining the energy constraint at
the receiver, the transmission can be performed optimally [129] by utilizing
separate source and channel coding schemes. However, if the more realistic
approach of imposing the energy constraint at the transmitters is consid-
ered, separation is not optimal [130] and the theoretical limit has yet to be
found. In this dissertation we pay attention to the design of JSC coding
schemes with the energy constraint defined at the transmitters.

In this scenarios, it is advantageous to design the user’s codewords in
such a way that they preserve part of the existing correlation between
sources [130]. For example, the work in [131] considers JSC coding for two
correlated binary information sequences with turbo codes. The correlation
is exploited by exchanging extrinsic information between the constituting
decoders as in [132, 133] for turbo codes and [134] for concatenated LDGM
codes. The case in which the correlation model is unknown at the decoder
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is researched in [135, 136], where the correlation is iteratively estimated
during the decoding process. This strategy is applied in [137] with turbo
codes and in [138] for LDGM codes. The performance in this research pieces
surpasses the theoretical limits obtained when separation between source
and channel coding is assumed. [139] introduces a more direct design,
namely the parallel connected LDGM code, which allows the correlation
between sources to be preserved in the codeword by using the same encoder
structure for two users.

There are other works in the literature that have studied this scenario.
These works include [140], which utilizes LDPC codes for data collection in
Wireless Sensor Networks (WSNs), and [141], which utilizes a single Rap-
tor code for both video compression and packet loss protection for scalable
video transmission over wireless networks. However, few existing JSC cod-
ing schemes can achieve high transmission rates with good performance,
and most results consider only the simplest case of having only 2 correlated
sources.

OTHER NOMA SCHEMES

In addition to the power domain and code domain NOMA discussed
above, a few other techniques are currently being investigated. Pattern-
Division Multiple Access (PDMA) [142] utilizes non-orthogonal patterns,
which are designed by maximizing the diversity and minimizing the overlaps
among multiple users. This technique can be carried out in the code do-
main, spatial domain, or a combination. Bit-Division Multiplexing (BDM)
[143] is another form of NOMA particularly useful for downlink transmis-
sion. Its basic concept is based on hierarchical modulation, and the re-
sources of multiplexed users are partitioned at the bit level. Although
strictly speaking the resource allocation of BDM is orthogonal in the bit
domain, multi-user signals share the same constellation.

Some other NOMA schemes have also been proposed, such as Interleave
Division Multiple Access (IDMA). This technique is a an evolution of Code-
Division Multiple Access (CDMA) that relies on interleaving as the only
means to distinguish signals and employs parallel interference cancellation
to detect the multiple users, inheriting many of the advantages provided by
Code-Division Multiple Access (CDMA), but improving its performance in
highly loaded systems [144]. Moreover, IDMA allows the accommodation
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of a large number of users, up to 100 users [145]. These authors are also
able to achieve high power efficiency, with a BER performance 1.4 dB away
from the theoretical limit for a 16-user case and a total throughput of 2 bits
per channel use. They do so by utilizing complex Turbo-Hadamard codes.
Later, authors in [146] proposed the use of low-rate layered LDGM as the
core codes of IDMA schemes, simplifying the structure and allowing the
sum-product algorithm to be applied for decoding. The scheme presented
in [146] outperforms [145] by achieving a gap to the theoretical limit of 1.05
dB for the same total throughput. This is achieved for 20 users with an
individual rate of 0.05. In order to accommodate more users, authors in
[146] lowered the individual rates, upper bounding the total throughput to
2 bits per channel use. The gap to the the theoretical limit increases with
the number of users, regardless of whether the codes have been optimized
for the considered number of users. A comparison between IDMA and
NOMA when a channel estimator is used was presented in [147]. Authors
show that IDMA outperforms NOMA in power-balanced scenarios at the
cost of higher complexity, whereas NOMA outperforms IDMA in power
imbalanced scenarios. However, they only considered SIC NOMA, which,
as mentioned before, is outperformed by non-SIC NOMA in power-balanced
scenarios.

In the next chapters we present two novel NOMA coding schemes for
the multiple access channel that utilize non-SIC MU algorithms, making
them especially valuable for communication systems without large power
discrepancies between users. Chapter 6 considers that the information gen-
erated by the multiple users is uncorrelated, whereas the correlated case
is studied in Chapter 7. Both schemes are based on point-to-point RCM
codes, which provide high throughput and rate adaptation capabilities. The
main novelty of the proposed MAC schemes lies in the fact that, unlike the
previous high rate coding schemes of the literature, these schemes are able
to accommodate a large number of users, without affecting decoding per-
formance.
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CHAPTER 6

RCM for Non-Orthogonal
Multiple Access

This chapter proposes a novel, RCM based, non-SIC NOMA coding scheme
for the multiple access channel that allows the transmission of a large num-
ber of users at high rates while guaranteeing that the complexity and per-
formance is not negatively affected by the number of simultaneous users.
This is an advantage over the coding schemes mentioned previously, which
could achieve high data rates or a large number of users, but not both
simultaneously.

6.1 REVIEW OF AWGN MAC

We consider the AWGN MAC communication scenario of Section 2.5.2.1,
where λ users transmit the information generated by their independent
memoryless binary sources to a common receiver. We assume that each
user l utilizes an RCM encoder εl with generator matrix G(l) ∈ RM×Kl ,
and encodes its information block ul ∈ {0, 1}Kl at rate Rl, generating the

coded sequence xl = G(l)ul = x
(l)
1 , . . . , x

(l)
M .

We denote the output of the MAC at time j as yj =
∑λ

l=1 x
(l)
j + zj =

xCj + zj and the total transmitted average energy per complex channel use

is Es =
∑λ

l=1El, where El is the average energy of user l. The capacity
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region for this λ-user MAC is given by the set of rate tuples [8] such that

∑

l∈L
Rl ≤ log2

(
1 +

∑
l∈LEl

N0

)
, for everyL ⊆ [1 : λ], (6.1)

where Rl is the rate of user l. During this dissertation, we will refer as
theoretical limit to the equation imposed by the sum-rate

R =

λ∑

l=1

Rl ≤ log2

(
1 +

∑λ
l=1El
N0

)
= log2

(
1 +

Es
N0

)
. (6.2)

Due to the construction method explained later, the average mean en-
ergy allocated to each user in the RCM-MAC scheme is proportional to its
share of total rate, i.e., El

Es
= Rl

R for l = 1, . . . , λ . It is easy to show that

given any set of average energies {E1, . . . , Eλ} with
∑λ

l=1El = Es, the set
of rates {R1, . . . , Rλ}, Rl ≤ El

Es
R∗ is achievable, where R∗ is the theoretical

limit for the sum-rate given by (6.2).

Finally, during this chapter we will refer to Es
N0

as the SNR.

6.2 LINEAR NATURE OF RCM CODES AND THE MAC

The main idea behind the proposed RCM-MAC scheme is to gener-
ate weighted linear combinations of each user’s own information bits, con-
structed in such a manner that the overall superimposed coded symbols
at the output of the MAC possess the same structure as a point-to-point
RCM code. At the receiver, all users are jointly decoded as a point-to-point
RCM code, making the decoding complexity independent of the number of
users.

Let us begin by exploiting the linear behavior the MAC and RCM codes
to interpret the received MAC symbols as if generated from a point-to-point
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Figure 6.1: (a) Joint Factor Graph of the MAC and individual

RCM codes. (b) Rearrangement of (a) utilizing the

linear properties of the MAC and the RCMs.

RCM code. Each received MAC symbol can be rewritten as

yj =
λ∑

l=1

x
(l)
j + Zj

=

λ∑

l=1

(
Kl∑

k=1

g
(l)
j,ku

(l)
k

)
+ Zj

=

K∑

k=1

gdj,ku
d
k

︸ ︷︷ ︸
xCj

+Zj , (6.3)

where ud = [u1 u2 . . .uλ] is the sequence generated from concatenating
all source blocks, K =

∑λ
l=1Kl is the total block length of ud and the

matrixGd ∈ RM×K is built from the parallel concatenation of all generation
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matrices {G(l)}λl=1 as

Gd =
[
G(1) G(2) . . . G(λ)

]
. (6.4)

Thus, when using RCM codes, the factor graph of the overall MAC
scheme can be simplified in such a way that it resembles a point-to-point
RCM code generating the symbols {xCj }j∈{1,...,M}, as shown in Fig. 6.1.
This equivalent RCM code has rate R given by the sum-rate of the MAC
scheme R =

∑
lRl and its symbols are given by linear combinations of the

input bits of all source sequences [u1 u2 . . .uλ] weighted by the values in
{±W1, . . . ,±Wλ}, where {W l} is the RCM weight set of user l ∈ {1, . . . , λ}
used in the encoding matrix G(l).

Note that an estimate of ûd can be obtained by running the standard
RCM SPA explained in Section 2.6.4 to the simplified factor graph defined
by Gd in (6.4). Finally, the estimates of {ûl}λl=1 are obtained from the
corresponding position of ûd.

6.3 RCM-MAC SCHEME DESIGN

As mentioned before, given the additive nature of the RCMs and the
MAC, the superimposed MAC symbols can be considered as having been
generated by a standard point-to-point RCM code encoding the compound
source bit block ud = [u1 u2 . . .uλ]. Following this, the proposed RCM-
MAC schemes consist of a set of λ irregular RCM codes, with encoding
matrices G(l), one for each individual user. By irregular RCM it is meant
that the weight values utilized in the sums of each RCM symbol can vary,
i.e., the weight multi-set is dependent on the symbol j. Let us denote by

W(l)
j the design multi-set of user l and RCM symbol j, which generates

RCM symbol x
(l)
j . The jth RCM MAC overall symbol is connected to ud

by means of the weights in {±W(1)
j ,±W(2)

j , . . . ,±W(λ)
j }.

The main idea behind the design of RCM-MAC schemes is to specifically
select the multi-sets of the irregular RCMs to match, after the multiple
access channel, a point-to-point RCM, of rate equal to the sum-rate R, with

design multi-setW by imposing the condition {W(1)
j ,W(2)

j , . . . ,W(λ)
j } =W

for all j as sketched in Fig. 6.2.
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6.3.1 GENERATION OF INDIVIDUAL RCM CODES

Let Rl, for l = 1, . . . , λ, be the rate at which each user transmits, so
that the sum-rate is equal to R =

∑λ
l=1Rl. The number of coded symbols

per block, M , is fixed and the source block length for user l, Kl, is adjusted
to meet the corresponding Rl.

The first step is to find a weight multi-set W (for the final equivalent
RCM code) that i) satisfies the third property mentioned in Section 2.6.1
and ii) leads to good performance in a point-to-point communication system
with rate equal to the required sum-rate in the multi-user scenario, i.e.,
R =

∑λ
l=1Rl. This weight set can be found with the aid of the EXIT chart

techniques presented in Chapter III. Once the weight set W is selected,
for each coded symbol at position j we randomly assign each element of

W to one of the λ multi-sets W(l)
j . The probability of being assigned to
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the multi-set l is proportional to Rl
R , except in some instances in which,

as explained in the sequel, the probability is set to 0. Notice that some

multi-sets, W(l)
j , may be either left empty or have more than one element.

Next, we detail the construction of encoding matrices G(l), for l =
1, . . . , λ, to be assigned to each user.

1. Step 1: Generation of the intermediate matrices A(l), l =
1, . . . , λ.

Define matrices A(l), l = 1, . . . , λ, as all zeros M ×Kl matrices. We
begin by constructing the first row of matrices A(l) in two steps.

• Randomly assign each element of W to one of the λ multi-sets

W(l)
1 with probability Rl

R .

• For l = 1, . . . , λ substitute the 2 · |W(l)
1 | zero matrix entries,

a1,1, . . . , a1,2·|W(l)
1 |

, in the first row of matrix A(l) by the elements

of ±W(l)
1 . If the set W(l)

1 is empty, the corresponding row is left
with zeros.

Let κ(l) be the index of the first column of matrix A(l) whose entries

are all zero. Note at this point, κ(l) = 1 + 2 · |W(l)
1 | for l = 1, . . . , λ.

