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abstract Specific mechanisms by which tumor-infiltrating lymphocytes (TIL) become dys
functional remain poorly understood. Here, we employed a two-pronged approach 

using single-cell mass cytometry and tissue imaging technologies to dissect TILs from 25 patients with 
resectable and 35 patients with advanced non–small cell lung cancer (NSCLC). We identified a burned-
out CD8+ TIL subset (Ebo) that specifically accumulated within the tumor microenvironment (TME) but 
not in adjacent nontumoral tissues. Ebo showed the highest expression of proliferation and activation 
markers but produced the lowest amount of IFNγ and were the most apoptotic CD8+ TIL subset. Using 
a humanized patient-derived tumor xenograft model, we demonstrated that Ebo expansion occurred 
within the TME in a PD-1/B7-H1 pathway-dependent manner. Ebo abundance in baseline tumor tissues 
was associated with resistance to anti-PD therapy in patients with NSCLC. Our study identifies a dys-
functional TIL subset, with distinct features from previously described exhausted T cells, and implies 
strategies to overcome immunotherapy resistance.

Significance: We identified a highly proliferative, overactivated, and apoptotic dysfunctional CD8+ 
tumor-infiltrating subpopulation that is functionally distinct from previously described exhausted  
T cells. This population is expanded in lung cancer tissues in a PD-1/B7-H1-dependent manner, and its 
abundance is associated with resistance to cancer immunotherapy, thus becoming a potential tissue 
biomarker.
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INTRODUCTION
Progressing tumors develop multiple cellular and molecu-

lar mechanisms to evade and/or resist immune attack. Col-
lectively, these mechanisms are known as adaptive immune 
resistance. The archetype of these mechanisms is the upregu-
lation of B7-H1 (PD-L1) in the tumor microenvironment 
(TME), which is primarily induced by IFNγ secretion from 
tumor-infiltrating lymphocytes (TIL; refs. 1, 2). These mecha-
nisms typically result in the exclusion or functional impair-
ment of TILs, thereby limiting endogenous antitumor 
immune response. Strategies such as blockade of the PD-1/
B7-H1 pathway (hereafter referred to as anti-PD therapy) 
seek to correct and reinvigorate the impaired T-cell response 

against cancer (3), an approach described as normalization 
cancer immunotherapy (4). However, fundamental ques-
tions such as the specific mechanisms by which CD8+ T cells 
become dysfunctional or how anti-PD therapy overcomes this 
dysfunctionality remain unanswered.

One major obstacle to understanding the mechanism of 
T-cell reinvigorating therapies is the cellular heterogene-
ity within the TME. Upon antigen presentation, T cells 
sequentially differentiate from naïve to effector and then 
to T memory cells in acute inflammatory conditions (5). 
However, in a chronic inflammatory environment such as 
the TME, CD8+ T-cell differentiation could be altered or 
deviated, resulting in a greater diversity of subsets. Using 
chronic viral infection mouse models, a CD8+ subtype 
referred to as exhausted T cells has been described (6). 
Exhausted CD8+ T cells are characterized by the loss of IL2, 
TNFα, and IFNγ secretion; impaired proliferation; and high 
expression of coinhibitory receptors such as PD-1, LAG3, 
and TIM3 (7). A similar exhausted CD8+ T-cell subset was 
subsequently identified within the TME of mouse tumors 
and patients with melanoma that was also characterized by 
high PD-1, LAG3, and TIM3 expression (8). However, recent 
studies indicate that patient CD8+ TIL phenotype and 
functional profiles do not completely overlap with murine 
exhausted CD8+ T cells observed in chronic infection mod-
els, and neither do the factors contributing to their dif-
ferentiation (9, 10). The complex and unique ecosystem 
of the human TME that is composed of genetic tumor 
diversity, spatial heterogeneity, and asymmetric alteration 
by anticancer therapies likely contributes to CD8+ TIL 
diversity and may determine unique pathways of CD8+ TIL 
differentiation. In this regard, detailed characterization 
of dysfunctional human CD8+ TILs and gaining a deeper 
understanding of the mechanisms leading to dysfunction 
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are unmet needs that could be used to improve antitumor 
T-cell responses in patients.

Advances in high-resolution genomic and proteomic single- 
cell technologies allow for further dissection of the cellular 
diversity within TME, improving our ability to interrogate 
and characterize the patient’s tumor–immune context. Spe-
cific advances in single-cell transcriptomics are a very power-
ful approach by which multiple aspects of cellular processes 
can be assessed (11, 12). Nevertheless, protein isoforms, post-
translational modifications, proteolytic products, and cell-
surface receptor/ligand protein expression are missed by this 
approach. In contrast, multiparametric proteomic single-cell 
analysis tools such as flow cytometry (13) and more recently 
cytometry by time of flight (CyTOF; ref. 14–16) or Imaging 
Mass Cytometry (IMC; ref. 17, 18), uniquely enable inves-
tigation of cell identity and behavior at the protein level, 
which are largely the key executors of biological processes. 
Clear understanding of the human immune TME has also 
been hampered by the lack of suitable experimental mod-
els. Patient-derived organoids (19, 20) and patient-derived 
explants (21) have been developed to recreate the complex-
ity of the human immune TME. Although these models are 
increasingly utilized, they are limited by the short viability of 
immune cells (typically 2–3 days) and distinct drug pharma-
codynamics and pharmacokinetics profiles when compared 
with in vivo settings. Alternatively, humanized patient-derived 
xenograft (PDX) models enriched with an autologous human 
immune system derived from peripheral blood mononuclear 
cells (PBMC; ref. 22), hematopoietic stem-progenitor cells 
(CD34+; refs. 23, 24), or TILs (25, 26) have been proposed as an 
in vivo approach to recapitulate the tumor–immune cell inter-
actions within the TME, offering longer experimental win-
dows and more accurate pharmacokinetic/pharmacodynamic  
conditions.

In this study, we progressively dissected the CD8+ TIL com-
partment in patients with non–small cell lung cancer (NSCLC), 
using a multilayered approach with orthogonal and comple-
mentary analysis platforms, including single-cell mass cytom-
etry (CyTOF), quantitative immunofluorescence (QIF), IMC, 
and RNA sequencing (RNA-seq), to interrogate the nature and 
features of dysfunctional human T cells. Furthermore, to ana-
lyze the effect of PD-1/B7-H1 blockade on different human TIL 
subsets, we developed a humanized PDX model (herein referred 
to as immune PDX) in which intact patient-derived TILs can 
be experimentally modulated and analyzed. Our studies reveal 
a distinct dysfunctional CD8+ TIL subset that expands within 
the TME in a PD-pathway–dependent manner. This CD8+ TIL 
subset displays markers of end-stage differentiation, produces 
lower IFNγ upon stimulation, and shows increased apoptosis 
but is also highly proliferative. Finally, we demonstrate that this 
CD8+ TIL subset accumulates in patients with more advanced 

NSCLC, and its higher abundance is associated with worse clini-
cal response to anti-PD therapy.

