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ABSTRACT 

Background: Bacterial infections remain one of the top causes of death worldwide despite 

the continuous development of conventional methods to eradicate this challenge. 

Mycobacterium tuberculosis (M.tb), a causative agent of tuberculosis (TB), is amongst the 

leading causes of mycobacterial mortality worldwide. Given the constant increase in TB 

incidence rates, there is a great need for better diagnostic and treatment methods for M.tb. 

Several studies have proposed the possible therapeutic role of vitamin D in antimycobacterial 

immunity. Vitamin D has been shown to boost the immune system against several ailments 

including TB, however, the exact mechanism through which vitamin D functions in 

antimycobacterial immunity remains elusive. In addition, the current conventional methods 

used to study the metabolism of vitamin D in the presence of mycobacteria are limited in 

terms of efficiency. As such, applying metabolomics to elucidate bacterial activity and vitamin 

D supplementation effects, at cellular level, could provide insight into the metabolic 

reprogramming associated with vitamin D during mycobacterial infection. Metabolomics is a 

multidisciplinary ‘omics’ science that deals with the identification and quantification of the 

metabolic changes in a biological system under specific conditions. This ‘omics’ field has 

shown promise in its ability to distinguish TB infected serum/plasma from uninfected 

serum/plasma. Metabolomics has been used to identify metabolic changes induced by M.tb 

infection; however, the metabolic reconfigurations induced by vitamin D in M.tb infection still 

need to be explored. Thus, the aim of this study was to evaluate the metabolic effects of 1,25-

dihydroxyvitamin D3 (1,25(OH)2D3), an active form of vitamin D, on the metabolome of U937 

macrophages stimulated with Pam3CSK4 (a mycobacterial model). Methods: Cultured U937 

monocytic cells were differentiated into macrophages using phorbol myristate acetate (PMA). 

Differentiation was confirmed by evaluating morphological changes of the cells and through 

flow cytometry evaluation of differentiation surface marker CD14. Following this, the cells 

were treated with Pam3CSK4 to stimulate bacterial infection and immunomodulatory effects 

towards bacterial lipoproteins. Furthermore, the cells were supplemented with vitamin D 

(1,25(OH)2D3). An untargeted NMR and GC-MS-based metabolomic approach where then 

conducted to characterise differential metabolic profiles of Pam3CSK4 stimulated cells, 
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1,25(OH)2D3 supplemented cells, a combination of Pam3CSK4 and 1,25(OH)2D3 

supplementation as well as the untreated cells. Results: Chemometric modelling and 

statistical analyses revealed a clear distinction between the metabolic profiles of Pam3CSK4 

stimulated cells, 1.25(OH)2D3 supplemented cells and cells supplemented with a combination 

of Pam3CSK4/1.25(OH)2D3 as compared to the control cells (untreated). Significant differences 

(p<0.05) were identified in 23 metabolites. These changes were detected in spectral regions 

related to methionine, galactose, myoinositol, threonine, glycine, beta-glucose, o-

phosphocholine, valine, lactate, mannose, taurine, adenosine monophosphate, ornithine, 

glycerol, succinate, tyrosine, phenylalanine, glutamate, leucine, pyroglutamate, glutathione, 

beta-alanine and glutamine. Alterations in these metabolites have been linked to changes in 

bioenergy production (up-regulation of glycolysis – the Warburg effect), regulation of redox 

reaction, inflammation and protein synthesis. Likewise, the metabolic profile of Pam3CSK4 

stimulated cells compared to Pam3CSK4/1.25(OH)2D3, showed significant differences in 

spectral regions of the aforementioned metabolites. These differences suggest that 

1.25(OH)2D3 induces metabolic reprogramming in Pam3CSK4 stimulated cells, by boasting 

macrophage immune response against mycobacteria. Conclusion: NMR- and GC-MS-based 

metabolomics successfully detected and identified metabolites discriminating a TLR2/1 

stimulated response (Pam3CSK4 and 1.25(OH)2D3 treatment). In addition, this multi-platform 

metabolite profiling allowed the characterisation of the metabolic alterations induced by 

Pam3CSK4 stimulation, 1.25(OH)2D3 supplementation and a combination of 

Pam3CSK4/1.25(OH)2D3. Results obtained show that 1.25(OH)2D3 promotes the elimination of 

bacterial infection by the macrophage and is therefore beneficial in the immune response 

against mycobacterial infection. Perspective studies will include quantitative analysis of 

metabolites implicated and the use of additional analytical techniques such as liquid 

chromatography-–mass spectrometry (LC-MS) to detect as many metabolites as possible. 
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CHAPTER 1 

INTRODUCTION 

 

Tuberculosis (TB), a contagious disease that is airborne and caused by Mycobacterium 

tuberculosis (M.tb), remains a major threat worldwide as it is an ancient disease that has 

caused millions of deaths (Soto-Ramirez et al., 2016; Zumla et al., 2013). According to the 

World Health Organisation (WHO), at least 10 million people, globally, are diagnosed with TB 

each year. TB is also a poverty-related disease with 95% incidence rates reported in 

developing countries (Barter et al., 2012; Okhovat-Isfahani et al., 2019). Africa alone accounts 

for 24% of all TB cases, which makes it the second-highest after South-East Asia (44%) (WHO, 

2019). Given the constant increase in TB incidence rates, there remains a great need for better 

diagnostic methods and treatments for TB. The diagnosis and treatment of TB are currently 

very challenging for two key reasons. Firstly, resistance in M.tb is a common occurrence; for 

instance, in 2018 it was estimated that there were already over half a million new multidrug-

resistant  cases (WHO, 2019). Secondly, co-infection with Human Immunodeficiency Virus 

(HIV) is also very common and poses a greater challenge in diagnosis and treatment 

interventions. In South Africa, more than 60% of individuals infected with TB also test HIV 

positive, thus making South Africa the epicentre of HIV/TB co-infection (WHO, 2018).  

In the pre-antibiotics era, natural remedies such as the use of cod liver oil and sunlight 

exposure were used as a form of TB therapeutics. Most recently, several studies have 

suggested the possible therapeutic role of Vitamin D in antimycobacterial immunity (Dini and 

Bianchi, 2012; Salahuddin et al., 2013). Vitamin D has been shown to boost the immune 

system against several ailments including TB (Marques et al., 2010; Thacher and Clarcke 

2011). When supplemented with vitamin D, TB patients show an accelerated clinical recovery 

rate (Salahuddin et al., 2013). Furthermore, vitamin D supplementation decreases the 

activation and the progression of latent TB (LTB) to active TB (Arnedo-Pena et al., 2015). The 

exact mechanisms through which vitamin D functions in antimycobacterial immunity, 

however, remains elusive. Additionally, there is limited knowledge of the metabolic effect of 

vitamin D during mycobacterial infection. For this reason, the role of vitamin D during 

mycobacterial infection needs to be explored so as to understand how vitamin D affects the 

metabolic pathways involved in mycobacterial infection. 

The emerging latest cardinal omics approach, metabolomics, has provided new possibilities 

of understanding the metabolic reprogramming of a biological system associated with a 

stimulus. Recently, high throughput and high sensitivity techniques such as nuclear magnetic 

resonance (NMR) spectroscopy, mass spectrometry (MS)-based platforms (such as gas 
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chromatography-–mass spectrometry spectrometry, GC-MS), infrared spectroscopy and 

Raman spectroscopy have found use in metabolomics. Nicholson et al. (1999) defined 

metabolomics as a multidisciplinary ‘omics’ science that evaluates the metabolic changes of 

a biological system by identifying and quantifying the small molecular weight molecules 

(metabolites), components of metabolism, under specific conditions. Metabolomics has been 

successfully used to determine the efficacy of pharmaceutical drugs, assessment of drug 

toxicity, identification of disease biomarkers, enzyme discovery, determining the quality and 

safety of food, and exploration of metabolic networks in systems biology (Clayton et al., 2006; 

Gomez-Casati et al., 2013; Liu et al., 2018). Available metabolomics software and databases 

allow for the identification of the metabolic pathways associated with the altered metabolites 

under specific conditions. Ultimately, metabolomics can identify metabolites associated with 

a perturbation, therefore, providing reliable biomarkers for a disease. Hence, metabolomics 

is used in diagnostic test development (German et al., 2005).   

Metabolomics investigations of TB infected biofluids have been extensively performed (as 

reviewed by Mirsaeidi et al., 2015). Using 1H NMR, Vrieling et al. (2018) and Zhou et al. (2013) 

identified plasma-based and serum biomarkers in TB patients. Furthermore, Dang et al. (2013) 

used GC-MS to identify M.tb infection biomarkers in culture, serum and urine. In other 

studies, Du Preez and Loots (2013) and Loots (2014) used two-dimensional gas 

chromatography coupled with time-of-flight mass spectrometry (GCxGC–TOFMS) to detect 

M.tb associated metabolites in sputum and mycobacterial cultures, respectively. Currently, 

no study has investigated the metabolic effect of vitamin D supplementation in TB infected 

cells using a metabolomics approach. As such, the main aim of this study was to make use of 

an NMR and GC-MS-based metabolomics approach to measure the metabolic reprogramming 

induced by vitamin D supplementation, in the presence of mycobacterial elicitor to mimic 

infection, in macrophages. This is aimed at identifying metabolites markers associated with 

mycobacterial infected cells in response to vitamin D in order to identify the specific metabolic 

pathways targeted by vitamin D. Taken together, this information can be used to determine 

the effectiveness of vitamin D in the immune response against mycobacterial infection. 

In the present study, tripalmitoyl-S-glyceryl-L-Cys-Ser-(Lys)4 (Pam3CSK4), a synthetic 

mycobacterium that elicits toll-like receptor (TLR) 2/1, was used to stimulate U937 

macrophages in vitro. The stimulated macrophages were supplemented with 1,25-

dihydroxycholecalciferol (1,25(OH)2D3), an active form of vitamin D to evaluate its metabolic 

effect using NMR and GC-MS–based metabolomics.  

The following chapter (Chapter 2) gives a detailed review of topics related to this study. This 

is followed by the hypothesis, aim, objectives, and study workflow. The succeeding chapter 

(Chapter 3) gives detailed materials and methods used to achieve the aim of the study. 

Chapter 4 provides the generated results. The detailed discussion of each set of results is 

given in Chapter 5. The overall conclusion and future perspective are given in Chapter 6. 

Chapter 7 provides the comprehensive list of references used in this study, followed by the 
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appendix. The appendix at the end of the dissertation consists of all additional and 

complimentary data that are not included in the results chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Mycobacteria 

Bacterial infections are among the top causes of disease-related deaths worldwide (Raoult et 

al., 2019) with mycobacteria being the main contributor. Mycobacterium is a member of the 

genus actinobacteria with several species classified into tuberculous or nontuberculous 

mycobacteria (NTM). Whilst tuberculous bacteria are disease-causing (e.g. TB), NTM are less 

pathogenic in humans. The latter mainly cause opportunistic infections in 

immunocompromised individuals (Tortoli, 2009). Mycobacterium of TB in humans. TB is the 

leading cause of infectious disease-related deaths worldwide. Moreover, one-third of the 

world’s population is latently infected with M.tb. (Osman et al., 2017; Soto-Ramirez et al., 

2017; Zumla et al., 2013). Thus, TB remains a worldwide threat. The prevalence of M.tb 

infection is also accelerated by the development of new strains of M.tb, some of which are 

resistant to the available anti-TB drugs (Chandra et al., 2016). Hence, there is a great need for 

a better understanding of the biochemistry, metabolism, and pathogenesis of mycobacteria 

as this is crucial for controlling mycobacterial infections. Therefore, timely, accurate and easy-

to-use detection methods for mycobacteria are required (Palomino, 2005). In an attempt to 

study exposure to M.tb, in vitro models for immune cell stimulation have been developed. 

Tripalmitoyl-S-glyceryl-L-Cys-Ser-(Lys)4, commonly known as Pam3CSK4, is an M.tb lipoprotein 

mimic used to stimulate immune cells in in vitro models (Akira et al., 2006).  

2.2. Pam3CSK4 

Pam3CSK4 is a synthetic molecule that mimics bacterial triacylated lipoprotein of a wide range 

of bacteria (Figure 2.1), including M.tb, Neisseria meningitidis, Trypanosoma cruzi and 

zymosan of yeast cell wall (Nyirenda et al., 2013). Pam3CSK4 stimulates immunomodulatory 

effects similar to those observed against lipoproteins from these bacteria (Akira et al., 2006; 

Aliprantis et al., 1999). Pam3CSK4 consists of carboxy terminal amino acids and N-acyl-S-

diacylglyceryl cysteine and can therefore mimic the acylated amino terminus of bacterial 

lipopeptides. As such, Pam3CSK4 has captured the interest of many researchers working on in 

vitro based bacterial research, particularly those concerned with the study of Toll-like 

receptors (TLRs), especially TLR 2 and 1 (Du et al., 2011; Zhang et al., 2016; Zhu et al., 2018; 

Zom et al., 2018). Both Pam3CSK4 and bacterial triacylated lipoprotein stimulate the 

immunomodulatory effect towards bacteria with the acylated N-terminal cysteine (Kang et 

al., 2009). 
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Figure 2.1: Structural representation of a bacterial triacylated lipoprotein (A) and Pam3CSK4 (B). Both 
have three lipid chains with one lipid chain attached to the N-terminal of cysteine. Both molecules 
induce an immunomodulatory effect through the acylated N-terminal cysteine. Adapted from 
Schromm, 2007; Wiktor et al., 2017. 

 

Pam3CSK4 is recognised by the Toll-like receptor 2/1 (TLR 2/1) protein, a membrane-bound 

dimer TLR receptor on the cell surface. TLRs form a major part of the innate immune response 

as they recognise pathogens and transduce a signal to activate downstream pathways that 

initiate the mechanisms responsible for the elimination of the pathogen. The downstream 

pathways stimulated by the activation of TLR2/1 by Pam3CSK4 are summarised in Figure 2.2.  

 

 

Figure 2.2: Pam3CSK4-induced stimulation of heterodimer TLR 2/1.TLR2/1 activation by Pam3CSK4 is 
associated with elevated expression of NF-kB, which stimulates the production and release of 
cytokines such as TNF-α, IL-6 and IL-12. TLR2/1 activation is also associated with the activation 
(opening) of α1β1 integrin receptor to initiate the endocytosis of the Pam3CSK4-TLR 2/1 complex. The 
resulting endolysosome further secretes type 1 interferon and IL-6 to signal neighbouring cells about 
the infection.  Abbreviations: α1β1: alpha-1 beta-1 integrin; TLR2/1: Toll-like receptor 2/1; Pam3CSK4: 
Tripalmitoyl-S-glyceryl-L-Cys-Ser-(Lys)4; NF-kB: Nuclear Factor kappa beta; TNF-α: Tumour necrosis 
factor- alpha; IL-6: Interleukin 6; IL-12: Interleukin 6. Adapted from Marre et al., 2010. 
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The focus of this study was on M.tb and as such, Pam3CSK4 was used to mimic for 

mycobacteria. Pam3CSK4 can provide a good starting point for understanding common, 

underlying mechanisms of M.tb pathogenesis. In addition, Pam3CSK4 provides a good tool to 

study mechanisms associated with TLR2 activation, the main TLR that initiates host immune 

response towards M.tb infection (Xue et al., 2008). Pam3CSK4 may thus shed light on the 

disease mechanisms associated with M.tb. Both M.tb infection and Pam3CSK4 share common 

biological effects such as the secretion of pro-inflammatory cytokines including IL-1, IL-6, IL-

23 and TNF-α. The production of reactive oxygen species (ROS) is also observed in both cases 

(Bardoel et al., 2014; Yang et al., 2012). 

 

2.3. Vitamin D 

Prior to the antibiotic era, vitamin D was used to boost the immune system against several 

diseases including infectious diseases, inflammatory diseases, hypertension, diabetes mellitus 

and auto-immune diseases (Marques et al., 2010; Thacher and Clarcke, 2011). Vitamin D 

deficiency has been associated with immune response disorders. Interestingly, vitamin D was 

used for TB treatment (Wejse et al., 2009; Wu et al., 2018). Findings have shown that 

individuals with TB have less vitamin D than healthy individuals (Gao et al., 2014). When 

supplemented with vitamin D, TB patients show ease in the disease symptoms. Furthermore, 

vitamin D supplementation decreases the activation and the progression of latent TB (LTB) to 

active TB (Arnedo-Pena et al., 2015). In their study, Talat et al. (2010) reported that individuals 

with vitamin D deficiency are five times more likely to develop active TB compared to those 

with sufficient vitamin D. People of African descent are commonly known to have low vitamin 

D levels and are more likely to get TB than individuals from European descent (Green et al., 

2015). Accordingly, TB is more common in African countries (Barter et al., 2012).  

 

2.3.1. Vitamin D and its metabolism 

Vitamin D is an essential steroid hormone acquired from vitamin D rich nutritional sources, 

vitamin D supplements and through ultraviolet B (UVB) radiation-dependent synthesis (Prietl 

et al., 2013).  Vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol) are two well-known 

forms of the hormone vitamin D. Whilst vitamin D2 originates from ergosterol UV radiation in 

fungi and some plants, vitamin D3 originates from the UV radiation of 7-dehydrocholesterol 

to form previtamin D3 in animals’ skin (Tripkovic et al., 2012). Humans self-synthesize 

cholecalciferol and acquire ergocalciferol from vitamin D supplements and dietary sources 

such as fish, eggs and cheese (Kulie et al., 2009). 1,25(OH)2D3 is an active form of vitamin D 

with various biological effects. The classical biological functions of this hormone include the 

regulation of minerals such as calcium and phosphate homeostasis to promote bone health 

(Prietl et al., 2013). 1,25(OH)2D3 further promotes the proliferation and differentiation of cells 



7 
 

such as osteoclast, endothelial cells, lymphocytes and keratinocytes (Khammissa et al., 2018). 

1,25(OH)2D3 has been shown to also regulate the innate and adaptive immune response 

(Chun et al., 2014). 

UVB radiation-dependent synthesis of vitamin D involves the photolytic conversion of 7-

dehydrocholesterol—a precursor of vitamin D—to pre-vitamin D3 in the lower epidermis of 

the skin. Pre-vitamin D3 is then converted to vitamin D3 (cholecalciferol), similar to that 

obtained in dietary sources and supplements. Vitamin D3 binds to vitamin D binding protein 

(DBP), which transports vitamin D3 to the liver to be enzymatically converted to 25-

hydroxyvitamin D (25(OH)D), the main circulating inactive form of vitamin D through 

hydroxylation by 25-hydroxylase. 25(OH)D has the longest half-life and hence it is used to 

determine vitamin D status (Zhang and Naughton, 2010). 25(OH)D circulates to the kidneys 

or any tissue that express 1α-hydroxylase (CYP27B1) such as the cerebellum, osteoblasts, 

pancreatic islets, placenta, monocytes, macrophages and dendritic cells (Hewison, 2012; 

Owens et al., 2018;), where it is hydroxylated to the circulating active metabolites of vitamin 

D. Although the conversion of 25(OH)D to 1,25(OH)2D3 can also occur under normal, healthy 

conditions, monocytes and macrophages, among other immune cells produce high levels of 

1,25(OH)2D3 through CYP27B1 following the activation of these cells by the pathogen. 

Pathogen-dependent activation of immune cells is associated with an increased expression of 

vitamin D receptor (VDR) and 1α-hydroxylase, CYP27B1 (Figure 2.3). In addition to 

1,25(OH)2D3 production in the kidney, enzyme 24-hydroxylase (CYP24A1) hydroxylates C-24 

of 25(OH)D3 to yield 24,25(OH)2D3, a less active vitamin D hormone as compared to 

1,25(OH)2D3 (Jones et al., 2012).   
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Figure 2.3: Vitamin D-mediated innate immune response following activation of TLR2/1 by a 
bacterial pathogen. The activation of TLR2/1 is linked with the conversion of 25D to 1,25D by enzyme 
CYP27B1. Subsequently, VDR binds 1,25D and stimulates the expression of CAMP and DEFB4. Bacterial 
killing is also achieved through autophagy and formation of autophagosomes. The suppression of 
HAMP regulates ferroportin, which promotes the extracellular transportation of Fe to facilitate 
bacterial elimination. IL-1R is stimulated to bind IL-1, which promotes the synthesis of NF-ĸB. Together 
with MDP binding to NOD2, NF-ĸB provides an additional response to facilitate the interaction of VDR 
with 1,25D, therefore facilitating the bacterial elimination. Abbreviations: 1,25D: 1,25-dihydroxy 
vitamin D; 25D: 25-hydroxyvitamin D; CAMP: Cathelicidin antimicrobial peptide; CYP27B1: 1α-
hydroxylase; DEFB4: β-defensin 4; Fe: Iron; HAMP: Hepcidin antimicrobial peptide; IL-1: interleukin 1; 
IL-1R: Interleukin 1 receptor; MDP: muramyl dipeptide; NF-ĸB: Necrosis factor-kappa beta; NOD2: 
Nuclear-binding oligomerization domain-containing protein 2; TLR2/1: Toll-like receptor 2/1; VDR: 
Vitamin D receptor.  Adapted from Chun et al., 2014. 

 

2.3.2. Regulation of vitamin D metabolism 

The regulation of vitamin D metabolism is achieved through the regulation of enzymes 

CYP27B1 in the kidney and 25-hydroxylase in the liver. 1α-Hydroxylase is more tightly 

regulated as compared to 25-hydroxylase since it controls 1,25(OH)2D3 synthesis (Kochupillai, 

2008). At low concentrations of 1,25(OH)2D3, parathyroid hormone induces 1α-hydroxylase to 

favour 1,25(OH)2D3 synthesis (Christakos, 2017). The increase in the levels of 1,25(OH)2D3 

eventually results in a feedback mechanism that triggers an increase in the level of bone 

fibroblast growth factor 23 (FGF23). FGF23 is a phosphaturic hormone produced by 

osteocytes and osteoblasts. This hormone inhibits 1α-hydroxylase expression to decrease 

1,25(OH)2D3 synthesis (Khammissa et al., 2018). Simultaneously, increasing levels of FGF23 

induces the expression of 24-hydroxylase, an enzyme that catalyses the conversion of 

25(OH)D3 to a less active vitamin D metabolite, 24,25(OH)2D3 in the kidneys (Perwad and 

Portale, 2011).   
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2.3.3. Role of 1,25(OH)2D3 in innate immunity 

TLR2/1-pathogen interaction activates an innate immune defence mechanism strengthened 

by 1,25(OH)2D3. This form of immunity comprises chemotactic and phagocytic processes of 

monocytes and macrophages (Purnamasari et al., 2014). The activation of vitamin D-–

mediated innate immunity depends on the recognition of pathogen-–associated molecular 

patterns (PAMPs) by pattern-recognition receptors (PRRs) such as TLR2/1. Upon pathogen 

perception by TLR2/1, liganded VDR binds the retinoid X receptor (RXR) to form a heterodimer 

that binds a specific gene sequence called a vitamin D response element (VDRE). Liganded 

VDR–RXR heterodimer is responsible for the activation of hundreds of target genes or 

repression by recruiting coactivators or coreceptors, respectively, to a particular target gene 

(Christakos et al., 2016; Rosen et al., 2012). These mechanisms result in the expression or 

suppression of target genes with biological effects that will favour the elimination of the 

pathogen. β-Defensin 4 (DEFB4) and cathelicidin antimicrobial peptide (CAMP) are well 

known genes that encode antibacterial proteins β-defensin 2 and cathelicidin antimicrobial 

peptide, respectively. Collectively, these antibacterial proteins facilitate the elimination of the 

bacterial pathogen, Figure 2.3 (Baeke et al., 2010; Liu et al., 2006). 

In addition to the elimination of the bacteria by antibacterial proteins, autophagy and 

formation of autophagosomes following the activation of TLR2/1 also play a major role in 

pathogen elimination. Furthermore, accessory immune response mechanisms (shown in 

green in Figure 2.3) are also activated in response to increasing 1,25(OH)2D3. For instance, the 

expression of interleukin–1 receptor (IL-1R) and muramyl dipeptide is induced following the 

activation of TLR2/1 and production of 1,25(OH)2D3. IL-1R facilitates the binding and the entry 

of cytokine IL-1, which in turn, induces the expression of Necrosis factor-kappa beta (NF-ĸB) 

to facilitate pathogen elimination. In addition to these direct mechanisms of bacterial 

elimination, hepcidin antimicrobial peptide (HAMP) indirectly kills the pathogen by 

decreasing intracellular iron (Fe), which is needed to maintain bacterial growth and survival. 

HAMP primarily regulates ferroportin, the iron exporter located on the cell membrane (Ganz, 

2011).  

 

2.3.4. Role of 1,25(OH)2D3 in adaptive immunity 

The adaptive immune response also plays a crucial role as a second defence mechanism 

against pathogenic infection. The major key players in adaptive immunity include dendritic 

cells (CDs), B -cells and T -cells, including effector T -cells and regulatory T -cells due to their 

ability to express VDR in response to antigenic activation. 1,25(OH)2D3 has different biological 

effects in adaptive immunity in vitro and in vivo (Hewison, 2012). Briefly, dendritic cells—also 

known as antigen-presenting cells (APCs)—are the first immune cells of the adaptive immune 

response triggered by 1,25(OH)2D3 signalling. DCs capture the antigen for processing and 

presentation to the T cells (Purnamasari et al., 2014). It was first thought that 1,25(OH)2D3 
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suppresses T cell proliferation; however, subsequent studies revealed that the effects of 1,25 

(OH)2D3 are dependent on the phenotype of the T cell. Thus, high levels of 1,25(OH)2D3 are 

associated with down-regulation of T helper cell 1 (Th1) and T helper cell 17 (Th17), causing 

inhibition of proinflammatory cytokines associated with these T helper cells such as 

interferon- gamma (IFN-γ), IL-2, IL-17 and IL-21. On the other hand, T helper cell 2 (Th2) and 

Treg are up-regulated, resulting in an increase in IL-4 and IL-10 (Hewison, 2012). The biological 

significance of switching from Th1 to Th2 phenotype is to limit the tissue damage resulting 

from excessive Th1. Th17, on the other hand, has been linked not only with promoting 

immune response but also with promoting inflammatory tissue damage, hence it is down-

regulated by 1,25(OH)2D3 (Korn et al., 2007).  

Activated T cells indirectly stimulate B cell activation through mechanisms including the 

suppression of immunoglobulin (Ig) secretion, inhibition of proliferation and differentiation 

of plasma cells as well as the stimulation of B cell apoptosis (Purnamasari et al., 2014). B cells 

use autocrine mechanisms to produce their own 1,25(OH)2D3 that regulates immunity. In 

addition, B cells stimulate increased expression of IL-10, a cytokine that inhibits the 

presentation of the antigen by DCs and macrophages as well as the inhibition of T cell 

activation (Heine et al., 2008). The biological significance of 1,25(OH)2D3 mediated adaptive 

immune response is to balance the activity of the immune response, therefore preventing the 

tissue damage resulting from excessive cytokines and anti-microbial proteins (Handono et al., 

2012). 

 

2.3.5. Vitamin D status and deficiency: why it happens, prevalence and consequences 

 
Vitamin D deficiency is one of the major health problems worldwide across all age groups 

(Regmi et al., 2017). Vitamin D status is determined using 25(OH)Dlevels since it is the main 

circulating form of vitamin D and has a long half-life during circulation (Zhang and Naughton, 

2010). The concentration of 25(OH)D used to determine whether this hormone is deficient or 

not remains unclear. The United States Institute of Medicine, however, defined a 

concentration of <30 nmol/L 25(OH)D as deficient, 30–49 nmol/L as insufficient and 50–125 

nmol/L as sufficient (Looker et al., 2011). Vitamin D deficiency occurs when the serum level 

of vitamin D is extremely low which could be alluded to inadequate dietary uptake or reduced 

vitamin D synthesis, most probably from decreased sunlight exposure (Nighat et al., 2010). 

Additionally, obesity, age, race, dark skin pigmentation, season, latitude and the use of 

sunscreen also contribute towards vitamin D deficiency (Souberbielle, 2016; Zhang and 

Naughton, 2010). This health problem is also associated with an increased risk of neoplastic, 

immune and metabolic disorders (Holick, 2007). In children, vitamin D deficiency is associated 

with rickets whereas in adults it is associated with osteomalacia, multiple sclerosis, 

cardiovascular diseases and chronic diseases (Cantorna et al., 2004; Holick, 2007; Wu et al., 

2007). Moreover, individuals with vitamin D deficiency are more susceptible to infectious 
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diseases as opposed to healthy individuals (Garg et al., 2016). The levels of serum vitamin D 

can be improved by the intake of vitamin D dietary products and vitamin D supplements 

(Kennel et al., 2010). Although vitamin D supplementation has been shown to decrease the 

activation and the progression of latent TB (LTB) to active TB, the molecular mechanism of 

vitamin D in the presence of mycobacteria remains elusive. As such, the aim of this study was 

to make use of metabolomics in order to explore the role of vitamin D in immune response 

to TLR2/1 elicitation by a mycobacterial elicitor. 

 

2.4. Metabolomics 

2.4.1. The origin of metabolomics 

The use of metabolic profiling dates back as early as the 1950s (Williams, 1956) where it was 

used to understand complex biological systems before the term metabolome was even 

introduced to literature in September 1998 (Oliver et al., 1998). Subsequently, the term 

metabolomics and its equivalent term metabonomics were formulated at the end of the 

1990s (Oliver et al., 1998; Nicholson et al., 1999). The two terminologies, metabolomics and 

metabonomics, are often used interchangeably in the literature. The current study, however, 

uses the term metabolomics, as it describes a comprehensive analysis of as many metabolites 

as possible in a biological system (Clish, 2015). Metabolomics can thus be described as the 

detection and quantitative measurements of the metabolites in a biological system under 

specific conditions or perturbation. On the other hand, metabonomics is defined as the 

quantitative measurement of the metabolic changes of a living system in response to genetic 

modification or any pathophysiological stimulus (Nicholson et al., 1999). Thus, metabonomics 

emphasizes on the characterisation of the differences in metabolites due to genetic 

modification, disease, environmental stress or any other stimulus that perturbs the 

metabolism of the given organism (Ramsden, 2009).  

Metabolites are low molecular-mass compounds (<1.5 kDa) involved in metabolic processes 

of an organism and they are the endmost products of gene expression. The total number of 

metabolites of an organism—the metabolome—comprise amino acids, esters, lipids, steroids, 

carbohydrates, organic acids, oligopeptides, bile acids, nucleosides and nucleotides (Clarke 

and Haselden, 2008; Mirsaeidi et al., 2015). These are small molecules that are biologically 

essential for energy production and storage, signal transduction and apoptosis among other 

biological roles (Johnson et al., 2016). Despite being the youngest omics in the omics cascade, 

the use of metabolomics has grown quite rapidly over the past years, particularly in the 

medical field and in basic research. This is due to its promising ability in providing early clinical 

diagnostics, drug refinement, and personalised medicine (Riekeberg and Powers, 2017). The 

planning of a metabolomics experiment is determined by the aim of a study, however, a 

typical workflow is shown in Figure 2.4.  
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Figure 2.4: A typical metabolomics workflow. The diagram illustrates the common steps followed in 
a metabolomics experiment. It also highlights techniques used at different stages of metabolomics 
depending on the type of sample specimen being analysed and the aim(s) of the experiment. 
Abbreviations: ANOVA: Analysis of variance; CE: Capillary electrophoresis; FT-IR: Fourier-transform 
infrared; GC: Gas chromatography; HMDB: Human Metabolome Database; KEGG: Kyoto Encyclopedia 
of Genes and Genomes; LC: Liquid chromatography; MS: Mass spectrometry; NMR: Nuclear magnetic 
resonance; OPLS-DA: Orthogonal projections to latent structures–discriminant analysis; PCA: Principal 
component analysis. 

 

2.4.2. Metabolomics approaches 

Metabolomics studies take one of two approaches, namely the targeted or untargeted 

approach. The untargeted approach is a starting point for any metabolomics study as it 

focuses on the global profiling of as many metabolites as possible in a given biological system. 

More than one analytical platform is normally used in the untargeted approach to profile as 

many metabolites as possible. A new hypothesis is usually derived from the initial findings of 

the untargeted approach. In contrast, a targeted approach is a hypothesis-driven approach 

that focuses on profiling a group of predefined metabolites, usually with similar biological 

properties. It is therefore common in this approach that the physio-chemical properties and 
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structures of the metabolites of interest are known beforehand (Schrimpe-Rutledge et al., 

2016; Tzoulaki et al., 2014). The benefits of using a targeted over an untargeted approach 

include high sensitivity and increased maximum analytical throughput. Untargeted 

metabolomics is, however, more comprehensive and unbiased. The largest number of 

metabolites are therefore detected using the latter approach. Untargeted metabolomics is 

widely used for the discovery of novel metabolites and biomarkers. Despite these strengths, 

untargeted metabolomics remains less sensitive compared to the targeted approach 

(Kirkwood et al., 2013). Whilst the untargeted approach is crucial for metabolite discovery 

and relative quantification, the targeted approach is useful for validation and absolute 

quantification of the already known metabolites (Schrimpe-Rutledge et al., 2016).  

 

2.4.3. Why metabolomics over other omics technologies 

Metabolites are influenced by genetic and epigenetic processes, post-translational 

modifications, protein transport and signal transduction (Kell and Oliver, 2016; Likic et al., 

2010). Metabolomics can therefore provide comprehensive information from different 

molecular stages (Figure 2.5). Metabolomic analysis, in comparison to other omics, can also 

provide phenotypic information of an organism induced by various stimuli such as diseases 

and medication (Wishart et al., 2007). Understanding the changes in the metabolome 

resulting from a disease could play a crucial role in the development of better disease 

characterisation methods, diagnostics and treatment (Du Preez et al., 2019). Despite the 

change in the metabolome under various conditions, the basic chemical structure of a 

metabolite is similar throughout different species (Duft et al., 2017). As such, metabolites can 

provide more reliable and robust biomarkers for a perturbation (German et al., 2005). 