For j ≥ 2 until κ(l) > Kl, l = 1, . . . , λ, the row j of matrix A(l) is
generated using the following iterative steps:

(a) Randomly assign each element of W to one of the λ multi-sets

W(l)
j . The probability of being assigned to the multi-set l is

proportional to Rl
R , unless κ(l) > Kl. In this case, the probability

of assignment to multi-set W(l)
j is fixed to 0 (i.e., W(l)

j will be
void), and the remaining probabilities are re-normalized. This
is done to promote that the condition κ(l) > Kl, l = 1, . . . , λ, be
met for all users in a similar number of iterations, with the goal
of obtaining final encoding matrices that are regular in columns.

(b) For l = 1, . . . , λ and when κ(l) + 2 · |W(l)
j | ≤ Kl substitute the

2 · |W(l)
j | zero entries, aj,κ(l), . . . , aj,κ(l)+2·|W(l)

j |
, in row j of matrix

A(l) by the elements of ±W(l)
j . Otherwise, note that there will be(

κ(l) + 2 · |W(l)
j | −Kl − 1

)
elements that can not be allocated
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in this manner. These remaining elements are then randomly
placed in the unoccupied positions (1 to κ(l)− 1) of this row1.

(c) Set κ(l) = κ(l) + 2 · |W(l)
j |, l = 1, . . . , λ and go to the next

iteration step with j = j + 1.

Denote by J0 the value of j for which the condition κ(l) > Kl is met
for all l. Then, matrices A(l), l = 1, . . . , λ, are obtained by discarding
their last M − J0 zero rows. Note that this construction requires J0

to be smaller than M . However, the expected value of J0 is K
2·dr ,

independent of the number of users, allowing a potentially unlimited
number of simultaneous users.

2. Step 2: Generation of the encoding matrices G(l), l = 1, . . . , λ.
Matrix G(l), is obtained by vertically stacking L randomly column-
wise permuted A(l) matrices, where M ≤ LJ0 < M + J0. Note that
in the last stacked permuted matrix, A(l), only V = M − (L − 1)J0

rows should be kept.

The proposed RCM-MAC construction ensures that the superimposed
coded symbols at the output of the MAC channel are a weighted linear com-
bination of the input bits proceeding from several users, with the weights
belonging to ±W. Considered as a point-to-point RCM code, an RCM-
MAC scheme satisfies the three properties of good RCM codes, as men-
tioned in Section 2.6.1: i) it is regular in rows, with a ”total” design weight
setW by construction; ii) its weight set creates diverse symbol values which
can carry the information of all users; and iii) the constructed encoding ma-
trix is also regular in columns.

Notice that due to the use of symmetric weights ±W(l)
j , we ensure that

the output constellation for each user has zero mean, minimizing the aver-
age energy per user. In this chapter, we only consider uncorrelated users.
Thus, coded symbols from different users remain uncorrelated, and, as-
suming no noise, the mean energy of the MAC output is the sum of the
transmitted mean energies of all users. Since some users may not trans-
mit during certain time slots, superposition coding and time division occur

1It can be assumed that the individual block length of the users is always much larger
than the length of weight set Kl >> 2 · |W| ≥ 2 · |W(l)

j |. Therefore, there will always be

enough unoccupied positions to place these
(
κ(l) + 2 · |W(l)

j | −Kl − 1
)
elements.
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implicitly within the proposed RCM-MAC scheme, especially when the
number of users increases.

Recall that at the common receiver, an estimate of ûd is obtained by
running the standard RCM SPA explained in Section 2.6.4 to the simplified
factor graph defined by Gd.

6.4 RAYLEIGH FAST FADING MAC

We consider the fading MAC communication scenario of Section 2.5.2.2.
In this section we will consider complex baseband sequences. Let us denote
by x̃l to the output (which is the QAM modulated version of xl) of transmit-

ter l. The output of the channel at time j is given by yj =
∑λ

l=1 x̃
(l)
j ·h

(l)
j +zj ,

where the fading factors {h(l)
j } are modeled as in Section 2.5.2.2, Zj are sym-

metric complex Gaussian r.v.s, and j spans from 1 to M
2 . The achievable

rate bounds are obtained by averaging the inequalities (6.1) with respect
to the exponential random variables |H(l)|2 ∼ e−h, l = 1, . . . , λ, that is,

∑

l∈L
Rl ≤ E

[
log2

(
1 +

∑
l∈L
∣∣h(l)

∣∣2El
N0

)]
, (6.5)

for every L ⊆ [1 : λ],

where again Rl is the rate of user l. Similar to the AWGN channel case,
the theoretical limit will be given as

R =

λ∑

l=1

Rl ≤ E
[

log2

(
1 +

∑λ
l=1

∣∣h(l)
∣∣2El

N0

)]
. (6.6)

Applying the Jensen Inequality, it follows that the right-side term in
(6.6) is upper-bounded by the corresponding bound in (6.2). By the Law
of Large Numbers, it is easy to check that the upper-bounds for the MAC
AWGN and MAC Rayleigh fast fading channels are the same when the
number of users goes to infinity.

6.4.1 DECODING IN RAYLEIGH FAST FADING MAC

When perfect Channel State Information (CSI) is available at the re-
ceiver in point-to-point communications, the fading complex gain hj of
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coded symbol j is canceled by multiplying the received sample by
hj
|hj |2 ,

where hj denotes the conjugate of hj . Decoding is performed by incor-
porating the scaling factor 1

|hj |2 to the noise variance of symbol j in the

factor graph. However, in the multi-user scenario this is not possible, since
the received symbols are combinations of several coded symbols, each with

its own fading factor {h(1)
j , h

(2)
j , . . . , h

(λ)
j }. In order to decode RCM-MAC

schemes using standard belief propagation, the fading factors have to be
taken into account in the overall factor graph.

Recall that, unlike the previous AWGN sections, for the Rayleigh fast
fading MAC we consider the received symbols yj as complex (QAM modu-
lated) and denote the complex MAC channel output symbols as x̃Cj . We be-

gin by rewriting each of the M
2 received complex symbols, for j = 1, . . . , M2 ,

as

yj =
λ∑

l=1

x̃
(l)
j · h

(l)
j

︸ ︷︷ ︸
x̃Cj

+zj =
λ∑

l=1

(
x

(l)
2j−1 + i · x(l)

2j

)
· h(l)

j + zj

=

λ∑

l=1

( Kl∑

k=1

g
(l)
2j−1,ku

(l)
k

︸ ︷︷ ︸
x
(l)
2j−1

+i ·
Kl∑

k=1

g
(l)
2j,ku

(l)
k

︸ ︷︷ ︸
x
(l)
2j

)
· h(l)

j + zj

=
λ∑

l=1

(
Kl∑

k=1

((
g

(l)
2j−1,k + i · g(l)

2j,k

)·
h

(l)
j · u

(l)
k

))
+ zj , (6.7)

where h
(l)
j is the complex fading factor for the complex symbol j of user l.

Note that the QAM modulated transmitted RCM symbols [x̃
(1)
j , x̃

(2)
j , . . . , x̃

(λ)
j ]

are multiplied in the MAC by the complex fading factors [h
(1)
j , h

(2)
j , . . . , h

(λ)
j ]

before being added together.

Figure 6.3 illustrates the complex factor graph of the jth received MAC
symbol for the λ-user RCM-MAC scheme based on (6.7). Starting from

the bottom, the real RCM symbols x
(l)
2j−1 and x

(l)
2j , for l = 1, . . . , λ, are

obtained as in Fig. 6.2. These RCM real symbols are then paired two-
by-two. Following this, each of these transmitted RCM QAM symbols is

multiplied by its own complex fading factor h
(l)
j , making it impossible for

the receiver to cancel the fading factors, as is usually done in point-to-
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Figure 6.3: Factor graph of the jth received MAC symbol yj based

on (6.7).

point fading channels. These complex multiplications mix the real (in-
phase) and imaginary (quadrature) part of the signals. In order to avoid
the creation of cycles of length 4 that arise when separating the real and
imaginary parts, we perform decoding directly over the two-by-two complex
modulated fading factor graph, defining the complex decoding matrix G̃d

as

G̃d =
[
H(1) · G̃(1) H(2) · G̃(2) . . . H(λ) · G̃(λ)

]
M
2
×K

, (6.8)

where H(l), for l = 1, . . . , λ, is a complex diagonal matrix, of size M
2 × M

2 ,

whose diagonal elements are the complex fading factors [h
(l)
1 h

(l)
2 . . . h

(l)
M
2

].

The matrices G̃(l), of size M
2 ×K, are obtained from the matrices G(l) as

follows. Each row j, for j = 1, . . . , M2 , of G̃(l) is obtained by adding the

2j − 1 row in G(l) and the 2j row in G(l) multiplied by the imaginary unit
i, as in the illustration of Fig. 6.3. From the receiver’s perspective, the
output of the fading MAC can be seen as a point-to-point (complex) RCM
with varying weight multi-sets, which change due to the effect of the fading
factors.
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Finally, as in the previous AWGN example, the receiver can decode
the extended block ud of length K =

∑λ
l=1Kl, defined as [u1 u2 . . . uλ],

by executing the sum-product algorithm [9] over the graph describing G̃d

in (6.8). The steps of this algorithm are the same of Section 2.6.4 whose
equation (2.61) is adapted to the complex field.

6.5 RESULTS

To validate the performance of the proposed RCM-MAC schemes, we
next present numerical results obtained by Monte Carlo simulations. We
have considered three high rate scenarios with sum-rate, R, equal to 6, 7.4
and 9 bits per complex channel symbol. The total number of information
bits transmitted per block K is 37000, and the block length of each user has
been adjusted according to the number of users and their rate splits. The
decoding is performed by applying the sum-product algorithm of Section
2.6.4, which, for the Rayleigh fading case, is performed over the complex
field.

We consider two different rate allocation schemes, and start by studying
the case where the λ users transmit with symmetric rate allocation: Each
user utilizes blocks of 37000

λ information bits (or the closest number to 37000
that is divisible by λ). We also consider the case where the λ users transmit
in an asymmetric way, while maintaining a total sum-rate R equal to 6, 7.4
and 9 bits per complex channel symbol. In this case, the source block length
of user l with rate Rl is given by the closest integer to 37000RlR . Table 6.1
summarizes the 7 different asymmetric rate allocations with (a) λ = 2, (b)
λ = 3, (c) λ = 4, (d) λ = 5, (e) λ = 9, (f) λ = 13 and (g) λ = 16 users
that are simulated in this chapter.

Notice that independently of the number of users and the rate alloca-
tions, for an AWGN MAC with a fixed Es, the sum-rate can be achieved not
only by superposition as in the RCM-MAC scheme, but also with point-to-
point RCM codes combined with an adequate time-division multiple access
(TDMA) [8] (provided that users are allowed to use an average mean energy
Es during their transmission periods). However, many practical applica-
tions impose mean energy limitations (lower than Es) on each user, making
RCM-MAC the best option in such cases.

On the other hand, when Rayleigh fast fading is considered as the num-
ber of users increases, the performance of superposition coding overpasses
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Table 6.1: Rate allocations in bits per complex channel symbol for

the asymmetric cases considered in this chapter.

λ Rls for R = 6

a 2 {2, 4}
b 3 {2× 1.5, 3}
c 4 {0.5, 2× 1.5, 2.5}
d 5 {2× 0.66, 2× 1.33, 2}
e 9 {4× 0.4, 4× 0.8, 1.2}
f 13 {4× 0.2, 4× 0.4, 4× 0.6, 1.2}
g 16 {4× 0.15, 4× 0.3, 4× 0.45, 4× 0.6}

λ Rls for R = 7.4

a 2 {2.46, 4.93}
b 3 {2× 1.85, 3.7}
c 4 {0.62, 2× 1.85, 3.08}
d 5 {2× 0.82, 2× 1.64, 2.46}
e 9 {4× 0.49, 4× 0.98, 1.48}
f 13 {4× 0.24, 4× 0.49, 4× 0.74, 1.48}
g 16 {4× 0.185, 4× 0.37, 4× 0.55, 4× 0.74}

λ Rls for R = 9

a 2 {3, 6}
b 3 {2× 2.25, 4.5}
c 4 {0.75, 2× 2.25, 3.75}
d 5 {2× 1, 2× 2, 3}
e 9 {4× 0.6, 4× 1.2, 1.8}
f 13 {4× 0.3, 4× 0.6, 4× 0.9, 1.8}
g 16 {4× 0.225, 4× 0.45, 4× 0.675, 4× 0.9}

the performance of a TDMA scheme, even if users are allowed to use higher
powers during their transmission times. In other words, the combination
of a point-to-point RCM code and a TDMA scheme with power control
does not achieve the same performance attained when using superposition
coding with an RCM-MAC scheme (refer to Section 6.5.2).
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6.5.1 NUMERICAL RESULTS FOR AWGN MAC

We begin by analyzing the performance of the proposed RCM-MAC
scheme for the AWGN channel. The corresponding theoretical limits given
by (6.2) are SNR = Es

N0
= 18 dB for R = 6, SNR = 22.3 dB for R = 7.4

and SNR = 27.1 dB for R = 9. Fig. 6.4 shows the BER versus SNR for
the symmetric multi-user scenario, with λ =2, 3, 4, 8, 16, 32, 64 and 128
users, whereas results for the asymmetric rate allocations of Table 6.1 are
shown in Fig. 6.5. To provide further context, we have also depicted the
performance of a conventional RCM code with the same rate in a point-
to-point AWGN channel. Its performance is equivalent to performing the
OMA strategy of TDMA with power control, as discussed previously. The
weight sets W considered in the simulations are {3, 3, 4, 5}, {3, 4, 5, 7} and
{3, 4, 5, 5, 7} for R =6, 7.4 and 9, respectively. They have been selected
using EXIT charts (refer to Chapter 3) of standard point-to-point RCM
codes, with a rate equal to the intended sum-rate R.