RESULTS
Immune Profiling Reveals That CD8+ TILs Are 
Actively Expanding in NSCLC TME

Surgically resected tumoral (Tu) and nontumoral (non-Tu) 
paired lung tissues were obtained from 25 patients with 
resectable NSCLC. Specimens were divided into two mirroring 
halves and subjected to proteomic-based multiparametric 
CyTOF and QIF analysis (Supplementary Fig. S1A). We 
standardized a 39-plex CyTOF panel (Supplementary Table 
S1) including phenotypical and functional markers to 
interrogate lung tissue immune cell infiltration. Comparative 
analysis of T-cell abundance within the total non-Tu lung cell 
suspension by CyTOF or intact tissues by QIF showed a high 
correlation for both CD8+ (r = 0.74, P < 0.001; Supplementary 
Fig. S1B) and CD4+ (r = 0.70, P = 0.0002; Supplementary 
Fig. S1C) T-cell compartments, supporting the consistency 
of measurements and limited impact of our tissue digestion 
protocol. Rigorous validation of antibodies to recognize 
inducible markers was conducted using unstimulated 
versus stimulated human PBMCs (Supplementary Fig. S2). 
Next, we applied the aforementioned strategy to interrogate 
the immune composition of Tu and non-Tu lung tissues 
(Supplementary Fig. S1A). We defined the main immune cell 
populations based on the differential expression of specific-
lineage markers (Fig. 1A; Supplementary Fig. S3A and S3B) and 
found that all lymphoid subsets were significantly increased 
in Tu tissues by CyTOF (Fig. 1A and B), and also by QIF  
(Fig. 1C) analysis. In contrast, non-lymphoid subsets were sig-
nificantly less prominent in the TME, and the overall ratio of 
lymphoid cells to non-lymphoid cells was significantly higher 
in Tu tissues (Fig. 1D; Supplementary Fig. S4). Addition-
ally, CD8+ TILs were significantly more proliferative (Ki-67+)  
than non-Tu CD8+ T cells (P < 0.0003; Fig. 1E). Other lym-
phoid populations, including conventional CD4+ T cells,  
T regulatory cells (Tregs), and B cells did not show a signifi-
cant change in proliferation levels (Fig. 1E). These data indi-
cate that CD8+ TILs expand within the TME of patients with 
NSCLC and are the most proliferative TIL fraction.

A Proliferative, Terminally Differentiated CD8+ TIL 
Subset Selectively Expands in TME

To further understand why proliferative CD8+ TILs are 
unable to control tumor growth in patients with NSCLC, we 
conducted a more comprehensive phenotypic and functional 
analysis of TILs by comparing them with lymphocytes from 
paired non-Tu lung tissues. Employing an unsupervised 
hierarchical clustering method named CITRUS (27), 2.1 × 104  

Figure 1.  Immune profiling reveals that CD8+ TILs are actively expanding in NSCLC TME. Paired nontumoral (non-Tu) and tumoral (Tu) lung tissue from 
25 surgically removed lobectomies was analyzed. A, Density t-SNE plots depicting the lymphoid and non-lymphoid subsets from pooled paired non-Tu 
(left) and Tu (right) lung tissues from patients with early clinical stage NSCLC. Results are shown for an equal number of pregated CD45+ cells from both 
tissues. B, Frequency of lymphoid (top panel) and non-lymphoid (bottom panel) immune subsets across non-Tu and paired Tu tissues analyzed by CyTOF.  
C, Representative fluorescence microphotographs showing DAPI nuclear stain (blue) and each phenotypic marker: CD8, CD4, CD20, and CD68 (red) in 
paired non-Tu and Tu lung tissues studied by QIF. Dot plots depict QIF levels of CD8, CD4, CD20, and CD68 in non-Tu and Tu tissues. D, Ratio of CD8+ T cells 
to CD68+ cells from non-Tu and Tu paired lung tissues analyzed by QIF. E, KI-67 expression of CD8, CD4, Treg, and B cells from non-Tu and Tu paired lung tis-
sues analyzed by CyTOF. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. Mono, monocytes; Mac, macrophages; DC, dendritic cells; Neu, neutrophils; 
NK, natural killer.
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CD3+ T cells from Tu and non-Tu lung tissues were strati-
fied according to the expression profile of phenotypic mark-
ers. In the first iteration, CITRUS automatically stratified 
tissue-infiltrating CD3+ T cells in CD4+ and CD8+ branches 
(Fig. 2A; Supplementary Fig. S5A). Subsequently, CD8+  
T cells were segmented into two main populations of effector  
(Eff; CCR7−CD45RA+CD45RO−) and effector memory (EM; 
CCR7−CD45RA−CD45RO+) cells, showing that these two 
CD8+ subgroups dominate the lung tissue infiltration (Fig. 
2B and C; Supplementary Fig. S5B and S5C). The EM popula-
tion was further subdivided into two additional subsets. One 
subset showed a conventional effector memory phenotype, 
referred to here as effector memory (Em) cells (Fig. 2B and 
C; Supplementary Fig. S5B and S5C). The other subset, in 
contrast, was characterized by high CD45RO, EOMES, FAS, 
CD27, CD28, KLRG1, PD-1, LAG3, and TIM3 expression. This 
profile is consistent with an activated, terminally differenti-
ated, and proapoptotic phenotype, referred to here as burned-
out effector (Ebo) cells (Fig. 2B–D; Supplementary Fig. S5B 
and S5C).

Comparison of functional markers across all three CD8+ 
TIL subsets showed that Ebo cells had the highest levels of 
proliferation (Ki-67). In contrast, granzyme B (GzmB), TBET, 
and KLRG1 expression was more prominent in classic Eff 
cells. Interestingly, EOMES was highly expressed by both Ebo 
and Eff cells, but the ratio of EOMES to TBET was sig-
nificantly higher in Ebo (median = 4.8) than Eff (median = 
2.8) cells, consistent with an exhausted phenotype previously 
described in murine models, EOMEShiTBETlo (Fig. 2D; ref. 8).  
Additionally, these two effector CD8+ T-cell populations were 
asymmetrically represented between TME and surrounding 
non-Tu lung tissues. While Ebo clusters were predominantly 
localized within the TME (false discovery rate [FDR] < 0.01; 
Fig. 2E), Eff clusters were more abundant in non-Tu lung 
tissues (FDR < 0.001; Fig. 2E). When we looked at PBMCs 
from patients with NSCLC, we observed that Ebo CD8+  
T cells were almost absent, similar to non-Tu lung tissues (Sup-
plementary Fig. S5D). Paired Tu and non-Tu analysis revealed 
that Eff CD8+ TILs express less GzmB and KLRG1 when 
compared with the paired non-Tu subsets, indicating a loss of 
function in addition to loss of cell numbers of Eff CD8+ T cells 
within the TME (Fig. 2F). Finally, although expression of PD-1 
and TIM3 was significantly increased in the three CD8+ TIL 
subsets compared with non-Tu tissues, LAG3 expression was 
exclusively increased in Ebo, indicating that the LAG3 increase 
is a distinctive molecular feature of this subset (Fig. 2F). When 
we further stratified Ebo CD8 TIL cluster in high versus low 
Ki-67 expression, we observed that the high Ki-67 subpopula-
tion displayed higher PD-1, LAG3, TIM3, and FAS expression 

levels (Supplementary Fig. S6A), and this subcluster appeared 
separately stratified in a t-distributed stochastic neighbor 
embedding (t-SNE) analysis (Supplementary Fig. S6B). These 
data reveal the existence of three major phenotypically distinct 
CD8+ TIL subsets, among which Ebo stands out, as it is highly 
proliferative (Ki-67+, CD28+), fully activated (PD-1+, LAG3+, 
TIM3+), terminally differentiated (EOMEShiTBETlo), and selec-
tively expanded in the TME.

