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A eusocial colony typically consists of two main castes: queens that reproduce and sterile workers that help them. This division of

labor, however, is vulnerable to genetic elements that favor the development of their carriers into queens. Several factors, such as

intracolonial relatedness, can modulate the spread of such caste-biasing genotypes. Here we investigate the effects of a notable

yet understudied ecological setting: where larvae produced by hybridization develop into sterile workers. Using mathematical

modeling, we show that the coevolution of hybridization with caste determination readily triggers an evolutionary arms race

between nonhybrid larvae that increasingly develop into queens, and queens that increasingly hybridize to produce workers. Even

where hybridization reduces worker function and colony fitness, this race can lead to the loss of developmental plasticity and to

genetically hard-wired caste determination. Overall, our results may help understand the repeated evolution toward remarkable

reproductive systems (e.g., social hybridogenesis) observed in several ant species.

KEY WORDS: Ant, caste determination, eusociality, genetic conflicts, hybridization, Hymenoptera, parasitism, reproductive sys-

tem, social hybridogenesis.

Eusociality is characterized by a striking division of reproduc-

tive labor between two castes: queens and workers (Crespi and

Yanega 1995). Queens monopolize reproduction, while typically

sterile workers specialize on other colony tasks such as foraging

and tending to the brood. The sterility of workers initially seemed

so inconsistent with natural selection that Darwin referred to eu-

sociality as his “one special difficulty” (Darwin 1859, ch. 7). This

apparent paradox was resolved in the 1960s with Hamilton’s the-

ory of kin selection (Hamilton 1964). Hamilton demonstrated that

natural selection can favor eusociality when workers preferen-

tially help relatives (who can transmit the same genetic material).

In addition to laying the theoretical basis for the evolution of eu-

sociality, Hamilton’s work led to the insight that caste determi-

nation should be plastic to allow identical gene copies to be in

workers and in the queen they help (Seger 1981). In line with this

notion, the developmental fate of female larvae in many eusocial

insects depends on environmental factors (Trible and Kronauer

∗These authors share senior authorship.

2017), such as food quantity and quality (Brian 1956, 1973), tem-

perature and seasonality (Brian 1974; Schwander et al. 2008) or

signals emitted by adults of the colony (Penick and Liebig 2012;

Libbrecht et al. 2013). Probably the most iconic example of such

plasticity is found in honeybees where queens arise only from lar-

vae reared in royal cells and fed with royal jelly. For long, this and

many other empirical findings strengthened the idea that caste de-

termination is under strict environmental control and largely free

from genetic effects.

More recently, however, substantial genetic variation for

caste determination has been described across a number of

eusocial species (Winter and Buschinger 1986; Moritz et al.

2005; Hartfelder et al. 2006; Linksvayer 2006; Schwander and

Keller 2008; Smith et al. 2008; Frohschammer and Heinze 2009;

Schwander et al. 2010). This variation is thought to derive

from caste-biasing genotypes that bias the development of their

carrier toward a particular caste (Moritz et al. 2005; Hughes

and Boomsma 2008). Those genotypes that favor larval de-

velopment toward the reproductive caste have sometimes been
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referred to as “royal cheats” as they cause the individuals that

carry them to increase their own direct reproduction at the ex-

pense of other colony members (e.g., Anderson et al. 2008;

Hughes and Boomsma 2008). The segregation of such royal

cheats should depend on a balance between: (1) direct benefits

from increased representation in the reproductive caste; and (2)

indirect costs due to reduced worker production and colony pro-

ductivity (Hamilton 1964). As highlighted by abundant theory,

several factors can influence these benefits and costs and thus tip

the balance for or against the evolution of royal cheats. For in-

stance, low relatedness between larvae due to polyandry (when

queens mate with multiple males) or polygyny (when colonies

have multiple queens) increases competition between genetic lin-

eages within colonies and thereby favors royal cheating (e.g.,

Reuter and Keller 2001). Conversely, selection against cheats is

bolstered by low dispersal abilities and high within-group relat-

edness (e.g., Hamilton 1964; Lehmann et al. 2008; Boomsma

2009), bivoltinism and asymetrical sex-ratio (e.g., Trivers and

Hare 1976; Seger 1983; Alpedrinha et al. 2014; González-Forero

2015; Quiñones and Pen 2017), coercion (i.e., policing; Wense-

leers et al. 2004; Dobata 2012), queen longevity and competi-

tion between queens (e.g., Queller 1994; Bourke and Chan 1999;

Avila and Fromhage 2015), or where workers reproduce follow-

ing queen death (Field and Toyoizumi 2020).

One intriguing factor that has been proposed to influence the

cost of royal cheating is sperm parasitism, a behavior consisting

in queens using the sperm of another species or lineage to pro-

duce hybrid workers (Linksvayer 2006; Anderson et al. 2008).

Both morphological and genetic data suggest that this behavior

is common in many ant species (e.g., in multiple Temnothorax

populations, the majority of queens were found to produce some

hybrid workers; Douwes and Stille 1991; Umphrey 2006 and

Feldhaar et al. 2008 for reviews). In these species, sperm para-

sitism results in hybrid larvae that rarely, if ever, develop as fertile

queens and rather become sterile workers (presumably due to ge-

netic incompatibilities between parental lineages; Feldhaar et al.

2008; Trible and Kronauer 2017). Such hybrids should therefore

be impervious to genetic caste-biasing effects and thus provide

a reliable source of workers. In principle, this alternative sup-

ply of workers may reduce the indirect cost of royal cheats and

hence favor their evolution (Anderson et al. 2008). But beyond

these broad-brush predictions, the effect of sperm parasitism on

the segregation of royal cheats remains poorly understood.

Here, we develop a mathematical model to explore the

evolution of genetic caste determination via royal cheats when

queens can hybridize to produce workers. In particular, we as-

sess the effects of key factors on the evolutionary dynamics of

caste determination, such as polyandry and queen parthenogen-

esis (when queens have the ability to produce daughters asexu-

ally), as well as their interactions with potential costs and benefits

of hybridization, for instance, owing to hybrid incompatibilities

or hybrid vigor.

The Model
We consider a large population of annual eusocial haplodiploids

with the following life-cycle (Fig. 1). First, virgin queens mate

with a fixed number m ∈ {1, 2, . . .} of males. Each of these mates

can either be an allo- (with probability η) or a con-specific male

(with complementary probability 1 − η). Once mated, queens

found monogynous colonies (i.e., one queen per colony) and lay

a large number of eggs. A proportion f of these eggs are diploid

(and develop into females) and (1 − f ) are haploid (and develop

into males). Assuming random egg fertilization, a queen there-

fore produces on average f η hybrid and f (1 − η) nonhybrid fe-

males. We assume that a hybrid female can only develop as a

worker, while a nonhybrid female can either develop as a worker

(with probability ω) or as a queen (with complementary prob-

ability 1 − ω). Overall, a colony thus consists of f η hybrid and

f (1 − η)ω nonhybrid sterile workers, as well as f (1 − η)(1 − ω)

virgin queens and (1 − f ) males that are available for reproduc-

tion at the next generation.

If only virgin queens and males can reproduce, their repro-

ductive success depends on the workforce of their colony of ori-

gin. Specifically, we assume that the probability that a sexual

reaches the mating pool increases linearly with the total num-

ber of workers in the colony, combining hybrid and nonhybrid

workers (we show later that our results do not change qualita-

tively when the increase is nonlinear). We nonetheless allow for

differential contribution to the workload between hybrid and non-

hybrid workers, with the contribution of hybrid workers weighted

by a parameter e ≥ 0 (so that the effective workforce of a colony

is e f η + f (1 − η)ω). When e = 1, hybrid workers have the same

working efficiency as nonhybrid workers. By contrast, when

e < 1, hybrid workers are less efficient, for instance, due to out-

breeding depression. This can also reflect other potential costs

associated with hybridization, such as the production of sterile

or nonviable hybrid queens (Feldhaar et al. 2008). Conversely,

when e > 1, hybrid workers outperform regular workers, due, for

example, to hybrid vigor (Umphrey 2006).

Results
HYBRIDIZATION AND SPERM PARASITISM, EVEN

COSTLY, CAN LEAD TO THE FIXATION OF ROYAL

CHEATS AND THE COMPLETE LOSS OF

INTRASPECIFIC WORKERS

We first investigate the evolution of caste determination by al-

lowing the probability ω that a larva develops as a worker to
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Figure 1. The life cycle of an annual eusocial with hybridization and sperm parasitism. At each generation, the life-cycle begins with

virgin queens mating withmmales, each of which has a probability η to be allospecific and 1 − η to be conspecific. After mating, a queen

founds a colony and starts producing eggs. Hybrid female eggs (with allospecific paternal origin) all develop into workers. Regular female

eggs (with conspecific paternal origin) develop into workers with probability ω and into queens otherwise. The variable η thus captures

the tendency of queens to hybridize and parasitize sperm, while ω controls caste determination.

vary. We assume that this probability is under individual genetic

control (i.e., the future caste of a female larva depends only on

its own genotype) and that it evolves via random mutations with

weak additive phenotypic effects (Appendix A for details on our

methods). Mutational effects are unbiased so a new mutation is

equally likely to increase or decrease the tendency ω of becom-

ing a worker. Those mutations that decrease ω can be consid-

ered as more selfish as they increase the likelihood that their

carriers develop into queens at the expense of other individuals

of the same colony. Following the terminology of Hughes and

Boomsma (2008), we thus refer to mutations decreasing ω as

royal cheats. As a baseline, we consider the case where queens

mate with a large number of males (i.e., m → ∞) and where

hybridization is fixed at a given level (e.g., η is the proportion

of allo-specific males in the pool of mates from which females

choose randomly).

Our analyses (Appendix B.1.1) reveal that the probability for

a larva to develop as a worker evolves toward a unique and stable

equilibrium,

ω∗ = 1

3
− e

2η

3(1 − η)
. (1)

To interpret this equation (1), consider first the case where hy-

bridization is costless (e = 1). Equation (1) then tells that in

the absence of hybridization (η = 0), a larva will develop into a

worker with a probability of 1/3 at equilibrium (in line with pre-

vious models that ignore hybridization, e.g., Reuter and Keller

2001, Appendix B.1.4 for connection). But as hybridization in-

creases (η > 0), royal cheating is increasingly favored and lar-

vae become increasingly likely to develop as queens rather than

workers (i.e., ω∗ < 1/3, Fig. 2A). In fact past a threshold of hy-

bridization (η ≥ 1/3), the population evolves toward a complete

loss of nonhybrid workers via the fixation of increasingly caste-

biasing royal cheats alleles (ω → 0). In this case, nonhybrid

females eventually all develop into queens that rely on sperm par-

asitism to produce workers.

Equation (1) also shows that the performance of hybrid

workers relative to nonhybrids, e, modulates the effect of hy-

bridization on the evolution of caste determination (Fig. 2B). As

a result, royal cheating and worker-loss evolution are facilitated

when hybrids outperform regular workers (e > 1) but hindered

otherwise (e < 1). Nevertheless, even when hybridization is ex-

tremely costly (0 < e � 1), complete worker-loss can evolve

(Fig. 2C).
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A B C

Figure 2. The fixation of royal cheats and evolution of intraspecific worker-loss. (A) Evolution of the probability ω that a female larva

develops into aworker in a simulated populationwhen queensmatewith a large number ofmales (polyandry,m → ∞) and the proportion

of allospecificmales η is fixed (top η = 0;middle η = 0.2, bottom η = 0.4; other parameters: e = 1, Appendix A.3 for details on simulations).

Plain lines (and surrounding gray areas) show the population average ω (and its standard deviation). Dashed lines show the predicted

equilibrium (from eq. 1). (B) Equilibrium of ω as a function of hybridization η and the efficiency of hybrid workers e (from eq. 1). (C)

Parameter combinations leading to the evolution of complete worker-loss (i.e., ω → 0, in green, corresponding to η ≥ 1/(1 + 2e), which

is found by substituting eq. 1 into ω∗ ≤ 0).

WORKER-LOSS READILY EMERGES FROM THE

COEVOLUTION OF GENETIC CASTE DETERMINATION

AND SPERM PARASITISM, DRIVEN BY

INTRACOLONIAL CONFLICT

The above analysis indicates that intraspecific worker-loss can

evolve when queens have a sufficiently high tendency to hy-

bridize. This raises the question of whether such tendency is also

subject to selection. To answer this question, we allow the proba-

bility η that a queen’s mate is allospecific to coevolve with caste

determination (ω). We assume that this probability η is under in-

dividual queen control (i.e., it depends only on a queen’s geno-

type) and like caste determination, evolves via rare mutations

with weak additive phenotypic effects (Appendix A for details).

