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ABSTRACT 
International Journal of Exercise Science 14(2): 1166-1177, 2021. Indirect calorimetry (IC) is considered 
the gold standard for assessing resting metabolic rate (RMR). However, many people do not have access to IC 
devices and use prediction equations for RMR estimation. Equations using fat free mass (FFM) as a predictor have 
been developed to estimate RMR, as a strong relationship exists between FFM and RMR. One such equation is the 
Nelson equation which is used by the BodPod (BP). Yet, there is limited evidence whether the Nelson equation is 
superior to other common equations to predict RMR. To examine the agreement between predicted RMR from 
common RMR equations and the BP, and RMR measured via IC. Data from 48 healthy volunteers who completed 
both the BP and IC were collected. Agreement between RMR measured by BP, common regression equations, and 
indirect caloriometry was evaluated using repeated measures ANOVA, Bland-Altman analysis and root mean 
square error (RMSE). Predicted RMR values from common equations and BP were significantly different from IC 
with the exception of the World Health Organization (WHO) equation. Large limits of agreement and RMSE values 
demonstrate a large amount of error at the individual level. Despite the use of FFM, the Nelson equation does not 
appear to be superior to other common RMR equations. Although the WHO equation presented the best option 
within our sample, all equations performed poorly at the individual level. Clinicians should be aware that 
prediction equations may significantly under- or overestimate RMR compared to IC and when an accurate value 
of RMR is required, IC is recommended. 
 
KEY WORDS: Resting metabolic rate, indirect calorimetry, body composition, fat-free mass, 
prediction equation 
 
INTRODUCTION 
 
Resting metabolic rate (RMR) is the measure of energy required for the body to sustain essential 
physiological processes while in a rested state and is generally within ± 10% of basal metabolic 
rate (26). Used in clinical and research settings, RMR is a valuable tool to estimate caloric needs, 
as well as to determine the effectiveness of nutritional interventions (1, 11, 12, 19). Accurate 
determination of energy needs is essential for nutritional assessment and clinical dietetics (11, 
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37), however, many factors influence RMR. These include age (21), gender (3), and body mass 
and composition (21). Currently, multiple approaches are used to measure RMR, with accuracy, 
reliability, complexity, and cost varying greatly across instruments (26).   
 
In practice, a trade-off is often sought between accuracy, time, feasibility, and convenience in 
metabolic measurements (15). A convenient and inexpensive alternative to calorimetry to 
estimate RMR is the use of prediction equations. Proposed equations use demographic measures 
such as mass, height, age, and sex to predict RMR as these are all easily obtained. The most 
common examples include the Harris-Benedict (22), Mifflin-St Jeor (29), and World Health 
Organization (WHO) (24) equations. Despite their widespread use, low levels of agreement 
between predicted and measured (via indirect calorimetry) RMR has brought their validity into 
question (18, 20). Equations using fat free mass (FFM) as a predictor have been theorized as more 
accurate as prior studies have shown FFM to explain 53% to 88% of variance in RMR (14, 31). 
 
More recently, technologies such as the BodPod (COSMED, Concord, CA) have provided a 
means for estimating RMR in addition to its primary purpose of estimating body fat percentage 
using a prediction equation utilizing FFM (31). Despite the inclusion of FFM, equations 
employing it as a predictor variable have fared no better compared to those using only 
demographic predictors in comparison studies (18). Results of multiple studies have showed 
that equations based on weight, sex, and age (Harris-Benedict, Mifflin-St Jeor, and WHO) have 
had better agreement with RMR measured via indirect calorimetry (IC) than those based on 
FFM (18, 19, 33, 38). These findings are unexpected as FFM has been reported to contribute 
approximately 13 kCal/kg/day to RMR (7). However, a limitation of these studies was their 
analysis was conducted using a cohort of both males and females and the sex-specific accuracy 
was not determined (18, 19). As males and females have significant differences in FFM and fat 
mass (FM) (23), these equations may perform better in sex-specific samples, rather than a mixed 
cohort.  
 
While the BodPod is regarded as a valid method to assess body composition for various 
populations, its accuracy to estimate RMR via estimated FFM in a diverse sample of healthy 
adults requires further study (17). For convenience reasons many practitioners may default to 
using the RMR estimates provided by the BodPod and not consider obtaining an estimate of 
RMR using a different prediction equation. Therefore, the purpose of this study was to examine 
the agreement between predicted RMR from equations using demographic measures (Harris-
Benedict, Mifflin St-Jeor, WHO) and the BodPod (via the Nelson equation) with measured RMR 
using indirect calorimetry (IC). Secondly, we assessed the sex-specific accuracy of these 
equations as previous literature is limited in regard to the accuracy of RMR prediction equations 
by sex. 
 