Another strength of metabolomics includes the ability to profile changes due to ‘silent 

mutation’ (Raamsdonk et al., 2001). Hence, metabolomics has the potential to provide useful 

disease biomarkers that give a better understanding of the underlying disease mechanisms. 

Biomarkers can be used to monitor disease at different stages such as early, latent or late 

stages (Atan et al., 2018; Du Preez et al., 2017). The advantages and disadvantages of the 

different omics platforms have been summarised in Table 2.1.   
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Figure 2.5: The omics cascade. The omics cascade showing the flow of molecular information from 
the genome, to epigenome, transcriptome, proteome and metabolome. Metabolomics is at the end 
of the cascade. Hence metabolites correlate to the phenotype of a biological system.  
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Table 2.1: Comparison of main omics technologies, adapted from Diamandis et al., 2010; Draghici et al., 2006; Fliser et al., 2007; Jax et al., 2018; Johnson 
and Gonzalez, 2012; Kinoshita et al., 2006; Kuehnbaum and Britz-McKibbin, 2013; Kalantari et al., 2015; Lorincz, 2011; Mesri, 2014; Roberts and 
Middleton 2017; Serkova et al., 2011; Zhan, 2015; Zhao et al., 2014. 

Omics Description Strengths Weaknesses 

Genomics Concerned with the study 
of the whole genome. The 
complete set of all genes in 
an organism.  

• The available knowledge is substantial. 

• Genomics can be used to develop 
diagnostic, prognostic and treatment for 
patients. 

• Multiple genes can be identified 
simultaneously, allowing the detection of, 
e.g. altered gene(s) associated with a 
disease. 

• Unintended Identification of gene mutations not 
associated with the condition of interest may 
complicate result interpretation and lead to false 
conclusions. 

• Genes are sensitive to various stimuli such as 
disease and environmental factors. 

Epigenomics The study of the 
epigenome includes 
studies on DNA 
methylation, histone 
modification and RNA 
regulation. 

• Genetic information missed in gene 
expression profiles can be recovered in the 
epigenome. 

• Epigenetic profiles are highly stable. 

• Provides epigenetic biomarkers for 

diseases. 

• Diversity in epigenetic changes across tissue 
types. 

• Diagnosis of epigenetic changes may require 
several assays. 

• Susceptible to false discovery of new 
biomarkers. 

Transcriptomics The study of the 
transcriptome, the entire 
set of RNA molecules of an 
organism or a cell. 

• Gives a better understanding of gene 
expression and gives the possible 
functions, which would reflect the 
phenotype. 

• Many transcriptome studies use microarrays 
approach, which suffers from detecting very 
lowly expressed and novel transcripts 

• Difficulty in detecting splice variants. 
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Proteomics The study of proteins 
including their folding, 
localization, expression, 
function and interaction 

• Understanding of genomic information in 
terms of protein structures and functions. 

• The proteome is close to the biological 
function (phenotype). 

• Challenges in linking the proteome and the 
genome. 

• Lack of stability in the proteome during sample 
preparation may lead to false representation of 
the original proteome of an organism. 

Metabolomics The detection and 
quantitative 
measurements of the 
metabolites in a biological 
system under specific 
conditions or perturbation. 

• High throughput, sensitivity, and accuracy. 

• Qualitative and quantitative. 

• The ability to study a specific phenotype at 
a molecular level. 

• Metabolites correlate with the phenotype 
of an individual. 

• Availability of advanced analytical 
techniques. 

• Disease biomarker discovery. 

• Difficulties in metabolite identification and 
interpretation. 

• Many knowledge gaps in human metabolomics. 

• Data handling and processing can be 
challenging. 

• Metabolome can be altered by various genetic 
and environmental stimuli other than those of 
interest. 

• Variations between individuals in human 
metabolomics. 

• Metabolome complexity and variations. 

• Difficulties in translation of metabolites into 
metabolic pathways and biological 
interpretation. 
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2.4.4. Metabolomics analytical platforms 

The high reproducibility and high throughput provided by metabolomics are made possible 

by the availability of advanced sensitive and selective spectroscopy and spectrometry-based 

analytical techniques. These techniques make use of the emission, absorption or scattering 

of electromagnetic radiation by matter (atoms, molecules, ions or solids) for qualitative and 

quantitative analysis (Kalantri et al., 2010). Fourier transformation-infrared (FT-IR) 

spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and 

mass spectrometry (MS) are the well-known metabolomics analytical techniques, however, 

NMR and MS are the most widely used techniques due to their high sensitivity and selectivity 

(Dunn and Ellis, 2005). Despite being the preferred techniques, NMR and MS also come with 

their own weaknesses (Table 2.2). Combining the two usually gives complementary 

information (Bingol and Brüschweiler, 2015). The choice of the analytical technique to use in 

a metabolomics experiment is influenced by the type of the biological system to be analysed 

as well as the aim of the experiment or question to be answered (Trygg et al., 2007). Despite 

the strength provided by each analytical platform, there is no single analytical platform that 

can detect the entire metabolome within a biological systemdue to the metabolite 

heterogeneity (Booth et al., 2013).  

 

Table 2.2: Comparisons of NMR and MS analytical platforms. Adapted from Carlos et al., 2011; Davis and 
Mauer, 2010; De Villiers and Loots, 2013; Faghihzadeh et al., 2016; Kalantri et al., 2010; Mogilevsky et al., 
2012. 

Technique Description Advantages Disadvantages 

NMR 
spectroscopy 

Involves the 
analysis of the 
magnetic 
properties of the 
atomic nuclei of 
a molecule under 
a magnetic field. 

• Non-destructive 
and therefore 
samples can be 
recovered. 

• Requires a minimal 
sample 
preparation. 

• Can simultaneously 
measure all kinds 
of metabolites. 

• Can be used for in 
vivo studies. 

• Less sensitive (as compared to mass 
spectroscopy). 

• Does not always accurately detect fats 
and lipids. 

• NMR spectra of biological samples are 
complex and hence large peaks may 
mask small peaks. 

Mass 
spectrometry 

Involves the 
ionization of 
molecules of 
interest followed 
by the 
measurement of 
their mass-to-

• High sensitivity and 
specificity. 

• Requires small 
sample size for 
analysis. 

• Qualitative and 
quantitative 
technique. 

• Extensive sample preparation is 
required. 

• Inability to measure many large 
biological molecules. 

• Destructive and hence samples cannot 
be recovered. 

• Time consuming. 
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charge (m/z) 
ratio. 

• Can detect a wide 
dynamic range of 
metabolites. 

 

2.4.5. The basic principle of NMR spectroscopy 

Atomic nuclei of some atoms such as that of 1H, 13C and 31P consist of a spin, which is a 

property similar to atomic mass and charge (Demarest, 2015; Yabsley et al., 2012). The spin 

generates the magnetic field in the nucleus. This causes the random orientation of the spins, 

however when the atomic nuclei are subjected to the external magnetic field generated by 

the NMR spectrometer, two spin states are produced, one aligned with the external magnetic 

field and the other against the external magnetic field. The spin aligned with the external 

magnetic field is called the alpha (α) spin and has a lower energy state. The spin against the 

external magnetic, called the beta (β) spin, has a higher energy state (Antcliffe and Gordon, 

2016; Boyer, 2012; Zia et al., 2019). When the nuclei are subjected to the radiofrequency 

energy, α spin is excited to a higher energy state. The higher energy state is less stable and 

therefore the α spin will return to the lower energy state in a process known as relaxation. 

The α spin emits the absorbed radiofrequency energy as it returns to the lower energy state. 

The emitted radiofrequency energy is converted into a signal which is represented on the 

NMR spectrum (Figure 2.6). The horizontal x-axis of the NMR spectrum represents the 

resonant frequency as the chemical shift in parts per million (ppm). Nuclei of different 

chemical groups resonate at different frequencies and hence will have different chemical 

shifts. The vertical y-axis of the NMR spectrum gives the intensity of the resonance signal, 

proportional to the concentration of the sample analysed (Antcliffe and Gordon, 2016; 

Chatham and Blackban 2001; Wilson and Walker, 2010). Several types of NMR experiments 

have been developed to study various molecules. These include proton NMR (1H-NMR), 

carbon NMR (13C-NMR) and phosphorus NMR (31P-NMR). In a biological context, the basic 

applications of 1H-NMR, 13C-NMR and 31P-NMR are to detect groups of metabolites, identify 

bio-molecular structures (such as fatty acids carbohydrates and amino acids) and to analyse 

the biochemical processes that involve adenosine triphosphate (ATP) (Beckonert et al., 2007; 

Boyer, 2012). The use of NMR spectroscopy has grown tremendously over the years both in 

vitro and in vivo. NMR spectroscopy is widely applied in biological sciences (biomolecular 

structure determination, protein functions and interactions), metabolomics, pharmaceutical 

research (drug screening), medical sciences, food sciences and forensics (Hatzakis, 2019; Lu, 

2013; Marion, 2013; Santos et al., 2018). 
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Figure 2.6: A diagram representing the basic principles of NMR spectroscopy. When the sample is 

placed under the magnetic field in the NMR spectrometer, the spins in the protons of each molecule 

are either aligned with or against the direction of the external electromagnetic field (β0). Spin aligned 

with the magnetic field (α) has a lower energy state and are more stable than the spin aligned against 
the magnetic field (β). As the radio frequency energy is applied to the nuclei at lower energy state (α), 
the α spins are excited to higher (β) energy state. This excitation is short-lived and therefore the α 
spins return to a lower energy state after a very short period. The α spins emit radio frequency energy 
as they return to the lower energy state at different times. The emitted radio frequency energy is 
converted into free induction decay (FID), which is a time-domain signal. FIDs are processed and 
converted into a frequency domain spectrum by Fourier transformation and represented on the NMR 
spectrum as intensity vs. chemical shift (ppm) on the y-axis and x-axis, respectively. Abbreviations: ΔE: 
Change in energy; α: alpha; β: Beta; β0: External electromagnetic field; FID: Free induction decay; RF: 
Radio frequency 

 

2.4.6. The basic principle of mass spectrometry 

Despite the analytical strengths offered by NMR spectroscopy, MS has become a popular 

analytical platform in metabolomics due to its high sensitivity (Markley et al., 2017). The basis 

of MS involves ionisation of the molecules with subsequent measurement of mass to charge 

ratio (m/z) of the formed ions. This provides both qualitative and quantitative information 

concerning each molecule in a mixture (Urban, 2016). Mass spectrometers (the instruments 

used in mass spectrometry) consist of different components, each with a distinct function. 

The main components include the ion source, mass analyser, and a detector (Figure 2.7). 

Following the introduction of a sample mixture, containing the molecules of interest, in the 

ion source, the molecules are ionised to produce gaseous ions, which are transferred to a 
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mass analyser. The mass analyser sorts the ions based on their mass to charge ratio under the 

electric or magnetic field. These ions are then detected by an ion detector which determines 

the abundance of each ion. Subsequently, the ion detector produces electric signals which 

are processed and presented in a histogram called a mass spectrum; a function of m/z and 

relative abundance, on the x-axis and y-axis, respectively (Murayama et al., 2009; Patel et al., 

2012). Collectively, a mass spectrum represents the structure of the original molecules, the 

resulting fragments and any other species that may be formed during ionization (Urban, 

2016).   

Figure 2.7: Simplified (A) and detailed (B) schematic representations of the components of the mass 
spectrometer. Sample in the injector is delivered to the ion source where it is ionized into gaseous 
ions. The formed ions are sorted according to their m/z ratio in the mass analyser. The detector detects 
the electrical signal of each ion generated to give a mass spectrum. Adapted from Banerjee and 
Mazumdar, 2012 (A) and Antcliffe and Gordon, 2016 (B). 

 

Mass spectrometers are used as detectors hyphenated to chromatographic techniques such 

as gas chromatography (GC), and liquid chromatography (LC). Briefly, GC-MS deals with the 

separation of volatile and semi-volatile compounds using a high temperature and subsequent 

detection with MS (Sneddon et al., 2007). LC-MS, on the other hand, uses a liquid-based 

mobile phase, usually made of organic solvents and water, to separate different compounds 

in a mixture prior to ionisation and detection by MS. The coupling of MS with other 

techniques, particularly chromatographic techniques, enables the analysis of a wide range of 

molecules. MS has a wide range of applications in several fields including clinical studies, 

protein characterisation, drug discovery, quality control, food safety protocols, space 

exploration, pharmacokinetics and metabolomics (as reviewed by Patel et al., 2012; Urban, 

2016). 
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2.4.7. Gas chromatography –mass spectrometry (GC-MS) 

The basis of GC-MS (Figure 2.8) is that volatile and semi-volatile compounds in a mixture are 

separated by GC and detected by MS. Separation of the compounds with GC is based on the 

partition of compounds in a mixture between the mobile phase and the stationary phase as 

the compounds pass through the column by the carrier gas (AL-Bukhaiti et al., 2017; Sneddon 

et al., 2007). Prior to GC-MS analysis, a sample containing a mixture of compounds is dissolved 

in a solvent such as methanol, acetone or heptane. The sample mixture is then delivered into 

the sample injector. The sample injector is placed in an oven to vaporise the sample upon 

injection (AL-Bukhaiti et al., 2017; Klee and Blumberg, 2002; Kupiec, 2004). The mobile phase 

carrier gas, as the name implies, carries the vaporised sample mixture through the column 

equipped with the stationary phase. The carrier gas is inert so that it does not react with the 

samples. Helium, nitrogen, argon or hydrogen are the most commonly used carrier gases, 

depending on the type of detector used (Hussain and Maqbool, 2014).  

A GC stationary phase comes in one of two available columns, namely, packed column or 

capillary (open tubular) column. In the former, the spherical stationary phase material is 

packed across the column tubing forming small sieves to allow the mobile phase to pass 

through. Some of the stationary phase materials used for packed columns include 

polyethylene glycols, methylphenyl- and methylvinylsilicone gums, apiezon L, succinic, 

phthalic acids and b-cyclodextrin-based phases for chiral separations (Wilson and Walker, 

2010). In capillary columns, the stationary phase is either a direct or indirect coat attached to 

the wall of the column, leaving an opening at the centre of the column. Hence, it is also called 

an open tubular column (Skoog et al., 2018). The capillary (open tubular) column functions on 

the principle of adsorption (Ye et al., 2000). Capillary columns are of two types, namely, wall-

coated open tubular (WCOT) and support-coated open tubular (SCOT), also called porous 

layer open tubular (PLOT).  WCOT differs from SCOT/ PLOT in that the stationary phase in 

WCOT is coated to the wall of the column whereas in SCOT/PLOT, the stationary phase is 

coated to a support (Skoog et al., 2018). 

As a mixture of compounds passes through the stationary phase, some compounds interact 

weakly with the stationary phase and elute from the column first. On the contrary, molecules 

that interact strongly with the stationary phase spend a longer time in the column and they 

have longer elution time (AL-Bukhaiti et al., 2017; Hussain and Maqbool 2014). In addition to 

these polarity-dependent interactions of the compounds and the stationary phase, 

temperature also determines the time spent by the compounds in the column. Thus, 

compounds with low boiling points elute first as compared to those with high boiling points 

(Oña-Ruales et al., 2016). Due to the crucial role that temperature plays in compound 

separation in a mixture, the column is placed in an oven so that the temperature can be 

controlled. The oven can be set to maintain a constant or gradually increasing temperature, 

known as ramping (Wilson et al., 2014). Ultimately, each compound in a mixture is eluted 

from the column at different elution times to be detected by the MS as described in Section 
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2.4.6. The GC-MS results are represented on a mass spectrum; a plot of m/z ratio and intensity 

on the x-axis and y-axis (Murayama et al., 2009; Patel et al., 2012). 

 

Figure 2.8: A diagram of GC-MS. From right to left, a mixture of compounds is injected into the GC 
through the sample inlet port. The mixture is vaporized prior to separation in the column, positioned 
in an oven. The mixture is separated based on the affinity of each compound to the stationary as well 
as the boiling point of each compound in a mixture. The separated compounds pass through the 
transfer line to the MS, where they are ionised for detection. The detected ions are represented on 
the mass spectrum.  

 

2.4.8. Two-dimensional gas chromatography (GC×GC) coupled with time-of-flight 
mass spectrometry (TOFMS) 

Although conventional GC provides a powerful separation technique, the complexity of many 

compounds exceeds the capacity of one-dimensional GC. To overcome this challenge, 

comprehensive two-dimensional gas chromatography (GC×GC) has been developed (Rocha 

et al., 2007; Tranchida et al., 2004). In GCxGC, sample separation is carried out using two 

separate columns with different polarities of the stationary phase (Kalinova et al., 2006; 

Spanik et al., 2012). The interface connecting the two columns, the modulator, is a cryogenic 

trap that condenses compounds as they elute from the primary column to the secondary 

column (Kalinova et al., 2006). The modulation process is essential as it increases the 

separation power and sensitivity (Dekeirsschieter et al., 2012; Patterson et al., 2011). Both 

separation potential and sensitivity are enhanced in two-dimensional GC×GC as compared to 

one dimensional GC (Zrostlıkova et al., 2003). The second column of the GCxGC is very short 

and can produce peaks as narrow as 0.1 s. This requires a detection system with high 

acquisition rates to properly describe each peak. Conventional MS can only acquire up to 50 

spectra s−1 and therefore it cannot properly detect all the peaks generated in GCxGC. As a 

result, the high-speed time-of-flight mass spectrometry (ToF-MS) has been developed with 

the capability to acquire up to 500 spectra s−1 (Kalinova et al., 2006; Rocha et al., 2007). ToF-

MS can detect a larger number of compounds in extreme complex mixtures, making ToF-MS 

the most effective GCxGC detector (Mohler et al., 2006). In general, GC×GC–ToF-MS provides 
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a powerful, sensitive and selective analytical technique for compound separation, detection 

and identification (Snow et al., 2010).  

Although the application of GC-MS is only limited to volatile and semi-volatile compounds, 

GC-MS is used in several fields. GC-MS has been shown to be capable of precise identification 

and quantification of an individual compound from a mixture. Secondly, GC-MS is capable of 

identifying traces of contaminants in research concerned with compound purification 

(Tumuluru et al., 2012). Hence GC-MS has gained popularity in fields such as food sciences 

(Hussain and Maqbool, 2014), forensics, environmental studies, beverage, geo-chemical and 

astro-chemistry research, medicine and pharmaceutical research, biological and pesticides 

detections, energy and fuel applications, industrial and academic research (as reviewed by Al-

Rubaye et al., 2017). 

 

2.4.9. Metabolomics statistical analysis  

Metabolomics analytical techniques generate high dimensional complex data, making it 

difficult to process and analyse the acquired data. The complexity of the data generated in 

metabolomics prompts the need for statistical methods that will be able to handle such data.  

Multivariate data analysis (MVDA) is used to statistically make sense of the generated data. 

MVDA is categorised into unsupervised and supervised methods. The unsupervised methods 

are usually the first statistical methods applied. These methods are called unsupervised 

simply because the data analysed are not assigned to class membership. Thus, prior 

knowledge about the data membership is not required (Ren et al., 2015).  Unsupervised 

methods can be categorised further into dimension reduction methods and cluster analysis 

methods. 

2.4.9.1. Unsupervised statistical methods 

Principal component analysis (PCA) remains the most commonly used dimension reduction 

method. This is an exploratory analysis method that reduces the complexity of high 

dimensional data by capturing the information that contributes to the observed variation. 

PCA reduces the dimensionality of the data set without the loss of core information (Gromski 

et al., 2015; Saccenti et al., 2014). Ultimately, PCA gives a summary of the data set, showing 

the within-group and between-groups variation in the given data set. The trend, grouping and 

outliers in the data set can also be seen in PCA modelling (Trygg et al., 2007). Cluster analysis 

methods, such as hierarchical cluster, seek to find a cluster of samples in multidimensional 

space with similar characteristics. The clustering of samples forms a tree-like structure called 

a dendrogram (Goodacre et al., 2007; Chen et al., 2009). 

 



24 
 

2.4.9.2. Supervised statistical methods 

In addition to unsupervised methods, supervised methods are used in metabolomics data 

analysis mainly for prediction, classification and biomarker discovery. Unlike unsupervised 

methods, supervised methods determine and explain the association between the predictors 

(X-data) and the categorical (e.g. disease vs. healthy) or quantitative (age, body mass index, 

sex, blood glucose) response variable (Y-data) in the data set (Ren et al., 2015). Commonly 

used supervised methods are based on partial least squares (PLS), which include projections 

to latent structures-discriminant analysis (PLS-DA) and orthogonal projections to latent 

structures–discriminant analysis (OPLS-DA). Whilst PLS-DA is widely used for the 

differentiation of classes in the data-set (Worley and Powers, 2013); its extension, OPLS-DA 

aims to maximize the differentiation of groups and identification of marker metabolites. 

These are metabolites responsible for differentiating the different groups in a data-set (Shin 

et al., 2011; Trygg et al., 2007). Another classic example of a supervised method, linear 

discriminant analysis (LDA), functions similarly to PCA in the manner that it projects a high 

dimensional dataset onto a lower dimensionality subspace (Kim and Yeom, 2017). LDA 

extracts, separates and classifies dataset, into groups with similar features, maximizing 

separation between-–groups covariance and minimizing separation within-–group covariance 

(Giraldi et al., 2008; Yeom et al., 2007).  

Although multivariate data analysis is the most important component in handling complex 

metabolomics data, univariate statistical methods are just as important since they allow 

metabolomics data features to be analysed independently. However, univariate methods do 

not account for interacting metabolomic features as opposed to multivariate data analysis 

and this is the main disadvantage of univariate statistical methods in metabolomics (Lazar et 

al., 2015). Univariate statistical methods are used for the reduction of a large number of 

measured features to those that only show the maximum variations between study groups in 

response to the investigated perturbation (Bartel et al., 2013). Among several univariate 

methods available, parametric tests, Student’s t-test and analysis of variance (ANOVA) are 

commonly used to analyse metabolomics features independently in a data-set (Alonso et al., 

2015). A probability value (p-value) is widely used to determine the statistical significance of 

the difference between two variables measured in, for example, cases and controls. By using 

a p-value, one can easily accept or reject the null hypothesis or alternative hypothesis (Vinaixa 

et al., 2012).  

 

2.4.10. Statistical validation 

Statistical data generated in MVDA require validation, mainly to assess their significance and 

reliability (Worley and Powers, 2013). In supervised methods, for instance, detection of many 

variables (metabolites) from a small sample size comes with the danger of model overfitting. 

Although an over-fitted model can show a very good performance, such a model might not 
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accurately predict a new set of data. As a result, such a model cannot be duplicated (Xi et al., 

2014). Two main approaches, test-set validation and cross-validation (CV), have been 

developed for multivariate model validation. The former uses a new separate dataset to 

validate the developed model whereas, in the latter, model validation is performed using the 

same dataset used to generate the original model (Trivedi and Iles, 2012). The cross-validation 

method can cope with a low sample number; hence it is usually the method of choice 

(Westerhuis et al., 2008). In cross-validation, the experimental dataset is separated into 

different groups, which are randomly used in different combinations to build a permuted 

model. The original model is then validated by comparing it to the permuted model to 

determine the predictive accuracy (Trivedi and Iles, 2012). 

Cross-validation is subdivided into two categories, namely internal and external cross-

validation. Whilst internal cross-validation deals with the selection of the number of latent 

variables and finds an optimal PLS-DA model, external cross-validation focuses on the 

measurement of the performance of the model (Xi et al., 2014). A matric Q2 is used to 

measure the predictive ability of the developed model, which is the ability of the model to 

accurately predict new data when applied to the model. Furthermore, parameter R2 (the 

goodness of fit) explains the amount of variation between groups explained by the model. 

Therefore, Q2 and R2 describe the quality of the model and their values range between 0 and 

1 (Shin et al., 2011). A model with good predictive ability is indicated by Q2 ≥ 0.5 (Lauri et al., 

2016), however, a model with Q2 ≥ 0.4 is also acceptable for biological studies (Westerhuis et 

al., 2008). The R2 value is always higher than the Q2 value for a good model (Sedghipour and 

Sadeghi-Bazargani, 2012). In addition to Q2 and R2, cross validated-analysis of variance (CV-

ANOVA) and area under the receiver operating characteristic (ROC) curve (AUROC) are used 

to validate the OPLS-DA models. CV-ANOVA assesses the significance (reliability) of the PLS-

DA and OPLS-DA models whereas the ROC curve validates the robustness and predictive 

performance of a model (Subramani et al., 2016). 

 

2.4.11. Metabolites annotation, pathways and network analysis 

Statistical analysis is followed by metabolite annotation, pathways and network analysis as 

well as the biological interpretation of the generated results. These are performed using a 

combination of available metabolomics software and databases. Identification of metabolites 

in human-based metabolomics can be done through various metabolomics databases such as 

Human Metabolome Database (HMBD), Biological Magnetic Resonance Data Bank (BMRB), 

Madison Metabolomics Consortium Database, Bayesil NMR Web App, MetaboMiner NMR 

command line lnterface and SpinAssign. Amongst these databases, HMDB is the commonly 

used database for human-based metabolites identification as it has more than 8000 verified 

entries (Aretz and Meierhofer, 2016). The identified metabolites are used to construct or 

identify relevant biological pathways to extract more useful biological information from the 

acquired data. Pathway analysis gives an overview and understanding of enzyme regulation 
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as well as post-translational modification of enzymes or proteins involved in metabolite 

synthesis (Nägele, 2014). The metabolism of an organism can further be explained by an 

alternative method, namely network analysis. A metabolic network gives information about 

the association and the interaction of genes, proteins and metabolites or small molecules 

(Kuhn et al., 2008). Kyoto Encyclopedia of Genes and Genomes (KEGG), which is a popular 

choice for pathway and network analysis, houses most biological pathways and networks that 

have been identified to date. KEGG biological pathways and networks are constructed on the 

basis of linking a set of genes with their interacting molecules to produce a network (Kanehisa 

and Goto, 2000). 

 

2.4.12. Biological interpretation of metabolomics data 

The major goal of any metabolomics experiment is to identify and understand the biological 

events that take place in a biological system under specific conditions. Accordingly, data 

acquired from a metabolomics experiment should correspond to the phenotype of the 

biological system of interest. There remains, however, a large knowledge gap in the 

translation of metabolomic data to biological interpretation (Scalbert et al., 2009). A single 

metabolite can participate in several metabolic processes, making it difficult to assign a 

metabolite detected in a metabolomics experiment to a single biological pathway. 

Nonetheless, the use of metabolomics tools/databases can provide sufficient information 

that could eventually lead to a true representation of the physiology of an organism or the 

biological question being investigated (Aretz and Meierhofer, 2016). Understanding 

metabolite up-regulation or down-regulation does not only provide insight into the biological 

pathways involved but also contains the information regarding the enzymes or other 

molecules involved in a metabolic pathway. Such information can be useful in determining 

the health status of an organism as well as the pharmacological action of a given treatment 

(Chagoyen and Pazos, 2012).  

 

2.4.13. Challenges in metabolomics 

Metabolomics has its challenges despite the advancement made over the past years. Firstly, 

various genetic and environmental stimuli can alter the metabolome of an organism. Care 

should therefore be taken during sample handling to obtain data that represent the true 

physiology of an organism (Johnson and Gonzalez, 2012). Secondly, some metabolites are 

identical across different species, which makes it difficult to study the metabolism of two 

interacting organisms (e.g. the interaction between the host and the pathogen). Thus, the 

host metabolome might not be differentiated from the pathogen’s metabolome (Schrimpe-

Rutledge et al., 2016).  Experimentally, metabolite extraction and data acquisition can also be 

challenging. In addition to biological and experimental related challenges, major challenges 



27 
 

are usually encountered in data processing, data visualisation, metabolite identification and 

validation (Bowler et al., 2017). Over the years, an effort has been made to overcome these 

challenges through the improvement of both analytical techniques as well as the statistical 

methods and software used in data handling (Steuer et al., 2019). 

 

2.4.14. Exploring 1,25(OH)2D3 metabolic impact through NMR and MS-based 
metabolomics 

 
Metabolomics has previously been applied in M.tb-related research, leading to the 

identification of TB biomarkers from various sample matrices (including M.tb culture, serum, 

plasma, lung tissue, spleen tissue) (Behrends et al., 2012; Dang et al., 2013; De Buck et al, 

2014; Feng et al., 2015; Frediani et al., 2014; Halouska et al., 2014 and Mahapatra et al., 2014). 

Tuberculostearic acid (TBSA), for example, is one of the most reliable TB biomarkers identified 

in metabolomics across various sample specimens (Du Preez et al., 2017). Through 

metabolomics, new metabolic processes, gene function, virulence factors and enzyme activity 

can be described to better understand the mechanism of the pathogen (Du Preez et al., 2019).  

Vitamin D has been closely related to improving the outcome of TB, however, a very limited 

amount of research has been conducted on understanding the metabolic effect of vitamin D 

during M.tb infection. Nonetheless, the association between vitamin D and M.tb infection has 

been described (Gibney et al., 2008). In their study, Gibney et al. (2008) reported that higher 

levels of vitamin D are associated with lower probability of M.tb infection and vice versa. 

Although vitamin D alone has not been clinically evaluated as a treatment for TB (Kearns, 

2014), the use of vitamin D with anti-TB drugs has been shown to accelerate the improvement 

of clinical outcomes of M.tb infection (Hassanein et al., 2016). This association has been less 

studied through metabolomics. As such, investigations are needed to understand the 

metabolic effect of vitamin D during mycobacterial infection. 

The metabolic effects of supplementary 1,25(OH)2D3 in vitro have been investigated in 

previous studies. A study by Santos et al. (2017) revealed that in vitro 1,25(OH)2D3 

supplementation in human embryonic kidney 293T (HEK293T) cells alters the cellular 

metabolic profile of the cells. Using NMR spectroscopy, Santos et al. (2017) found a slight 

increase in intracellular lactate concentration in HEK293T cells treated with 1,25(OH)2D3. An 

increase in lactate concentration is associated with up-regulation of glycolysis. Other 

metabolic pathways including the polyol pathway and Krebs cycle were down-regulated 

whereas phosphocholine pathway was up-regulated in the presence of 1,25(OH)2D3. In 

another in vitro study, Abu El Maaty et al. (2017) reported metabolic changes associated with 

in vitro 1,25(OH)2D3 supplementation. In their study, Abu El Maaty et al. (2017) supplemented 

different human prostate cancer (PCa) cell lines (LNCaP, VCaP, DU145 and PC3) with 

1,25(OH)2D3 prior to MS-based (GC-MS) metabolic profiling. The authors reported that the 

responsiveness of these cell lines to 1,25(OH)2D3 differs with LNCaP being the most responsive 
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cell line. In LNCaP cells, supplementary 1,25(OH)2D3 induced metabolic reprogramming of 

glucose metabolism, fatty acid metabolism, glutamine metabolism and tricarboxylic acid 

(TCA) cycle. Their study showed that 1,25(OH)2D3 has a metabolic impact on cellular 

metabolism.  

In a subsequent study, Abu El Maaty et al. (2018) supplemented breast cells (MCF-7 and MDA-

MB-231) with 1,25(OH)2D3. Using MS-based (GC-MS) metabolomics, the authors detected 

significant alterations in spectral regions associated with phosphoenolpyruvate, pyruvate, 

citrate, α-ketoglutarate, succinate, fumarate, malate, serine, glycine, L-alanine, proline, L-

leucine, isoleucine, threonine, aspartic acid, valine and glutamic acid. The authors further 

reported that supplementary 1,25(OH)2D3 induced energy metabolism reprogramming. It was 

shown in their study that 1,25(OH)2D3 induce reprogramming of the TCA cycle and the 

glycolytic pathway.   

Taken together, it is evident from these above-mentioned in vitro studies that 1,25(OH)2D3 

affects the metabolism of different cell types under different disease conditions, leading to 

metabolic reprogramming. Furthermore, these studies have shown that 1,25(OH)2D3 induced 

metabolic changes can be profiled using both NMR and MS-based metabolomics. Hence, the 

aim of the current study is to use NMR and MS-based metabolomics to determine the 

metabolic effect of 1,25(OH)2D3 supplementation in mycobacterial infection in vitro.  

 

2.5. The rationale behind using the in vitro system for the present study 

In vitro studies are dependent on the use of cell lines or models that resemble the in vivo 

systems of interest. Studying infectious pathogens comes with a high risk of being infected 

and therefore it requires a specialised and highly regulated laboratory with proper risk 

assessment (Patterson et al., 2014). Such requirements, however, come at a high cost. To 

overcome this, non-hazardous synthetic molecules that mimic molecules of interest are used. 

With the rapid growth of life sciences, the development and revolution of biotechnology in 

recent years, the in vitro approaches have become a cornerstone of basic research in many 

fields (Hartung and Daston, 2009). In metabolomics studies, the in vitro approaches provide 

a suitable system in the initial stages of biomarker discovery. Unlike the in vivo systems, the 

in vitro systems allow the investigator to strictly control the working environment. It further 

allows for accurate and strict control of the induction of the desired, specific variables being 

investigated. Furthermore, metabolomic studies concerned with pathogens performed in 

vitro, provide a clear insight into the pathogen metabolism since there is no host interfering 

metabolites. Such studies can be replicated easily with a high number of replicates at low 

costs. Despite the strengths that come with using the in vitro approach, the in vitro system 

has its pitfalls. Notably, the in vitro system does not account for the in vivo adaptation of the 

host or the microbe (Du Preez et al., 2019; Hartung and Daston, 2009). Also, the physiological 

relevance of the in vitro models differs from that of the in vivo systems. Cancer studies have 
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shown that in vitro studies only allow the investigator to capture limited aspects of the 

tumour microenvironment (Katt et al., 2016). Nonetheless, the in vitro models used in this 

study were the U937 cells as well as monocyte-macrophages.  

