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Abstract: We report postmortem cardio-pulmonary findings including detection of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) in formalin-fixed paraffin embedded tissue in
12 patients with COVID-19. The 5 women and 7 men (median age: 73 years; range 35–96) died
6–38 days after onset of symptoms (median: 14.5 days). Eight patients received mechanical ven-
tilation. Ten patients showed diffuse alveolar damage (DAD), 7 as exudative and 3 as prolifera-
tive/organizing DAD. One case presented as acute fibrinous and organizing pneumonia. Seven
patients (58%) had acute bronchopneumonia, 1/7 without associated DAD and 1/7 with aspergillosis
and necrotic bronchitis. Microthrombi were present in 5 patients, only in exudative DAD. Reverse
transcriptase quantitative PCR detected high virus amounts in 6 patients (50%) with exudative
DAD and symptom-duration ≤14 days, supported by immunohistochemistry and in-situ RNA
hybridization (RNAscope). The 6 patients with low viral copy levels were symptomatic for ≥15 days,
comprising all cases with organizing DAD, the patient without DAD and one exudative DAD. We
show the high prevalence of DAD as a reaction pattern in COVID-19, the high number of overlying
acute bronchopneumonia, and high-level pulmonary virus detection limited to patients who died
≤2 weeks after onset of symptoms, correlating with exudative phase of DAD.

Keywords: SARS-CoV-2; COVID-19; diffuse alveolar damage; immunohistochemistry; RNAscope;
reverse transcriptase quantitative PCR; autopsy; post-mortem diagnostics

1. Introduction

During the last one and a half years, Coronavirus disease 2019 (COVID-19) has
emerged as a worldwide pandemic, caused by the novel severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Although many patients present with only mild symptoms
such as cough, chills and fatigue, and some are asymptomatic, around 20% develop severe
shortness of breath leading to respiratory failure [1]. The disease mainly affects the lungs,
most often leading to death due to acute respiratory distress syndrome (ARDS).
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Taken into account the high number of deaths resulting from the disease worldwide
(>3,404,000 until 19 May 2021) [2], documentation of the histological lesions is still relatively
limited, with a disproportionately low number of autopsy studies. Diffuse alveolar damage
(DAD), the histomorphological correlate of ARDS, has been most frequently reported, as
have been thromboembolic events [3–13].

In this study, we document our findings in consecutive autopsies of patients who
died of COVID-19 during the first wave, with focus on pulmonary and cardio-vascular
pathology including viral detection in formalin-fixed paraffin embedded (FFPE) tissue. We
show the high prevalence of DAD as a reaction pattern in COVID-19, the high number of
overlying acute bronchopneumonia, and high-level pulmonary virus detection limited to
patients who died ≤2 weeks after onset of symptoms, correlating with exudative phases
of DAD.

2. Materials and Methods
2.1. Patients

Our cohort comprised consecutive postmortem examinations of patients who died
with COVID-19 disease, performed at the Institute of Pathology of Lausanne University
Hospital (CHUV) from the beginning of the pandemic in March 2020 to 31 May 2020.
During this period, 77 patients died with COVID-19 at the Lausanne University Hospital
(CHUV), of which 12 (16%) were autopsied. Two additional patients autopsied in our
study died at external hospitals. In Switzerland, medical autopsies are performed only on
clinician’s request and after consent from the family of the deceased. Two of 14 autopsies
had to be excluded from our study due to the patients’ refusal to reuse of biological
material and clinical data for research purposes. All patients had positive PCR-tests
from nasal swabs for SARS-CoV-2 and a clinical diagnosis of COVID-19. Comprehensive
information on the onset of symptoms, laboratory tests, treatment and co-morbidities was
extracted from clinical files. The control cohort for multiplex imaging comprised patients
autopsied before the beginning of the COVID-19 pandemic (2010-January 2019), with
matched histomorphological lung pathology findings. This study has been performed
according to the Helsinki declaration and following the rules of the local institutional review
committee (Ethical Committee of the Canton de Vaud, CER-VD, Switzerland, protocol
number 2020-01257, 4 July 2020).

2.2. Postmortem Examination

The mean and median time intervals between death and autopsy were 27 h and 14 h,
respectively (range: 6.5–70 h). All postmortem examinations were complete body autopsies
(including brain examination in 3 cases). The autopsies were conducted in accordance with
in-house guidelines for handling infectious cases, rapidly additionally adapted. In short,
autopsies were performed in a dedicated COVID-19 autopsy room with defined entry- and
exit-areas, and a minimal number of staff involved. All personnel were equipped with
FFP3-masks, face shields, disposable gowns, dedicated shoes with disposable shoes covers
and multiple layers of disposable gloves.

The tubular digestive tract was only dissected if the autopsy was performed <24 h after
death or in case of specific clinical enquiries. Thoracic organs and trachea were eviscerated
and separated after external examination. Organ weight was assessed fresh. Lungs were
inflated with buffered 4% formalin prior to immersion in large volumes of formalin at room
temperature together with other organs. All organs were fixed in buffered formalin for at
least 72 h before further dissection. The lungs were sliced into 1 cm thick sagittal sections.
The heart was cut into transverse slices after in situ dissection of the coronary arteries.
We designed an ad hoc protocol for extensive histological sampling, including standard
sampling of 7 blocks from different areas of the heart and coronary arteries, 2 blocks from
the trachea (distal and proximal), 14 blocks from the right lung and 10 blocks from the
left lung.
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Four to five µm thick sections of routinely processed FFPE tissue blocks were stained
with standard hematoxylin and eosin (H&E) and additional stains according to standard
protocols. In each case, selected lung samples were stained with Elastica van Gieson,
trichrome, periodic acid Schiff (PAS) and Grocott’s methenamine silver stain. Representa-
tive heart sections were stained with PAS, trichrome and Congo Red. Lung tissue slides
(mean blocks/case: 23, range: 14–43) and heart tissue slides (mean blocks/case: 7, range:
4–16) were reviewed by at least three pathologists (SB, LDL, DM).

