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Summary 

 

Drought stress is one of the major limiting factors in agriculture globally, hampering crop 

yields in approximately 70% of arable farmlands. In this regard, microbial-biostimulants, 

such as plant growth-promoting bacteria (PGPR)-based formulations, have been proven to 

provide sustainable and economically favorable solutions that could introduce novel 

approaches to improve agricultural practices and crop productivity under adverse 

environmental conditions. However, to devise these novel biostimulants-based agricultural 

strategies, there is a necessity to firstly understand the physiology and biochemistry 

governing the interactions between biostimulants and plants. Herein, targeted metabolomics, 

epigenetics and gene expression analyses were employed to elucidate molecular mechanisms 

governing plant growth-promotion, stress priming and enhanced drought stress responses 

induced by a microbial-based biostimulant formulation (a consortium of five Bacillus sp. 

strains) in maize (Zea mays) plants. The findings evidenced that this microbial-based 

biostimulant promotes growth of maize plants and renders the latter proactively adapted to 

drought conditions via multi-layered molecular mechanisms involving alterations in both 

primary and secondary metabolism, a reprogramming of DNA methylome and differential 

stress-related gene expression profiles. This fundamental (and actionable) knowledge 

generated from this work contributes to ongoing scientific efforts to decode modes of action 

of biostimulants (at both cellular and molecular levels), and provides a necessary step in the 

biostimulant industry for novel formulations and agricultural strategies for sustainable food 

production. 
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1.1 Problem statement  

 

As sessile organisms, plants are constantly exposed to potentially stressful conditions that are 

often unfavourable for growth and development, and therefore have evolutionarily developed 

mechanisms that enable them to respond and adapt (Pandey et al., 2016). These adverse 

environmental factors pose a growing threat to food security, affecting agronomically 

important crop plants (Koyro et al., 2012; Zhu, 2016). Furthermore, the global population is 

estimated to reach 9.8 billion by 2050. Subsequently, to provide adequate food supply and 

meet the projected demands from the globally rising population, agricultural production must 

significantly increase (Jorge & António, 2018). However, achieving this imperative, i.e. 

increasing agricultural productivity, is currently an immense challenge due to decreased 

arable land and increasing adverse environmental conditions due to both biotic and abiotic 

stresses. The latter, such as drought, salinity and extreme temperatures, reduce the majority of 

crop yields by over 50% and are being intensified due to climate change (Araus et al., 2002; 

Singhal et al., 2016). 

 

Although improved adaptation to these abiotic stresses has long been a pursuit of crop plant 

breeders, this is understandably difficult to achieve since abiotic stress resistance is a 

multigenic and quantitative trait controlled by multi-layered cellular and molecular events; 

considering also the increasing drought severity and expansion (Wani et al., 2013; Onaga & 

Wydra, 2016; Zivcak et al., 2016). Hence, innovative and efficient strategies to improve crop 

quality and tolerance against abiotic stresses are imperatively required. Biostimulants, such as 

plant growth-promoting rhizobacteria (PGPR)-based formulations, represent potentials to 

provide sustainable and economically favourable solutions that could introduce novel 

approaches to improve agricultural practices and crop productivity (Singh, 2013; Kumari et 

al., 2019; Aamir et al., 2020). Microbial biostimulants, particularly PGPR-based formulations 

and the focus of this work, have been successfully used to improve agricultural productivity 

in a sustainable manner (Yakhin et al., 2017; Fleming et al., 2019). However, to effectively 

establish and devise novel biostimulant-based agricultural strategies, there is a necessity to 

firstly understand the physiology and biochemistry governing the interactions between 

biostimulants and plants at both cellular and molecular levels. This knowledge gap – 

decoding molecular and physiological mechanisms underlying biostimulant action – is one of 

the main bottlenecks that hamper the biostimulant field and industries from implementing and 
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maximising the value of (traditional and novel) such formulations in agronomic practices 

(Yakhin et al., 2017; Rouphael & Colla, 2020). Hence, exploring both the chemical and gene 

space of maize plants, the current work (reported in this dissertation) is part of ongoing 

scientific efforts to elucidate molecular mechanisms activated/stimulated by biostimulants (in 

crop plants) towards growth promotion and enhanced adaptability to abiotic stress condition.  