The U937 cell line is a monocytic, histiocytic lymphoma cell line originally isolated from a 37-

year-old Caucasian man. U937 cells are characterised by their oval shape with large, irregular 

shaped nuclei (Sundstrom and Nilsson, 1976). The popularity of the U937 cell line in research 

is due to its ability to resemble human macrophages, both morphologically and functionally 

(Mendoza-Coronel and Mastanon-Arreola, 2016). Some of these characteristics include the 

ability to perform antibody-induced cytotoxicity, phagocytosis of the pathogen and 

presentation of Fragment crystallizable (Fc) receptors that recognise subclasses of human IgG 

proteins (Alexander et al., 1979; Anderson and Abraham, 1980; Larrick et al., 1980). Human 

macrophages are terminally differentiated and non-dividing cells (Gordon and Taylor, 2005) 

and therefore cannot be isolated from the human body to be replicated for research in vitro. 

Hence, the U937 cell line provides a good in vitro model to study human macrophages. Several 

inducers including phorbol myristate acetate (PMA), retinoic acid (RA), interferon-Ƴ (IFN-Ƴ) 

and 1,25(OH)2D3 (Pagliara et al., 2005; Passmore et al., 2001) can differentiate U937 

monocytic cells to macrophages.  An additional strength of the U937 cell line is its ability to 

retain the monocyte-macrophage features for several years, making it possible for the cell 

line to be used for a long period at higher passage numbers (Chanput et al., 2015; Strefford 

et al., 2001). 

Monocytes-macrophages form an important component of the innate and adaptive immune 

response, immunomodulation, inflammation and tissue repair. Monocytes originate from 

haematopoietic stem cells through the common myeloid progenitor lineage. They are 

subdivided into three subsets—Classical (with marker CD14++CD16−), intermediate (CD14+(+) 

CD16+) and nonclassical (CD14+CD16++)—based on their function and surface marker they 

express (Ginhoux and Jung, 2014; Sprangers et al., 2016). Classical monocytes are the main 

subset in the immune response and phagocytosis. Monocytes are differentiated into 

macrophages and DCs. The functions of macrophages in the immune response have been 

categorised into antigen presentation, phagocytosis, and immunomodulation (Wynn et al., 

2013). Unlike monocytes, macrophages consist of ‘classical’ M1 and ‘alternative’ M2 

phenotypes that present proinflammatory and anti-inflammatory effects, respectively. 

Basically, M1 macrophages inhibit the pathogen whereas M2 maintains homeostasis to help 

repair and replace lost cells (Mills, 2012). Due to their pivotal roles in regulating the immune 

response and maintaining cellular homeostasis, macrophages are distributed throughout all 

tissues of the human body (Ballinger and Christman, 2016). 
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2.6. Study rationale 

Previous studies have demonstrated that supplementary 1,25(OH)2D3 improves the immune 

response against M.tb infection; however, the effects of 1,25(OH)2D3 on the metabolism of 

immune cells responding to a mycobacterial infection remains elusive. Thus, the aim of the 

current in vitro study is to apply a multi-platfrom (NMR and GC-MS-based) metabolomics 

approach to elucidate differential metabolic changes related to the 1,25(OH)2D3-

supplementation in macrophages treated with mycobacterial elicitor to mimic infection. 

Although this is a preliminary study, it will provide necessary insights into the possible 

metabolic reprogramming events that define the effects of 1,25(OH)2D3 on the metabolism 

of macrophages responding to a mycobacterial infection. Understanding these metabolic 

events could be of importance towards determining how 1,25(OH)2D3 inhibits the activity of 

the mycobacteria in macrophages. Furthermore, the effectiveness of 1,25(OH)2D3 in the 

immune response against mycobacterial infection may be estimated or predicted. The 

workflow of the study is given in Figure 2.9. 

 

2.7. Hypothesis 

Untargeted metabolomics is generally considered a hypothesis-generating approach, where 

a new hypothesis could be derived from the initial findings (Goodacre et al., 2004). With that 

in mind, the accepted hypothesis for this study is as follows:  

“NMR and GC-MS-based metabolic profiling can detect metabolic changes induced by 

Pam3CSK4 stimulation of macrophages supplemented with or without 1,25(OH)2D3”.  

 

2.8. Research aim 

The main aim of this study was to evaluate the metabolic effects of 1,25(OH)2D3 on the 

metabolome of U937 macrophages stimulated with Pam3CSK4.   

2.9. Research objectives 

The specific objectives of the study are as follows: 

1. The first objective was to differentiate the U937 monocytes to macrophages through 

PMA induced treatment of monocytes. Microscopic assessments of differentiated 

U937 cellular morphology and flow cytometry analysis of CD14 surface markers of the 

monocyte/macrophage cell populations were performed to determine and confirm 

U937 cellular differentiation.  
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2. The second objective was to use NMR and GC×GC-TOFMS-based metabolomics, 

coupled with multivariate statistical analysis, to decode metabolic reprogramming 

induced by Pam3CSK4 stimulation, 1,25(OH)2D3 supplementation and a combination of 

both Pam3CSK4/1,25(OH)2D3 treatment in differentiated U937 cells. The metabolic 

profile of untreated (control) U937 macrophages were also determined.  

 

3. The third objective of the study was to determine the metabolic pathways affected by 

each treatment condition in order to evaluate the global metabolic reprogramming 

associated with each treatment condition. 
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2.10. Research workflow 

The experimental work was performed according to the workflow in Figure 2.9. 

 

Figure 2.9: Workflow of the study. The first step of the study was to culture U937 monocytes. Viable 
U937 monocytes were then differentiated to macrophages using PMA. Cellular differentiation was 
confirmed using microscopic assessments of morphology and flow cytometry analysis of CD14 surface 
markers of the monocyte/macrophage cell populations. Differentiated cells were treated with 
Pam3CSK4, 1.25(OH)2D3 and a combination of Pam3CSK4 and 1.25(OH)2D3 prior to 

1H NMR spectroscopy 
and GC×GC-TOFMS metabolic profiling. The acquired data were subjected to univariate and 
multivariate statistical analysis. Statistical analysis was followed by metabolite annotation and 
pathway analysis. The last section of the study was the biological interpretation of the obtained 
metabolomics data. Abbreviations: 1.25(OH)2D3: 1,25-dihydroxyvitamin D3; CD14: Cluster of 
differentiation 14; GC×GC-TOFMS: Two-dimensional gas chromatography coupled with Time-of-flight 
mass spectrometry; NMR spectroscopy: Nuclear magnetic resonance spectroscopy; OPLS-DA: 
Orthogonal projections to latent structures–discriminant analysis; Pam3CSK4: Tripalmitoyl-S-glyceryl-
L-Cys-Ser-(Lys)4; PCA: Principal component analysis; PLS-DA: Projections to latent structures-
discriminant analysis; PMA: Phorbol myristate acetate. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

The following chapter (Chapter 3) consists of the materials and methods used in the current 

study. Some of the methods used were obtained from relevant published literature sources 

(Sellick et al., 2011) with some adjustments. The first two sections (Sections 3.1 and 3.2) 

present the methodology used for the culturing of U937 monocytic cells, which were 

subsequently differentiated into macrophages using PMA. The succeeding section (Section 

3.3) is divided into two sub-sections. The first sub-section (Section 3.3.1) presents the 

materials and methods used for microscopic assessment of monocyte to macrophage 

differentiation using a light microscope and the second sub-section (Section 3.3.2) consists of 

the methodology followed for flow cytometry-based measurement of surface maker 

differentiated cells. Sections 3.4 and 3.5 provide a descriptive explanation of the stimulation 

of U937 macrophages in the presence and absence of Pam3CSK4 as well as supplementation 

with or without 1,25(OH)2D3. This section is followed by the metabolic profiling of U937 

macrophages stimulated with Pam3CSK4, 1,25(OH)2D3 supplementation and a combination of 

both Pam3CSK4 and 1,25(OH)2D3 using a multiplatform metabolomics approach, involving 

NMR and GC-MS analytical systems (Sections 3.6 to Section 3.11). The last section of Chapter 

3 presents a detailed methodology on metabolic pathway analysis (Section 3.12). 

 

3.1. U937 monocyte culturing 

3.1.1. Method 

The U937 monocytic cell line was obtained from the American Type Culture Collection (ATCC, 

Virginia, United States). The U937 cells were cultured in Roswell Park Memorial Institute 

medium (RPMI) 1640 (Life technologies corporation, USA) supplemented with 30% fetal 

bovine serum (FBS) (GE healthcare life sciences, USA), 2 mM L-glutamine (LG) (Sigma-Aldrich, 

USA) and 1% (w/v) Penicillin-Streptomycin (Pen-Strep); 10 000 IU/mL Penicillin with 10 mg/mL 

Streptomycin, made up in 0.9% sodium chloride (NaCl) solution (Invitrogen, Waltham, MA). 

The cells were cultured at 37°C in a humidified atmosphere with 5% CO2.  Whilst the role of 

FBS in cell culture is to supply nutrients to the cells, L-glutamine alternatively provides energy 

for cell division. Pen-Strep is crucial for preventing the growth of microbes in the medium. 

After 24 hrs of incubation, the cells were centrifuged at 1000 xg for 1 min at room 

temperature to remove the culture medium. The obtained cell pellet was then cultured and 
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maintained in 1640 RPMI medium supplemented with 10% FBS, 2 mM L-glutamine and 1% 

(w/v) Penicillin-Streptomycin. The concentration of FBS was changed from 30% to 10% to 

obtain optimal cell growth. The culture medium was refreshed every 48 hrs until the cells 

reached 90% confluence. Cell counting was performed using trypan blue (Sigma-Aldrich, USA) 

on an automated cell counter. This was achieved by adding 20 µL of trypan blue to 20 µL of 

culture medium containg cells. The two solutions were mixed and 20 µL of the trypan blue-

culture medium was transferred to an automated cell counting slide. An automated cell 

counter was then used to count the cells.Upon achieving 90% cell confluence, 1 x 106 cells 

were plated in 35 mm diameter x 10 mm height cell culture dishes in 1640 RPMI containing 

10% FBS, 2 mM L-glutamine and 1% (w/v) Pen-Strep.  

 

3.2. Monocytes to macrophages differentiation 

3.2.1. Principle of the method 

The process of monocyte to macrophage differentiation involves both morphological and 

biochemical changes so that the differentiated cells can exhibit the properties and functions 

of the macrophages (Wallner et al., 2016). The reason for differentiating monocytes to 

macrophages is to study the response of macrophages following stimulation. Macrophages 

play a crucial role in the immune response. They are terminally differentiated and non-

dividing cells (Gordon and Taylor, 2005). For in vitro studies, macrophages are derived from 

monocytes. Monocytes-derived macrophages can proliferate in vitro and are long-lived. They 

also develop into specialised functions (Daigneault et al., 2010). Common inducers of 

macrophage differentiation are mentioned in Chapter 2 Section 2.6. In the current study, 

PMA was used to induce U937 monocytes differentiation to macrophages. The choice for 

using PMA was based on the findings from previous studies, where PMA was used successfully 

to differentiate U937 monocytes to macrophages (Mendoza-Coronel and Castañón-Arreola, 

2016; Passmore et al., 2001). A total of three replicates were included. 

3.2.2. Method 

Monocyte differentiation was achieved by exposing the U937 monocytes (1 x 106 cells/mL) to 

PMA (Sigma-Aldrich, USA) at the final concentration of 100 ng/mL dissolved in absolute 

ethanol. This final concentration was based on the previous findings of Yang et al. (2017) who, 

in their study, induced differentiation of U937 monocytes to macrophages using the same 

concentration (Yang et al., 2017). Although other compounds including tetradecanoyil-13-

phorbol acetate (TPA), dimethyl sulfoxide (DMSO), zinc (Zn2+), low concentration of glutamine 

and IFN-Ƴ can induce monocyte to macrophage differentiation, PMA has been shown to 

induce monocytes differentiation with high efficiency (Pagliara et al., 2005; Passmore et al., 

2001). Subsequent to PMA exposure, the cells were incubated for 24 hrs at 37°C in a 
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humidified atmosphere with 5% CO2 to allow the monocytes to fully differentiate to 

macrophages.   

3.3. Confirmation of monocytes to macrophage differentiation 

3.3.1. Microscope imaging 

3.3.1.1. Principle of the method 

Cellular activities that occur at a molecular level are reflected in the phenotype. The 

relationship between the molecular system state of a cell and its phenotype can thus be 

evaluated using microscopic analysis (Antony et al., 2013). Microscopic imaging of live cells 

reveals the information about the cellular structures, cellular dynamics and function (Frigault 

et al., 2009). These features can be observed in real-time and over a period of time, without 

necessarily changing the nature of the cell (Thorn, 2016). This imaging assessment is crucial 

for studying and understanding cellular differentiation (Loo et al., 2009; Watmuff et al., 2012; 

Zaretsky et al., 2012). Thus, in the current study, a light microscope was used to evaluate the 

morphology of U937 cells supplemented with or without PMA for 24 hrs. A total of three 

replicates were included. 

 

3.3.1.2. Method 

Monocyte to macrophage differentiation was first confirmed by performing the microscopic 

analysis of the U937 cells’ morphology. In this experiment, the morphology of the U937 

monocytic cells treated with PMA was compared with the morphology of the U937 monocytic 

cells that were not exposed to PMA. This was done to assess if there were any observable 

differences. The assessment was performed by treating 1x106 cells with PMA. The cells were 

then incubated for 24 hrs. At the end of the incubation period, the treated cells along with 

the control cells (untreated) were viewed on a Zeiss Axiovert 25 Phase Inverted light 

microscope using 40X magnification.  Following the visual assessment of the cells under the 

microscope, cellular micrographs were acquired using AxioVision 3.1 for further evaluation.  

 

3.3.2. Flow cytometry   

3.3.2.1. Principle of the method 

Changes in the physical properties of a cell such as size and granularity as well as molecular 

properties such as ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) content, gene 

expression, extracellular and intracellular receptors can all be quantified through flow 
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cytometry measurements (Betters, 2015). The basic principle of flow cytometry involves the 

measurement of the intensity of fluorescence which depends on the properties of the cells 

under investigation. The properties to be quantified are preselected using relevant flow 

cytometry dyes or monoclonal antibodies that are specific for either extracellular molecules 

or intracellular molecules of interest, depending on the staining procedure followed (Adan et 

al., 2017).  The components of a flow cytometer consist of fluidics, optics, electronics and a 

computer interface. The fluidic stream separates fluorochrome labelled cells into droplets 

each with a single cell (Betters, 2015; Jaye et al., 2012). The optical system consists of the light 

sources (laser of a specific wavelength), optical filters and mirrors that selectively direct the 

emitted wavelengths to the relevant detector. The electronics component consists of the 

photomultiplier tubes (PMTs) that generate electrical signals. The generated signal is then 

represented graphically, simultaneously as the forward scatter (FSC) on the x-axis and the 

side scatter (SSC) on the y-axis. FSC represents cell size while SSC represents granularity 

(Betters, 2015; Knijnenburg et al., 2011). 

 

3.3.2.2. Method 

Following the morphology evaluation, monocyte differentiation was quantified with a flow 

cytometry experiment by measuring the CD14 cell count. This experiment was carried out by 

first setting up an equal number of 35 mm diameter x 10 mm height cell culture dishes for 

positive and negative controls in triplicates. In each cell culture dish, 7 x 106 cells/mL were 

plated in 1640 RPMI medium supplemented with 200 mM LG, 10% FBS and 1% (w/v) Pen-

Strep. Cells used as a positive control were treated with 100 ng/mL PMA dissolved in absolute 

ethanol (Sigma-Aldrich, USA). Control cells were only treated with 4 µL of absolute ethanol 

(Sigma-Aldrich, USA). These cells were then incubated for 24 hrs. After the incubation period, 

cells were scraped from each culture dish with a rubber scraper before transferring into 15 

mL Falcon tubes. Cells were centrifuged at 500 xg for 10 min at room temperature and the 

supernatant was discarded. The cell pellets were resuspended in 1 mL of RPMI supplemented 

with 10% FBS. Cell count was performed using the trypan blue staining on an automated cell 

counter. For each condition, 1 x 106 cells/mL was added to a 96-well plate in triplicate. The 

RPMI medium was removed through centrifugation at 500 xg for 5 min at room temperature. 

Following the removal of the supernatant, cells were suspended and washed with 1x 

phosphate buffered saline (PBS), which was removed by centrifugation at 500 xg for 5 min at 

room temperature.   

Subsequently, the cell pellets were resuspended in 50 µL of a blocking solution made of 10% 

heat-inactivated human serum diluted in PBS and incubated for 1 min. The blocking solution, 

as the name implies, blocks the non-specific binding of the Fc receptors of the antibodies to 

prevent unintended antibody binding, which could lead to background fluorescence and 

subsequently, incorrect results (Andersen et al., 2016). The cells were then incubated for 1 

min at room temperature in the dark and then centrifuged at 500 xg for 5 min at room 
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temperature. The supernatant was discarded before adding a 50 µL fixation solution made of 

1,5 % paraformaldehyde (Sigma-Aldrich, St Loius, MO) in PBS to the pellets. Fixation is 

performed to preserve the cell structure and organelles (Viryasova et al., 2019). The 

resuspended pellets were incubated at room temperature for 30 min before the next round 

of centrifugation at 500 xg for 5 min at room temperature. After the supernatant was 

discarded, the pellet was resuspended in a 150 µL permeabilisation solution made of 0.2% 

Triton X in PBS. The permeabilisation solution partially destructs both cell and nuclear 

membrane. The significance of permeabilisation is to allow the antibodies to penetrate the 

cell for staining purposes (Viryasova et al., 2019). The mixture of the permeabilisation solution 

and the pellets was incubated for 15 min at room temperature. At the end of the incubation 

period, the suspended pellets were centrifuged at 800 xg for 8 min at room temperature. The 

supernatant was discarded leaving the pellets in the 96-well plate. All centrifugation steps 

were performed at room temperature.   

For CD14 labelling, the cell pellets were stained with primary and secondary antibodies. The 

primary antibody was anti-human CD14 immunoglobulin G2a (IgG2a) (Santa Cruz 

Biotechnology, Dallas, TX). The primary antibody solution was prepared by diluting 5 µL of 

anti-human IgG2a stock in 45 µL of 1% (w/v) bovine serum albumin (BSA)/PBS solution. The 

secondary antibody was a fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse 

IgG2a (Santa Cruz Biotechnology, Dallas, TX) secondary antibody. The solution of secondary 

antibody was prepared by diluting 1 µL of FITC-conjugated goat anti-mouse IgG2a stock with 

49 µL of 1% (w/v) BSA/PBS. The first step of CD14 labelling was performed by adding 50 µL of 

the primary antibody solution to the 96-well plate with the cell pellets and incubated for 30 

min at room temperature in the dark. Following the incubation period, 100 µL of the wash 

buffer (0.1% Triton X in PBS) was added to each well. The mixture was centrifuged at 800 xg 

for 8 min at room temperature. After discarding the supernatant, another 100 µL of the wash 

buffer was added to each well and another round of centrifugation was performed at 800 xg 

for 8 min. The supernatant was discarded. The pellets were resuspended in 50 µL of the 

secondary antibody before incubation for 30 min at room temperature in the dark. The 

samples were washed with 100 µL of the wash buffer and centrifuged for 8 min at 800 xg at 

room temperature after which the supernatant was discarded. Another 100 µL of the wash 

buffer was added to each well. Again, the suspended pellets were centrifuged at 800 xg for 8 

min at room temperature and the supernatant was discarded.  

For flow cytometry analysis, the pellets were resuspended in a 150 µL BSA/PBS solution. The 

resuspended cell pellets were transferred to the flow cytometry tubes. Another 150 µL 

BSA/PBS was added to the tubes to top up the solutions to a total volume of 300 µL solution 

in each of the flow cytometry tubes. The fluorescence of each sample was quantified within 

2 hrs on a BD FACS ARIA II flow cytometer (BD Bioscience) at an excitation wavelength of 406 

nm and emission of 450 nm (BD FACSDiva™ Software 6.1.3).  A total of three replicates were 

included for flow cytometry analysis. 
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3.4. In vitro U937 stimulation with Pam3CSK4 and 1,25(OH)2D3 supplementation 

3.4.1. Principle of the method 

Pam3CSK4 is an agonist of TLR2/1 receptor that simulates bacterial stimulation and 

immunomodulatory effects towards bacterial lipoproteins (Aliprantis et al., 1999; Akira et al, 

2003). Pam3CSK4 also mimics the triacylated lipoprotein of mycobacteria (Yang et al., 2015).  

It is, therefore, expected that Pam3CSK4 will have an immunomodulatory effect similar to that 

induced by mycobacteria. It is for this reason that U937 macrophages were stimulated with 

Pam3CSK4 in the current study. The mechanism through which Pam3CSK4 induces the immune 

response is explained in detail in Chapter 2 Section 2.2.  Briefly, the binding and activation of 

TLR2/1 by Pam3CSK4 induce the expression of NF-kB. Subsequently, NF-kB expression favours 

the production of cytokines including TNF-α, IL-6 and IL-12. Furthermore, TLR2/1 activation 

initiates endocytosis of Pam3CSK4–TLR 2/1 complex via the activation of α1β1 integrin 

receptor. As a result, the concerned immune cell secretes IL-6 and type 1 interferon to signal 

neighbouring cells about the infection of the first cell.    

 

3.4.2. Method 

The following experiments were set up according to Figure 3.1. This includes the treatment 

of the U937 differentiated macrophages with or without Pam3CSK4 and supplementation with 

or without 1,25(OH)2D3 for 12 hrs, 16 hrs and 24 hrs.  
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Figure 3.1: Experimental set up for differentiated U937 treatment. 
The U937 monocytes were first differentiated to macrophages with 100 ng/mL PMA for 24 hrs before 
stimulation with or without 6.5 µL Pam3CSK4. The cells were then supplemented with/without 
1,25(OH)2D3 for 12 hrs, 16 hrs or 24 hrs.   

 

As illustrated in Figure 3.1, Pam3CSK4 (EMC microcollections, Tuebingen, Germany) 

reconstituted in endotoxin-free water was used to stimulate the TLR2/1 of the macrophages. 

A final concentration of 6.5 µg Pam3CSK4/mL was used based on the findings of Meyer (2015), 

a previous PhD student from the same research group, who used this concentration to 

stimulate the immune response of the peripheral blood mononuclear cells (PBMCs). This was 

an optimal concentration after a series of Pam3CSK4 concentrations were evaluated. As per 

Figure 3.1, 1 x 106 U937 cells induced with 100 ng/mL PMA were stimulated with 6.5 µg 

Pam3CSK4/mL in triplicates for 12 hrs, 16 hrs and 24 hrs. In several studies, Pam3CSK4 was able 

to effectively induce the immune response in a 24 h incubation period. For instance, Weir and 

colleagues (2017) stimulated the expression of cell surface receptors in B cells with Pam3CSK4 

at a 24 hrs incubation period. Additionally, in their study, Al-Rashed et al. (2017) were also 

able to induce matrix metalloproteinase (MMP-9) in human monocytic THP-1 cells at 24 hrs. 

Based on the above-mentioned studies, 24 hrs was one of the chosen time points for the 

current study as there is enough evidence showing that Pam3CSK4 can induce immune 

response at this time point. Regardless of these findings, it has also been found that Pam3CSK4 
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can stimulate cells earlier than 24 hrs. In a study by Hellman et al. (2018), PBMCs were 

stimulated with Pam3CSK4 in a 12 hrs incubation. A 12 hrs incubation period was therefore 

also selected. Moreover, Lee et al. (2014), was able to stimulate BC2 cells at a 16 hrs 

incubation. Based on these studies, 3 incubation periods (12, 16, and 24 hrs) were used in the 

present study. Performing the experiment at three different time points was crucial in 

determining the effect of time in each experimental condition evaluated.  

 

3.5. U937 macrophages supplementation with 1,25(OH)2D3 

1,25(OH)2D3 is an important hormone with the ability to stimulate the immune response of 

the macrophages. To study the effect of 1,25(OH)2D3 in U937 macrophages, U937 cells 

stimulation with/without 6.5 µg Pam3CSK4/mL were supplemented with/without 10 nM 

1,25(OH)2D3 (Sigma Aldrich, St Louis, MO). The choice of using the final concentration of 10 

nM 1,25(OH)2D3 was based on published literature (Edfeldt et al. (2010); Liu et al. (2006); Liu 

et al. (2009)). In these studies, it was shown that 10 nM 1,25(OH)2D3 is sufficient to effectively 

induce the expression of VDR genes and thus increase VDR levels. Following 1,25(OH)2D3 the 

cells were incubated for 12 hrs, 16 hrs, and 24 hrs. At the end of each incubation period, the 

cells were prepared to study the metabolic effect of the aforementioned treatments on the 

cells. The treated cells were quenched for metabolic analysis as explained in the following 

section.  

 

3.6. Cell quenching 

3.6.1. Principle of the method 

It is crucial that the metabolic profile acquired in a metabolomic study is a true representation 

of the metabolism or metabolic profile of a cell at the time of metabolite extraction. Such can 

be achieved by quenching the cells before extracting the metabolites. Quenching is the 

process in which the metabolism of a cell is terminated by stopping all the cellular enzymatic 

activities to prevent undesired changes in composition and concentration of the metabolites 

to be extracted (De Koning and Van Dam, 1992; Faijes et al., 2007). Although several 

quenching methods have been published in the literature, only a few are efficient and highly 

reproducible. A good quenching method can be characterised by the following: (1) the ability 

to completely terminate and block cellular metabolism immediately when the quenching 

process is initiated; (2) not disruptive to the cellular membrane to prevent the leakage of 

intracellular metabolites; (3) ability to prevent the contamination of the sample of interest 

with undesired extracellular metabolites, and lastly (4) it should yield a metabolic profile that 

is a true representation of the cells’ physiology. Thus, it should not interfere with the 

metabolism of the cell (Bort et al., 2014; Cuperlovic-Culf et al., 2010).   
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3.6.2. Method 

For the NMR-based metabolomics approach, quenching was performed using liquid nitrogen. 

The advantage of using this quenching method lies in the fact that samples are frozen below 

−100°C, which allows an immediate termination of the metabolic processes. Liquid nitrogen 

allows quenching to be performed within a few seconds in a one-step procedure (Sellick et 

al., 2011). Quenching was performed after the specified incubation periods (12 hrs, 16 hrs 

and 24 hrs) were reached. Cells in culture dishes were gently scraped and transferred into 15 

mL falcon tubes and the tubes were centrifuged for 1 min at 1000 xg at −20°C to remove the 

growth medium. After discarding the supernatant, the cells (pellets) were snap-frozen in 

liquid nitrogen (−196°C) once.  The cells were then stored below -100°C. The frozen cells were 

allowed to thaw prior to the metabolite extraction.  

 

3.7. Intracellular metabolite extraction 

3.7.1. Principle of the NMR method 

Metabolite extraction is a critical pre-analytical step in metabolomics workflow, aiming to 

collect (often in a solution form) metabolites of interest from a biological system or matrix. 

The ideal metabolite extraction process should and would lead to a wide coverage of the 

metabolome under investigation (Lu et al., 2017). A successful metabolite extraction step is 

necessary in for metabolomics analysis as it drastically influences the outcomes of the 

experiment. Despite the ability of NMR spectroscopy to measure metabolites in the whole-

cell without extraction, more informative and quantitative measurements can only be 

achieved from the extracted metabolites (Cuperlović-Culf et al., 2010). Nonetheless, 

metabolite extraction remains challenging as there is no single extraction method that can 

extract all metabolites of a specimen. A single extraction method can only cover a group of 

metabolites with similar properties, e.g. polar vs. nonpolar, fatty acids or amino acids (Pinu et 

al., 2017; Cuperlović-Culf et al., 2010). To overcome this challenge, a combination of 

extraction methods is usually used to extract the largest number of metabolites from the 

specimen. For liquid-based extraction methods, common extraction solvents used include 

chloroform/methanol (De Koning and van Dam, 1992), cold methanol (De Jonge et al., 2012), 

hot water (Bolten et al., 2007) and methanol/water (Sellick et al., 2011), among others. In the 

current study, cold methanol/water extraction method was used for intracellular metabolite 

extraction according to the extraction method developed by Sellick et al. (2011), with minor 

modification. The combination of cold methanol and water has been shown to recover the 

maximum number and a large range of metabolites from suspension mammalian cells (Cao 

et al., 2011; Sellick et al., 2011; Shin et al., 2010). Keeping the sample temperature lower by 

using cold extraction solvents minimizes variability and achieves optimal stability of most 

metabolites between samples (Kostidis et al., 2017). 
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3.7.2. Method 

Following cell quenching, the cell pellets were resuspended in 500 µL of 100% methanol at 

−80°C, transferred to a microcentrifuge tube (tube 1) and snap-frozen in liquid nitrogen. The 

use of 100% methanol at −80°C further ensures that no enzymatic reaction or metabolic 

processes occur during extraction. The frozen cells were thawed and vortexed for 30 s prior 

to a cycle of centrifugation at 800 xg for 1 min at room temperature. The resulting 

supernatant was pooled into a fresh microcentrifuge tube (tube 2) on cold ice. The cell pellet 

in tube 1 was resuspended in 500 μL of 100% methanol (−80°C), snap-frozen in liquid nitrogen, 

thawed and vortexed for 30 s. Again, contents in tube 1 were pelleted by centrifugation at 

800 xg for 1 min at room temperature and the supernatant was pooled into tube 2 on cold 

ice. The cell pellet in tube 1 was resuspended in 250 µL of Milli-Q water, snap-frozen in liquid 

nitrogen, thawed and vortexed for 30 s.  The cells were pelleted by centrifugation at 15000 

xg for 1 min at room temperature. The supernatant was pooled into tube 2 so that the final 

ratio of methanol to water in tube 2 was 1:0.25. The solution in tube 2 was centrifuged at 

15000 xg for 1 min at room temperature and the supernatant, pooled into a fresh tube (tube 

3) was dried in a centrifugal evaporator at 30°C for 2 hrs. The dried metabolite pellets were 

stored at −80°C until NMR spectroscopic analysis.  

 

3.8. NMR data acquisition 

3.8.1. Principle of the method 

The basis of NMR spectroscopy involves measuring the magnetic properties of the atomic 

nuclei that have different magnetic spins (protons) such as 1Hydrogen (1H) and 13Carbon (13C). 

A detailed principle of NMR spectroscopy is given in Chapter 2 Section 2.5.6. Briefly, during 

the NMR spectroscopy measurements, the sample of interest is placed in a magnetic field. 

Subsequently, the nuclei of each molecule will either align with or against the magnetic field. 

As the radio frequency energy is applied, only NMR-active nuclei will resonate, each at a 

unique, characteristic frequency. These frequencies are given as chemical shifts on the NMR 

spectrum relative to a reference signal (Antcliffe and Gordon, 2016; Howard, 1998; Wilson 

and Walker, 2010). 1H is the most abundant nucleus in almost all metabolites as compared to 
13C and 31P nuclei, making 1H easily visible by the NMR.  

 

3.8.2. Method 

In this study, all one dimensional (1D) 1H NMR spectra were acquired using TOPSPIN 3.2 

(Bruker, Biospin Germany) at 25°C on a Bruker Avance III 500 MHz NMR spectrometer 

(University of Johannesburg, Department of chemistry) operating at 500.13 MHz. The NMR 
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spectrometer was equipped with a double resonance broadband (BBI) probe. A 1D nuclear 

overhauser effect spectroscopy (NOESY)-presaturation sequence was used for water and 

solvent suppression. All 1D NOESY were acquired at 25°C with an acquisition time of 1.64 s, 

mixing time of 0.05 s, relaxation delay of 2 s and 128 scans collected with receiver gain of 203 

dB and a spectral width of 10 000 Hz (20 ppm). The obtained spectra were baseline corrected 

and phased.  The corrected spectra were referenced to the signal of TSP at δ 0.00 ppm and α-

glucose at δ 5.23 ppm. All processed spectra were subjected to AMIX-viewer 3.9.15 (Bruker 

Biospin, Germany) for segmentation into bins with an equal width of 0.04 ppm. The water 

region (δ 4.4-5.5 ppm) was excluded as this region potentially interferes with low molecular 

weight metabolite regions on the NMR spectrum.  The final binned data file was exported into 

a Microsoft Excel file 2013.  

 

3.9. Chemometric and multivariate data analysis 

3.9.1. Principle of the method 

In untargeted metabolomics studies, sample analyses generate complex and multivariate 

data, which requires advanced statistical and chemometrics methodologies to meaningfully 

handle and mine these obtained (information-rich) datasets. Both univariate and multivariate 

data statistical methods are often applied, enabling the extraction of relevant, meaningful 

information from these highly complex data with aim of providing biological knowledge on 

the question under investigation (Saccenti et al., 2014). When only one variable is statistically 

analyzed at a time, a so-called univariate statistical method is performed. The application of 

univariate statistical tests and analyses in a metabolomics context implies testing hundreds 

of metabolites, which subsequently requires imperatively correcting for multiple tests to 

avoid or minimize having false positives. A reflection on univariate statistical methods in 

metabolomics can be found in the cited literature herein (Saccenti, et al., 2014). It is worth 

noting that these univariate methods, such as t-test or ANOVA, allow to statistically assess 

one single variable (metabolite), which could contain biological information and description 

on the phenomenon under study (Saccenti et al., 2014; Vargason et al., 2017).  