We find that depending on the efficiency e of hybrid work-

ers, the coupled evolutionary dynamics of hybridization η and

caste determination ω lead to an evolutionary arms race with one

of two contrasted outcomes (Appendix B.1.2 for analysis). When

e is small (e ≤ 1/4, Fig. 3A gray region), the population evolves

hybridization avoidance (η → 0) while the probability ω to de-

velop as a worker stabilizes for its baseline equilibrium (ω∗ =
1/3, Fig. 3B). By contrast, when hybrid workers are at least half

as efficient as regular workers (e ≥ 1/2, Fig. 3A, dark green re-

gion), intraspecific worker-loss evolves (ω → 0) and hybridiza-

tion stabilizes at an intermediate equilibrium (η∗ = 2/3, Fig. 3D).

When hybrid worker efficiency is intermediate (1/4 < e < 1/2,

Fig. 3A, light green region), the population evolves either hy-

bridization avoidance or intraspecific worker-loss depending on

initial conditions (Fig. 3C), with worker-loss favored by high ini-

tial tendency η of queens to hybridize. In sum, provided four hy-

brid workers are at least as good as one regular worker (e > 1/4),

the coevolution of genetic caste determination and hybridization

can lead to worker-loss in our model.

To better understand the forces at play in the emergence of

worker-loss, we further used a kin-selection approach to decom-

pose the invasion fitness of mutant alleles into the sum of: (1)

their direct fitness effects on the reproductive success of the indi-

viduals that express them; and (2) of their indirect fitness effects

on other related individuals that can also transmit them (Taylor

and Frank 1996, Appendix B.1.3 for details). Starting with a pop-

ulation at the baseline equilibrium in absence of hybridization

(ω = 1/3, η = 0), we tracked these different fitness effects along

a typical evolutionary trajectory that leads to worker-loss (black

arrow heads, Fig. 3D) for alleles that influence the tendency of a

larva to develop as a worker (Fig. 3E) and of a queen to hybridize

(Fig. 3F).

Our kin selection analysis reveals that alleles that increase

hybridization in queens are selected because they allow queens

to increase the number of sexuals produced by their colony

(especially via males, blue curve, Fig. 3F). This is because the

baseline tendency ω to develop as a worker that evolves is opti-

mal from the point of view of a gene in a larvae, but sub-optimal

from the point of view of a gene in a queen who would benefit

from a larger workforce. Hybridization by queens evolves to

rectify this and align colony composition with the interests of the

queen. Simultaneously, as queens evolve greater hybridization

and augment their workforce with hybrids, genes in nonhybrid

larva have an increasing interest for their carriers to develop

as queens rather than workers (Fig. 3E). These two selective

processes via queens and larvae fuel one another in an evo-

lutionary arms race whose endpoint is complete intraspecific
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Figure 3. The coevolution of caste determination and sperm parasitism. (A) Evolutionary equilibria (for η in black and ω in white) as

a function of hybrid worker efficiency e (eq. B6 in Appendix B.1.2 for details). These equilibria, however, are evolutionary repellors

(eq. B7 in Appendix B.1.2). As a result, three types of coevolutionary dynamics are possible depending on e as illustrated in panels (B)–(D)

(from eq. B5). These panels show examples of phenotypic trajectories when worker-loss: Panel (B) never evolves (e = 0.1); Panel (C) can

evolve depending on initial conditions (e = 0.4); Panel (D) always evolves (e = 0.7). Black filled circles indicate the two evolutionary end-

points: hybridization avoidance with developmental plasticity (ω = 1/3 and η = 0 in B and C) or worker-loss with hybridization (ω = 0

and η = 2/3 in C and D). Empty circle in (C) shows the internal unstable equilibrium (eq. B6). Thick grey arrow heads in (D) represent the

trajectory of a population starting from ω = 1/3 and η = 0 and evolving to worker-loss. (E) Fitness effects of caste determination ω in

a mutant larva via itself (in orange), related queens (red), and related males (blue) along the trajectory leading to worker-loss shown

in panel (D) (total selection in black, Appendix B.1.3 for derivation). We see that negative fitness effects via self (orange line) lead to

a total selection effect that is negative (black line). This indicates that mutant larvae with increasingly small values of ω are selected

because these values increase larvae’s direct fitness (by increasing the probability that they develop into queens). (F) Fitness effects of

hybridization η in a mutant queen, via its sons (blue) and daughter queens (red) along the trajectory leading to worker-loss shown in

panel (D) (total selection in black). Positive total selection (in black) is mostly due to an increase of fitness via males (in blue). This says

that mutant queens with increasingly large values of η are selected because this increases their reproduction, especially via males.

worker-loss. Our decomposition of fitness effects thus shows that

the loss of nonhybrid workers evolves in our model due to within-

colony conflicts over colony composition. In fact, our results

suggests that worker-loss emerges because hybridization allows

queens to control the production of workers in their colony,

while nonhybrid larvae lose their tendency to develop as workers

to promote their own reproduction via the fixation of royal

cheats.

WORKER-LOSS IS IMPAIRED BY LOW POLYANDRY

BUT FACILITATED BY ASEXUAL REPRODUCTION

So far, we have assumed that queens mate with a large, effec-

tively infinite, number of males. By increasing relatedness within

the brood, low polyandry (2 ≤ m � ∞), and monandry (m = 1)

mediate within-colony conflicts and therefore should be rele-

vant to the evolutionary arms race leading to worker-loss (An-

derson et al. 2008; Schwander et al. 2010). To test this, we
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Figure 4. The effects of monandry and low polyandry. (A) Outcome of selection as a function of mate number m and hybrid worker

efficiency e. Over the dashed line, worker-loss is a stable equilibrium (i.e., a population with traits ω = 0 and η = 2/3 cannot be invaded,

eq. B16 in Appendix B.2.1). Over the plain line, hybridization can invadewhen rare (i.e., η = 0 is unstable, eq. B18 in Appendix B.2.1). Below

both lines (gray region), plasticity in caste determination is maintained (as in Fig. 3B). Over both lines (dark green region), hybridization

and worker-loss evolve (as in Fig. 3D). In the light green region, worker-loss evolve for some initial conditions (as in Fig. 3C). In the

blue region, there exists an internal attractor equilibrium (i.e., the population converges toward a phenotype 0 < η∗ < 1 and 0 < ω∗ < 1)

that is either uninvadable (for 2 ≤ m ≤ 4, see, e.g., panel B) or invadable leading to polymorphism (for m = 1, see, e.g., panel C). (B)

Evolution toward an uninvadable phenotype in a simulated population (when e = 1 and m = 2). Each dot represents the value of η of

one of 20 haplotypes randomly sampled every 100 generation in a simulated population of 10,000 queens (Appendix A.3 for details on

simulations). The color of each dot gives the value of ω of the associated haplotype (legend). The horizontal dashed line represents the

predicted equilibrium (from Fig. S1). The gray line represents the mean value of η across the simulation. (C) Evolution toward an invadable

phenotype and the emergence of polymorphism in a simulated population (when e = 1.5 andm = 1, other parameters and figure legend:

same as B).

investigated the effect of mate number m on the coevolution of

ω and η (Appendix B.2.1 for details).

We find that as the number m of mates decreases, the con-

ditions for intraspecific worker-loss emergence become more re-

strictive. Specifically, the threshold of hybrid worker efficiency e

above which worker-loss always evolves increases as polyandry

decreases (as m → 1, Fig. 4A, dark green region). In addition,

when the number of mates is low (m ≤ 4), evolutionary dynam-

ics do not necessarily lead to either complete worker-loss or hy-

bridization avoidance. For intermediate values of e (Fig. 4A, blue

region) the population actually converges to an intermediate state

where queens partially hybridize (0 < η∗ < 1) and larvae retain

developmental plasticity (0 < ω∗ < 1, Fig. 4B, Appendix B.2.1

and Fig. S1 for analysis). Under monandry (m = 1) the evolu-

tion toward such intermediate state always happens when hy-

brid workers outperform regular workers (e > 1, Fig. 4A, blue

region).

In the special case of monandry and overperforming hy-

brid workers (m = 1 and e > 1), our mathematical analysis fur-

ther shows that partial hybridization and larval plasticity is not

evolutionary stable (Appendix B.2.1, Figs. S1 and S2). Rather,

the population experiences disruptive selection that should fa-

vor the emergence of polymorphism. To test this, we performed

individual-based simulations under conditions predicted to lead

to polymorphism (Fig. 4C). These show the emergence and long-

term coexistence of two types of queens: one that hybridizes with

low probability (and reproduces via both males and queens); and

another that mates almost exclusively with allospecific males and

thus reproduces mostly via males (because m = 1, these queens

only produce hybrid workers and males). Beyond this special

case, the evolution of worker-loss is impeded by low polyandry

and impossible under monandry in our model. This is because

with a low number of mates, a queen runs the risk of being fer-

tilized by only one type of male. Under complete worker-loss

(when the population is fixed for ω = 0), a queen mated to only

conspecific males produces only larvae destined to be queens but

no workers to ensure their survival and thus has zero fitness.

Our finding that monandry inhibits the emergence of

worker-loss contrasts with the observation that several ant

species, notably of the genus Cataglyphis, lack nonhybrid work-

ers and rely on sperm parasitism for workers in spite of being

mostly monandrous (Kuhn et al. 2020). One potential mechanism

that could have allowed such evolution is thelytokous partheno-

genetic reproduction by queens, whereby queens can produce

daughters clonally. This reproduction mode, which is common

in eusocial Hymenoptera (Rabeling and Kronauer 2013) and in
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particular in Cataglyphis (Kuhn et al. 2020), could allow queens

fertilized exclusively by allospecific males to nevertheless pro-

duce queens via parthenogenesis. To investigate how thelytok-

ous parthenogenesis influences the evolution of caste determi-

nation, we extend our model so that a fraction c of the female

progeny of queens is produced parthenogenetically (Appendix

B.2.2 for details). We assume that larvae produced in such a way

are equivalent to nonhybrid larvae: they develop into workers

with a probability ω determined by their own genotype (which

in this case is the same as their mother’s genotype) and if they

develop into workers, they have the same working efficiency

as nonhybrid workers (i.e., there is no direct cost or benefit to

parthenogenesis).

The coevolutionary dynamics of caste determination and

hybridization with parthenogenesis are in general too compli-

cated to be tractable. We could nonetheless gain insights into

worker-loss evolution by performing an invasion analysis, ask-

ing (1) when is worker-loss (ω = 0) evolutionary stable (so that

a population where intraspecific workers have been lost can-

not be invaded by a genetic mutant with developmental plas-

ticity)? And (2) when can hybridization evolve when absent

in the population (i.e., when is η = 0 evolutionary unstable)?

When these two conditions are met, evolution will tend to fa-

vor the emergence and maintenance of worker-loss (e.g., as in

Fig. 3D). We thus studied when conditions (1) and (2) above

are both true in terms of parthenogenesis c, as well as hybrid

workers efficiency e and mate number m. This revealed that

parthenogenesis has a nonmonotonic relationship with worker-

loss evolution (Fig. 5A and B). As parthenogenesis increases

from zero, worker-loss evolution is initially favored, especially

under monandry (as expected; e.g., Fig. 5C; see eq. B26 in the

Appendix for details). But past a threshold of parthenogene-

sis, the conditions leading to worker-loss become increasingly

stringent until such evolution becomes impossible (see eq. B25

in the Appendix for details). This is because as parthenogene-

sis increases, the relatedness among a queen and larvae of the

same colony also increases. The conflict between them, which

fuels the evolution of worker-loss, therefore abates until it is

no longer advantageous for a larva to preferentially develop as

a queen.

We additionally computed the level of hybridization favored

by selection when the population has evolved worker-loss (and

this is an evolutionarily stable state). We find that hybridization

increases as queens mate with fewer males and as partheno-

genesis increases (Fig. 5D), so much so that selection can lead

to complete hybridization (η = 1, e.g., Fig. 5C). As a result,

there exists a range of intermediate values of parthenogenesis for

which worker-loss evolves in association with a complete loss of

intraspecific matings, that is, queens never mate with males of

their own species or lineage. These males are nevertheless still

being produced in our model (as the primary sex ratio is such

that f < 1).

Discussion
In sum, our analyses indicate that worker-loss readily evolves

when queens can hybridize with a lineage of males by whom fer-

tilization leads to the production of workers. This evolution in

our model occurs through a sequence of substitutions of alleles

that increasingly bias the development of their carrier toward the

queen caste, that is, “royal cheats”. Hybridization, or sperm par-

asitism, allows royal cheats to fix in the population by providing

a way for colonies to compensate for the reduced workforce. In

fact, when queens are capable of recognizing genetic differences

among males and when royal cheats are present in the popula-

tion, selection favors hybridization by queens to regain control

over caste allocation in their colony. This in turn promotes greater

cheating by larvae, which favors greater hybridization by queens

and so on. This evolutionary arms race, fueled by intracolonial

conflicts, eventually leads to complete intraspecific worker-loss:

a state where larvae have lost their developmental plasticity and

develop as workers or queens depending only on whether they

are the product of hybridization or not, respectively.

MODEL LIMITATIONS

Of course, our analyses are based on several idealized assump-

tions. In particular, we assumed that the probability for larvae

to develop as workers is under complete larval genetic control.