Ebo CD8+ TILs Are a Transcriptionally Distinct  
and Dysfunctional Subset

Given that Ebo was the only subset selectively expanded 
in the TME, we further explored the transcriptional 
and functional characteristics of these cells in order to 
understand what was unique about them. TILs were isolated 
from freshly resected NSCLC specimens; the three CD8+ TIL 
subsets were sorted by flow cytometry and processed for 
whole transcriptome RNA-seq analysis. Ebo showed greater 
transcriptional similarities with Em than with Eff CD8+ 
TILs, consistent with our proteomic CITRUS clustering 
results (Supplementary Fig. S7A). Nevertheless, when we 
compared Ebo directly with the Em CD8+ TIL population, 
we found a clearly distinct gene signature. Specifically, a 
total of 888 genes were significantly upregulated in Ebo 
over Em, and 881 genes were upregulated in Em over Ebo 
(FDR < 1%; adjusted P < 0.01), confirming that, although 
they are clustered together, these two cell populations are 
transcriptionally different (Fig. 3A). Consistent with our 
proteomic-based CyTOF analysis, Ki-67 gene expression 
was upregulated in Ebo compared with Em (Fig. 3B). 
Additionally, Ebo had higher expression of other transcripts 
associated with cell proliferation such as POLR3K and DNA2. 
In contrast, Em showed upregulated expression of genes 
related to tissue development and cellular differentiation, 
including ARMCX2 and FLIP1L (Fig. 3A and B). In line with 
these data, gene set enrichment analysis (GSEA) showed 
proliferative signatures enriched in the Ebo population (Fig. 
3C and D, left panel), whereas the Em population showed 
an enrichment for stem cell–type signatures (Fig. 3C and 
D, right panel). Furthermore, we analyzed T-cell receptor 
(TCR) sequencing transcripts from the three subsets 
and observed that Eff CD8+ TILs displayed the highest 
clonality, whereas Ebo and Em showed a higher clonotype 
diversity (Fig. 3E and F; Supplementary Fig. S7B and S7C). 
No significant differential expression of the associated 
exhaustion markers ENTPD1, TOX, NR4A2, or CD38 was 
found across the three subsets (Supplementary Fig. S7D). 
Next, we interrogated the functional capacity of these 
three CD8+ TIL subsets to produce IFNγ. CD8+ TIL subsets 

Figure 2.  Identification of three phenotypically distinct CD8+ TIL subsets in patients with NSCLC. CD3+ T cells (n = 20,824) from paired non-Tu 
(n = 20) and NSCLC (n = 20) specimens were analyzed using CITRUS. A, Visual representation of unsupervised hierarchical clustering. CD4 and CD8 
compartments are contoured on the basis of canonical lineage markers as indicated in Supplementary Fig. S5. The color scale indicates the median mass 
intensity of CD8 expression, and node sizes are scaled on the basis of frequency of cells in each cluster. B, CD8+ T-cell clusters are depicted. The three 
different subsets are contoured based on differential expression of markers: CCR7−CD45RA+CD45RO− (yellow), CCR7−CD45RA−CD45ROlo (pink), and 
CCR7−CD45RA−CD45ROhi (blue). The color scale indicates the median mass intensity of CD45RO expression. Node sizes are scaled on the basis of the 
frequency of cells in each cluster. C, Box plots depict expression levels of CD45RO (left), CD45RA (middle), and CCR7 (right) within each CD8 cluster 
identified as effector (Eff), effector memory (Em), and effector burned-out (Ebo). D, Heat map showing relative normalized expression of depicted mark-
ers in Eff, Em, and Ebo. Panels depict the expression levels of indicated markers in Eff, Em, and Ebo CD8+ TIL subsets. E, The Significance Analysis of 
Microarrays (SAM) model described the clusters with significantly different abundance (FDR < 0.01) between nontumoral and tumoral lung tissue. F, Dot 
plots depict the marker intensity of each CD8 branch cluster from non-Tu and paired Tu lung tissue. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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were sorted by flow cytometry from nine primary NSCLC 
tissues, and intracellular IFNγ expression was analyzed 
upon ex vivo PMA–ionomycin stimulation. Intriguingly, 
although Ebo cells showed the highest baseline expression 
of proliferation and activation markers, they produced the 
least amount of IFNγ when compared with the Em and Eff 
populations (Fig. 3G). Because Ebo showed the highest 
expression of FAS, a proapoptotic marker, we hypothesized 
that the lack of IFNγ production may be explained because 
these cells are engaged in cell death programs. To avoid 
induction of cleaved caspases that may occur during tissue 
digestion to harvest TILs, we optimized the use of QIF 
to measure cleaved caspases within intact tumor tissues 
(Supplementary Fig. S8A and S8B). Among the three CD8+ 
TIL subsets, Ebo displayed the highest levels of cleaved 
caspase-3 expression as compared with the Em and Eff 
subsets (Fig. 3H; Supplementary Fig. S8C). Additionally, 
GSEA showed an apoptotic signature enriched in the Ebo 
subset. This signature is associated with cyclin-dependent 
kinase inhibitor 1A, which is considered instrumental in 
the execution of apoptosis following caspase activation 
(Fig. 3I). Together, these data show that the three CD8+ TIL 
subsets are transcriptionally distinct, consistent with the 
clustering observed in CyTOF analysis, and indicate that 
the Ebo subset is enriched in apoptotic and dysfunctional 
CD8+ T cells.

The B7-H1/PD-1 Pathway Mediates Ebo CD8+  
TIL Expansion within TME

To explore the dynamic changes of CD8+ TIL subsets within 
the TME and their response to immunotherapy, we developed 
an immune-proficient PDX model. This alternative PDX model 
(immune-PDX), uses 4 to 5 mm3 fresh primary NSCLC surgical 
specimens engrafted subcutaneously into NOD/SCID IL2Rγ−/− 
(NSG) mice. Xenografts contain all human components of 
the patient’s unique TME, including hematopoietic, stromal, 
and tumor cells, and support their modulation and study 
(Fig. 4A). We observed that CD8+, CD4+, B, natural killer 
T, and myeloid mononuclear phagocyte cellular composition 
remained constant for at least 2 weeks after engraftment  
(Fig. 4B and C). In contrast, natural killer cells and granulocytes 
significantly declined during the same period of time (Fig. 4B 
and C). We monitored the abundance of the three CD8+ TIL 
subsets within the TME at baseline and 2 weeks after engraft-
ment by CyTOF and found that Ebo significantly increased 

(27.6 ± 5.6%; P = 0.0012), but Em (–22.8 ± 4.6%; P = 0.0010) 
and Eff (–5.62 ± 2.75%; P = 0.0755) CD8+ TILs progressively 
decreased over time (Fig. 4D and E). Interestingly, tumors 
expressing high B7-H1 levels maintained their expression for 
2 weeks after engraftment (Supplementary Fig. S9), indicating 
that this pathway remains intact in this model and is amena-
ble to modulation. To test the effect of anti-PD therapy on 
CD8+ TIL populations, we treated immune-PDX engrafted 
with B7-H1+ tumors with avelumab (anti-human B7-H1 mAb) 
or isotype control. CD8+ TIL subsets were evaluated by CyTOF 
after two doses of treatment. As shown in Fig. 4F and G, ave-
lumab treatment reduced the expansion of Ebo (–13.96 ± 4.44%; 
P = 0.012) and prevented the reduction of Eff (+3.978 ± 1.58%; 
P = 0.0311), resulting in a favorable Eff/Ebo ratio in avelumab-
treated mice (Fig. 4F and G). Additionally, avelumab decreased 
the expression of the proapoptotic marker (BIM) in the Eff 
cells and increased the levels of the activation markers CD27 
and CD69. These results suggest that B7-H1/PD-1 blockade 
may play a protective role for this population during activation 
(Fig. 4H). In both Eff and Em, TBET was significantly increased 
after B7-H1 blockade (Fig. 4H), in line with the observed ex vivo 
increased IFNγ production upon restimulation (Fig. 3E). These 
data demonstrate that the Ebo CD8+ TIL subset is expanded 
within the TME over time and that this expansion can be 
reduced by B7-H1 blockade.

