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Abstract

Previous studies show that the indigenous people of the southern Cape of

South Africa were dramatically impacted by the arrival of European colonists starting

�400 years ago and their descendants are today mixed with Europeans and Asians.

To gain insight on the occupants of the Vaalkrans Shelter located at the southern-

most tip of Africa, we investigated the genetic make-up of an individual who lived

there about 200 years ago. We further contextualize the genetic ancestry of this indi-

vidual among prehistoric and current groups. From a hair sample excavated at the

shelter, which was indirectly dated to about 200 years old, we sequenced the

genome (1.01 times coverage) of a Later Stone Age individual. We analyzed the

Vaalkrans genome together with genetic data from 10 ancient (pre-colonial) individ-

uals from southern Africa spanning the last 2000 years. We show that the individual

from Vaalkrans was a man who traced �80% of his ancestry to local southern San

hunter–gatherers and �20% to a mixed East African-Eurasian source. This genetic

make-up is similar to modern-day Khoekhoe individuals from the Northern Cape

Province (South Africa) and Namibia, but in the southern Cape, the Vaalkrans man's

descendants have likely been assimilated into mixed-ancestry “Coloured” groups.

The Vaalkrans man's genome reveals that Khoekhoe pastoralist groups/individuals

lived in the southern Cape as late as 200 years ago, without mixing with non-African

colonists or Bantu-speaking farmers. Our findings are also consistent with the model

of a Holocene pastoralist migration, originating in Eastern Africa, shaping the geno-

mic landscape of historic and current southern African populations.
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1 | INTRODUCTION

The Cape Floristic Region is located on the southwestern tip of Africa

between latitudes 31� and 34.5� South and longitudes 18� and 26�

East. Towards the south and west the region is surrounded by the

Indian and Atlantic Oceans, whereas the interior margin is formed by

the more arid Karoo biomes. For its human populations, this region

has been an interesting refuge and/or cul-de-sac through the ages as

attested by its rich Stone Age archeological record with sites occupied

from more than a million years ago to as recent as the last century

(Lombard et al., 2012). From the fossil record we know that Homo

heidelbergensis lived here since about 600,000 years ago (Dusseldorp

et al., 2013), and at Klasies River Mouth one of the largest (�40 speci-

mens) early Homo sapiens collections have been found dating from

�110,000 years ago (Grine et al., 2017). This area's role in the origins

of modern human behavior and cognition is also well known from arti-

facts such as engraved ochre, shell beads, and sophisticated hunting

technologies dating to between about 80,000 and 60,000 years ago

(Henshilwood et al., 2018; Lombard, 2020; Tylén et al., 2020; Van-

haeren et al., 2019). Furthermore, one of the earliest known records of

domestication in South Africa (Henshilwood, 1996) has been attributed

to the presence of sheep at Blombos Cave, dated to about 2,000 years

ago. Taken together, this long and likely continuous occupation by

Homo and ancestral Homo sapiens in the Cape Floristic Region points to

its importance for understanding human history and development.

Today the Khoe-San live in scattered groups across southern Africa,

and can be grouped into San (historically foragers/hunter–gatherers)

and Khoekhoe (historically herders/pastoralists), a grouping that is

reflected in genetic stratification (Montinaro et al., 2017; Schlebusch

et al., 2012; Uren et al., 2016; Vicente et al., 2019). They are the

descendants of southern African Later Stone Age populations, mixed

with East African Later Stone Age pastoralist groups (Breton

et al., 2014; Schlebusch et al., 2017). Current-day San descendants

often display genetic stratification that can be grouped into Northern

San (Kx'a speakers from southern Angola, northern Namibia, and

Botswana), Southern San (Tuu speakers from southern Botswana and

South Africa) and Central San (Kalahari-Khoe speakers from central

Botswana). The Khoekhoe herders likely emerged from San groups

mixing between 2,000 and 1,200 years ago with incoming migrant

herders from East African (Breton et al., 2014; Macholdt et al., 2014;

Schlebusch et al., 2017). Historically, several Khoekhoe-speaking groups

persisted throughout the Cape in South Africa (De Jongh, 2016). Their

socio-cultural identity, however, became diluted as a result of interac-

tions with incoming European and Asian groups over the last 400 years

so that today their descendants form part of the so-called Cape

Coloured population (De Jongh, 2016; de Wit et al., 2010; Montinaro

et al., 2017; Schlebusch et al., 2012). Thus, teasing apart the factors that

contributed to the introduction of domestic animals and the arrival of

herding populations in southern Africa remains a challenge (Bollig

et al., 2013; Morris et al., 2014; Sadr, 2015; Smith, 2005).

From the DNA of living Khoe-San descendants it is known that

the deepest divergence among modern humans was found between

them and other Africans and non-Africans (Gronau et al., 2011;

Montinaro et al., 2017; Schlebusch et al., 2012, 2020; Veeramah

et al., 2012). The oldest modern human population divergence is cur-

rently calculated at 350,000–260,000 years ago based on the genome

of a southern African Stone Age hunter–gatherer boy (closely related

to Southern San) who lived �2,000 years ago (before the arrival of

herders in that area) compared to genomes of non-Khoe-San individ-

uals (Lombard et al., 2018; Schlebusch et al., 2017). We also know

that among Khoe and San groups, the Northern and Southern San are

the most genetically distinct from one another, with the Central San

being genetically intermediate (Schlebusch et al., 2012; Vicente

et al., 2019). The population divergence between the Northern and

the Southern San is estimated to between 150,000 and

190,000 years ago (Schlebusch et al., 2017, 2020).