Typically the developmental fate of female larvae also depends

on various environmental factors created by adult colony mem-

bers, such as food quality and quantity (Brian 1956; Trible and

Kronauer 2017), or mechanical (Penick and Liebig 2012) and

chemical (Schwander et al. 2008; Penick et al. 2012) stimuli. The

conclusions of our study apply as long as these environmental

effects are held constant (or evolve more slowly than genetic

caste determination). In this case, worker-loss would emerge

via royal cheats that modify larval developmental reaction norm

to environmental effects in such a way that their carriers are

more likely to develop as queens (Hughes and Boomsma 2008;

Wolf et al. 2018). We also assumed that caste determination

and hybridization evolve via rare mutations with weak additive

effects at a single locus. These assumptions, which are typical to

adaptive dynamics and kin selection approaches, have been ex-

tensively discussed elsewhere in a general context (Frank 1998;

Rousset 2004; Geritz and Gyllenberg 2005; Dercole and Rinaldi

2008). In particular, all our results extend to the case where

traits are determined by many genes and/or many co-segregating

alleles, provided genetic variance in the population remains small

(e.g., Charlesworth 1990; Iwasa et al. 1991; Abrams et al. 1993;

Mullon and Lehmann 2019). In cases where mutations have
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Figure 5. The influence of thelytokous parthenogenesis. (A) and (B) Invasion analysis as a function of parthenogenesis c and hybrid

worker efficiency e (with m = 1 in A and m = 2 in B). In the region over the plain line, hybridization can invade when rare (i.e., η = 0

is unstable, eq. B23). In the region over the dashed line (in A) or framed by the dotted and dashed lines (in B), worker-loss is a stable

equilibrium (i.e., a population at equilibrium for η and with ω = 0 cannot be invaded, Appendix B.2.2, eqs. B25 and B26 for details).

In the dark green region, selection thus favors both the evolution of hybridization and the maintenance of worker-loss (e.g., panel C).

In the light green region, worker-loss can evolve only for some initial conditions (as in Fig. 3C). (C) Phenotypic trajectories leading to

worker-loss (when e = 0.9, c = 0.4, and m = 1). Arrows show the direction of evolution favored by selection. Black filled circles indicate

the evolutionary end-point. The black line shows the average trait values of a simulated population starting at (ω = 1/2, η = 0). In this

example, selection leads to a state where worker-loss (ω = 0) is coupled with complete hybridization (η = 1). (D) Level of hybridization

η favored by selection when worker-loss has evolved (ω = 0) as a function of parthenogenesis c. This shows that worker-loss is always

associated to complete hybridization (η = 1) under monandry (m = 1) and if c ≥ (m− 1)/(3m− 1) under polyandry (m > 1) (Appendix

B.2.2, eq. B24, for details).

large additive or dominance effects, we expect more complex

evolutionary dynamics, such as genetic polymorphism. These

dynamics can nonetheless be straightforwardly investigated with

the recurrence equations we derived (eq. A4 in Appendix). How-

ever, our model cannot accommodate potential interaction effects

among loci (i.e., epistasis). If a quantitative genetics analysis in

Temnothorax curvispinosus supports that caste determination is

influenced by additive effects in this species (Linksvayer 2006),

only epistatic effects were found in Pogonomyrmex rugosus

(Schwander and Keller 2008). It would therefore be relevant in

the future to allow for a more complex genetic basis of caste de-

termination, including epistasis (in particular, in the context of the

evolution of unorthodox reproductive systems, see next section).

Another important assumption we made is that hybrid larvae

do not develop into fertile queens, for instance owing to hybrid

incompatibilities (Trible and Kronauer 2017). If fertile hybrid

queens are produced regularly, evolution toward worker-loss like

in our model is less likely to happen as hybrids no longer make

a reliable source of workers. In ants at least, the idea that hybrid

queens are rarely fertile is supported by the contrast between

high frequency of interspecific mating on one hand, and weak

genetic signals of interspecific gene flow on the other (Umphrey

2006; Feldhaar et al. 2008). Finally, we focused in the main text

on the case where colony productivity increases linearly with
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workers (i.e., the probability that a sexual survives until reproduc-

tion increases linearly with the number of workers). More realis-

tically, the gain in productivity brought by one additional worker

is likely to decrease with increasing workforce (Nonacs and

Tobin 1992; Reuter and Keller 2001). Such diminishing returns

tend to favor cheating because the indirect benefit of developing

into a worker gets smaller as colony size increases (e.g., Reuter

and Keller 2001; Field and Toyoizumi 2020). In line with this, we

find that worker-loss evolves even more easily under diminishing

compared to linear returns (Appendix B.2.3 and fig. S3).

AN ADAPTIVE PATH TO UNORTHODOX

REPRODUCTIVE SYSTEMS?

Our result that sperm parasitism favors the emergence of worker-

loss via the fixation of royal cheats may be relevant to unorthodox

reproductive systems found in ants. Of particular interest is so-

cial hybridogenesis, whereby females produced through regular

intralineage mating or thelytokous parthenogenesis develop into

queens, while workers emerge from eggs fertilized by allospecific

males (Helms Cahan et al. 2002; Helms Cahan and Vinson 2003;

Anderson et al. 2006; Romiguier et al. 2017; Lacy et al. 2019;

Kuhn et al. 2020). Such a striking system was first described just

two decades ago in Pogonomyrmex harvester ants (Helms Cahan

et al. 2002), and has since been found in several species spread

across four genera (Helms Cahan et al. 2002; Helms Cahan and

Vinson 2003; Romiguier et al. 2017; Lacy et al. 2019; Kuhn et al.

2020). If these observations suggest that social hybridogenesis

has evolved independently multiple times, the evolutionary ori-

gins of this complex system remain poorly understood (Ander-

son et al. 2008; Schwander et al. 2010; Lavanchy and Schwan-

der 2019). One early suggestion is based on the hypothesis that

worker development requires the combination of co-adapted alle-

les at key loci (i.e., requires epistatic interactions; Helms Cahan

and Keller 2003). According to this theory, worker-loss in hy-

bridogenetic lineages would have originated in the random loss

of such combinations during episodes of ancestral hybridization.

Present hybridization would then have evolved to restore genetic

combinations and epistatic interactions in F1-hybrids allowing

for worker development.

Here, we have shown mathematically that social hybrido-

genesis could also result from additive genetic effects on caste

development and queen-larvae conflicts within colonies. This

theory, previously described verbally in Anderson et al. (2006,

2008), may help explain the multiple convergence toward social

hybridogenesis because virtually every sexual eusocial species

should experience queen-larvae conflicts over caste investment.

Furthermore, because this path to social hybridogenesis does

not depend on changes in the sympatric species whose sperm

is parasitized, our model is relevant to both cases of asymmet-

rical (where the sympatric species produces workers through

regular sex, as, e.g., in Solenopsis xyloni; Helms Cahan and

Vinson 2003) and symmetrical social hybridogenesis (where

the sympatric species also produces workers via hybridiza-

tion, as, e.g., in Pogonomyrmex harvester ants; Anderson et al.

2006).

Our model may also be relevant to other unorthodox sys-

tems of reproduction such as those found in populations of Was-

mannia auropunctata (Fournier et al. 2005), Vollenhovia emeyri

(Ohkawara et al. 2006), or Paratrechina longicornis (Pearcy et al.

2011). As with some forms of social hybridogenesis, queens of

these systems produce their reproductive daughters via female

parthenogenesis and their workers via sex with genetically dis-

tant males. In contrast to social hybridogenesis, however, these

males belong to a divergent all-male lineage maintained by male

clonality. This is further accompanied with a complete absence

of arrhenotokous males (i.e., queens never make hemiclonal hap-

loid sons, as shown in W. auropunctata; Rey et al. 2013). When

queens are able to produce daughters parthenogenetically in our

model, evolution can lead to a state where worker-loss is cou-

pled with a complete absence of intralineage mating (i.e., η = 1,

Fig. 5C and D). In this state, arrhenotokous males represent a

genetic dead-end, laying the basis for their disappearance. To in-

vestigate these systems in more detail, it would be interesting to

extend our model to consider the evolution of female partheno-

genesis and male clonality.

Our formal approach is especially useful in a context where

hybrid vigor in workers has been raised to explain the evolu-

tionary origin of social hybridogenesis and other hybridization-

dependent systems (Julian and Cahan 2006; Umphrey 2006; An-

derson et al. 2008; Feldhaar et al. 2008; Schwander et al. 2010).

According to this argument, selection favored hybridization be-

cause hybrid workers are more efficient, more resilient, or bet-

ter suited to exploit marginal habitats than regular workers. But

in spite of much effort, empirical evidence supporting hybrid

vigor in workers is still lacking (Ross and Robertson 1990; James

et al. 2002; Julian and Cahan 2006; Feldhaar et al. 2008). Fur-

ther challenging this view, we have shown here that hybrid vigor

is not necessary to the evolution of hybridization-dependent re-

productive systems. In fact, our results demonstrate that these

systems can easily evolve even when hybridization is costly due

to pre- and postzygotic barriers (i.e., when e < 1, e.g., because

hybridization leads to an inefficient workforce due to hybrid in-

compatibilities in workers; or increased efforts in mate-finding

and mating, Maroja et al. 2014; or the production of nonviable

or infertile hybrid queens, Umphrey 2006; Feldhaar et al. 2008).

In contrast to previous suggestions (Anderson et al. 2008), our

model thus indicates that hybridization-dependent reproductive

systems can emerge among species that have already substan-

tially diverged, and can be maintained even with further accumu-

lation of hybrid incompatibilities.
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More generally, our results suggest that natural selection

can lead to an association between hybridization and caste

determination. To date, such associations have been reported in

only 18 distinct ant species or populations (Helms Cahan et al.

2002; Helms Cahan and Vinson 2003; Fournier et al. 2005; An-

derson et al. 2006; Ohkawara et al. 2006; Pearcy et al. 2011;

Romiguier et al. 2017; Lacy et al. 2019; Kuhn et al. 2020). But

this rarity may be due—at least partly—to the difficulty with de-

scribing these systems (which in particular requires sampling and

genotyping both queens and workers of the same populations,

Helms Cahan et al. 2002). For instance, studies specifically test-

ing for social hybridogenesis discovered five new cases of this re-

productive system in Cataglyphis (out of 11 species tested, Kuhn

et al. 2020) and three in Messor (out of 9, Romiguier et al. 2017).

These considerations, together with our results, support the no-

tion that currently known cases likely represent only a small frac-

tion of extant eusocial systems relying on hybridization (Helms

Cahan et al. 2002; Lavanchy and Schwander 2019).

FACTORS PROMOTING THE EVOLUTION OF

INTRASPECIFIC WORKER-LOSS

In addition to showing that hybrid vigor is not necessary for the

emergence of intraspecific worker-loss, our model highlights sev-

eral factors that can facilitate such evolution. The first of these

is polyandry, which favors sperm parasitism and worker-loss

by minimizing the risks associated with hybridization. Interest-

ingly, even though polyandry is generally rare in social insects

(Strassmann 2001; Hughes et al. 2008), meaningful exceptions

are found in Pogonomyrmex (Rheindt et al. 2004) and Messor

(Norman et al. 2016) harvester ants, two taxa where social hy-

bridogenesis has evolved multiple times (Anderson et al. 2006;

Romiguier et al. 2017). Although the number of males a queen

mates with is fixed in our model, it is conceivable that this number

also responds to hybridization, leading polyandry and hybridiza-

tion to coevolve. Indeed as low levels of polyandry represent a

risk for out-breeding queens, we can expect selection to favor

queen behaviors that increase their number of mates. This would

in turn allow for greater levels of hybridization, which would in-

crease selection on polyandry and so on. We therefore expect

that the coevolution between polyandry, hybridization, and caste

determination further promotes the emergence of worker loss.

For species that are fixed for strict (or close to) monandry, our

model shows that worker-loss can evolve when queens have the

ability to reproduce via thelytokous parthenogenesis as it allows

interspecifically mated queens to nevertheless produce daughter

queens. This supports the notion that thelytoky has been impor-

tant for the convergent evolution of social hybridogenesis in the

(mostly) monandrous Cataglyphis ants (Kuhn et al. 2020).

Although not considered in our study for simplicity, another

factor that can minimize the risks associated with hybridization

in monandrous species is polygyny, whereby related queens form

multi-queen nests. Such social organization allows both intra-

and interspecifically mated queens to be part of the same colony,

which can then produce both queens and workers. Polygyny

should therefore further facilitate hybridization. Although this

may have played a role in the evolution of social hybridogene-

sis in the polygynous Solenopsis species with this reproductive

system (Helms Cahan and Vinson 2003; Lacy et al. 2019), we do

not expect polygyny to be critical for the evolution of worker-loss

as such loss has been described in both monogynic and polyg-

ynic species of the same genus (e.g., Messor barbarus and cf.

structor; Romiguier et al. 2017). Beyond these considerations,

any trait (e.g., polyandry, polygyny, or reproduction by workers)

that influences kinship structure within colonies and thus modu-

lates intracolonial conflicts has the potential to play a role in the

evolution of worker-loss. Studying the evolution of such traits

and its feedback on hybridization and caste determination there-

fore represents an interesting avenue for future research.