On the other hand, MVDA, as discussed in Chapter 2 Section 2.5.11, is used to handle 

multivariate data generated in metabolomics data acquisition. MVDA methods are capable of 

examining multiple variables simultaneously to reveal the inherent structures and biological 

information contained in these multiple variables (Mengual-Macenlle et al., 2014). MVDA 

methodologies determine and quantify the relationships between variables, contained in the 

measured variation and expressed as covariation and/or correlation (Shiker, 2012). MVDA 

models are thus computed, capturing a fraction of this variation, with a certain level of 

prediction. The information contained in these models is then presented visually in the form 

of plots/graphs. In the current study, PCA, an unsupervised MDVA method, was used for 
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dimensionality reduction and data exploration. Such exploratory methods reveal data 

structures, pointing to (dis)similarities between and within sample groups, and highlighting 

thus sample clusters, trends and outliers (Biancolillo and Marini, 2018). To complement 

MVDA methods and extract more detailed information, a supervised MVDA method, OPLS-

DA, was applied. For more description on PCA and OPLS-DA, refer to Chapter 2 Section 2.5.11. 

Prior to constructing the MVDA models, data pre-treatments (e.g. sample and variable 

normalization and missing value imputation) are applied. Furthermore, in computing these 

multivariate models, tuning and validation procedures are mandatorily applied to ensure 

statistical significance, reliability and validity of the generated models (Westad and Marini, 

2015). Such validation procedures include permutation tests and CV. As mentioned in Chapter 

2 Section 2.5.12, the basis of CV involves the decomposition of the data matrix into validation 

and training subsets, and through different iterations, evaluating performance estimates, 

model bias and predictability (Trivedi and Iles, 2012).  

 

3.9.2. Method 

The AMIX-processed data (excel file) was exported to Soft Independent Modeling of Class 

Analogy (SIMCA) software package, version 15 (Umetrics, Sweden) for univariate and MVDA. 

The data was pareto scaled before computing PCA models. The strong outliers were assessed 

using the Hotelling’s T2 ellipse at a 95% confidence interval on a PCA scores scatter plot. 

Furthermore, moderate outliers were detected using distance to the model (DModX). The 

generated PCA models were tuned and validated by the 7-fold CV method. This was achieved 

by generating the squared Pearson correlation coefficient goodness of fit (R2) and predictive 

ability (Q2) values.  

In order to maximize and observe separations between the study groups, OPLS-DA modelling 

was performed. This is a supervised modelling which can be used to identify discriminant 

variables responsible for the separation between two classes, which can be useful for 

biomarker identification. The significance of each generated OPLS-DA model was assessed by 

generating the CV-ANOVA value for each model where a p-value of <0.05 represents a 

statistically good model. From the constructed OPLS-DA models, a loadings S-plot and variable 

importance plot (VIP) were generated to identify variables discriminating the study classes. 

Loadings S-plot is an S-shaped plot of modelled covariation and correlation, allowing to 

extract variables (metabolites) with high covariation (i.e. high magnitude) and high 

correlation (i.e. high reliability). These discriminating variables are thus visually found at the 

extreme ends of the loadings S-plot. A VIP scoring is a metric that summarizes the importance 

of each variable in driving the observed class separation. Variables with VIP values above 1 

contribute more than average to the model, i.e. the observed group separation/classification. 

The fold change (equivalent to the relative concentration) for each variable was also 

generated. Fold change values above 1 indicates an increase in the relative concentration 

while fold change below 1 indicate a decrease in relative concentration.  
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3.10. Metabolite annotation 

The identity of the metabolites associated with the variables differentiating the study groups, 

according to the loadings S-plot, were assigned using the chemical shift (ppm) values. These 

assignments were done using the Human Metabolome Database (HMDB) 

(http://www.hmdb.ca/)  and relevant published literature (Subramani et al., 2016; 

Govindaraju et al., 2000; Mickiewicz et al., 2014).  

 

3.11. Gas chromatography-mass spectrometry data acquisition 

Following the analysis of the 1H NMR data, it was found that the metabolic profiling of cells 

treated for 12 hrs yielded more potential signatory metabolites discriminating the study 

groups (which are, Pam3CSK4 stimulated cells, 1,25(OH)2D3 treated cells and cells 

supplemented with Pam3CSK4/1,25(OH)2D3). For the GC-MS analysis, the 12 hrs incubation 

was used as the time point for the analysis. The same protocols for U937 monocyte cell 

culture (Section 3.2.2), monocyte differentiation (Section 3.3.2), differentiation confirmation 

(Section 3.4), and in vitro U937 stimulation with Pam3CSK4 and 1,25(OH)2D3 supplementation 

(Section 3.5.2 and 3.6) were used prior to GC-MS analysis.  

 

3.11.1. Sample preparation and quenching 

The principle of quenching has already been mentioned in Section 3.7.1. At the end of a 12 

hrs incubation period, the RPMI growth medium was removed by spinning the cells at 1000 

xg for 1 min at room temperature. After discarding the supernatant (RPMI growth medium), 

the cells were washed twice with 2 mL ice-cold PBS (pH 7.4). Cells were washed by spinning 

the cells in PBS at 1000 xg for 1 min at room temperature. The resulting cell pellet was 

resuspended in 750 μL high performance liquid chromatography (HPLC) grade methanol 

(Sigma-Aldrich, St. Louis, MO). The mixture was then transferred into 2 ml Eppendorf safe-

lock tubes and the samples were stored at −80°C until analysis at the Centre for Human 

Metabolomics at the North West University.  The samples were delivered in dry ice. 

 

3.11.2. Metabolite extraction  

For the whole metabolome extraction, a single-phase extraction method proposed by Beukes 

et al. (2019) was applied to the experimental samples (1,5 million cells in 750 μL methanol), 

quality control (QC) sample aliquots and extraction blanks (750 μL methanol). A 50 μL internal 

standard (3-phenylbutyric acid), 250 μL chloroform, 250 μL H2O and a 3mm tungsten beads 

were added to each sample vial. The samples were then shaken in a vibration mill at 30 Hz for 

http://www.hmdb.ca/
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5 min and centrifuged at 14 650 xg for 5 min. The supernatant was then transferred into a GC 

vial and dried under a gentle stream of nitrogen at 40°C for 20 min. Subsequently, 50 μL 

methoxyamine hydrogen chloride was added and the mixture was incubated at 50°C for 90 

min. This was then followed by the addition of 40 μL N,O-bis(trimethylsilyl)trifluoroacetamide 

(BSTFA) (Sigma Aldrich, St. Louis, MO, USA) and 1% trimethylchlorosilane (TMCS) (Sigma 

Aldrich, St. Louis, MO, USA) to the vial. The vial was re-incubated at 60°C for 60 min. The 

extracts were then transferred to a 0.25 mL insert in a GC sample vial for analysis using GCxGC-

TOFMS.  

 

3.11.3. GCxGC-TOFMS analysis 

3.11.3.1. Principle of the method 

Detailed principle of GC-MS is given in Chapter 2 (Section 2.5.8). GC separates volatile and 

semi-volatile compounds in a mixture under high temperatures. The separated compounds, 

referred to as analytes, are then detected using MS. Before the GC-MS analysis, samples are 

dissolved in solvents such as acetone, methanol or heptane. The mixture is then injected to 

the GC, where it is vaporized under high temperature. The vaporized molecules are carried 

through the column by a carrier gas such as helium, hydrogen, nitrogen or argon (Sneddon et 

al., 2007; AL-Bukhaiti et al., 2017; Hussain and Maqbool, 2014). The vaporized analytes 

separate based on their differential affinity to the stationary phase coated on the column. 

The separated, vaporized analytes are then passed on to the mass spectrometer, where they 

are ionized. The formed ions are sorted in the mass analyzer and separated based on the mass 

to charge ratio. The separated ions are then detected by the ion detector in the MS, which 

produces electrical signals. The signals are represented in a histogram called mass spectrum 

as a function of m/z and relative abundance on the x-axis and y-axis, respectively (Murayama 

et al., 2009; Patel et al., 2012). In the current study, two-dimensional gas chromatography 

(GC×GC) coupled with time-of-flight mass spectrometry (TOFMS) was used for metabolic 

profiling. In GCxGC-TOFMS, sample separation is achieved using two separate GC columns 

(GCxGC) with different polarity of the stationary phase (Kalinova et al., 2006; Spanik et al., 

2012). The separated compounds in a sample mixture are subsequently carried to the TOFMS 

for detection. ToF-MS can detect up to 500 spectra s−1 (Kalinova et al., 2006; Rocha et al., 

2007). The detected compounds are represented in a mass spectrum. 

 

3.11.3.2. Method 

The GCxGC-TOFMS analysis was performed on a Pegasus 4D GCxGC-TOFMS (Leco 

Corporation, St. Joseph, MI, USA), using an Agilent 7890A GC (Agilent, Atlanta, GA) coupled 

to a time of flight mass spectrometer (Leco Corporation, St. Joseph, MI, USA) equipped with 
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a Gerstel Multi-Purpose Sampler (MPS) (Gerstel GmbH & co. KG, Eberhard-Gerstel- Platz 1, D-

45473 Mülheim an der Ruhr), equipped with a cryogenic cooler. The primary column was 

fused with Rxi-5Sil-MS phase. The length of the column was 30 m with an internal diameter 

of 0,25 mm with the film thickness of 0,25 μm. The secondary column was fused with the Rxi-

17 phase. The column was 1,400 m long with the internal diameter of 0,25 mm and the film 

thickness of 0,25 μm. Both columns were supplied by Restek (Bellafonte, PA, USA). The inlet 

was operated in a split ratio of 1:10 at 270°C with an injection volume of 1μl (derivatized 

sample). Helium (He) was used as a carrier gas at a constant flow of 1 mL/min. The 

temperature of the primary GC oven was initially programmed at 70°C for 2 min after which 

it was gradually increased at 4°C/min to a final temperature of 300°C, where it was 

maintained for 2 min. The temperature of the secondary GC oven was initially programmed 

at 85°C for 2 min. The temperature was then increased at 4.5°C/min to a final temperature of 

300°C with a 4.5 min hold. The modulator was programmed to have an initial temperature of 

100°C for 2 min. The temperature was then increased by 4°C/min to a final temperature of 

310°C with a 12 min hold. The effluent emerging from the primary column onto the secondary 

column was controlled using cryomodulation and a hot pulse of nitrogen gas of 0.5 s every 3 

s. For TOFMS, sample ionization was performed using electron ionization with 70 eV. The ion 

source temperature was kept constant at 200°C while the transfer line temperature was held 

at 270°C. The m/z was between 50–800 at an acquisition rate of 200 spectra/second after a 

350 s solvent delay. The detector voltage was programmed at 150 V offset.  

 

3.11.4. Peak identification and data matrix creation   

Peak identification and mass spectral deconvolution were performed using Leco Corporation 

ChromaTOF software (version 4.50) at an S/N ratio of 100, with a minimum of 3 apexing peaks. 

Peak identification was achieved using a level 3 identification according to Schymanski et al. 

(2014). The mass fragmentation patterns together with their respective GC retention times 

as generated by the MS were used to determine the identities of the peaks by comparing it 

to in-house and commercially available National Institute of Standards and Technology (NIST) 

spectral libraries (mainlib, replib).  

 

3.11.5. MVDA analysis  

Following peak alignment from the ChromaTOF software, peaks identified in the blank 

samples (system blanks and extraction blanks) were deleted from the dataset as these were 

considered to be contaminants. Compound areas were then normalised according to the total 

useful signal detected for each sample. The resulting dataset was subjected to MetaboAnalyst 

4.0 (https://www.metaboanalyst.ca/) for statistical analyses. The data was pareto scaled before 

analysis. Univariate statistics (student’s t-test and volcano plot) were used to identify features 
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that vary significantly between cells stimulated with Pam3CSK4, Pam3CSK4/1,25(OH)2D3 

supplemented cells and control cells (untreated). Furthermore, multivariate methods, PCA, 

PLS-DA and OPLS-DS were performed to extract more biologically meaningful information 

from the data. PCA was applied to reduce the dimensionality of the data and for data 

exploration. In addition, OPLS-DA was applied for binary classification analyses.  

 

3.12. Pathway analysis  

The annotated signatory metabolites from 1H NMR spectroscopy and GCxGC-TOFMS analysis 

were subjected to MetaboAnalyst version 4.0 (https://www.metaboanalyst.ca/) for 

metabolic pathway analysis. MetaboAnalyst allows the identification of metabolic pathways 

associated with the given metabolites. These are the metabolic pathways that are altered 

under the given conditions. Metabolic pathways were selected based on the level of 

significance with p<0.05 considered to be significant. These metabolic pathways contain most 

of the identified metabolites. 
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CHAPTER 4 

RESULTS 

 

The results generated in the study are presented in the current chapter. The first section 

(Section 4.1.) presents the results of U937 cellular differentiation. This section is divided into 

two sub-sections which consist of the results of the microscopic assessment of differentiated 

cells (Section 4.1.1) and flow cytometry-based measurement of surface maker differentiated 

cells (Section 4.1.2). The succeeding section (section 4.2) presents the results of the metabolic 

profiling of U937 macrophages stimulated with Pam3CSK4, 1,25(OH)2D3 supplementation and 

a combination of both Pam3CSK4 and 1,25(OH)2D3. This section is also divided into two sub-

sections: Nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling (Section 

4.2.1) and gas chromatography–mass spectrometry (GC-MS) based metabolic profiling 

(Section 4.2.2). The metabolic pathways associated with signatory metabolites identified in 

metabolic profiling are presented in Section 4.3., which is the last section of Chapter 4.  

 

4.1. Phorbol myristate acetate-induced cellular differentiation assessment 

4.1.1. Microscopic assessments of differentiated U937 cellular morphology 

The confirmation of PMA-induced monocytes to macrophage cellular differentiation was first 

performed by assessing the morphology of the U937 cells supplemented with or without 100 

ng/mL PMA for 24 hrs. The aim of this experiment was to evaluate if there are morphological 

differences between U937 cells cultured in the presence and absence of PMA. At the end of 

the incubation period (24 hrs), the morphological changes of the cells were examined using 

an inverted light microscope under 40X magnification. Cells cultured in the absence of PMA 

(Figure 4.1A) were shiny and round in shape with smooth edges, a typical morphology of U937 

monocytic cells (Shu et al., 2013; Zamani et al., 2013). On the contrary, PMA-treated cells 

(Figure 4.1B) showed a differential irregular cellular shape, with an elongation, rough edges 

and pseudopods. This PMA-induced cellular shape resembles an adhesion morphology of 

macrophages (Marcuello et al., 2018; McWhortera et al., 2013; Zamani et al., 2013).  
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Figure 4.1: Cellular morphology assessment under the microscope: Micrographs of U937 cells 
supplemented without (A) or with PMA (B) for 24-hrs treatment. The micrographs show the 
differences in the morphology of cells between the two conditions. In the absence of PMA, cells are 
round in shape and have smooth edges. On the contrary, PMA supplemented cells have uneven, 
irregular shape with rough edges. Cells were viewed under 40X magnification on a Zeiss Axiovert 25 
Phase Inverted light microscope before the micrographs were acquired using AxioVision 3.1.  

 

 4.1.2. Flow cytometry analysis of CD14 surface markers of the 
monocyte/macrophage cell populations 

Cellular differentiation of monocytes to macrophages was also evaluated by measuring the 

level of the expressed surface marker CD14 on the U937 cells, following a 24 hrs incubation 

in the presence or the absence of 100 ng/mL PMA. Cells were stained with anti-human IgG2a 

primary antibody and a FITC-conjugated goat anti-mouse IgG2a secondary antibody. The flow 

cytometry analysis enabled the observation of whether treatment of U937 cells with PMA 

induced the expression of CD14 surface marker — a maker of monocyte to macrophage 

differentiation. Figure 4.2A illustrates the forward scatter (FSC-A) and the side scatter (SSC-

A) properties of the cell population. The FSC-A and SSC-A measure the size and granularity or 

density of the cell. The gate P1 on Figure 4.2B represents the U937 cells that abundantly 

expressed CD14 surface markers. The gate P1 confirms that the majority of the U937 cells in 

the measured population expressed CD14 cells. The quantification of CD14 count between 

PMA-treated and the control (untreated) cells showed that PMA-supplemented cells 

expressed a high-levels of CD14 as compared to the control cells (Figure 4.3). PMA 

supplementation significantly increased the intensity of CD14 (p< 0.001).  
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Figure 4.2: Flow cytometry analysis of monocyte-macrophage CD14 count. (A) A dot plot provides 
the forward scatter (FSC-A) which is the measure of the size of cells and the side scatter (SSC-A), the 
granularity or density of the cell. (B) A histogram of CD14 labelled monocyte-macrophage cell 
populations. Gate P1 is the CD14 expressing cells labelled with antibody fluorochrome, FITC-A.  

 
 

 
Figure 4.3: Flow cytometry CD14 count. CD14 count of U937 cells supplemented with 100 ng/mL PMA 
vs. control cells incubated for 24 hrs. Each error bar represents the standard deviation. The two groups 
show statistically significant differences in CD414 counts, with p<0.001 ***. 

 

4.2. Multiplatform metabolic profiling of U937 macrophages treated with Pam3CSK4, 
1,25(OH)2D3 and a combination of both Pam3CSK4 and 1,25(OH)2D3 

To decode metabolic reprogramming induced by Pam3CSK4 stimulation, 1,25(OH)2D3 

supplementation and a combination of both Pam3CSK4/1,25(OH)2D3 treatment in 

differentiated U937 cells, NMR spectroscopy and GC-MS platforms were used in an 
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untargeted approach. For NMR spectroscopy analysis, proton (1H) NMR spectroscopy was 

used to detect the extracted metabolites. In addition to 1H NMR spectroscopy, GCxGC–TOFMS 

was used as a complimentary technique to expand the metabolome coverage. The results of 

these metabolic analyses are presented in the following sub-sections: Section 4.2.1 for NMR 

spectroscopy analysis and Section 4.2.2 for GC-MS-based metabolic profiling.  

4.2.1. NMR-based metabolic profiling of U937 cells treated with Pam3CSK4, 
1,25(OH)2D3 and a combination of both Pam3CSK4 and 1,25(OH)2D3 

 
The extracted metabolites of cells treated with Pam3CSK4, 1,25(OH)2D3, a combination of both 

Pam3CSK4 and 1,25(OH)2D3, as well as that of untreated cells, were analysed using 1H NMR 

spectroscopy. To monitor the changes over time, the treated cells were incubated for 12 

(Figure 4.4), 16 (Figure A1) and 24 hrs (Figure A2). Visually, treatment-related differences in 

the overlaid spectra were observed (Figure 4.4) and these included the presence or absence 

of peaks and changes in peak intensities. Furthermore, to adequately extract information 

from these spectral data, chemometrics methods were applied. Unsupervised modelling, 

particularly PCA, was applied for dimensionality reduction and data exploration. Furthermore, 

the supervised OPLS-DA was carried out for binary classification analyses. 

 

Figure 4.4: Representative overlaid 1H NMR spectra acquired using a 500 MHz Bruker NMR 
spectrometer (12-hrs treatment). The spectra represent the metabolic profiling of (A) control cells 
(untreated), (B) Pam3CSK4 stimulated cells, (C) 1,25(OH)2D3 treated cells and (D) 
Pam3CSK4/1,25(OH)2D3 supplemented cells. The labelled peaks are signatory metabolites identified 
from the Human Metabolome Database (HMDB) (http://www.hmdb.ca/) and relevant published 
literature (Govindaraju et al., 2000; Mickiewicz et al., 2014; Subramani et al., 2016). All spectra were 
referenced to TSP at δ 0.0 ppm and α-glucose at δ 5.53 ppm. 1,25(OH)2D3: 1,25-dihydroxyvitamin D3; 
AMP: Adenosine monophosphate. 

http://www.hmdb.ca/
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4.2.1.1. PCA-based data exploration: Hidden internal data structures and sample 
groupings 

PCA revealed the between-group and within-group variation, the trend and outliers as 

depicted in Figures 4.5, Figure A3 and A4. Using the first two principal components, 

treatment-related sample grouping of control (untreated) cells, Pam3CSK4 and 1,25(OH)2D3 

treated cells can be evidently seen in scores space, even though there is some sample overlap 

(Figures 4.5A, A3A and 4A). Furthermore, Hotelling's T2 at 95% confidence level was used to 

detect strong outliers; and there were no strong outliers, i.e. there is no observation that is 

found outside the ellipse of scores scatter plots (Figures 4.5A, A3A and 4A). Distance to the 

model (DModX) was also computed to visually assess moderate outliers. The latter are 

observations with a value greater than the critical value denoted DCrit (0.05) (red dotted line) 

on the DModX infographics (Figure 4.5B and Figure A3B and A4B for 12, 16, and 24 hrs 

treatment, respectively); however, these outliers had no variable(s) with critical deviation 

from the rest of the dataset, hence they were retained. To further investigate the sample 

grouping revealed by PCA modelling, a supervised binary classification, OPLS-DA, was applied, 

as presented in the following section.  
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Figure 4.5: PCA modelling. (A) PCA scores scatter plot showing sample grouping of control cells 
(untreated), Pam (Pam3CSK4), VitD (1.25(OH)2D3), and Pam3CSK4/Vit D (Pam3CSK4/1.25(OH)2D3) 
treated cells without any strong outliers as per Hotelling's T2 (95% confidence level). Component t[1] 
shows the between-groups variation and t[2] shows the within-group variation. The description of the 
computed PCA model are R2= 0.997, Q2= 0.969, components = 13. (B) DModX shows four moderate 
outliers with DModX values greater than critical value, DCrit (0.05) (red dotted line). 

 

4.2.1.2. Sample classification and variable selection — OPLS-DA modelling 

Supervised multivariate modelling, OPLS-DA, was performed to maximize the separation 

between the sample classes. This OPLS-DA binary classification and sample discrimination 

modelling allow for the extraction of more detailed and descriptive information from the 

dataset. Different OPLS-DA models were thus computed investigating the following classes: 

the control cells vs. Pam3CSK4 (Figure 4.6A), control cells vs. 1,25(OH)2D3 (Figure 4.6C), and 

control cells vs. Pam3CSK4/1,25(OH)2D3 (Figure 4.6E) for 12 hrs treatment. The OPLS-DA 

modelling infographs for the 16 and 24 hrs treatment is given in Figure A5 and A6, 

respectively. A clear separation was observed between the aforementioned classes, 

indicating that there were differences in the metabolome of the experimental groups 
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compared. A seven-fold CV procedure was applied as a tuning method in building the models; 

and the quality of each OPLS-DA model was assessed by inspecting R2X (the explained 

variation of the X variable by the model) and R2Y (the explained variation of the Y variable by 

the model), as well as the predictive ability of the model, Q2.  Generally, the metrics Q2 with a 

minimum value of 0.05 (50%) and R2 close to 1 are desirable as indicative of valid models 

(Triba et al., 2015). However, in practice, it is not possible to set a general limit for good 

predictability (Q2) since this strongly depends on the properties of the dataset, such as the 

number of observations included. Q2 of 0.04 (40%) or below can be accepted and have been 

published (Cai et al., 2012; Dong et al., 2013). Such models with poor predictability are further 

validated by other methods such as a permutation test. In this study, in addition to k-fold CV 

metrics (R2 and Q2), permutation tests were applied and the statistical reliability of the models 

was assessed using cross validated-analysis of variance (CV-ANOVA) by generating the 

probability (p) value with a cut-off value of p<0.05, which indicates a statistically significant 

model. All models met these validation requirements.  

For the selection of discriminant variables responsible for class separation, the OPLS-DA 

loadings S-plot for each model were generated and evaluated (Figure 4.6B, 4.6D and 4.6F, 

respectively). The discriminant variables are those located at the extreme ends of the S-plot 

(bottom left and top right). These are the variables that are significantly different between 

the classes. Such variables have a high correlation and covariation in a multivariate space and 

have a p<0.05. The selected variables were annotated by using the Human Metabolome 

Database (HMDB) (http://www.hmdb.ca/) and relevant published literature (Govindaraju et 

al., 2000; Mickiewicz et al., 2014; Subramani et al., 2016). The confidence in metabolite 

annotation was level 2, as classified by the current metrics of the Metabolomics Standard 

Initiative (MSI) (Sumner et al., 2007). The selected and annotated potential signatory 

metabolites are thus tabulated in Table 4.1. 

 

 

 

http://www.hmdb.ca/
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Figure 4.6: OPLS-DA modelling and variable selection. An OPLS-DA model separating control cells vs. 

Pam3CSK4 (1+4+0 components, R
2
X = 0.989, R

2
Y = 0.995, Q

2
 = 0.99, CV-ANOVA p-value = 4.87 × 10−8) 

(A) the scores scatter plot of t1 vs. t1o, a window in the X space displaying the separation of the two 
classes in horizontal (t1) direction; and orthogonal variation or within-class variability (i.e., unrelated 
to the discrimination between the two classes) is expressed in the vertical (to[1]) direction. (B) the 
loading S-plot, a predictive component loading, which displays discriminant variables – the variables 
that are situated in the extreme ends of the loadings S-plot are statistically relevant and represent 
prime candidates as discriminating variables. (C) An OPLS-DA scores scatter plot separating the 
control cells vs. VitD (1,25(OH)2D3) supplemented cells (Components: 1+5+0, R2X= 0.993, R2Y= 0.998, 
Q2= 0.99, CV-ANOVA p-value = 4.1535 × 10-06); and (D) the loading S-plot displaying discriminant 
variables. (E) An OPLS-DA scores scatter plot and (F) the loading S-plot of Control vs. 
Pam3CSK4/1,25(OH)2D3. A clear separation can be seen between the two classes (1+3+0 components, 
R2X = 0. 848, R2Y = 0. 991, Q2 = 0. 975, CV-ANOVA p-value =8.41 × 10−6). 
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Table 4.1: OPLS-DA-derived signatory metabolites discriminating between controls (untreated) and cells treated with Pam3CSK4, 1,25(OH)2D3 and a combination 
of both Pam3CSK4 and 1,25(OH)2D3 detected using 1H NMR spectroscopy. 
 

 
 
 
 
PPM 

 
 
 
 
Metabolite 

12 hrs 16 hrs 24 hrs 

Pam3CSK4 1,25(OH)2D3 Pam3CSK4/ 
1,25(OH)2D3 

Pam3CSK4 1,25(OH)2D3 Pam3CSK4/ 
1,25(OH)2D3 

Pam3CSK4 1,25(OH)2D3 Pam3CSK4/ 
1,25(OH)2D3 

Fold 
change 

p-value Fold 
change 

p-value Fold 
change 

p-value Fold 
change 

p-value 
 

Fold 
change 

p-value 
 

Fold 
change 

p-value 
 
 

Fold 
change 

p-value 
 

Fold 
change 

p-value 
 

Fold 
change 

p-value 
 

3.85 Methionine 0.899 0.049 — — 0.891 0.006 — — — — 0.813 0.003 — — 0.871 0.166 — — 

3.69 Galactose 1.190 0.008 — — 1.109 0.100 — — 0.916 0.379 0.840 0.018 0.728 0.024 0.788 0.013 0.786 0.030 

3.61 Myoinositol 0.612 4.15 x 
10−7  

0.459 0.0001 0.802 0.017 0.677 0.235 1.021 0.923 0.902 0.738 1.331 0.262 1.311 0.295 1.214 0.410 

3.57 Threonine/ 
glycine 

2 0.001 4.351 0.003 1.879 0.047 1.480 0.265 1.171 0.499 1.377 0.473 0.687 0.251 0.863 0.653 0.623 0.235 

3.53 Beta-glucose 0.807 0.0002 1.070 0.248 0.962 0.340 0.993 0.803 0.987 0.881 1.159 0.089 0.959 0.433 1.078 0.237 0.915 0.195 

3.21 o-Phosphocholine 0.920 0.009 0.744 0.008 0.604 7.13 x 
10−8  

0.914 0.342 0.762 0.016 0.828 0.049 1.084 0.666 0.886 0.479 — — 

2.25 Valine 2.463 2.04 x 
10−5  

— — — — — — — — — — 1.394 0.289 — — — — 

1.33 Lactate 1.143 0.117 1.144 0.118 — — 1.045 0.444 0.957 0.397 0.912 0.209 1.061 0.461 1.004 0.963 1.339 0.006 

3.65 Mannose — — 1.419 0.0003 1.290 0.011 1.162 0.011 — — 0.741 0.033 1.203 0.158 — — — — 

3.41 Taurine — — — — — — — — 0.883 0.243 — — 0.772 0.002 0.800 0.002 0.841 0.007 

4.01 Adenosine 
monophosphate 
(AMP) 

— — — —  
1.310 

 
0.042 

 
1.210
  

 
0.070 

 
1.142 

 
0.006 

— —  
1.375 

 
0.006 

— — 1.262 0.056 

3.77 Ornithine/ 
glycerol 

— — — — 0.863 0.021 — — — — 0.788 0.0008 — — — — — — 

2.41 Succinate — — — — 1.123 0.051 — — 0.889 0.161 — — — — 0.838 0.003 — — 

3.97 Tyrosine/ 
Phenylalanine  

—     —      — — — — — — — — — — 1.374 0.024 — — — — 

2.45 Glutamate — — — — 1.111 0.013 — — — — — — — — 0.834 0.002 — — 

0.97 Leucine  — — — — — — — — — — — — — — 0.875 0.006 — — 

4.17 Pyroglutamate — — — — 0.748 0.008 — — — — — — — — — — — — 

2.97 Glutathione — — — — 0.747 0.001 — — — — — — — — — — — — 

2.53 Beta-Alanine — — — — 0.850 0.0004 — — — — — — — — — — — — 

2.17 Glutamine — — — — 0.817 9.82 x 
10−5 

— — — — — — — — — — — — 

 



58 
 

As it can be seen in Table 4.1 and depicted in Figure 4.7, the discriminatory metabolites, which 

are biologically potential markers for the specific treatment in consideration, were up- or 

down-regulated. Furthermore, these metabolites were either unique to a treatment or 

overlapped. Their relative concentrations differ between the 12, 16 and 24 hrs treatment, 

indicating the changes in metabolic activities of the treated cells overtime. The identified 

discriminatory metabolites are members of different chemical classes including amino acids, 

carbohydrates, organic compounds and antioxidants.   

 

 

Figure 4.7: Graphical representation of potential signatory metabolites differentiating Pam3CSK4 
stimulation, 1,25(OH)2D3 treatment and Pam3CSK4/1,25(OH)2D3 supplementation at three time 
points. Figure 4.7 A, B and C show the signatory metabolites resulting from the metabolic profiling of 

the treated U937 cells treated for 12-, 16- and 24 hrs. Fold change value above 1 represents an 
increase in the relative concentration of metabolite whereas fold change value below 1 represents a 
decrease in the relative concentration of metabolite. 
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4.2.2. GS-MS–mass spectrometry based metabolic profiling of U937 cells treated 
with Pam3CSK4, 1,25(OH)2D3 and a combination of both Pam3CSK4 and 1,25(OH)2D3 

 
For GCxGC-TOFMS metabolic profiling, U937 differentiated cells treated with Pam3CSK4 or a 

combination of both Pam3CSK4 and 1,25(OH)2D3 were incubated for 12 hrs only. The choice of 

incubating the treated cells for 12 hrs was motivated by the 1H NMR spectroscopy analysis 

results. Meaning, in the 1H NMR spectroscopy analysis, more potential signatory metabolites 

were identified from the metabolic profiling of cells incubated for 12 hrs in comparison to 16 

and 24 hrs (Figure 4.7). Data generated from GCxGC-TOFMS metabolic profiling was subjected 

to both univariate and multivariate data analysis. For univariate statistical analysis, student’s 

t-test was performed to determine the features (metabolites) that are significantly different 

between control cells vs. Pam3CSK4; and control cells vs. Pam3CSK4/1,25(OH)2D3 (Figure 4.8). 

Furthermore, volcano plots of control vs. Pam3CSK4; and that of control cells vs. 

Pam3CSK4/1,25(OH)2D3 (Figure A7A and A7B, respectively) were generated to identify 

significant features (metabolites) discriminating the aforementioned groups. Significant 

features that are highly altered between the groups are those located far from the origin of 

the volcano plot at the far right or left. These metabolites, together with their fold changes 

and p-value are tabulated in Table 4.2.  

Thereafter multivariate methods, PCA, PLS-DA and OPLS-DA modelling were performed. PCA 

was performed to explore the internal structure of the GCxGC-TOFMS spectral data. The 

between-group and within-group variation was also revealed (Figure A8). To further extract 

descriptive information from the dataset, PLS-DA (Figure A9) was performed for sample 

classification and discrimination between the aforementioned groups. The generated PLS-DA 

scores models of both control cells vs. Pam3CSK4 (Figure A9A); and control cells vs. 

Pam3CSK4/1,25(OH)2D3 (Figure A9B) were not at all predictive, as indicated by a low or 

negative predictivity (Q2) value. Hence, OPLS-DA modelling was performed to maximize 

separation between classes. The generated OPLS-DA scores models (Figure A11A and A11B) 

were also not predictive. The OPLS-DA models were further validated using a permutation 

test. However, the predictivity of each model remained as a negative value, showing that the 

models are not predictive. Therefore, the only features (metabolites) that were considered 

to be significant from PLS-DA VIP scores (Figure A10) and OPLS-DA loadings S-plot (Figure 

A11C and 11D) are those that were identified by univariate statistics (Figure 4.8 (Generated 

from box plot) and Table 4.2 (generated from volcano plot)).   
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4.2.2.1. Boxplot representing the relative abundance of metabolites between control 
cells vs. Pam3CSK4 stimulated cells and control cells vs. Pam3CSK4/1,25(OH)2D3 

supplemented cells 

GCxGC-TOFMS detected metabolites that are significantly altered between control cells vs. 