Notice that in all cases the proposed RCM-MAC scheme presents a
waterfall around 2 dBs away from the sum-rate capacity limit (6.2). As the
number of users increases, the additional structure that is imposed on the
construction of the generation matrices G(l) results in higher error floors
compared to the point-to-point code. This degradation of the error floor
with the number of users is more pronounced when the sum-rate increases.
For example, in the scenario with R = 9 and symmetric rate allocation
shown in Fig. 6.4c, the error floor goes from near 10−5 for λ = 2, to 10−4

and 7 · 10−4 for λ = 16 and λ = 128, respectively.

The increase of the error floor as the number of users increases can be
explained by the decrease of the individual block length Kl of each user,
which is inversely proportional to the number of users. This effect can be
eliminated if the total block length is increased according to λ, so that Kl

stays fixed when the number of users increases. This is shown in Fig. 6.6
for the case of R = 7.4 with symmetric rate allocation. Figs. 6.6a, 6.6b
and 6.6c show the performance when the individual block length of each
user Kl, for l = 1, . . . , λ, is fixed to 1110, 4440 and 8880, respectively. The
coded block length is given by M = 2K

R , where K = λ · Kl is the total
number of information bits transmitted per block.

Figs. 6.6a, 6.6b and 6.6c show that the performance depends both on
the total block length K and the individual block length Kl. For example,
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Figure 6.4: Numerical results obtained by Monte Carlo simula-

tions for the symmetric multi-user scenario with λ ∈
{2, 3, 4, 8, 16, 32, 64, 128} users and for point-to-point

(RCM) when the AWGN MAC is considered.

in the case of Kl = 1110 there is a minimum error floor of around 10−4

that is achieved with λ = 16, (i.e. a total block length K = 17760), and
the error floor does not improve any further when λ increases. On the
other hand, when Kl = 8880 and λ = 2, with the same total block length
K = 17760, the error floor improves to 6 · 10−5. As can be seen in Fig.
6.6c, any number of users can be sent with a low error floor provided that
the total and the individual (per user) block lengths are large enough.
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Figure 6.5: Numerical results obtained by Monte Carlo simulations

for the asymmetric multi-user scenario with rate distri-

butions as in Table 6.1 and for point-to-point (RCM)

when the AWGN MAC is considered.
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Figure 6.6: Numerical results obtained by Monte Carlo simulations

for the symmetric multi-user scenario of R = 7.4 with

λ ∈ {2, 3, 4, 8, 16, 32, 64, 128} when the AWGN MAC is

considered.
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6.5.2 NUMERICAL RESULTS FOR THE RAYLEIGH FAST FAD-
ING MAC

As mentioned in Section 6.4, when the number of users increases, the
sum-rate capacity of the Rayleigh fast fading MAC increases towards its
maximum value, namely the sum-rate capacity of the AWGN MAC. As-
suming symmetric rate allocation, Table 6.2 shows the SNR Shannon limits
for λ = 1, 2, 3, 4 (λ = 1 equals to point-to-point RCM) and sum-rates R=6,
7.4 and 9. The table also shows the SNR Shanon limit when the number
of users grows asymptotically.

Table 6.2: Shannon SNR limits (in dB) for the symmetric rate allo-

cation cases with sum-rate R in the Rayleigh fast fading

MAC.

λ R = 6 R = 7.4 R = 9

1 20.4 24.7 29.6
2 19.1 23.4 28.3
3 18.7 23 27.8
4 18.6 22.8 27.7
∞ 18 22.3 27.1

For the simulations, the optimized weight sets W are {2, 3, 4, 4, 7} for
R = 6 and {3, 4, 5, 8, 10} for R = 7.4 and 9, independently of the number
of users (λ = 1, . . . , 128). Fig. 6.7 plots the resulting performance for the
symmetric rate scenario, with λ = 2, 3, 4, 8, 16, 32, 64 and 128, indicated as
λ× 1 in the figure, and the point-to-point RCM. For the sake of clarity in
the figures, only the SNR limits corresponding to a larger number of users
(SNR∞) are plotted as vertical lines, with values given by SNR∞ = 18 dB,
SNR∞ = 22.3 dB and SNR∞ = 27.1 dB for R = 6, 7.4 and 9, respectively.

Notice that, following the theoretical limits, performance improves as
the number of users increases. For example, Fig. 6.7a shows that for R = 6
the MAC scenario with λ = 16 users requires an SNR of around 0.7 dB
less than the system with λ = 2 users, and 1.15 dB less SNR than the
point-to-point RCM code, to achieve the same BER. Similarly, we can see
in Fig. 6.7b that for R = 7.4 and λ = 16 users the SNR improvement is
around 1.15 dB and 0.65 dB compared to the results of the point-to-point
RCM code and to the case with λ = 2 users, respectively. Finally, results
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for R = 9 are shown in Fig. 6.7c. In this case, the SNR improvement
for λ = 16 users compared to the point-to-point RCM case is increased
to around 2 dB. Notice also that for more than 16 users the performance
no longer improves significantly. The reason is that the weight sets have
length five, and thus, at each RCM-MAC symbol only the averaging effect
of up to 10 users applies.

18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23

SNR

10-4

10-3

10-2

10-1

100

B
E

R

RCM
=2
=3
=4
=8
=16
=32
=64
=128

(a) R = 6

22 22.5 23 23.5 24 24.5 25 25.5 26 26.5 27 27.5

SNR

10-4

10-3

10-2

10-1

100

B
E

R

RCM
=2
=3
=4
=8
=16
=32
=64
=128

(b) R = 7.4

27 28 29 30 31 32

SNR

10-4

10-3

10-2

10-1

100

B
E

R

RCM
=2
=3
=4
=8
=16
=32
=64
=128

(c) R = 9

Figure 6.7: Numerical results obtained by Monte Carlo simula-

tions for the symmetric multi-user scenario with λ ∈
{2, 3, 4, 8, 16, 32, 64, 128} and the point-to-point RCM

code (denoted by RCM) when a Rayleigh fast fading

MAC is considered.
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Figure 6.8: Numerical results obtained by Monte Carlo simulations

for the asymmetric multi-user scenario with rate distri-

butions as in Table 6.1 and the point-to-point RCM

code (denoted by RCM) when a Rayleigh fast fading

MAC is considered.

The results for the asymmetric rate allocation case are showed in Fig.
6.8, where the same trends as in the symmetric scenario are observed. To
sum up, Table 6.3 presents the SNR performance improvements obtained
in the proposed RCM-MAC scheme when the number of users increases
and the channel is Rayleigh fast fading. The entries indicate the SNR
improvement (in dB, and for BER = 10−2) with respect to the case of 1
user utilizing a point-to-point RCM code.
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Table 6.3: Summary of the SNR performance improvement (in dB)

when comparing the RCM-MAC scheme with the point-

to-point RCM in a Rayleigh fast fading MAC (λ = 1).

RCM-MAC R = 6 R = 7.4 R = 9

sy
m

m
et

ri
c

λ = 2 0.45 0.5 1.3
λ = 3 0.76 0.65 1.4
λ = 4 0.84 0.87 1.6
λ = 8 1.1 1.07 1.67
λ = 16 1.15 1.13 1.8
λ = 32 1.25 1.2 1.95
λ = 64 1.25 1.2 1.95
λ = 128 1.25 1.2 1.95

a
sy

m
m

et
ri

c a 0.4 0.53 1.15
b 0.5 0.57 1.25
c 0.65 0.73 1.35
d 0.78 0.77 1.53
e 0.8 0.87 1.55
f 0.88 0.95 1.68
g 0.92 0.97 1.68

6.6 DISCUSSION

We have proposed a new high-rate coding scheme, named RCM-MAC,
suitable for non-orthogonal multiple access. It is constructed in such a
way that it takes advantage of the linear behavior of both RCM codes
and the multiple access channel in order to design a MAC scheme that
emulates a point-to-point RCM code from the receiver’s perspective. As
such, it inherits the large system throughputs of RCM codes and is able to
accommodate a large number of users without impacting the performance
and decoding complexity.

For the AWGM multiple access channel, and a large range of simulta-
neous users, simulation results show that the BER vs SNR curves of the
proposed RCM-MAC scheme are around 2 dB away from the Shannon limit,
similar to the expected performance of a point-to-point RCM. On the other
hand, when considering the Rayleigh fast fading channel, the Shannon limit
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depends on the number of users. The performance of our proposed scheme
is around 2.7-3.5 dB away from these limits. It is worth mentioning, that
due to the average effect of having multiple users, the proposed RCM-MAC
schemes outperform the combination of point-to-point RCM and TDMA
with power control by up to 2 dB.

Finally, it is interesting to notice that for all rate allocation scenarios,
as in the case of standard point-to-point RCM codes, the proposed RCM-
MAC schemes suffer from high error floors. This paves the way for future
research on lowering the error floor by concatenating the proposed RCM-
MAC to other codes, as has been done for point-to-point RCM codes.
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CHAPTER 7

RCM for Correlated
Information Sources

In this chapter we present an RCM based joint source-channel coding
scheme for the transmission of correlated information sources. Unlike the
previous joint source-channel schemes encountered in the literature, the
proposed scheme allows high transmission rates while also considering sce-
narios with multiple correlated sources. In order to lower the error floor
of the scheme presented in this chapter and in the previous one, we also
extend the RCM-LDGM parallel concatenation to the multi-user scenario.

7.1 JOINT SOURCE-CHANNEL CODING

Consider µ jointly ergodic sources
{
Ul
}µ
l=1

defined over countably infi-
nite alphabets. The Slepian-Wolf [148, 149] result states that they can be
losslessly compressed at rate tuples (R′1, R

′
2, . . . , R

′
µ) such that

∑

i∈S
R′i ≥ H

(
U(S)

∣∣∣∣ U(Sc)
)

for all S ⊆ [1 : µ], (7.1)

where H(·) is the entropy, Sc is the complementary set of S and U(S) =
{Ui : i ∈ S}. Each source is losslessly compressed in a distributed man-
ner and the original sequences are recovered by applying a joint decoder.
Authors in [150, 151, 152] reformulate the Slepian-Wolf result as a chan-
nel coding problem with side information, enabling the use of well-establish

123
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channel codes to exploit prior knowledge at the decoder. Some coding struc-
tures used in the literature include turbo codes [42], Low-Density Parity
Check (LDPC) codes [14, 43, 44], and concatenated Low-Density Generator
Matrix (LDGM) codes [153, 154].

The problem becomes more challenging if the compressed sources have
to be transmitted through noisy channels. Techniques for exploiting the
correlation at the access point when the transmission is performed over
orthogonal channels are investigated in [153, 155, 156, 157, 158, 159, 160].
In this chapter we focus on the transmission of these sources over non-
orthogonal multiple access. Concretely, we consider a non-SIC NOMA as
it was shown in [126] that it is more effective than SIC because, in the
latter, the correlated information is not received by all users. Thus, for the
rest of this chapter (as in the previous chapter), we will consider non-SIC
based NOMA schemes.