More important for the evolution of worker-loss in our

model is that queens hybridize often enough. This readily hap-

pens when the propensity of queens to mate with allo- versus con-

specific males evolves (Fig. 3). In this case, sperm parasitism,

worker-loss, and social hybridogenesis emerge even in species

that initially do not hybridize. Such evolution of hybridization is

especially likely to occur where queens are able to recognize dif-

ferences among males and choose their mates accordingly. There

is, however, currently little, if any, evidence for such direct mate

or sperm choice in eusocial insects (Strassmann 2001; Schwander

et al. 2006; Umphrey 2006; Feldhaar et al. 2008). Alternatively,

queens may be able to modulate the degree of hybridization via

more indirect mechanisms, such as mating flight synchroniza-

tion (Kaspari et al. 2001). Under completely random mating, hy-

bridization can reach sufficient levels for worker-loss to evolve

in our model as long as allo-specific males are sufficiently abun-

dant (Fig. 2), for instance, because phenology is shared with an

ecologically dominant species (Klein et al. 2017). In intermediate

situations where allo-specific males are available but scarce, the

evolution of caste determination under random mating leads to a

situation where queens produce both hybrid and nonhybrid work-

ers (Fig. 2A and B). Such a scenario may be relevant to species of

ants where hybrid workers has been reported but where worker-

loss has not evolved (e.g., in some North American Solenopsis or

European Temnothorax; Feldhaar et al. 2008).

Whether it occurs randomly or not, hybridization requires

pre-zygotic barriers to be sufficiently low. Various mechanisms,

such as secondary contacts or high dispersal ability, are known to

lower these barriers (de Aguiar et al. 2009). In particular, it has

been proposed that the typically low phenotypic variation among

males of different ant species facilitates hybridization in this taxa

(Feldhaar et al. 2008). With these considerations in mind, it is
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noteworthy that all known cases of social hybridogenesis have

been found in ants that live in dry climates (Helms Cahan et al.

2002; Helms Cahan and Vinson 2003; Romiguier et al. 2017;

Lacy et al. 2019; Kuhn et al. 2020), where the synchronicity of

mating flights between species is highest due to shared depen-

dence on punctual climatic events (Hölldobler and Wilson 1990;

Feldhaar et al. 2008).

At a broader level, our results suggest that worker-loss can

readily evolve when a source of workers that is impervious to

royal cheats can be exploited by queens. Besides sperm para-

sitism, other forms of parasitism can provide such a source of

workers and have been associated with worker-loss (Nonacs and

Tobin 1992). In inquiline ants such as Teleutomyrmex schnei-

deri, for instance, queens do not themselves produce workers

but rather infiltrate the colony of a host and trick host work-

ers into caring for their progeny (Hölldobler and Wilson 1990;

Buschinger 2009). Like in our model, such social parasitism

could be the endpoint of an arms race between queens and larvae

of the same lineage, whereby increasingly caste-biasing cheats

reduce colony workforce leading queens to increasingly rely on

host workers.

CONCLUSIONS

Intracolonial conflicts are inevitably part of the social lives of

nonclonal organisms. Here we have shown that such conflicts

readily lead to an association between interspecific sperm par-

asitism and intraspecific worker-loss via the fixation of royal

cheats. This association is especially relevant to the evolution of

reproductive systems that like social hybridogenesis rely on hy-

bridization. Beyond these unorthodox systems and sperm para-

sitism, the fixation of royal cheats and loss of intraspecific work-

ers may be connected to other forms of antagonistic interspecific

relationships such as social parasitism. More broadly, our model

illustrates how the unique conflicts that are inherent to eusocial

life can lead to evolutionary arms races, with implications for

elaborate reproductive systems and novel ecological interactions

between species.

ACKNOWLEDGMENTS
We thank Nicolas Galtier for useful discussions, Miya Qiaowei Pan, Lau-
rent Keller, and Tanja Schwander for comments on an earlier version of
our manuscript, the Swiss National Science Foundation (PCEFP3181243
to CM) and the french national research agency (ANR t-ERc RoyalMess)
for funding.

AUTHOR CONTRIBUTIONS
AW, JR, and CM conceived the study. AW performed the analysis

and wrote the first draft of the manuscript under the guidance of

JR and CM. All authors contributed to the final version.

DATA ARCHIVING
A Mathematica notebook that reproduces our results and a R file im-
plementing our simulations are available here: https://zenodo.org/record/
5167179.

LITERATURE CITED
Abrams, P. A., Y. Harada, and H. Matsuda. 1993. On the relationship between

quantitative genetic and ESS models. Evolution 47:982–985.
Alpedrinha, J., A. Gardner, and S. A. West. 2014. Haplodiploidy and the evo-

lution of eusociality: worker revolution. Am. Nat. 184:303–317.
Anderson, K. E., J. Gadau, B. M. Mott, R. A. Johnson, A. Altamirano, C.

Strehl, et al. 2006. Distribution and evolution of genetic caste determi-
nation in Pogonomyrmex seed-harvester ants. Ecology 87:2171–2184.

Anderson, K. E., T. A. Linksvayer, and C. R. Smith. 2008. The causes and
consequences of genetic caste determination in ants (Hymenoptera:
Formicidae). Myrmecol. News 11:119–132.

Avila, P., and L. Fromhage. 2015. No synergy needed: ecological constraints
favor the evolution of eusociality. Am. Nat. 186:31–40.

J Boomsma, J. 2009. Lifetime monogamy and the evolution of eusociality.
Philos. Trans. R. Soc. B Biol. Sci. 364:3191–3207.

Bourke, A. F. G., and G. L. Chan. 1999. Queen-worker conflict over sexual
production and colony maintenance in perennial social insects. Am. Nat.
154:417–426.

Brännström, A., J. Johansson, and N. Von Festenberg. 2013. The hitchhiker’s
guide to adaptive dynamics. Games 4:304–328.

V Brian, M. 1956. Studies of caste differentiation in Myrmica Rubra L. 4.
Controlled larval nutrition. Insect. Soc. 3:369–394.

———. 1973. Temperature choice and its relevance to brood survival and
caste determination in the ant myrmica rubra L. Physiol. Zool. 46:245–
252.

———. 1974. Caste differentiation in Myrmica rubra: the role of hormones.
J. Insect Physiol. 20:1351–1365.

Buschinger, A. 2009. Social parasitism among ants: a review (Hymenoptera:
Formicidae). Myrmecol. News 12:219–235.

Caswell, H. 2000. Matrix population models. Sinauer Associates Inc, Sunder-
land, MA.

Charlesworth, B. 1990. Optimization models, quantitative genetics, and mu-
tation. Evolution 44:520–538.

Crespi, B. J., and D. Yanega. 1995. The definition of eusociality. Behav. Ecol.
6:109–115.

Darwin, C. 1859. On the origin of species. J. Murray, Lond., U.K.
de Aguiar, M., M. Baranger, E. M. Baptestini, and L. Kaufman. 2009. Global

patterns of speciation and diversity. Nature 460:384–387.
Dercole, F., and S. Rinaldi. 2008. Analysis of evolutionary processes: The

adaptive dynamics approach and its applications. Princeton Univ. Press,
Princeton, NJ.

Dobata, S. 2012. Arms race between selfishness and policing: two-trait quan-
titative genetic model for caste fate conflict in eusocial hymenoptera.
Evolution 66:3754–3764.

Douwes, P., and B. Stille. 1991. Hybridization and variation in the Leptotho-

rax tuberum group (Hymenoptera: Formicidae). Z. Zool. Syst. Evol.
29:165–175.

Feldhaar, H., S. Foitzik, and J. Heinze. 2008. Lifelong commitment to the
wrong partner: hybridization in ants. Philos. Trans. R. Soc. B Biol. Sci.
363:2891–2899.

Field, J., and H. Toyoizumi. 2020. The evolution of eusociality: no risk-return
tradeoff but the ecology matters. Ecol. Lett. 23:518–526.

Fournier, D., A. Estoup, J. Orivel, J. Foucaud, H. Jourdan, J. Le Breton, et
al. 2005. Clonal reproduction by males and females in the little fire ant.
Nature 435:1230–1234.

EVOLUTION LETTERS 2021 11

https://zenodo.org/record/5167179
https://zenodo.org/record/5167179


A. WEYNA ET AL.

Frank, S. A. 1998. Foundations of social evolution. Princeton Univ. Press,
Princeton, NJ.

Frohschammer, S., and J. Heinze. 2009. A heritable component in sex ratio
and caste determination in a Cardiocondyla ant. Front. Zool. 6:1–6.

Geritz, S. A. H., and M. Gyllenberg. 2005. Seven answers from adaptive dy-
namics. J. Evol. Biol. 18:1174–1177.

Geritz, S. A. H., E. Kisdi, G. Meszéna, and J. A. J. Metz. 1998. Evolution-
arily singular strategies and the adaptive growth and branching of the
evolutionary tree. Evol. Ecol. 12:35–57.

Geritz, S. A. H., J. A. J. Metz, and C. Rueffler. 2016. Mutual invadability
near evolutionarily singular strategies for multivariate traits, with spe-
cial reference to the strongly convergence stable case. J. Math. Biol.
72:1081–1099.

González-Forero, M. 2015. Stable eusociality via maternal manipulation
when resistance is costless. J. Evol. Biol. 28:2208–2223.

D Hamilton, W. 1964. The genetical evolution of social behaviour. I. J. Theor.
Biol. 7:1–16.

Hartfelder, K., G. R. Makert, C. C. Judice, G. A. G. Pereira, W. C. Santana,
R. Dallacqua, et al. 2006. Physiological and genetic mechanisms under-
lying caste development, reproduction and division of labor in stingless
bees. Apidologie 37:144–163.

Helms Cahan, S., and L. Keller. 2003. Complex origin of a genetic system of
caste determination in harvester ants. Nature 424:306–309.

Helms Cahan, S., J. D. Parker, S. W. Rissing, R. A. Johnson, T. S. Polony,
M. D. Weiser, et al. 2002. Extreme genetic differences between queens
and workers in hybridizing Pogonomyrmex harvester ants. Proc. R. Soc.
269:1871–1877.

Helms Cahan, S., and S. B. Vinson. 2003. Reproductive division of labor
between hybrid and nonhybrid offspring in a fire ant hybrid zone. Evo-
lution 57:1562–1570.

Hölldobler, B., and E. Wilson. 1990. The ants. Harvard Univ. Press, Cam-
bridge, MA.

Hughes, W. H., B. P. Oldroyd, M. Beekman, and F. L. W. Ratnieks. 2008.
Ancestral monogamy shows kin selection is key to the evolution of eu-
sociality. Science 320:1213–1216.

Hughes, W. O. H., and J. J. Boomsma. 2008. Genetic royal cheats in leaf-
cutting ant societies. Proc. Natl. Acad. Sci. 105.

Iwasa, Y., A. Pomiankowski, and S. Nee. 1991. The evolution of costly mate
preferences. II. The handicap principle. Evolution 45:1431–1442.

James, S. S., R. M. Pereira, K. M. Vail, and B. H. Ownley. 2002. Survival of
imported fire ant (Hymenoptera: Formicidae) species subjected to freez-
ing and near-freezing temperatures. Environ. Entomol. 31:127–133.

Julian, G. E., and S. H. Cahan. 2006. Behavioral differences between Pogon-

omyrmex rugosus and dependent lineages (H1/H2) harvester ants. Ecol-
ogy 87:2207–2214.

Kaspari, M., J. Pickering, J. T. Longino, and D. Windsor. 2001. The
phenology of a neotropical ant assemblage: evidence for continu-
ous and overlapping reproduction. Behav. Ecol. Sociobiol. 50:382–
390.

Klein, E. K., L. Lagache-Navarro, and R. J. Petit. 2017. Demographic and
spatial determinants of hybridization rate. J. Ecol. 105:29–38.

Kuhn, A., H. Darras, O. Paknia, and S. Aron. 2020. Repeated evolution of
queen parthenogenesis and social hybridogenesis in Cataglyphis desert
ants. Mol. Ecol. 29:549–564.

Lacy, K. D., D. Shoemaker, and K. G. Ross. 2019. Joint evolution of asexu-
ality and queen number in an ant. Curr. Biol. 29:1394–1400.

Lavanchy, G., and T. Schwander. 2019. Hybridogenesis. Curr. Biol. 29:R1–
R15.

Lehmann, L., C. Mullon, E. Akçay, and J. V. Cleve. 2016. Invasion fitness, in-
clusive fitness, and reproductive numbers in heterogeneous populations.
Evolution 70:1689–1702.