Pam3CSK4 stimulated cells, and control cells vs. Pam3CSK4/1,25(OH)2D3 supplemented cells as 

determined by the student’s t-test are shown in Figure 4.8. The box plots show the 

distribution of the potential marker metabolite between the aforementioned groups. These 

metabolites belong to chemical classes including fatty acids, amino acids, organic and 

inorganic compounds.   

 

Figure 4.8: Box plots of significant metabolites identified by t-test. These are metabolites that 
significantly contribute to the variance between (A) control cells vs. Pam3CSK4 stimulated cells, and 
(B) control cells vs. Pam3CSK4/1,25(OH)2D3 supplemented cells. The relative concentrations of these 
metabolites differ significantly between the experimental groups. Abbreviations: C: Control; PAM: 
Pam3CSK4; PD: Pam3CSK4/1,25(OH)2D3. 

 
Table 4.2: Signatory metabolites discriminating U937 macrophages cells stimulated with Pam3CSK4 
and those supplemented with a combination of both Pam3CSK4 and 1,25(OH)2D3 detected using 
GCxGC-TOFMS. These are important metabolites selected by the volcano plot. 

 
Metabolite 

Control vs. Pam3CSK4 Control vs. Pam3CSK4/1,25(OH)2D3 

Fold change P-value Fold change P-value 

Meso-2,5-
Dimethyl-3,4-
hexanediol 

0.054542 2.9986 x 10-5 0.12252 0.0006246 

Taurine - - 20.396 0.086935 

Niacinamide 11.084 0.027165 - - 

Unknown - - 4.7544 0.083741 

Unknown 0.34438 0.038087 - - 
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4.3. Analysis of metabolic pathways associated with the treatment of differentiated 
U937 cells with Pam3CSK4, 1,25(OH)2D3 and a combination of both Pam3CSK4 and 
1,25(OH)2D3 

Metabolic pathways associated with signatory metabolites identified from 1H NMR 

spectroscopy analysis (12 hrs treatment) and GCxGC-TOFMS analysis are given in Figure 4.9. 

The labelled metabolic pathways are the most significant pathways with the highest hits (the 

actual number of metabolites matched from the uploaded data) (Table A1). 

 

 

Figure 4.9: Topology analysis of metabolic pathways affected in control cells vs. Pam3CSK4 

stimulated cells; control cells vs. and 1,25(OH)2D3, and control cells vs. Pam3CSK4/1,25(OH)2D3 
supplemented U937 macrophages. The pathway analysis is based on Kyoto Encyclopedia of Genes 
and Genome (KEGG) and was generated from MetaboAnalsyt 4.0. using metabolites that were 
significantly altered in the aforementioned study groups. Each circle represents a metabolic pathway. 
The size and the colour of the cycle reflect the pathway impact and p-value, respectively. Pathways 
with greater pathway impact are represented with bigger cycles. Dark red cycles represent metabolic 
pathways with a p < 0.05 or lower. The significance decrease from dark red to white 
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Metabolic pathway analysis was performed to identify the metabolic reprogramming induced 

by U937 macrophage treatment with Pam3CSK4, 1,25(OH)2D3 or a combination of both 

Pam3CSK4 and 1,25(OH)2D3. The metabolic pathway analysis gives a snapshot of the 

metabolism of the U937 macrophages associated with the aforementioned treatment. 

 

In summary, the results clearly illustrate that PMA induced U937 monocytes to macrophage 

differentiation as determined using macroscopic analysis of U937 cells treated with or 

without PMA (Section 4.1.1). Flow cytometry analysis of CD14 surface markers of the 

monocyte/macrophage cell populations further confirms that U937 monocytes treated with 

PMA were differentiated to macrophages (Section 4.1.2). Metabolic profiling differentiated 

cells treated with Pam3CSK4, 1,25(OH)2D3 and a combination of both Pam3CSK4 and 

1,25(OH)2D3 (Section 4.2) illustrated that each treatment induced metabolic reprogramming. 

Metabolic reprogramming was depicted via NMR and GC-MS (Section 4.2.1 and 4.2.2, 

respectively) differential metabolic profiles. The differential metabolic profiles were 

explained by PCA/OPLS-DA models. Metabolic pathways associated with metabolic 

reprogramming were also identified (Section 4.3, Figure 4.9). 
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CHAPTER 5 

DISCUSSION 
 

Macrophages play a pivotal role in many biological processes including metabolic regulation, 

maintenance of tissue homeostasis and most importantly, in the immune response. These 

phagocytic cells are normally the primary regulators in the immune response during 

infections, including various bacterial infections (De Sousa et al., 2019). For in vitro studies on 

human macrophages, U937 monocytes-derived macrophages are a good model as they 

resemble the human macrophages in morphology, function, and metabolism (Mendoza-

Coronel and Mastanon-Arreola, 2016). As described in Chapter 2, the aim of the present study 

was to evaluate the effects of 1,25(OH)2D3 on the metabolome of U937 macrophage 

stimulated with Pam3CSK4. Experimentally, this metabolic profiling was carried out by 

applying a multi-platform approach that included NMR and GC-MS-based untargeted 

analyses (Chapter 3). This allowed a wide coverage of the intracellular metabolome.  

As presented in Chapter 4, applying various statistical analyses and modelling to mine the 

generated spectral data (from both NMR and GC-MS platforms) allowed the extraction of 

information that indicated a significant difference in the metabolome of the compared 

experimental groups (Figure 4.6A, 4.6C and 4.6E). From the variable selection (Figure 4.6B, 

4.6D and 4.6F), the identified discriminating metabolites (explaining group separation) were 

mapped onto metabolic pathways in an integrative manner, inferring thus significant 

pathways related to treatment effects. The results (Chapter 4) showed that treatment-related 

reprogramming of (macrophage) cellular metabolism spanned several amino acid pathways 

including galactose metabolism, arginine biosynthesis, glutathione metabolism, valine, 

leucine and isoleucine synthesis. This chapter interprets and discusses the obtained results 

(Chapter 4), in reference to the current literature, formulating and drawing relevant 

knowledge and conclusions regarding the metabolic effect of 1,25(OH)2D3 on U937 

macrophage stimulated with Pam3CSK4. The chapter is subdivided into three main sections: 

The results of U937 differentiation are discussed in Section 5.1, and the profiling of the U937 

macrophage cellular metabolome is discussed in Sections 5.2–5.3.  

 

5.1. U937 monocytes to macrophage differentiation  

As described in Chapter 3, the study was designed to firstly differentiate the U937 monocytes 

to macrophages. The latter mimics the in vivo immune cells responsible for the containment 

of M.tb during infection, providing a good (in vitro) model to study metabolomic 

reprogramming related to cellular immune responses to infection and/or other treatments, 
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such as 1,25(OH)2D3 in this case. Monocytes-derived macrophages can proliferate in culture 

and develop specialised functions. Furthermore, responses such as the inhibition of M.tb 

growth by macrophages in vivo can be observed in U937 macrophages in vitro (Daigneault et 

al., 2010).  

PMA is known as an effective inducer of macrophages from monocytes through mechanisms 

that include the activation of protein kinase C (PKC) (Song et al., 2015). In this study, the 

observed morphological changes in PMA-treated U937 cells (Figure 4.1B) evidently suggest 

that PMA successfully differentiated the U937 monocytes to macrophages. From our 

observations, PMA-treated cells were elongated, irregular in shape with rough edges and 

protrusions, which is a typical morphology of macrophages (Marcuello et al., 2018; 

McWhortera et al., 2013; Zamani et al., 2013). The morphology of macrophages correlates 

with their functions including proliferation, apoptosis, nuclear organisation and their 

phagocytic role in immunity (Rosales and Uribe-Querol, 2017; Versaevel et al., 2012).  

Macrophage elongation results from the uniaxial stretch of the cell (Pugin et al., 1998) 

whereas the cyclic biaxial stretch triggers an increase in the spread cell area (Matheson et al., 

2006). Both cell elongation and increase in spread cell area were observed in PMA-treated 

cells (Figure 4.1B). Functionally, the significance of such morphology is to form a link/bridge 

between the bacterial surface and the receptor of the macrophage that recognises the 

pathogen. Once the link has been established, the macrophage protrusions form a 

surrounding structure around the bacterial antigen. Subsequently, the antigen is absorbed 

into a phagosome created by the macrophage (Hirayama et al., 2018; Ueno and Wilson, 

2012).  

As presented in the results chapter (Section 4.1.1.), to complement morphological 

assessments (under a microscope), the differentiation of monocyte to macrophage was 

further confirmed by measuring CD14 count in both PMA supplemented cells and untreated 

cells using flow cytometry. The CD14 markers were measured as they are the main 

differentiation surface markers of myeloid lineage cells (Zamani et al., 2013). CD14 genes are 

among the macrophage-specific genes. During monocytes/macrophage differentiation, CD14 

proteins are abundantly expressed by macrophages (Contreras et al., 2015; Lehtonen et al., 

2007). The results (Chapter 4, Figure 4.3) showed that the expression of CD14 was higher in 

PMA-stimulated cells than in the U937 monocytes cultured in the absence of PMA. These 

findings are similar to those of Zhang et al. (2014), who differentiated THP-1 monocytes to 

macrophages using PMA, and found a significant increase in the expression of CD14 following 

cell treatment with PMA. Thus, an increase in CD14 expression is associated with the 

differentiation of monocytes to macrophages. Macrophages abundantly express CD14 as to 

detect pathogens during infection. Macrophages sense bacterial lipopolysaccharides through 

TLR2 and TLR4 to initiate phagocytosis (Anas et al., 2010). Both microscopic analyses and flow 

cytometry CD14 count measurements provided sufficient evidence to confidently confirm 

that PMA effectively differentiated U937 monocytes to macrophages.                                         
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To evaluate the effects of 1,25(OH)2D3 on the metabolome of U937 macrophage stimulated 

with Pam3CSK4, the multi-platform metabolomic analyses of U937 macrophages treated with 

Pam3CSK4, 1,25(OH)2D3, and a combination of Pam3CSK4 and 1,25(OH)2D3 was performed. 

These analyses showed differential changes in various metabolic pathways between the 

treatment conditions. The changes include an increase or decrease in levels of metabolites in 

pathways such as galactose metabolism, arginine biosynthesis, glutathione metabolism, 

valine, leucine and isoleucine biosynthesis as well as aminoacyl-tRNA biosynthesis. 

Biologically, these pathways are involved in different cellular functions and activities such as 

energy metabolism, regulation of redox reaction and protein synthesis. Thus, the following 

sections discuss these metabolic results in relation to biological functions: Section 5.2 looks 

at the regulation of energy metabolism and Section 5.3 discusses the reprogramming of 

metabolic pathways associated with amino acids.  

 

5.2. Regulation of energy metabolism  

The change in galactose metabolism observed in our study is associated with the metabolic 

reprogramming of energy metabolism. In our study, galactose metabolism was identified as 

the energy metabolism pathway reprogrammed in Pam3CSK4 stimulated cells, and in cells co-

treated with Pam3CSK4 and 1,25(OH)2D3 (Chapter 4, Table 4.1 and Figure 4.7). Galactose 

metabolism is associated with glycolysis and the Warburg effect, as discussed below. In 

mycobacterial infection, the reprogramming of the energy metabolism by the host 

determines survival, the virulence and persistence of M.tb in the host. The host usually utilises 

additional or alternative energy sources to improve energy production for the control of M.tb 

(Cumming et al., 2018; Shi et al., 2005). 

 

5.2.1. Galactose metabolism – “The Warburg effect” 

The presence of galactose during mycobacterial infection has been extensively described 

(Gough, 1932; Haworth et al., 1948). Galactose is a naturally occurring monosaccharide sugar 

with a similar chemical formula as glucose. Galactose only differs from glucose in the 

positioning of the carbon 4 (C4) hydroxyl (OH) group. The C4 OH positioning introduces some 

chemical and biochemical differences between galactose and glucose (Blackstock et al., 

1989). In a mammalian biological system, galactose serves as a source of energy and a 

substrate for the biosynthesis of several macromolecules (Liu et al., 2000). Galactose can be 

metabolised to glucose-6-phosphate (G6P) which can enter the glycolysis pathway. The 

conversation of galactose to G6P occurs via the Leloir pathway which was first described by 

Leloir in 1951. In the first step of the Leloir pathway, galactose is phosphorylated into 

galactose-1-phosphate (Gal1P) by galactokinase. Following that, Gal1P uridyltransferase 

catalyses the conversion of UDP-glucose and Gal1P to glucose-1-phosphate (G1P) and UDP-

galactose. The resulting G1P is converted to G6P by phosphoglucomutase. 
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Phosphoglucomutase catalyses the transfer of the phosphate group from C1 to C4 of glucose. 

G6P serves as a substrate for glycolysis. Cells, however, efficiently take up more glucose than 

galactose. Furthermore, galactose prevents the net production of ATP via glycolysis (Garedew 

et al., 2010). Hence, glucose-dependent energy production is preferred over the galactose-

dependent pathway. 

 

The UDP-galactose formed in the Leloir pathway can be converted to UDP-glucose by UDP-

galactose 4-epimerase. UDP-glucose plays a functional role in the synthesis of 

glycoconjugates via glycosylation reactions (Guo and Ye, 2010; Moradi et al., 2016). 

Glycosylation is an essential process for secondary protein processing and determines protein 

functioning (Arey, 2012). In our study, there was no significant difference in the relative 

concentration of galactose in cells treated with Pam3CSK4 only, 1,25(OH)2D3 only or co-treated 

with Pam3CSK4 and 1,25(OH)2D3. The relative concentration of galactose, however, decreased 

as the incubation period was increased from 12 hrs to 24 hrs. A gradual decrease in the 

relative concentration of galactose was also observed in the 16 and 24 hrs treatment 

conditions (Chapter 4, Table 4.1 and Figure 4.7). The gradual decline of galactose in the 16 

and 24 hrs treatment conditions suggest that galactose was metabolised over time. This 

gradual decrease is most likely associated with the up-regulation of glycolysis. The possibility 

of glycolysis up-regulation is supported by the findings obtained in Pam3CSK4 stimulated cells 

and in cells co-treated with Pam3CSK4 and 1,25(OH)2D3. Under these treatment conditions, a 

decrease in the relative concentration of glucose and an increase in the relative concentration 

of lactate was observed. These observations evidently suggest that glycolysis was up-

regulated. Our results correspond to those findings of Gleeson et al. (2016) and Shi et al. 

(2015), who also reported that glycolysis is up-regulated during M.tb infection in 

macrophages. This up-regulation has been linked with the containment of intracellular M.tb 

by the hosts’ immune response. This observation is similar to the Warburg effect in cancer 

cells.  

 

The Warburg effect is the metabolic phenomenon that is used to describe the up-regulation 

of glycolysis with the formation of lactate as the final product in cancer cells (Warburg, 1956). 

In recent years, the Warburg effect has been observed in non-cancerous cell types (Abdel-

Haleem et al., 2017). Our data further corresponds to the findings of Salamon et al. (2014), 

who reported that vitamin D enhanced the Warburg effect in M.tb infection. A shift in energy 

metabolism to glycolysis during M.tb infection is crucial for controlling the activity of M.tb as 

glycolysis promote inflammatory response against the bacteria through the generation of 

proinflammatory cytokines and ROS (O’Neill and Hardie, 2013).  
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5.3. Reprogramming of metabolic pathways associated with amino acids  

The presence or absence of certain amino acids produced by the host during the 

mycobacterial infection can determine the inhibition, growth/survival and virulence of the 

mycobacterium in the host (Burke et al., 2018; Gouzy et al., 2014; Lyon et al., 1970). Amino 

acids detected in our study play an important role in the regulation of oxidation-reduction 

(redox) reaction, regulation of energy metabolism, synthesis of antimycobacterial 

compounds, nucleic acids synthesis and protein synthesis, including structure folding and 

function (Garrett et al., 2018; Kocic et al., 2012; Morris et al., 2017). Taken together, these 

amino acids shape the host’s immune response against mycobacterial infection.   

 

5.3.1. Arginine biosynthesis down-regulation by 1,25(OH)2D3 in Pam3CSK4 stimulated 
U937 macrophages 

The role of arginine in mycobacterial infection has been sufficiently investigated (Peteroy-

Kelly et al., 2003). Previous studies have shown that metabolic reprogramming during 

infection is associated with the changes in the metabolism of arginine (Luiking et al., 2003). 

Arginine is a semi-essential amino acid synthesised mainly from glutamate (Mizrahi and 

Warner, 2018). L-arginine serves as a precursor for the synthesis of reactive nitrogen species 

(RNS), polyamines, creatine, ornithine and urea cycle (Morris et al., 2017).  

Although in the current study arginine was not detected in all treatment conditions, 

significant changes in the concentration of metabolites associated with arginine 

biosynthesis—glutamate, ornithine and proline—were detected. A relatively high 

concentration of glutamate was observed in cells co-treated with Pam3CSK4 and 1,25(OH)2D3 

as compared to the untreated cells. A decrease in the relative concentration of glutamate was 

observed in cells treated with 1,25(OH)2D3 only. These changes were not observed in U937 

macrophages treated with Pam3CSK4 only. An increase in glutamate concentrations in cells 

co-treated with Pam3CSK4 and 1,25(OH)2D3 suggest that this treatment condition 

downregulates arginine biosynthesis—the conversion of glutamate to arginine. This could 

explain the relatively high concentration of glutamate observed in Pam3CSK4 and 1,25(OH)2D3 

co-treated U937 macrophages (Chapter 4, Table 4.1 and Figure 4.7A). The down-regulation 

of the arginine biosynthesis could be one of the metabolic effects of 1,25(OH)2D3 in Pam3CSK4 

treated U937 macrophages. 1,25(OH)2D3 probably initiates this arginine biosynthesis down-

regulation as the immune response against Pam3CSK4 action. In M.tb infection, arginine is 

used as a source of both carbon and nitrogen (Gupta et al., 2018; Hampel et al., 2015). 

Arginine starvation leads to the death of M.tb infected cells and ultimately, the killing of M.tb 

(Mizrahi and Warner, 2018; Tiwari et al., 2018). Our suggestion of arginine biosynthesis down-

regulation by 1,25(OH)2D3 in Pam3CSK4 treated U937 macrophages, however, contradicts the 

findings of Andrukhova et al. (2014), who reported that 1,25(OH)2D3 increases the availability 

of arginine, which subsequently leads to an increase in the synthesis of arginine-derived nitric 

oxide (NO). Furthermore, Rockett et al. (1998) reported that 1,25(OH)2D3 induces the 



68 
 

expression of the nitric oxide synthase 2 (NOS2) gene in M.tb infected human HL-60 

macrophage-like cell line. NOS2 encodes for NO synthase, an enzyme that catalyses the 

conversion of arginine to NO. NO has an antimycobacterial activity (Jamaati et al., 2017). We 

propose that the down-regulation of arginine biosynthesis seen in U937 macrophages co-

treated with Pam3CSK4 and 1,25(OH)2D3 could be the biochemical mechanism induced by 

1,25(OH)2D3 in U937 macrophages to inhibit NO synthesis. This suggests that 1,25(OH)2D3 

induces U937 macrophages to inhibit the mycobacterial-like effect of Pam3CSK4 through 

arginine starvation other than the use of NO. Although RNS such as NO has antimicrobial 

properties, overproduction of NO can cause mitochondrial dysfunction, DNA damage, 

changes in structure and function of protein mediators, as well as cell injury and cell death 

(Abdelmegeed et al., 2014; Groves et al., 1995; Song et al., 2014). Hence, NO downregulation 

is crucial in protecting the cells from these NO side effects. Hence, we propose arginine 

starvation rather than NO production by 1,25(OH)2D3 as the immune response against 

Pam3CSK4 stimulation. 

In addition to these observations, a relatively low concentration of ornithine was observed in 

cells co-treated with Pam3CSK4 and 1,25(OH)2D3. No significant changes in ornithine relative 

concentration were observed in the other treatments. Ornithine is a non-proteinogenic amino 

acid synthesised from the reaction of arginine with water, catalysed by arginase (Dimski, 

1994). Our observation further supports the notion that arginine biosynthesis was down-

regulated in Pam3CSK4 and 1,25(OH)2D3 co-treated cells. Arginine is a precursor of ornithine, 

and therefore, decreases in the synthesis of arginine will result in a decrease in ornithine 

synthesis. It has been shown that in M.tb infection, arginine is converted into ornithine, 

resulting in an increase in this metabolite (Hampel et al., 2015). Low concentration of arginine 

inhibits this reaction. A similar phenomenon was observed in our study, which further shows 

that arginine synthesis was inhibited by 1,25(OH)2D3 in Pam3CSK4 treated cells. In addition to 

arginine biosynthesis down-regulation, a relative decrease in ornithine could have been 

enhanced by ornithine decarboxylase. 1,25(OH)2D3 increases the activity of ornithine 

decarboxylase, an enzyme that catalyses the decarboxylation of ornithine. The increased 

activity of ornithine decarboxylase leads to a low concentration of ornithine (Sömjen et al., 

1983). Further enzyme-based investigations are needed to confirm this speculation.   

Taken together, the observed relative decrease in the concentration of arginine and ornithine 

suggest that 1,25(OH)2D3 decreases arginine biosynthesis in Pam3CSK4 treated U937 

macrophages. The decrease in arginine biosynthesis could be the metabolic mechanism 

induced by 1,25(OH)2D3 to activate the U937 macrophages immune response against 

Pam3CSK4 stimulation. Down-regulation of arginine biosynthesis is of importance in 

controlling the mycobacterial-like effect of Pam3CSK4. This speculation is based on the 

findings of Tiwari et al. (2018), who reported that arginine deprivation leads to M.tb killing 

through ROS accumulation, DNA damage, and rapid sterilisation of M.tb. Arginine is a crucial 

source of both carbon and nitrogen needed for M.tb survival (Hampel et al., 2015).  
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5.3.2. Glutathione metabolism down-regulation in U937 macrophages co-treated 
with Pam3CSK4 and 1,25(OH)2D3  

 

Changes in the cellular glutathione (GSH) concentration in the presence of mycobacteria have 

been previously investigated (Dayaram et al., 2006; Guerra et al., 2011). GSH is an essential 

tripeptide antioxidant synthesised from glutamate, cysteine and glycine in two sequential 

ATP-dependent steps (Lu, 2009). The first step is the synthesis of γ-glutamylcysteine from 

glutamate and cysteine in a reaction catalysed by glutamate-cysteine ligase (GCL). The second 

step is the addition of glycine to γ-glutamylcysteine to form GSH in a reaction catalyzed by 

GSH synthetase (Mari et al., 2010). GSH maintains the cellular redox state through the active 

thiol group present in the cysteine residue of GSH. The thiol group of cysteine regulates the 

redox state by directly detoxifying ROS and RNS (Cooper et al., 2011). A decrease in 

intracellular GSH leads to an increase in ROS, which ultimately leads to oxidative stress (OS). 

The latter is a process by which cells and tissues produce excessive ROS compared to 

antioxidants. The imbalance between ROS and antioxidants can lead to chronic inflammation 

(Hussain et al., 2016). OS is a common phenomenon in mycobacterial infections such as TB. 

In active TB, OS is induced to counteract the disease and kill M.tb (Goyal et al., 2017; Shastri 

et al., 2018).  

Previous studies have shown that GSH can protect the host against microbial infection by 

activating T lymphocytes and natural killer cells (Guerra et al., 2011; Guerra et al., 2012). 

Additionally, GSH reacts with NO to form S-nitrosoglutathione (GSNO). The latter increases 

the activity of NO in inhibiting microbial growth. NO from the GSNO complex is released at 

the site of infection to induce microbial death (Venketaraman et al., 2003). In cases where 

GSH levels are decreased, an increase in OS is usually observed (Mohod et al., 2008). For 

instance, patients with active TB have decreased levels of GSH during the initial stages of 

infection (Venketaraman et al., 2008). Decreased levels of GSH lead to OS, which contributes 

towards the control of M.tb infection (Wu et al., 2018). In the present study, decreased GSH 

was detected in U937 macrophages treated with a combination of Pam3CSK4 and 1,25(OH)2D3 

in the 12 hrs treatment. GSH was not detected in the 16 and 12 hrs treatment conditions. In 

U937 macrophages treated with a combination of Pam3CSK4 and 1,25(OH)2D3 in the 12 hrs 

treatment, GSH concentration was relatively low. These findings suggest that Pam3CSK4 and 

1,25(OH)2D3 co-treatment down-regulates glutathione synthesis. A decrease in GSH would 

favour U937 macrophages oxidative response to the mycobacterial-like effect of Pam3CSK4. 

The effect of supplementary 1,25(OH)2D3 on GSH metabolism in mycobacterial infection is still 

enigmatic and remains to be investigated. To our knowledge, this is the first study to show 

the relationship between mycobacterial infection, supplementary 1,25(OH)2D3 and GSH 

metabolism in macrophages using metabolomics. A recent study by Vrieling et al. (2020) only 

investigated the relationship between mycobacterial infection and GSH metabolism. In their 

study, Vrieling et al. (2020) reported an increase in GSH concentration following M.tb 

infection. In our study, however, we observed a decrease in GSH when Pam3CSK4 treated 
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U937 macrophages are supplemented with 1,25(OH)2D3. This observation suggests that 

1,25(OH)2D3 down-regulates GSH synthesis in Pam3CSK4 treated U937 macrophages. This 

could be the immune response mechanism to induce OS for the inhibition of Pam3CSK4 

mycobacterial-like activity. Our observation of the decrease in GSH in the presence of 

1,25(OH)2D3 contradicts the findings of Jain and Micinski (2013). These authors reported that 

1,25(OH)2D3 up-regulates GSH synthesis by up-regulating glutamate-cysteine ligase (GCL) in 

U937 monocytes. The differences observed in our study and that of Jain and Micinski (2013) 

suggest that the metabolic effect of 1,25(OH)2D3 on GSH metabolism differs between 

monocytes and macrophages. Further studies should be done to confirm the absence of 

increased GSH concentrations using standard biochemical assays. 

Subsequently, glycine and glutamate (GSH precursors) were also observed in our study. 

Glycine and glutamate are nonessential amino acids that are key excitatory neurotransmitters 

involved in metabolic, bioenergetic, biosynthetic and oncogenic signalling pathways (Alves et 

al., 2019; Willard and Koochekpour, 2013). Mycobacteria utilise these metabolites as a 

nitrogen source needed for mycobacterial growth and replication (Cowley et al., 2004; Lyon 

et al., 1970; Ratledge, 1976). In the current study, glutamate concentration was not 

significantly affected in Pam3CSK4 stimulated macrophages, however, the concentration of 

glutamate was relatively increased in cells co-treated with Pam3CSK4 and 1,25(OH)2D3. This 

observation suggests that 1,25(OH)2D3 inhibits the consumption of glutamate in Pam3CSK4 

treated U937 macrophages, meaning that the use of glutamate in GSH synthesis was 

inhibited. Accordingly, the GSH concentration was relatively decreased in cells co-treated 

with Pam3CSK4 and 1,25(OH)2D3. These observations further show that Pam3CSK4 and 

1,25(OH)2D3 co-treatment down-regulated GSH synthesis. The increase of glutamate and the 

decrease in GSH levels observed in cells co-treated with Pam3CSK4 and 1,25(OH)2D3 could be 

the mechanism used by the cells relating to allow OS. In this instance, OS would be necessary 

to produce ROS, which would inhibit the mycobacterial-like activity of Pam3CSK4. Our 

suggestion agrees with the study by Kelly et al. (2015), who reported an increase in ROS 

production in Pam3CSK4 treated macrophages. Furthermore, Matta and Kumar (2016) also 

reported an increase in ROS in M.tb infected macrophages as as an immune response against 

this bacterium. ROS, such as hydrogen peroxide, diffuses through the cell membrane of the 

pathogen into the cytoplasm and damages the DNA, thus leading to the death of the pathogen 

(Slauch, 2011). 

In addition to glutamate, the concentration of glycine was relatively increased in all treatment 

conditions at 12 hrs. A gradual decrease in the relative concentration of glycine was also 

observed in the 16 and 24 hrs treatment conditions (Chapter 4, Table 4.1 and Figure 4.7). This 

gradual decrease could be associated with glycine degradation over time. The relative 

concentration of glycine was slightly higher in Pam3CSK4 treated U937 macrophages as 

compared to Pam3CSK4 and 1,25(OH)2D3 co-treated U937 macrophages over time. This 

suggests that 1,25(OH)2D3 induces glycine degradation in Pam3CSK4 treated U937 

macrophages. We propose that the relative low glycine concentration in U937 macrophages 
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is associated with biochemical processes such as energy metabolism and protein synthesis 

other than GSH synthesis. This suggestion is based on the evidence that GSH concentration 

was relatively low in U937 macrophages co-treated with Pam3CSK4 and 1,25(OH)2D3 (Chapter 

4, Table 4.1 and Figure 4.7A). Taken together, our findings suggest that one of the metabolic 

effects of 1,25(OH)2D3 in Pam3CSK4 treated U937 macrophages is the down-regulation of GSH 

synthesis. Hence, GSH was relatively decreased in U937 macrophages co-treated with 

Pam3CSK4 and 1,25(OH)2D3. GSH synthesis is probably inhibited by 1,25(OH)2D3 in order to 

allow the oxidative response against Pam3CSK4 in U937 macrophages.  

    

5.3.3. Reprogramming of valine, leucine and isoleucine biosynthesis in U937 
macrophages treated with Pam3CSK4 only and 1,25(OH)2D3 only  

The role of branched-chain amino acids (BCAAs)— valine, leucine and isoleucine—in microbial 

infection has been extensively described (Lobel et al., 2015; Kaiser and Heinrichsa, 2018; Kim 

et al., 2017). BCAAs are essential amino acids that consist of hydrophobic side chains. They 

are the main contributors to the hydrophobic side chains required for the structure and 

function of proteins (Shimomura and Harris, 2006). BCAA catabolism starts with the 

conversion of BCAAs in a transamination reaction catalysed by branched-chain 

aminotransferase (BCAT) into their respective α-keto acids (branched-chain keto acids; 

BCKAs). These include α-keto-β-methylvaleric acid, α-ketoisovaleric acid and α-ketoisocaproic 

acid. The second step is the oxidative decarboxylation of BCKAs by the branched-chain 

ketoacid dehydrogenase complex. This reaction yields isovaleryl-CoA, α-methylbutyryl-CoA 

and isobutyryl-CoA. These are precursors of acetoacetate, acetyl-CoA and succinyl-CoA 

(Burrage et al., 2014). Acetoacetate, acetyl-CoA and succinyl-CoA are utilised in energy 

metabolism (TCA cycle) and for biosynthetic purposes (e.g. lipid biosynthesis) (Wanders et al., 

2012). BCAAs are essential in protein synthesis, energy metabolism and the immune response 

(Holeček, 2018; Nie et al., 2018; Platell et al., 2000). 

Valine and leucine were detected in the current study. Stimulation of U937 macrophages with 

only Pam3CSK4 induced a relative increase in the concentration of valine in the 12 and 24 hrs 

treatment conditions (Chapter 4, Table 4.1 and Figure 4.7A). These changes were, however, 

not detected in the 16 hrs treatment conditions. The relative increase in valine concentration 

in Pam3CSK4 is most likely associated with an up-regulation of BCAA (particularly valine) 

biosynthesis. The biosynthesis of BCAAs by the U937 macrophages probably support the 

activity of Pam3CSK4. Our suggestion is supported by the study of Awasthy et al. (2009) who 

reported that BCAAs biosynthesis is crucial for intracellular survival of M.tb. BCAAs 

(particularly valine) is used as a nitrogen donor by intracellular M.tb in macrophages (Borah 

et al., 2019). 

In cells treated with 1,25(OH)2D3 only (24 hrs treatment), a relatively low concentration of 

leucine was observed (Chapter 4, Table 4.1 and Figure 4.7C). Leucine was, however, not 
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detected in the 12 and 16 hrs treatment conditions. A decrease in leucine in cells treated with 

1,25(OH)2D3 only in 24 hrs treatment suggests that 1,25(OH)2D3 supplementation to U937 

macrophages downregulates BCAA biosynthesis. We, therefore, propose that a decrease of 

leucine could be the results of BCAA oxidation (particularly leucine) by the U937 macrophages 

supplemented with 1,25(OH)2D3. The relationship between 1,25(OH)2D3 and BCAA 

biosynthesis in macrophages is yet to be investigated in the literature. Previous studies, 

however, have reported that immune cells including macrophages, oxidise BCAAs to produce 

precursors for energy metabolism and the synthesis of new immune cells (Calder, 2006; 

Negro et al., 2008; Platell et al., 2000; Zhang et al., 2017). The metabolic profiling of U937 

macrophages co-treated with Pam3CSK4 and 1,25(OH)2D3 did not show any changes in BCAAs 

(Chapter 4, Table 4.1 and Figure 4.7). The metabolic effect of 1,25(OH)2D3 on BCAA synthesis 

in Pam3CSK4 treated cells remains unclear. Further investigations are needed to elucidate the 

effect of 1,25(OH)2D3 on BCAA biosynthesis in Pam3CSK4 stimulated cells. 

 

5.3.4. Easing of Pam3CSK4 effects by aminoacyl-tRNA biosynthesis reprogramming 

Aminoacyl-tRNA or transfer RNA (tRNA) biosynthesis is another pathway altered in M.tb 

infection. This pathway is concerned with the attachment of amino acids to relevant tRNA in 

the process catalysed by a multi-enzyme aminoacyl-tRNA synthetase. This process is a 

requirement for protein synthesis (Gadakh and Van Aerschot, 2012; Yanagisawa et al., 2010). 