2.3. Quantitative RT-qPCR for SARS-CoV-2 Detection in FFPE Tissues

Ten µm thick sections from lung and heart FFPE tissue blocks were processed for
automated total RNA extraction on the QIAcube instrument (Qiagen, Hilden, Germany)
using RNeasy FFPE kit (Qiagen) following manufacturer’s instructions with slight mod-
ification (incubation with proteinase K at 56 ◦C overnight). RNA was eluted with 30 µL
of RNase-free water and quantified using Qubit High sensitivity RNA kit (ThermoFisher
Scientific, Waltham, MA, USA).

For SARS-CoV-2 quantification, retro-transcription and real-time PCR (RT-qPCR) were
performed on a Cobas z 480 instrument (Roche Diagnostics, Basel, Swizerland), starting
from 50 ng (or 250 ng where specified) of total RNA in 20 µL reaction volume, using
one-step RT-qPCR LightCycler® Multiplex RNA Virus Master Mix (Roche Diagnostics)
following manufacturer’s instructions. The primers used were LightMix® Modular SARS
and Wuhan CoV E-gene, LightMix® Modular Wuhan CoV RdRp-gene and LightMix®

Modular MSTN extraction control (internal control for RNA and RT-qPCR quality) (all
from Roche Diagnostics). Quantification cycle (Cq) values for E gene, RdRp and MSTN
genes were determined with LightCycler® 480 Software release 1.5.1.62 by selecting the
second derivative maximum method [14]. For E gene and RdRp copy number evaluation,
a standard curve was included in each run using a pool of RNAs from pre-pandemic
SARS-CoV-2-negative autopsy samples spiked with known concentrations of E gene or
RdRp positive controls (provided with the primer kits, Roche Diagnostics). Each sample
was analysed in duplicate and a no template control was included in each run. The limit of
detection (LoD) for E gene and RdRp assays was defined as the input copy number with a
95% probability of a positive PCR result [15]. LoD was determined by probit regression
analysis with glm function (package stats v.4.1.0 included in R) using a probit model and
a binomial distribution to create the model and ggplot2 (v.3.3.3) to generate the plots by
analyzing each of 28 replicates of the respective positive control at 4-fold serial dilutions
corresponding to 1000, 250, 62.5, 15.6, 3.9 and 0 copies per reaction.

2.4. Immunohistochemical Staining

Immunohistochemical staining (IHC) was performed using the Ventana Discovery
Ultra Autostainer (Roche Ventana, Tucson, Arizona, USA) following the manufacturer’s in-
structions. Four µm FFPE sections were initially heated up for 4 minutes at 72 ◦C and placed
in EZ prep solution (#950-102, Roche Ventana) for deparaffinization. Antigen retrieval
was performed at 95 ◦C in Cell Conditioning Solution 1 (CC1, #950-124, Roche Ventana)
for 56 minutes. A polyclonal anti-SARS-CoV spike protein antibody (#40150-T62-COV2;
Sino Biological, Beijing, China) and a mouse monoclonal anti-SARS-CoV 2 nucleocapsid
protein (NP) antibody (#40143-MM05, Sino Biological) were applied at a dilution of 1/250
and 1/100, respectively, for 56 minutes at 36 ◦C for cross detection of the respective SARS-
CoV-2 proteins, followed by incubation with the DISCOVERY OmniMap anti-Rabbit HRP
kit (#760-4310, Roche Ventana) or with the DISCOVERY OmniMap anti-Mouse HRP kit
(#760-4310, Roche Ventana) for 16 minutes. The DISCOVERY ChromoMap DAB detection
kit (#760-159, Roche Ventana) was used as detection system. Tissue counterstaining was
performed with Hematoxylin II solution (#790-2208, Roche Ventana). Evaluation was
performed independently by two pathologists (SB and LDL) as positive or negative.
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2.5. In Situ Detection of SARS-CoV-2 mRNA in FFPE Tissues

FFPE tissue blocks were cut into 4 µm sections. Actively transcribed SARS-CoV-2 was
detected by RNAScope technology (ACDBio, Newark, CA, USA) using a specific probe for
the SARS-CoV-2 S protein (2.5VS Probe-V-nCoV2019-S, Ref 848569, ACDBio). 2.5VS positive
control probes Hs-UBC (housekeeping gene positive probe, Ref 312029, ACDBio) as well as
2.5VS negative control probes dapB (nonspecific bacterial gene probe, Ref 312039, ACDBio)
were run in every assay to check the tissue and technical quality after processing (Ventana
Discovery Ultra Autostainer, Roche Ventana). RNAscope probes were incubated for 4 min.
The RNAscope VS Universal HRP Reagent kit (Ref 323200, ACDBio) was used containing
all required specific materials for standard target retrieval (CC1 24 min, recommended for
lung tissue) and amplification of the targeted mRNA. All the buffers required, Discovery
Wash (10×), Ultra LS, SSC Buffer (10×), Reaction Buffer (10×); Discovery CC1, as well as
the probe and pre-treatment dispensers were purchased from Roche Diagnostics. For the
detection of fluorescence, Discovery Red 610 kit (Ref. 760-245, Roche Diagnostics) was
incubated at RT for 32 min. The tissue sections were then counterstained using Discovery
DQ DAPI (Ref 760-4196, Roche Diagnostics) at room temperature for 12 min, rinsed in
water with soap and mounted using Dako Fluorescent Mounting Medium (Ref S3023,
Dako, Santa Clara, CA, USA). Immunofluorescence images were acquired using the Vectra
Polaris imaging system (Akoya, Marlborough, MA, USA). All images were recorded using
20x magnification and the Phenochart 1.0.12 software (Akoya) was used for analysis of
areas of interest identified on the corresponding H&E section.

