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Abstract. Black Phosphorus (BP), a layered semiconductor, has atracted enormous attention
due to its singular anisotropic electronic, optical and thickness-dependent direct bandgap
properties. As a consequence, BP has been envisioned as a promising material for several
technological applications including photonics electronics and optolectronics. Nonetheless, most
of the materials that integrate these devices undergo scattering and decay processes that are
governed by quantum mechanical effects. From this point of view, the correct understanding
and prediction of hot carriers dynamics in prospective materials as BP is crucial for its succesfull
integration in future technology. In this work, based on ab initio calculations, we study
the carrier relaxation rates in BP. Thus, the electron-electron and electron-phonon scattering
contributions are investigated. Our results suggest that for the near-infrared and visible light
spectrum [1.5 to 3.5 eV], the carriers in BP follow an ultrafast dynamics with relaxation times
of the order of few to tens of femtoseconds while for the far-infrared range the relaxation times
is of the order of hundreds of femtoseconds. Our reults are consistent with previous studies of
pump-probe measurements on carrier dynamics.

1. Introduction
Black phosphorus (BP) is a layered puckered semiconductor that has drawn renewed attention
due to its strong anisotropic physical properties along its in-plane directions[1–10] and thickness-
dependent energy gap, covering up from the infrared to visible electromagnetic spectrum[11, 12].
Due to these peculiar properties, the possibility of integrating BP in the design of novel
optoelectronics and photonic devices [13–15] has been rapidly envisioned.

Indeed, the design of photonic devices is one of the most promising fields from the
technological point of view. Since these devices rely on the controlled manipulation of photons,
and its subsequent output signal detection, a correct understanding of the scattering mechanisms
within a device is crucial. In fact, under external photon sources, most bulk and nanoscale
materials undergo scattering and decay processes (energy loss mechanisms) that might hamper
their prospective applications in electronics and optoelectronics [16]. For instance, when a
nanostructure absorbs light, energetic carriers (hot carriers) are generated and rapidly thermalize
to the edges of the band gap realeasing energy as heat throughout the lattice [17].
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Experimentally, it is challenging to characterized the energy loss due to thermalization of
hot carriers because of their fast subpicosecond lifetimes which are typically dominated by the
electron-phonon and electron-electron scattering processes. In effect, ultrafast spectroscopy
has been widely used to study hot carriers dynamics, although its modelling rely on model fit
approaches that lack of atomistic details. Moreover, the current advances in ab initio modeling
based on many-body perturbation theory allows an accurate description of hot carriers without
the need of any empirical parameters [17, 18].

Hot carriers dynamics in BP have been vastly investigated experimentally by means of pump-
probe measurements and for a wide frequency range for light pulses which yielded electron
relaxation times ranging from tens to thousand of femtoseconds [19–21] as well as slightly
direction-depedent hot carrier relaxation times [19].

Despite the vast literature addressing the carrier dynamics mechanisms in BP, there is still
a lack of quantum mechanical approaches that accurately predicts the hot carriers dynamics in
BP. In this context, here we employ many-body ab initio calculations to provide a theoretical
description of hot carriers in BP. To this aim, both, the electron-phonon and electron-electron
scattering rates are computed. Our results indicate that for the near-infrared and visible
spectrum [1.5 to 3.5 eV], the carriers in BP follow an ultrafast dynamics with relaxation times of
the order of few to tens of femtoseconds while for the far-infrared range, hundreds of femtoseconds
can be reached.

a b
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y

Figure 1. Schematic representation of (a) black phosphorus crystaline lattice (b) vibrational
modes in black phosphorus. Only three vibrational modes are active: A2

g = 463cm−1,

B2g = 436cm−1, and A1
g = 360cm−1 [5].

2. Methodology
We consider a pristine BP crystal, as shown in Fig. (1-a), which consists of a layered puckered
structure containing 4 atoms per unit cell. The obtained fully relaxed lattice parameters (a=4.55
Å, b=3.30 Å, and c=11.28 Å) are in good agreement with those previously reported [11]. It
should be notice that BP possesses 8 vibrational modes, shown in Fig. (1-b), from which only
the A2

g = 463cm−1, B2g = 436cm−1, and A1
g = 360cm−1 correspond to active modes [5]. Thus,

the optical phonon energy for BP is associated to A2
g which correspond ∼ 57 meV.

Our study is carried out following three steps. First, plane-wave density functional theory
is employed to compute the electronic ground-state. The Perdue-Burke-Ernzerhof (PBE)
exchange-correlation potential including van der Waals corrections within the semi-empirical
dispersion scheme (PBE-D) is used. Norm-conserving pseudopotentials, along with a 80 Ry
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kinetic energy cutoff and a k-sampling grid in the Monkhorst-Pack scheme of 6×8×3 as
implemented in the Quantum-Espresso code.[22] The structures were fully optimized to their
equilibrium position with forces smaller than 0.002 eV/Å.

