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Abstract 15 
The effects of different pre-treatment methods on the gasification efficiency of grass biomass 16 
have not previously been evaluated. In this study, the effect of three different pre-treatment 17 
methods on gasification properties of grass biomass was investigated under CO2 conditions. 18 
The pre-treatment methods were dry torrefaction, wet torrefaction, and leaching (chemical). 19 
The results obtained showed that the heating values increased by 2.77 % in the leached grass, 20 
by 8.30 % in the dry torrefied grass and by 13.50 % in the wet torrefied grass. The surface 21 
area increased by almost a factor of 1.36 when the grass biomass was leached and increased 22 
by a factor of 1.14 when it was dry torrefied and by a factor of 70 in wet torrefaction. The 23 
pore volume increased by almost a factor of 1.20 when the grass biomass was leached and 24 
increased by a factor of 1.07 when it was dry torrefied and by a factor of 14.77 in wet 25 
torrefaction.  26 
 27 
The gasification reactivity index increased by almost a factor of 8 when the grass biomass 28 
was leached and increased by a factor of 26 when it was dry torrefied and by 70 wet 29 
torrefactions. The activation energy of raw grass biomass was reduced from 161.70 kJ/mol to 30 
141.50 kJ/mol for leached grass, 124.30 kJ/mol for dry torrefied and 86.97 kJ/mol for wet 31 
torrefied grass.  32 
 33 
These results showed that there was more significant improvement in the gasification 34 
properties via wet torrefaction than in dry torrefaction and leaching. The research has 35 
provided some useful insights on the effects of different pre-treatment methods on grass 36 
biomass gasification properties  37 
Keywords: Biomass, Gasification properties, Grass, Torrefaction, Leaching  38 
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 44 

1. Introduction 45 

Biomass as a source of energy represents a promising alternative to fossil fuels [1]. This is 46 

because biomass is available in abundance, renewable, sustainable, and carbon neutral [2]. 47 

South Africa has extensive biomass that is currently under-utilized or untapped for energy 48 

production. Of the biomass available, grass biomass appears to be the most imperative in 49 

terms of technical and economic feasibility [3]. Grass biomass can be converted into energy 50 

through thermochemical and biochemical processes [4]. A considerable number of 51 

researchers describe gasification as the most promising and efficient thermochemical process 52 

to convert biomass into useful gaseous fuels (such as CO, H2, CH4, etc.) under an oxygen 53 

restricted environment [5]-[7]. However, the inherent fuel characteristics of grass biomass 54 

compared to that of fossil fuels such as coal renders them unfavourable for energy production 55 

through gasification[7,9].  56 

Grass biomass has high moisture content, low heating value, low bulk densities and 57 

recalcitrant structure and as a result improving the gasification efficiency of grass biomass 58 

remains a significant challenge [13]. Moreover, the presence of inorganic elements in grass 59 

biomass creates several technological problems and reduces the process efficiency during 60 

thermochemical conversion of biomass [14]. The problems that are caused by inorganic 61 

elements cause an increase in maintenance and operating cost of the process [15]. Therefore, 62 

modifying the recalcitrant structure and the removal of inorganic elements is definitely 63 

considered as a dominating step in the whole streams of the gasification process [16]. 64 

Previous researchers reported that the pre-treatment of biomass such as torrefaction of 65 

biomass, biological and chemical pre-treatment of biomass could improve the biomass 66 

conversion efficiency by improving their fuel properties [15]-[17]. 67 

According to Kostas et al., [15] pre-treatments serve a purpose of reducing the recalcitrance 68 

of biomass and modifying its structure; making the substrate more cooperative for conversion 69 

into a final product. It also increases the pore size and the overall surface area for reaction 70 

and subsequently making the diffusion of the reactant easy. Kirubakaran et al., [16] stated 71 

that when the biomass is less porous, the reaction only takes place on the exterior surface and 72 

as a result, this surface shrinks with the reaction. Dry torrefaction has been extensively 73 

investigated as a pre-treatment method prior to gasification  of a woody biomass [17], [18], 74 
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non woody biomass [19],[21] and starchy food waste [22] and the torrefaction temperature 75 

range is 200 to 300 °C [23],[24].  76 

 77 

A recent study by Tsalidis et al., [25] investigated the effect of torrefaction on the process 78 