METHODS 
 
Participants 
A cross-sectional design was used to collect data from a convenience sample of 50 individuals 
who had participated in both a BodPod (COSMED, Concord, CA, USA) and indirect calorimetry 
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(TrueOne2400, Parvo Medics, Salt Lake City, UT, USA) assessment at a sports performance 
clinic. The individuals completed the assessments for their own individual health and fitness 
reasons; however, we obtained permission to use the deidentified data for research purposes. 
To be eligible for the study, participants were required to be healthy, between the ages of 18 and 
80, and free of any metabolic syndrome or condition that would significantly alter their 
metabolism. For the purposes of our assessments provided at the clinic, healthy is defined as 1) 
asymptomatic of cardiovascular, metabolic or renal disease, or 2) cleared for exercise and testing 
by their physician. Each test was performed between 8:00 and 9:00 A.M. with the participants 
rested and fasted for at least twelve hours. The BodPod and TrueOne 2400 metabolic cart were 
calibrated to manufacturer’s specifications at least 30 minutes prior to testing. All experimental 
procedures were approved by the institutional review board and subjects signed an informed 
consent prior to participation. This research was carried out fully in accordance to the ethical 
standards of the International Journal of Exercise Science (30). 
 
Protocol 
Upon arrival, participants performed a body composition analysis using the BodPod. All 
participants wore tight compression shorts (and a sports bra if female) or a swimsuit. All jewelry 
was removed, and a swim cap was placed upon participants’ heads. Height and mass were 
measured using a stadiometer and the BodPod calibrated scale, respectively. Participants then 
entered the BodPod and were instructed to sit still, breathe normally, and relax. Body density 
and volume were measured twice, with participants sitting motionless for approximately 50 
seconds each test. If the second test was inconsistent (greater than 150 mL or 0.2 % difference in 
raw body volume between tests) with the first, a third test was conducted. All BodPod 
assessments used for this study had a minimum of two consistent tests. Thoracic gas volume 
(VTG) was predicted for all participants and has previously been shown to be a reliable 
alternative to calculate body volume compared to direct measurement (16, 40). Body density 
was calculated from participants’ mass and volume using the Siri equation (35). Measured FFM 
and FM were used to calculate estimated RMR using the Nelson equation [25.8 (FFM) + 4.04 
(FM)] (31).  
 
After completing the BodPod test, participants rested in a supine position for 20 minutes before 
RMR was measured using IC. The canopy was placed over the participants’ heads, chest, and 
torso to limit gas escape. Participants were instructed to lay still, relax, but not to fall asleep 
during testing. Each test lasted approximately 30-45 minutes. Data from the last 15 minutes of 
testing was used for analysis. Gas analysis of the canopy hood and mixing chamber provided 
VO2 and VCO2 values for the modified Weir equation (RMR = [3.941 * VO2] + [0.85 * 1.106 * 
VO2]) to calculate RMR and respiratory exchange ration (RER) (39).  
 
Resting metabolic rate was calculated using participant demographics (age, height, and weight) 
and FM and FFM taken from the BodPod. The equations used to estimate RMR are described in 
Table 1. These equations were selected as they showed the best agreement with measured RMR 
using indirect calorimetry in prior studies (18, 32). 
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Table 1. Summary of RMR prediction equations analyzed. 

Method Year 
Developed Sample Equation 

Harris-
Benedict 1919 

n = 239 (136 male, 103 
female); mean age: males 27 
y, females 32 y, mean body 
mass index for males 21.4, 

females 24.4 

Male: 
RMR = 66.473 + (13.7516*W) + (5.0033*H) - 

(6.7550*A) 
Female: 

RMR = 655.0955 + (9.5634*W) + (1.8496*H) - 
(4.6756*A) 

Mifflin-St 
Jeor 1990 

n = 498 (251 male, 247 
female), 264 normal weight, 

234 obese 

RMR = (9.99*W) + (6.25*H)-(4.92*A) + (166*sex 
[males, 1; females,0]) - 161 

WHO 1981 
Based on data > 114 studies 

and 7,000 subjects, ~ 33% 
female 

Age: 
18 to 30 

years 
 

30 to 60 
years 

 
 

>60 years 

Sex: 
Male 

Female 
Male 

Female 
Male 

Female 

RMR: 
0.063*W + 2.896 
0.062*W + 2.036 
0.048*W + 3.653 
0.034*W + 3.538 
0.049*W + 2.450 
0.038*W + 2.755 

Nelson 1992 
n = 212 (86 male, 126 female); 
62% obese (males > 20% body 

fat, females > 30%) 
RMR = 25.8*FFM + 4.04*FM 

Abbreviations: A, age; FFM, fat-free mass; FM, fat mass; H, height; RMR, resting metabolic rate; W, body weight.  
 