Ebo Abundance Is Associated with Tumor 
Progression and Resistance to Anti-PD Therapy

Because we observed that Ebo expands within human TME 
over time, we speculated that expansion of this dysfunctional 
CD8+ T-cell population may correlate with advancing disease 
and contribute to immune escape and/or resistance to 
immunotherapy. To test this hypothesis, we standardized a 
37-plex IMC panel (Supplementary Table S2) to identify the Ebo 
CD8+ TIL subset in 35 patients with early and advanced NSCLC  
(Fig. 5A). Patients with NSCLC with clinical stage IV disease 
showed a significantly higher abundance of Ebo CD8+ TILs than 
patients with clinical stage I disease (23.03 ± 7.42%; P = 0.006), 
supporting the notion that this population expands as tumors 
continue to progress and evolve over time (Fig. 5B). Age, histology 
subtypes, and CD8 TIL density were studied across the 35 
NSCLC cases and were homogeneously distributed (Supplemen-
tary Fig. S10A). Additionally, we did not observe any association 
between these variables and Ebo abundance (Supplementary 
Fig. S10B and S10C). We did observe that, in advanced NSCLC 

Figure 3.  Ebo CD8+ TIL is a transcriptionally distinct and dysfunctional subset. A, Heat map showing differentially expressed genes between Em and 
Ebo CD8+ TIL subsets. B, Volcano plot of upregulated genes in Em over Ebo (left) or Ebo over Em (right) CD8+ TIL population. Each red or green dot denotes 
an individual gene with adjusted P < 0.01 (two-sided moderated t-test) and fold change ≥ 2. DEG, differentially expressed gene. C, GSEA plot showing an 
enrichment of cycling signatures in the Ebo population and stem-cell signatures in the Em population. The color scale indicates the expression score in 
the indicated subset, and the square size indicates the 1-FDR. Proliferation: 1, GNF2 MKI67; 2, GNF2 SMC2L1; 3, GNF2 ESPL1; 4, GNF2 CENPE; 5, GNF2 
CCNA2; 6, Eguchi cell-cycle RB1 targets; 7, Whitfield cell-cycle literature; 8, GO DNA replication-dependent nucleosome organization; 9, Rosty cervical 
cancer proliferation cluster. Stemness: 10, Piccaluga angioimmunoblastic lymphoma up; 11, Jaatinen hematopoietic stem cell DN; 12, Wong adult tissue 
stem module; 13, Harris brain cancer progenitors; 14, Hallmark angiogenesis. D, Representative GSEA of cycling genes signature: GNF2 MKI67 (left panel) 
and hematopoietic stem cell genes signature: Jaatinen hematopoietic stem cell DN (right panel) with the highest enrichment score (EC). E, TCRβ clonalities 
are shown by whisker plots, where the lines indicate median values and the boxes indicate interquartile range (IQR) values. Data from sorting cell subset 
sequence results that are over 10% frequency clonalities of Ebo, Em, and Eff are shown. F, The relative abundance of TCRβ clonotypes of Ebo, Em, and 
Eff. The large clonalities range from 10% to 100%, the medium clonalities range from 1% to 0.1%, and the small clonalities range is lower than 0.1%. The 
clonotypes are shown from all sorting cell subsets combined together. G, Bar plot depicts the percentage of IFNγ+ cells from sorted Ebo, Em, and Eff CD8+ 
TIL subsets cultured for 12 hours with (red) or without (black) PMA plus ionomycin, obtained from patients with NSCLC (n = 9). H, Bar plot depicts the 
cleaved caspase-3 expression levels in Ebo, Em, and Eff CD8+ TILs from 35 NSCLC tumors analyzed by multiplex-QIF. I, GSEA plot showing an enrichment 
of apoptosis signatures in the Ebo population over the Em (left) and Eff (right) subsets. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.

Cancer Research. 
on September 9, 2021. © 2021 American Association forcancerdiscovery.aacrjournals.org Downloaded from 

Published OnlineFirst March 3, 2021; DOI: 10.1158/2159-8290.CD-20-0962 

http://cancerdiscovery.aacrjournals.org/


Sanmamed et al.RESEARCH ARTICLE

1708 | CANCER DISCOVERY JUly  2021	 AACRJournals.org

A

C

F

H

G

D E

B

Baseline

1
CD4+ T

50 15 60 8 80

100

80

60

40

20

0

Ebo Em Eff
E
Em

Ebo
Others

***

***

60

40

20

0
BL W1 W2

BL W2

6

4

2

0

40

20

0

10

5

0

40
30

%
 o

f h
C

D
45

%
 o

f h
C

D
45

%
 o

f h
C

D
45

%
 o

f h
C

D
45

%
 o

f h
C

D
45

%
 o

f h
C

D
45

20
10
0

4 40

%
 o

f h
C

D
45

%
 o

f h
C

D
45

%
 o

f C
D

8

%
 o

f C
D

8

40 80

60

40

20

0

***

30

20

10

0

30

20

10

0

3

2

1

0

Baseline

Ebo

Ebo Em Eff
Ki-67
GZB
HLA-DR
CD69
CD137
BIM
TBET Z-score

0.2

−0.2

−0.4

0

Z-score
0.5

−0.5

−1

0
PD-1*

*

*

*
*

*

LAG3
TIM3
CD27
FAS

Ki-67
GZB
HLA-DR
CD69
CD137
BIM
TBET
PD-1
LAG3
TIM3
CD27
FAS

C
tr

l

A
ve C
tr

l

A
ve

Z-score
0.4

0.2

−0.2

−0.4

0

Ki-67
GZB
HLA-DR
CD69
CD137
BIM
TBET
PD-1
LAG3
TIM3
CD27
FAS

C
tr

l

A
ve

Em Eff

Eff
Em

100
*

*

80

60

40

20

0
Ctrl α-hPD-L1

Ebo
Others

50 80

60

40

20

0

40

30

20

%
 o

f C
D

8

%
 o

f C
D

8

15 Ctrl
Avelumab
(anti–hPD-L1)

10

5

0

%
 o

f C
D

8

%
 o

f C
D

8

10

0
0

Time (days) Time (days)
14 0 14

Time (days)
0 14

Post-engraftment (week 2)

6 7 8 9

Treg CD8+ T NK cells
***

NKT cells B cells Neu M. phagocytes

2 4 5

Post-engraftment

Baseline

t-SNE1

1
2

3

4 5

6
7

8 9

1
1 CD4 effector cells
2 Treg cells
3 γδ cells
4 CD8 T cells
5 NK cells
6 NKT cells
7 B cells
8 PMN
9 Mononuclear

phagocytes

2

3

4 5

6
7

8 9

t-
S

N
E

2

Post-engraftment
(week 2)

Figure 4.  The B7-H1/PD-1 pathway mediates Ebo CD8+ TIL expansion within the human TME. A, Scheme of immune-PDX experiments. Patient-derived 
lung tumor xenografts were engrafted in NOD/SCID IL2Rγ−/− (NSG) mice. Tumor tissue was digested and analyzed by mass cytometry at baseline and  
2 weeks after engraftment. B, viSNE analysis depicts tumor xenograft-infiltrating leukocytes at baseline and 2 weeks after engraftment in NSG mice. Each 
immune subset is identified with a different color and a number. C, Frequency of depicted tumor xenograft-infiltrating leukocyte populations at baseline 
(gray) and 2 weeks after (red) engraftment. D, Percentage of Ebo, Em, and Eff of total tumor-infiltrating CD8+ T cells at baseline and at week 1 and week 2 
after engraftment. E, CD8 composition with the different CD8+ TIL subsets at baseline and at week 2 after engraftment. F, Percentage of Ebo, Em, and Eff 
of total tumor-infiltrating CD8+ T cells from control and avelumab-treated mice at baseline and at week 2 post-engraftment. G, CD8+ T-cell composition 
within the different CD8+ TIL subsets from control and avelumab-treated mice at week 2 post-engraftment. H, Heat map showing differentially expressed 
proteins in Em, Ebo, and Eff CD8+ TIL subsets from control and avelumab-treated mice. hPD-L1, human PD-L1; Neu, neutrophils; M. phagocytes, mononu-
clear phagocytes.
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cases, the presence of tertiary lymphoid structures was associ-
ated with an ∼2.5-fold lower Ebo CD8+ TIL proportion, but this 
difference did not reach statistical significance (Supplementary 
Fig. S10D and S10E). Finally, consistent with previous obser-
vations by QIF, we identified among advanced NSCLC cases 

a CD8 TIL cluster coexpressing cleaved caspase-3, CD45RO, 
EOMES, Ki-67, PD-1, LAG3, and TIM3 (Supplementary Fig. 
S11). Importantly, patients with non-durable clinical benefit 
(NDB) to anti-PD therapy showed a significantly higher propor-
tion of the Ebo CD8+ TIL subset than patients with durable 