performance of oxygen-steam blown CFB gasification of hardwood and softwood. The 79 

results proved that torrefaction played a significant impact on gasification performance of 80 

both feedstocks leading to decreasing the cold gas and carbon conversion efficiencies. In 81 

addition, Fan et al., [24] also assessed the effect of torrefaction pre-treatment on the syngas 82 

production and tar formation from chemical looping gasification (CLG) of biomass over 83 

different oxygen carriers. The results showed an increase of the gas yield by 27.5 % with the 84 

reduced tar content from 43.6 to 17.6 g/Nm3. Although dry torrefaction has been attested to 85 

be a promising pre-treatment for enhanced thermochemical process efficiency, large amounts 86 

of ash remained in biomass sample after being torrefied [23]. Wet torrefaction and leaching 87 

methods can remove some of the inorganic ash forming minerals and hence produce cleaner 88 

solid fuels, in comparison to dry torrefaction. Wet torrefaction is conducted in hot 89 

compressed water in the temperature within 150– 260 °C [26]. The process pressure is 90 

usually slightly higher than the saturated vapour pressure at the corresponding temperature. 91 

Wet torrefaction is very much suitable for wet feedstocks, which include forest residues, wet 92 

agricultural wastes, and aquatic energy crops. In addition to the main solid product, wet 93 

torrefaction also produces liquid by-products including water soluble and insoluble organic 94 

compounds, which can be further treated for the production of biogas, liquid fuels and/or 95 

valuable chemicals [27]. On the other hand, chemical pre-treatment known as leaching is 96 

performed in the presence of solvents, including acidic solution, alkali solution and organic 97 

solvent. It is normally carried out at a relatively low temperature (30-85 °C) compared to 98 

both dry and wet torrefaction. Leaching leads to the removal of alkali metals and alkaline 99 

earth metals from the fuel source and subsequently further reduces fouling and slagging [28]. 100 

In addition, leaching has a potential to reduce corrosion, emissions of acidic pollutants and 101 

the formation of toxic species generated during thermal processing [27]-[34]. Several studies 102 

have been done on leaching of alkali metals and inorganics, more often for pyrolysis and only 103 

few have been performed for combustion and gasification. Link et al., [35] investigated the 104 

effect of leaching natural and artificial pre-treatment on the gasification of wine and vine 105 

(residue) biomass. The results showed that CO and H2 content in the product gas were higher 106 

in leached vine residue in comparison to an untreated vine. Moreover, it was reported that the 107 

tar content of a leached vine was lower than that of the untreated. To the author’s best 108 
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knowledge, most research on upgrading the biomass fuel properties for gasification efficiency 109 

have been conducted on dry torrefaction and none has compared  the effects of  dry, wet 110 

torrefaction and leaching (acetic acid chemical) on gasification  properties. Thus, this study 111 

compares the effect of dry torrefaction, wet torrefaction and acid leaching on both the 112 

properties of grass biomass and gasification efficiency of the grass biomass.  113 

 114 

2. Material and methods 115 

2.1.Biomass  116 

The grass used as feedstock for this study was collected from the University of Johannesburg, 117 

South Africa. Dirt and contaminants from the grass were removed by water washing 118 

methods. The grass was then milled to a size of less than 200 µm by using a Retsch SM 200. 119 

Prior to each experiment, the characteristics of biomass such as ultimate and proximate 120 

(ASTM D4442), and SEM analyses were done.  121 

 122 

2.2.Ultimate and proximate analysis  123 

Proximate and ultimate analysis of raw and pre-treated grass were performed, and the results 124 

are presented in Table 1. Moisture content (MC), Volatile content (VC) and Ash content 125 

(AC) were determined using ASTM standard. Fixed carbon (FC) was calculated from the 126 

difference of MC, VC and AC content. The mass yield (My) and energy yield (Ey) of solid 127 

products were calculated using equation (1) and equation (2) respectively.  128 

�� �%� = ��	
 �	��
  × 100                 (1) 129 

�� �%� = �� × ���	
 ��	��

 × 100       (2) 130 

Mpre and CVpre are the mass and calorific value of pre-treated grass. Mraw and CVraw are the 131 

mass and calorific value of raw grass, and CVpre/CVraw is energy density of the pretreated 132 

grass. The hydrogen, carbon and oxygen were assessed using a Thermo scientific flash 2000 133 