Statistical Analysis 
All statistical analyses were performed using R (R Core Team, Vienna, Austria) with alpha level 
set a priori at 0.05 (36). Data were normally distributed according to the Shaprio-Wilk’s test (p < 
0.05), and skewness and kurtosis were within normal values. Outliers were found using Tukey’s 
method (either below or above 1.5 times the interquartile range) and removed. Descriptive 
statistics were calculated for age, height, mass, BMI, body fat percentage, FFM, FM, and RMR. 
Multiple repeated measures ANOVA were performed to determine if differences existed 
between all RMR measures (IC, Nelson, Harris-Benedict, Mifflin-St Jeor, WHO) across all 
participants, as well as split by sex. Where data violated the assumption of sphericity, 
Greenhouse-Geisser adjustment was used. Where results were significant, pairwise 
comparisons with Bonferroni corrections were conducted. To assess agreement, Bland-Altman 
plots were constructed between RMR measured via indirect calorimetry and RMR estimated 
from each prediction equation to detect systematic bias and error (6). Bias (measured RMR 
minus predicted) and limits of agreements (spread of the difference) were calculated to 
determine estimated limits of agreement (5). Proportional bias was assessed by correlation 
between the averages and the differences in the results obtained with each RMR measure. 
Furthermore, typical measurement error (standard deviation of residuals) was assessed with 
root mean square error (RMSE). Due to the utilization of a convenience sample a post-hoc power 
analysis for a medium effect at the 0.80 recommended power level (9) was conducted and 
suggested a minimum sample size of n = 40 was needed. 
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RESULTS 
 
After removal of outliers, data from 48 participants were analyzed. Descriptive statistics of 
participants’ demographics are presented in Table 2.  
 
Table 2. Mean (SD) for demographic and body composition information for all participants and across sex. 

 All (n = 48) Female (n = 26) Male (n = 22) 
Age (years) 41.5 (12.1) 39.1 (11.0) 44.2 (13.0) 
Height (meters) 1.7 (0.1) 1.6 (0.1) 1.8 (0.1) 
Mass (kg) 79.6 (14.4) 74.2 (13.9) 85.8 (12.6) 
BMI (kg/m2) 27.5 (4.6) 27.5 (5.0) 27.4 (4.2) 
Body Fat (%) 29.9 (11.8) 35.7 (10.7) 23.1 (9.3) 
FFM (kg) 55.1 (11.2) 46.6 (5.8) 65.1 (6.9) 
FM (kg) 24.4 (11.6) 27.6 (11.9) 20.7 (10.3) 

Abbreviations: kg = kilograms; m2 = meters squared. 
 
The mean and range for RMR as measured via the metabolic cart was 1814 kcal and 816 kcal for 
males and 1472 kcal and 558 kcal for females. A significant difference was found between RMR 
values across measurement methods for all participants F(2.19, 107.18) = 100.88, p < 0.001, as well as 
for females F(2.13, 53.28) = 98.05 and males F(1.95, 44.84) = 104.62. For all participants and female 
participants only, pairwise comparisons showed that all prediction equations were significantly 
different from RMR measured via IC, with the exception of the WHO equation. For all 
conditions, all but the WHO equation significantly underpredicted RMR as compared to RMR 
measured via IC . Bland-Altman analysis revealed that a large amount of bias was present in all 
equations aside from the WHO equation (Table 3).  
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Table 3. Mean (SD) for resting metabolic rate (RMR), and mean bias, lower (LLOA) and upper limits of agreement 
(ULOA, and root mean square error (RMSE). 