Figure 5.  Ebo CD8+ TIL abundance is associated with tumor development and resistance to anti-PD therapy in patients with NSCLC. A, Representative 
image showing IMC staining of a NSCLC case and Ebo CD8+ TIL identification strategy. Each marker is represented by a different color as indicated in the 
panel. Orange squares indicate the Ebo CD8+ TILs selected based on CD8+CD45RO+CD45RA−EOMES+ expression of the markers. White squares indicate 
non-Ebo CD8+ TILs. B, Percentage of Ebo CD8+ population over total CD8+ TILs in clinical stages I (n = 12), II (n = 12), III (n = 16), and IV (n = 18). C, Bar-dot 
plots depict percentages of Ebo CD8+ TIL population over total CD8+ TILs in patients with durable clinical benefit (DCB; n = 13) or non-durable clinical benefit 
(NDB; n = 22) from anti-PD therapy. D, Quantification of Ki-67, PD-1, and LAG3 CD8 TIL expression in patients with DCB and NDB from anti-PD therapy. E, 
Kaplan–Meier survival curves for 35 patients with NSCLC treated with anti-PD therapy. Patients were divided in two groups based in tumors harboring Ebo ≥ 
17.5% (high) or Ebo < 17.5% (low) of total CD8 TILs. P values were determined by the log-rank test. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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clinical benefit (DCB) in baseline tumor samples (P = 0.004; Fig. 
5C). Alternative Ebo CD8+ TIL gating strategies including Ki-67 
protein expression were used to confirm this result (Supplemen-
tary Fig. S12A–S12C). Consistent with this finding, patients 
with NDB also showed CD8+ TILs with higher PD-1, LAG3, and 
Ki-67 expression, markers associated with the Ebo CD8+ TIL 
phenotype (Fig. 5D). Finally, Ebo CD8+ TIL subset abundance 
was associated with a worse overall survival (hazard ratio = 6.08; 
95% confidence interval, 2.57–5.25; P < 0.05) in patients with 
NSCLC treated with anti-PD therapy (Fig. 5E). A multivariate 
analysis including PD-L1 expression as a covariate identified Ebo 
CD8+ TIL abundance as an independent predictor of outcome 
(Supplementary Table S3). Taken together, our findings support 
the suggestion that Ebo is expanded in the TME of patients with 
advanced NSCLC, and its expansion is independently associated 
with reduced efficacy of anti-PD therapy.

DISCUSSION
The basis of T-cell dysfunction in cancer and the best way 

to overcome it remain incompletely understood. One of the 
main hurdles to achieving greater understanding has been 
the use of low-resolution phenotypical technologies and the 
lack of suitable in vivo experimental models to investigate  
the human immune TME. Here, we used multiparametric  
single-cell mass cytometry and tissue imaging technology 
tools combined with a lung cancer humanized immune-
PDX model to explore CD8+ TIL diversity and its response 
to immunotherapy. We identified three phenotypically, 
transcriptionally, and functionally distinct CD8+ TIL subsets: 
Eff, Em, and Ebo. The Ebo subset is characterized by a burned-
out dysfunctional phenotype and specifically expands within 
the TME in a PD-pathway–dependent manner. Furthermore, 
Ebo progressively accumulates in patients with advanced 
NSCLC and is associated with primary resistance to anti-PD 
therapies. Our findings suggest that this CD8+ TIL population 
may contribute to a less responsive immune TME and provide 
insights into the development of future T cell–based cancer 
immunotherapies.

To phenotypically characterize CD8+ TILs, we employed 
single-cell mass cytometry technology, which allowed us to 
multiplex 39 markers per cell. Different methods of analysis 
have been designed over the past few years to maximize this 
multidimensional single-cell data (28). Here, we used CITRUS, a 
method specifically designed to identify and compare hierarchical 
clusters between groups of samples in an unsupervised manner. 
Using this method, we compared paired Tu and non-Tu lung 
tissue for immune cell composition. This approach resulted 
in fundamental findings: (i) lymphoid cells, but not myeloid 
cells, are preferentially expanded in lung tumor tissues; (ii) 
CD8+ TILs are highly proliferative in contrast to non-Tu tissue-
infiltrating CD8+ T cells; and (iii) three major CD8+ TIL subsets 
were identified, but only one of them, Ebo, was expanded in 
the TME (Fig. 2E). In contrast, the other two CD8+ TIL subsets 
were either diminished (Eff) or unchanged (Em) in the TME 
compared with adjacent non-Tu lung tissue. More importantly, 
we found that, whereas Ebo represents 10% to 15% of the total 
CD8+ TILs in early-stage NSCLC, its abundance rises to 30% to 
40% in advanced NSCLC, indicating a higher relevance of this 
compartment in late-stage disease (Fig. 5B).

To demonstrate the dynamic evolution of Ebo within the TME 
and its response to immunotherapy, we developed a previously 
undescribed immune-proficient PDX model, referred to as the 
immune-PDX model. In contrast to conventional immune-
deficient PDX models, immune-PDX retains an intact patient-
derived tumor immune microenvironment (Fig. 4A and B). Fresh 
patient-derived lung tumor xenografts are engrafted into severely 
immunodeficient mice and contain all the original components 
of the growing tumor in the patient, including hematopoietic, 
stromal, and tumor cells. Although fibroblasts, neutrophils, and 
natural killer cells are progressively replaced by murine stroma 
cells, all human lymphoid populations remain stable during the 
first 2 weeks after engraftment, supporting their modulation and 
study. When TILs are studied in patient samples, a challenging 
aspect is that new T cells are continuously arriving at the TME 
site, making it difficult to know which CD8+ subsets have just 
arrived and which have been differentiated within the TME. 
Because we recreated the patient TME in a T cell–deficient host, 
one of the main advantages of this model is that the evolution 
and reactions of TIL subsets can be analyzed without the 
interference of “newcomers.” In this context, we demonstrated 
that the Ebo CD8+ TILs were progressively expanded within 
TME over time. More interestingly, we found that Ebo expansion 
was minimized when mice were treated with avelumab (clinical 
grade anti–B7-H1 mAb), indicating that the PD pathway is 
required for the expansion of this population. Although the 
contribution of the PD pathway to a CD8 subset expansion 
seems to be contradictory with prior reports suggesting that 
PD-1 transmits a signal to suppress T-cell proliferation (29, 
30), it is important to consider that these studies employed 
polyclonal and heterogeneous T cells. It is still possible that the 
PD pathway provides a proliferative signal for a subset of T cells, 
which is consistent with our earlier work showing that B7-H1 
could be costimulatory for human T cells (31). Supporting this 
hypothesis, it has been recently reported that PD-1 silencing 
inhibits the proliferative activity of chimeric antigen receptor 
modified T cells (32). It remains to be clarified, however, whether 
the observed expansion of Ebo associated with the PD pathway is 
due to a selective proliferative stimulus or if, instead, the B7-H1/
PD-1 blockade is preventing the conversion of other populations 
into Ebo. The fact that clonality was low and clonotype diversity 
high in the Ebo compartment further supports the idea that 
the expansion of this compartment is more dependent on the 
conversion of other populations into Ebo.