Lehmann, L., V. Ravigne, and L. Keller. 2008. Population viscosity can pro-
mote the evolution of altruistic sterile helpers and eusociality. Proc. R.
Soc. B Biol. Sci. 275:1887–1895.

Leimar, O. 2009. Multidimensional convergence stability. Evol. Ecol. Res.
11:191–208.

Libbrecht, R., M. Corona, F. Wende, D. O. Azevedo, J. E. Serrão, and L.
Keller. 2013. Interplay between insulin signaling, juvenile hormone,
and vitellogenin regulates maternal effects on polyphenism in ants.
Proc. Natl. Acad. Sci. 110:11050–11055.

A Linksvayer, T. 2006. Direct, maternal and sibsocial genetic effects on indi-
vidual and colony traits in an ant. Evolution 60:2552–2561.

Maroja, L. S., Z. M. Mckenzie, E. Hart, J. Jing, E. L. Larson, and D. P.
Richardson. 2014. Barriers to gene exchange in hybridizing field crick-
ets: the role of male courtship effort and cuticular hydrocarbons. BMC
Evol. Biol. 14:1–10.

Moritz, R. F. A., H. M. G. Lattorff, P. Neumann, F. B. Kraus, S. E. Radloff,
and H. R. Hepburn. 2005. Rare royal families in honeybees. Apis mel-

lifera. Naturwissenschaften 92:488–491.
Mullon, C., L. Keller, and L. Lehmann. 2018. Social polymorphism is

favoured by the co-evolution of dispersal with social behaviour. Nat.
Ecol. Evol. 2:132–140.

Mullon, C., and L. Lehmann. 2019. An evolutionary quantitative genetics
model for phenotypic (co)variances under limited dispersal, with an ap-
plication to socially synergistic traits. Evolution 4:166–34.

Nonacs, P., and J. E. Tobin. 1992. Selfish larvae: Development and the evo-
lution of parasitic behavior in the Hymenoptera. Evolution 46:1605–
1620.

Norman, V., H. Darras, C. Tranter, S. Aron, and W. O. H. Hughes. 2016.
Cryptic lineages hybridize for worker production in the harvester ant
Messor barbarus. Biol. Lett. 12:1–5.

Ohkawara, K., M. Nakayama, A. Satoh, A. Trindl, and J. Heinze.
2006. Clonal reproduction and genetic caste differences in a queen-
polymorphic ant, Vollenhovia emeryi. Biol. Lett. 5:359–363.

Parker, G. A., and J. Maynard Smith. 1990. Optimality theory in evolutionary
biology. Nature 348:27–33.

Pearcy, M., M. A. D. Goodisman, and L. Keller. 2011. Sib mating without
inbreeding in the longhorn crazy ant. Proc. R. Soc. 278:2677–2681.

Penick, C. A., and J. Liebig. 2012. Regulation of queen development through
worker aggression in a predatory ant. Behav. Ecol. pp. 992–998.

Penick, C. A., S. S. Prager, and J. Liebig. 2012. Juvenile hormone induces
queen development in late-stage larvae of the ant Harpegnathos salta-
tor. J. Insect Physiol. 58:1643–1649.

Phillips, P., and S. J. Arnold. 1989. Visualizing multivariate selection. Evolu-
tion 43:1209–1222.

C Queller, D. 1994. Extended parental care and the origin of eusociality. Proc.
R. Soc. B Biol. Sci. 256:105–111.

Quiñones, A. E., and I. Pen. 2017. A unified model of Hymenopteran
preadaptations. Nat. Commun. 8:1–13.

Rabeling, C., and D. J. C. Kronauer. 2013. Thelytokous parthenogenesis in
eusocial hymenoptera. Annu. Rev. Entomol. 58:273–292.

Reuter, M., and L. Keller. 2001. Sex ratio conflict and worker production in
eusocial Hymenoptera. Am. Nat. 158:166–177.

Rey, O., B. Facon, J. Foucaud, A. Loiseau, and A. Estoup. 2013. Androgene-
sis is a maternal trait in the invasive ant Wasmannia auropunctata. Proc.
R. Soc. B Biol. Sci. 280:1–7.

Rheindt, F. E., J. Gadau, C.-P. Strehl, and B. Hölldobler. 2004. Extremely high
mating frequency in the Florida harvester ant (Pogonomyrmex badius).
Behav. Ecol. Sociobiol. 56:472–481.

Ross, K. G., and J. L. Robertson. 1990. Developmental stability, heterozy-
gosity, and fitness in two introduced fire ants (Solenopsis invicta and S.
richteri) and their hybrid. Heredity 64:93–103.

12 EVOLUTION LETTERS 2021



A. WEYNA ET AL.

Romiguier, J., A. Fournier, S. H. Yek, and L. Keller. 2017. Convergent evo-
lution of social hybridogenesis in Messor harvester ants. Mol. Ecol.
26:1108–1117.

Rousset, F. 2004. Genetic structure and selection in subdivided populations.
Princeton Univ. Press, Princeton, NJ.

Rousset, F., and O. Ronce. 2004. Inclusive fitness for traits affecting metapop-
ulation demography. Theoret. Popul. Biol. 65:127–141.

Schwander, T., S. H. Cahan, and L. Keller. 2006. Genetic caste determination
in Pogonomyrmex harvester ants imposes costs during colony founding.
J. Evol. Biol. 19:402–409.

Schwander, T., J.-y. Humbert, C. S. Brent, S. H. Cahan, L. Chapuis, E. Renai,
et al. 2008. Maternal effect on female caste determination in a social
insect. Curr. Biol. 18:265–269.

Schwander, T., and L. Keller. 2008. Genetic compatibility affects queen and
worker caste determination. Science 322:552.

Schwander, T., N. Lo, M. Beekman, B. P. Oldroyd, and L. Keller. 2010. Na-
ture versus nurture in social insect caste differentiation. Trends Ecol.
Evol. 25:275–282.

Seger, J. 1981. Kinship and covariance. J. Theor. Biol. 91:191–213.
———. 1983. Partial bivoltinism may cause alternating sex-ratio biases that

favour eusociality. Nature 301:59–62.
Smith, C. R., K. E. Anderson, C. V. Tillberg, J. Gadau, and A. V. Suarez.

2008. Caste determination in a polymorphic social insect: nutritional,
social, and genetic factors. Am. Nat. 172:497–507.

Strassmann, J. 2001. The rarity of multiple mating by females in the social
Hymenoptera. Insect. Soc. 48:1–13.

Taylor, P. D., and S. A. Frank. 1996. How to make a kin selection model. J.
Theor. Biol. 180:27–37.

Trible, W., and D. J. C. Kronauer. 2017. Caste development and evolution in
ants: it’s all about size. J. Exp. Biol. 53:53–62.

Trivers, L. R., and H. Hare. 1976. Haplodiploidy and the evolution of the
social insects. Science 191:249–263.

J Umphrey, G. 2006. Sperm parasitism in ants: selection for interspecific mat-
ing and hybridization. Ecology 87:2148–2159.

Wenseleers, T., A. G. Hart, and F. L. W. Ratnieks. 2004. When resistance
is useless: policing and the evolution of reproductive acquiescence in
insect societies. Am. Nat. 164:E154–E167.

Winter, U., and A. Buschinger. 1986. Genetically mediated queen polymor-
phism and caste determination in the slave-making ant, Harpagox-
enus sublaevis (Hymenoptera: Formicidae). Entomol. Gen. 11:125–
137.

Wolf, J. I., P. Punttila, and P. Seppä. 2018. Life-history trait varia-
tion in a queen-size dimorphic ant. Ecol. Entomol. 43(6): 763–
773.

Wolfram Research, Inc. 2020. Mathematica.

Associate Editor: C. Moreau

Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1: Colonial investment in males, queens and workers.
Figure S1: Properties of the internal singular strategy under monoandry and low polyandry.
Figure S2: Polymorphism under monandry is due to positive correlational selection. A.
Figure S3: Non-linear effects of investment in workers.

EVOLUTION LETTERS 2021 13



Appendices

A Methods

Here we describe our methods to investigate the evolutionary dynamics of: (1) the probability ω

for a non-hybrid larvae to develop as a worker; and (2) the propensity η for queens to hybridize.

These methods are organised as follows. First in section A.1, we present a population genetics

model that describes the change in allele frequencies at a biallelic locus that determines the

value of ω in larvae and of η in queens. Second (in section A.2.1), we obtain the invasion fitness

of a mutant allele coding for deviant trait values in a population otherwise monomorphic for

a resident allele. Then, we use this invasion fitness in section A.2 as a platform to infer the

long-term adaptive dynamics of both traits (i.e. their gradual evolution under the input of rare

mutations with weak phenotypic effects). Specifically, we derive the joint evolutionary equilibria

of ω and η (i.e. singular values), as well as their properties (i.e. convergence stability and

evolutionary stability, Dercole and Rinaldi, 2008 for textbook treatment). Finally in section

A.3, we describe our individual-based simulations. A Mathematica notebook reproducing our

analyses and figures is provided as a supplement here: https://zenodo.org/record/4434257.

A.1 Short term evolution: population genetics

A.1.1 Set-up

We consider a single locus with two alleles, a and b, that affect the expression of both ω and η

in their carrier. Specifically, the probability for a larva with genotype v ∈ {aa, ab, bb} to develop

as a worker is ωv, while each mate of a queen with genotype v ∈ {aa, ab, bb} is allospecific

with a probability ηv. To track the segregation of alleles a and b in the population, we let

paa(t), pbb(t), and pab(t) respectively denote the proportion of queens with genotype aa, bb and

ab before mating at generation t (with paa(t) + pbb(t) + pab(t) = 1). Similarly, pa (t) and pb (t)

respectively denote the proportion of conspecific males with haploid genotype a and b before

mating at generation t (with pa (t) + pb (t) = 1).
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A.1.2 Recurrence equations for the evolution of genotype frequencies

Our first goal is to develop recurrence equations for the frequencies of each genotype in males

and females (i.e. express pu(t+ 1) and pv (t+ 1) in terms of pu(t) and pv (t) for u ∈ {a, b} and

v ∈ {aa, ab, bb}). By definition, these frequencies can be written as

pu(t+ 1) =
nu(t+ 1)

na (t+ 1) + nb (t+ 1)

pv (t+ 1) =
nv (t+ 1)

naa(t+ 1) + nab(t+ 1) + nbb(t+ 1)
,

(A-1)

where nu(t+ 1) is the number of males of genotype u ∈ {a, b} at generation t+ 1, and nv (t+ 1)

the number of queens of genotype v ∈ {aa, ab, bb} at generation t+ 1 in the mating pool. Under

our assumption that the probability for a sexual to reach the mating pool increases with the

workforce of a colony (section 2 in main text), the numbers of males and females of each genotype

can be expressed as:

nv (t+ 1) = xaa v(t)naa(t)paa(t) + xab vnab(t)pab(t) + xbb vnbb(t)pbb(t)

nv (t+ 1) = xaa v(t)naa(t)paa(t) + xab v(t)nab(t)pab(t) + xbb v(t)nbb(t)pbb(t),
(A-2a)

where xu v(t) is the number of males with genotype v ∈ {a, b}, and xu v(t) the number of

queens with genotype v ∈ {aa, ab, bb}, produced by a colony founded by a queen of genotype

u ∈ {aa, ab, bb} at generation t. Following Reuter and Keller (2001), we assume that these

numbers are proportional to the energy invested into the production of sexuals. So instead of

numbers, xu v(t) can be viewed as the investment into the production of males (of genotype

v ∈ {a, b}) and xu v(t) into the production of queens (of genotype v ∈ {aa, ab, bb}) by a colony

whose queen has genotype u ∈ {aa, ab, bb}. Finally, nu(t) is the effective workforce of a colony

whose queen has genotype u ∈ {aa, ab, bb} at generation t. This effective workforce is given by

the sum of all types of workers present in a colony, including hybrids (with the latter weighted

by their efficiency e), i.e.

nu(t) =
(
xu aa(t) + xu ab(t) + xu bb(t) + exu hyb(t)

)α
(A-2b)

where xu v(t) is the investment into the production of workers of genotype v ∈ {aa, ab, bb, hyb}

(with hyb denoting hybrid genotype) made by a colony whose queen has genotype u ∈ {aa, ab, bb}

at generation t. The parameter α > 0 determines the effect of the workforce on the probability

2



for a sexual to reach the mating pool. When α = 1, investment in workers affects the survival of

queens and males linearly (i.e. one extra unit of workforce always increases survival by the same

amount). By contrast when α < 1, investment in workers show diminishing returns. Conversely

when α > 1, investment in workers show increasing returns. For most of our analyses, we assume

linear effects of the workforce (α = 1). We relax this assumption in section B.2.3.