 

1.2 Background  

 

Plant beneficial microorganisms, such as PGPR have been shown to promote plant growth 

through various direct and indirect mechanisms such as enhanced nutrient acquisition 

(nitrogen, phosphorus and other essential minerals), modulation of plant hormones, antibiotic 

and lytic enzymes production, induced systemic resistance and the production of 

antimicrobial metabolites such as volatile organic compounds, siderophores and lipopeptides, 

just to mention a few (Ahemad & Kibret, 2014; Kundan et al., 2015).  Furthermore, PGPR 

induce protective mechanisms in plants including increased antioxidant metabolism, osmotic 

adjustment, ethylene inhibition, indole-3-acetic acid (IAA) production and abscisic acid 

(ABA) synthesis, which augment the plant’s immune system and defences to confer 

protection against abiotic stresses (Ngumbi & Kloepper, 2016; Kumar et al., 2019; Goswami 

& Deka, 2020).  

 

One of the PGPR-induced protective phenomena is the preconditioning of plant defences and 

resistance against (a)biotic stresses, known as priming (Bruce et al., 2007). The latter is a 

physiological state in which defence responses are activated faster and more efficiently 

(Beckers & Conrath, 2007). Priming mechanisms are described at different levels: 

modification of key regulatory transcript or protein levels, accumulation of intermediate 

compounds in the cells, metabolic reprogramming (metabolic memory), and (epi)genetic 

mechanisms resulting in epigenetic memory (Schwachtje et al., 2019). Some of these 

epigenetic remodelling outputs involved in the priming phenomenon include DNA 

methylation and histone modification, which are long lasting mechanisms (Tugizimana et al., 

2018). On the other hand, at the transcript and protein level, priming events involve 

reprogramming of transcripts, activation and regulation of the expression of defence-related 

genes, and modulation of enzyme activities (Hilker et al., 2016). These priming-related 
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reconfigurations (at cellular level) of both gene- and chemical space define long-term stress 

memory, and can lead to enhanced transgenerational tolerance against abiotic stresses. This 

transgenerational (epigenetic) stress memory is mechanistically characterised by histones and 

DNA modifications or chromatin remodelling without any alterations of the nucleotide 

sequence (Madlung & Comai, 2004; Tricker, 2015).  

 

Generally, plants have evolved a plethora of epigenetic mechanisms that contribute to normal 

developmental growth in plants. Furthermore, emerging studies are revealing the role of the 

plant epigenome involvement in regulating plant defence responses to abiotic stress, thereby 

influencing and redefining plant survival, adaptation and evolution of plant resistance 

mechanisms (Boyko & Kovalchuk, 2008; Mirouze & Paszkowski, 2011; Eichten et al., 2014; 

Yaish, 2017). However, such studies and knowledge-base are still the tip of an iceberg, and 

the ramifications and roles of epigenetic alterations in abiotic stress responses remain 

enigmatic. For instance, the elucidation of the molecular framework underlying the 

epigenetic memory in abiotic stress conditions is still elusive; the effects of biostimulants on 

the plant epigenome (under normal and/or stress conditions) and subsequent physiological 

reprogramming are still unknown. Furthermore, the holistic and mechanistic understanding of 

the spatial and temporal synchronisation of chromatin remodelling, DNA methylation and 

other epigenetic modifications, and the downstream phenotypical plasticity, in both primed 

and naïve plant abiotic stress responses is still missing (Sudan et al., 2018; Rehman & Tanti, 

2020; Chang et al., 2020). Thus, unravelling mechanistic details governing the events 

pertaining to the epigenetic regulation of biostimulant-treated plants, under normal and 

abiotic stress conditions, is an imperative step towards generating actionable fundamental 

knowledge to complete the molecular puzzle defining the biostimulant-plant interactions. 