2.6. Immunofluorescence Staining

Fluorescent multiplex immunostaining was performed to assess inflammatory infil-
trates and cell components in the lung of the five selected cases and controls. Briefly, the
IHC protocol on the Ventana Discovery Ultra Autostainer (Roche Diagnostics) was used
for sequential immunofluorescence (IF) multiplex staining, using antigen retrieval and
antibody blocking steps, staining with primary antibodies (Tables 1 and 2) and thereafter
incubation with secondary HRP-labeled antibodies, followed by detection with optimized
fluorescent Opal tyramide signal amplification (TSA) dyes (Opal 7-color Automation IHC
kit, from Akoya, Ref. NEL821001KT) and repeated antibody denaturation cycles. Data
acquisition and analysis was performed as previously described [16].

Table 1. Antibodies used for immunofluorescence staining.

Antibody Clone Tissue
Specificity Species Source Dilution

ACE2 CL4035 Membranous Mouse Atlas Antibodies/
AMAB91262 1:1000

CD3 2GV6 Cytoplasmic/
Membranous Rabbit Roche/dispenser Prediluted

CD4 SP35 Membranous Rabbit Roche/dispenser Prediluted
CD8 C8/144B Membranous Mouse DAKO/M7103 1:30
CD68 PG-M1 Cytoplasmic Mouse DAKO/M0876 1:200

PANCK AE1/AE3 Cytoplasmic Mouse DAKO/M3515 1:100
ACE2, angiotensin converting enzyme 2 receptor; CD3, cluster of differentiation 3; CD4, cluster of differentiation
4; CD8, cluster of differentiation 8; CD68, cluster of differentiation 68; PANCK, pan cytokeratin.
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Table 2. Composition of antibodies used in the multiplexed immunofluorescence panels.

Panel Antibodies Opal Fluorophores Dilution

Multiplexed IF Panel 1 CD3 Opal 520 1/400
CD4 Opal 690 1/150
CD8 Opal 620 1/150
CD68 Opal 480 1/700

PANCK Opal 780 1/25
DAPI Spectral DAPI

Multiplexed IF Panel 2 ACE2 Opal 620 1/150
CD3 Opal 520 1/400
CD68 Opal 480 1/700

PANCK Opal 780 1/25
DAPI Spectral DAPI

ACE2, angiotensin converting enzyme 2 receptor; CD3, cluster of differentiation 3; CD4, cluster of differentiation
4; CD8, cluster of differentiation 8; CD68, cluster of differentiation 68; PANCK, pan cytokeratin.

3. Results
3.1. Patient Cohort

The patient cohort was comprised of 5 women and 7 men (median age: 73 years;
range 35–96) who died 6–38 days after onset of symptoms (median: 14.5 days). For this
study, the 12 patients included were ranked according to the duration of symptoms (case
# in Table 3). With the exception of one tetraplegic 35-year-old patient who died of acute
bacterial aspiration pneumonia and did not show DAD in the lung (case #7), all patients
were ≥60 years of age. Eight patients received mechanical ventilation for 6–19 days. All
but two patients (cases #8 and #11) died at the Lausanne University Hospital.

Comorbidities comprised most frequently cardiovascular diseases including hyperten-
sion (n = 9/12), diabetes mellitus (n = 4/12), chronic obstructive pulmonary disease (COPD,
n = 4/12) and chronic renal failure (n = 2/12). Four patients had an underlying malig-
nancy (follicular lymphoma, prostate cancer and lung cancer), three of which were autopsy
findings (prostate and lung cancer). Secondary pulmonary infections were documented
radiologically in 5/12 patients (cases #4, 5, 6, 7 and 8), and suspected clinically in 1 patient
(case #3). Six patients received antiviral therapy, 8/12 were anticoagulated, and none of
the patients received corticosteroids. Detailed clinical data including co-morbidities and
medication are provided as suppl. Table S1.

The control cohort for multiplex imaging—performed on lung tissue of 5 patients from
the COVID-19 cohort—comprised lung tissue from 5 patients autopsied before the begin-
ning of the COVID-19 pandemic, 2 women and 3 men (median age: 58 years; range 31–71).
Two patients died from ARDS due to infectious exacerbations of chronic interstitial lung
disease (idiopathic pulmonary fibrosis), histologically with DAD in the proliferative phase.
One patient died of pneumonia due to H1N1 influenza, with DAD in the proliferative
phase. Two additional patients showed DAD in the exudative phase, one with beginning
organization, without specific infectious agents identified intra vitam nor at autopsy.