Recently, it was demonstrated that all living Khoe-San groups,

including the Juj'hoansi, who were long thought to be unaffected by

recent migrations and admixture, harbor significant amounts of

genetic material coming from mixing with incoming East African pas-

toralists, Bantu-speaking farmers and/or non-African colonists

(Pickrell et al., 2014; Schlebusch et al., 2017; Schlebusch &

Jakobsson, 2018). Sometime between 2,000 and 1,200 years ago the

genetic make-up of pre-historic southern African individuals change

and starts displaying (modest) genetic admixture with incoming East

African-Eurasian herding group/s (Breton et al., 2014; Henn

et al., 2008; Macholdt et al., 2014; Pickrell & Pritchard, 2012;

Schlebusch et al., 2012, 2017; Skoglund et al., 2017). The Nama, a

pastoralist Khoe-Kwadi speaking group, further displays a distinct East

African-Eurasian genetic component (Breton et al., 2014; Pickrell

et al., 2012, 2014; Schlebusch et al., 2012, 2017; Skoglund

et al., 2017). Interestingly, at about 1,200 years ago, a pastoralist indi-

vidual from Kasteelberg in the Western Cape in South Africa was

found to have distinctly more East African/Eurasian ancestry com-

pared to Stone-Age groups and to modern-day Khoe-San groups

(Skoglund et al., 2017). Furthermore, the lactase persistence allele

found in Khoe-Kwadi groups is the same as in East African

populations, including the Maasai, and the variant is located on a large

unique haplotype block shared between East Africans and Khoe-

Kwadi groups (Breton et al., 2014; Macholdt et al., 2014). This lactase

persistence variant has been found in high frequencies in pastoralist

populations in Africa (Breton et al., 2014; Macholdt et al., 2014;

Tishkoff et al., 2007), and the gene is linked to one of the most strik-

ing examples of gene-culture co-evolution, where the persistence var-

iants have become important for groups drinking unprocessed milk.

From about 400 years ago, Khoe-San groups of the Cape Floral

Region came into contact with a range of European travelers, colonists,

settlers and their slaves, brought from Malaysia and other East, South

and Southeast Asian regions—all contributing to the complexity of the

genetic landscape (Hollfelder et al., 2020; Montinaro et al., 2017;

Schlebusch & Jakobsson, 2018). Bantu-speaking farmers from West

Africa reached north-eastern South Africa about 1,800 years ago, but

never settled in the arid west or the southern winter-rainfall areas

including the Cape Floral Region (Lombard et al., 2020). In recent

decades, however, descendants of these groups, together with migrants

from across Africa became part of the workforce and entrepreneurial

2 COUTINHO ET AL.



scenery of urban South Africa throughout the region. However, by con-

trolling for recent admixture from European colonists, Bantu-speaking

farmers and East African pastoralists, the genetic diversity among Khoe-

San groups can be shown to be geographically structured over the

greater area of southern Africa, indicating modest levels of gene-flow

among Khoe-San groups in pre-historic times (Vicente et al., 2019).

It is still unclear which East African group/s introduced pastoral-

ism to southern Africa and with whom they mixed to form the early

southern African Khoekhoe populations (De Jongh, 2016;

Morris, 2014). Whereas the effects of mixing with East African pasto-

ralist groups can be seen to a certain extent in the genomes of

modern-day Nama (some of whom are still pastoralists), most living

Khoe-San groups have been impacted by subsequent admixture

events with other groups, including non-Africans (Schlebusch &

Jakobsson, 2018). As a result, the genetic relationship between pre-

historic Khoekhoe herding groups and autochthonous San hunter

gatherer populations became masked (De Jongh, 2016; Montinaro

et al., 2017). Genetic data from human remains from archeologically

well-characterized sites can improve our understanding of the interac-

tions between groups and the processes related to the introduction of

pastoralism to southern Africa. Here we report on the genome

obtained from the hair of a person who lived approximately 200 years

ago at the Later Stone Age Vaalkrans Shelter (Henshilwood & van

Niekerk, 2009), in the Cape Floral Region (Figure 1).

We explored the ancestry of this individual and searched for signs

of any mixing with colonists. We further compared the genomic data

obtained from the Vaalkrans Shelter hair sample to that of previously

published ancient southern African individuals (Figure 2), spanning dif-

ferent times and different contexts to reveal genetic affinities among

individuals and groups. Finally, we examined the impact of the migra-

tions that introduced pastoralism to the southern tip of Africa.

2 | RESULTS

2.1 | DNA extraction and sequence results

Following DNA extraction of the hair sample from Vaalkrans Shelter,

8 DNA libraries were built for different dilutions using two different

library protocols (see Section 5, Tables 1 and S1). We sequenced the

libraries to completion and reached 1.01× genome coverage for the

Vaalkrans man. As is expected for hair samples (Gilbert et al., 2006),

mitochondrial coverage was very high (4,846×). Contamination esti-

mates were low for each library (Table 1) and the expected deamina-

tion patterns for ancient DNA (Sawyer et al., 2012) were distinct

(Figure S1). The average read length of merged reads (restricted to

read >35 bps) were between 63 and 82 bps, similar to previous

sequence length estimates from southern African ancient DNA

sequences obtained from bone and teeth (Schlebusch et al., 2017).

The Vaalkrans hair sample had more than twice the proportion of

human DNA than those extracted from other Stone and Iron Age Afri-

can bone and teeth samples, for which the highest proportion is 20%

(Schlebusch et al., 2017). The molecular sex estimation and the pres-

ence of Y-chromosome DNA in the Vaalkrans individual show that

the individual was a man (Mittnik et al., 2016; Tables S3 and S4).