CHNS-O analyser. The Calorific values (CV) raw and pre-treated grass were determined per 134 

BSI standard EN 14918 using e2k bomb calorimeter, in which 0.50 g of raw and pre-treated 135 

biomass was completely combusted under a pressurized O2 atmosphere (3000 kPa).The 136 

morphology of samples were investigated by a field emission scanning electron microscopy 137 

(SEM, Japan Electronics Co., Ltd., JSM-7600F type). The specific surface area and pore size 138 
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analyzer (BET, United States Mike Instrument Co., ASAP2020 type) was employed in 139 

further analysing the physical characteristics of the raw and treated grass biomass.  140 

 141 

 142 

 143 

2.3.Wet torrefaction 144 

Wet torrefaction (WT) was conducted in a 750 ml laboratory scale stainless steel (SS 316) 145 

autoclave reactor. For each trial, 25 g of biomass and 450 mL of deionized water was placed 146 

in the autoclave and sealed. To create an inert atmosphere, the reactor was flashed with 147 

nitrogen at 100 ml/min for 10 min. The reactor was heated from ambient temperature to the 148 

set torrefaction temperature (200 °C). Each test was carried out for about 60 min. After the 149 

completion of the experiment, the autoclave was internally cooled until the reactor 150 

temperature reached 30 °C. The solid-liquid mixture from the autoclave was collected and 151 

separated by filtration. The solid, i.e., the wet torrefied biomass was dried at 105 °C and 152 

weighed after drying to calculate the solid yield.  153 

 154 

2.4.Dry torrefaction 155 

This process was carried out in a horizontal quartz tube reactor. The weight of the feed tray 156 

was determined before and after filling it with the sample and two of the readings were 157 

recorded. The tank that supplies nitrogen to the furnace was opened just before running the 158 

furnace. A rectangular crucible was loaded up with around 1 g of grass biomass. The sample 159 

was placed in the middle of the reactor and then the reactor was inserted inside the furnace. 160 

The flowrate of Nitrogen was adjusted to 150 ml/min, heating rate to 10 °C/min and 161 

temperature to 250 °C and residence time at 40 min.  162 

 163 

2.5.Leaching  164 

The leaching experiments were carried out in 1 L, three neck flasks. A total of 400 mL of 165 

leaching solution (99.5 % Acetic acid) was added to the flask, and 25 g of dry biomass was 166 

added to this solution. The flasks containing biomass and leaching solution were heated using 167 

magnetic hot plates with a stirring speed of 250 rpm. The reactor was heated to the selected 168 

operating temperature of 85 °C. The treatment was carried out for 60 min. After the 169 

investigated time of leaching was attained, the reactor was cooled at room temperature by 170 

switching off the heating device for about 15 min. When the slurry (solution plus biomass) 171 

reached room temperature, the reactor was opened, and biomass and leaching liquid was 172 
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separated by means of filtration (sieves were used). The change in the acidity of the liquid 173 

was measured to observe any di�erence during leaching. Thereafter, the biomass was then 174 

washed with de-ionized water to remove the remaining solid biomass /biochar residues from 175 

the leaching liquid, with the biomass dried at 105 °C for 24 h to remove all moisture.  176 

 177 

2.6.CO2 gasification: TGA 178 
Thermogravimetric analysis (TGA) is one of the most used techniques to investigate kinetics 179 

of gasification of solid materials, such as biomass, petroleum coke, coal chars. In this study, 180 

the tests were carried out on a thermogravimetric analyser (STA 2500 regulus, NETZSCH, 181 

Germany). At the beginning of each experiment, approximately 5 mg of biomass or biochar 182 

was placed in a platinum crucible. The temperatures for this isothermal CO2 gasification 183 

experiments were selected to be 850 °C, 900 °C and 950 °C. In each experimental run, the 184 

sample was heated at 50 K/min up to final gasification temperature in N2 atmosphere. When 185 

the desired temperature was reached, N2 was replaced by CO2 with the flow rate of 100 186 

ml/min. The final temperature was kept constant for 60 min (1hr) during gasification 187 

(isothermal gasification).  188 

2.7.Data analysis 189 

2.7.1. Char reactivity measurement in TGA 190 

The weight loss of biomass was recorded against the reaction time in the system. The initial 191 

reaction time (��) was taken once CO2 flow was supplied, and the corresponding weight of 192 

the sample was taken as the initial weight (��). The sample conversion � and reaction index 193 