Inhibiting aminoacyl-tRNA synthetase prevents the synthesis of proteins required by the 

pathogen for growth and virulence (Van de Vijver et al., 2009). Our detection of significant 

alterations in the aminoacyl-tRNA biosynthesis pathway could be due to an immune response 

mechanism following U937 macrophages stimulation with Pam3CSK4. Supplementing the cells 

with 1,25(OH)2D3 most likely counteracts the activity of Pam3CSK4 by targeting aminoacyl-

tRNA synthetases. Aminoacyl-tRNA synthetases are validated targets for many therapeutic 

strategies against infectious diseases. Most therapeutics control infections by inhibiting the 

messenger RNA (mRNA) translation machinery (Dewan et al., 2014). Previous studies have 

shown that anti-TB compounds can inhibit M.tb by targeting specific M.tb aminoacyl-tRNA 

synthetases (Hu et al., 2013; Kovalenko et al., 2019; Soto et al., 2018; Zhu et al., 2015). 

Unfortunately, it cannot be determined from the results generated in our study whether 

aminoacyl-tRNA biosynthesis was down- or up-regulated in each treatment condition. This is 

due to the fact that aminoacyl-tRNA biosynthesis involves all the standard amino acids. In this 

instance, one cannot pinpoint a specific amino acid that is responsible for the changes 

observed. Nonetheless, the results show that aminoacyl-tRNA biosynthesis was significantly 

altered in Pam3CSK4 treated cells supplemented with or without 1,25(OH)2D3. The exact 

metabolic effects of 1,25(OH)2D3 on aminoacyl-tRNA biosynthesis in Pam3CSK4 treated U937 

macrophages remain unclear in the present study. Little is known about the effect of 

1,25(OH)2D3 on aminoacyl-tRNA biosynthesis in literature. Future studies using enzyme assays 

are needed to measure the activity of specific aminoacyl-tRNA synthetases involved in protein 
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synthesis in U937 macrophages treated with Pam3CSK4, 1,25(OH)2D3 and a combination of 

Pam3CSK4 and 1,25(OH)2D3. This will help to determine the regulation of aminoacyl-tRNA 

synthetases of interest under the aforementioned treatment conditions. 
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CHAPTER 6 

CONCLUSION AND FUTURE PERSPECTIVES 

 

1H NMR spectroscopy and GCxGC-TOFMS based metabolomics successfully detected and 

identified metabolites discriminating metabolic profiles of U937 macrophages treated with 

Pam3CSK4, 1,25(OH)2D3 and a combination of Pam3CSK4 and 1,25(OH)2D3. Discriminatory 

metabolites that distinguish the study groups have been linked to energy metabolism 

(galactose metabolism, glycolysis—the Warburg effect), regulation of redox reaction (arginine 

biosynthesis and glutathione metabolism), amino acid and protein synthesis (aminoacyl-tRNA 

biosynthesis). Together, these metabolic pathways have also been implicated in the immune 

responses during mycobacterial infection.  

 

Novel aspect  

Previous metabolomics-based mycobacterial studies focused solely on evaluating the 

metabolic changes induced by mycobacterial infection from biological sample matrices such 

as serum, plasma, lung tissue and spleen tissue. In addition, a limited number of studies have 

investigated the metabolic effects of 1,25(OH)2D3 in the presence of mycobacterial infection. 

The aim of the present study was to evaluate the metabolic effects of supplementary 

1,25(OH)2D3 in mycobacterial stimulated macrophages using 1H NMR spectroscopy and 

GCxGC-TOFMS metabolomics. Although this is an in vitro study, the metabolic changes in 

mycobacterial stimulated cells co-treated with Pam3CSK4 and 1,25(OH)2D3 have been 

identified. The generated data revealed that supplementary 1,25(OH)2D3 induces metabolic 

reprogramming in mycobacteria stimulated cells. The results suggest that 1,25(OH)2D3 

promotes the elimination of bacterial infection by the macrophages and is therefore 

beneficial in the immune response against mycobacterial infection. To further substantiate 

our findings, additional confirmatory investigations using actual M.tb are needed. Such 

studies may contribute to the understanding of whether or not 1,25(OH)2D3 is significantly 

beneficial in eliminating M.tb infection.     

 

Revisiting hypothesis 

It was hypothesized that: Metabolomics can detect the metabolic changes induced by 

Pam3CSK4 stimulation of macrophages supplemented with or without 1,25(OH)2D3.  

The results (Chapter 4, Section 4.2 and appendix data) showed differences in the metabolic 

profiles of U937 macrophages stimulated with Pam3CSK4 and supplemented with or without 

1,25(OH)2D3. Based on these findings, the proposed hypothesis was accepted.  
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The null hypothesis was therefore rejected as it states that: Metabolomics cannot detect the 

metabolic changes induced by Pam3CSK4 stimulation of macrophages supplemented with or 

without 1,25(OH)2D3. 

Limitations of the study 

• The present study used in vitro models (U937 macrophages and Pam3CSK4) due to the 

limitation in specialised equipment and M.tb infected serum samples. The in vitro models 

do not give the exact metabolic events that occur in vivo during M.tb. Thus, the 

physiological relevance of the in vitro models differs from that of the in vivo systems. 

Nonetheless, the present study gives the possible metabolic events that occur in M.tb 

infection with or without 1,25(OH)2D3. 

 

• The study only focused on the intracellular metabolome. The results obtained do not 

account for the extracellular metabolome. Hence, the obtained results do not give the 

complete picture of all the metabolic events associated with each treatment condition. 

Nevertheless, the metabolites detected in this study allowed us to speculate on the 

possible metabolic events occurring under each treatment condition. 

 

 

Future perspectives  

• Quantitative analysis of metabolites implicated in U937 macrophages treated with 

Pam3CSK4, supplemented with 1,25(OH)2D3 and co-treated with Pam3CSK4 and 

1,25(OH)2D3. Quantitative analysis will provide the actual concentration of each 

significantly altered metabolite in the study groups. This information will help understand 

the extent to which 1,25(OH)2D3 effects a specific metabolites in U937 macrophages 

stimulated with or without Pam3CSK4. Such knowledge can be used to further confirm 

whether 1,25(OH)2D3 is significant in eliminating the mycobacterial infection. 

 

• Future studies will also require the use of additional analytical techniques such as LC-MS 

to detect as many metabolites as possible. The use of LC-MS will allow the detection of 

thermally unstable, involatile and ionic compounds that could not be detected using NMR 

and GCxGC-TOFMS. This additional analytical technique will expand the number of 

metabolites detected and possibly the number of metabolic pathways reprogrammed in 

each treatment group.  

 

 

 
 



76 
 

CHAPTER 7 

REFERENCES 

 
Abdel-Haleem AM, Lewis NE, Jamshidi N, Mineta K, Gao X, Gojobori T. The emerging facets of 
non-cancerous Warburg effect. Front Endocrinol (Lausanne) 2017;8:279.   
 
Abdelmegeed MA, Song BJ. Functional roles of protein nitration in acute and chronic liver 
diseases. Oxid Med Cell Longev 2014;2014:149627. 
 
Abu El Maaty MA, Alborzinia H, Khan SJ, Büttner M, Wölfl S. 1,25(OH)2D3 disrupts glucose 
metabolism in prostate cancer cells leading to a truncation of the TCA cycle and inhibition of 
TXNIP expression. Biochim Biophys Acta Mol Cell Res 2017;1864(10):1618-30.  
 
Abu El Maaty MA, Dabiri Y, Almouhanna F, Blagojevic B, Theobald J, Büttner M, Wölfl S. 
Activation of pro-survival metabolic networks by 1,25(OH)2D3 does not hamper the sensitivity 
of breast cancer cells to chemotherapeutics. Cancer Metab 2018;6:11. doi: 10.1186/s40170-
018-0183-6. 
 

Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and 
applications. Crit Rev Biotechnol 2017;37(2):163-176. doi: 10.3109/07388551.2015.1128876. 
 
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 

124:783–801. 

AL-Bukhaiti WQ, Noman A, Qasim AS, AL-Farga A. Gas chromatography: principles, 
advantages and applications in food analysis. IJAIR 2017;6(1):123-8. 
 
Alexander MD, Andrews JA, Leslie RGQ, Wood NJ. The binding of human and guinea-pig IgG 
subclasses to homologous macrophage and monocyte Fc receptors. Immunology 
1978;35:115-23. 
 
Aliprantis AO, Yang R-B, Mark MR, Shelly S, Devaux B, Radolf JD, Klimpel GR, Godowski P, 
Zychlinsky A. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-
2. Science 1999;285:736-9. DOI: 10.1126/science.285.5428.73. 
 
Alonso A, Marsal S, Julià A. Analytical methods in untargeted metabolomics: state of the art 
in 2015. Front Bioeng Biotechnol 2015;3:23. doi: 10.3389/fbioe.2015.00023. 
 
Al-Rashed F, Kochumon S, Usmani S, Sindhu S, Ahmad R. Pam3CSK4 induces MMP-9 
expression in human monocytic THP-1 cells. Cell Physiol Biochem 2017;41(5):1993-2003. doi: 
10.1159/000475298. 
 



77 
 

Al-Rubaye AF, Hameed IH, Kadhim MJ. A Review: Uses of Gas Chromatography-Mass 
Spectrometry (GC-MS) technique for analysis of bioactive natural compounds of some plants. 
IJTPR 2017;9(1);81-5. 
 
Alves A, Bassot A, Bulteau A-L, Pirola L, Morio B. Glycine metabolism and its alterations in 
obesity and metabolic diseases. Nutrients 2019;11(6):1356. doi: 10.3390/nu11061356. 
 
Anas A, van der Poll T, de Vos AF. Role of CD14 in lung inflammation and infection. Critical 
Care 2010; 14:209. http://ccforum.com/content/14/2/209. 
 
Andersen MN, Al-Karradi SNH, Kragstrup TW, Hokland M. Elimination of erroneous results in 
flow cytometry caused by antibody binding to fc receptors on human monocytes and 
macrophages. Cytometry A 2016;89A:1001-9. 
 
Anderson CL, Abraham GN. Characterization of the Fc receptor for IgG on a human 
macrophage cell line, U937. J Immunol 1980;125:2735-41. 
 
Andrukhova O, Slavic S, Zeitz U, Riesen SC, Heppelmann MS, Ambrisko TD, Markovic M, 
Kuebler WM, Erben RG. Vitamin D is a regulator of endothelial nitric oxide synthase and 
arterial stiffness in mice. Mol Endocrinol 2014;28(1):53–64. doi: 10.1210/me.2013-1252. 
 
Antcliffe D, Gordon AC. Metabonomics and intensive care. Crit Care 2016;20(1):68. doi: 
10.1186/s13054-016-1222-8. 
 
Antony PM, Trefois C, Stojanovic A, Baumuratov AS, Kozak K. Light microscopy applications in 
systems biology: opportunities and challenges. Cell Commun Signal 2013;11(1):24. doi: 
10.1186/1478-811X-11-24. 
 
Aretz I, Meierhofer D. Advantages and pitfalls of mass spectrometry based metabolome 
profiling in systems biology. Int J Mol Sci 2016;17:632; doi:10.3390/ijms17050632. 
 
Arey BJ. The role of glycosylation in receptor signalling, in Petrescu S. (ed.). Glycosylation. 
United Kingdom: InTechOpen; 2012.  pp. 273-86. 
 
Arnedo-Pena A, Juan-Cerdán JV, Romeu-García A, García-Ferrer D, Holguín-Gómez R, Iborra-
Millet J, Gil-Fortuño M, Gomila-Sard B, Roach-Poblete F. Vitamin D status and incidence of 
tuberculosis among contacts of pulmonary tuberculosis patients. Int J Tuberc Lung Dis 
2015;19(1):65-9. doi: 10.5588/ijtld.14.0348. 
 
Atan NAD, Koushki M, Ahmadi NA, Rezaei-Tavirani M. Metabolomics-based studies in the field 
of Leishmania/leishmaniasis. Alexandria J Med 2018;54:383–90.  
 
Awasthy D, Gaonkar S, Shandil RK, Yadav R, Bharath S, Marcel N, Subbulakshmi V, Sharma U. 
Inactivation of the ilvB1 gene in Mycobacterium tuberculosis leads to branched-chain amino 
acid auxotrophy and attenuation of virulence in mice. Microbiology 2009;155(Pt 9):2978-87. 
doi: 10.1099/mic.0.029884-0. 
 



78 
 

Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune 
system. Curr Opin Pharmacol 2010;10(4):482-96. 
 
 
Ballinger MN, Christman JW. Pulmonary macrophages: Overlooked and underappreciated. 
Am J Respir Cell Mol Biol 2016;54(1):1-2. doi: 10.1165/rcmb.2015-0270ED. 
 
Banerjee S, Mazumdar S. Electrospray ionization mass spectrometry: A technique to access 
the information beyond the molecular weight of the analyte. Int J Anal Chem 2012; 
doi:10.1155/2012/28257. 
 
Bardoel BW, Kenny EF, Sollberger G, Zychlinsky A. The balancing act of neutrophils. Cell Host 
Microbe 2014;15:526–36. 
 
Bartel J, Krumsiek J, Theis FJ. Statistical methods for the analysis of high throughput 
metabolomics data. Comput Struct Biotechnol J 2013;4:e201301009.  
 
Barter DM, Agboola SO, Murray MB, Bärnighausen T. Tuberculosis and poverty: the 
contribution of patient costs in sub-Saharan Africa – a systematic review. BMC Public Health 
2012;12:980. doi: 10.1186/1471-2458-12-980. 
 
Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC, Nicholson JK. Metabolic 
profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, 
serum and tissue extracts. Nat Protoc 2007;2(11):2692-703. doi: 10.1038/nprot.2007.376. 
 
Behrends V, Williams KJ, Jenkins VA, Robertson BD, Bundy JG. Free glucosylglycerate is a novel 
marker of nitrogen stress in Mycobacterium smegmatis. J Proteome Res 2012;11:3888–96. 
 
Betters, D. M. Use of flow cytometry in clinical practice. J Adv Pract Oncol 2015;6(5):435–40. 
doi: 10.6004/jadpro.2015.6.5.4. 
 
Beukes D, du Preez I, Loots DT. Total metabolome extraction from mycobacterial cells for GC-
MS metabolomics analysis. Methods Mol Biol 2019;1859:121-31. 
 
Biancolillo A, Marini F. Chemometric methods for spectroscopy-based pharmaceutical 
analysis. Analysis. Front Chem 2018;6:576. doi: 10.3389/fchem.2018.00576. 
 
Bingol K, Brüschweiler R. Two elephants in the room: New hybrid nuclear magnetic resonance 
and mass spectrometry approaches for metabolomics. Curr Opin Clin Nutr Metab Care 
2015;18(5):471-7. doi: 10.1097/MCO.0000000000000206. 
 
Blackstock JC. Guide to biochemistry. United Kingdom: Elsevier Ltd; 1989. pp. 20-31. 
 
Bolten CJ, Kiefer P, Letisse F, Portais JC, Wittmann C. Sampling for metabolome analysis of 
microorganisms. Anal Chem 2007;79(10):3843-9. 
 



79 
 

Booth SC, Weljie AM, Turner RJ. Computational tools for the secondary analysis of 
metabolomics experiments. Comput Struct Biotechnol J 2013;4:e201301003. doi: 
10.5936/csbj.201301003.  
 
Borah K, Beyß M, Theorell A, Wu H, Basu P, Mendum TA, Nӧh K, Beste DJV, McFadden J. 
Intracellular Mycobacterium tuberculosis exploits multiple host nitrogen sources during 
growth in human macrophages. Cell Rep 2019;29(11):3580-91.e4. doi: 
10.1016/j.celrep.2019.11.037. 
 
Bort JAH, Shanmukam V, Pabst M, Windwarder M, Neumann L, Alchalabi A, Krebiehl G, 
Koellensperger G, Hann S, Sonntag D, Altmann F, Heel C, Borth N. Reduced quenching and 
extraction time for mammalian cells using filtration and syringe extraction. J Biotechnol 2014 
Jul 20;182-183(100):97-103. doi: 10.1016/j.jbiotec.2014.04.014. 
 
Bowler RP, Wendt CH, Fessler MB, Foster MW, Kelly RS, Lasky-Su J, Rogers AJ, Stringer KA, 
Winston BW. New Strategies and Challenges in Lung Proteomics and Metabolomics: An 
Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2017;14(12):1721-
43. doi: 10.1513/AnnalsATS.201710-770WS. 
 
Boyer RF. Biochemistry Laboratory: modern theory and techniques. 2nd ed. United States of 
America: Pearson Education, Inc; 2012. pp.225-37. 
 
Burke C, Abrahams KA, Richardson EJ, Loman NJ, Alemparte C, Lelievre J, Besra GS. 
Development of a whole-cell high-throughput phenotypic screen to identify inhibitors of 
mycobacterial amino acid biosynthesis. FASEB BioAdvances 2019;1:246–54. 
 
Burrage LC, Nagamani SCS, Campeau PM, Lee BH. Branched-chain amino acid metabolism: 
from rare Mendelian diseases to more common disorders. Hum Mol Genet 2014;23(R1): R1–
R8.doi: 10.1093/hmg/ddu123. 
 
Cai HL, Li HD, Yan XZ, Sun B, Zhang Q, Yan M, Zhang WY, Jiang P, Zhu RH, Liu YP, Fang PF, Xu 
P, Yuan HY, Zhang XH, Hu L, Yang W, Ye HS. Metabolomic analysis of biochemical changes in 
the plasma and urine of first-episode neuroleptic-naïve schizophrenia patients after 
treatment with risperidone.  J Proteome Res 2012;11:4338-50. doi: 10.1021/pr300459d. 
 
Calder PC. Branched-chain amino acids and immunity. J Nutr 2006;136(1 Suppl):288S-93S. doi: 
10.1093/jn/136.1.288S. 
 
Cantorna MT, Zhu Y, Froicu M, Wittke A. Vitamin D status, 1,25-dihydroxyvitamin D3, and the 
immune system. Am J Clin Nutr 2004;80(6):1717S–20S. doi: 10.1093/ajcn/80.6.1717S.  
 
Cao B, Aa J, Wang G, Wu X, Liu L, Li M, Shi J, Wang X, Zhao C, Zheng T, Guo S, Duan J. GC-
TOFMS analysis of metabolites in adherent MDCK cells and a novel strategy for identifying 
intracellular metabolic markers for use as cell amount indicators in data normalization. Anal 
Bioanal Chem 2011;400(9):2983-93. doi: 10.1007/s00216-011-4981-8. 
 



80 
 

Carlos C, Maretto DA, Poppi RJ,.Sato MIZ, Ottoboni LMM. Fourier transform infrared 
microspectroscopy as a bacterial source tracking tool to discriminate fecal E. coli strains. 
Microchem J 2011;99(1):15-19.  
 
 
Chagoyen M, Pazos F. Tools for the functional interpretation of metabolomic experiments. 
Brief. Bioinform 2012;14(6):737-44. doi:10.1093/bib/bbs055.  
 
Chandra P, Rajmani RS, Verma G, Bhavesh NS, Kumar D. targeting drug-sensitive and -resistant 
strains of mycobacterium tuberculosis by inhibition of Src family kinases lowers disease 
burden and Pathology. mSphere 2016;1(2). pii: e00043-15. doi: 10.1128/mSphere.00043-15. 
 
Chanput W, Peters V, Wichers H. THP-1 and U937 cells,  in Verhoeckx K, Cotter P, López-
Expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H. (ed). The impact 
of food bioactives on health: in vitro and ex vivo models. Cham (CH): Springer; 2015. pp. 147-
59. 
 
Chatham JC, Blackban SJ. Nuclear magnetic resonance spectroscopy and imaging in animal 
research. ILAR J 2001;42:189-208. 
 
Chen J, MacEachren AM, Peuquet DJ.  Constructing overview + detail dendrogram-matrix 
views. IEEE Trans Vis Comput Graph 2009;15(6):889–96. doi: 10.1109/TVCG.2009.130.  
 
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, 
molecular mechanism of action, and pleiotropic effects. Physiol Rev 2016;96(1):365-408.  
 
Christakos S. In search of regulatory circuits that control the biological activity of vitamin D. J 
Biol Chem 2017;292:17559–60. 
 
Chun RF, Liu PT, Modlin RL, Adams JS, Hewison M. Impact of vitamin D on immune function: 
lessons learned from genome-wide analysis. Front Physiol 2014;5:151.     
doi:10.3389/fphys.2014.00151. 
 
Clarke CJ, Haselden JN. Metabolic profiling as a tool for understanding mechanisms of toxicity. 
Toxicol Pathol 2008;36(1):140-7. doi: 10.1177/0192623307310947. 
 
Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G, Provost J-P, Le Net J-L, Baker 
D, Walley RJ, Everett JR, Nicholson JK. Pharmaco-metabonomic phenotyping and personalized 
drug treatment. Nature 2006;440:1073-7. doi: 10.1038/nature04648. 
 
Clish CB. Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring 
Harb Mol Case Stud 2015;1:a000588. doi: 10.1101/mcs.a000588.  
 
Contreras GA, Kabara E, Brester J, Neuder L, Kiupel M. Macrophage infiltration in the omental 
and subcutaneous adipose tissues of dairy cows with displaced abomasum. J Dairy Sci 
2015;98:6176–87.  
 



81 
 

Cooper AJL, Pinto JT, Callery PS. Reversible and irreversible protein glutathionylation: 
biological and clinical aspects, Expet Opin Drug Metabol Toxicol 2011;7(7):891e910. 
 
Cowley S, Ko M, Pick N, Chow R, Downing KJ, Gordhan BG, Betts JC, Mizrahi V, Smith DA, 
Stokes RW, Av-Gay Y. The Mycobacterium tuberculosis protein serine/threonine kinase PknG 
is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol 
Microbiol 2004;52:1691–702. doi: 10.1111/j.1365-2958.2004.04085.x. 
 
Cumming BM, Addicott KW, Adamson JH, Steyn AJ. Mycobacterium tuberculosis induces 
decelerated bioenergetic metabolism in human macrophages. Elife 2018;7:e39169. doi: 
10.7554/eLife.39169. 
 
Cuperlovic-Culf M, Cormier K, Touaibia M, Reyjal J, Robichaud S, Belbraouet M, Turcotte S. 1H 
NMR metabolomics analysis of renal cell carcinoma cells: Effect of VHL inactivation on 
metabolism. Int J Cancer 2016;138(10):2439-49. doi: 10.1002/ijc.29947. 
 
Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH. The identification of markers 
of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived 
macrophages. PLoS One 2010;5(1):e8668. doi: 10.1371/journal.pone.0008668. 
 
Dang NA, Janssen HG, Kolk AH. Rapid diagnosis of TB using GC-MS and chemometrics. 
Bioanalysis 2013;5:3079–97. 
 
Davis R, Mauer LJ. Fourier transform infrared (FT-IR) spectroscopy: a rapid tool for detection 
and analysis of foodborne pathogenic bacteria. Curr Res Technol Educ Top Appl Microbiol 
Microb Biotechnol 2010;2:1582–94. 
 
Dayaram YK, Talaue MT, Connell ND, Venketaraman V. Characterization of a glutathione 
metabolic mutant of Mycobacterium tuberculosis and Its resistance to glutathione and 
nitrosoglutathione. J Bacteriol 2006;88(4):1364–72. 
 
De Buck J, Shaykhutdinov R, Barkema HW, Vogel HJ. Metabolomic profiling in cattle 
experimentally infected with Mycobacterium avium subsp. paratuberculosis. PLoS One 
2014;9:e111872. 
 
De Jonge LP, Douma RD, Heijnen JJ, van Gulik WM. Optimization of cold methanol quenching 
for quantitative metabolomics of Penicillium chrysogenum. Metabolomics 2012;8(4):727-35. 
De Koning W, van Dam K. A method for the determination of changes of glycolytic metabolites 
in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 
1992;204(1):118-23. 
 
De Sousa JR, Da Costa Vasconcelos PF, Quaresma JAS. Functional aspects, phenotypic 
heterogeneity, and tissue immune response of macrophages in infectious diseases. Infect 
Drug Resist 2019;12:2589-611. doi: 10.2147/IDR.S208576. 
 
De Villiers L, Loots DT. Using metabolomics for elucidating the mechanisms related to 
tuberculosis treatment failure. Curr Metabolomics 2013;1:306-17. 



82 
 

 
Dekeirsschieter J, Stefanuto P-H, Brasseur C, Haubruge E, Focant J-F. Enhanced 
characterization of the smell of death by comprehensive two-dimensional gas 
chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS). PLoS ONE 2012;7(6): 
e39005. doi:10.1371/journal.pone.0039005. 
 
Demarest H. Fundamental properties and the laws of nature. Philos. Compass 
2015;10(5):334–44. 
 
Dewan V, Reader J, Forsyth KM. Role of aminoacyl-tRNA synthetases in infectious diseases 
and targets for therapeutic development. Top Curr Chem 2014;344:293-329. 
 
Diamandis EP, Sidransky D, Laird PW, Cairns P, Bapat B. Epigenomics-based diagnostics. Clin 
Chem 2010;56(8):1216-9. doi: 10.1373/clinchem.2010.148007. 
 
Dimski DS. Ammonia metabolism and the urea cycle: function and clinical implications. J Vet 
Intern Med 1994;8:73-78. 
 
Dini C, Bianchi A. The potential role of vitamin d for prevention and treatment of tuberculosis 
and infectious diseases. Ann Ist Super Sanita 2012;48(3):319-27. 
 
Dong B, Jia J, Hu W, Chen Q, Jiang C, Pan J, Huang Y, Xue W, Gao H. Application of ¹H NMR 
metabonomics in predicting renal function recoverability after the relief of obstructive 
uropathy in adult patients. Clin Biochem 2013;46:346-53.  
 
Draghici S, Khatri P, Eklund AC, Szallasi Z. Reliability and reproducibility issues in DNA 
microarray measurements. Trends Genet 2006;22:101–9. 
 
Du Preez I, Loots DT. New sputum metabolite markers implicating adaptations of the host to 
Mycobacterium tuberculosis, and vice versa. Tuberculosis (Edinb) 2013; 93:330–7. 
 
Du Preez I, Luies L, Loots DT. Metabolomics biomarkers for tuberculosis diagnostics: current 
status and future objectives. BIomark Med 2017; DOI: 10.2217/bmm-2016-0287.   
 
Du Preez I, Luies L, Loots DT.  The application of metabolomics toward pulmonary tuberculosis 
research. Tuberculosis 2019;115:126–39. 
 
Du X, Fleiss B, Li H, D'angelo B, Sun Y, Zhu C, Hagberg H, Levy O, Mallard C, Wang X.  Systemic 
stimulation of TLR2 impairs neonatal mouse brain development. PLoS ONE 2011;6(5): DOI: 
10.1371/journal.pone.0019583. 
 
Duft RG, Castro A, Chacon-Mikahil MPT, Cavaglieri CR. Metabolomics and Exercise: 
possibilities and perspectives. Motriz Rio Claro 2017;23(2):e101634. 
 
Dunn WB, Ellis DI. Metabolomics: Current analytical platforms and methodologies. TrAC 
2005;24:285-94. 
 



83 
 

Edfeldt K, Liu PT, Chun R, Fabri M, Schenk M, Wheelwright M, Keegan C, Krutzik SR, Adams JS, 
Hewison M, Modlin RL. T-cell cytokines differentially control human monocyte antimicrobial 
responses by regulating vitamin D metabolism. Proc Natl Acad Sci U S A 2010;107(52):22593-
8. doi: 10.1073/pnas.1011624108. 
 
Faghihzadeh F, Anaya NM, Schifman LA, Oyanedel-Craver V. Fourier transform infrared 
spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. 
Nanotechnol Environ Eng 2016;1:1. DOI 10.1007/s41204-016-0001-8.  
 
Faijes M, Mars AE, Smid EJ. Comparison of quenching and extraction methodologies for 
metabolome analysis of Lactobacillus plantarum. Microb Cell Fact 2007;6:27. doi: 
10.1186/1475-2859-6-27. 
 
Feng S, Du YQ, Zhang L, Zhang L, Feng RR, Liu SY. Analysis of serum metabolic profile by ultra-
performance liquid chromatography-mass spectrometry for biomarkers discovery: 
application in a pilot study to discriminate patients with tuberculosis. Chin Med J (Engl) 
2015;128:159–68. 
 
Fliser D, Novak J, Thongboonkerd V, Argiles A, Jankowski V, Girolami MA, Jankowski Jo, 
Mischak H. Advances in urinary proteome analysis and biomarker discovery.  J Am Soc Nephrol 
2007;18:1057–71.  
 
Frediani JK, Jones DP, Tukvadze N, Uppal K, Sanikidze E, Kipiani M, Tran VT, Hebbar G, Walker 
DI, Kempker RR, Kurani SS, Colas RA, Dalli J, Tangpricha V, Serhan CN, Blumberg HM, Ziegler 
TR. Plasma metabolomics in human pulmonary tuberculosis disease: a pilot study. PLoS One 
2014;9:e108854. 
 
Frigault MM, Lacoste J, Swift JL, Brown CM. Live-cell microscopy - tips and tools. J Cell Sci 
2009;22(Pt 6):753-67. doi: 10.1242/jcs.033837. 
 
Gadakh B, Van Aerschot A. Aminoacyl-tRNA synthetase inhibitors as antimicrobial agents: A 
patent review from 2006 till present. Expert Opin Ther Pat 2012;22(12):1453-65. 
 
Ganz T. Hepcidin and iron regulation, 10 years later. Blood 2011;17:4425–33.  
 
Gao W-W, Wang Y, Zhang X-R, Yin C-Y, Hu C-M, Tian M, Wang H-W, Zhang X. Levels of 
1,25(OH)2D3 for patients with pulmonary tuberculosis and correlations of 1,25(OH)2D3 with 
the clinical features of TB.  J Thorac Dis 2014;6:760–64. 
   
Garedew A, Henderson SO, Moncada S. Activated macrophages utilize glycolytic ATP to 
maintain mitochondrial membrane potential and prevent apoptotic cell death. Cell Death 
Differ 2010;17:1540-50. 
 
Garg D, Sharma VK, Karnawat BS. Association of serum vitamin D with acute lower respiratory 
infection in Indian children under 5 years: a case control study. Int J Contemp Pediatr 
2016;3:1164-69. 
 



84 
 

Garrett T, Abrahem R, Cao R, Gyurjian K, Islamoglu H, Lucero M, Martinez A, Paredes E, Salaiz 
O, Robinson B, Venketaraman V.   Glutathione as a marker for human disease.  Adv Clin Chem. 
2018;87:141-59. doi: 10.1016/bs.acc.2018.07.004. 
 
German JB, Hammock BD, Watkins SM. Metabolomics: building on a century of biochemistry 
to guide human health. Metabolomics 2005;1:3–9. 
 
Gibney KB, MacGregor L, Leder K, Torresi J, Marshall C, Ebeling PR, Biggs BA. Vitamin D 
deficiency is associated with tuberculosis and latent tuberculosis infection in immigrants from 
Sub-Saharan Africa. Clin Infect Dis 2008;46:443-6. doi: 10.1086/525268. 
 
Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue 
homeostasis.  Nat Rev Immunol 2014;14:392-404. doi: 10.1038/nri3671. 
 
Giraldi GA, Rodrigues PS, Kitani EC, Sato JR, Thomaz CE. Statistical learning approaches for 
discriminant features selection. J Braz Comp Soc 2008;14:7-22. 
 
Gleeson LE, Sheedy FJ, Palsson-McDermott EM, Triglia D, O’Leary SM, O’Sullivan MP, O'Neill 
LA, Keane J. Cutting edge: Mycobacterium tuberculosis induces aerobic glycolysis in human 
alveolar macrophages that is required for control of intracellular bacillary replication. J 
Immunol 2016;196:2444–9.  
 
Gomez-Casati DF, Zanor MI, Busi MV. Metabolomics in plants and humans: Applications in the 
prevention and diagnosis of diseases. Biomed Res Int 2013;2013:792527. doi: 
10.1155/2013/792527. 
 
Goodacre R, Broadhurst D, Smilde AK, Kristal BS, Baker JD, Beger R, Bessant C, Connor S, 
Capuani G, Craig A, Ebbels T, Kell DB, Manetti C, Newton J, Paternostro G, Somorjai R, 
Sjostrom M, Trygg J, Wulfert F. Proposed minimum reporting standards for data analysis in 
metabolomics. Metabolomics 2007;3:231–41.  
 
Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB.  Metabolomics by numbers: 
acquiring and understanding global metabolite data. Trends Biotechnol 2004;22:245–52.  
 
Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005 
Dec;5(12):953-64. doi: 10.1038/nri1733. 
 
Gough GA. The specific carbohydrate of the tubercle bacillus. Biochem J 1932;26:248–54. 
 
Gouzy A, Poquet Y, Neyrolles O. Amino acid capture and utilization within the Mycobacterium 
tuberculosis phagosome. Future Microbiol. 2014;9(5):631-7. 
 
Gouzy A, Poquet Y, Neyrolles O. Nitrogen metabolism in Mycobacterium tuberculosis 
physiology and virulence. Nat Rev Microbiol 2014; 12(11):729-37. doi: 10.1038/nrmicro3349. 
 
Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for 
brain metabolites. NMR Biomed 2000;13:129–53.  



85 
 

 
Goyal N, Kashyap B, Singh N, Kaur IR. Neopterin and oxidative stress markers in the diagnosis 
of extrapulmonary tuberculosis. Biomarkers 2017;22(7):648–53. 
 
Green RJ, Samy G, Miqdady MS, El-Hodhod M, Akinyinka OO, Saleh G, Haddad J, Alsaedi SA, 
Mersal AY, Edris A, Salah M. Vitamin D deficiency and insufficiency in Africa and the middle 
east, despite year-round sunny days.  S Afr Med J 2015;105:603-5. 
 
Gromski PS, Howbeer M, Ellis DI, Xu Y, Correa E, Turner ML, Goodacre R.  A tutorial review: 
Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or 
a shotgun wedding. Anal Chim Acta 2015;879:10-23.  
 