2.2 | Uniparental markers

The Vaalkrans man's mitochondrial haplogroup was inferred to be

L0d3b1 (Table S2). Haplogroup L0d forms part of the deepest diverging

mitochondrial haplogroup clade in humans, namely L0 (L0d is suggested

to have emerged �100,000 years ago), and is found in high frequencies

in Khoe-San and Coloured groups (Barbieri et al., 2014; Schlebusch

F IGURE 1 Vaalkrans Shelter before
excavation; see Henshilwood and van
Niekerk (2009) for detailed archeological
context
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et al., 2013). Although rare compared to haplogroups L0d1 and L0d2

among Khoe-San and Coloured groups in southern Africa, haplogroup

L0d3 has its highest frequency in the current Eastern Cape and West-

ern Cape provinces of South Africa. It is found in highest frequencies in

descendants of Southern Khoe-San populations such as the Karretjie

people (Schlebusch et al., 2011; Schlebusch et al., 2013). The hap-

logroup is however wide-spread along the African east coast and is

found in low frequencies in individuals from Mozambique and Kenya as

well as one occurrence in Kuwait (Schlebusch et al., 2013). A Neighbour

Joining tree analyses of the Vaalkrans individuals' mtDNA together with

comparative L0d3 sequences from southern Africa, Tanzania and

Kuwait (Figure S2) showed that the Vaalkrans individual grouped with

other southern African L0d3 sequences and were closely associated

with Karretjie and Coloured (from Colesberg) individuals. Today, these

groups still live close to the Vaalkrans Shelter. Intriguingly, this hap-

logroup appears to be absent or at very low frequencies in Khoe-San

populations from Namibia, Botswana and Angola. Another individual

from a southern African pastoralist context dated to 1200 years ago

displayed the L0d1 haplogroup (Skoglund et al., 2017), common among

modern-day Khoe-San groups. Thus far, none of the other DNA-typed

southern African ancient individuals belong to the L0d3 lineage found

in the Vaalkrans man. Instead Later Stone Age individuals and one Iron

Age individual display other L0d haplogroups while other Iron Age indi-

viduals belonged to the L3e haplogroup (Morris et al., 2014;Schlebusch

et al., 2017; Skoglund et al., 2017).

Analysis of the Y-chromosome of the Vaalkrans man shows that

he likely belonged to the E1b1b1 haplogroup with the M35 mutation

(E-M35*; Tables S3 and S4). Although the E1b1b haplogroup is widely

distributed throughout Africa and southern Europe, the haplogroup

E1b1b represented by the M35 mutation includes a paraphyletic sub-

clade defined by an extra mutation, M293, which is more restricted in

its distribution to eastern Africa and southern Africa (Henn et al.,

2008). The sequence data for the Y-chromosome of the Vaalkrans

man did not, however, cover that specific position. The eastern Afri-

can individual from Mota who lived about 4,500 years ago, excavated

from a foraging context, also carried an E1b1 haplotype (Gallego

Llorente et al., 2015), although more ancestral than that of the

Vaalkrans man, while other individuals from southern Africa dated to

F IGURE 2 Map of southern
Africa showing where the remains of
prehistoric individuals were excavated
and where modern-day groups are
known to have resided in historic
times. Modern-day Khoe-San
populations are displayed by filled
circles, Bantu speakers are displayed
by squares, and pre-historic/historic

individuals are displayed by diamonds

TABLE 1 Summary of sequence results with a focus on the average read length, average proportion human DNA, genome coverage,
mitochondrial coverage, and contamination estimates for the libraries sequenced for the Vaalkrans individual

Library Dilution
Number of
libraries

Mean read
length

Mean

prop.
human
DNA (%)

Genome
coverage

Mitochondrial
coverage

Mitochondrial

contamination
estimate
(ContamMix)

Autosomal
contamination
estimate (%)

Blunt 1:1, 1:2, 1:4,

1:10

4a 63 42 0.25 622.71 0.01 0.075

UDG-treated 1:4 4 82 40 0.76 4223.14 0.01 0.274

Merged data 8 82 1.01 4845.85 0.01 0.485

aOne library was made for each of four dilutions of this extract.

4 COUTINHO ET AL.



the Later Stone Age display A1b haplotypes (Schlebusch et al., 2017;

Skoglund et al., 2017).

2.3 | The genomic ancestry of the Vaalkrans man

We analyzed the genome sequence data of the Vaalkrans man

together with Later Stone Age and Iron Age individuals from the

KwaZulu-Natal province of South Africa (Schlebusch et al., 2017),

Later Stone Age individuals from the Cape province (Skoglund

et al., 2017), as well as modern-day southern African Khoe-San and

Bantu-speaker groups typed using the Illumina 2,5 Omni array

(Schlebusch et al., 2012, 2016), and other modern-day African and non-

African groups (Pagani et al., 2012; The 1000 Genomes Project

Consortium, 2015), denoted in the “SA-KGP-EA” dataset (see Section 5

and Figure S5 for an overview of the included populations). The locations

of the southern African individuals/groups are displayed in Figure 2.

Principal components analysis (PCA) showed the first component

separating (ancient and modern) southern Africans from other Afri-

cans (Figure 3). The second component separates West (Yoruba) and

East (Maasai) Africans. The Later Stone Age individuals excavated at

St Helena and Faraoskop Rock Shelter in the Western Cape Province

of South Africa group with the Later Stone Age Ballito Bay A and B

individuals from KwaZulu-Natal, whereas the Vaalkrans man and the

Kasteelberg individual group together near the Nama (the only

Khoekhoe-speaking herder group that remain today). The Northern

San (Juj'hoansi) form a tight group between the Stone Age southern

African individuals and the Southern San (Karretjie People). The PCA

results are reflected in f3-statistic analyses where the Vaalkrans man

shows affinity to the Nama (Figure S3B).