While the use of separate source and channel codes is well motivated
for the point-to-point case, it can entail significant performance losses in
the considered scenario with transmitted energy constraint, as explained
in the introduction of Part II. In this chapter we propose a coding scheme
based on RCM schemes to transmit CIS over the MAC at high rates. The
sparse nature of the linear combinations that generate RCM symbols is well
suited to design codewords that preserve part of the source correlation.
The proposed scheme, which we will denote as RCM-CIS, consists of a
set of RCM codes, one per user, with the same random RCM structure.
In this way, RCM symbols colliding in the channel are generated from
weighted linear combinations of correlated bits. By appropriately choosing
the weight set values for each user, high symbol reinforcement, and thus
correlation reinforcement, can be achieved. As in the case of RCM for
point-to-point communications and of RCM-MAC schemes, the proposed
RCM-CIS schemes are able to adapt their rate seamlessly by varying the
number of generated symbols. RCM-CIS schemes are different from the
schemes in Chapter 6 in the sense that the latter are created by distributing
an RCM structure into irregular RCM codes that are assigned to different
users, whereas RCM-CIS replicate the same RCM structure for each user
and only vary the weight values.

Unfortunately, if conventional binary decoding is used, the overall factor
graph resulting from the combination of the correlated sources’ factor graph
with the replicated RCM random structures will present short length cycles,
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and consequently degrade the decoding performance. Moreover, although
messages are passed between the correlated source symbols in the sum-
product algorithm, not considering these probabilities jointly will lead to
some loss of source correlation information. To overcome these problems,
we propose the use of a novel non-binary joint decoder for the RCM-CIS
schemes. The concept of non-binary decoding has been studied in the
literature [161, 162, 163] and has been recently applied to decode LDPC
and LDGM codes designed specifically for the quantum communication
paradigm [164, 165, 166, 167], but has never been applied to decode RCM
codes.

Finally, in this chapter we also we extend the parallel RCM-LDGM
concatenation to the MAC and apply it to improve the error floor of RCM-
CIS schemes.

7.2 SYSTEM MODEL

We consider the transmission model of Section 2.5.2.1, i.e., the transmis-
sion of the information produced by µ1 correlated sources over an AWGN
multiple access channel. In this case, all users generate blocks of the same
length and encode the information at the same rate. In other words, each
transmitter l sends a block of K information bits ul = (ul1, u

l
2, . . . , u

l
K)> ∈

{0, 1}K×1 to the same destination by simultaneously using an additive
Gaussian noise channel N times. The total transmitted average energy
per MAC channel use is Es = µ · El, where El is the average energy per
symbol of each user, and is equal for all users.

As mentioned before, the theoretical limit when the energy constraint is
defined at the transmitter is not known. As it is done in the literature [139],
for comparison purposes we will consider the theoretical limit assuming
that separation between source and channel coding holds, which is only
valid when the correlation is equal to zero. This would be the theoretical
limit if the correlated sources are first compressed up to the Slepian-Wolf
limit and then encoded with capacity achieving codes. If the transmission
rate of each user is R, then the theoretical limit (assuming source-channel

1We denote the number of correlated sources by µ instead of λ, which has been used
previously for uncorrelated sources.
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separation) is given by

R ·H(U1,U2, . . . ,Uµ) ≤ log2

(
1 +

Es
N0

)
. (7.2)

Finally, the total system rate Rs is given by Rs = R·H(U1,U2, . . . ,Uµ).
We will also refer to Es

N0
as the SNR in this chapter.

7.2.1 SOURCE MODEL

We assume that the information bit blocks ul = (ul1, u
l
2, . . . , u

l
K)> ∈

{0, 1}K×1, for l = 1, . . . , µ, are generated by binary uniform memoryless
sources. As indicated in Fig. 7.1, the correlation between the µ sources is
modeled in the following way.

• Generate a symmetric i.i.d. base sequence s of length K with P (sk =
0) = P (sk = 1) = 1

2 .

• The source information sequences ul, for l = 1, . . . , µ, are obtained as
ul = s⊕ el, where ⊕ indicate modulus 2 addition. The sequences el,
of length K, are obtained from a non-uniform i.i.d. binary r.v. that
takes value 1 with probability p ∈ [0, 1].

S
s

e2

u2

e1

u1

eµ

uµ

...

Figure 7.1: The multi-terminal spatially correlated source model

considered.

Notice that the considered correlation model describes an i.i.d. multi-
terminal source (refer to Section 2.5.1). At each time k, the stochastic
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process {Uk} is composed by the µ-dimensional random vector {Uk} =
(U1

k , . . . , U
µ
k ) taking values in {0, 1}1×µ with probability mass function

PU(u1u2 . . . uµ) given by

PU(u1u2 . . . uµ) =
1

2
·
µ∏

i=1

pu
i · (1− p)(1−ui)

+
1

2
·
µ∏

i=1

p(1−ui) · (1− p)ui . (7.3)

Although we deal with this simple source model, the ideas proposed in this
chapter can be applied to more complex source models.

7.3 THE PROPOSED RCM-CIS SCHEME AND ITS JOINT
DECODER

In order to achieve good performance when correlated information sources
are transmitted over a multiple access channel, the generated codewords
should preserve part of the existing source correlation. The proposed
scheme takes advantage of the sparse and linear nature of RCM codes
to achieve this goal. Specifically, the introduced RCM-CIS scheme utilizes
µ RCM encoders, each encoding one of the users. All the µ RCM en-
coders have the same graphical structure, but different weight multi-sets
W l, l = 1, . . . , µ. By same graphical structure we mean that for all l, every
symbol xlj is connected to the same 2 · dr source symbols (each of its own
source). This property can be defined from the encoding matrix perspective
as follows. If we denote as {G1, . . . , Gµ} the encoding RCM matrices for
each user, then the non-zero entries of these sparse matrices are all placed
in the same row-column positions. This is achieved by utilizing a mother
RCM structure, which is replicated in the generation of individual RCMs
composing the RCM-CIS scheme.

Notice that in the proposed scheme, the MAC output symbol xCj is
generated from linear combinations of 2 · dr groups of µ correlated source
symbols. Specifically, if for user l the input binary symbol in position k,
ulk, participates in xCj , the input bits in position k for all other users also
participate. If we design the weights properly, a high degree of symbol
reinforcement can be achieved taking advantage of the correlation. An
example of such a design, which we will use in this chapter, would be to
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jointly select the weights so that correlated source symbols are connected
to symbol xCj with weights of equal sign.
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Figure 7.2: Proposed RCM-CIS scheme with two correlated

sources.

Before detailing the construction of this scheme, let us consider an ex-
ample with µ = 2 users. As shown in Fig. 7.2, the factor graph of the
entire RCM-CIS scheme consists of the individual RCM codes, the MAC
and the correlation model. Notice that the graphical structures of the RCM
encoding each user are identical. For example, the RCM symbol x1

1 is con-
nected to U1

1 and U1
K with the weights −w1

1 and w1
2, whereas the RCM

symbol x2
1, of user 2, is connected to U2

1 and U2
K with the weights −w2

1 and
w2

2, respectively. This is repeated for every symbol. Therefore, the MAC
symbol xC1 = x1

1 + x2
1 is generated as

xC1 = −w1
1 · u1

1 − w2
1 · u2

1︸ ︷︷ ︸
correlated

+w1
2 · u1

K + w2
2 · u2

K︸ ︷︷ ︸
correlated

+ . . . . (7.4)
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Notice that by RCM definition, the weight values wlj are positive. This
will produce a symbol reinforcement at the receiver, which increases the
average received energy with respect to the total transmitted energy Ec,
which is the constraint of the overall communication system. Finally, note
that the source symbol variables of both users are connected through the
joint source’s graph.

7.3.1 GROUPING THE INPUT SYMBOLS FOR ALL USERS

The conventional decoding approach for the example of Fig. 7.2 would
be to perform the symbol-wise MAP by applying the sum-product algo-
rithm to the entire factor graph. Note that this FG contains short length
cycles at each node. For example, U1

1 is connected through the source
model to U2

1 , which at the same time is linked to x2
1, x2

1 to x1
1, and finally,

x1
1 connects back to U1

1 . This is repeated for all symbols by construction,
resulting in the presence of many short length cycles, which ultimately de-
grades the decoding performance [168, 169]. Moreover, as stated before,
the binary decoding losses part of the correlation information by consider-
ing the source symbols individually, despite sum-product messages being
passed through the source factor graph.

In this Thesis we propose to solve the short length cycle problem and
to fully exploit the source correlation by rearranging the factor graph of
Fig. 7.2 in such a way that we consider the joint source probabilities,
eliminating the mentioned short length cycles. The idea of clustering or
grouping nodes to cope with cycles in probabilistic graphs was first proposed
by J. Pearl in [170]. In this work, we group the paired correlated source
symbols together as non-binary compound variables UCk = {U1

k , U
2
k} ∈

{0, 1}2 given by the Cartesian product of the individual variables. Note
that this new non-binary input variable can take 4 possible values given by
{00, 01, 10, 11}, each with a different probability that depends on the source
correlation model. We also directly consider the output MAC symbol xCj .
This rearranged factor graph is shown in Fig. 7.3. Note that its graphical
structure is the same as that of the two previous individual RCMs encoding
each user. The difference lies in the fact that variables in Fig. 7.3 are
compound: the MAC output symbols, and the Cartesian product of the
source symbols. The edges connecting these variables have two weight
values. Notice that although we eliminate the short length cycles mentioned
before, the resulting non-binary factor graph still contains the same cycles
that occur in conventional RCM codes. However, the number of these cycles
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Figure 7.3: Grouping the input symbols in Fig. 7.2. The notation

w1,2
j refers to {w1

j , w
2
j}.

is far smaller than in the previous case, and similar to conventional RCM
codes, will have very limited impact on the decoding performance.

Finally, we provide another perspective of the rearranged scheme, which
will help understand the non-binary decoder used over the rearranged factor
graph. Let us label the 4 possible values that the input compound variable
UC1 can take as 0, 1, 2, 3 which correspond to the individual source symbol
combinations {U1

1 , U
2
1 } = {00, 01, 10, 11}. Following the example in Fig.

7.3, UCk is connected to xC1 through −w1,2
1 = {−w1

1,−w2
1}. Thus, the

contribution of UC1 to xC1 , given by −w1
1 · u1

1 − w2
1 · u2

1, can be seen as the
non-binary mapping of Table 7.1. For example, if the two input symbols
take value 1, then, UC1 adds the factor −w1

1 − w2
1 to the total sum of xC1 .

The non-binary messages passed through the non-binary RCM decoder
will contain the probabilities of the 4 possible values that UC1 can take
considering the symbol xC1 .
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Table 7.1: Non-binary RCM mapping showing the contribution of

u11 and u21 to xC1 in Fig. 7.3.

{U1
1 , U

2
1 } label (UC1 ) f(U1

1 , U
2
1 )

{0, 0} 0 0
{0, 1} 1 −w2

1

{1, 0} 2 −w1
1

{1, 1} 3 −w1
1 − w2

1

7.3.2 DESIGN OF RCM-CIS ENCODERS

The design process of an RCM-CIS scheme begins by building a M ×K
RCM random structure with 2 · dr entries {w1, . . . , wdr ,−w1, . . . ,−wdr} as
in Fig. 2.13. This mother structure is replicated by the RCM codes of all
users, and its entries will be used as indexes for the weight set of each user.
Recall that working on a factor graph or its incident matrix (G in this case)
is equivalent.

The µ RCM encoders {G1, G2, . . . , Gµ} of the RCM-CIS scheme are all
obtained from this RCM mother structure as follows. The RCM encoder of
user l, with weight multi-set W l, is obtained by replacing the index entries
{wi} in the mother RCM structure (refer to Fig. 2.13) by its own weight
values {wli} to form the encoding matrix Gl. The weights are replaced
in the specific order of appearance in the multi-sets, which determine the
difference between individual RCM encoders.

Therefore, the RCM-CIS scheme is defined by the µ weight multi-sets
composed by dr values in a specific order. The set of µ weight multi-sets
{W1, . . . ,Wµ} is jointly designed and can be rewritten as the following
compound weight matrix ±WC , of size µ× 2 · dr,

±WC =




±W1

±W2

...
±Wµ


 =




w1
1 w

1
2 . . . w

1
dr
− w1

1 − w1
2 . . .− w1

dr
w2

1 w
2
2 . . . w

2
dr
− w2

1 − w2
2 . . .− w2

dr
...

wµ1 wµ2 . . . w
µ
dr
− wµ1 − wµ2 . . .− wµdr


 , (7.5)

where row l represents the weights that user l is going to substitute from
the mother RCM structure, {wi} → {wli}.