Dysfunctional CD8+ T-cell subsets have been previously 
described in the TME (33). The most frequently used term to 
designate these cells has been “exhausted” T cells, imported from 
chronic viral infections lymphocytic choriomeningitis virus. The 
Ebo CD8+ TILs in our study are also dysfunctional and share 
several features with exhausted T cells, including coexpression 
of coinhibitory receptors (PD-1, LAG3, and TIM3), loss of IFNγ 
production upon restimulation, and a terminally differentiated 
phenotype (EOMEShiTBETlo). However, in contrast with the 
classic exhausted phenotype, Ebo is highly proliferative. This 
intriguing result is supported by two recent studies showing a 
highly proliferative dysfunctional CD8+ TIL subset in the TME of 
patients with melanoma and NSCLC (9, 10). In our case, this dys-
functional population is characterized not only by a highly prolif-
erative signature but also by the highest expression of activation 
markers such as CD45RO, CD27, PD-1, LAG3, TIM3, CD28, 
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and FAS, suggesting that these cells may be pushed beyond the 
threshold of optimal activation. Supporting this interpretation, 
we previously demonstrated that patients with NSCLC with 
KI-67hi and/or GzmBhi CD8+ TILs are associated with worse 
response to cancer immunotherapy (34). Other groups have sug-
gested that an overactivation of CD8+ TILs may be counterpro-
ductive, due to an excess of IFNγ (35) or TNFα (36) that may lead 
to T-cell death programs, thereby compromising the antitumor 
response. In this regard, we have observed that the Ebo popula-
tion is characterized by the highest FAS and cleaved caspase-3 
levels compared with the other CD8+ TIL subsets, reinforcing 
the interpretation of apoptotic hyperactivated CD8+ TILs. Given 
these distinctions from previously described exhausted TILs, we 
have proposed the term “burned-out” T cells to more accurately 
reflect the overactive and apoptotic phenotype of these cells. 
Importantly, blockade of the PD pathway reduced BIM and 
cleaved caspase-3 in activated Eff CD8+ TILs (Fig. 4H). Collec-
tively, our results suggest that anti-PD therapy may be preventing 
activated T cells from entering into an apoptotic death program 
rather than restoring the function of exhausted/dysfunctional 
T cells. Although these findings require further confirmation, 
they are consistent with previous studies reporting that anti-
PD therapies may be promoting the expansion and preventing 
the deterioration of a stem-like CD8+ TIL subset, identified as  
PD-1+Tcf1+, rather than restoring exhaustion (37–40).

T cell–inflamed tumors with abundant Ebo CD8+ TILs 
may be refractory to cancer immunotherapy due to an excess 
of irrecoverable apoptotic TILs, as previously suggested (41, 
42), potentially competing for space and resources with other 
CD8+ TIL populations. Along these lines, a recently published 
study showed an association between higher T-cell infiltration 
and higher terminally exhausted CD8+ T cells, indicating that 
the greater the T cell accumulation in tumors, the greater the 
likelihood of becoming dysfunctional (40). One interpreta-
tion of these results is that a lack of T-cell homeostasis and 
an excess of activated ineffective TILs may be responsible for 
impaired T-cell responses in some patients. If this is the case, 
T-cell enhancer strategies (e.g., bispecific T-cell engagers) may 
be detrimental, and strategies designed to protect activated 
T cells from apoptosis may be needed instead. An alternative 
interpretation of these results may be that the Ebo compart-
ment must be depleted to provide space and resources to the 
cells with greater efficacy such as Eff CD8+ TIL subsets. In this 
regard, a potential benefit of concomitant chemotherapy or 
radiotherapy may be the clearance of the Ebo compartment.

Taken together, our data illustrate a previously unrecognized 
category of anti-PD–resistant T-cell inflamed tumors. Contrary 
to expectations, the underlying mechanism of resistance may 
be an excess of dysfunctional activated TILs. This work may 
contribute to a deeper understanding of T cell–inflamed tumor 
diversity, and Ebo may serve as a useful tissue biomarker with 
implications for the development of future T cell–based cancer 
immunotherapies.

METHODS
Patients and Samples

Fresh tumor samples were prospectively collected from individuals 
with NSCLC undergoing primary surgical treatment between August 
2015 and February 2018 at the Yale Cancer Center, New Haven, CT. 

After surgery, tumor and tumor-free sections (identified and super-
vised by a pathologist) were collected from each patient and processed 
in the first 2 hours after being surgically removed. Tumor-free frag-
ments were collected at least 5 cm away from the macroscopic tumor 
border. Tumor and tumor-free fragments were reviewed by a licensed 
pathologist (K.A. Schalper) to confirm the diagnosis and quality of 
the samples. One tumor sample was identified as sarcoidosis, and one 
tumor-free sample was found to include areas of active pneumonia. 
Both of these cases were processed but not included in the analysis. For 
each specimen, a fragment was fixed in 10% neutral-buffered formalin 
and paraffin-embedded for histopathologic analysis. The remainder of 
the tissue was directly processed for single-cell CyTOF analysis (Sup-
plementary Fig. S1). When tumor tissues were bigger than 10 mm3, 
an additional fragment of the tumor tissue was engrafted in immu-
nodeficient NSG mice to establish a short-term PDX. The clinical and 
pathologic characteristics of these patients are described in Supple-
mentary Table S4. Additionally, we included retrospectively collected 
formalin-fixed, paraffin-embedded tumor samples from patients with 
stage IV NSCLCs treated with single-therapy anti-PD agents at the Yale 
Cancer Center between 2011 and 2017. These cases were represented in 
a tissue microarray (TMA) format, each containing two independent 
0.6-mm tumor cores. The TMAs were constructed by selecting areas 
containing viable tumor cells and stromal elements on hematoxylin 
and eosin–stained preparations (as assessed by a licensed pathologist) 
and without enriching for specific tumor regions, tissue structures, or 
immune-related features. The clinical and pathologic characteristics of 
these patients are described in Supplementary Table S4 and treatment 
characteristics in Supplementary Table S5. All tissues were used with 
each patient’s written informed consent or, in some cases, a waiver of 
consent, after approval from the Yale Human Investigation Committee 
(protocols 1412015109, 9505008219, and 1608018220) and conducted 
in accordance with the tenets of the Declaration of Helsinki.

Antibodies
All metal-conjugated antibodies were either purchased pre- 

conjugated from Fluidigm or purchased purified and conjugated 
in-house using mass cytometry antibody conjugation kits from Flu-
idigm according to the manufacturer’s instructions. For details, 
see Supplementary Tables S1 and S2. The following antibodies 
were developed, produced, and quality controlled at Pfizer facilities: 
avelumab (a fully human IgG1 anti-human PD-L1) and irrelevant 
human IgG1 as an isotype-matched control.

Mice
Female NOD/SCID IL2Rγ−/− (NSG) mice 6 to 8 weeks old were 

purchased from The Jackson Laboratory. All mouse protocols were 
in accordance with NIH guidelines and approved by the Animal  
Care and Use Committee of Yale University School of Medicine (ref-
erence 2013-11387 approval).

CyTOF Sample Preparation
A total of 1 × 106 to 3 × 106 suspension cells from each Tu or non-

Tu lung tissue were incubated with antibodies against CD16/32 at  
50 mg/mL for 10 minutes at room temperature to block Fc recep-
tors. Subsequently, metal-conjugated mAb cocktails against cell sur-
face molecules were added, and further incubated for 20 minutes 
on ice (see details in Supplementary Table S1). Cells were stained 
for viability with 5 mmol/L cisplatin in FBS (Fluidigm) for 1 min-
utes at 4°C. After the treatment with the Fixation/Permeabilization 
Buffer (Thermo Fisher), cells were further incubated with the metal-
conjugated mAb cocktails against intracellular proteins (see details 
in Supplementary Table S1). Then, cells were washed and stained 
with 1 mL of 1:4000 191/193Ir DNA intercalator (Fluidigm) diluted in 
phosphate-buffered saline (PBS) containing 1.6% paraformaldehyde 
(Electron Microscopy Sciences) and stored at 4°C until acquisition.
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Single-Cell Mass Cytometry Sample Acquisition
Samples were acquired in a Helios machine (Fluidigm). At the moment 

of acquisition, cells were washed once with PBS with 0.5% bovine 
serum albumin (BSA) and 0.02% NaN3 and once with double-distilled 
water (ddH2O); they were then resuspended in ddH2O containing bead 
standards (Fluidigm) to approximately 106 cells/mL. Subsequently, 
samples were acquired at an event rate of <400 events per second.