Measure Sample RMR Bias LLOA ULOA RMSE 

± 10% 
RMR 

measured 
with IC# 

Indirect 
Calorimetry  All 1623 (242)      

 Female 1472 (155)      

 Male 1814 (188)      

Harris-
Benedict All 1225* (135) 404 49 759 442 4 

 Female 1185* (130) 287 85 489 305 8 

 Male 1272* (128) 542 240 845 563 0 

Mifflin-St Jeor All 1494* (169) 135 -155 425 199 56 

 Female 1414* (151) 58 -143 258 116 81 

 Male 1587* (140) 227 -51 506 266 27 

WHO All 1626 (244) 3 -276 282 141 75 

 Female 1457 (119) 15 -222 252 120 77 

 Male 1826 (198) -12 -337 313 162 73 

Nelson All 1521* (283) 108 -109 325 154 67 

 Female 1315* (162) 157 -8 323 178 42 

 Male 1764 (183) 50 -169 270 120 95 
1. Asterisks indicate significant differences between measured RMR via indirect caloriometry and RMR predicted 
by equations. 2. *Indicates p < 0.05 3. #Values are percentage of subjects within ± 10% of RMR measured with 
indirect calorimetry.  
 
Significant proportional bias was seen in all equations (Figure 1). The Harris-Benedict and 
Mifflin-St. Jeor equations increasingly overpredicted RMR for all participants as RMR values 
increased as seen by the positive slopes of the trend lines in Figure 1. Conversely, the lower the 
RMR value the more the Nelson equation overpredicted RMR in all participants as indicated by 
the negative slope of the trend line in Figure 1. In comparison, the WHO equation showed 
minimal proportional bias with a slope that was approximately 0 (flat) across the range of RMR 
values. RMSE ranged from 176.48 kcal in the Nelson equation to 438.19 in the Harris-Benedict 
equation (Table 3). The percentage of participants with accurate prediction of RMR ( ± 10% of 
IC) ranged from 0% for males using Harris-Benedict, to 95% for males using the Nelson 
equation, with the Harris-Benedict equation performing by far the most poorly for both sexes.  
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Figure 1. Bland-Altman plots for prediction equations using (A) all participants, (B) females, (C) males. 
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The vertical axes represent the difference in kCal measured using the TrueOne 2400 metabolic 
cart and kCal predicted by various equations. The horizontal axes represent the mathematical 
average for each participants’ kCal measurements. The middle-dashed line represents bias, 
while the upper and lower dashed lines represents the upper (+ 2SD) and lower (- 2SD) limits 
of agreement. The dotted lines surrounding each dashed line represents the confidence intervals 
of the bias (middle), upper, and lower levels of agreement. 
 
When split by sex, large limits of agreement were seen for both sexes. In both male and female 
participants, the Harris-Benedict and Mifflin St. Jeor equations were significantly different from 
indirect calorimetry, while the WHO was not. The Nelson equation was significantly different 
from indirect calorimetry in females but not in males. Males presented lower RMSE compared 
to females in the Nelson equation, while in all other equations RMSE was lower for females. 
Apart from the Nelson equation, females presented lower bias compared to males in all 
equations (Table 3).  
 
DISCUSSION  
 
The purpose of this study was to compare the level of agreement between measured RMR using 
IC, estimated RMR from three commonly used prediction equations using demographic 
predictors (i.e. gender, age, height and weight) and RMR estimated from the BodPod (via the 
Nelson equation) using FFM as a predictor. Significant differences between measured and 
predicted RMR were observed in all but the WHO equation with Bland-Altman analysis 
revealing a large degree of bias in each of the equations (again, with the exception of WHO). 
Moreover, RMSE values showed large residuals in all equations, while the percentage of 
participants with accurate predictions (± 10%) ranged from 4% to 75% with only the WHO 
equation predicting RMR accurately in over 70% of all participants. Lastly, the Nelson equation 
was the only equation which displayed better agreement to IC in males, while all other equations 
showed lower bias for females.  
 
We demonstrated that at the group level the WHO equation, based on weight, sex, and age and 
stratified by both age and sex, had the greatest accuracy to predict RMR. However, large limits 
of agreement and high RMSE values revealed that all equations performed poorly on the 
individual level. For example, the average range between limits of agreements of all equations 
of 512 kcal found in this study makes it difficult to accurately determine caloric intake for weight 
loss if potential measurement error is larger than the 500-kcal deficit recommended by the NIH 
for incremental weight loss (34). Additionally, large proportional bias seen in the equations 
demonstrate that overprediction either increased (when using the Harris-Benedict and Mifflin-
St. Jeor equations) or decreased (when using the Nelson equation) as measured RMR increased. 
These results support those of a recent study that compared the agreement of multiple 
prediction equations (Harris-Benedict (22), WHO (24), Mifflin-St Jeor (29), Nelson (31), Wang 
(38), and Sabounchi (33) with measured RMR in a sample of healthy individuals, finding that all 
studied equations also performed poorly at the individual level (18). For example, the above 
listed equations accurately predicted RMR (±10% of value measured with IC) between only 
76.6% (Harris-Benedict) and 53.3% (Nelson) of participants (18). Therefore, although based on 
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our data we would purport that the WHO equation best predicts RMR in a diverse sample, we 
agree with prior research in that predicted RMR should be used with caution when determining 
the caloric needs of individuals (18, 19). 
 