Admixture proportions were also summarized for the SA-KGP-EA

dataset (Figures 4 and S5), and the Vaalkrans man's ancestry consists of

a major Southern Khoe-San component and an East African component

(15–32%). The Later Stone Age individuals from southern Africa who

lived 2,000 years ago are genetically similar to modern-day southern

Khoe-San groups and the Vaalkrans man, but without the East African

admixture component. The genetic makeup of the 1,200-year-old

remains of the pastoralist from Kasteelberg is similar to that of the

Vaalkrans man, but carries a slightly greater fraction East African ances-

try (24–29%, Figures 4, S4F, S5). Both these individuals grouped close

to the Nama Khoekhoe population on the PCA, which is consistent

with the observation that the Nama has the highest proportion of East

African ancestry among all the modern-day Khoe-San groups (Figure 4,

Schlebusch et al., 2017).

2.4 | The origin of the East African ancestry
component

We used f-statistics to investigate the potential source of East African

admixture in the Vaalkrans individual. The model comprised of chim-

panzee as an outgroup, the Vaalkrans individual, the Juj'hoansi rep-
resenting the Khoe-San component, and another African population/

ancient individual (Amhara, Somali, Oromo, Maasai, the Mota individ-

ual, Yoruba, Luhya, Southeast Bantu speakers or Southwest Bantu

speakers) as the fourth group.

The Amhara as the source East African population gives the highest

D-value (Figure 5). The negative D-values for the model when West Afri-

can (Yoruba, or groups of West African descent; Luhya, Southeast Bantu

speakers or Southwest Bantu speakers) populations are included as the

fourth population suggest that the Vaalkrans man does not share ancestry,

nor was he admixed with the ancestors of these populations (Figures 5,

S4A and Table S5). Estimates of admixture fractions, f4-ratios (Table S6),

result in qualitatively similar observations when we use Amhara as the

donor population for the East African migrants to southern Africa.

We further examined the relationships of the Vaalkrans man's

ancestry components using an explicit model approach (qpGraph). We

first built a model to verify the source of admixture into the Vaalkrans

man (Figure S4D) based on a southern African ancestral source popula-

tion, related to the Ballito Bay A boy from KwaZulu-Natal and an early

East African source population related to the Mota individual. This

model resulted in an East African admixture fraction of 32% (z-score

−0.062) for the Vaalkrans man. The same model was used for estimat-

ing the East African admixture fraction for the Kasteelberg individual,

resulting in a similar outcome (Figure S4F, East African ancestry fraction

29%, z-score 0.092). An alternative (similar) model that tests West Afri-

can (i.e., Bantu-speaker) admixture instead of East African as the admix-

ture source into the Vaalkrans man could be rejected (Figure S4A, z-

score 66.5). A Model with a direct contribution from a European source

F IGURE 3 Principal components analysis plot of the Vaalkrans
man (maroon diamond) and four southern African Later Stone Age

individuals and three southern African Iron Age individuals
(Schlebusch et al., 2012; Skoglund et al., 2017). The Kasteelberg
individual was found in a pastoralist context (purple diamond). Both
the Vaalkrans man and the Kasteelberg individual group with the
(modern-day) Nama, a pastoralist Khoe-San group, whereas the other
Later Stone Age individuals (Ballito Bay A and B, St Helena and
Faraoskop) group together, at the extreme end of PC1
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into the Vaalkrans man was also rejected (Figure S4E). We further

investigated alternative sources to the East African component, includ-

ing some fraction of Neolithic Europeans, and these models

(Figures S4B and S4C) give slightly worse fits to the data, but are still

not statistically rejected. Hence, we conclude that the source of the

East African component in the Vaalkrans and modern-day Khoe-San

groups is related to, but somewhat different from the Amhara of today

(Schlebusch et al., 2017; Skoglund et al., 2017).

2.5 | The East African ancestry over time

The inferred East African admixture fractions dramatically increase

between 2,000 and 1,200 years ago in southern African indigenous

groups (Figure 6). The Ballito Bay, Faraoskop, and St Helena individ-

uals would have lived before the arrival of East African pastoralists to

southern Africa, and therefore they would have no East African ances-

try (Schlebusch et al., 2017). The Kasteelberg individual, dated to

F IGURE 4 Estimated ancestry components, assuming eight ancestral clusters, for a subset of relevant groups and individuals, extracted from
the SA-KGP-EA dataset. The ancestry components in the figure for modern-day populations display population averages. The results for the
complete set of individuals, and other assumptions on the number of ancestral clusters, can be seen in Figure S5. The “non-Khoe-San”
component (blue) and the “Khoe-San” component (brown) is very similar assuming 7 to 11 ancestral clusters, see figure S5

F IGURE 5 Genetic similarity of
the “non-Khoe-San” component of
the Vaalkrans man's genetic make-up
among East and West African groups.
The D-values for the computation D
(chimpanzee, Vaalkrans man;
Juj’hoansi, test group) are indicated
with a color on the map. The test
populations (from the SA-KGP-EA
dataset) include East African
populations, the Mota individual,

West African Yoruba, and two Bantu-
speaking groups from South Africa.
The best match occurs with the
Amhara from Ethiopia. Bantu-
speaking populations are indicated by
diamond symbols
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1,200 years ago, and excavated from a pastoralist context, lived some-

time after the East African migration to southern Africa. Interestingly,

the greatest level of the East African ancestry component among

southern African individuals was not observed for the present day

pastoralists (e.g., Nama), instead it was greater some

1,200–2000 years ago. This may be a reflection of an initial migration

and admixture of East African pastoralists followed by subsequent

and continuous admixture with surrounding Khoe-San groups. It has

been shown that all modern-day Khoe-San groups have admixture

with various groups, including non-Africans (Schlebusch et al., 2012,

2017), making fine-scale interpretations of the past migration and

admixture events based on present-day populations difficult. The

Vaalkrans man does not show recent admixture from non-African or

West African groups, verifying the East African ancestry component's

existence in the southern Cape until historic times (Figure 6).