3.2. Histopathological Findings
3.2.1. Lungs

The lung weights were significantly elevated, with a mean and median combined
weight of 1815 g and 1865 g, respectively (range: 960–2560 g; normal: 700–1000 g). Eleven
patients showed DAD in different stages of evolution (Table 3, suppl. Tables S2 and S3,
Figure 1). One was in early exudative phase, with congestion, edema and hyaline mem-
brane formation. Six (50%) were in late exudative phase, with additional thickening of
alveolar septa and interstitial lympho-plasmacytic infiltrates. Four (33%) were character-
ized as proliferative phase/organizing DAD, with intraalveolar fibrosis in continuation
with the septal interstitium, in one patient presenting as acute fibrinous and organizing
pneumonia. The extent of DAD was very patchy and localized, especially in the earlier
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stages of DAD. As “diffuse” in DAD relates to the diffuse involvement of the alveolar sep-
tum, and not to the involvement of the complete lung parenchyma of the lungs, the patchy
involvement was no hindrance to the diagnosis of DAD. Acute bronchopneumonia was
present in six patients (50%), in one case (case #7) without underlying DAD. One patient
(case #11) showed invasive aspergillosis with necrotic bronchitis, meeting the diagnostic
criteria for COVID-19-associated pulmonary aspergillosis (CAPA) [17]. Microthrombi were
present only in exudative DAD in five patients. One patient (case #8) showed peripheral
emboli with associated focal hemorrhagic lung infarction. True necrotizing vasculitis was
absent. Focal interstitial and vascular amyloid deposition compatible with senile amyloido-
sis was present in one patient (case #4), although without detectable cardiac involvement.

3.2.2. Heart

Heart findings were associated with preexisting heart disease. The mean and median
heart weights were 466 g and 420 g, respectively (range: 330–870 g; normal: 300–360 g).
Myocyte hypertrophy was present in 10/12 patients (83%), and 4/12 (33%) patients showed
coronary artery disease with≥50% stenosis. Patchy ischemic interstitial fibrosis was present
in 5/12 cases (42%) and 3/12 patients (25%) had localized scarring, one with heart wall
aneurism. Pacemakers were in place in 3/12 (25%) patients and 1 patient had a mechanical
aortic valve.

Only one patient (case #12) showed focal perivascular amyloid depositions, notably
without associated pulmonary involvement. Basophilic degeneration in a minority of
cardiomyocytes (<10%) was present in all patients. There was no myocarditis or vasculitis
detected despite extensive sampling. All findings are listed in Table 3 and suppl. Table S2.

3.2.3. Other Significant Findings

Autopsy revealed malignant neoplastic disease in three patients. One patient (case #10)
showed a locally advanced pulmonary squamous cell carcinoma with local lymph-node
metastases. Adenocarcinoma of the prostate was detected in two other patients (cases #8
and #11), in one of them (case #8) with a concomitant pancreatic neuroendocrine tumor.
One patient (case #1) had a history of follicular lymphoma diagnosed 2 years ago, in clinical
remission and without residual or recurrent disease in the postmortem examination. All
findings are listed in suppl. Table S2.

Moderate to severe systemic arteriosclerosis was present in 10/12 patients (83%).
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Table 3. Patient cohort including pulmonary, cardio-vascular findings and virus detection in lung and heart tissue obtained during postmortem examination. Patients are ranked according
to duration of symptoms.

Case Gender, Age
(Years)

Duration of
Symptoms

{Mechanical
Ventilation}

(Days)

Time Interval
between

Death and
Autopsy (h)

Lung Findings * Virus Detection (Lung)

Cardiac Findings

Virus Detection (Heart)

Diffuse
Alveolar
Damage
(DAD)

Acute
Broncho-

pneumonia

RT-qPCR (Viral Copy Number
per Reaction) Viral RNA

(RNA
Scope)

IHC §

RT-qPCR (Viral Copy Number
per Reaction)

RdRp
LoD: 20.8c/r

E Gene
LoD: 5.4c/r

RdRp
LoD: 20.8c/r

E Gene
LoD: 5.4c/r

1 F, 72 6 {-} 14.5 exudative
phase - 64,345 482,526 present positive heart 480 g; hypertrophy,

patchy fibrosis <LoD ‡ <LoD ‡

2 F, 72 8 {-} 13 exudative
phase

upper lobe
predominant,
focally with

aspirate

3129 26,161 ND positive

heart 420 g; biventricular
hypertrophy; CAD with

stenosis up to 70%; fibrotic
scar left ventricle (0.7 cm)

<LoD ‡ 48 ‡

3 M, 96 8 {-} 6.5 late exudative
phase

present in all
lobes,

necrotizing
18,858 316,089 present positive

heart 400 g; hypertrophy;
CAD with stenosis up to

30%; patchy fibrosis
<LoD 479

4 M, 86 10 {3} 70

late exuda-
tive/early

proliferative
phase

- 76,722 537,302 present positive

heart 420 g; hypertrophy;
CAD with stenosis up to
50%; low-grade diffuse

interstitial fibrosis

<LoD 50

5 F, 74 11 {5} 70 exudative
phase

present in all
lobes 3669 26,874 ND positive heart 330 g; hypertrophy;

pacemaker in place <LoD ‡ <LoD ‡

6 F, 71 14 {-} 9.5

late exudative
phase and

focally
proliferative

phase

present in all
lobes 5469 230,265 present (high) positive

heart 410 g; status post
myocardial infarction with a
1.5 cm scar (apical posterior

left ventricle)

<LoD 16

7 M, 35 15 {2} 20 -

present in all
lobes,

necrotizing
(clinical/radio-
logical picture:

aspiration
pneumonia)

<LoD ‡ 178 ‡ ND negative heart 360 g <LoD ‡ 135 ‡

8 M, 79 16 {4} 61.5 proliferative
phase - <LoD 69 ND negative

heart 390 g; hypertrophy;
focal fibrosis in one left

papillary muscle
<LoD ‡ <LoD ‡

9 M, 75 17 {5} 20.5 late exudative
phase - <LoD 26 ND negative

heart 870 g; hypertrophy;
signs of chronic ischemia

with patchy fibrosis;
mechanical aortic valve;

pacemaker in place

<LoD ‡ 111 ‡

10 F, 73 21 {14} 12 AFOP

-
(microbiology:

proteus
mirabilis)

<LoD ‡ 11‡ absent negative heart 510 g; hypertrophy;
CAD with stenosis up to 30% NC NC
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Table 3. Cont.