�� were calculated by following equations: 194 

� = �����
�����

            (3) 195 

�� = �. 
!".#

            (4) 196 

 $� is the initial sample weight, while  �%    is the sample weight at any gasification time �. �% 197 

is the final weight and ̰&�.  is the gasification time (min) for biomass when it reaches 50% 198 

conversion. 199 

2.7.2. Gasification kinetic analysis 200 
A number of kinetic models were employed for studying the isothermal gasification kinetics, 201 

which include volumetric model (VM), grain model (GM), random pore model (RPM) and 202 

modified volumetric model (MVM). VM, GM, and MVM were selected in this study, the 203 

volumetric model assumes that the reaction of biomass is in the same phase. While the grain 204 

model assumes that the non-porous grains shrink during the reaction. The MVM is the 205 

modified volumetric model. This kinetic equation is expressed as  
'(
'% = ) ∙ +���, where:  206 
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+��� represents the change in char structure during gasification, ) is the rate of reaction 207 

related to the unit of grain surface and  
'(
'% can be measured experimentally from the TGA. 208 

VM and GM are shown in equation 5 and 6, respectively.  209 

'(
'% = ),�1 − ��      or      − ln�1 − �� = ), ∙ �       (5) 210 

'(
'% = )� �1 − ��0 12       or      3�1 − ��3 12 = )� ∙ �        (6) 211 

 212 

), and )� denote the volumetric and surface reaction rate constants, respectively. Assuming 213 

char carbon dioxide is a first-order reaction, the gasification reaction kinetic parameters can 214 

be acquired from the Arrhenius equation. 215 

 216 

3. Results and discussion  217 
3.1. Characterization of raw and pre-treated grass biomass 218 

Biomass characterization is imperative in evaluating the impact of the pre-treatment method 219 

on biomass fuel properties. As previously mentioned, when the biomass is pre-treated by 220 

torrefaction or leaching, biomass re-structuring is prompted, resulting in the liberation of 221 

moisture, volatiles and non-condensable gases [13]. Thus, the product from torrefaction or 222 

leaching becomes less recalcitrant with improved fuel properties [28].  223 

 224 

The proximate and ultimate results for the raw and pre-treated grass are presented in Table 1. 225 

The ash content decreased in wet torrefaction. The decrease in the ash content of the biochar 226 

could be a result of the decomposition of the inorganic carbonates and oxides of minerals 227 

within the biomass into the liquid phase [36].  On the contrary in leaching and dry 228 

torrefaction there was an increase in ash content. The increase in ash content might be due to 229 

the breakdown of the above-mentioned inorganic carbonates and oxides, known as ash, from 230 

the minerals within the biomass. There was a decrease in volatile matter (VM) in all the three 231 

pre-treatment methods with the highest decrease being observed in dry torrefaction. The 232 

devolatilization process leads to the carbonization of the grass biomass and this is reflected 233 

by the increase in the fixed carbon content in all the three pre-treatment methods. The wet 234 

torrefaction method produced the highest increase in the fixed carbon content.    235 

 236 

The results of the ultimate analysis showed that the hydrogen and oxygen content decreased 237 

in all the three pre-treatment methods. The highest decrease in hydrogen content was in the 238 

dry torrefaction method, while the highest decrease in oxygen content was in the wet 239 

Jo
urn

al 
Pre-

pro
of



 

 

8 

 

torrefaction. The carbon content and the heating value increased in all the pre-treatment 240 

methods and the highest increase for both cases were in the wet torrefaction method. The 241 

nitrogen content decreased both in leaching and wet torrefaction methods but increased in dry 242 

torrefaction method. 243 

 244 

 245 

 246 

Table 1. Characteristics of raw and pre-treated grass biomass 247 

Samples 
Proximate analysis 

(wt.%,db) 
Ultimate analysis  

(wt.%, db) 
  CV 

(MJ/kg) 
  Ash VM FC C H O N S 

Raw 9.3 72.33 12.2 45.6 6.4 46.4 1.6 0 18.51 

Leach 11.14 68.1 19.35 52.2 6.3 40 1.5 0 19.01 

Dry torr 11.05 60.5 26.5 54.6 5.7 37.9 1.8 0 
       
20.04 
 

Wet torr 6.26 63.5 27.5 56.1 5.9 36.6 1.4 0 21.02 
VM: Volatile matter; FC: Fixed carbon; CV: Calorific value (MJ/kg) 248 
 249 