132 CHAPTER 7. RCM for Correlated Information Sources

After the symbols are superimposed with the channel, a output MAC
symbol, xCj = x1

j+x
2
j+. . .+x

µ
j is a linear combination of 2·dr ·µ binary input

symbols, weighted by all values in matrix ±WC . The weights in the same
row connect xCj to source symbols of the same user , whereas the weights

in the same column connect xCj to µ correlated source symbols, one of each

user. Since the weight values {wli} are positive, a symbol reinforcement will
be achieved by this joint design.

The weight set matrix ±WC should be such that the resulting random
symbol XC at the output of the MAC has entropy larger than the total
system rate Rs. That is, if we denote by ΦC = {φC1 , φC2 , . . .} the constella-
tion points at the output of the MAC and PXC (φCi ) their probabilities of
occurrence, then2

H(XC) =−
∑

i

PXC (φCi ) logPXC (φCi ) ≥ Rs. (7.6)

In order to guarantee that users transmit with equal mean energy per
symbol, in this chapter we will consider that every row of the matrix ±WC

is constructed with the same weights but in different order, i.e., the weight
multi-sets of each users are permutations of each other.

Finally, let us consider the non-binary rearrangement of the constructed
RCM-CIS scheme with µ correlated users. The compound variables UCk ∈
{0, 1}µ are the Cartesian product of the µ source variables {U1

k , . . . , U
µ
k }

that we will label from 0 to 2µ−1 according to their decimal representation
(as in Table 7.1). Recall that UCk will contribute (if connected through
the FG) to the MAC output symbol xCj through the weighted sums of

the weights in one column of ±WC . These weights are multiplied by the
individual source symbols.

7.3.3 PARALLEL CONCATENATION WITH LDGM CODES

In order to correct the residual errors produced by the RCM-CIS scheme,
we propose the use of LDGM codes in parallel with the RCM codes used
for each user (see Fig. 7.4), as it is done for point-to-point communica-
tions. The idea is to correct the possible residual errors not corrected by
the RCM codes. The µ LDGM generator matrices {P 1, P 2, . . . , Pµ}, of

2It should be noted that the probability mass function PXC (φC) is function of the
weight matrix WC and the source correlation.
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Figure 7.4: Factor graph of the proposed RCM-CIS scheme with a

parallel LDGM concatenation for sending µ correlated

information sources.

size I × K, are all obtained from random row-wise permutations of the
non-systematic part P of the same LDGM generator matrix, that produces
I non-systematic LDGM symbols with design parameter dl. These gener-
ator matrices will produce LDGM coded bits, which are then BPSK (±1)
modulated and also sent through the MAC. At the receiver, if the super-
imposed LDGM MAC symbols present mutual reinforcement (are all 1 or
-1) it is easy to estimate the LDGM symbols of each user. However, since
the source correlation is lost in these LDGM symbols (they are produced
by different LDGM encoding matrices), many received symbols are formed
by the addition of non-equal LDGM symbols, and therefore, they could be
produced by different combinations of LDGM symbols. This causes an am-
biguity that may render estimation errors in the individual LDGM symbols,
complicating the decoding process.
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With the goal of improving the decoding task, we propose to multi-
ply the LDGM symbols by modulation factors before they are transmitted
through the MAC. These modulation factors take µ fixed values, denoted
as Θ = {θ1, θ2, . . . , θµ}, which are chosen to reduce the ambiguity of the
LDGM MAC symbols. In order to allocate the mean energy and the symbol
protection evenly across all users, these fixed modulation values are each
assigned to one user for every LDGM symbols in a rotating manner. If we
denote by αlj the modulation factor of user l and LDGM coded symbol j,

then αlj = θυ, where υ = (l+ j mod µ)+1 and mod is the modulus. For
example, for µ = 2 and fixed values {1, 2}, the modulation factors would
be α1

j = 1 and α2
j = 2 for j even and α1

j = 2 and α2
j = 1 for j odd. Conse-

quently, the LDGM MAC output symbol xCj , for j = M + 1, . . . ,M + I, is
given by

xCj =

µ∑

l=1

αlj · xlj , (7.7)

where xlj ∈ {−1, 1} is the LDGM coded BPSK modulated symbol j of user

l generated with the LDGM encoding matrix P l.

To sum up, the encoder El of rate R = K
M+I , for l = 1, . . . , µ, is com-

posed by an RCM encoder matrix Gl, of size M × K, and an LDGM
encoder matrix P l, of size I ×K. The RCM encoder generates the output
symbols j ∈ [1 : M ], while the LDGM encoder generates coded symbols
j ∈ [M + 1 : M + I]. Finally, the LDGM BPSK modulated symbol j of
user l is multiplied by the modulation factor αlj before being transmitted.
Note that if N = M (I = 0), the proposed scheme is just an RCM-CIS.

7.3.4 JOINT DECODER

As we showed in the previous section, the RCM sub-graph is rearranged
in a non-binary manner in order to avoid the creation of short length cycles,
and non-binary decoding is applied by considering the correlated source
binary symbols of all users jointly. However, the decoding of the non-linear
LDGM sub-graph remains binary. Therefore, the resulting decoder is based
on a mixed message passing schedule that uses non-binary and binary Log-
Likelihood Ratio (LLR) messages. The non-binary probabilities of UCk and
the binary probabilities of {U1

k , . . . , U
µ
k } are converted to each other by

discretization or joining the corresponding PMFs. For the sake of clarity in
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the explanation of the joint decoder, let us start by defining the following
terms that are used in the iterative decoder:

• Variable Nodes (VN) U lk: We refer to the individual variable node
corresponding to input binary symbol k of the user l as {U lk}.

• Compound VN UCk : We define the kth compound VN as the Carte-
sian product of the µ VNs of the source symbols k given by UCk =
{U1

k , U
2
k , . . . , U

µ
k }. These compound VNs are non-binary variables

that can take 2µ possible values, which we will label from 0 to 2µ− 1
according to the equivalent decimal number in the binary represen-
tation defined by {U1

k , U
2
k , . . . , U

µ−1
k , Uµk } as in Table 7.2.

Table 7.2: Labeling of the compound VNs UCk .

label U1
k U2

k Uµ−2
k Uµ−1

k Uµk

0 0 0 . . . 0 0 0
1 0 0 . . . 0 0 1
2 0 0 0 1 0
...

...
...

2µ − 2 1 1 . . . 1 1 0
2µ − 1 1 1 . . . 1 1 1

• Based on the previous labeling, we denote by χi, i = 0, . . . , 2µ−1, the
subset of users whose entry for label i in Table 7.2 is 1. For example,
χ0 = {}, χ1 = {µ} and χ2µ−1 = {1 : µ}.

• MAC Check Node (CN) TCj : We define the jth MAC CN TCj as the

check node representing the symbol xCj at the output of the MAC.

{TCj }j∈[1:M ] are RCM nodes, whereas {TCj }j∈[M+1:M+I] are LDGM
nodes. For the later case, we also define the individual LDGM CNs
as {T lj}j∈[M+1:M+I], l = 1, 2, . . . , µ, i.e., the CN j at the output of
the LDGM encoder of user l, before considering the multiple access
channel.

• We denote as −→rj,k and −→qk,j the vector messages passed from the jth

RCM MAC CN TCj to the kth compound VN UCk and the vector

messages passed from the kth compound VN UCk to the jth RCM MAC



136 CHAPTER 7. RCM for Correlated Information Sources

CN TCj , respectively. These messages contain the vector, of length
2µ, of probabilities associated to each value that the compound VN
UCk can take, i.e., {P0...00, P0...01, P0...10, . . . , P1...11}.

• For the LDGM sub-part, we denote by rlj,k the LLR messages passed

from the jth individual LDGM CN T lj of user l to the kth individual

VN U lk of the same user. Similarly, qlk,j represents the LLR messages

passed from the kth individual VN U lk to the jth individual LDGM
CN T lj .

• n(UCk ) \ TCj and n(TCj ) \ UCk denote the set of RCM MAC CNs con-

nected to compound VN UCk without considering MAC CN TCj , and

the set of compound VNs connected to RCM MAC CN TCj with-

out considering UCk , respectively. For the LDGM sub-graphs, one
per user, we denote by n(U lk) \ T lj the set of individual LDGM CNs

connected to VN U lk without considering the LDGM CN T lj and by

n(T lj) \ U lk the set of VNs connected to LDGM CN T lj without con-

sidering U lk.

• Finally, we denote by
−→
Pπ the a priori probability vector, of length 2µ,

of each compound VN based on the correlation model. For example,

for µ = 2 and the considered source model,
−→
Pπ = {1/2 · (1− p)2 +

1/2 · p2, p · (1− p) , p · (1− p) , 1/2 · (1− p)2 + 1/2 · p2}.

At iteration t ∈ {1, . . . , tmax}, the iterative decoder operates by trans-
mitting the following messages:

• STEP 1.1 −→qk,j: Probability vector message passing from com-
pound VNs, {UCk }Kk=1, to RCM MAC check nodes {TCj }Mj=1.

−→qk,j =
−→
Pπ ·
−−−−−−−→
PLDGM(k) ·

∏

i∈n(UCk )\TCj

−→ri,k, (7.8)

where −→ri,k = { 1
2µ ,

1
2µ , . . . ,

1
2µ } for k ∈ {1, . . . ,K}, i ∈ n(UCk ) \ TCj in

iteration 1.
−−−−−−−→
PLDGM(k) is the probability message vector, representing

{P0...00, P0...01, P0...10, . . . , P1...11}, of the compound VN UCk , generated
from the binary LDGM beliefs {rli,k}i=M+1:M+I,l=1:µ that arrive on

individual VNs {U lk}l∈[1:µ].
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• STEP 1.2 qlk,j: LLR message passing from individual VNs

{U lk}l∈[1:µ],k∈[1:K] to individual LDGM CNs {T lj}l∈[1:µ],j∈[M+1:M+I].

qlk,j = P
(l)
RCM(k) +

∑

i∈n(U lk)\T lj

rli,k, (7.9)

where rli,k = 0 for k ∈ {1, . . . ,K}, i ∈ n(U lk) \ T lj in the iteration 1.

P
(l)
RCM(k) is the LLR belief of individual VN U lk obtained by marginal-

izing the RCM probability vector
∏
i∈n(UCk )

−→ri,k.

• STEP 2.1 −→rj,k: Probability vector message passing from RCM
MAC check nodes, {TCj }Mj=1, to compound VNs {UCk }Kk=1.

Note that the jth RCM MAC output symbol xCj is given by xCj =(
µ∑
l=1

(
K∑
i=1

glj,iu
l
i

))
and let us define aj,k =

(
µ∑
l=1

(∑
i∼k

glj,iu
l
i

))
, where

∑
i∼k

refers to the sum over all i ∈ [1 : K] except k and glj,i is the entry

(j, i) of the encoding matrix Gl.

By rewriting the jth RCM MAC output symbol as aj,k +
∑
l

glj,ku
l
k for

all k ∈ n(TCj ), the 2µ probability entries {−→rj,k(i)}2
µ−1
i=0 of the message

vector −→rj,k are calculated as

−→rj,k(i)=
∑

z∈ΦC

P (aj,k = z) · e
−

(yj − z −
∑
l∈χi

glj,k)
2

N0 , (7.10)

where χi is the subset of users with 1’s for label i in Table 7.2 pre-
viously defined, and the sum is over the values that the RCM MAC
output symbol can take, i.e., over ΦC . P (aj,k = z), the probability of
aj,k = z at the given iteration, is calculated by convolving the PMFs
of the terms in the summation. Notice that

∑
l∈χi

glj,k directly gives the

output of the non-binary mapping of Table 7.1, and each entry i of
vector {−→rj,k(i)} is the estimated probability of the non-binary variable
UCk taking the value in labeled as i in Table 7.2.

• STEP 2.2 rlj,k: LLR message passing from individual LDGM

check nodes {T lj}l∈[1:µ],j∈[M+1:M+I] to individual variable nodes

{U lk}l∈[1:µ],k∈[1:K].
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The LLR message transmitted from the jth individual LDGM CN of
user l, T lj , to the individual VN k of user l, U lk, is calculated by means
of the standard formula

rlj,k=−2atanh


tanh

(
−
γlj
2

) ∏

i∈n(T lj )\U lk

tanh

(
−
qlk,i
2

)
, (7.11)

with the difference that the channel LLR value γlj of the individual CN

T lj , is not obtained directly from the channel but, at every iteration,
it has to be calculated from the received MAC symbol yj and the
estimates of the rest of individual LDGM symbols {xij}i∈[1:µ]∼l, as
shown in Fig. 7.5.