Antibody Validation and Titration for Single-Cell  
Mass Cytometry

Isolated human PBMCs were stimulated with a concentration 
of 0.5 μg/mL plate-bound anti-CD3 (OKT3) and 2 μg/mL soluble 
anti-CD28 (28.2; eBioscience) for 72 hours or cultured in medium—
RPMI 1640 with 10% FBS (PAN-Biotech), 1 mmol/L sodium pyruvate 
(Sigma), and 100 ng/mL penicillin/streptomycin—for the same period 
of time. Unstimulated PBMCs were used as a negative control for  
antibody titration and staining protocol optimization. The optimal 
antibody concentration was assayed by serial dilutions and determined 
by the obtained median mass intensity signal-to-noise ratio from 
internal positive and negative controls (see details in Supplementary 
Fig. S2). Additionally, in each CyTOF experiment unstimulated and 
stimulated PBMC samples were included as internal reference.

Multiplexed QIF
Using previously validated and standardized multiplexed QIF 

panels and serial TMA sections (43), we measured the levels of 
cytokeratin (clone AE1/AE3; eBioscience), PD-L1 (B7-H1, clone 
405.9A11; Cell Signaling Technology), CD4 (clone SP35; Spring 
Bioscience), CD8 (clone C8/144B; Dako), CD20 (clone L26; Dako), 
CD68 (clone KP1; Dako), CD45RO (clone UCHL1; BioLegend), and 
CD45RA (clone HI100; BioLegend). Cleaved caspase-3 (clone D3E9; 
Cell Signaling Technology) was validated and standardized using 
Jurkat cells treated with dimethyl sulfoxide (untreated) or 1 μmol/L 
of camptothecin (treated) for 18 hours to induce apoptosis (see 
details in Supplementary Fig. S8A and S8B). Freshly cut TMA serial 
sections were deparaffinized, and antigen retrieval was performed 
using an EDTA buffer (Sigma-Aldrich), pH 8; they were then heated 
for 20 minutes at 97°C in a Lab Vision PT Module (Thermo Fisher 
Scientific). Endogenous peroxidase activity was inactivated by 
incubating the TMA section in a solution containing 0.3% hydrogen 
peroxide in methanol for 20 minutes, followed by incubation in a 
blocking solution containing 0.3% BSA in 0.05% Tween solution 
for 30 minutes. An antibody cocktail was used for the primary 
target detection, followed by a secondary detection using the specific 
horseradish peroxidase–conjugated IgG anti-isotype. Tyramide 
signal amplification with tyramide-based fluorescent reagents 
(PerkinElmer) was utilized for signal amplification and detection. 
Sections were washed twice with a 100 mmol/L benzoic hydrazide 
solution in between antibody incubation periods to eliminate residual 
horseradish peroxidase activity. Nuclei staining was performed with 
4′,6-diamidino-2-phenylindole (DAPI). Fluorescence signal was 
measured quantitatively using the AQUA method for QIF. Samples 
with tissue or staining artifacts by visual examination were excluded.

IMC Sample Preparation
For IMC staining, antibodies were optimized using QIF as a gold 

standard and a control array including negative and positive controls, 
as well as cases with a range of expression for each marker. Fluorescence 
signal quantification was performed using the AQUA method of QIF. 
Each slide was visually examined to exclude samples with tissue/
staining artifacts and those with less than 5% tumor content. Cases 
were considered to display detectable levels of each target when the 
QIF score was above the signal-to-noise threshold determined by 
measuring negative control preparations and by visual examination 

of the sample. For IMC staining, a comparable and compatible 
staining protocol was designed based on the QIF gold standard. 
Briefly, fresh TMA serial sections were deparaffinized, and antigen 
retrieval was performed using an EDTA buffer (pH 9) and heating for  
20 minutes at 97°C in a Lab Vision PT Module. The EDTA solution 
was rinsed twice using Tris-buffered saline (TBS) solution, followed 
by incubation in a blocking solution containing 0.3% BSA in 0.05% 
Tween solution for 30 minutes. Tissue was covered with a cocktail of 
26 metal-conjugated antibodies prepared in blocking solution. After  
1 hour of primary incubation at room temperature, tissues were rinsed 
twice using a solution containing 0.025% Tween 20 in TBS solution 
to remove nonspecific antibody staining. DNA and membranes were 
costained using a solution containing 1 μmol/L pooled 191Ir and 193Ir, 
and 1 μg/mL 115In LipoR in TBS for 1 hour at room temperature. The 
costaining solution was rinsed using Tween 20 and the TBS solution 
followed by two washes for 1 minute each using ddH2O. The slide was 
finally air-dried for 60 minutes and stored until analysis.

IMC Sample Acquisition
For IMC analysis and instrument settings, the Hyperion machine 

from the Yale IMC core facility was used for all the studies described 
here. The mass cytometer and scanner were tuned every day at 20 
Hz and 0 dB of laser intensity using a commercial tuning slide 
provided by Fluidigm. The tuning reference values used as a quality 
control for a working day were 2.37% ± 0.34% and 0.42% ± 0.11% for 
transient cross-talk 1 and 2, respectively, and for Lu(175) mean duals 
above 900. All tissue samples and cells were ablated at 5 dB and 200 
Hz; an area of 750 × 750 μm was always considered for TMA spots 
and a smaller area of 100 × 100 μm for titrations. TMA slides were 
scanned using the batch tool. A panoramic view of the whole slide 
was uploaded, and a macro region of interest was created covering the 
tissue spot grid. On the created working area, each spot was selected 
based on the map layout of each TMA. A protocol was assigned and 
carried out until 20 spots were completed for a 24-hour continuous 
scan. No more than 25 cases were programmed to be scanned per 
tuning event.

Antibody Validation and Titration for IMC
For IMC validation and optimization, specificity, and sensitivity, the 

optimal titer was calculated separately for metal-conjugated and uncon-
jugated versions of each antibody. The optimal antibody concentration 
was assayed by serial dilutions and determined by the obtained QIF 
scores and the signal-to-noise ratio from internal positive and nega-
tive control tissues (percentile p90 to percentile p10). Cytokeratin and 
vimentin were assayed in combination to confirm selective exclusion 
staining patterns for further tissue segmentation. Antigen retrieval con-
ditions were optimized, and QIF was performed using 1 mmol/L EDTA 
(pH 8) and 10 mmol/L citrate (pH 6) independently. The detection limit 
was optimized by comparing the dynamic range for each condition.

Immune-PDX Tumor Model
Surgical specimens from primary lung carcinomas were implanted 

subcutaneously into the flank of 8 to 10 female NSG mice at 6 to  
8 weeks of age per experiment. Mice were treated intraperitoneally 
with anti-hPD-L1 mAbs (avelumab) or isotype control at days 5 
and 10 post-implantation. At day 7 or 14, mice were sacrificed, and 
tumors were collected for analysis.

Human TIL and PBMC Isolation
Human TILs were derived from original patient tumors, as well 

as tumor tissue from each immune-PDX model after treatment. 
TILs were obtained by processing tumor tissue with a gentleMACS 
Dissociator (Miltenyi Biotec) in the presence of RPMI 1640 with 
0.5% BSA and 5 mmol/L EDTA. Cell suspensions were filtered using 
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a 70-μm cell strainer (BD Falcon), centrifuged at 600g for 7 minutes 
at 4°C, and resuspended in PBS with 0.5% BSA and 0.02% NaN3, 
and were then ready for analysis. Human PBMCs were purified from 
buffy coats of healthy donors using Ficoll-Hypaque (Sigma-Aldrich) 
gradient centrifugation, according to the manufacturer’s instructions.