2.6 | Lactase persistence

The SNPs rs4988235 (13910*T, with the derived variant common

among Europeans), rs41525747 (13907*G, common in Ethiopia),

rs869051967 (14009*G, a variant common in Arab groups from

Africa) and rs41380347 (13915*G, a variant common among Mid-

dle Easterners), and rs145946881 (14010*C, with the derived vari-

ant common among Kenyans and Tanzanians) are all associated

with lactase persistence (in the MCM6/LCT gene complex)

(Schlebusch & Jakobsson, 2018; Tishkoff et al., 2007). The genome

data for the Vaalkrans man showed one derived allele covering the

SNP rs145946881 (14010*C) that is associated with lactase

persistence (Table S7). His genome also covered two other lactase

associated SNPs, and for these the non-persistence variants were

found, Table S7). The 14010*C variant at rs145946881 has been

found in relative high frequencies in the Nama, between 20% and

36%, and at low frequencies (2.5–10%) in San hunter gatherer

populations (Breton et al., 2014; Macholdt et al., 2014). The pres-

ence of the East African lactase persistence variant is a further

indication of the partial East African pastoralist ancestry of the

Vaalkrans man.

3 | DISCUSSION

Genetic investigations of historic and prehistoric individuals from

southern Africa reveals an interesting and complex human migration

history for the region. The Vaalkrans man displays a dual ancestry,

with one part related to southern San groups and one part related to

East Africans. Similar ancestries are seen in modern-day Nama

Khoekhoe, and are also reflected in the Kasteelberg pastoralist indi-

vidual who lived 1,200 years ago. f4-Statistics verify that the ancestry

of the Vaalkrans man as well as all modern-day Khoe-San groups is

the result of admixture between Later Stone Age southern African

foragers and an East African (with some input from a Eurasian group)

group similar to the Amhara (Table S6). Ancestry results are also

reflected in the uniparental markers for the Vaalkrans man, who

exhibited a mitochondrial haplogroup common among southern

Khoe-San and a Y-chromosome variant that is common among East

African pastoralist groups and the Nama (Tables S3 and S4, Henn

et al., 2008, Schlebusch, 2010). The Vaalkrans man also carried a lac-

tase persistence variant, which is common among (some) East African

pastoralist populations and the Nama (Breton et al., 2014; Macholdt

et al., 2014). Thus, the Vaalkrans man was likely part of the Cape

Khoekhoe pastoralist populations whose genetic makeup of East Afri-

can intogression dates to before 1200 years ago (Skoglund

et al., 2017). The Nama (the only remaining Khoekhoe pastoralist pop-

ulation) has a small fraction of additional Eurasian ancestry, which is

likely a result of recent admixture (Pickrell et al., 2012; Schlebusch

et al., 2012), but this ancestry component is not present in the two

ancient pastoralist individuals from southern Africa (Vaalkrans and

Kasteelberg, Figure 4).

Despite having a younger age than the Iron Age individuals from

KwaZulu-Natal (Schlebusch et al., 2017), who displayed a predomi-

nant West African ancestry (Figure 1 in Schlebusch et al., 2017), the

Vaalkrans man shows no West African ancestry. Current-day Nama

individuals display small amounts of West African ancestry, likely from

recent admixture (Pickrell et al., 2012; Schlebusch et al., 2012). Bantu

speakers started to arrive in the northern parts of today's South Africa

�1800 years ago and gradually migrated southwards (Huffman, 1989;

Steyn et al., 2019), admixing with Khoe-San populations along the

way (Schlebusch et al., 2017). By the 1600s, Bantu speakers occupied

much of the eastern part of southern Africa up to the Great Fish River

in the Eastern Cape. The Western parts of South Africa and the West-

ern Cape was occupied by Khoekhoe herders (Schlebusch et al., 2017;

F IGURE 6 Proportion of East African ancestry in southern
African individuals/groups as a function of time. The fraction of East
African ancestry dramatically increases for southern African

individuals between 2,000 and 1,200 years ago. Gray represents
values estimated using qpGraph and black represents values from
admixture (the blue “non-Khoe-San” component in Figure 4). The
point-estimates of East African ancestry in the graph were taken from
the following individuals (from oldest to youngest): Ballito Bay B,
Ballito Bay A, Kasteelberg, Vaalkrans, and (present-day) Nama as a
group
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Schlebusch & Jakobsson, 2018). Today, their descendants are likely

assimilated into the mixed Coloured population of the region. While

some groups such as the southern Cape Hessequa retain their

Khoekhoe identity (De Jongh, 2016; Henshilwood & van

Niekerk, 2009), they appear to have mixed with other groups

(De Jongh, 2016; C. Henshilwood & van Niekerk, 2009). These groups

are related to the Vaalkrans man, and are possibly among his

descendants.