Case Gender, Age
(Years)

Duration of
Symptoms

{Mechanical
Ventilation}

(Days)

Time Interval
between

Death and
Autopsy (h)

Lung Findings * Virus Detection (Lung)

Cardiac Findings

Virus Detection (Heart)

Diffuse
Alveolar
Damage
(DAD)

Acute
Broncho-

pneumonia

RT-qPCR (Viral Copy Number
per Reaction) Viral RNA

(RNA
Scope)

IHC §

RT-qPCR (Viral Copy Number
per Reaction)

RdRp
LoD: 20.8c/r

E Gene
LoD: 5.4c/r

RdRp
LoD: 20.8c/r

E Gene
LoD: 5.4c/r

11 M, 60 18 # {17} 13 proliferative
phase

focal, with
bronchial
ulceration

(aspergillosis)

<LoD ‡ 24 ‡ ND negative heart 470 g; hypertrophy;
CAD with stenosis up to 80% <LoD ‡ <LoD ‡

12 M, 69 38 # {19} 13.5 proliferative
phase

focal
(microbiology:

serratia
marcescens)

<LoD ‡ 49 ‡ ND negative

heart 540 g; hypertrophy;
focal amyloidosis; CAD with
stenosis up to 50% and two
scar regions (2 cm each) and

aneurysm; pacemaker in
place

<LoD ‡ <LoD ‡

# Duration of symptoms unknown, the number of days provided is the duration of hospital treatment. * significant lung findings additionally included a pulmonary squamous cell carcinoma (aT3; aN1, aM0) in
case #10. § both the anti-SARS-CoV spike protein antibody and the nucleocapsid protein antibody showed concordant results. ‡ Samples for which 250 ng of total RNA were used for SARS-CoV-2 detection by
RT-qPCR. AFOP, acute fibrinous and organizing pneumonia; LoD, limit of detection as determined by probit analysis to be 5.4 copies per reaction (c/r) for E gene assay and 20.8 c/r for RdRp assay; ND, not
determined; NC, non conclusive.



Diagnostics 2021, 11, 1357 9 of 18

Diagnostics 2021, 11, x FOR PEER REVIEW 9 of 18 
 

 

  
Figure 1. Lungs showed diffuse alveolar damage in different stages of evolution. (A) Acute exudative phase with extensive hyaline 
membranes formation (arrows), without thickening of alveolar septa (case #1; H&E, ×100). (B) In the patients with exudative phase 
diffuse alveolar damage, SARS-CoV-2 antigen was present in the hyaline membranes (arrows) and scattered cells (inset), as exem-
plified in case #1 using the nucleocapsid protein antibody (×200). (C) In the late exudative phase some septal thickening and focal 
early organization was present apart from extensive hyaline membrane formation (case #6; H&E, ×100). (D) Half of our cohort had 
superimposed (bacterial) acute bronchopneumonia, as exemplified in case #6 (H&E, ×100; inset with higher magnification, high-
lighting densely packed granulocytes). (E) Proliferative phase presented with fibrosis, obliterating alveolar lumina, as highlighted 
in the inset (case #8; H&E, ×100). (F) The density and collagen richness of fibrosis (arrows) increased with longer-standing disease, 
as exemplified in case #12 (H&E, ×100). 

3.3. Detection of SARS-CoV-2 Using RT-qPCR 
3.3.1. Establishing the Methodology  

At the time the autopsies were performed, there was no validated assay available for 
measuring SARS-CoV-2 viral load in FFPE samples by RT-qPCR. We used commercial 
assays from Roche Diagnostics targeting E gene and RdRp, initially developed for evalu-
ating the expression level of these viral genes in fresh samples (e.g., nasal swabs) [18], and 
coupled them with a human MSTN assay, enabling the evaluation of RNA quality (inter-
nal quality control). The E gene assay detects SARS-CoV-2 and SARS-CoV (but not other 
common human respiratory viruses like MERS-CoV) while the RdRp assay is specific for 

Figure 1. Lungs showed diffuse alveolar damage in different stages of evolution. (A) Acute exudative phase with extensive
hyaline membranes formation (arrows), without thickening of alveolar septa (case #1; H&E, ×100). (B) In the patients
with exudative phase diffuse alveolar damage, SARS-CoV-2 antigen was present in the hyaline membranes (arrows) and
scattered cells (inset), as exemplified in case #1 using the nucleocapsid protein antibody (×200). (C) In the late exudative
phase some septal thickening and focal early organization was present apart from extensive hyaline membrane formation
(case #6; H&E, ×100). (D) Half of our cohort had superimposed (bacterial) acute bronchopneumonia, as exemplified in
case #6 (H&E, ×100; inset with higher magnification, highlighting densely packed granulocytes). (E) Proliferative phase
presented with fibrosis, obliterating alveolar lumina, as highlighted in the inset (case #8; H&E, ×100). (F) The density and
collagen richness of fibrosis (arrows) increased with longer-standing disease, as exemplified in case #12 (H&E, ×100).
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3.3. Detection of SARS-CoV-2 Using RT-qPCR
3.3.1. Establishing the Methodology