We specify the investments into males, xu v(t), queens, xu v(t), and workers, xu v(t), in terms

of model parameters in Table S1. For the sake of completeness, we do so for a model that

encompasses all the effects explored sequentially in the main text, i.e. we allow for both traits

ω and η to coevolve; for a finite number m of mates for each queen; and for a fraction c of a

queen’s brood to be produced via parthenogenesis. To read Table S1, note that the different

investments made by a colony with a queen of type u ∈ {aa, ab, bb} (i.e. xu v(t), xu v(t), and

xu v(t)) depend on the types of males she has mated with. To capture this, we let Mu,v be the

random number of males of genotype v ∈ {a, b, h} (where h denotes allospecific type) that a

queen of genotype u ∈ {aa, ab, bb} mates with. Assuming that each mate is independent from

one another, these random variables follow a multinomial distribution with parameters,

Mu = (Mu,a,Mu,b,Mu,h) ∼ Multinomial
(
m, (1− ηu)pa (t), (1− ηu)pb (t), ηu

)
, (A-3)

where m is the total number of mates; (1−ηu)pv (t) is the probability that in one mating event a

queen of type u mates with a conspecific male of type v ∈ {a, b} (which requires that this queen

does not hybridize, with probability (1− ηu), and encounters a male of type v, with probability

given by its proportion, pv (t)); and ηu is the probability that in one mating event a queen of

type u mates with an allospecific male.

To get to the recurrence equations tracking the proportion of males and queens of each genotype,

we first substitute the entries of Table S1 into eq. (A-2) (with α = 1). Doing so we obtain

polynomials for the numbers nv (t + 1) (for v ∈ {a, b}) and nv (t + 1) (for v ∈ {aa, ab, bb}) in

terms of the random variables Mu,a, Mu,b, and Mu,h (with u ∈ {aa, ab, bb}). We marginalise

(i.e. take the expectation of) these polynomials over the joint probability mass function of Mu,a,

Mu,b, and Mu,h for each u ∈ {aa, ab, bb}, which is given by eq. (A-3). Finally, the so-obtained

numbers of different types of individuals (eq. A-2) are substituted into eq. (A-1). From this

operation and using the fact that pa (t) = 1− pb (t) and paa(t) = 1− pbb(t)− pab(t), we obtain a
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recurrence equation, 
pb (t+ 1)

pab(t+ 1)

pbb(t+ 1)

 = F


pb (t)

pab(t)

pbb(t)

 , (A-4)

that is characterised by a mapping F : [0, 1]3 → [0, 1]3. This recurrence is too complicated to be

presented here for the general case but can straightforwardly be iterated numerically to track

allelic frequency changes for given parameter values (see Mathematica notebook for e.g.).

A.2 Long-term evolution: adaptive dynamics

To gain more analytical insights, we use the recurrence eq. (A-4) to study the long term adaptive

dynamics of both traits under the assumption that traits evolve via mutations that are rare and

with weak additive phenotypic effects.

A.2.1 Invasion fitness of rare additive allele

An adaptive dynamics model is typically based on the invasion fitness of a mutant allele in a

population that is otherwise fixed for a resident allele (i.e. the asymptotic growth rate of a

mutant allele). To obtain this invasion fitness, we first introduce some notation. We denote the

resident allele by a vector z = (ω, η) where ω is probability that a larva homozygote for the

resident allele develops into a worker, and η is the probability that a mate of queen homozygote

for the resident allele is allo-specific. Similarly, the mutant allele is described by a vector

ζ = (ω + δω, η + δη) whose first entry gives the probability that a larva homozygote for the

mutant allele develops into a worker, and whose second entry is the probability that a mate of a

queen homozygote for the mutant allele is allo-specific (δω and δη thus denote the mutant effect

on trait values). Assuming additive genetic effects on phenotypes, a heterozygote then expresses

phenotype (ω + δω/2, η + δη/2).

To use the recurrence equations developed in the previous section, we arbitrarily set allele a as

the resident and b as the mutant. The allele specific trait values (appearing in table S1 and

5



eq. A-3) are then replaced by:

ωaa = ω

ωab = ω +
1

2
δω

ωbb = ω + δω

ηaa = η

ηab = η +
1

2
δη

ηbb = η + δη.

(A-5)

Next, we use the fact that the mutant is rare so that its frequency in the population is of the

order of a small parameter denoted 0 < ε� 1. As a rare allele can only be found in heterozygous

form in a large panmictic population, the initial dynamics of a mutant allele b can be described

through linear approximations of pb (t + 1) and pab(t + 1) at a near-zero frequency of b (e.g.

Brännström et al., 2013). In other words, eq. (A-4) can be linearised to

pb (t+ 1)

pab(t+ 1)

 = A(ζ, z)

pb (t)

pab(t)

+O(ε2), (A-6)

where A(ζ, z) is a 2× 2 matrix that depends on mutant and resident phenotypes, ζ and z, and

ε is a small parameter of the order of the frequency of the mutant b in males and queens.

The invasion fitness of the mutant phenotype, which we write as W (ζ, z), is then given by the

leading eigenvalue of A(ζ, z) (e.g. Caswell, 2000), i.e.

W (ζ, z) = λmax

(
A(ζ, z)

)
, (A-7)

where λmax(M) gives the leading eigenvalue of a matrix M. In a large population, W (ζ, z) tells

the fate of the mutant allele. If W (ζ, z) ≤ 1, then the mutant allele is purged by selection and

vanishes with probability one. Otherwise if W (ζ, z) > 1, the mutant has a non zero probability

of invading the population (e.g. Brännström et al., 2013).

A.2.2 Directional selection

When mutations are rare with weak phenotypic effects, the population first evolves under direc-

tional selection whereby an advantageous mutation fixes before a new mutation arises so that

the population “jumps” from one monomorphic state to another (Dercole and Rinaldi, 2008).

To study these dynamics, we use the selection gradient, s(z), which is a vector pointing in the

direction favoured by selection at every point z ∈ [0, 1]× [0, 1] of the phenotypic space (i.e., the
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space of all possible phenotypic combinations with ω and η both between 0 and 1 as they are

both probabilities) . This vector is given by the marginal effect of each trait on invasion fitness,

i.e.

s(z) =

sω(z)

sη(z)

 =


∂W (ζ, z)

∂δω

∣∣∣
ζ=z

∂W (ζ, z)

∂δη

∣∣∣
ζ=z

 , (A-8)

where sω(z) and sη(z) give the direction of selection on ω and η respectively.

Singular strategies. A singular strategy, z∗ = (ω∗, η∗), is such that all selection gradients

are equal to zero,

s(z∗) = 0. (A-9)

A singular strategy therefore represents a potential equilibrium in the context of adaptive dy-

namics (Brännström et al., 2013).

Jacobian matrix and convergence stability. Whether the population evolves towards or

away from a singular strategy z∗ depends on the Jacobian matrix,

J(z∗) =


∂sω(z)

∂ω

∣∣∣
z=z∗

∂sω(z)

∂η

∣∣∣
z=z∗

∂sη(z)

∂ω

∣∣∣
z=z∗

∂sη(z)

∂η

∣∣∣
z=z∗

 . (A-10)

Specifically, one necessary condition for a singular strategy to be an evolutionary attractor is

that the greatest real part of the eigenvalues of J(z∗) is negative (Leimar, 2009). Such a singular

strategy z∗ is said to be convergence stable. Otherwise, the population will be repelled away

from z∗. Even if z∗ is convergence stable, it is possible for the population to evolve away from

z∗ when both evolving traits are genetically correlated (Leimar, 2009). A sufficient condition

for a singular strategy to be an attractor is that the symmetric part of the Jacobian matrix,

(J(z∗) + J(z∗)T)/2, is negative-definite, in which case z∗ is said to be strongly convergence

stable (Leimar, 2009). When this is true, the population evolves towards z∗, whatever the

genetic correlations between both traits (i.e. independently from the statistical distribution of

mutational effects on both traits).
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A.2.3 Stabilising/disruptive selection.

Once the population is at an equilibrium for directional selection (i.e. a convergence stable

phenotype), it either remains monomorphic under stabilising selection (when the equilibrium is

evolutionary stable or uninvadable, Parker and Maynard Smith, 1990) or becomes polymorphic

due to disruptive selection (when the equilibrium is not evolutionary stable or invadable, Geritz

et al., 1998). When two traits are coevolving, this depends on the Hessian matrix (Phillips and

Arnold, 1989, Leimar, 2009, Geritz et al., 2016),

H(z∗) =

hωω(z∗) hωη(z
∗)

hωη(z
∗) hηη(z

∗)

 =


∂2W (ζ, z)

∂δ2ω

∣∣∣
ζ=z=z∗

∂2W (ζ, z)

∂δωδη

∣∣∣
ζ=z=z∗

∂2W (ζ, z)

∂δωδη

∣∣∣
ζ=z=z∗

∂2W (ζ, z)

∂δ2η

∣∣∣
ζ=z=z∗

 . (A-11)

An equilibrium z∗ is uninvadable if H(z∗) is negative-definite. Otherwise, selection may be

disruptive and the population may experience evolutionary branching, whereby it splits among

two diverging morphs (Geritz et al., 1998, Leimar, 2009, Geritz et al., 2016).

A.3 Individual-based simulations

To complement our mathematical analysis, we also performed individual based simulations (an

R script implementing these is provided as a supplement here: https://zenodo.org/record/

4434257). These simulations track a population of Nq = 10000 diploid queens (with f = 0.5,

see figure legends for other parameters). Each queen is characterized by its genotype: a pair

of haplotypes, each of which is given by the values of ω and η they code for (so four genotypic

values in total). Simulations are initialized by setting both haplotypes of all Nq queens to the

same arbitrary values (i.e. we start with a monomorphic population). Each generation of a

simulation consists of the following steps:

1. Mating. First, queens mate. To model this process, we first compute the propensity ηi

of each queen i ∈ {1, 2, . . . , Nq} to hybridize as the mean of the two relevant alleles it is

carrying. Then, each queen i is mated with a number mi of conspecific haploid males. This

number mi is drawn from a binomial distribution with m trials and success probability

(1 − ηi) (in line with eq. A-3). At the first generation, all males carry the same genetic

values for ω and η as queens (i.e. the initial trait values). In subsequent generations, males
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are sampled (with replacement) as single haplotypes from the 2i haplotypes present in the

laying queens of the previous generation. Following eq. (A-2a), the probability to sample

a given haplotype is weighted by the investment in workers within its colony of origin (as

the investment in workers increases the probability for males to reach the mating pool).

2. Colony development. Each queen i settles to form a colony. We characterise each colony

in two steps. First, a list is constructed that contains the 2mi non-hybrid diploid female

genotypes produced within each colony (i.e. the combinations of the alleles of a queen and

of its conspecific mates). If thelytokous parthenogenesis is included (c > 0), the genotype

of the queen itself is added to this list. Second, the investment in workers within each

colony is calculated following equations in table S1 and eq. (A-2b). These calculations use

the genetic value expressed by each of the 2mi + 1 non-hybrid genotype within the female

progeny (characterised in the first step), as well as the proportion of the brood produced

sexually and asexually (the parameter c), the proportion of conspecific and allospecific

males the queen has mated with (i.e. mi/m and 1 −mi/m), and the efficiency of hybrid

workers (the parameter e).

3. Next-generation queens. To generate the next generation of queens, Nq new diploid

female genotypes are sampled (with replacement) from all non-hybrid genotypes produced

within each colony. Following table S1, the probability to sample a given genotype is

weighted by its own genetic value of (1 − ω) and by the investment in workers within its

colony of origin (as the investment in workers increases the probability for queens to reach

the mating pool). Finally, each genotypic value independently mutates with probability

10−2. Mutation effects are drawn independently from a normal distribution with mean

0 and standard deviation 10−2. Mutated genetic values are capped between 0 and 1 to

ensure that traits remain within their domain of definition.
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B Analyses

Here, we present the derivations of our results summarised in the main text. These derivations

are organised in the same order as they appear in the main text. As a supplement, we also

provide a Mathematica (Wolfram Research, 2020) notebook that allows to follow our analyses.

B.1 Baseline model

We first explore the baseline case where females mate with a large (effectively infinite) number

of mates and there is no parthenogenesis (i.e. when m→∞ and c = 0).

B.1.1 Independent evolution of genetic caste determination

As presented in the main text, we initially assume that hybridization η is fixed and only caste

determination ω evolves. Using eq. (A-8) with m → ∞ and c = 0, we find that the selection

gradient on genetic caste determination is,

sω(z) =
1

6

(
1− η

ηe+ (1− η)ω
− 2

1− ω

)
. (B-1)

Accordingly, there is a unique singular strategy ω∗ for caste determination when hybridization

η is fixed (i.e. ω∗ such that sω((ω∗, η)) = 0),

ω∗ =
1

3
− e 2η

3(1− η)
, (B-2)

which is eq. 1 of the main text.