We start by calculating the probability of each individual LDGM
coded symbol xlj , which can take the values αlj or −αlj , from the

incoming LLR messages {qlk,i}i∈n(T lj )
as

P (xlj = αlj) =
eβ

l
j

1 + eβ
l
j

, (7.12)

where

βlj = −2atanh



∏

i∈n(T lj )

tanh

(
−
qlk,i
2

)
 . (7.13)

Once the probabilities {P (xij)}i∈[1:µ]∼l are calculated, and taking into

account the LDGM modulation factors {α1
j , α

2
j , . . . , α

µ
j } for the users

{1, 2, . . . , µ}, the LLR value γlj is obtained by executing an iteration
of the sum-product algorithm over the factor graph depicted in Fig.
7.5. Utilizing a similar strategy as for the RCM, let us rewrite xCj as

xCj =
∑
i
xij ·αij =

∑
i∼l
xij ·αij+xlj ·αlj = alj+xlj ·αlj , where

∑
i∼l
xij ·αij = alj .

Since xlj ∈ ±1 and denoting the LDGM MAC output symbol alphabet

as ΨC = {ψC1 , ψC2 , . . .}, the channel LLR value γlj is obtained as

γlj = log




∑
v∈ΨC

P(alj = v) · e−
(yj−v−αlj)

2

N0

∑
v∈ΨC

P(alj = v) · e−
(yj−v+αlj)

2

N0



, (7.14)
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where the sum is over the values in ΨC and P (alj = v) is obtained by
convolving the PMFs of the terms in the summation.

• STEP 3. Decision.

At the end of the iterations, the decision probability vector−→
dk, {P0...00, P0...01, P0...10, . . . , P1...11}, is calculated as

−→
dk =

−→
Pπ ·
−−−−−−−→
PLDGM(k) ·

∏

j∈n(Uk)

−→rj,k, (7.15)

and the estimates of ulk, for l = 1 . . . , µ, are obtained by marginalizing

the decision vector
−→
dk.

7.3.5 COMPUTATIONAL COMPLEXITY

In this section we provide a detailed computational analysis of the pro-
posed non-binary decoder. We will focus on the RCM sub-scheme because
(i) many schemes will only contain RCM nodes, i.e., when I = 0, (ii) even
when a parallel LDGM code is used, the LDGM symbols will only repre-
sent a small proportion of the total coded sequence, i.e., M >> I and (iii)
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the computational complexity of Step 2.2 (LDGM check nodes) is far lower
than that of Step 2.1 (RCM check nodes). Thus, the decoder complexity is
dominated by the RCM part. Let us start by breaking down one decoding
iteration as follows.

• Step 1.1. The step 1.1 is performed over K (compound) VNs with
an average of 2dr·M

K connections.

– Each vector −→ri,k has length 2µ, yielding to 2dr ·M · 2µ products.

• Step 2.1. The step 2.1 is performed over M (compound) CNs each
with 2dr connections. This step calculates the vector probability mes-
sages −→rj,k, which are composed by 2µ elements calculated as (7.10).

– Each equation (7.10) involves the sum over z ∈ ΦC . The car-
dinality of ΦC , |ΦC |, is upper bounded by 2

∑µ
l=1(

∑dr
i=1w

l
i) due

to its integer nature.

∗ Each sum in (7.10) contains 2 products, 1 division, 1 ex-
ponential function, and 2 sums. Note that the sums in
χi can be stored in a table. Therefore, the total number
of products, divisions, exponential and sums is given by

{2, 1, 1, 2} · (2dr ·M · 2µ ·
(

2
∑µ

l=1(
∑dr

i=1w
l
i)
)

), respectively.

– Calculation of P (aj,k = z) for z ∈ ΦC . The PMF of P (aj,k = z)

is a vector of at most 2
∑µ

l=1(
∑dr

i=1w
l
i) elements and is calculated

recursively, with (2dr − 1) iterations of 2µ-ary PMF (obtained
from the vectors −→qk,j).
∗ Each convolution is performed over the accumulated P (aj,k =

z) of length 2·∑µ
l=1(

∑dr
i=1w

l
i) and a 2µ-ary PMF by shift ad-

dition, with 2µ ·(∑µ
l=1(

∑dr
i=1w

l
i)) products and sums. Thus,

the total number of operations involved in calculating the
P (aj,k = z) is upper bounded by 2dr ·M · 2µ · (2dr − 1) · 2µ ·
2 ·∑µ

l=1(
∑dr

i=1w
l
i) sums and products.

Finally, an approximation of the (worst case) computational complexity
per sum-product iteration is presented in Table 7.3. As it can be observed,
the complexity is exponential with µ, and it is mainly determined by the
convolution operations involved in the calculation of P (aj,k = z).
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Table 7.3: Computational complexity of the decoder (per sum-

product iteration).

Operations

Products ≈ 8d2
r ·M ·

(∑µ
l=1(

∑dr
i=1w

l
i)
)
· 4µ

Sums ≈ 8d2
r ·M ·

(∑µ
l=1(

∑dr
i=1w

l
i)
)
· 4µ

Divisions ≈ 4dr ·M ·
(∑µ

l=1(
∑dr

i=1w
l
i)
)
· 2µ

Exp ≈ 4dr ·M ·
(∑µ

l=1(
∑dr

i=1w
l
i)
)
· 2µ

Note that calculations in LDGM check nodes also involve performing
convolutions. However, in this case P(alj = v) is calculated recursively
with (µ − 1) iterations of binary PMFs coming from (7.12), yielding ≈
4 ·I ·µ2 ·∑µ

i=1 θi sums and products. Finally, the computational complexity
of the LDGM check nodes is dominated by (7.11), which has approximately
µ·K2·d2l

I tanh and product operations. Notice that computations in the
LDGM sub-scheme are not exponential with the number of users.

7.4 EXTENSION TO CLUSTERS OF CORRELATED INFOR-
MATION SOURCES BASED ON RCM-MAC SCHEMES

In Chapter 6 we have proposed the RCM-MAC scheme for transmitting
λ independent users over a multiple access channel at high sum-rates while
maintaining low decoding complexity. In this section we utilize this same
idea of converting the MAC scheme into a point-to-point RCM code from
the receiver’s perspective to the correlated scenario of this chapter.

7.4.1 RCM-CIS SCHEMES FOR CLUSTERS OF CORRELATED
INFORMATION SOURCES

RCM-CIS schemes can be generalized to the transmission of λ inde-
pendent clusters of µ correlated information sources by substituting the
point-to-point RCM mother matrix of Fig. 2.13, from which the individual
RCM codes of the RCM-CIS scheme are generated, by the set of λ irregular
RCM structures of an RCM-MAC scheme. The users of each cluster use
each one of these irregular matrices to generate their own RCM matrices.
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Note that each row of these irregular matrices will contain only a subset
of the index entries {w1, w2, . . . , wdr ,−w1,−w2, . . . ,−wdr}, which will be
replaced by the equivalent subset of weight sets of each user. Due to the
way in which these matrices are constructed, the receiver can jointly decode
µ · λ users seamlessly, by applying the proposed RCM-CIS decoder.

7.4.2 PARALLEL LDGM SUB-SCHEME FOR CLUSTERS OF
CORRELATED SOURCES

Since the parallel LDGM concatenation was not considered in Chapter
6, we begin this section by considering a MAC channel for the transmission
of λ independent users. A parallel LDGM-MAC coding sub-scheme for
this scenario can be built by distributing the LDGM symbols between the
λ users. This is different to the RCM-MAC case, where the distribution
was performed in linear weighted connections due to the additive nature of
RCM symbols. Since the input block of length K is divided into smaller
input blocks of length {K1K2 . . .Kλ}, such that K =

∑
lKl, the LDGM

coded sequence of length I can also be divided into λ LDGM sub-sequences
of lengths Il = I · KlK , and assigned to its respective user of the MAC as
follows

[ x
(1)
1 , . . . , x

(1)
I1︸ ︷︷ ︸

LDGM seq. of user 1

, . . . , x
(λ)
1 , . . . , x

(λ)
Iλ︸ ︷︷ ︸

LDGM seq. of userλ︸ ︷︷ ︸
MAC LDGM sequence (of length I)

]. (7.16)

Each user l generates its LDGM sub-sequences with the encoding matrix
P (l) of rate Kl

Il
, which is equal to the original rate K

I . The LDGM-MAC sub-
scheme can still be serially concatenated due to the sub-sequence division
(sub-sequences of different users are orthogonal, i.e. do not collide in the
MAC). As in the RCM-MAC scheme, the parallel LDGM-MAC sub-scheme
can be embedded into an LDGM-like block diagonal matrix P d, of size
I ×K, as

P d =




P (1) · · ·
P (2) · · · ...

...
. . .

· · · P (λ)



I×K

,

whose diagonal block elements are the matrices {P (l)}l=1:λ that produce the
LDGM sub-sequences. This LDGM-like amalgamation can be considered as
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a standard LDGM matrix encoding the concatenated λ source input blocks
([u(1)u(2) . . .u(λ)]) at the receiver, as has been done for the RCM-MAC
scheme.

Finally, the transmission of λ clusters of µ correlated information sources
is performed by assigning one sub-sequence to each cluster and generating
its LDGM matrix as permutation of the LDGM encoding matrix generating
the LDGM sub-sequence associated to its cluster. Note that RCM symbols
from the µ · λ users collide in the MAC, whereas only the LDGM symbols
of the µ users inside each cluster collide. This yields to a suboptimal use
of MAC resources by the users in the clusters. However, it only affects the
LDGM subsequences, which represent a small percentage of the total coded
sequence.

7.5 NUMERICAL RESULTS

In this section, we illustrate the performance of the proposed schemes
in three high throughput scenarios, with R = 4, 6 and 9 bits per com-
plex channel symbol, and high amount of correlation between sources (low
values of p). The complexity of the non-binary decoder of Section 7.3.4
grows exponentially with the number of correlated users because bits from
all of them are considered jointly. Thus, in this dissertation we present
numerical results limited to µ =2, 3 and 4 correlated users. Specifically,
the rate and correlation combinations considered are summarized in Table
7.4, where three different correlation values, p = .1, p = .01 and p = .001,
are considered. It is worth noticing that the total system throughput Rs
of the examples is between 6.12 bits per complex channel symbol for the
case of 2 users, R = 6 and p = .001, and 11.93 bits per complex channel
symbol for 4 users, R = 9 and p = .01. For p = .01, we have considered
rate R = 4 because for the cases of R = 6 and 9 the total system rate, Rs,
is unattainably large.

For the rest of the results, we have fixed the codeword length of each
user to N = 5000, whereas the source block length K is scaled according to
R as K = R·N

2 . To validate the performance of the proposed schemes, in the
sequel we present numerical results obtained by Monte Carlo simulations.
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Table 7.4: Considered rate and correlation combinations in this

chapter. The SNR limits (assuming source-channel sep-

aration) are in dB.