At the time the autopsies were performed, there was no validated assay available
for measuring SARS-CoV-2 viral load in FFPE samples by RT-qPCR. We used commercial
assays from Roche Diagnostics targeting E gene and RdRp, initially developed for eval-
uating the expression level of these viral genes in fresh samples (e.g., nasal swabs) [18],
and coupled them with a human MSTN assay, enabling the evaluation of RNA quality
(internal quality control). The E gene assay detects SARS-CoV-2 and SARS-CoV (but not
other common human respiratory viruses like MERS-CoV) while the RdRp assay is specific
for SARS-CoV-2 [18,19]. Adequate internal controls allowing accurate data assessment
are especially important when using FFPE samples, which often yield low quality and/or
low quantity RNA. We chose to use human MSTN expression level as internal controls to
evaluate RNA integrity, retro-transcription efficiency or PCR inhibition, since it is ubiqui-
tously expressed in tissues but at relatively low levels. This latter is important to avoid
overestimation of process and sample quality that could arise when using genes that are
highly expressed. Since the MSTN expression level differs slightly between tissue types
(own observations and previously reported), we defined an MSTN Cq cut-off value for
each tissue type analyzed and each amount of RNA input used, above which the extracted
RNA would be considered degraded and the assay inconclusive (if negative for the viral
genes). These “quality thresholds”, empirically defined at the 75th percentile (Q3) of all
MSTN Cq values obtained from SARS-CoV-2-positive samples, were as follows: Cq = 33 for
lung (n = 9) and Cq = 35 for heart samples (n = 10) for assays using 50 ng of RNA; Cq = 32
for lung (n = 5) and Cq = 34 for heart samples (n = 8) when using 250 ng of RNA. To deter-
mine the LoD of E gene and RdRp assays in FFPE samples under our conditions, probit
regression analyses were performed on several replicates of appropriately diluted positive
controls. The computations defined LoD, with 95% detection probability, at 5.4 copies per
reaction for E gene (95% confidence interval (CI): 4.4–7.4) and at 20.8 copies per reaction
for RdRp (95% CI: 16.6–29.1) (Suppl. Figure S1). According to our finally established
methodology, we analyzed each sample starting at 50 ng RNA. In case of values < LoD for
both viral genes, RT-qPCR was repeated with an RNA input of 250 ng. In case of persistent
results < LoD, the MSTN Cq value was reevaluated: if it was below the corresponding
“quality threshold”, the result was considered negative; if equal or above, it was considered
inconclusive. In case of a positive result (≥LoD) for any of the viral genes studied, the viral
load was quantified and expressed as copy number per reaction.

3.3.2. Virus Detection Using RT-qPCR in Lung and Heart

All 12 lung samples and 11/12 heart samples yielded conclusive results. With 50 ng
of RNA input, the range of all MSTN Cq values was 25.11–34.96 for lung (median 32.72,
n = 12), and 31.21–38.45 for heart samples (median 34.88, n = 12); with 250 ng of RNA input,
the range was 23.02–31.84 for lung (median 29.96, n = 9) and 28.88–37.10 for heart samples
(median 33.71, n = 12).

SARS-CoV-2 was detected in all lung samples (selecting lesional regions for inves-
tigation), with very variable viral levels (Table 3). High amounts of virus were present
in the 6 patients with exudative DAD and symptom-duration ≤14 days (range E gene:
26,161–537,302 copies per reaction; RdRp: 3129–64,345). The 6 patients with low viral copy
levels (range E gene: 11–178 copies per reaction; RdRp: all cases < LoD) were symptomatic
for ≥15 days, comprising all 4 cases with organizing DAD, the patient without DAD and
one case of exudative DAD.

SARS-CoV-2 was detected in 6/11 contributive heart samples (Table 3). Viral levels
were overall much lower than in the matched lungs (range E gene in heart: 0–479 copies
per reaction; RdRp: all cases < LoD), without correlation with symptom duration or
clinico-pathological features of the underlying heart disease.

Irrespective of the tissues tested, detection levels of E gene were roughly 10-fold higher
than those of RdRp. Accordingly, all samples positive for E gene were also positive for
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RdRp, but not reciprocally, highlighting the difference in virus detection rate between the
2 assays, as previously reported, and which might be attributed to a mismatch introduced
in the reverse primer or to the fact that E gene is present in genomic and subgenomic RNA,
wheras RdRp is only present in genomic RNA [19–21].

3.4. Detection of SARS-CoV-2 Using Immunohistochemistry

Lung tissue sections representative of the main lesional pattern of all 12 patients were
stained with both the anti-SARS-CoV spike protein antibody and the nucleocapsid protein
antibody. Both assays showed concordant results, with positive staining in all 6 patients
with high-viral load as assessed by RT-qPCR, associated with exudative phase of DAD
and symptom duration <14 days. Concordant with literature, positivity was granular
and pronounced in hyaline membranes and intraalveolar cells, well corresponding to
pneumocytes and macrophages [4,11,22,23]. We could not detect unequivocal positivity
in respiratory epithelium, which has been described as very focal by others [22]. The
lungs of all 6 patients with low viral load (RT-qPCR) were negative. There was complete
concordance of the independent assessment of the stainings by two pathologists.

3.5. Multiplex Imaging and In Situ Detection of SARS-CoV-2 mRNA

Lung tissue sections of 5 patients were analyzed with a multiplex imaging assay
allowing for the simultaneous detection of ACE2, the main receptor for SARS-CoV-2 [24,25],
and adaptive and innate immune cell types (CD3 T cells and CD68 macrophages) (Table 1).
Most epithelial cells (PANCK+) and a subset of macrophages (CD68+) expressed varying
degrees of ACE2 (Figure 2A,B). Given recent reports on lung infiltration by lymphocytes
(CD4 T cells) in COVID-19 patients [3,26,27], we sought to investigate the prevalence of
tissue CD4 and CD8 T cell populations in our cohort. Quantitative imaging analysis of
control tissue (random lungs with DAD from postmortem examinations performed before
the emergence of SARS-CoV-2) and the COVID-19 patient cohort showed no difference
when total CD3+ lymphocytes (expressed as a frequency of total tissue imaged cells) were
analyzed (p = 0.87, Figure 2C). We observed a slightly higher CD4 to CD8 T-cell ratio in the
COVID-19 patient group compared to the controls, although it lacked statistical significance
(p = 0.55; Figure 2D).