 250 

The compositional difference between the H/C and O/C ratio of the raw biomass utilized in 251 

this study was presented in the Van Krevelen diagram (Figure. 1). The plot indicates an 252 

improvement in the properties of pretreated biomass grass with wet and dry torrefaction 253 

having a higher reduction of H/C and O/C ratios than the leached hydrochar. The reduction in 254 

H/C and O/C ratios is a result of the dehydrogenation and the deoxygenation of the torrefied 255 

grass biomass and this leads to an increase in the reactivity of torrefied grass biomass [20]. 256 

Brigdeman et al.,[37] reported the carbon content increase of  7.4 % in the reed canary grass 257 

by dry torrefaction (250 °C). Wilk et al.,[38] evaluated the effect of hydrothermal 258 

carbonization (wet torrefaction), torrefaction and slow pyrolysis of Miscanthus giganteus 259 

(giant grass). They found wet torrefaction had a higher influence in the reduction of H/C and 260 

O/C ratios than dry torrefaction.  261 
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 262 

Fig. 1. Van Krevelen plot of raw and pre-treated grass 263 

 264 
The inorganic constituents of the raw grass, leached grass char, dry torrefied char and wet 265 

torrefied hydrochar are presented in Figure 2. The results of the element analysis showed that 266 

pre-treatment, especially wet torrefaction and leaching process resulted in significant changes 267 

in the inorganic composition. Except for calcium, the concentrations of most inorganics such 268 

as Si, K, Mg, Fe, Cl and S decreased after both wet torrefaction and leaching. This trend was 269 

expected, since during wet torrefaction and leaching most of the inorganic species are broken 270 

down and released into the liquid phase. The filtration of the liquid from the solid hydrochar 271 

lead to the reduction in the concentration of the above-mentioned elements. The results 272 

further clearly showed that potassium was drastically reduced from 20.30 % to 1.50 % during 273 

wet torrefaction, while calcium increased from 18.88% to 37.40 %. A similar observation 274 

was reported by Bandara et al., [29]. On the contrary the concentration of most the inorganic 275 

species increased during dry torrefaction and this is attributed to the fact that most of the 276 

inorganic minerals broken down are retained within the char produced.   277 
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 278 
Fig. 2. Main elemental compositions in ash of raw and pre-treated grass  279 

 280 

3.1.1.  Mass yield and energy yield 281 

Figure 3 shows the data for mass yield, energy yield, and energy density of raw and pre-282 

treated grass. The pre-treatment of the grass has a notable effect on the mass yield and energy 283 

yield of char produced. The mass yield decreased to 98.50, 74.20 and 66.10 % for leached 284 

wet torrefied and dry torrefied char, respectively. This indicates that dry torrefaction and wet 285 

torrefaction have a higher effect on the mass yield than leaching based on the operating 286 

conditions. Dry torrefaction was carried out at 250 °C and wet torrefaction at 200 °C and 287 

leaching at 85 °C. At lower temperatures such as at the leaching temperature of 85 °C, most 288 

components of biomass namely hemicellulose, cellulose and lignin are not degraded. At 200 289 

°C instead, thermal degradation occurs, and this leads to a higher weight loss and 290 

subsequently a decrease in mass yield. For  energy yield  similar results were obtained, the 291 

reduction in the energy yield was minimal in the leached sample ( reduced from 100 % to 292 

99.3 %), however wet torrefaction had the highest reduction (100 % to 75.8 %) and the dry 293 

torrefaction had an energy reduction from 100 % to 84.2 %). The reason for this could be due 294 

to the degree of thermal degradation of hemicellulose. Gong et al.,[28] reported that a higher 295 

degree of the thermal degradation of hemicellulose leads to an increase in the energy yield of 296 

the pre-treated biomass. When hemicellulose is degraded, there is a relative increase in the 297 

heat content of the remaining functional “lignin”, as was observed in this study, with the 298 

lignin possessing a higher heating value (23-27MJ/kg) than hemicellulose with a heating 299 

value of 17-18MJ/kg [28]. In this study based on the mass yield value (66.1 %) achieved, dry 300 
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torrefaction was found with a higher thermal degradation compared to wet torrefaction (74.2 301 