The distinct Southern San affinity for the Vaalkrans and

Kasteelberg individuals (in contrast to Northern San) implies that gene

flow was hindered/restricted between incoming East African herder

and San groups during earlier times. In addition, most modern-day

Khoe-San groups display admixture with West Africans and/or non-

Africans (Figures 3 and 4), which is absent in the Vaalkrans and

Kasteelberg individuals. Even though only a handful of historic/prehis-

toric individuals from southern Africa have been genetically investi-

gated at this date (as opposed to the DNA data of modern-day groups

represented by many individuals), the genetic data from the Vaalkrans

man is clear; he traces his genetic ancestry back to East Africans and

the Southern San and he was likely a Khoekhoe herder who lived

200 years ago.

4 | CONCLUSION

The genome of the Vaalkrans man could be sequenced from a hair

sample to 1.01× coverage, resulting in rich genetic information about

the ancestry of this individual. Our results further support the finding

that East African herders arrived in the southernmost tip of Africa

between 2,000 and 1,200 years ago, which led to the formation of

the southern African Khoekhoe herding populations by mixing with

the ancestors of the Southern San. Analysis of the pastoralist DNA

from Kasteelberg, Vaalkrans and the only surviving pastoralist popula-

tion today, the Nama, reveals a distinct genetic signature for southern

African herder groups comprising East African and Southern San

ancestry that has prevailed through time to the present day. The East

African component is genetically similar to the current-day Amhara

groups.

While the information from the genetics of historic and prehis-

toric individuals is beneficial for archeological investigations, as it adds

genetic data along the temporal dimension, these data are also crucial

for understanding modern-day population genetic investigations. For

instance, the variable East African ancestry among current day Khoe-

San groups will confound and potentially cause misleading results for

many demographic investigations of the genetic landscape and human

history earlier than 2,000 years ago if the East African component is

not accounted for (e.g., Vicente et al., 2019). It can cause underesti-

mates of population divergences or overestimates of genetic affinities

among groups. Nonetheless, the time horizon on this East African

component among all Khoe-San groups, and its magnitude, was first

revealed by studying 2000-year-old remains of Later Stone Age

southern Africans (Schlebusch et al., 2017; Skoglund et al., 2017).

With the sequencing of additional, and perhaps older, ancient

individuals from Africa, the complex genetic structure and history of

prehistoric populations of Africa may be better understood. In particu-

lar, our study exemplifies how state-of-the-art paleo-genomic

approaches can help in understanding the context of archeological

sites that do not present skeletal human remains, by examining

remains such as human hair.

5 | METHODS

5.1 | The Vaalkrans Shelter

Vaalkrans Shelter is in the De Hoop Nature Reserve located along a

rocky shoreline on the southern Cape coast of South Africa, approxi-

mately 20 m from the Indian Ocean and 11 m above sea level. The hair

was recovered in quadrate N5c from the topmost layer AA that consists

of medium brown to tan colored compacted eolian sand containing a

dense concentration of shellfish. Similar clumps of hair were recovered

from other layers at the site. Layer AA was not radiocarbon dated. Two

charcoal samples from Square M5b, Layer ACA and Square N5a, Level

ACB, provided radiocarbon ages of 220 ± 45 (Pta-9192) years BP and

140 ± 35 (Pta-9187) years BP respectively (C. Henshilwood & van

Niekerk, 2009). The hair sampled for this study is probably slightly youn-

ger than these dates. Henshilwood (C. S. Henshilwood, 2008) showed,

based on historical records of European travelers in the southern Cape

region from the late 1600s, that indigenous Khoe-San people were liv-

ing as herders and coastal hunter–gatherers in the De Hoop/Riversdale

Plain area into the 1800s. The presence of copper and an iron chunk in

the upper layers, close to where the hair was found, suggest the final

occupants of the site may have had contact with European material cul-

ture or people, perhaps also through salvage from Portuguese or Dutch

shipwrecks that litter this coast.

Organic preservation at Vaalkrans is excellent. Plant remains, par-

ticularly geophytes, are well preserved, as are tortoise scutes. The

most abundant remains at the site are shellfish, particularly Perna

perna (brown mussel), Turbo sarmaticus (giant periwinkle), Diloma spe-

cies (periwinkles), Haliotis midae (abalone), and various limpet species.

Other faunal remains are far less numerous compared to the shellfish

remains. Most bones are from small animals such as hyrax (Procavia

capensis), dune mole rats (Bathyergus suillus) and tortoise (Chersina

angulata). Fish and snake bones were also present. No human bone

remains were found at the site.

Only a few stone artifacts were found, mostly informal quartz/

quartzite pieces (C. Henshilwood & van Niekerk, 2009), sometimes

associated with herder sites (Beaumont et al., 1995; Orton &

Parsons, 2018), which may be further implied by the presence of a

thin-walled pottery sherd found at Vaalkrans (C. Henshilwood & van

Niekerk, 2009). The close-by sites of Klipdrift Shelter, was occupied

between about 65,000 and 59,000 years ago during the Middle Stone

Age (C. S. Henshilwood et al., 2014), and Klipdrift Cave occupied

between 13,700 and 10,700 years ago during the Later Stone Age

(Ryano et al., 2017), serve as evidence for the time depth of human

occupation and the presence of ancient hunter–gatherer populations
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on this landscape. Today, the descendants of the Hessequa Cape

Khoekhoe still live in the region (De Jongh, 2016).

5.2 | DNA-extraction

It has been shown previously that hair (both from modern-day individ-

uals and ancient material) is resistant to contamination and/or can be

easily decontaminated, making hair a good source for endogenous

DNA (Gilbert et al., 2006). As hair grows, hair shaft cells become

keratinized, providing a physical barrier between the endogenous

DNA in the keratinized cells and the outside environment. Hair is also

hydrophobic, which prevents damage of the endogenous DNA

(Gilbert et al., 2006).