Next, the presence of actively transcribed virus was investigated by RNAscope in
5 selected cases from the cohort (cases #1, #3, #4, #6 and #10) (Figure 3A) while a sequential
tissue section was subjected to multiplex imaging (panel 2, Table 1) for the identification
of possible cellular localizations of the virus (Figure 3B). In agreement with literature [4],
we observed an extensive SARS-CoV-2 mRNA positive signal associated with hyaline
membranes (Figure 3C). The prevalence of RNAscope positive events was in line with the
viral titers measured by RT-qPCR. Analysis of the sequential multiplex imaged sections
confirmed the expression of ACE2 receptor in cells positive for SARS-CoV-2 mRNA signal
and we identified pneumocytes (PANCK+) and macrophages (CD68+) harboring viral
transcripts (Figure 3B).
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Figure 2. (A,B) Multiplex imaging analysis depicting expression of ACE2, the major receptor for SARS-CoV-2, in different
cellular compartments of lung tissues in a representative patient with COVID-19 (case #6). (A) Red arrows point to ACE2-
expressing pneumocytes, defined by double-expression of ACE2 (yellow) and PANCK (white). (B) Cyan arrows highlight
ACE2-expressing macrophages, defined by double-expression of ACE2 (yellow) and CD68 (red). All images were acquired
on the Vectra Polaris microscope using a 20x objective magnification, and zoomed in areas are depicted for visualization of
macrophages. (C) The was no difference in the relative frequencies (% of total imaged cells) of CD3+ T cells in lung control
tissues (non-COVID-19 DAD, n = 5) and COVID-19 lung tissues (n = 5), expressed as mean values with SD at the scatter
dot plots (Mann–Whitney U test, p = 0.87). (D) There was no statistically significant difference of the CD4+ to CD8+ T
lymphocyte ratio between the two cohorts (Mann–Whitney U test, p = 0.55).
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Figure 3. Detection of actively transcribed SARS-CoV-2 in different cellular compartments of lung tissue. (A) In situ
expression of SARS-CoV-2 mRNA (red), detected by RNAscope, in lung tissues from three infected patients with different
levels of SARS-CoV-2 viral loads as detected by RT-qPCR in FFPE lung tissue. Granular positivity highlights hyaline
membranes in RT-qPCR highly positive cases #3 and #6. Lack of in situ expression of SARS-CoV-2 mRNA in case #10,
which showed also very low SARS-CoV-2 copy numbers in the RT-qPCR assay. (B) SARS-CoV-2 mRNA expression in
pneumocytes and macrophages in two representative patients (cases #3 and #6), as detected by RNAscope and multiplex
imaging on sequential lung tissue sections (magnifications as insets). Green arrows point to cells positive for viral mRNA.
Cyan arrows highlight SARS-CoV-2 mRNA positive pneumocytes, defined by PANCK-expression. Magenta arrows depict
SARS-CoV-2 mRNA positive macrophages, defined by CD68-positivity. (C) Lung tissue (case #6) stained for SARS-CoV2
mRNA expression (RNAscope). A simulated H&E image (generated from a fluorescent image processed using the inForm
software) shows tissue areas positive for SARS-CoV-2 mRNA signal (red arrows) mainly associated with hyaline membranes.
All images were acquired on the Vectra Polaris microscope using a 20× objective magnification.
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4. Discussion

We report autopsy findings of 12 consecutive COVID-19 patients, focusing on lung
and cardiovascular pathology, including virus detection using different methodological
approaches. Most of our findings are in line with previously published observations, but
some aspects merit in depth discussion.

The clinical and epidemiological characteristics of our cohort were in accordance with
literature [4,8], showing a slight male predominance of 58%, a median age of 73 years, with
only one patient younger than 69 years-of-age, and multiple comorbidities.

We confirm the high prevalence of DAD in patients with fatal COVID-19 in our patient
cohort. DAD is the morphological pattern of acute lung injury due to any cause, and one
of the classic patterns of interstitial lung diseases [28,29]. As expected from its temporally
preserved progression from the exudative phase, via the organizing/proliferative phase to
a fibrotic phase [30], early/exudative stages of DAD were associated with a shorter disease
duration, and proliferative DADs presented in patients with longer standing disease, with
a cut-off at around 2 weeks since onset of symptoms.

Early DAD stages were associated with a high viral load detected using RT-qPCR,
presence of SARS-CoV spike protein and nucleocapsid protein detected using immuno-
histochemistry and actively transcribed SARS-CoV-2 confirmed by in-situ detection of
SARS-CoV-2 mRNA (RNAscope assay). In patients who died 2 weeks or later after onset
of symptoms and presented organizing stages of DAD, only the highly sensitive RT-qPCR
assay could confirm the presence of low copy numbers of virus in the lungs. This mirrors
previous reports of smaller patient cohorts [11,22,31], although other groups reported virus
detected in individual patients who died after 4 weeks of ongoing disease, using immuno-
histochemistry confirmed by RNA-ISH [4]. Those discrepancies could be explained by
the heterogeneity of lung affection and a possible re-infection of adjacent areas leading to
longer virus detection.