TIL Sorting
For isolation of Ebo, Em, and Eff CD8+ TIL subsets, 1 × 106 to 

2 × 106 tumor-infiltrating leukocytes were resuspended in 200 μL  
staining buffer containing fluorophore-conjugated mAb cocktail 
against human cell-surface molecules: CD45 BV510 (clone HI30), 
CD8 PerCP-Cy5.5 (clone RPA-T8), CCR7 BV421 (clone G043H7), 
CD45RO PE (clone UCHL1), and CD45RA PE-Cy7 (clone HI100). 
After a 20-minute incubation at 4°C, cells were washed twice, and cell 
sorting was performed using a BD FACS Aria III (BD Biosciences). 
We trained a gating strategy to sort the subsets most similar to those 
identified by CITRUS. We first trained this strategy using our current 
CyTOF data doing manual gating and comparing the expression 
profile of the three subsets identified by CITRUS and the three subsets 
defined by manual gating (Supplementary Fig. S13A and S13B). After 
we confirmed that our manual gating strategy was able to identify 
subsets similar to those identified by CITRUS, we designed a similar 
strategy for the FACS (Supplementary Fig. S13C). Furthermore, after 
we sorted the cells, we tested whether or not the expression profile 
of the sorted subsets was comparable to that of the clusters defined 
by CITRUS (Supplementary Fig. S13D). Approximately 1 × 104, 
1.5 × 104 to 2 × 104, and 0.5 × 104 to 1 × 104 of Ebo, Em, and 
Eff cells, respectively, were sorted as an average across experiments. 
In three experiments cells were directly sorted in lysis buffer RLT 
(RNeasy Micro Kit, 74004; QIAGEN) which already contained beta-
mercaptoethanol and dithiothreitol, and total RNA was extracted 
from the lysed cells using the RNeasy Micro Kit protocol. Total RNA 
samples were submitted to the Yale Center for Genome Analysis 
(YCGA) where they were analyzed for quality control and RNA-seq. 
In the remainder of experiments, cells were cultured in vitro for T-cell 
stimulation experiments.

T-cell Stimulation In Vitro
From nine lung tumor samples, Ebo, Em, and Eff CD8+ TIL sub-

sets were stimulated with 50 ng/mL PMA and 1 μg/mL ionomycin 
(BD Biosciences) for 6 hours. Two hours before the end of the PMA–
ionomycin stimulation, 1× monensin and 1× brefeldin A (eBiosci-
ence) were added for intracellular IFNγ staining. For analysis of IFNγ 
intracellular levels, cells were fixed and permeabilized using the Fix/
Perm solution (eBioscience) for 30 minutes at room temperature. 
After they were washed twice, cells were resuspended in 1× Permeabi-
lization Buffer (eBioscience) containing fluorescein isothiocyanate–
conjugated anti-IFNγ antibodies (clone 25723.11) for 15 minutes at 
room temperature. The acquisition of samples was carried out on an 
Attune NxT Flow Cytometer (Thermo Fisher Scientific).

CyTOF Data Analysis
All mass cytometry files were normalized together using the mass 

cytometry data normalization algorithm (44). For analysis, FCS 
files were manually pregated on 193Ir DNA+CD45+ events, excluding 
cisplatin-positive dead cells, doublets, and DNA-negative debris, by 
Cytobank. The gated CD45+ population was then clustered based 
on all labeled phenotypic markers using visualization (viSNE; ref. 
45) or hierarchical clustering (CITRUS; ref. 27) methods. CITRUS is 
comprised of several steps: (i) Cells from samples are combined and 
clustered in a semi-unsupervised manner to automatically identify 
clusters of related cells. (ii) Descriptive statistics characterizing various 
properties of each cluster (cluster features) are extracted on a per-
sample basis. (iii) Extracted cluster features are used in conjunction 
with a user-specified endpoint of interest to train a supervised model. 

(iv) Internal cross-validation is used to evaluate model fit and select 
the appropriate regularization threshold for a final model. Finally, (vi) 
model features are plotted as a function of endpoint of interest, and 
cluster phenotypes are determined by density plots of markers used 
for clustering. An equal number of events (or a subset of events) from 
all samples are randomly selected and then combined and clustered 
using agglomerative hierarchical clustering, producing groups of 
phenotypically similar cells. The dissimilarity between any two cells 
was specified by the Euclidean distance between clustering markers, 
and Ward’s linkage was used as the agglomeration method. Rather 
than cutting the dendrogram at a fixed height to identify clusters, all 
clusters in the hierarchy of merged clusters larger than a user-specified 
size were retained for subsequent analysis.

IMC Data Analysis
A supervised phenotyping and segmentation analysis was developed 

using the IMC viewer provided by Fluidigm. For imaging studies 
and staining pattern comparisons, each metal channel was visualized  
and the image quality was optimized using gain and thresholds range 
tools. Integrated dual histograms were used as a reference for signal 
normalization to avoid saturated pixels and for comparing with a 
pathologist’s validated immunofluorescence pattern. After fixing all 
parameters for the visualization of each stained marker, a supervised 
identification of T lymphocytes, macrophages, and tumor cells was 
performed based on morphology and the specific cluster of differ-
entiation for lymphocytes CD4 (156Gd), CD8 (162-Dy), CD20 (161-
Dy), CD68 (159Tb), and pan-cytokeratin (148Nd) for tumor cells. 
All scanned regions of interest included a total of 20 cells per field 
of view from a TMA batch and were analyzed in the same manner. 
The selected positive pixels for a marker were indicated as single cells. 
The integrated counts were exported as a TXT file, and the composed 
images were saved for further studies. The integral counts for each 
marker were normalized by the mean level of 132Xe and 133Xe detected 
in each cell compartment. This allowed us to account for the differ-
ent areas covered by cells of different shapes and sizes, as the Xe ion 
is uniformly detected in tissue due to impurities in the argon plasma 
source. The Ebo, Em, and Eff CD8 TIL compartments identified by 
IMC were based in the combination of CD8, CD45RO, CD45RA, 
and EOMES markers, using the following approach: Ebo (CD8+, 
CD45RO+, CD45RA−, and EOMES+), Em (CD8+, CD45RO+, CD45RA−, 
and EOMES−), and Eff (CD8+, CD45RO−, and CD45RA+). The expres-
sion profile of each compartment was determined to evaluate consist-
ency with the clusters identified by CITRUS (Supplementary Fig. S14).

RNA-seq Data Analysis
RNA samples were submitted to the YCGA, and the libraries were 

constructed by YCGA protocols (https://medicine.yale.edu/keck/ycga/
Images/9_tcm240-21599.pdf). The libraries underwent 101-bp paired-
end sequencing using an Illumina HiSeq 2500 according to Illumina 
protocols. Low-quality reads were trimmed and adaptor contamina-
tion was removed using Trim Galore (v0.5.0). Trimmed reads were 
mapped to the human reference genome (hg38) using HISAT2 (v2.1.0) 
(46). Gene expression levels were quantified using StringTie (v1.3.3b) 
(47) with gene models (v27) from the GENCODE project. Differen-
tially expressed genes were identified using DESeq2 (v1.22.1) (48).

TCR Sequencing Data Analysis
T-cell receptor β-chain clonality was assessed using the MiXCR 

tool using standard parameters of the RNA-seq workflow. TCR 
clonality was analyzed using the R package immunarch (http://doi.
org/10.5281/zenodo.3367200).

Statistical Analysis
Student t test, two-way analysis of variance, and log-rank tests on 

GraphPad Prism 8.0 for macOS were used for statistical analysis. CD8 
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and Ebo abundance cutoff points were determined using the median 
values across all samples. Multivariate analysis was performed using 
the Cox proportional hazards regression model on SPSS Statistics 
for Windows. Statistical significance was considered to be P < 0.05. 
P values were reported as follows: NS, not significant; *, P < 0.05; **, 
P < 0.01; ***, P < 0.001; ****, P < 0.0001. The error bars in figures 
represent standard error of the mean (SEM).

Data Archive
The data have been archived at https://www.ncbi.nlm.nih.gov/geo 

and can be accessed under the study accession number GSE167235.
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