Next, density functional perturbation theory (DFPT)[23] is used to compute the vibrational
frequencies ωqλ and the derivatives of the self-consistent Khon-Sham potential with respect to
the atomic displacements, necessary to evaluate the electron-phonon coupling matrix elements.
Subsequently, many-Body perturbation theory (MBPT)[24] is used to describe the electron-
phonon self-energies. There, the electron-phonon interaction is treated perturbatively[25, 26] by
considering the first and a second order Taylor expansion in the nuclear displacement, commonly
known as the Fan and Debye-Waller (DB) terms, respectively. The corresponding interacting
Green’s function, whose poles define the quasiparticle excitations, can be written as

Gnk(ω, T ) = [ω − εnk − ΣFan
nk (ω, T )− ΣDW

nk (T )]−1, (1)

where εnk is the Khon-Sham ground-state eigenenergies for frozen atoms. ΣFan is the Fan
contribution

ΣFan
nk (iω, T ) =

∑
n′qλ

|gqλnn′k|
2

N

[Nqλ(T ) + 1− fn′k-q

iω − εn′k-q − ωqλ
+

Nqλ(T ) + fn′k-q

iω − εn′k-q + ωqλ

]
, (2)

and ΣDW is the Debye-Waller term

ΣDW
nk (T ) = −1

2

∑
n′qλ

Λqλ
nn′k

N

[2Nqλ(T ) + 1

εnk − εn′k

]
. (3)

Here Nqλ and fn′k-q represent the Bose-Einstein and Fermi-Dirac distribution functions, while
N is the number of q points in the Brillouin zone. This last q-mesh is taken randomly to better
map out the phonon transferred momentum [27]. We include 400 electronic bands and 240
random q-points (equivalent to a 10×14×5 grid) for the phonon momentum to evaluate Eq. (2)
and Eq. (3). Therefore, the electron-phonon scattering rates are computed by:

ImΣe−ph
nk = Im[ΣFan

nk (εnk, T ) + ΣDW
nk (T )], (4)

The electron-electron scattering rates are computed within the one-shot GW approximation.
Thus, the computation of the imaginary part of the GW self-energy, ImΣe−e

nk , requires an
10×14×5 q-point grid together with a Kinetic energy cutoff of 6 Ry and 40 empty bands for the
dielectric screening. Finally, the total relaxation times are obtained as

τnk =
h̄

2
[ImΣe−ph

nk + ImΣe−e
nk ]−1. (5)

Both the electron-phonon and electron-electron rates were computed using the the Yambo code
[28].

3. Results
Figure 2-(a) depicts the imaginary parts of the self-energy corresponding to the electron-electron
(e-e) and electron-phonon (e-ph) contribution within the energy range from -4.5 to 4.5 eV. For
energies around the conduction band maximum (CBM) the e-ph linewidths for holes are one
order of magnitude greater that the e-e ones. This effect is clearly different to what is observed
in Silicon, in which for the same energy range, the e-ph rates are up to three orders of magnitude
greater than the e-e linewidths [17]. It should be notice that the e-e linewidths in the range
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Figure 2. (a)imaginary part of the self-energy for both the electron-electron (blue dots) and
electron-phonon (red dots) contributions. The solid line represents the denssity of states (DOS).
(b) Total relaxation times computed though eq. (5). The shaded area indicaes the band gap of
BP.

-2.0 to 2.0 eV fit very well the parabolic trend of the Keldish formula Γ = α(E − Eth)2, where
Eth is a energy threshold. In addition, as expected, the e-ph linewidths follow a similar trend
with the density of states (DOS), since the latter represent the available phase-space of the e-ph
scattering. Also, notice the strong k dependence of the e-ph linewidths, specially for electrons,
which is reflected by the broad range of values at a fixed energy.

For the sake of completeness, in Figure 2-(b) we compute the total relaxation times by means
of Eq. (5). Near the band edges, we found hot carrier relaxation times between 80-800 fs.
However, 500 meV away from the band edges, faster relaxation times are observed which cover
up from 5 to 80 fs. For electrons and considering the upper limit of the infrared sprectrum,
E = 1.55eV , the relaxation rates span from 4 to 12 fs. These range of values is consistent with
the experimental measurements of carrier relaxation times at photon energies of 1.5 eV [20, 21].
The results obove clearly show the ultrafast carrier relaxation in BP for the near-infrared and
visible spectrum with ultrafast values as high few femtoseconds.

4. Conclusions
Using the many-body ab initio calculations, we have provided a theoretical description of hot
carriers in BP. Our Methodology, allows the atomistic computation of the electron-phonon and
electron-electron scattering rates without the need of fitting parameters. Our results suggest
that for the near-infrared and visible spectrum [1.5 to 3.5 eV], the carriers in BP follow an
ultrafast dynamics with relaxation times of the order of few to tens of femtoseconds while for
the far-infrared range, hundreds of femtoseconds can be reached.
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