One small tuft of circa 1 cm hair shafts was washed in 0.5%

sodiumhypochlorite (NaOCl) and washed three times in UV irradiated

DNA-free water. A total of 1 mL of digestion buffer containing 10 mM

Tris–HCl (pH 8.0), 10 mM NaCl2, 2% (w/v) sodium dodecyl sulfate

(SDS), 5 mM CaCl2, 2.5 mM ethylene-diamine-tetra-acetic acid (EDTA)

(pH 8.0), 40 mM dithiothreitol (DTT) and 10 mg/mL proteinase K solu-

tion (Life Technologies) was added to the hair shaft sample followed by

incubation in 14 h at 37�C (Gilbert et al., 2004; Vilstrup et al., 2013).

After 14 h of incubation, an additional 10 mg/mL Proteinase K was

added followed by incubation at 55�C until the hair shaft was

completely digested. The DNA-containing solution was concentrated

to 200 μL using Amicon Ultra-4 PLTK Ultracel-PL membrane 30 kDa

(Millipore) and purified using Minelute PCR purification kit according to

manufacturer's protocol and eluted in 110 μL Eb-buffer (Qiagen).

5.3 | Library preparation

Blunt-end Illumina multiplex sequence libraries were prepared from

20 μL of extracted DNA excluding the fragmentation step (Günther

et al., 2015; Meyer & Kircher, 2010; Schlebusch et al., 2017). To

remove inhibitors, the DNA extract was diluted 1:2, 1:4, and 1:10 in

distilled and UV-irradiated H2O. A total of four sequencing libraries

were prepared including two library negatives. To determine the opti-

mal number of PCR cycles for the amplification of the libraries,

quantitative-PCR (qPCR) was performed. The sequencing libraries

were amplified in duplicate reactions in a total volume of 50 μL includ-

ing negative library- and PCR controls (one for each sample). The

cycling conditions were 12 min at 94�C, followed by 20 cycles of 30 s

at 94�C, 30 s at 60�C and 45 s at 72�C and a final extension step for

10 min at 72�C.

In addition, four damage-repair sequencing libraries were pre-

pared from 1:4 dilution and treated with USER enzyme in order to

repair post-mortem deaminated sites (Briggs et al., 2010). The libraries

were amplified in duplicate reactions using Accuprime DNA polymer-

ase (Thermo Fisher Scientific) in a total volume of 50 μL. The cycling

conditions were 2 min at 95�C, followed by 20 cycles of 15 s at 95�C,

30 s at 60�C and 60 s at 68�C and a final extension step for 5 min at

68�C (Gansauge & Meyer, 2013). For both Blunt-end and USER-

treated sequencing libraries, duplicate samples were pooled and puri-

fied using Agencourt AMPure XP beads (Beckman Coulter) according

to manufacturer's protocol and eluted in 40 μL TET buffer. The quality

of the purified libraries was analyzed on a Tapestation 2200 using the

High Sensitivity D1000 Kit (Agilent Technologies) and the quantity

was measured using Qubit 3.0 (Life Technologies). Samples were

pooled at equimolar concentrations and sequenced on the HiSeqX

system (Illumina) with 150 bp paired-end v2.5 chemistry.

Libraries were sequenced on 1/5th or 1/6th of an Illumina HiSeq

XTen lane at SciLifeLab SNP&Seq Platform in Uppsala using paired-

end 150 bp chemistry. As the DNA libraries contained substantial

levels of human DNA and the fraction of very short (<35 bp) frag-

ments was modest for the initial sequencing results, all libraries were

re-sequenced on 1/8th of an Illumina HiSeq XTen lane to increase

genome coverage.

5.4 | Sequence analysis and preparation for PCA
and admixture

Paired-end sequence reads were merged and trimmed, and mapped

against the human reference genome (build 37) (Günther et al., 2018;

Kircher, 2012). PCR duplicates were collapsed to make consensus

sequences for each set of fragments with identical start and stop posi-

tion. Sequences were further merged to library level depending on the

type of library method used to generate sample libraries (blunt-end or

damage-repair libraries) to be quality assessed. The blunt-end and

damage-repair libraries were finally merged to create one final

sequence-file for subsequent population genetic analyses.

Deamination patterns were generated and checked for each

library (Sawyer et al., 2012). Contamination estimates were calculated

using ContamMix, where sample mitochondrial sequences are com-

pared to 311 reference mitochondrial genomes in order to determine

whether sample mitochondrial genomes map better to one of the ref-

erence genomes or not (Fu et al., 2013). Estimates are given as an

estimate of authenticity as opposed to an estimate of contamination

seen in methods such as that of Green et al. (2008). Autosomal con-

tamination was also estimated using VerifyBamID (Jun et al., 2012).

Genetic sex determination followed the method developed in Mittnik

et al. (Mittnik et al., 2016), where ratios of sequence fragments map-

ping to the X and autosomal chromosomes is used to determine

whether the sample is female or male.

A mitochondrial consensus sequence was constructed for each

library-level and individual-level merged sample sequence using ANGSD

(minimum base quality score of 30, and a requirement of at least 3 reads

to verify the DNA sequence) (Korneliussen et al., 2014). The online hap-

lotyping tool “Haplofind” (Vianello et al., 2013), and PhyloTree mtDNA

Build 17 (February 18, 2016) (van Oven, 2015), were used to call haplo-

types for all three libraries to ensure a reliable mitochondrial haplotype

call. Haplotype/s are reported against the Reconstructed Sapiens Refer-

ence Sequence (RSRS; Behar et al., 2012).