Groves JT, Marla SS. Peroxynitrite-induced DNA strand scission mediated by a manganese 
porphyrin. J Am Chem Soc 1995;117:9578–9. 
 
Guerra C, Johal K, Morris D, Moreno S, Alvarado O, Gray D, Tanzil M, Pearce D, Venketaraman 
V. Control of Mycobacterium tuberculosis growth by activated natural killer cells. Clin Exp 
Immunol 2012;168(1):142–52. 
 
Guerra C, Morris D, Sipin A, Kung S, Franklin M, Gray D, Tanzil M, Guilford F, Khasawneh FT, 
Venketaraman V.  Glutathione and adaptive immune responses against Mycobacterium 
tuberculosis infection in healthy and HIV infected individuals. PLoS One 2011;6(12):e28378. 
doi: 10.1371/journal.pone.0028378. 
 
Guo J, Ye X-S. Protecting groups in carbohydrate chemistry: Influence on stereoselectivity of 
glycosylations. Molecules 2010;15:7235–65. doi: 10.3390/molecules15107235. 
 
Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support 
division of the genus Mycobacterium Into an emended genus Mycobacterium and four novel 
genera. Front Microbiol 2018;9:67. doi: 10.3389/fmicb.2018.00067. 

 
Halouska S, Fenton RJ, Zinniel DK, Marshall DD, Barletta RG, Powers R. Metabolomics analysis 
identifies D-alanine-D-alanine ligase as the primary lethal target of D-cycloserine in 
mycobacteria. J Proteome Res 2014;13:1065–76. 
 
Hampel A, Huber C, Geffers R, Spona-Friedl M, Eisenreich W, Bange F-C. Mycobacterium 
tuberculosis Is a Natural Ornithine Aminotransferase (rocD) mutant and depends on rv2323c 
for growth on arginine. PLoS One 2015;10(9):e0136914. doi: 10.1371/journal.pone.0136914 
 
Handono K, Daramatasia W, Pratiwi, Sunarti S, Wahono S, Kalim H. Low level of vitamin D 
increased dendritic cell maturation and expression of interferon-γ and interleukin-4 in 
systemic lupus erythematosus. J Pharm Biol Sci 2012;2(4):37-43. 
 
Hartung T, Daston G. Are in vitro tests suitable for regulatory use? Toxicol Sci 2009;111:233–
37. 
 



86 
 

Hassanein EG, Mohamed EE, Baess AI, EL-Sayed ET, Yossef AM. The role of supplementary 
vitamin D in treatment course of pulmonary tuberculosis. Egypt J Chest Dis Tuberc 
2016;65:629–35.  
 
Hatzakis E. Nuclear magnetic resonance (NMR) spectroscopy in food science: A 
comprehensive review. Compr Rev Food Sci Food Saf 2019;18:189-220. 
 
Haworth N, Kent PW, Stacey M. The constitution of a lipoid-bound polysaccharide from M. 
tuberculosis, human strain. J Chem Soc 1948;10:1220–4. 
 
Heine G, Niesner U, Chang HD, Steinmeyer A, Zügel U, Zuberbier T, Radbruch A, Worm M. 
1,25-dihydroxyvitamin D(3) promotes IL-10 production in human B cells. Eur J Immunol 2008; 
38:2210-8.  
 
Hellman Stina, Hjertner B, Morein B, Fossum C. The adjuvant G3 promotes a Th1 polarizing 
innate immune response in equine PBMC. Vet Res 2018;49:108.  
https://doi.org/10.1186/s13567-018-0602-2.  
 
Hewison M. Vitamin D and immune function: an overview. Proc Nutr Soc 2012;71:50-61.  
 
Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate 
immunity and tissue homeostasis. Int J Mol Sci 2018;19:92. doi:10.3390/ijms19010092. 
 
Holeček M. Branched-chain amino acids in health and disease: Metabolism, alterations in 
blood plasma, and as supplements. Nutr Metab (Lond) 2018;15:33. doi: 10.1186/s12986-018-
0271-1. 
 
Holick MF. Medical progress: vitamin D deficiency. N Engl J Med 2007;357:266–81. 
 
Howard MJ. Protein NMR spectroscopy. Curr Biol 1998;8(10):PR331-PR3. 
DOI:https://doi.org/10.1016/S0960-9822(98)70214-3. 
 
Hu Q-H, Huang Q, Wang E-D. Crucial role of the C-terminal domain of Mycobacterium 
tuberculosis leucyl-tRNA synthetase in aminoacylation and editing. Nucleic Acids Res 
2013;41(3):1859–72. doi: 10.1093/nar/gks1307. 
 
Hussain SZ, Maqbool K. GC-MS: principle, technique and its application in food science. Int J 
Curr Sci 2014;13:E116-26. 
 
Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: 
What polyphenols can do for us? Oxid Med Cell Longev 2016;2016:7432797. doi: 
10.1155/2016/7432797. 
 
Jain SK, Micinski D. Vitamin D upregulates glutamate cysteine ligase and glutathione 
reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-
glucose exposed U937 monocytes. Biochem Biophys Res Commun 2013;437(1):7–11. 
 



87 
 

Jamaati H, Mortaz E, Pajouhi Z, Folkerts G, Movassaghi M, Moloudizargari M, Adcock IM, 
Garssen J. Nitric oxide in the pathogenesis and treatment of tuberculosis. Front Microbiol 
2017;8:2008. doi: 10.3389/fmicb.2017.02008. 
 
Jax E, Wink M, Kraus RHS. Avian transcriptomics: opportunities and challenges. J. Ornithol 
2018;159:599–629.  
 
Jaye DL, Bray RA, Gebel HM, Harris WAC, Waller EK. Translational applications of flow 
cytometry in clinical practice. J Immunol 2012;188(10):4715-9. doi: 
10.4049/jimmunol.1290017. 
 
Johnson CH, Gonzalez FJ. Challenges and opportunities of metabolomics. J Cell Physiol 2012; 
227:2975–81.  
 
Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards 
mechanisms. Nat Rev Mol Cell Biol 2016;17:451–59. 
 
Jones G, Prosser DE, Kaufman M.  25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): Its 
important role in the degradation of vitamin D. Arch Biochem Biophys 2012;523:9-18. 
 
Kaiser JC, Heinrichs DE. Branching Out: Alterations in bacterial physiology and virulence due 
to branched-chain amino acid deprivation. mBio 2018;9:e01188-18. 
doi.org/10.1128/mBio.01188-18. 
 
Kalantari S, Jafari A,2 Moradpoor R, Ghasemi E, Khalkhal E. Human urine proteomics: 
analytical techniques and clinical applications in renal diseases. Int J Proteomics 2015; 
http://dx.doi.org/10.1155/2015/782798. 
 
Kalantri PP, Somani RR, Makhija DT. Raman spectroscopy: A potential technique in analysis of 
pharmaceuticals. Der Chemica Sinica 2010;1:1-12. 
 
Kalinova B, Jiros P, Zd’arek J, Wen X, Hoskovec M. GC×GC/TOF MS technique—A new tool in 
identification of insect pheromones: Analysis of the persimmon bark borer sex pheromone 
gland. Talanta 2006;69:542–47. 
 
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 
2000;1:28:27–30.  
 
Kang JY, Nan X, Jin MS, Youn S-J, Ryu YH, Mah S, Han SH, Lee H, Paik S-G, Lee J-O. Recognition 
of lipopeptide patterns by toll-like receptor 2-toll-like receptor 6 heterodimer. Immunity 
2009;31(6):873-84. doi: 10.1016/j.immuni.2009.09.018. 
 
Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: advantages, 
disadvantages, variables, and selecting the right platform. Bioeng Biotechnol 2016; 4:12. doi: 
10.3389/fbioe.2016.00012. 
 
Kearns MD. The role of vitamin D in tuberculosis. J Clin Transl Endocrinol 2014;1(4):167–69.  

http://dx.doi.org/10.1155/2015/782798


88 
 

Kell DB, Oliver SG. The metabolome 18 years on: a concept comes of age. Metabolomics 
2016;12:148. DOI 10.1007/s11306-016-1108-4.  
 
Kelly B, Tannahill GM, Murphy MP, O'Neill LAJ. Metformin inhibits the production of reactive 
oxygen species from NADH:Ubiquinone oxidoreductase to limit induction of interleukin-1β 
(IL-1β) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages. J 
Biol Chem 2015;290(33):20348-59. doi: 10.1074/jbc.M115.662114. 
 
Kennel KA, Drake MT, Hurley DL. Vitamin D Deficiency in Adults: When to Test and How to 
Treat. Mayo Clin Proc 2010;85:752–58. doi: 10.4065/mcp.2010.0138. 
 
Khammissa RAG, Fourie J, Motswaledi MH, Ballyram R, Lemmer J, Feller L. The biological 
activities of vitamin d and its receptor in relation to calcium and bone homeostasis, cancer, 
immune and cardiovascular systems, skin biology, and oral health. Biomed Res Int 2018; 
2018:9276380. doi: 10.1155/2018/9276380. 
 
Kim GL, Lee S, Luong TT, Nguyen CT, Park SS, Pyo S, Rhee DK. Effect of decreased BCAA 
synthesis through disruption of ilvC gene on the virulence of Streptococcus pneumoniae. Arch 
Pharm Res 2017;40:921-32.  
 
Kim K, Yeom S. Investigation on the growth of green bean sprouts with linear discriminant 
analysis. International Journal of Fuzzy Logic and Intelligent Systems 2017;17(4):315-22.  
 
Kinoshita Y, Uo T, Jayadev S, Garden GA, Conrads TP, Veenstra TD, Morrison RS. Potential 
applications and limitations of proteomics in the study of neurological disease. Arch Neurol. 
2006;63:1692-96. 
 
Kirkwood JS, Maier C, Stevens JF. Simultaneous, untargeted metabolic profiling of polar and 
non-polar metabolites by LC-Q-TOF mass spectrometry. Curr Protoc Toxicol 2013;4: 4.39. 
doi:10.1002/0471140856.tx0439s56. 
 
Klee MS, Blumberg LM. Theoretical and practical aspects of fast gas chromatography and 
method translation. J Chromatogr Sci 2002;40:234-47. 
 
Knijnenburg TA, Roda O, Wan Y, Nolan GP, Aitchison JD, Shmulevich, I. A regression model 
approach to enable cell morphology correction in high-throughput flow cytometry. Mol Syst 
Biol 2011;7:531. doi: 10.1038/msb.2011.64. 
 
Kochupillai N. The physiology of vitamin D: current concepts. Indian J Med Res 2008;127:256-
62. 
 
Kocic G, Nikolic J, Jevtovic-Stoimenov T, Sokolovic D, Kocic H, Cvetkovic T, Pavlovic D, Cencic 
A, Stojanovic D. L-arginine intake effect on adenine nucleotide metabolism in rat parenchymal 
and reproductive tissues. Sci World J 2012;2012:208239. doi: 10.1100/2012/208239. 
 
Korn T, Oukka M, Kuchroo V, Bettelli E. Th17 cells: Effector T cells with inflammatory 
properties. Semin Immunol 2007;19(6):362–71. 



89 
 

 
Kostidis S, Addie RD, Morreau H, Mayboroda OA, Giera M. Quantitative NMR analysis of intra- 
and extracellular metabolism of mammalian cells: A tutorial. Anal Chim Acta 2017;980:1-24. 
doi: 10.1016/j.aca.2017.05.011. 
 
Kovalenko OP, Volynets GP, Rybak MY, Starosyla SA, Gudzera OI, Lukashov SS, Bdzhola VG, 
Yarmoluk SM, Boshoff HI Tukalo MA. Dual-target inhibitors of mycobacterial aminoacyl-tRNA 
synthetases among N-benzylidene-N′-thiazol-2-yl-hydrazines. Med Chem Commun 
2019;10:2161–9. 
 
Kuehnbaum NL, Britz-McKibbin P. New advances in separation science for metabolomics: 
Resolving chemical diversity in a post-genomic era. Chem Rev 2013;113:2437–68. 
 
Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P. STITCH: Interaction networks of 
chemicals and proteins. Nucleic Acids Res 2008;36:D684–D8. doi:10.1093/nar/gkm795. 
 
Kulie T, Groff A, Redmer J, Hounshell J, Schrager S. Vitamin D: an evidence-based review. J Am 
Board Fam Med 2009;22:698-706.  
 
Kupiec T. Quality control Analytical Methods: Gas Chromatography. Int J Pharm Comp 
2004;8:305-9. 
 
Larrick JW, Fischer DG, Anderson SJ, Koren HS. Characterization of a human macrophage-like 
cell line stimulated in vitro: A model of macrophage functions. J Immunol 1980;125:6-12. 
 
Lauri I, Savorani F, Iaccarino N, Zizza P, Pavone LM, Novellino E, Engelsen SB, Randazzo A. 
Development of an optimized protocol for NMR metabolomics studies of human colon cancer 
cell lines and first insight from testing of the protocol using DNA G-Quadruplex ligands as 
novel anti-cancer drugs. Metabolites 2016;4. doi:10.3390/metabo6010004. 
 
Lazar AG, Romanciuc F, Socaciu MA, Socaciu C. Bioinformatics tools for metabolomic data 
processing and analysis using untargeted liquid chromatography coupled with mass 
spectrometry.  Bull Univ Agric Sci Vet Med 2015;72:103-115. 
 
Lee SK, Chwee JY, Ma CAP, Le Bert N, Huang CW, Gasser S. Synergistic anticancer effects of 
Pam3CSK4 and Ara-C on B-cell Lymphoma Cells. Clin Cancer Res 2014;20:3485-95.  
 
Lehtonen A, Ahlfors H, Veckman V, Miettinen M, Lahesmaa R, Julkunen I. Gene expression 
profiling during differentiation of human monocytes to macrophages or dendritic cells. J 
Leukoc Biol 2007;82:710-20.  
 
Leloir LF. The enzymatic transformation of uridine diphosphate glucose into a galactose 
derivative. Arch Biochem Biophys 1951;33(2):186-90. doi: 10.1016/0003-9861(51)90096-3. 
 
Likić VA, McConville MJ, Lithgow T, Bacic A. Systems biology: the next frontier for 
bioinformatics. Adv Bioinformatics 2010;2010:268925. doi: 10.1155/2010/268925.  
 



90 
 

Liu G, Hale GE, Hughes CL. Galactose metabolism and ovarian toxicity. Reprod Toxicol 
2000;14:377–84.  
 
Liu J, Li Z, Liu H, Wang X, Lv C, Wang R, Zhang D, Li Y, Du X, Li Y, Wang B, Huang Y. 
Metabolomics-based clinical efficacy and effect on the endogenous metabolites of 
tangzhiqing tablet, a chinese patent medicine for type 2 diabetes mellitus with 
hypertriglyceridemia. Evid Based Complement Alternat Med 2018;2018:5490491. doi: 
10.1155/2018/5490491. 
 
Liu PT, Schenk M, Walker VP, Dempsey PW, Kanchanapoomi M, Wheelwright M, Vazirnia A, 
Zhang X, Steinmeyer A, Zügel U, Hollis BW, Cheng G, Modlin RL. Convergence of IL-1beta and 
VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS One 2009; 
4: e5810. doi: 10.1371/journal.pone.0005810. 
 
Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, 
Kamen DL, Wagner M, Bals R, Steinmeyer A, Zügel U, Gallo RL, Eisenberg D, Hewison M, Hollis 
BW, Adams JS, Bloom BR, Modlin RL. Toll-like receptor triggering of a vitamin D-mediated 
human antimicrobial response. Science 2006;311:1770-3. 
 
Lobel L, Sigal N, Borovok I, Belitsky BR, Sonenshein AL, Herskovits AA. The metabolic regulator 
CodY links Listeria monocytogenes metabolism to virulence by directly activating the virulence 
regulatory gene prfA. Mol Microbiol 2015;95(4):624–44. doi:10.1111/mmi.12890. 
 
Loo LH, Lin HJ, Singh DK, Lyons KM, Altschuler SJ, Wu LF. Heterogeneity in the physiological 
states and pharmacological responses of differentiating 3T3-L1 preadipocytes. J Cell Biol 
2009;187(3):375-84. doi: 10.1083/jcb.200904140. 
 
Looker AC, Johnson CL, Lacher DA, Pfeiffer CM, Schleicher RL, Sempos CT. Vitamin D status: 
United States, 2001-2006. NCHS data brief 2011;(59):1-8. 
 
Loots T. An altered Mycobacterium tuberculosis metabolome induced by katG mutations 
resulting in isoniazid resistance. Antimicrob Agents Chemother 2014;58:2144–9. 
 
Lorincz AT. The promise and the problems of epigenetics biomarkers in cancer. Expert Opin 
Med Diagn 2011;5:375-9. 
 
Lu J. NMR in biomedical research. Mater methods 2013;3:170. 
 
Lu SC. Regulation of glutathione synthesis. Mol Aspects Med 2009;30(1-2):42–59. doi: 
10.1016/j.mam.2008.05.005 
 
Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD. Metabolite measurement: pitfalls to 
avoid and practices to follow. Annu Rev Biochem 2017;86:277-304. doi: 10.1146/annurev-
biochem-061516-044952. 
 
 



91 
 

Luiking YC, Steens L, Poeze M, Ramsay G, Deutz NEP. Low plasma arginine concentration in 
septic patients is related to diminished de novo arginine production from citrulline. Clin Nutr 
2003;22(1). DOI: 10.1016/S0261-5614(03)80098-5. 
 
 

Lyon RH, Hall WH, Costas-Martinez C. Utilization of amino acids during growth of 
Mycobacterium tuberculosis in rotary cultures. Infect Immun 1970;1(6):513-20. 
 
Mahapatra S, Hess AM, Johnson JL, Eisenach KD, DeGroote MA, Gitta P, Joloba ML, Kaplan G, 
Walzl G, Boom WH, Belisle JT. A metabolic biosignature of early response to anti-tuberculosis 
treatment. BMC Infect Dis 2014;14:53. 
 
Marcuello M, Mayol X, Felipe-Fumero E, Costa J, López-Hierro L, Salvans S, Alonso S, Pascual 
M, Grande L, Pera M. Modulation of the colon cancer cell phenotype by pro-inflammatory 
macrophages: A preclinical model of surgery-associated inflammation and tumor recurrence. 
PLoS One 2018;13(2):e0192958. doi: 10.1371/journal.pone.0192958. 
 
Mari M, 1 Colell A, Morales A, von Montfort C, Garcia-Ruiz C, Fernandez-Checa JC. Redox 
control of liver function in health and disease. Antioxid Redox Signal 2010;12(11):1295-331. 
doi: 10.1089/ars.2009.2634. 
 
Marion D. An introduction to biological NMR spectroscopy. Mol Cell Proteomics 
2013;12(11):3006–25. doi: 10.1074/mcp.O113.030239. 
 
Markley JL, Brüschweiler R, Edison AS, Eghbalnia HR, Powers R, Raftery D, Wishart DS. The 
future of NMR-based metabolomics. Curr Opin Biotechnol 2017;43:34–40. 
 
Marques CD, Dantas AT, Fragoso TS, Duarte AL. The importance of vitamin D levels in 
autoimmune diseases. Bras J Rheumatl 2010;50:67-80. 
 
Marre ML, Petnicki-Ocwieja T, DeFrancesco AS, Darcy, CT, Hu LT. Human integrin α3β1 
regulates TLR2 recognition of lipopeptides from endosomal compartments. PLoS ONE 2010; 
5(9):e12871. 
 
Matheson LA, Fairbank NJ, Maksym GN, Paul Santerre, J. Labow, RS. Characterization of the 
Flexcell Uniflex cyclic strain culture system with U937 macrophage-like cells. Biomaterials 
2006;27:226–33. 
 
Matta SK, Kumar D. Hypoxia and classical activation limits Mycobacterium tuberculosis 
survival by Akt-dependent glycolytic shift in macrophages. Cell Death Discov 2016;2:16022. 
doi: 10.1038/cddiscovery.2016.22. 
 
McWhortera FY, Wanga T, Nguyena P, Chunga T, Liua WF. Modulation of macrophage 
phenotype by cell shape. PNAS 2013;10:17253–8.  
 



92 
 

Mendoza-Coronel E, Castanon-Arreola M. Comparative evaluation of in vitro human 
macrophage models for mycobacterial infection study. Pathogens and Disease 2016;74(6): 
doi: 10.1093/femspd/ftw052. 
 
Mengual-Macenlle N, Marcos PJ, Golpe R, González-Rivas D. Multivariate analysis in thoracic 
research. J Thorac Dis 2015;7(3):E2–E6. doi: 10.3978/j.issn.2072-1439.2015.01.43. 
 
Mesri M. Advances in proteomic technologies and its contribution to the field of cancer. Adv 
Med 2014; http://dx.doi.org/10.1155/2014/238045. 
 
Meyer, V. (2015) Vitamin D, genetic variation of the vitamin D pathway and methylation of 
the vitamin D receptor gene: functional impact on the innate immune response to the 
mycobacterial lipopeptide Pam₃CSK₄. PhD. (Biochemistry).  [Unpublished]: University of 
Johannesburg. Retrieved from: 
https://ujcontent.uj.ac.za/vital/access/manager/Index?site_name=Research%20Output 
(Accessed: May 2019) 
 
Mickiewicz B, Duggan GE, Winston BW, Doig C, Kubes P, Vogel HJ. Metabolic profiling of serum 
samples by 1H nuclear magnetic resonance spectroscopy as a potential diagnostic approach 
for septic shock. Crit Care Med 2014;42(Online supplementary):E1-E13.  
 
Mills CD. M1 and M2 macrophages: Oracles of health and disease. Crit Rev Immunol 2012; 
32(6):463-88.  
 
Mirsaeidi M, Banoei MM, Winston BW, Schraufnagel DE. Metabolomics: applications and 
promise in mycobacterial disease. Ann Am Thorac Soc 2015;12(9):1278–87.  
 
Mizrahi V, Warner DF. Death of Mycobacterium tuberculosis by L-Arginine starvation. Proc 
Natl Acad Sci U S A 2018;115:9658-60.  
 
Mogilevsky G, Borland L, Brickhouse M, Fountain III AW. Raman spectroscopy for homeland 
security applications. Int J Spectrosc 2012; doi:10.1155/2012/808079. 
 
Mohler RE, Dombek KM, Hoggard JC, Young ET, Synovec RE. Comprehensive two-dimensional 
gas chromatography time-of-flight mass spectrometry analysis of metabolites in fermenting 
and respiring yeast cells. Anal Chem 2006;78:2700–9. 
 
Mohod K, Gangane N, Kumar S. Oxidants and antioxidants in lymph node tuberculosis. J 
MGIMS 2008;13:35–41.  
 
Moradi SV, Hussein WM, Varamini P, Simerska P, Toth I.  Glycosylation, an effective synthetic 
strategy to improve the bioavailability of therapeutic peptides. Chem Sci 2016;7:2492–500. 
 
Morris CR, Hamilton-Reeves J, Martindale RG, Sarav M, Gautier JBO. Acquired amino acid 
deficiencies: A focus on arginine and glutamine. Nutr Clin Pract. 2017;32(1_suppl):30S-47S. 
doi: 10.1177/0884533617691250. 
 

https://ujcontent.uj.ac.za/vital/access/manager/Index?site_name=Research%20Output


93 
 

Murayama C, Kimura Y, Setou M. Imaging mass spectrometry: principle and application. 
Biophys Rev 2009;1:131. doi: 10.1007/s12551-009-0015-6. 
 
Nägele T. Linking metabolomics data to underlying metabolic regulation. Front Mol Biosci 
2014;1:22. doi: 10.3389/fmolb.2014.00022. 
 
Negro M, Giardina S, Marzani B, Marzatico F. Branched-chain amino acid supplementation 
does not enhance athletic performance but affects muscle recovery and the immune system. 
J Sports Med Phys Fitness 2008;48:347–51. 
 
Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses 
of living systems to pathophysiological stimuli via multivariate statistical analysis of biological 
NMR spectroscopic data. Xenobiotica 1999;29:1181–9.  
 
Nie C, He T, Zhang W, Zhang G, Ma X. Branched chain amino acids: Beyond nutrition 
metabolism. Int J Mol Sci 2018;19(4):954. doi: 10.3390/ijms19040954.  
 
Nighat H, Abdul Ghaffare N, Khalid Mehmood A.Khan. Frequency nutritional rickets in 
children admitted with severe pneumonia. J Pak Med Assoc 2010;60:729-32. 
 
Nyirenda MH, Crooks J, Gran B. The role of toll-like receptors in multiple sclerosis and 
experimental autoimmune encephalomyelitis, in Yamamura T, Gran B. (eds.), Multiple 
Sclerosis Immunology. Springer Science+Business Media: New York; 2008. pp. 149-76. 
 
O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. 
Nature 2013;493:346–55. 
 
Okhovat-Isfahani B, Bitaraf S, Mansournia MA, Doosti-Irani A. Inequality in the global 
incidence and prevalence of tuberculosis (TB) and TB/HIV according to the human 
development index. Med J Islam Repub Iran 2019;33:45. doi: 10.34171/mjiri.33.45. 
 
Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. 
Trends in biotechnology 1998;16:373–8. 
 
Oña-Ruales JO, Wilson WB, Nalin F, Sander LC, Schubert-Ullrich P, Wise SA. The influence of 
the aromatic character in the gas chromatography elution order: the case of polycyclic 
aromatic hydrocarbons. Mol Phys 2016;114:3533-45. 
 
Osman SA, Saeed WSE, Musa AM, Younis BM, Bashir AEA, Idris FEM, Ahmed AEH, Khalil EAG. 
Prevalence of latent tuberculosis Infection (LTBI) among household contacts of Sudanese 
patients with pulmonary tuberculosis in Eastern Sudan: Revisiting the tuberculin skin test. J 
Tuberc Res 2017;5:69-76. 
 
Owens DJ, Allison R, Close GL. Vitamin D and the athlete: current perspectives and new 
challenges. Sports Med 2018;848(Suppl 1):3-16. doi: 10.1007/s40279-017-0841-9. 
 
 



94 
 

Pagliara P, Lanubile R, Dwikat M, Abbro L, Dini L. Differentiation of monocytic U937 cells under 
static magnetic field exposure. Eur J Histochem 2005;49:75-86. 
 
Palomino JC. Nonconventional and new methods in the diagnosis of tuberculosis: feasibility 
and applicability in the field. Eur Respir J 2005;26:339-50. 
 
Passmore JS, Lukey PT, Ress SR. The human macrophage cell line U937 as an in vitro model 
for selective evaluation of mycobacterial antigen-specific cytotoxic T-cell function. 
Immunology 2001;102:146-56. 
 
Patel RS, Roy M, Dutta GK. Mass spectrometry- A review. Vet World 2012;5:185-92.  
 
Patterson A, Fennington K, Bayha R, Wax D, Hirschberg R, Boyd N, Kurilla M. Biocontainment 
laboratory risk assessment: perspectives and considerations. Pathog Dis 2014;71(2):102-8.  
 
Patterson DG, Welch SM, Turner WE, Sjodin A, Focant JF. Cryogenic zone compression for the 
measurement of dioxins in human serum by isotope dilution at the attogram level using 
modulated gas chromatography coupled to high resolution magnetic sector mass 
spectrometry? J Chromatogr A 2011;1218:3274–81. 
 
Perwad F, Portale AA. Vitamin D metabolism in the kidney: regulation by phosphorus and 
fibroblast growth factor 23. Mol Cell Endocrinol 2011;347:17–24. 
 
Peteroy-Kelly MA, Venketaraman V, Talaue M, Seth A, Connell ND. Modulation of J774.1 
macrophage L-arginine metabolism by Intracellular Mycobacterium bovis BCG. Infect Immun 
2003;71(2):1011–5. 
 
Pinu FR, Villas-Boas SG, Aggio R. Analysis of intracellular metabolites from microorganisms: 
quenching and extraction protocols. Metabolites 2017;7(4):53.doi: 10.3390/metabo7040053. 
 
Platell C, Kong S-E, McCauley R, Hall JC. Branched-chain amino acids. J Gastroenterol Hepatol 
2000;15:706–17.  
 
Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients 2013;5: 
2502–21. 
 
Pugin J, Dunn I, Jolliet P, Tassaux D, Magnenat JL, Nicod LP, Chevrolet JC. Activation of human 
macrophages by mechanical ventilation in vitro. Am J Physiol 1998;275:L1040–L50. 
 
Purnamasari D, Soewondo P, Djauzi S. The adaptive immune response in graves’ disease: does 
vitamin D have a role? JAFES 2014;29:8-16. 
 
Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle 
KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG. A functional genomics strategy 
that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 
2001;19:45-50. 
 



95 
 

Ramsden JJ. Metabolomics and Metabonomics, in Bioinformatics. Computational Biology. 
London: Springer; 2009. pp. 257-9.  
 
Raoult D, Leone M, Roussel Y, Rolain JM. Attributable deaths caused by infections with 
antibiotic-resistant bacteria in France. Lancet Infect Dis 2019;19:128-9. 
 
Ratledge C. The physiology of the mycobacteria. Adv Microb Physiol 1976;13:115–244. 
 
Regmi S, Regmi AP, Adhikari S, Shakya D. Prevalence of vitamin D deficiency/insufficiency 
among children and adolescents. JCMC 2017;7:11-15. 
 
Ren S, Hinzman AA, Kang EL, Szczesniak V, Lu LJ. Computational and statistical analysis of 
metabolomics data. Metabolomics 2015;11:1492–1513. 
 
Riekeberg E, Powers R. New frontiers in metabolomics: From measurement to insight. 
F1000Research 2017;6(F1000 Faculty Rev):1148. 
 
Roberts J, Middleton A. Genetics in the 21st Century: Implications for patients, consumers 
and citizens. F1000Res 2017 [revised 2018];6:2020. doi: 10.12688/f1000research.12850.2. 
eCollection 2017. 
 
Rocha SM, Coelho E, Zrostlıkova J, Delgadillo I, Coimbra MA. Comprehensive two-dimensional 
gas chromatography with time-of-flight mass spectrometry of monoterpenoids as a powerful 
tool for grape origin traceability. J Chromatogr A 2007;1161:292–9. 
 
Rockett K, Brookes R, Udalova I, Vidal V, Hill AV, Kwiatkowski D. 1,25-Dihydroxyvitamin D3 
induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a 
human macrophage-like cell line. Infect Immun 1998;66:5314–21. 
 
Rosales C, Uribe-Querol E. Phagocytosis: A fundamental process in immunity. Biomed Res Int. 
2017; 2017:9042851. doi: 10.1155/2017/9042851.  
 
Rosen CJ, Adams JS, Bikle DD, Black DM, Demay MB, Manson JE, Murad MH, Kovacs CS. The 
nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr Rev 2012; 
33:456-92. 
 
Saccenti E, Hoefsloot HC, Smilde AK, Westerhuis JA, Hendriks MM. Reflections on univariate 
and multivariate analysis of metabolomics data. Metabolomics 2014;10:361–74. 
 
Salahuddin N, Ali F, Hasan Z, Rao N, Aqeel M, Mahmood F. Vitamin D accelerates clinical 
recovery from tuberculosis: results of the SUCCINCT Study [Supplementary Cholecalciferol in 
recovery from tuberculosis]. A randomized, placebo-controlled, clinical trial of vitamin D 
supplementation in patients with pulmonary tuberculosis'. BMC Infect Dis 2013;13:22. doi: 
10.1186/1471-2334-13-22. 
 



96 
 

Salamon H, Bruiners N, Lakehal K, Shi L, Ravi J, Yamaguchi KD, Pine R, Gennaro ML. Cutting 
edge: vitamin D regulates lipid metabolism in mycobacterium tuberculosis infection. J 
Immunol. 2014;193(1):30-34. doi: 10.4049/jimmunol.1400736. 
 
Santos ADC, Dutra LM, Menezes LRA, Santos MFC, Barison A. Forensic NMR spectroscopy: 
Just a beginning of a promising partnership. TrAC 2018;107;31-42. 
 
Santos GC, Zeidler JD, Pérez-Valencia JA, Sant'Anna-Silva AC, Da Poian AT, El-Bacha T, Almeida 
FCL. Metabolomic Analysis Reveals Vitamin D-induced Decrease in Polyol Pathway and Subtle 
Modulation of Glycolysis in HEK293T Cells. Sci Rep 2017;7:9510. doi: 10.1038/s41598-017-
10006-9. 
 
Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, van Ommen B, Pujos-Guillot E, 
Verheij, E, Wishart D, Wopereis S. Mass-spectrometry-based metabolomics: Limitations and 
recommendations for future progress with particular focus on nutrition research. 
Metabolomics 2009;5:435–58. 
 
Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted metabolomics 
strategies—challenges and emerging directions. J Am Soc Mass Spectrom 2016; 
27:1897Y1905. DOI: 10.1007/s13361-016-1469-y. 
 
Schromm AB, Howe J, Ulmer AJ, Wiesmüller KH, Seyberth T, Jung G, Rössle M, Koch MH, 
Gutsmann T, Brandenburg K. Physicochemical and biological analysis of synthetic bacterial 
lipopeptides: validity of the concept of endotoxic conformation. J Biol Chem 2007;282:11030-
37. 
 
Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J. Identifying small 
molecules via high resolution mass spectrometry: communicating confidence. Environ Sci 
Technol 2014;48(4):2097-8. doi: 10.1021/es5002105. 
 
Sedghipour MR, Sadeghi-Bazargani H. Applicability of supervised discriminant analysis models 
to analyze astigmatism clinical trial data. Clin Ophthalmol 2012; 6: 1499-506. doi: 
10.2147/OPTH.S34907.  
 
Sellick CA, Hansen R, Stephens GM, Goodacre R, Dickson AJ. Metabolite extraction from 
suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc 2011; 
6:1241-9.  
  
Serkova NJ, Standiford TJ, Stringer KA. The emerging field of quantitative blood metabolomics 
for biomarker discovery in critical illnesses. Am J Respir Crit Care Med 2011;184:647-55. 
 