Despite the relationship between FFM and RMR (14, 31), the Nelson equation used by the 
BodPod, did not perform better than the other equations investigated. Although the Nelson 
equation has been shown to be the most accurate when compared to other equations using FFM 
as a predictor (32), our results showed it was not as accurate as the WHO equation, greatly 
overpredicting RMR in mixed sex samples. These results have been replicated using FFM 
obtained from dual x-ray absorptiometry, wherein the Nelson equation produced poorer 
agreement with measured RMR compared to the Harris-Benedict, Mifflin-St. Jeor and WHO 
equations (18). Consistent with previous findings, we observed the Nelson equation to 
overpredict RMR in female participants (27). Thus while FFM and RMR have a strong 
relationship (14, 31) other factors (i.e. sex, body mass, age) influencing RMR appear to be needed 
in order to accurately predict RMR. Physiological differences likely play a role in the sex-specific 
accuracy of equations between those including FFM and those which do not. Males typically 
carry higher levels of muscle mass, which is included in FFM, while females have higher 
amounts of FM (2, 25). Another issue surrounding the sex-specific accuracy of equations to 
predict RMR in females is the inability of equations to account for phase of the menstrual cycle 
which has been shown to have a small effect on RMR (4). More generally, RMR has been shown 
to have a high degree of inter-individual variability which is influenced by intrinsic (i.e. 
hormones, genotype) and extrinsic factors (i.e. dietary intake, temperature) not accounted for in 
prediction equations (8). Given the limited number of predictors in the RMR prediction 
equations used in our study combined with the fact that none of the equations used both 
demographic and FFM predictors the overall accuracy we observed likely reflects these 
shortcomings of the equations. 
 
This brings into question the utility of prediction equations based on FFM given the time, 
expertise, and expense needed to acquire accurate FFM values (i.e. dual x-ray absorptiometry, 
air-displacement plethysmography, or hydrodensitometry). Prior authors have demonstrated 
that weight provides a similar predictive ability for RMR as FFM can and that age and the 
inclusion of a greater constant term can account for a large portion of the FFM contribution to 
RMR (33). Our results support these findings as equations using FFM were no more accurate 
than those using age and weight. It may be argued that errors in the estimation of FFM by the 
BodPod induce errors in the predicted RMR; however, a number of studies have reported the 
accuracy of body composition measurements with the Bodpod to be valid and reliable in a 
variety of populations (17). Therefore based on our findings, estimated RMR via the Nelson 
equation used during BodPod analysis is no more accurate than prediction equations using 
demographic measures only and suffers from the same lack of predictive accuracy. 
Development of new RMR FFM-based prediction equations is an area of future work that we 
recommend at this time. More research is needed to confirm the underprediction of RMR with 
prediction equations using FFM in a diverse sample. Specifically, future research should 
investigate whether the worse predictive accuracy of the Nelson equation for females was truly 
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a sex-related effect or was it due to body fatness as females are known to have greater bodyfat 
than males. 
 
The strength of this study is the use of the BodPod to accurately calculate FFM and FM, and 
therefore, our ability to compare traditional prediction equations with those using FFM to RMR 
measured with the validated TrueOne 2400 metabolic cart (13). Although our sample was larger 
than those in some previous studies comparing predicted RMR via various equations to RMR 
measured via IC (18, 27), we did not believe it to be large enough to further investigate factors 
other than gender. Future research should attempt to obtain larger samples to analyze by further 
subgroups such as young vs old, overweight-obese vs normal-weight etc. Another potential 
limitation of our study was using predicted as opposed to measured lung volume during the 
body composition testing. While some literature (28) has reported a significant difference 
between the use of measured versus predicted lung volume values more recent literature has 
found no difference (10). 
 
Individuals and practitioners should be aware that prediction equations may significantly under 
or overestimate RMR compared to IC. The inclusion of FFM through technology such as the 
BodPod does not appear necessary to predict RMR and does not improve predictive capacity 
beyond demographic measures. Specifically for females we found this to be the case. Based on 
our data, RMR estimations from prediction equations should be used with caution. More 
specifically, when an accurate RMR value is desired or necessitated per the specific clinical 
scenario, IC should be the method of choice 
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