µ = 2

R p H(U1,U2) Rs SNR Limit (dB)

4 .1 1.68 6.71 20.17
6 .01 1.14 6.83 20.5
6 .001 1.02 6.12 18.36
9 .01 1.14 10.25 30.86
9 .001 1.02 9.19 27.65

µ = 3

R p H(U1,U2,U3) Rs SNR Limit (dB)

4 .1 2.26 9.06 27.26
6 .01 1.24 7.45 22.4
6 .001 1.033 6.2 18.6
9 .01 1.24 11.16 33.6
9 .001 1.033 9.29 27.95

µ = 4

R p H(U1,U2,U3,U4) Rs SNR Limit (dB)

4 .1 2.8 11.17 33.62
6 .01 1.33 7.95 23.91
6 .001 1.044 6.27 18.8
9 .01 1.33 11.93 35.92
9 .001 1.044 9.37 28.2
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7.5.1 NUMERICAL RESULTS FOR RCM-CIS SCHEMES

We begin by analyzing the performance of the proposed RCM-CIS
scheme without considering the parallel LDGM concatenation, i.e., M = N
and I = 0. Fig. 7.6 presents the numerical results for the examples with
µ = 2 of Table 7.4. The figure depicts the BER performance versus the
Gap (in dBs) to the theoretical limit assuming separation, also shown in
Table 7.4. Note that each curve has a different limit despite being plotted
together. The design weight matrices we have employed for theses simula-
tions are WC =[4, 7, 9; 9, 4, 7] for R = 4 and p = .1, WC =[3, 4, 5, 8;
5, 8, 3, 4] for R = 6 and p = .01, .001 and WC =[3, 4, 5, 5, 7; 5, 7, 4, 3,
5] for R = 9 when p = .01 and p = .001. These weight matrices generate
MAC symbols with entropy larger than the system rate Rs (see (7.6)), and
have been obtained based on trial and error. For BER ≈ 10−3, the gap to
the theoretical limit assuming separation ranges from 0.6 dB for the case
with R = 9 and p = .01 to −0.4 dB for R = 6 and p = .001. As mentioned
in Section 7.2, source-channel separation is sub-optimal when transmitting
correlated information sources and therefore, we are able to outperform the
separation limit, especially for the larger correlation values (lower values of
p).
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Figure 7.6: Numerical results obtained by Monte Carlo simulation

for the RCM-CIS scheme with µ = 2 of Table 7.4.
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The results for the case of µ = 3 are shown in Fig. 7.7. The utilized
design weight matrices are WC =[4, 7, 9; 9, 7, 4; 9, 4, 7] for R = 4 and
p = .1, WC =[3, 4, 5, 6, 8; 8, 3, 4, 5, 6; 6, 8, 3, 4, 5] for R = 6 when p = .01
and p = .001 and WC =[3, 4, 5, 7, 10; 5, 10, 3, 4, 7; 10, 7, 4, 3, 5] for both
p = .01 and .001 when R = 9. In this case, for BER ≈ 10−3, the gap to the
theoretical limit assuming separation ranges from 0.1 to -2 dB.

Finally, the results for the case of µ = 4 are presented in Fig. 7.8. The
design weight matrices used in this last case are WC =[4, 7, 9; 9, 7, 4; 9,
4, 7; 7, 9, 4] for R = 4 and p = .1, WC =[2, 4, 6, 8, 10; 4, 2, 8, 10, 6; 4, 2,
10, 6, 8; 10, 8, 6, 4, 2] when R = 6 and when R = 9 with p = .001. Finally,
the weight matrix for R = 9 and p = .01 is WC =[2, 3, 4, 6, 8; 6, 8, 2, 3,
4; 3, 4, 6, 8, 2; 8, 2, 3, 4, 6]. For BER ≈ 10−3, the gap to the theoretical
limit assuming separation ranges between 0.5 and −3.7 dB.
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Figure 7.7: Numerical results obtained by Monte Carlo simulation

for the RCM-CIS scheme with µ = 3 of Table 7.4.

It is worth mentioning that the performance of the considered RCM-CIS
examples improves as the number of correlated sources increases. Intuition
suggests that the actual joint source-channel limit could be up to 10·log10(µ)
dB lower than the separation limit in the CIS communication system. This
would occur for a fully correlated CIS system (p = 0) transmitting over a
noiseless MAC, with the µ RCMs designed with the exact same weights.
This would result in each RCM symbol being the same for all users and
therefore, total symbol reinforcement would be achieved. Thus, the received
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Figure 7.8: Numerical results obtained by Monte Carlo simulation

for the RCM-CIS scheme with µ = 4 of Table 7.4.

mean energy per symbol would be µ times the sum of the transmitted mean
energies in that case. Actually, for correlation parameter values other than
p = 0 this symbol reinforcement results in a received mean energy less than
µ times the transmitted one. Moreover, the weights of the RCM schemes
are designed to promote symbol reinforcement in the codewords, but the
weights connecting RCM symbols to correlated bits are not identical. The
reason is that if all the RCMs were identical, the decoder would be unable
to differentiate between users when their source input bits are different.
Note that the RCM codes that make up the RCM-CIS schemes considered
in this chapter have the same weights, but the key is that they are placed
in different order.

To sum up, the performance gap of the proposed RCM-CIS schemes
with respect to the theoretical limits assuming source-channel separation is
between −0.4 dB and .5 dB for µ = 2, between −2 dB and .1 dB for µ = 3,
and between −3.7 dB and .5 dB for µ = 4. These gaps are larger than
the ones achieved with lower rate schemes based on powerful binary codes.
For example, in [139] the separation limit is outperformed by up to 1.3 dB
utilizing turbo-like codes in a system with µ = 2. However, those schemes
are limited to low rate codes, which historically perform better than high
spectral efficiency codes like RCM or Bit-Interleaved Coded Modulation



148 CHAPTER 7. RCM for Correlated Information Sources

(BICM) [5]. Therefore, the results obtained with the proposed RCM-CIS
scheme are promising considering the fact that they are obtained for high
throughput transmission scenarios, with system rates up to 11.93 bits per
complex channel use.

Finally, as observed in all figures, the proposed RCM-CIS scheme suffers
from high error floors. In the next section we present the results for the
parallel LDGM scheme of Section 7.3.3.

7.5.2 NUMERICAL RESULTS FOR RCM-CIS SCHEMESWITH
THE PARALLEL LDGM CONCATENATION

In this case we substitute I of the N (recall N = 5000) RCM coded
symbols of each encoder by binary LDGM coded symbols generated with
design parameter dl, i.e., each input bit has dl random connections to the
LDGM symbols. As mentioned in Section 7.3.3, the LDGM coded symbols
are multiplied by modulation factors before being transmitted through the
MAC in order to improve decoding. Thus, each LDGM MAC symbol is a
linear combination of the µ binary LDGM symbols weighted by the values
Θ = {θ1, θ2, . . . , θµ}. This behaves similarly to an RCM code whose entries
are {±1} instead of {0, 1}, and therefore, the modulation factors can be
selected following the guidelines of RCM design.

Fig. 7.9 shows the numerical results obtained by Monte Carlo simula-
tions for the examples in Table 7.4 with R = 6. Continuous lines represent
the parallel RCM-CIS LDGM concatenation. For reference, we have also
included the curves for the corresponding RCM-CIS schemes in the form
of dashed lines. Recall that the parallel RCM-CIS LDGM concatenation
maintains the rate of the RCM-CIS schemes because the added LDGM
symbols substitute the same amount of RCM symbols. The weight matri-
ces WC for the RCM-CIS sub-scheme generating 5000− I symbols are the
same as in the previous section. The number of generated LDGM symbols
I is equal to I = 108 for the cases of µ = 2 with p = .01 and .001, I = 204
for the cases of µ = 3 with p = .01 and .001, I = 300 for the case of µ = 4
with p = .01, and finally, I = 204 for µ = 4 and p = .001. The LDGM node
degree parameter dl has been set to 3 in all cases. The modulation values
used in this section are Θ = {1, 2} for µ = 2, Θ = {1, 2, 4} for µ = 3 and
Θ = {3, 4, 5, 7} for µ = 4.
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Figure 7.9: Numerical results obtained by Monte Carlo simulation

for the examples in Table 7.4 when R = 6 (with p =.01

and .001), each case in a different color.

As shown in Fig. 7.9, the MAC parallel concatenation of RCM-CIS
schemes with LDGM codes is able to reduce the error floor encountered
in RCM-CIS. In this case, the gap to the separation limit varies between
1.25 dB for µ = 2 and p = .01 to -2 dB for µ = 4 and p = .001. The
substitution of RCM symbols by LDGM ones prevents the error floor at
the cost of some performance loss. Larger error floors require the use of
more LDGM symbols resulting in larger performance loss. For example, in
the case of µ = 4 and p = .01 the error floor of the RCM-CIS scheme is
around BER = 5 · 10−3. The performance degradation when using LDGM
concatenation is more than 2 dB, since 300 LDGM symbols have to be
used. On the other hand, for the example of µ = 2 and p = .001 with an
error floor close to 10−4, only 108 LDGM symbols are used. This results
in a performance degradation of only 0.5 dB.

7.5.3 NUMERICAL RESULTS FOR TRANSMITTING CLUS-
TERS OF CORRELATED INFORMATION SOURCES

In Section 7.4, we explained how to convert an RCM-CIS scheme that
transmits correlated information blocks of length K, into a system trans-
mitting a set of λ independent clusters of correlated information sources,
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each with source blocks of length {Kl}l∈[1:λ], such that K =
∑λ

l=1Kl. In
this results we consider two different cluster examples, the first one where
the RCM-CIS scheme is divided into 6 clusters (case λ = 6) with equal rate

Rl =
R

6
for l = 1, . . . , 6, and the second example, in which the RCM-CIS

scheme is divided into λ = 3 clusters (case λ = 3), the first two with rates

R1 = R2 =
R

4
and the third one with rate R3 =

R

2
. Figure 7.10 presents

the numerical results obtained for the case with total sum-rate (the sum
of rates of all clusters) R = 6 and p = .01. Since the total sum-rate is 6
and we fixed N = 5000, the total source block length is K = 15000, which
is divided between the λ clusters. For example, in the asymmetric case
of λ = 3, the first and second clusters are each comprised of µ correlated
users generating blocks of 15000/4 bits, whereas the third cluster contains
µ users generating source blocks of 15000/2 bits. Recall that sources of
different clusters are independent. Each of the µ ·λ (λ = 3 in this example)
transmitters encodes its input bits blocks of length 15000/4 or 15000/2
into 5000 RCM symbols, encoded at rates 1.5 or 3, respectively. These
µ · λ coded sequences are all superimposed in the MAC. As explained in
Chapter 6 and Section 7.4, the superimposed clusters of correlated infor-
mation sources can be considered as an RCM-CIS scheme at the receiver
and decoded as such.

For context, we have also included in Fig. 7.10 the standard RCM-CIS
case (λ = 1), since the RCM-CIS scheme is just a particular example where
all users belong to one unique cluster. The results show that there is almost
no performance difference between the transmission of a CIS scenario or
a cluster of CIS (for simplicity we have considered that inside every clus-
ter the users are equally correlated, but users from different clusters are
independent).

Finally, in order to lower the error floor in Fig. 7.10, we also extend the
RCM-CIS LDGM concatenation for the transmission of clusters of corre-
lated information sources, and present the numerical simulation outcomes
in Fig. 7.11. Recall that these schemes are designed to resemble a parallel
RCM-CIS LDGM scheme after the MAC, and therefore, the design param-
eters WC , I and dl are the same as in the previous examples of Sections
7.5.1 and 7.5.2.

Notice the slight performance degradation when transmitting clusters
of correlated information sources, compared to the performance of RCM-
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Figure 7.10: Numerical results obtained by Monte Carlo simulation

for the transmission of λ clusters of µ correlated infor-

mation sources using RCM-CIS schemes when p = .01

and the sum-rate is R = 6.

CIS schemes. This effect was also experienced in the RCM-MAC schemes
of Chapter 6, where it was shown to occur due to the relatively shorter
block lengths resulting from the construction of RCM-MAC schemes. This
effect can be avoided by making the block lengths larger.
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Figure 7.11: Numerical results obtained by Monte Carlo simulation

for the transmission of λ clusters of µ correlated in-

formation sources using the parallel concatenation of

RCM-CIS schemes with LDGM codes when p = .01

and the sum-rate is R = 6.

7.6 DISCUSSION

In this chapter we have considered a joint source-channel coding for the
transmission of spatially correlated information sources over the Additive
White Gaussian noise multiple access channel. It is well known that the
system performance is increased if the designed codewords preserve part of
the source correlation. The linear and sparse nature of RCM codes makes
them good candidates to fulfill this design condition. Concretely, we have
designed a coding scheme based on a set of identically distributed RCM
codes whose weight values are different, but jointly designed.

The use of RCM codes with the same structure, in conjunction with
correlated sources, produces cycles of degree 4 in case of using a traditional
decoder. Therefore, we have been forced to implement a non-binary decoder
for the first time in RCMs. The proposed decoder achieves good results,
outperforming the separation limit. However, its complexity increases ex-
ponentially with the number of users, limiting the number of considered
users.
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We have also extended the RCM-CIS schemes to the transmission of
clusters of correlated information sources by utilizing one irregular RCM
structure of an RCM-MAC scheme per cluster, to generate the RCM codes
of the users contained in it. From the receiver’s point of view, this gener-
alization is seamless and does not increase the complexity.