%), hence this explains the difference in the energy yield for both methods. Wet torrefaction 302 

produced the highest energy density followed by dry torrefaction and lastly leaching 303 

correlating with the results obtained with the mass yield. 304 

 305 

 306 

Fig. 3. Mass yield, energy yield, and energy density of raw grass and pre-treated grass 307 

 308 
3.1.2 Morphological and structural characterization of raw and pre-treated grass 309 

biomass 310 

Scanning electron microscopy (SEM) images of the raw grass and the pre-treated grass are 311 

represented in Fig. 4, to illustrate the impact of pre-treatment on grass morphology. From the 312 

images shown in Fig.4., it is noticed that all three pre-treatment methods lead to a change in 313 

the structure of the grass as a result of devolatilization, depolymerization, and carbonization 314 

reactions of hemicellulose, cellulose and lignin [29].  For raw grass sample a smooth surface 315 

and an unbroken fibre structure is observed. While, for wet torrefaction sample more pores 316 

and cracks are observed in the framework of the sample. An almost complete destruction of 317 

fibre and cracks is observed in a dry torrefied sample, mainly due to the increased 318 

devolatilization and depolymerization of biomass releasing volatiles and rearranging cellular 319 

structures. Similar results were reported by Li et al., [30] for torrefaction of bamboo at 320 

250°C.  321 
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 323 
Fig. 4. SEM images of raw and pre-treated grass 324 

 325 
3.1.3. BET of raw and pre-treated grass biomass 326 

According to Chen et al., [31]  thermal treatment  leads  to an  increase in pore volume and 327 

surface area. The specific surface area and pore structure distribution of raw and pre-treated 328 

biomass samples were assessed using Nitrogen (N2) adsorption technique. Figure 5 shows the 329 

adsorption /desorption of raw and treated biomass. According to the International Union of 330 

Pure and Applied Chemistry (IUPAC) classification, all isotherms presented in Figure 5  331 

displays a type II behaviour, which is a characteristic of micropores structure [32]. In all the 332 

samples, at a low relative pressure stage the curves rise gradually with the curved shape 333 

which indicates that adsorption process changes from monolayer to multilayer. For relative 334 

pressures higher than 0.8, all curves rise rapidly implying that medium and large pore 335 

structures also exist in all the biomass samples. Nonetheless, the presence of large pore 336 

structure is more visible in wet torrefied biomass sample. 337 

 338 
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 339 

Fig. 5. Nitrogen adsorption isotherms obtained at -193 °C  on  raw and treated grass biomass  340 

Table 2 shows the results of surface area and pore volume of raw and treated grass biomass. 341 

All the three pre-treatment methods increased both the surface area and pore volume. The 342 

surface area increased by almost a factor of 1.36 when the grass biomass was leached and 343 

increased by a factor of 1.14 when it was dry torrefied and by a factor of 70 in wet 344 

torrefaction. The pore volume increased by almost a factor of 1.20 when the grass biomass 345 

was leached and increased by a factor of 1.07 when it was dry torrefied and by a factor of 346 

14.77 in wet torrefaction.  Based on the above results wet torrefaction had the highest effect 347 

on the pore volume and surface area of the grass biomass.  348 

Table 2 The BET results of raw and pre-treated grass 349 

Samples 
Surface area 
(m2/g)  

Pore volume 
(cm3/g) 

Raw 0.79 0.002945 

Leach 1.08 0.003534 

Dry Torr 0.90 0.003135 

Wet Torr 1.81 0.043505 
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3.2. Effect of different pre-treatment methods on gasification properties of grass biomass 361 

In order to clarify the impact of pre-treatment on CO2 gasification of grass biomass, different 362 

pre-treatment methods i.e. torrefaction (dry and wet) and chemical leaching were applied and 363 

evaluated in terms of char conversion and reactivity. Figure 6 shows the char conversion vs 364 

time plots for different gasification temperatures of the raw and pre-treated grass biomass. 365 

The results showed that there was a reduction in the gasification time for all the three pre-366 

treatment methods when compared to the raw biomass for all temperatures investigated (850-367 