Our in situ analysis showed a wide expression of ACE2, the major SARS-CoV-2
receptor, in epithelial cells and interstitial macrophages, a profile that could further support
local viral replication. We detected macrophages positive for SARS-CoV-2 mRNA, in
line with recently published data [22,32], raising the possibility that these cells could
affect the course of the disease at two levels: by contributing to local viral spread and
by producing pro-inflammatory mediators [33]. The lung tissue of our COVID-19 cohort
harbored a similar frequency of CD3 T cells as the non-COVID-19-DAD control group,
with the majority of T cells expressing CD4 in both cohorts. However, we observed
slightly higher ratios of CD4 to CD8 in COVID-19 samples. Although this could indicate a
preferential recruitment of CD4 T cells in the inflamed tissues tested, the result has to be
interpreted with caution due to the lack of statistical significance, the small sample size
and the differing patient characteristics between the two groups tested, e.g., secondary
acute bronchopneumonia in 2/5 and underlying neoplasms in 2/5 COVID-19 patients.
Although we could not observe a preferential localization of CD3 T cells in proximity to
macrophages, it is likely that monocytes/macrophages play a role in recruiting T cells into
the lungs [32].

The pattern of DAD reflects acute lung injury, and histomorphologic particularities
reliably predicting COVID-19 as an underlying etiology have not yet been established [6,31].
The “diffuse” in DAD alludes to all parts of the alveolar septum being damaged, including
endothelial and alveolar lining cell injury. Microthrombi are characteristic features of DAD
since its earliest descriptions [34]. Although endotheliitis [35], microthrombi, intusscus-
ceptive angiogenesis [36] and peculiar compositions of associated inflammatory infiltrates
have been described in deceased patients with COVID-19 with the claim of “uniqueness”,
those were very small case series and the finding are principally compatible with unspecific
DAD. In a small series comparing COVID-19 induced DAD and matched non-COVID-19
controls, a group of 3 dedicated pulmonary pathologists was unable to detect morpho-
logical differences [6]. Concordantly, another group of specialized pathologists showed
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nonspecific clinical and pathologic changes shared between severe cases of COVID-19 and
seasonal and pandemic influenza [7].

We validated the high frequency of associated or superimposed acute bronchopneu-
monia previously described in deceased COVID-19 patients [4,9], which was present in
over half of the patients in our cohort. Ulcerative trancheobronchitis independent from
bronchopneumonia has also been claimed as a prominent finding [4]. Only the one patient
presenting with COVID-19-associated pulmonary aspergillosis (CAPA) showed a localized
ulcerative tracheobronchitis in our cohort. Invasive mold disease has been described in up
to 20% of COVID-19 autopsy cohorts [37]. Contrary, it was recently shown to be present in
2% of patients in a systematic review of autopsies [38], a discrepancy which might be due
to the extent of tissue sampling.

Many groups have described frequent thromboembolic events as autopsy findings in
COVID-19 patients [4,5,9,37,39]. In our cohort, it was only one patient who presented with
multiple peripheral emboli with an associated hemorrhagic infarction. He had two neo-
plastic diseases (adenocarcinoma of the prostate and a small neuroendocrine tumor of the
pancreas, <1 cm), which are known to result in a hypercoagulative state [40]. Microthrombi
were present in 3/12 patients.

Heart findings consisted of hypertrophy, ischemia and coronary arterial disease, asso-
ciated with cardiac co-morbidities, but showed no SARS-CoV-2 associated lymphocytic
inflammation. Only 1/12 cases showed senile amyloidosis, despite extensive sampling and
application of special staining for amyloid to each case. Menter et al. report senile amyloi-
dosis as confirmed by immunohistochemistry for ATTR in 6/21 (29%) of their autopsied
COVID-19 patients, all aged between 76–96 years, with additional amyloid deposition in
pulmonary vessels in three of them (overall: 14%) [39]. Although this number was higher
than in an age-matched cohort from the files of the same institution, and amyloidosis
was therefore claimed to be linked to a fatal COVID-19 outcome, the higher proportion
could also be explained by a more careful evaluation in COVID-19 cases. In previous
autopsy studies the prevalence of senile amyloidosis reached 65% in patients aged >90
years and 11.5–25% in patients older than 80 years [41–43]. Extracardiac involvement in
senile amyloidosis typically involves pulmonary arteries and alveolar septa, in line with
the findings by Menter et al. Only one patient in our cohort showed focal pulmonary
interstitial and vascular amyloid deposition compatible with senile amyloidosis, although
without detectable cardiac involvement. We detected no myocyte necrosis, thrombosis
of small vessels, acute myocardial infarction or lymphocytic or eosinophilic myocarditis,
which were described in 1–7% of 99 COVID-19 autopsies as recently summarized [8].

5. Conclusions

In summary, in our autopsy cohort of 12 COVID-19 patients we confirm the high
prevalence of DAD as a reaction pattern in fatal COVID-19, the high number of overlying
acute bronchopneumonia and high-level pulmonary virus detection limited to patients
who died ≤2 weeks after onset of symptoms, correlating with exudative phase of DAD.
In those patients, we detected actively transcribed SARS-CoV-2 in pneumocytes and
macrophages, without increased T-lymphocyte infiltrations as compared with non-COVID-
19 DAD controls. Only very sensitive RT-qPCR morphology could detect low virus levels
in patients with long-standing disease, correlating with organizing phases of DAD.

Our frequencies of thromboembolic events, cardiac amyloidosis or lymphocytic infil-
tration of heart tissue were lower than reported.

The limitation of our study is the small sample size and a possible selection bias,
as autopsy was allowed and performed in only 16% of patients who died during the
time period in our University Hospital. It is only after larger comparison studies using
adequate control cohorts have been conducted that we will be able to answer the question
of specificity of the hitherto published morphological aspects of COVID-19.
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