Shastri MD, Shukla SD, Chong WC, Dua K, Peterson GM, Patel RP, Hansbro PM, Eri R, O'Toole 
RF. Role of oxidative stress in the pathology and management of human tuberculosis. Oxid 
Med Cell Longev 2018; doi: 10.1155/2018/7695364. 
 



97 
 

Shi L, Salamon H, Eugenin EA, Pine R, Cooper A, Gennaro ML. Infection with Mycobacterium 
tuberculosis induces the warburg effect in mouse lungs. Sci Rep 2015;5:18176. doi: 
10.1038/srep18176.  
 
Shi L, Sohaskey CD, Kana BD, Dawes S, North RJ, Mizrahi V, Gennaro ML. Changes in energy 
metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions 
affecting aerobic respiration. PNAS 2005;102(43):15629–34.  
 
Shiker MAK. Multivariate statistical analysis. BJS 2012;6(1):55-66. 
 
Shimomura Y, Harris RA. Metabolism and physiological function of branched-chain amino 
acids: discussion of session 1. J Nutr 2006;136(1):232S–3S. doi.org/10.1093/jn/136.1.232S. 
 
Shin JH, Yang JY, Jeon BY, Yoon YJ, Cho SN, Kang YH, Ryu DH, Hwang GS. (1)H NMR-based 
metabolomic profiling in mice infected with Mycobacterium tuberculosis.  J Proteome Res 
2011;10:2238-47.  
 
Shin MH, Lee DY, Liu KH, Fiehn O, Kim KH. Evaluation of sampling and extraction 
methodologies for the global metabolic profiling of Saccharophagus degradans. Anal Chem 
2010;82(15):6660-6. doi: 10.1021/ac1012656. 
 
Shu MH, Appleton D, Zandi K, AbuBakar S. Anti-inflammatory, gastroprotective and anti-
ulcerogenic effects of red algae Gracilaria changii (gracilariales, rhodophyta) extract. BMC 
Complement Altern Med 2013;13:61. doi:10.1186/1472-6882-13-61. 
 
Skoog DA, Holler FJ, Crouch SR. Principles of instrumental analysis. 7th ed. USA: Cengage 
learning; 2018. pp.  726-45. 
 
Slauch JM. How does the oxidative burst of macrophages kill bacteria? Still an open question. 
Mol Microbiol 2011;80(3):580–3. doi: 10.1111/j.1365-2958.2011.07612.x. 
 
Sneddon J, Masuram S, Richert JC. Gas chromatography-mass spectrometry-basic principles, 
instrumentation and selected applications for detection of organic compounds.  Anal Lett 
2007;40:1003–12. 
 
Snow NH, Sinex J, Danser M. Multiple dimensions of separations: SPME with GCxGC and 
GCxGC–TOF-MS. LC GC Eur 2010;23:260–267. 
 
Sömjen D, Binderman I, Weisman Y. The effects of 24R,25-dihydroxycholecalciferol and of 1 
alpha,25-dihydroxycholecalciferol on ornithine decarboxylase activity and on DNA synthesis 
in the epiphysis and diaphysis of rat bone and in the duodenum. Biochem J 1983;214(2):293–
8. doi: 10.1042/bj2140293. 
 
Song BJ, Akbar M, Abdelmegeed MA, Byun K, Lee B, Yoon SK, Hardwick JP. Mitochondrial 
dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological 
conditions through post-translational protein modifications. Redox Biol 2014;3:109-23.  
 



98 
 

Song MG, Ryoo IG, Choi HY, Choi BH, Kim ST, Heo TH, Lee JY, Park PH, Kwak MK. NRF2 signaling 
negatively regulates phorbol-12-myristate-13-acetate (PMA)-induced differentiation of 
human monocytic U937 cells into pro-inflammatory macrophages. PLoS ONE 2015;10(7): 
e0134235. doi:10.1371/journal.pone.0134235. 
 
Soto R, Perez-Herran E, Rodriguez B, Duma BM, Cacho-Izquierdo M, Mendoza-Losana A, 
Lelievre J, Aguirre DB, Ballell L, Cox LR, Alderwick LJ, Besra GS. Identification and 
characterization of aspartyl-tRNA synthetase inhibitors against Mycobacterium tuberculosis 
by an integrated whole-cell target-based approach. Sci Rep 2018;8:12664. doi: 
10.1038/s41598-018-31157-3. 
 
Soto-Ramirez MD, Aguilar-Ayala DA, Garcia-Morales L, Rodriguez-Peredo SM, Badillo-Lopez 
C, Rios-Muñiz DE, Meza-Segura MA, Rivera-Morales GY, Leon-Solis L, Cerna-Cortes JF, Rivera-
Gutierrez S, Helguera-Repetto AC, Gonzalez-Y-Merchand JA. Cholesterol plays a larger role 
during Mycobacterium tuberculosis in vitro dormancy and reactivation than previously 
suspected.  Tuberculosis (Edinb) 2017;103:1-9. doi: 10.1016/j.tube.2016.12.004. 
 
Souberbielle JC. Epidemiology of vitamin-D deficiency. Geriatr Psychol Neuropsychiatr Vieil 
2016;14:7–15. 
 
Spanik I, Janacova A, Susterova Z, Jakubik T, Janoskova N, Novak P, Chlebo R. Characterisation 
of VOC composition of Slovak monofloral honeys by GCxGC–TOF-MS. Chem Papers 2012;67: 
DOI: 10.2478/s11696-012-0254-z. 
 
Sprangers S, de Vries TJ, Everts V. Monocyte heterogeneity: consequences for monocyte-
derived immune cells. J Immunol Res 2016;2016:1475435. doi: 10.1155/2016/1475435. 
 
Steuer AE, Brockbals L, Kraemer T. Metabolomic strategies in biomarker research–new 
approach for indirect identification of drug consumption and sample manipulation in clinical 
and forensic toxicology? Front Chem 2019;7:319. doi: 10.3389/fchem.2019.00319.  
 
Strefford JC, Foot NJ, Chaplin T, Neat MJ, Oliver RT, Young BD, Jones LK. The characterisation 
of the lymphoma cell line U937, using comparative genomic hybridisation and multi-plex FISH. 
Cytogenet Cell Genet 2001;94:9-14.  
 
Subramani E, Jothiramajayam M, Dutta M, Chakravorty D, Joshi M, Srivastava S, Mukherjee 
A, DattaRay C, Chakravarty BN, Chaudhury K. NMR-based metabonomics for understanding 
the influence of dormant female genital tuberculosis on metabolism of the human 
endometrium. Hum Reprod 2016;31:854–65.  
 
Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre 
R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott 
P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for 
chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards 
Initiative (MSI). Metabolomics 2007;3:211–21.  
 



99 
 

Sundstrom C, Nilsson K. Establishment and characterization of a human histiocytic lymphoma 
cell line (U-937). Int J Cancer 1976;17:565-77.   
 
Talat N, Perry S, Parsonnet J, Dawood G, Hussain R. Vitamin D deficiency and tuberculosis 
progression. Emerg Infect Dis 2010;16:853–5.  
 
Thacher TD, Clarcke BL. Vitamin D Insufficiency. Mayo Clin Proc 2011;86:50-60.  
 
Thorn K. A quick guide to light microscopy in cell biology. Mol Biol Cell 2016;27(2):219-22. doi: 
10.1091/mbc.E15-02-0088. 
 

Tiwari S, van Tonder AJ, Vilchèze C, Mendes V, Thomas SE, Malek A, Chen B, Chen M, Kim J, 
Blundell TL, Parkhill J, Weinrick B, Berney M, Jacobs Jr WR. Arginine-deprivation-induced 
Oxidative Damage Sterilizes Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 
2018;115:9779-84.  
 
Tortoli E. Clinical manifestations of nontuberculous mycobacteria infections. Clin Microbiol 
Infect 2009;15:906-10.   
 
Tranchida PQ, Dugo P, Dugo G, Mondello L. Comprehensive two-dimensional 
chromatography in food analysis. J Chromatogr A 2004;1054:3-16. 
 
Triba MN, Le Moyec L, Amathieu R, Goossens C, Bouchemal N, Nahon P, Rutledge DN, Savarin 
P. PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the k-
fold cross-validation quality parameters. Mol Biosyst 2015;11:13-19.  
 
Tripkovic L, Lambert H, Hart K, Smith CP, Bucca G, Penson S, Chope G, Hyppönen E, Berry J, 
Vieth R, Lanham-New S. Comparison of vitamin D2 and vitamin D3 supplementation in raising 
serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr 
2012;95:1357–64.  
 
Trivedi DK, Iles RK. The application of SIMCA P+ in shotgun metabolomics analysis of 
ZIC®HILIC-MS spectra of human urine - Experience with the Shimadzu IT-TOF and profiling 
solutions data extraction software. J Chromat Separation Techniq 2012;3:6.  
 
Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics. J Proteome Res 2007;6:469–
79. 
 
Tumuluru JS, Sokhansanj S, Wright CT, Kremer T. GC analysis of volatiles and other products 
from biomass torrefaction process, in Mohd MA (ed.) Advanced gas chromatography - 
progress in agricultural, biomedical and industrial applications. Croatia: InTechOpen; 2012. 
pp. 211-34. 
 
Tzoulaki I, Ebbels TMD, Valdes A, Elliott P, Ioannidis JPA. Design and analysis of metabolomics 
studies in epidemiologic research: a primer on -omic technologies. Am J Epidemiol 
2014;180:129–39. 
 



100 
 

Ueno N, Wilson ME. Receptor-mediated phagocytosis of Leishmania: Implications for 
intracellular survival. Trends Parasitol 2012;28:335–44. 
 
Urban PL. Quantitative mass spectrometry: an overview. Philos Trans A Math Phys Eng Sci 
2016;374:20150382. doi: 10.1098/rsta.2015.0382. 
 
Van de Vijver P, Vondenhoff, G. H., Kazakov, T. S., Semenova, E., Kuznedelov, K., Metlitskaya, 
van der Werf MJ, Ködmön C, Katalinić-Janković V, Kummik T, Soini H, Richter E, Papaventsis 
D, Tortoli E, Perrin M, van Soolingen D, Zolnir-Dovč M, Ostergaard Thomsen V. Inventory study 
of non-tuberculous mycobacteria in the European Union. BMC Infect Dis 2014;14:62. doi: 
10.1186/1471-2334-14-62. 
 
Vargason T, Howsmon DP, McGuinness DL, Hahn J. On the use of multivariate methods for 
analysis of data from biological networks. Processes (Basel) 2017;5(3):36. doi: 
10.3390/pr5030036. 
 
Venketaraman V, Dayaram YK, Amin AG, Ngo R, Green RM, Talaue MT, Mann J, Connell ND. 
Role of glutathione in macrophage control of mycobacteria. Infect Immun 2003;71(4):1864–
71. doi: 10.1128/IAI.71.4.1864-1871.2003. 
 
Venketaraman V, Millman A, Salman M, Swaminathan S, Goetz M, Lardizabal A, Hom D, 
Connell ND. Glutathione levels and immune responses in tuberculosis patients. Microb 
Pathog 2008;44(3):255-61. doi: 10.1016/j.micpath.2007.09.002.  
 
Versaevel M, Grevesse T, Gabriele S. Spatial coordination between cell and nuclear shape 
within micropatterned endothelial cells. Nat Commun 2012;3:671.  
 
Vinaixa M, Samino S, Saez I, Jordi D, Guinovart JJ, Yanes O. A guideline to univariate statistical 
analysis for lc/ms-based untargeted metabolomics-derived data. Metabolites 2012;2:775-95. 
 
Viryasova GM, Golenkina EA, Tatarskii Jr VV, Galkin II, Sud’ina GF, Soshnikova NV. An 
optimized permeabilization step for flow cytometry analysis of nuclear proteins in myeloid 
differentiation of blood cells into neutrophils.  MethodsX 2019;6:360–7. doi: 
10.1016/j.mex.2019.02.011. 
 
Vrieling F, Ronacher K, Kleynhans L, van den Akker E, Walzl G, Ottenhoff THM, Joosten SA. 
Patients with concurrent tuberculosis and diabetes have a pro-atherogenic plasma lipid 
profile. EBioMedicine 2018;32:192-200. 
 
Wallner S, Schröder C, Leitão E, Berulava T, Haak C, Beißer D, Rahmann S, Richter AS, Manke 
T, Bönisch U, Arrigoni L, Fröhler S, Klironomos F, Chen W, Rajewsky N, Müller F, Ebert P, 
Lengauer T, Barann M, Rosenstiel P, Gasparoni G, Nordström K, Walter J, Brors B, Zipprich G, 
Felder B, Klein‑Hitpass L, Attenberger C, Schmitz G, Horsthemke B.  Epigenetic dynamics of 
monocyteto‑macrophage differentiation. Epigenetics Chromatin 2016; 9:33. DOI 
10.1186/s13072-016-0079-z. 
 



101 
 

Wanders RJA, Duran M, Loupatty FJ. Enzymology of the branched-chain amino acid oxidation 
disorders: the valine pathway. J Inherit Metab Dis 2012;35(1):5–12. doi: 10.1007/s10545-010-
9236-x. 
 
Warburg O. On the origin of cancer cells. Science 1956;123:309–14. 
 
Watmuff B, Pouton CW, Haynes JM. In vitro maturation of dopaminergic neurons derived 
from mouse embryonic stem cells: implications for transplantation. PLoS One 
2012;7(2):e31999. doi: 10.1371/journal.pone.0031999. 
 
Weir GM, Karkada M, Hoskin D, Stanford MM, MacDonald L, Mansour M, Liwski RS. 
Combination of poly I:C and Pam3CSK4 enhances activation of B cells in vitro and boosts 
antibody responses to protein vaccines in vivo. PLoS One 2017; 12(6): e0180073. 
doi: 10.1371/journal.pone.0180073. 
 
Wejse C, Gomes VF, Rabna P, Gustafson P, Aaby P, Lisse IM, Andersen PL, Glerup H, Sodemann 
M. Vitamin D as supplementary treatment for tuberculosis: a double-blind, randomized, 
placebo-controlled trial. Am J Respir Crit Care Med 2009;179:843-50. 
 
Westad F, Marini F. Validation of chemometric models—a tutorial. Anal Chim Acta 
2015;893:14–24. doi: 10.1016/j.aca.2015.06.056. 
 
Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, 
van Dorsten FA. Assessment of PLSDA cross validation. Metabolomics 2008;4:81–9.  
 
Wiktor M, Weichert D, Howe N, Huang C-Y, Olieric V, Boland C, Bailey J, Vogeley L, Stansfeld 
PJ, Buddelmeijer N, Wang M, Caffrey M. Structural insights into the mechanism of the 
membrane integral N-acyltransferase step in bacterial lipoprotein synthesis. Nat Commun 
2017;8:15952. DOI: 10.1038/ncomms15952. 
 
Willard SS, Koochekpour S. Glutamate, Glutamate receptors, and downstream signalling 
pathways. Int J Biol Sci 2013;9(9):948-59. doi:10.7150/ijbs.6426. 
 
Williams RJ. Biochemical Individuality. 1st ed. New York: John Wiley; 1956. 
 
Wilson K, Walker J. Principles and techniques of biochemistry and molecular biology. 7th ed. 
United Kingdom: Cambridge University Press; 2010. pp. 536. 
 
Wilson MB, Barnes BB, Boswell PG. What experimental factors influence the accuracy of 
retention projections in gas chromatography-mass spectrometry? J Chromatogr A 2014; 
1373:179–89. 
 
Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney 
S. HMDB: the human metabolome database. Nucleic Acids Res 2007;35:D521 
6https://doi.org/10.1093/nar/gkl923. 
 
 



102 
 

World Health Organization. Global Tuberculosis Report 2018  
https://apps.who.int/iris/bitstream/handle/10665/274453/9789241565646-eng.pdf 
 
World Health Organization. Global Tuberculosis Report 2019 
https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1 

 
Worley B, Powers R. Multivariate Analysis in Metabolomics. Curr Metabolomics 2013;1:92–
107.  
 
Wu HX, Xiong XF, Zhu M, Wei J, Zhuo KQ, Cheng DY. Effects of vitamin D supplementation on 
the outcomes of patients with pulmonary tuberculosis: a systematic review and meta-
analysis. BMC Pulm Med 2018;18:108. doi: 10.1186/s12890-018-0677-6. 
 
Wu K, Feskanich D, Fuchs CS, Willett WC, Hollis BW, Giovannucci EL. A nested case–control 
study of plasma 25-hydroxyvitamin D concentrations and risk of colorectal cancer. J Natl 
Cancer Inst 2007;99:1120–9. 
 
Wu Y, Gulbins E, Grassmé H. Crosstalk between sphingomyelinases and reactive oxygen 
species in mycobacterial infection. Antioxid Redox Signal 2018;28(10):935-48. 
 
Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and 
disease. Nature 2013;496:445-55. 
 
Xi B, Gu H, Baniasadi H, Raftery D. Statistical Analysis and Modeling of Mass Spectrometry-
Based Metabolomics Data. Methods Mol Biol 2014;1198:333–53. 
 
Xue Y, Yun D, Esmon A, Zou P, Zuo S, Yu Y, He F, Yang P, Chen X. Proteomic dissection of 
agonist-specific TLR-mediated inflammatory responses on macrophages at subcellular 
resolution. J Proteome Res 2008;7:3180-93. 
 
Yabsley W, Homer-Vanniasinkam S, Fisher J. Nuclear magnetic resonance spectroscopy in the 
detection and characterisation of cardiovascular disease: key studies. ISRN 2012; 
doi:10.5402/2012/784073.  
 
Yanagisawa T, Sumida T, Ishii R, Takemoto C, Yokoyama S. A paralog of lysyl-tRNA synthetase 
aminoacylates a conserved lysine residue in translation elongation factor P. Nat Struct Mol 
Biol 2010;17:1136-43.  
 
Yang CT, Cambier CJ, Davis JM, Hall CJ, Crosier PS, Ramakrishnan L. Neutrophils exert 
protection in the early tuberculous granuloma by oxidative killing of mycobacteria 
phagocytosed from infected macrophages. Cell Host Microbe 2012;12:301–12. 
 
Yang L, Dai F, Tang L, Le Y, Yao W. Macrophage differentiation induced by PMA is mediated 
by activation of RhoA/ROCK signalling. J Toxicol Sci 2017;42:763-71. 
 
Ye M, Zou H, Liu Z, Lei Z, Ni J. Study on open tubular capillary affinity liquid chromatography. 
J Chromatogr Sci 2000;38:517-20. 

https://apps.who.int/iris/bitstream/handle/10665/274453/9789241565646-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1


103 
 

 
Yeom S, Javidi B, Watson E. Three-dimensional distortion-tolerant object recognition using 
photon-counting integral imaging. Opt Express 2007;15:1513-33. 
 
Zamani F, Shahneh FZ, Aghebati-Maleki L, Baradaran B. Induction of CD14 expression and 
differentiation to monocytes or mature macrophages in promyelocytic cell lines: new 
approach. Adv Pharm Bull 2013;3:329-32.   
 
Zaretsky I, Polonsky M, Shifrut E, Reich-Zeliger S, Antebi Y, Aidelberg G, Waysbort N, Friedman 
N. Monitoring the dynamics of primary T cell activation and differentiation using long term 
live cell imaging in microwell arrays. Lab Chip 2012;12(23):5007-15. doi: 10.1039/c2lc40808b. 
 
Zhan X. Current status of two-dimensional gel electrophoresis and multi-dimensional liquid 
chromatography as proteomic separation techniques. Ann Chromatogr Sep Tech 
2015;1:1009. 
 
Zhang G, Zhang H, Liu Y, He Y, Wang W, Du Y, Yang C, Gao F. CD44 clustering is involved in 
monocyte differentiation. Acta Biochim Biophys Sin (Shanghai) 2014;46:540-7.  
 
Zhang R, Naughton DP. Vitamin D in health and disease: current perspectives. Nutr J 2010; 
9:65. doi: 10.1186/1475-2891-9-65. 
 
Zhang S, Zeng X, Ren M, Mao X, Qiao S.  Novel metabolic and physiological functions of 
branched chain amino acids: a review. J Anim Sci Biotechnol 2017;8:10. DOI 10.1186/s40104-
016-0139-z. 
 
Zhang W, Zhang N, Xie X, Guo J, Jin X, Xue F, Ding Z, Caoa Y. Toll-Like receptor 2 agonist 
Pam3CSK4 alleviates the pathology of leptospirosis in hamster. Infect Immun 2016;84:3350–7.  
 
Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X. Comparison of RNA-Seq and microarray in 
transcriptome profiling of activated T cells. PLoS ONE 2014;9:e78644. doi: 
10.1371/journal.pone.0078644. 
 
Zhou A, Ni J, Xu Z, Wang Y, Lu S, Sha W, Karakousis PC, Yao Y-F. Application of 1H-NMR 
spectroscopy-based metabolomics to sera of tuberculosis patients. J Proteome Res 2013;12: 
doi: 10.1021/pr4007359. 
 
Zhu H, Dai R, Zhou Y, Fu H, Meng Q. TLR2 ligand Pam3CSK4 regulates MMP-2/9 expression by 
MAPK/NF-κB signaling pathways in primary brain microvascular endothelial cells. Neurochem 
Res 2018;43:1897-904.  
 
Zhu N, Lin Y, Li D, Gao N, Liu C, You X, Jiang J, Jiang W, Si S. Identification of an anti-TB 
compound targeting the tyrosyl-tRNA synthetase. J Antimicrob Chemother 2015;70(8):2287-
94. doi: 10.1093/jac/dkv110. 
 



104 
 

Zia K, Siddiqui T, Ali S, Farooq I, Zafar MS, Khurshid Z.  Nuclear magnetic resonance 
spectroscopy for medical and dental applications: A comprehensive review. Eur J Dent 2019; 
13:124–28.  
 
Zom GG, Willems MMJHP, Khan S, van der Sluis TC, Kleinovink JW, Camps MGM, van der Marel 
GA2, Filippov DV, Melief CJM, Ossendorp F. Novel TLR2-binding adjuvant induces enhanced T 
cell responses and tumor eradication. J Immunother Cancer 2018;6:146. doi: 10.1186/s40425-
018-0455-2. 
 
Zrostlıkova J. Hajslova J, Cajka T, Evaluation of two-dimensional gas chromatography-Time-
Of-Flight mass spectrometry for the determination of multiple pesticide residues in fruit. J 
Chromatogr A 2003;1019:173-86.  
 
Zumla A, Raviglione M, Hafner R, von Reyn CF. Current concepts tuberculosis. N Engl J Med 
2013;368:745-55. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



105 
 

APPENDIX 

 

The data presented in this chapter contains additional and complementary data that was not 

included in the main text. Raw data and any additional data which are not included in this 

chapter are available upon request from the Department of Biochemistry, University of 

Johannesburg.  

 

1. Overlaid spectra 1H NMR spectroscopy spectrum of metabolic profiling of U937 

macrophages treated with Pam3CSK4, 1,25(OH)2D3 and a combination of both Pam3CSK4 and 

1,25(OH)2D3 as well as control cells(untreated) – 16-hrs treatment.  

 

Figure A1: Overlaid 1H NMR spectra acquired using a 500 MHz Bruker NMR spectrometer (16 h 
treatment). The spectra represent the metabolic profiling of (A) control cells (untreated), (B) 
Pam3CSK4 stimulated cells, (C) 1,25(OH)2D3 treated cells and (D) Pam3CSK4/1,25(OH)2D3 
supplemented cells incubated for 16 hrs. The labelled peaks are potential signatory metabolites 
identified from the Human Metabolome Database (HMDB) (http://www.hmdb.ca/) and relevant 
published literature (Govindaraju et al., 2000; Mickiewicz et al., 2014; Subramani et al., 2016). All 
spectra were referenced to TSP at δ 0.0 ppm and α-glucose at δ 5.53 ppm. 1,25(OH)2D3: 1,25-
dihydroxyvitamin D3; AMP: Adenosine monophosphate. 

  

http://www.hmdb.ca/
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2. Overlaid spectra 1H NMR spectroscopy spectrum of metabolic profiling of U937 

macrophages treated with Pam3CSK4, 1,25(OH)2D3 and a combination of both Pam3CSK4 and 

1,25(OH)2D3 as well as control cells(untreated) – 24-hrs treatment. 

 

Figure A2: Overlaid 1H NMR spectra acquired using a 500 MHz Bruker NMR spectrometer (24 hrs 
treatment). The spectra represent the metabolic profiling of (A) control cells (untreated), (B) 
Pam3CSK4 stimulated cells, (C) 1,25(OH)2D3 treated cells and (D) Pam3CSK4/1,25(OH)2D3 
supplemented cells incubated for 24 hrs. Potential signatory metabolites differentiating the study 
groups are shown as labelled peaks. These were identified from the Human Metabolome Database 
(HMDB) (http://www.hmdb.ca/) and relevant published literature (Govindaraju et al., 2000; 
Mickiewicz et al., 2014; Subramani et al., 2016). All spectra were referenced to TSP at δ 0.0 ppm and 
α-glucose at δ 5.53 ppm. 1,25(OH)2D3: 1,25-dihydroxyvitamin D3; AMP: Adenosine monophosphate. 

  

http://www.hmdb.ca/
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3. Metabolic profiling of U937 treated with Pam3CSK4, 1,25(OH)2D3 and 

Pam3CSK4/1,25(OH)2D3 –PCA modelling (16-hrs treatment). 

 

 

Figure A3: PCA modelling. (A) PCA scores scatter plot of control cells, Pam (Pam3CSK4), VitD 
(1.25(OH)2D3), and Pam3CSK4/Vit D (Pam3CSK4/1.25(OH)2D3) treated cells. The between-groups 
variation is explained by the y-axis and the within-group variation is explained by the x-axis (R2= 0. 
997, Q2= 0. 95, components = 14). No strong outliers were detected using Hotelling's T2 test at a 95% 
confidence level. (B) DModX shows two moderate outliers with DModX values greater than critical 
value, DCrit(0.05) (red dotted line). These outliers had no variable(s) with critical deviation from the 
rest of the dataset, hence they were retained. 

 

 

 

 

 

 



108 
 

4. Metabolic profiling of U937 treated with Pam3CSK4, 1,25(OH)2D3 and 

Pam3CSK4/1,25(OH)2D3 – PCA modelling (24-hrs treatment).  

 

 

Figure A4: PCA modelling. (A) PCA scores scatter plot of Pam (Pam3CSK4), VitD (1.25(OH)2D3), and 
Pam3CSK4/Vit D (Pam3CSK4/1.25(OH)2D3) treated cells as well as the control cells. No strong outliers 
were detected according to Hotelling's T2 test at a 95% confidence level. Moderate outliers were 
detected using DModX (B). These are observations with DModX values greater than critical value, 
DCrit(0.05) (red dotted line). (R2= 0.972, Q2= 0.863, components =7). Moderate outliers had no 
variable(s) with critical deviation from the rest of the dataset and therefore, they were retained. 
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5. Metabolic profiling of U937 treated with Pam3CSK4, 1,25(OH)2D3 and 

Pam3CSK4/1,25(OH)2D3 – OPLS-DA modelling (16-hrs treatment). 

 

Figure A5: OPLS-DA modelling and variable selection. (A) An OPLS-DA scores scatter plot separating 
the control cells vs. Pam3CSK4 (Components: 1+8+0, R2X= 0.995, R2Y= 0.999, Q2= 0.99, CV-ANOVA p-
value = 9.31628 × 10-6). The model displays the separation of the two classes in horizontal (t1) 
direction; and within-class variability is expressed in the vertical (to[1]) direction. (B) the loading S-
plot displays discriminant variables – the variables that are situated in the extreme end of the S-plot 
are statistically relevant and represent prime candidates as discriminating variables. (C) An OPLS-DA 
scores scatter plot and (D) the loading S-plot of the control cells vs. 1,25(OH)2D3. A clear separation 
can be seen between the two classes (Components: 1+8+0, R2X = 0.992, R2Y = 0.999, Q2 = 0.983, CV-
ANOVA p-value =5.90137 × 10-5). (E) An OPLS-DA scores scatter plot and (F) the loading S-plot of the 
control cells vs. Pam3CSK4/1,25(OH)2D3 (Components:1+3+0, R2X = 0.968, R2Y = 0.98, Q2 = 0.945, CV-
ANOVA p-value =1.64464).  
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6. Metabolic profiling of U937 treated with Pam3CSK4, 1,25(OH)2D3 and 

Pam3CSK4/1,25(OH)2D3 – OPLS-DA modelling (24-hrs treatment). 

 

Figure A6: OPLS-DA modelling and variable selection. (A) An OPLS-DA scores scatter plot separating 
the control cells vs. Pam3CSK4 (Components: 1+6+0, R2X= 0.994, R2Y= 0.999, Q2= 0.973, CV-ANOVA p-
value =0.00251). The model displays the separation of the two classes in horizontal (t1) direction; and 
within-class variability is expressed in the vertical (to[1]) direction. (B) the loading S-plot showing the 
discriminant variables.  Potential discriminating variables are situated in the extreme end of the S-
plot. (C) An OPLS-DA scores scatter plot and (D) the loading S-plot of the control cells vs. 1,25(OH)2D3. 
A clear separation can be seen between the two classes (Components: 1+8+0, R2X = 0.997, R2Y = 1, Q2 
= 0.99, CV-ANOVA p-value = 0.00196). (E) An OPLS-DA scores scatter plot and (F) the loading S-plot 
of the control cells vs. Pam3CSK4/1,25(OH)2D3 (Components: 1+6+0, R2X = 0.987, R2Y = 0.999, Q2 = 
0.975, CV-ANOVA p-value =0.00049).  
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7. Volcano plot showing significant, discriminatory metabolites between control cells vs. 

Pam3CSK4; and control cells vs. Pam3CSK4/1.25(OH)2D3 supplemented cells. The metabolic 

profiling was performed using GCxGC–TOFMS (12-hrs treatment). 

 
Figure A7: Volcano plot of significant metabolites. (A) Volcano plot of control cells vs. Pam3CSK4 

stimulated; and that of (B) control cells vs. Pam3CSK4/1.25(OH)2D3 supplemented cells. Significant 
discriminatory variables (metabolites) are located away from the origin (0) of the plot. They are 
located towards the top left or the top right of the plot. 
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8. PCA modelling of GCxGC-TOFMS based metabolic profiling of control cells vs. Pam3CSK4; 

and control cells vs. Pam3CSK4/1.25(OH)2D3 supplemented cells (12-hrs treatment). 

Figure A8: PCA modelling. PCA scores scatter plot of (A) control vs. Pam3CSK4 stimulated cells; and (B) 
control vs. Pam3CSK4/1.25(OH)2D3 supplemented cells. The within-group separation and between-
groups separation is shown by the x-axis (PC1) and y-axis (PC2), respectively. Abbreviations: PC: 
Principal component. 
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9. PLS-DA modelling of control vs. Pam3CSK4 stimulated cells; and control cells vs.  

Pam3CSK4/1.25(OH)2D3 supplemented cells (12-hrs treatment). 

 

Figure A9: PLS-DA modelling. PLS-DA scores scatter plot separating (A) control vs. Pam3CSK4 
stimulated cells; and (B) control vs. Pam3CSK4/1,25(OH)2D3 supplemented cells. Component 1 shows 
within-group separation and component 2 shows between-groups separation.  
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10. Selection of variables responsible for separation observed in PLS-DA score scatter plots 

generated from the GC-MS based metabolic profiling (12-hrs treatment).  

 

Figure A10: VIP scores. VIP scores showing potential signatory metabolites discriminating (A) control 
cells vs. Pam3CSK4 stimulated cells; and (B) control cells vs.  Pam3CSK4/1.25(OH)2D3 supplemented 
cells. Discriminatory metabolites have VIP > 1.  
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11. OPLS-DA modelling and variable selection of GC-MS based metabolic profiling (12-hrs 

treatment). 

 

Figure A11: OPLS-DA modelling and variable selection. OPLS-DA scores scatter plot separating (A) 
control cells vs. Pam3CSK4 stimulated cells (Permutation analysis: Q2 = -0.1, R2Y=0.918); and (B) 
control cells vs. Pam3CSK4/1,25(OH)2D3 supplemented cells (Permutation analysis: Q2 = -0.1, 
R2Y=0.918). Discriminatory features responsible for the separation observed in the OPLS-DA scores 
scatter plots are shown in the loadings S-plots (C) control cells vs. Pam3CSK4 stimulated cells and (D) 
control cells vs. Pam3CSK4/1,25(OH)2D3 supplemented cells. 
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12. Metabolic pathway analysis  

 

Table A1: Most significantly altered metabolic pathway in U937 macrophages treated with 

Pam3CSK4, 1,25(OH)2D3 and a combination of both Pam3CSK4 and 1,25(OH)2D3. 

Metabolic 
Pathway 

Total  Expected  Hits  Raw p-
value 

-log(p)  Holm 
adjust  

FDR 
Impact 

Impact 

Aminoacyl-
tRNA 
biosynthesis 

48 0.84 8 6.62 x 10-7 1.42 x 101 5.56 x 10-5  5.56 x 10-5 0.00 

Arginine 
biosynthesis 

14 0.24 4 6.51 x 10-5 9.64 5.40 x 10-3  1.89 x 10-3 0.18 

Galactose 
metabolism 

27 0.47 5 6.76 x 10-5 9.60 5.55 x 10-3 1.89 x 10-3 0.09 

Valine, leucine 
and isoleucine 
biosynthesis 

8 0.14 3 2.49 x 10-4 8.30  2.02 x 10-2 5.24 x 10-3 0.00 

Glutathione 
metabolism 

28 0.49 4 1.13 x 10-3 6.79  9.00 x 10-2 1.89 x 10-2 0.12 

 

 

 