It is straightforward to show that with hybridization fixed, the singular strategy (eq. B-2) is

convergence stable (plugging eq. B-2 into the Jacobian, that is eq. A-10, for a single trait with

m→∞ and c = 0),
∂sω(z)

∂ω

∣∣∣
ω=ω∗

= − 9(1− η)2

4(1 + η(e− 1))2
< 0 (B-3)

as well as uninvadable (plugging eq. B-2 into the Hessian, that is eq. A-11, for a single trait with

m→∞ and c = 0),
∂2W (ζ, z)

∂δ2ω

∣∣∣
ω=ω∗

= − 3(1− η)2

4(1 + η(e− 1))2
< 0. (B-4)
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Therefore, when hybridization is fixed, our analyses show that genetic caste determination will

gradually evolve to the singular value eq. (B-2) and remain monomorphic for this value (which

is what we observe when we simulate this scenario, fig. 2A).

B.1.2 Coevolution of genetic caste determination and hybridization

An unstable singularity. When both caste determination ω and hybridization η evolve, their

trajectories under directional selection are given by the selection gradient vector,

s(z) =

sω(z)

sη(z)

 =


1

6

(
1− η

ηe+ (1− η)ω
− 2

1− ω

)
1

1− η

(
e

3 [ηe+ (1− η)ω]
− 1

2

)
 (B-5)

(from eq. A-8 with m → ∞ and c = 0). Solving the above for z∗ = (ω∗, η∗) such that s(z∗) =

(0, 0) yields a single singular strategy in two dimensional trait space,

z∗ =

ω∗

η∗

 =

e+
e− 1

3

2 +
1

e− 1

 , (B-6)

which is plotted in fig. 3A against e. However, when we look at the Jacobian matrix of the

system eq. (B-5) at this singular value (i.e. substitute eqs. B-5 and B-6 into eq. A-10),

J(z∗) =


− 9

16(e− 1)2
− 3

8e

− 3

4e
−(e− 1)2

4e2

 , (B-7)

we see that this matrix has a negative determinant,

det (J(z∗)) = − 9

64e2
< 0 (B-8)

so its eigenvalues cannot both be negative (since the product of the eigenvalues of a matrix is

equal to its determinant). Hence the singular value z∗ eq. (B-6) is not convergence stable, but

rather an evolutionary repellor.

Our result that evolutionary trajectories will be repelled away from the singular value eq. (B-6)
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tells us that adaptive dynamics will eventually get to the boundary of the trait space. This trait

space consists of the square [0, 1] × [0, 1] (as both traits must be between zero and one). Two

edges of this square (when ω = 1 or η = 1) cannot be accessed by evolutionary dynamics as

either of these trait values lead to zero fitness (as a population monomorphic for ω = 1 or η = 1

produces no queen in our baseline model). We can therefore focus on dynamics along the edges

η = 0 or ω = 0 of the trait space, which respectively correspond to the case of hybridization

avoidance and worker-loss.

Convergence to hybridization avoidance. Evolutionary dynamics will settle somewhere

on the edge where hybridization is absent in the population (η = 0) only if: (1) selection on

hybridization maintains it at zero (i.e. sη(z) ≤ 0 when η = 0); and (2) selection on caste

determination settles for an equilibrium ω∗ (i.e. sω(z) = 0 for some ω∗ when η = 0). From

eq. (B-5), these two conditions are true when e ≤ 1/2 and the equilibrium for caste determination

is simply ω∗ = 1/3 (in line with eq. B-2). As established in eq. (B-3), this equilibrium is

convergence stable and evolutionary stable when η is fixed.

Convergence to worker-loss. Similarly, for adaptive dynamics to converge somewhere on

the edge where workers are no longer produced from regular sex (ω = 0), these two conditions

are necessary: (1) selection on caste determination maintains ω = 0 (i.e. sω(z) ≤ 0 when ω = 0);

and (2) selection on hybridization favours an equilibrium η∗ (i.e. sη(z) = 0 for some η∗ when

ω = 0). Substituting eq. (B-5) into these conditions, they reduce to e ≥ 1/4 and η∗ = 2/3. In

addition, we see from eq. (B-5) that when ω = 0,

∂sη(z)

∂η

∣∣∣
η=2/3

= −9

4
< 0, (B-9)

and we further find that
∂2W (ζ, z)

∂δ2η

∣∣∣
η=2/3

= −3

4
< 0. (B-10)

This tells us that the population will converge towards and remain monomorphic for η∗ = 2/3

when ω = 0 is fixed.

Three phase portraits. Put together, the above observations allow us to deduce that de-

pending on the parameter e, there are three possible types of phase portraits for the adaptive
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dynamics of both traits (fig. 3B-D). When e ≤ 1/4, the singular value eq. (B-6) is outside

of the trait space (or on its boundary when e = 1/4) and the point (ω = 1/3; η = 0) is an

evolutionary stable attractor, meaning that the population will converge towards hybridization

avoidance (fig. 3B). When e ≥ 1/2, the singular value eq. (B-6) is also outside of the trait space

(or on its boundary when e = 1/2) and the point (ω = 0; η = 2/3) is an evolutionary stable

attractor, meaning that the population will converge towards worker-loss (fig. 3D). Finally when

1/4 < e < 1/2, the singular value eq. (B-6) is a repellor that lies within the trait space (i.e.

0 < ω∗ < 1 and 0 < η∗ < 1) and both points (ω = 1/3; η = 0) and (ω = 0; η = 2/3) are

evolutionary stable attractors. In this case evolutionary dynamics will depend on initial values

(fig. 3C).

B.1.3 Decomposition of directional selection in terms of inclusive fitness effects

The kin selection approach. In this section, we use the so-called ”kin selection” or ”inclu-

sive fitness” approach to obtain the selection gradient eq. (B-5) (Taylor and Frank, 1996). This

approach, which is based on invasion analyses of alleles in class-structured populations, gives the

same quantitative result about directional selection than other common methods in theoretical

evolutionary biology such as adaptive dynamics, population or quantitative genetics (assuming

genetic variance for traits is small, e.g. Taylor and Frank, 1996, Rousset, 2004, Lehmann et al.,

2016). But one particular advantage of a kin selection approach is that it immediately decom-

poses directional selection on mutant alleles into the sum of: (1) their direct fitness effects on

the reproductive success of the individuals that express them; and (2) of their indirect fitness

effects on other related individuals that can also transmit them. This decomposition allows to

delineate the various forces at play in the evolution of social behaviours (Hamilton, 1964). Here,

we use it to better understand the evolution towards worker-loss (and obtain fig. 3E-F).

We follow Taylor and Frank (1996)’s general method. Consider a population with mean trait

values ω and η. In this population, consider a focal colony that is home to a mutant allele that

codes for deviant trait values η• in queens and ω• in larvae that carry this allele. Let ω0 denote

the mean trait value expressed by all larvae within this focal colony. Using this notation, the

expected number of successful (i.e. that mate) males that are produced by the focal colony and
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that carry the mutant allele is given by,

w =
(1− f)

[
f ((1− η•)ω0 + η•e)

]
(1− f)

[
f ((1− η)ω + ηe)

] , (B-11)

where the numerator and denominator are the total number of males produced by the focal and

a random colony, respectively. For the focal colony (the numerator), (1 − f) is the probability

that an egg is haploid (i.e. male) while the term in square brackets is the colony’s investment

in workers (which in our model is also the probability that a sexual reaches maturity). The

denominator follows the same logic for an average colony in the population.

Similarly, the expected number of successful queens that are produced by the focal colony that

carry the mutant allele is,

w =
f(1− η•)(1− ω•)

[
f ((1− η•)ω0 + η•e)

]
f(1− η)(1− ω)

[
f ((1− η)ω + ηe)

] , (B-12)

where f(1 − η•)(1 − ω•) is the number of queens produced in the focal colony and the term in

square brackets is the probability that a queen survives till mating (i.e. the colony’s investment

in workers).

Fitness effects within a mutant colony. With the above notation, the selection gradient

vector can then be computed as,

s(z) =

sω(z)

sη(z)

 ∝
v

∂w

∂ω•
+ v

∂w

∂ω0
rlm + v

∂w

∂ω0
rlf

v
∂w

∂η•
rqm + v

∂w

∂η•
rqf

 , (B-13)

where all derivatives are evaluated at ω• = ω0 = ω and η• = η0 = η; rlm is the relatedness of a

female larva to a brother; rlf is the relatedness of a female larva to a sister; rqm is the relatedness

of a queen to its sons; rqf is the relatedness of a queen to its daughters; v is the reproductive

value of males and v is the reproductive value of queens (all these relatedness coefficients and

reproductive values are for a monomorphic population, Taylor and Frank, 1996, Rousset and

Ronce, 2004, Lehmann et al., 2016). Plugging eqs. (B-11) and (B-12) into eq. (B-13) with

relatedness coefficients and reproductive values corresponding to a haplodiploid system with

infinite matings (i.e. rlm = 1/2, rlf = 1/4, rqm = 1, rqf = 1/2, v = 1/2, v = 1), we obtain

expressions equivalent to eq. (B-5). But in contrast to eq. (B-5), the selection gradients in
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eq. (B-13) are expressed as a sum of fitness effects of a mutant allele via a given category of

individual. More specifically, the gradient sω(z) in eq. (B-13) is decomposed as the fitness effects

of an allele coding for a mutant value of ω in larvae: on the larvae that express this allele (v
∂w

∂ω•
,

yellow line in fig. 3E), on their brothers (v
∂w

∂ω0
rlm, blue line in fig. 3E), and on their sisters (i.e.

queens, v
∂w

∂ω0
rlf , red line in fig. 3E) that can also transmit the allele. Similarly, the gradient

sη(z) in eq. (B-13) is composed of the fitness effects of an allele coding for a mutant value of η

in queens: via their sons (v
∂w

∂η•
rqm, blue line in fig. 3F) and daughters (i.e. queens, v

∂w

∂η•
rqf ,

red line in fig. 3F). To construct panels E and F of fig. 3, we evaluated these five terms outlined

above at every step of an evolutionary trajectory from the baseline equilibrium in absence of

hybridization (ω = 1/3, η = 0) to complete worker-loss (ω = 0, η = 2/3). The evolutionary

trajectory was obtained by iteration, starting from the baseline equilibrium and taking steps of

size 0.001 (in units of trait space) in the direction of the selection gradient (eq. B-5).

B.1.4 Correspondence with Reuter and Keller (2001)

Here we connect our results to those of Reuter and Keller (2001), who used a kin selection

approach to study the evolution of caste determination when under full queen, full larval, or

mixed control (in the absence of hybridization). Our model corresponds to the case of full larval

control (eq. 3 of Reuter and Keller, 2001). Our selection gradient sω(z), shown in eq. (B-1) with

η = 0, reduces to eq. 3 of Reuter and Keller (2001) when we assume linear effects of investment

in workers on colony productivity. More specifically, if we set their term ∆c = δs/(δw) × 1/f

(their notation in their eq. 3, where ∆c corresponds to the gain in sexual production brought

by one additional worker) to

∆c =
1− fw
w

, (B-14)

and assume that the population is monogynous and highly polyandrous with balanced sex-ratio

(i.e. in their notation, f = 1/2; gf = 1/4; gm = 1/2; vf = 2; vm = 1), then we find that eq. 3 of

Reuter and Keller (2001) is proportional to our selection gradient sω(z) (eq. B-1) with η = 0.

In line with this, both yield the convergence stable equilibrium w∗ = 1/3.

B.2 Extensions

We now consider several extensions to our baseline model.
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B.2.1 Effect of finite matings

First, we relax our assumption that queens mate with an infinite number of mates (i.e. m <∞).

Selection gradient. Working from eq. (A-8) with c = 0, we find that the selection gradient

vector on caste determination ω and hybridization η under finite matings reads as,

s(z) =

sω(z)

sη(z)



=


1

6

(
1− η

ηe+ (1− η)ω
− 2

1− ω
+

3eη + 2(1− η)ω

2[ηe+ (1− η)ω][ηe(m− 1) + (1− η)ωm+ ηω]

)
1

1− η

(
e

3 [ηe+ (1− η)ω]
− 1

2

)
+

ω

6η

(
1

ηe+ (1− η)ω
− m

ηe(m− 1) + (1− η)ωm+ ηω

)
 .

(B-15)

These gradients are complicated but we can extract relevant information by starting our analysis

on the two boundaries of the trait space along which evolutionary dynamics may end up (ω = 0

or η = 0). Using eq. (B-15), we ask first when is worker-loss (ω = 0) stable? And second when

is hybridization avoidance (η = 0) stable?