Finally, as in point-to-point RCM codes, the RCM schemes for the MAC
presented here and in Chapter 6 present high error floors. To solve this, we
have combined our RCM schemes with an LDGM parallel concatenation
methodology that is able to correct those residual errors, as has been done
in the literature for conventional RCMs.
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CHAPTER 8

Conclusions

In this dissertation, we have explored the use of RCM and parallel RCM-
LDGM codes for the transmission of information produced by binary sources
over various communication scenarios.The proposed schemes achieve good
BER performance while maintaining the high-rate, smooth rate adaptation
and joint source-channel coding capabilities that originally made RCM ad-
vantageous over traditional AMC techniques. Concretely, we have designed
practical encoding and decoding schemes for the transmission of single and
multiple sources over point-to-point and multiple access channels, respec-
tively. We next detail the particular communication scenarios or research
problems that we focused on:

• EXIT chart analysis of RCM-LDGM codes.

Previous works and this dissertation demonstrate that parallel RCM-
LDGM codes are very well suited for transmitting uniform and non-uniform
binary sources at high rates if they are properly designed. However, the
RCM-LDGM codes designed in the literature were based on brute force
approach, which required time consuming Monte Carlo simulations, spe-
cially for large block lengths. In order to speed up the design process,
we successfully developed in Chapter 3 an EXIT chart analysis for these
codes, which presented the challenge of the combination of analog and dig-
ital check nodes, something not encountered in other works. The presented
method obtains very precise EXIT charts for the case of AWGN and fast

155
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fading Rayleigh channels, whose BER vs SNR curve predictions are very
close to the results obtained through simulations.

• High-rate transmission of sources with memory.

We have proposed in Chapter 4 a new source-controlled coding scheme
for high-throughput transmission of binary sources with memory over AWGN
channels. The proposed strategy is based on the BWT, which transforms
the original source with memory into a set of independent non-uniform
discrete memory-less binary sources. These sources are then separately
RCM-LDGM encoded at coding rates that are optimized according to the
source’s entropy. Good RCM-LDGM codes operating at the optimal rates
are designed using EXIT chart analysis. Results in Chapter 4 show that the
proposed scheme outperforms the traditional strategy of using the source’s
statistics in the decoding process.

• RCM-LDGM codes for impulsive noise channels.

In Chapter 5 we showed the suitability of using of RCM-LDGM codes in
impulsive noise channels if the decoder is adapted according to the channel
state information of the noise burst. In order to asses the performance of
these codes, we considered modified versions of Middleton class A noise and
Markov-Middleton noise models whose expected number of impulses per N
channel uses tends to 0 as N increases. Under that condition, the capacity
of the impulsive noise channels tends asymptotically to the AWGN capacity
and the performance of RCM-LDGM codes is within 2.5 dB of that limit.

• Transmission of uncorrelated sources over MACs.

A novel high-rate coding system for the non-orthogonal MAC was pre-
sented in Chapter 6. The proposed system, named RCM-MAC, utilizes the
linear nature of RCM codes and the multiple access channel to construct
irregular RCM codes, one for each user, in such a way that the combination
of all generation matrices forms a standard point-to-point RCM code from
the receiver’s perspective. All users are jointly decoded by applying the
standard RCM sum-product algorithm over the factor graph that results
from the combination of the individual RCMs. These systems are able to
accommodate a large number of users while operating at high sum-rates
and maintaining the decoding complexity of point-to-point RCM codes.
Simulation results show that the performance is around 2 dB away from
the Shannon limit for AWGN MAC channels, independently of the number
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of users. Interestingly, when the Rayleigh fast fading channel is considered,
the performance of the RCM-MAC system improves as the number of users
increases due to the average effect.

• Transmission of correlated information sources.

Chapter 7 extends the RCM-MAC system of Chapter 6 to a joint source-
channel coding system, named RCM-CIS, that considers the transmission of
spatially correlated information sources over AWGN multiple access chan-
nels. The proposed RCM-CIS systems consist of a set of RCM codes with
the same structure but whose weight values differ following a joint design
that intends to preserve the source correlation in the codewords of the dif-
ferent users. Simulation results show that the proposed RCM-CIS system
is able to outperform the separation limit established by the combination of
the Slepian-Wolf, for the source compression, and Shannon, for the channel
coding, theorems.

In order to lower the error floor of RCM codes in multi-user communica-
tions, we also propose to combine the RCM scheme with an LDGM parallel
concatenation methodology previously used in point-to-point communica-
tions. Note that this solution is also valid for the RCM-MAC systems of
Chapter 6. Finally, we also extend the RCM-CIS systems to the transmis-
sion of clusters of correlated information sources by utilizing one irregular
RCM structure of an RCM-MAC system per cluster to generate the RCM
codes of the users contained in the cluster. As for the RCM-MAC case,
this generalization does not increase the decoding complexity.

8.1 FUTURE RESEARCH LINES

Many of the presented coding systems and results are encouraging and
suggest further study and analysis. This section presents some exten-
sion/improvement ideas of the work developed in this Thesis.

• Short block-length RCM-LDGM codes for the BWT strat-
egy.

The sorting algorithm of the BWT is very sensitive to errors in the
transformed sequence, requiring very powerful RCM-LDGM codes, that
are usually achieved with large block lengths. However, specially when the
source is modeled by a HMM, some BWT output blocks may have short
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lengths. We solved this problem in Chapter 4 by building larger segments
stacking consecutive blocks. However, this solution leads to decoding de-
lays (and possibly system overhead), and could be improved if efficient
short block-length RCM-LDGM were investigated. The EXIT chart analy-
sis of Chapter 3 is not valid for this case since it only considers asymptotic
behavior.

• Impulsive noise channels without channel state information.

The work in Chapter 5 considered that the channel state information
is available at the receiver. This is realistic in some cases, but there are
other practical situations in which this information is not available. Works
in the literature propose approximations to the input LLR values of the
received channel signal suitable for Class A noise environments without
this information. However, this is not applicable to the RCM case due to
the analog nature of its symbols and the consequential decoding based on
direct convolutions.

• Design methods for RCM-CIS systems.

Chapter 7 proposed a novel coding system suitable for the transmission
of correlated information sources over multiple access channels. However,
the codes presented in it are designed based on trial and error. As has been
done point-to-point RCM-LDGM, design procedures based on EXIT charts
could be built in order to speed up their design. These EXIT charts present
some complexity given the non-binary nature of the RCM-CIS decoder. The
histogram computation in non-binary systems becomes quite demanding
or even impossible for larger index sets and alternative approaches like the
index-based extrinsic mutual information [171] are ofter required in the
literature.

• Alternative decoding methods for RCM-CIS systems.

The maximum number of correlated users considered in Chapter 7 was
four, due to the fact that the complexity of the utilized non-binary decoder
increases exponentially with the number of users. In order to build systems
that allow a larger number of users, alternative binary decoding techniques
need to be investigated.

• Rate Adaptation.
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Throughout this dissertation we have developed different coding strate-
gies based on RCM (and RCM-LDGM) codes. We have focused our results
and parameter design on the BER performance of these coding systems at
specific rates. As mentioned in the introduction, the RCM and the parallel
RCM-LDGM codes have excellent rate adaptation capabilities. Therefore,
it would be interesting to study this property on the proposed communica-
tion systems and study the parameter optimization towards this objective.

• Multi-user MIMO RCM systems.

The very high data rates that are required for future wireless systems
do not appear to be feasible with the conventional techniques and archi-
tectures. This has resulted in an explosion of research activities to char-
acterize the theoretical and practical issues associated with Multiple-Input
Multiple-Output (MIMO) channels and the extension of these concepts to
multi-user systems. The already high data rates achieved by the single-
input single-output multi-user RCM techniques presented in this disserta-
tion encourages further extension of these RCM system to the multi-user
MIMO scenario.

• More Realistic Correlated Information Source Models.

The work presented in Chapter 7 presents a simple source model. This
works can be extended to more sophisticated models, such as when the
correlation between sources has memory and is modeled by a HMM as in
[172].
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APPENDIX A

The Burrows Wheeler
Transform (BWT)

The Burrows-Wheeler Transform (also known as Block-Sorting) is at the
base of compression algorithms which are the state of the art in lossless
data compression. In this appendix we provide a detailed description of
the Burrows Wheeler Transform, composed by a direct and reverse trans-
formations.

Definition 3. Assume a stationary ergodic source S whose output is mod-
eled by the stochastic process {Uk}∞k=1, with alphabet U , entropy per single
letter H(U) and entropy rate H(U). The BWT is a reversible transform
that operates on blocks of length K, defined as a direct mapping

BWT
(
{Uk}Kk=1

)
: UK → UK × {1, 2, . . . ,K} (A.1)

and an inverse mapping

BWT−1
(
{Tk}Kk=1

)
: UK → UK × {1, 2, . . . ,K}. (A.2)

The BWT outputs the following quantities 1) a transformed block
{Tk}Kk=1 with the same alphabet U as the input sequence and 2) an in-
teger J ∈ {1, . . . ,K} which is required for the inverse transform. For the
shake of completeness, in the remainder of the appendix we detail this pair
of mappings.
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A.1 DIRECT TRANSFORMATION

In essence, the direct transformation consist of a sorting algorithm,
where all possible cyclic permutations of the input sequence, to which a
final string pointer ? (also known as End Of File) is added, are ordered
following a lexicographic criteria. The output of the BWT transform is
composed by a K-length sequence {Tk}Kk=1, which is the last column of
the ordered cyclic permutations, after pointer ? is removed. Additionally,
the BWT generates at its output an integer number J ∈ {1, . . . ,K} that
indicates the position of the removed pointer ? in the last column.

We next present an example of the BWT applied to a binary sequence,
but it may serve as good example to fully understand the transformation
procedure. Let us assume a source S with binary alphabet {0, 1} generating
the block {Uk}6k=1 = {110100}. The pointer ? is appended to the block and
inserted into the BWT direct transform, whose steps are shown in Table
A.1.

Table A.1: Example of the direct Burrows-Wheeler Transforma-

tion.

Input Cyclic Permutations Ordered Permutations Last Column

110100? 00?1101
?110100 0100?11
0?11010 0?11010

110100? 00?1101 100?110 11001?0
100?110 10100?1
0100?11 110100?
10100?1 ?110100

And the output of the BWT direct transformation is given by the se-
quence {Tk}6k=1 = {110010} and the index J = 6.

A.2 INVERSE TRANSFORMATION

Sorting criteria based algorithms are generally not reversible. Intu-
itively we may justify this remark because the result of lexicographically
sorting a given data set is always the same independently of its initial data
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order. However, the BWT is a reversible transformation and therefore, the
initial data set {Uk}Kk=1 must be possible to recover from the transformed
block {Tk}Kk=1 and the index J . Recall that {Tk}Kk=1 and J provide suffi-
cient information to recover the last column of the ordered permutations
in Table A.1. The inverse transformation is based on the reconstruction
of the entire ordered permutation list. To rebuild it, we will procedure
column-wise. Notice that, due to its structure, the first column of the
ordered permutation table is a lexicographically sorted copy of the last col-
umn, i.e. the transformed sequences {Tk}Kk=1 and the appended pointer
?. Then, in order to obtain this first column one has to sort the sequence
{{Tk}J−1

k=1 , ?, {Tk}Kk=J+1}, formed by adding the final string pointer ? at po-
sition J . Once this is done, we have every possible combination of 2 symbols
within the sequence, since the first and the last column in the table generate
the pairs of symbols given by the cyclic permutation. Thereby, by generat-
ing all the possible concatenations and applying to them the lexicographical
criteria we will obtain the third column of the ordered permutation table.
By repeating this process for the successive concatenations the ordered per-
mutation table is reconstructed. In our example, we will recover the original
sequence {Uk}6k=1 based on the knowledge {Tk}6k=1 = {110010} and J = 6.
Let us illustrate the process through Table A.2.

Table A.2: Example of inverse Burrows-Wheeler Transformation.

Start Sort 1 Concat. 2 Sort 2 Concat. 3 Sort 3 Sort 8

1 0 10 00 100 00? 00?1101
1 0 10 01 101 010 0100?11
0 0 00 0? 00? 0?1 0?11010
0 1 01 10 010 100 . . . 100?110
1 1 11 10 110 101 10100?1
? 1 ?1 11 ?11 110 110100?
0 ? 0? ?1 0?1 ?11 ?110100

We can check that the original sequence {Uk}6k=1 = {110100} is the J-th
row of the sorted permutations (after removing the appended ?). Obviously,
the lexicographical sorting criteria can be arbitrarily chosen accordance to
the alphabet U of the input sequences.
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