950 °C). The difference in the gasification time between torrefied grass biomass and raw 368 

biomass was more significant at 850, and 900 °C but less significant at 950 °C. This shows 369 

that the reactivity of pre-treated biomass when gasified at a lower temperature is more 370 

significant. Meaning that the increased reactivity as a result of pre-treatment is more 371 

significant when gasification is carried out at a lower temperature. Among the three pre-372 

treatment methods studied, wet torrefaction has the highest char conversion rate at all 373 

temperature levels, followed by dry torrefaction and then leaching. This trend is linked to the 374 

increased pore size of the torrefied char which subsequently led to more active sites for 375 

conversion or reaction to take place. This effect of pre-treatment on biomass gasification was 376 

further verified by estimation of gasification reactivity values and presented in Fig.7.  377 
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 378 
 379 

 380 
 381 

 382 
Fig. 6. Conversion vs time plot for raw and pre-treated grass at different gasification 383 

temperatures. 384 
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 385 
Fig. 7. Experimental reactivity of raw and treated grass biomass 386 

The reactivity index is defined as 0.5 divided by the time required for the conversion degree 387 

to reach 50 %. Higher reactivity index therefore means higher reactivity. The reactivity index 388 

of wet torrefaction was much higher than the leached grass biomass. The reactivity index 389 

increased by almost a factor of 8 when the grass biomass was leached and increased by a 390 

factor of 26 when it was dry torrefied and by factor of 70 in wet torrefaction. The reactivity 391 

index also increased with the increase in temperature for all the samples, but the increase was 392 

more significant at higher temperatures of 950 °C. According to He et al., [17] temperature 393 

rise stimulates the biomass molecules reactivity and the amount of active gasification area for 394 

reaction with CO2, both of which improve the overall reactivity.  395 

 396 

3.3. Kinetic modelling   397 

The kinetics of raw and pre-treated biomass grass CO2 gasification in the TGA system were 398 

studied. Figures 7-9 show the results from fitting the carbon conversion, X, and the reaction 399 

time, t, using the three reaction models of VM−ln �1 − ��, GM �1 − �1 − ��3/1 and MVM 400 

(56� 78 56�� at different gasification temperatures (850-950 °C). The reaction rate constants, 401 

), can be obtained from the slopes of the linearized relationships supplied by equation (5) and 402 

(6). The activation energy (Ea) for isothermal gasification was calculated from the slope of 403 

the ln��� versus 
3
9, plots under a value of 0.9 % conversion (�). The square of correlation �0 404 

values, obtained from the three models for all the char samples are summarised in Table 3. 405 

For the model to be valid, the �0 value should be close to 0.95. It was found that the three 406 

kinetics models performed well in most conditions. However, the highest coefficients �0 of 407 

about of 0.99 for gasification of leached char at 900 °C indicated that VM and GM were the 408 
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best suitable models for these experiments. Except for raw grass at 850 and 900 °C, the 409 

coefficients for gasification of the rest of samples was not very high for MVM but increased 410 

for GM and VM. From these results it could be concluded that the grain model was the best 411 

for describing the gasification kinetics of char samples in this study. These results are in 412 

agreement with the work done by Liu et al.,[39].  413 

 414 
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 455 

 456 
 457 

 458 
 459 
 460 

Fig. 8. The application of isothermal gasification kinetic models for raw and treated grass 461 
biomass at 850 °C.  462 
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 464 

 465 

  466 
Fig. 9. The application of isothermal gasification kinetic models for raw and treated grass 467 

biomass at 900 °C.  468 

 469 

0

1

2

3

4

5

6

7

0 10 20 30 40 50

-ln
(1

-X
)

Time,t(min)

(a) VM-900oC

Dry Torr

Raw

Leach

Wet Torr

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45

3
[1

-(
1

-X
)^

1
/3

]

Time,t(min)

(b) GM-900oC

Dry Torr

Raw

Leach

Wet Torr

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

ln
x

lnt

(c) MVM-900oC

Dry Torr

Raw

Leach

Wet Torr

Jo
urn

al 
Pre-

pro
of



 

 

20 

 

 470 

 471 

 472 
 473 

Fig. 10. The application of isothermal gasification kinetic models for raw and treated grass 474 
biomass at 950 °C.475 
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Table 3. Kinetics model parameters.  