A mtDNA phylogentic tree was constructed by collating the

Vaalkrans mtDNA sequence with; all L0 haplotypes identified in
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Schlebusch et al. (2013), all L0d3 sequences published in Schlebusch

et al., 2013, all Tanzanian and Kuwait L0d3 sequences published in

Behar et al. (2008) and Gonder et al. (2007). Since most L0d3 compar-

ative sequences were only sequenced for HVRI and II, only these

regions were analyzed. Sequences were aligned to the Reconstructed

Sapiens Reference Sequence and a Neigbour Joining tree was con-

structed in Mega v.4. A Neanderthal sequence were used to root

the tree.

Y-chromosome variants were called using the samtools mpileup

function (Samtools v 1.3) (Li & Durbin, 2009). Y-chromosome haplo-

type was called using PhylotreeY (van Oven, 2015) as well as ISOGG

(International Society of Genetic Geneaology) (v 11.224, http://isogg.

org). Haplotype analysis excluded transition sites from sample bam

files, and only used sequence data with a minimum base and

mapping quality score of 30 for each site. Nomenclature from the

ISOGG database was used to present the haplotype for the Vaalkrans

sample.

To be able to perform population genetics analysis on the

Vaalkrans man, as the data contained both blunt-end and damage-

repair data, the sequence data was merged together with the compar-

ative dataset of Schlebusch et al. (2017), as well as additional ancient

southern African individuals, from St Helena, Faraoskop and

Kasteelberg in South Africa (Skoglund et al., 2017). In brief, the com-

parative dataset (referred to as SA-KGP-EA dataset) was composed of

the ancient southern African Later Stone Age and Iron Age individuals

from the KwaZulu-Natal province (SA) (Schlebusch et al., 2017),

southern African Khoe-San and Bantu-speaker groups typed using the

Illumina 2,5 Omni array (Schlebusch et al., 2012, 2016), 6 populations

from the 1000 genomes database (LWK, MKK, YRI, TSI, JPT, CEU)

(The 1000 Genomes Project Consortium, 2015), and 6 East African

populations typed on the Illumina 1 M Omni array (SOMALI,

AMHARA, OROMO, GUMUZ, ARI-BLACKSMITH, SUDANESE)

(Pagani et al., 2012). Further details on this comparative dataset can

be found in Schlebusch et al. (2017).

5.5 | Population genetic analyses

Principal components analysis was carried out on a haploidized ver-

sion of the merged dataset of the Vaalkrans man along with the SA-

KGP-EA dataset, as well as the 3 ancient southern African shotgun-

sequenced individuals from Skoglund et al. (2017). To create a haploid

dataset, one allele is chosen randomly at each locus. The program

package EIGENSOFT and smartpca was used to generate a PCA using

only transversion sites for each of the ancient samples (Patterson

et al., 2006; Price et al., 2006). The Vaalkrans man and the ancient

individuals from Schlebusch et al. (2017) and Skoglund et al. (2017)

were projected onto the data of modern-day individuals. While the

above comparative dataset compares the Vaalkrans man in a broader

context, we wanted to investigate his ancestry in a more specific Afri-

can context, therefore a PCA was generated for the merged dataset

of the Vaalkrans man with a selection of different modern Khoe-San

populations, as well as populations from West Africa and other

southern African ancient individuals. Genetic affinities among combi-

nations of the Vaalkrans man and other individuals from the SA-KGP-

EA dataset were investigated using D-statistics.

The program ADMIXTURE was used to infer the ancestry compo-

nents for the Vaalkrans individual, previously published prehistoric

individuals and modern-day individuals. Before analysis, the dataset

was LD pruned in PLINK 1.9 (https://www.cog-genomics.org/plink2)

with the parameters “-indep-pairwise 200 25 0.4.” Fifty iterations

were run for K = 2 to K = 15. Results from ADMIXTURE were summa-

rized for each K using PONG (Alexander et al., 2009; Behr

et al., 2016). Results were visualized using R (R Core Team, 2017). A

summary admixture graph was generated using R and the Q-values of

the best iteration run for the k-values which exhibited enough resolu-

tion to show Northern and Southern Khoe-San groups as separate

ancestry components.

Genetic affinities (focusing on the East African component in

modern-day Khoe-San individuals and prehistoric individuals from

southern and eastern Africa [Gallego Llorente et al., 2015; Schlebusch

et al., 2012, 2017; Skoglund et al., 2017]) were investigated further

using D-tests (Figure 5) and f4-statistics (Patterson et al., 2012). One

of the modern-day East African populations, as well as the Stone Age

East African Mota individual was used to represent the East African

component in order to determine whether the East African cluster for

these samples was a mixed Eurasian/East African population, or an

East African population without Eurasian admixture, and which popu-

lation was the best proxy as the source of East African admixture into

the above samples. f4-Ratio statistics was then calculated to establish

the proportion of East African ancestry in each modern and ancient

Khoe-San population (see supplemental material). QpGraph

(Patterson et al., 2012) was also utilized to model a population history

connecting the different populations that form the admixture propor-

tions of the Vaalkrans individual (Figure 6 and see supplemental

material).

The Vaalkrans individual's genome was analyzed for the presence

of lactase persistence variants using the samtools mpileup function

where a minimum base and mapping quality of 30 was used for sam-

ple reads (Samtools v 1.3) (Li & Durbin, 2009). Lactase persistence var-

iants affiliated with lactase persistence in European, Middle Eastern,

and African populations were investigated in the sample for the spe-

cific positions of these SNPs (Schlebusch & Jakobsson, 2018; Tishkoff

et al., 2007).
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