Stability of worker-loss. Worker-loss is stable only if: (1) selection maintains ω at zero (i.e.

sω(z) ≤ 0 when ω = 0); and (2) selection on hybridization settles for an equilibrium η∗ (i.e.

sη(z) = 0 for some η∗ when ω = 0). From eq. (B-15), these two conditions reduce to

e ≥ 1

4
+

9

8(m− 1)
(B-16)

(region above dashed line in fig. 4A) and

η∗ = 2/3. (B-17)

Note that condition (B-16) becomes impossible as m → 1. This indicates that worker-loss

cannot evolve under monandry in this model. For m > 1, it is straightforward to show that

when condition (B-16) is true, the strategy η = 2/3 is both convergence stable and evolutionary

stable when ω = 0 (eqs. B-9 and B-10 for e.g. of the type of argument used).
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Stability of hybridization avoidance. Conversely, hybridization avoidance is stable only if:

(1) selection on hybridization maintains η at zero (i.e. sη(z) ≤ 0 when η = 0); and (2) selection

on caste determination in absence of hybridization settles for an equilibrium ω∗ (i.e. sω(z) = 0

for some ω∗ when η = 0). From eq. (B-15), these two conditions reduce to

e ≤ 1

2
+

1

2

5m− 1

6m2 −m− 1
(B-18)

(region below plain line in fig. 4A) and

ω∗ =
1

3
+

2

3(1 + 3m)
. (B-19)

Again, it is straightforward to show that when condition (B-18) holds, the strategy given by

eq. (B-19) is both convergence stable and evolutionary stable when η = 0 (eqs. B-3 and B-4 for

e.g. of argument).

Together, conditions (B-16) and (B-18) split the parameter space into 4 areas where both, none,

or only one of the conditions are met (fig. 4A). Where condition (B-18) is met but (B-16) is

not (grey region of fig. 4A), hybridization cannot evolve when rare and worker-loss cannot be

maintained. We therefore focus on the three remaining cases where worker loss can emerge.

Doing so, we find that there are four possible types of evolutionary dynamics.

Type 1: Evolution towards worker-loss. Where condition (B-16) is met but (B-18) is not

(dark green region of fig. 4A), selection favours the emergence of hybridization and maintenance

of worker-loss. In addition, it can be shown that under these conditions, there exists no singular

strategy within the trait space (i.e., there exists no z∗ = (ω∗, η∗) such that 0 < ω∗, η∗ < 1 and

s(z∗) = (0, 0), e.g. using the function Reduce[] in Mathematica, see notebook). This means that

the phase portrait of evolutionary dynamics is qualitatively the same as in fig. 3D: worker-loss

always evolves.

Type 2: Evolution towards worker-loss or hybridization avoidance depending on

initial conditions. Where conditions (B-16) and (B-18) are met simultaneously, both worker-

loss and hybridization avoidance are stable so either strategy is maintained when common (when

m ≥ 5, light green region of fig. 4A). Under these conditions, we find that there exists a singular

strategy within the trait space (top row, columns m = 5 and m = 6 in fig. S1 for numerical
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values, see Mathematica notebook for analytical expression). When we compute numerically the

leading eigenvalue of the system’s Jacobian matrix, we find that it is positive (fig. S1, second

row, columns m = 5 and m = 6, dashed line), revealing that the singularity is an evolutionary

repellor. Therefore the phase portrait of evolutionary dynamics is qualitatively the same as

in fig. 3C: depending on initial conditions, evolutionary dynamics will lead to worker-loss or

hybridization avoidance.

Type 3: Convergence stable and uninvadable intermediate strategy. Where neither

condition (B-16) nor (B-18) are met, neither worker-loss nor hybridization avoidance are stable

(when m ≤ 4, blue region of fig. 4A). In this case, a singular strategy within the trait space also

exists (0 < ω∗, η∗ < 1; fig. S1, top row, columns m ∈ {1, 2, 3, 4} for numerical values; Math-

ematica notebook for analytical expression). But now, this intermediate strategy is (strongly)

convergence stable as indicated by a negative leading eigenvalue of both the Jacobian matrix

and its symmetric part (fig. S1, second row, columns m ∈ {1, 2, 3, 4}, dashed and dotted lines).

When m ∈ {2, 3, 4}, this intermediate strategy is also uninvadable as shown by a negative lead-

ing eigenvalue of the Hessian matrix (fig. S1, second row, columns m ∈ {2, 3, 4}, full line). Thus,

when the number of mates is between two and four (m ∈ {2, 3, 4}) and neither conditions (B-16)

and (B-18) are met, the population converges and remains monomorphic for an intermediate

strategy 0 < ω∗, η∗ < 1.

Type 4: Emergence of polymorphism under monandry. When neither condition (B-16)

nor (B-18) are met and m = 1, the convergence stable intermediate strategy is invadable (i.e.,

the Hessian has a positive leading eigenvalue; fig. S1, second row, column m = 1, dashed line).

This means that once the population has converged to this intermediate strategy, it experiences

frequency-dependent disruptive selection leading to polymorphism (Geritz et al., 1998, Geritz

and Gyllenberg, 2005, Geritz et al., 2016). Inspection of the entries of the Hessian matrix reveals

that

hωη(z
∗)2 − hωω(z∗)hηη(z

∗) > 0 (B-20)

(fig. S2A, black line) and that hωω(z∗) ≤ 0 and hηη(z
∗) ≤ 0 (fig. S2A, green and grey lines).

This says that disruptive selection in our model is due to correlational selection between caste

determination and hybridization (i.e. the selection that associates caste determination and

hybridization, Phillips and Arnold, 1989) and only occurs because both traits are coevolving
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Figure S1: Properties of the internal singular strategy under monoandry

and low polyandry. Each column describes the unique internal singular strategy for

a specific value of m. Top row: value of the singular strategy (ω∗ in green, η∗ in black)

within the range of e for which an internal strategy exists (range given by eqs. B-16 and

B-18; Mathematica notebook for value of singular strategy). Bottom row: leading

eigenvalues of the Jacobian (dashed line; for convergence stability), symmetric part of

the Jacobian (dotted line; for strong convergence stability) and Hessian (full line; for

evolutionary stability) matrices at the singular strategy (Mathematica notebook for

calculations).
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(i.e. if either trait evolves while the other is fixed, the population remains monomorphic, e.g.

Mullon et al., 2018). We also find that

hωη(z
∗) > 0 (B-21)

(fig. S2A, blue line), which tells us that correlational selection is positive (i.e. selection favours a

positive correlation between caste determination and hybridization within individuals, Phillips

and Arnold, 1989). This is confirmed by individual based simulations, in which we observe the

emergence of a polymorphism characterised by a positive correlation between ω and η within

haplotypes (fig. 4C and fig. S2B-D).
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Figure S2: Polymorphism under monandry is due to positive correlational

selection. A. Characteristics of the Hessian matrix at the internal singular strategy as

a function of e for m = 1 (first column of fig. S1 for singular value): quadratic selection

coefficient on ω (hωω(z∗), in green) and on η hηη(z
∗), in grey); correlational selection

(hωη(z
∗), in blue) and its relative strength (hωη(z

∗)2−hωω(z∗)hηη(z
∗), in black, Math-

ematica notebook for calculations). B. Correlation between genetic values of each trait

within haplotypes in a simulated population (in gray, 4000 haplotypes sampled every

100 generations to compute Pearson’s correlation coefficient, same replicate as fig. 4C;

cumulative mean in black dashed). C & D Distribution of genetic values of all hap-

lotypes after 1000 generations (panel C) and after 100000 generations (panel D, same

replicate as panel B and fig. 4C).

B.2.2 Effect of thelytokous parthenogenesis

When we allow for a fraction c of a queens brood to be produce parthenogenetically, the selection

gradient (obtained from eq. A-8) is too complicated to be displayed or for singular strategies to
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be found analytically. We therefore go through an invasion analysis similar to above (Appendix

B.1.2 and B.2.1) and again ask: (1) under which conditions and values of ω is hybridization

avoidance (η = 0) stable? and (2) under which conditions and values of η is worker-loss (ω = 0)

stable?

Stability of hybridization avoidance. Hybridization avoidance is stable if selection on caste

determination settles for an equilibrium ω∗ in the absence of hybridization (i.e. sω(z) = 0 for

some ω∗ when η = 0), and if selection on hybridization at this equilibrium maintains η at zero

(i.e. sη(z) ≤ 0 when η = 0 and ω = ω∗). These two conditions respectively reduce to,

ω∗ =
1 + c

3 + c

(
1 +

2(1− c)2

(c+ 1) [(1− c)2 + (c+ 3)m]

)
, (B-22)

and

e ≤ 3(1 + c)

2(3 + c)
+

(1− c)(3− c)
2(5− c)(c+ 2m− 1)

+
4(3− c)(1− c)2

(5− c)(3 + c) [(1− c)2 + (c+ 3)m]
. (B-23)

Condition eq. (B-23) corresponds to the area of the graph below the plain line in fig. 5A-B,

where hybridization avoidance is stable. Conversely, the area above the plain line in fig. 5A-B

(in blue) is where avoidance is not stable and thus where hybridization evolves.

Stability of worker-loss. Similarly, worker-loss is stable if selection on hybridization settles

for an equilibrium η∗ in the absence of developmental plasticity (i.e. sη(z) = 0 for some 0 <

η∗ < 1 when ω = 0). We find that this equilibrium reads as

η∗ =
2

3

1

1− c

(
1− c

1−m

)
(B-24)

(fig. 5D). The equilibrium eq. (B-24) is between 0 and 1 (0 < η∗ < 1) and selection at this

equilibrium maintains worker-loss (i.e. sω(z) ≤ 0 when ω = 0 and η = η∗) when

e ≥ 1

4
+

3c

4
+

3[3− c(12− c)]
8(c+m− 1)

− 9(3− c)(1− c)c
8(c+m− 1)2

and c <
m− 1

3m− 1
. (B-25)

Note that condition eq. (B-25) is only possible when m ≥ 2. It therefore does not appear in

fig. 5A (which is for the case m = 1) but corresponds to the area above the dotted line in fig. 5B

(which has m = 2).
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Worker-loss coupled with complete hybridization. In principle, it is also possible with

parthenogenesis for a population to evolve worker-loss (ω = 0) with complete hybridization

(η = 1) (as parthenogenesis allows the production of queens in the absence of intraspecific

matings). We therefore further need to determine whether worker-loss can also be stable in the

case where η = 1 (rather than for some 0 < η∗ < 1). We find that selection under worker-

loss (ω = 0) and complete hybridization (η = 1) maintains both worker-loss and complete

hybridization (i.e. sω(z) ≤ 0 and sη(z) ≥ 0 where z = (ω, η) = (0, 1)) when

e ≥ c

1− c
and c ≥ m− 1

3m− 1
. (B-26)

Condition eq. (B-26) corresponds to the area above the dashed line in fig. 5A-B. While condition

eq. (B-25) can only be met only under polyandry (m > 1), condition eq. (B-26) can be met for

any number of mates m. This means that the evolution of worker-loss under monandry and

thelytokous parthenogenesis is always associated with complete hybridization in our model.

B.2.3 Effect of non-linear workforce productivity

Our analyses so far have assumed a linear effect of worker number on colony fitness (α = 1 in

eq. A-2b). Here we investigate how non-linear effects of the number of workers on the pre-mating

survival of virgin queens and males influence our results. We restrict our exploration to the case

where queens mate with an infinite number of males and do not reproduce via parthenogenesis

for simplicity (m → ∞ and c = 0). With α in eq (A-2b) as a variable, we find from eq. (A-8)

that the selection gradient vector now reads as,

s(z) =

sω(z)

sη(z)

 =


1

6

(
α(1− η)

ηe+ (1− η)ω
− 2

1− ω

)
1

1− η

(
αe

3 [ηe+ (1− η)ω]
− 1 + 2α

6

)
 . (B-27)

Solving for both of these gradients to vanish simultaneously, we find that there exists a unique

singular strategy, 
ω∗ = e+

e− 1

3

η∗ = 1 +
3e

(e− 1)(1 + 2α)

(B-28)
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(fig. S3). The Jacobian matrix (eq. A-10) of the system eq. (B-27) at this singular value eq. (B-28)

reads as

J(z∗) =


− 3(2 + α)

16(e− 1)2α
−(1 + 2α)2

24eα

−(1 + 2α)2

12eα
−(e− 1)2(1 + 2α)3

108e2α

 . (B-29)

It is straightforward to show from eq. (B-29) that the singular strategy eq. (B-28) is a repellor,

just as under linear effects (α = 1, eq. B-7). This indicates that as illustrated in fig. 3, the

coevolution of caste determination and hybridization under non-linear effects also lead to either

hybridization avoidance or worker-loss depending on parameters and initial conditions.

We can gain further insights into the influence of non-linear effects by determining when the

singular strategy eq. (B-28) is within the trait space (i.e., when 0 < ω∗, η∗ < 1). We find that

this is the case when
1

4
< e <

1 + 2α

4 + 2α
(B-30)

(light green region in fig. S3). This means that the threshold value for worker efficiency e above

which worker-loss can evolve is 1/4 (as under linear effects α = 1). Condition (B-30) further

shows that the threshold for e above which worker-loss always evolves (i.e. independently from

initial conditions, fig. 3D for e.g.) increases with α (dark green region in fig. S3). In other words,

the evolution of worker loss is facilitated under diminishing (α < 1, fig. S3A) and impaired under

increasing returns (α > 1, fig. S3C).

Figure S3: Non-linear effects of investment in workers. Singular values for

η (in black) and ω (in white) as a function of hybrid worker efficiency e (given by

eq. B-28).
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