Experiments 

Temp (°C) 
VM 
R2 

GM 
R2 

MVM 
R2 

Ea 
 (kJ/mol) 

Raw 850 0.9546 0.9843 0.9605 
900 0.9827 0.9846 0.9619 161.71 
950 0.9758 0.9756 0.9301 

Leach 850 0.9659 0.9839 0.9895 
900 0.9902 0.9905 0.9563 141.55 
950 0.970 0.9843 0.9573 

Dry Torr 850 0.9576 0.9571 0.9392 
900 0.9571 0.9575 0.9539 124.33 
950 0.9422 0.9847 0.8973 

Wet Torr  850 0.9674 0.9779 0.9302 
900 0.9548 0.9545 0.9563 86.97 
950 0.9468 0.9565 0.9153 

 

Fig. 11 shows the Arrhenius plots for raw and pre-treated grass biomass. The graphs clearly 

show a good linear relation between the 56�, and 1/:, under different gasification 

temperatures (850, 900 and 950 °C). The activation energy ���) was obtained by the slope 

and intercept of the plot of 56) 78 1/:. The calculated ���) is presented in Table 3. The 

value of activation energy for raw grass (161.7073 kJ/mol) was greater than those of the pre-

treated grass.  

 

Fig. 11. Arrhenius plots for raw and pre-treated grass biomass  

The effect of the different pre-treatments on activation energy showed that the activation 

energy of raw grass biomass was reduced from 161.7 kJ/mol to 141.5 kJ/mol for leached 

grass, 124.3 kJ/mol for dry torrefied and 86.9 kJ/mol for wet torrefied grass. This trend may 
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be linked to the rate of reaction, hence as the reaction rate is increased the activation energy is 

reduced, ) = ;<�=� >92 .  

In this study there was a clear correlation between the char reactivity and the �� hence it was 

observed that, chars with a higher reactivity exhibited a lower value of �� . Based on the �0 

values GM has the best fit with the experimental results than the other two models (VM and 

MVM) 

 

4. Conclusion  

The effect of three different pre-treatment methods namely leaching, dry torrefaction and wet 

torrefaction on grass biomass properties such as energy density, calorific value and its effect 

on gasification efficiency were evaluated. The three pre-treatment methods all influenced the 

grass biomass properties and their gasification efficiency. Wet torrefaction had the most 

significant effect on the grass biomass properties such as carbon content, calorific value and 

energy density when compared to dry torrefaction or leaching. In terms of gasification 

efficiency, wet torrefaction reduced activation energy of raw grass biomass from 161.7 

kJ/mol to 86.9 kJ/mol and dry torrefaction reduced the activation energy to 124.3 kJ/mol and 

leaching reduced the activation  energy to 141.5 kJ/mol. Amongst the kinetic models studied 

to determine the gasification kinetics, grain model (GM) was the best suited for describing 

the biomass chars.  
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Highlights 

• Effects of different pretreatment methods on gasification properties of grass were 

evaluated  

• The three pretreatment methods are dry torrefaction, wet torrefaction, and chemical 

leaching  

• Wet torrefaction improved gasification properties more than dry torrefaction and leaching 

•  Wet torrefaction had the highest reactivity index of 0.25; dry torrefaction 0.18; leaching 

0.16 
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Abstract 

The effect of different pre-treatments method on the gasification efficiency of grass biomass 

have not previously been evaluated. In this study, the effect of three different pre-treatment 

methods on gasification properties of grass biomass was investigated under CO2 conditions. The 

pre-treatment methods were dry torrefaction, wet torrefaction, and leaching (chemical). The 

results obtained showed that the heating values increased by 2,77 % in the leached grass, 8,3 % 

in the dry torrefied grass and 13,5 % in the wet torrefied grass. However, the wet torrefaction had 

the highest reactivity index of 0,25 followed by dry torrefaction 0,182, then leaching 0,156. The 

effect of the different pre-treatment on activation energy showed that the activation energy of 

raw grass biomass was reduced from 161,7 KJ/mol to 141.5 KJ/mol for leached grass, 124.3 

KJ/mol for dry torrefied and 86.97 KJ/mol for wet torrefied grass. These results show that wet 

torrefaction can improve gasification properties significantly when compared to dry torrefaction 

and leaching. The pore structure and pore volume effect of treated biomass was likely the 

predominant reason for the better char reactivity and conversion during gasification of wet 

torrefied sample. The research supplied an insight into the effect of different pre-treatment 

methods on grass biomass gasification 

Keywords: Biomass, Gasification properties, Grass, Torrefaction, Leaching  
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