 

As echoed in subsequent chapters of this dissertation, epigenetic alterations are also regulated 

and translated at the metabolome level. The latter is highly dynamic and the final readout of 

genotype × environment × phenotype relationship of an organism (Fiehn et al., 2000; Fiehn, 

2001, 2002). Measuring and assessing plant metabolite profiles and dynamics, under specific 

physiological conditions, thus theoretically encrypt the multi-layered chemical and 

biochemical processes involved in the plant metabolism (Král’ová et al., 2012; Obata & 

Fernie, 2012; Piasecka et al., 2019). Metabolomics – the qualitative and quantitative analysis 

of all measurable metabolites in a biological system – has thus positioned itself as a central 
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pillar in systems biology to interrogate cellular and organismal metabolism at a global level 

(Fernie, 2003; Kopka et al., 2004). Furthermore, owing to the inherent sensitivity of the 

metabolome to genetic and environmental perturbations, alterations in a system’s metabolism 

can be assessed and thereby provide mechanistic insights (Bino et al., 2004). Thus, generated 

metabolic profiles and fluxes reflect the integrated output of the molecular machinery and 

biochemistry of a biological system under consideration (Tugizimana et al., 2013; 2018; 

2020). The application of plant metabolomics approaches in exploring the molecular and 

biochemical mechanisms underlying defence responses to fluctuating environmental 

conditions has increased over the past decade (Sarabia et al., 2018; Razzaq et al., 2019; 

Castro-Moretti et al., 2020). These studies provide a promising basis for expanding and 

refining our understanding of the plant’s plasticity to reconfigure both primary and secondary 

metabolism as well as the degree by which plants tolerate abiotic stresses.  

 

Metabolomics has, therefore, undoubtedly become a powerful research tool to study the 

biochemical mechanisms underlying plant growth and development in the context of plant 

metabolic responses to abiotic stresses (Jorge et al., 2016; Jorge & António, 2018). 

Furthermore, metabolomics offers unique opportunities to decode mechanistic frameworks 

that define modes of action of microbial biostimulants towards plant growth promotion and 

enhancement of defences against abiotic stresses (Tugizimana et al., 2018; Adeniji et al., 

2020; Kellogg & Kang, 2020). As mentioned above, one of the phenomena via which 

biostimulants can improve plant protective machinery against environmental stresses is 

priming. The latter is a promising alternative approach due to the long-term and broad-

spectrum resistance it provides against abiotic stress, providing an effective mechanism for 

crop protection under abiotic stresses (Martinez-Medina et al., 2016). Accordingly, a 

comprehensive and mechanistic understanding (at molecular and cellular levels) of the 

beneficial effects of the biostimulants involved in priming (e.g. PGPR-based biostimulants) 

could pave ways to design novel strategies that will aid plants in adverse environmental 

conditions, thus contributing to sustainable food security. The current work therefore intends 

to profile both metabolic changes and global DNA methylation (elucidate epigenetic traits), 

underlying PGPR–maize interactions and the subsequent potentiation against drought stress. 

The results from this study will contribute in ongoing efforts to unravel the molecular and 

cellular events that explain the positive effects of biostimulant-plant interactions, pointing to 
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specific epigenetic changes and metabolic traits, and subsequently defining potential PGPR-

induced ‘memory markers’ of enhanced responses to abiotic stresses. 

 

1.3 Aim and objectives  

 

The main aim of this work was to study PGPR-induced changes in the epigenome and 

metabolome of maize plants to elucidate the PGPR-induced biochemical events involved in 

plant growth promotion and priming against drought stress. Thus, the research question of 

this study, which can be classically described as a hypothesis, reads that “PGPR-based 

biostimulants can enhance plant growth as well as induce drought stress tolerance through 

differential changes in both metabolic and epigenetic profiles of maize plants”. To achieve 

the aim of this work in examining the postulated research question, the main actionable 

objectives included (1) conducting a literature review on plant abiotic stress responses, and 

the potentiation of these responses through microbial-biostimulants treatment, (2) applying a 

targeted metabolomics approach to elucidate PGPR-induced metabolic landscape that define 

plant growth promotion, priming and drought stress tolerance mechanisms in maize plants, 

and (3) profiling differential epigenetic modifications (DNA methylation) and gene 

expression analysis, under PGPR and drought stress treatments in maize. 

 

1.4 Outline of the Dissertation  

 

This dissertation is subdivided into five self-standing units, thematically-linked chapters, 

inclusive of this general introduction (Chapter 1), with Chapters 3 and 4 presented as 

complete studies, each comprising of a literature review, methodology description, discussion 

of the results, and conclusion. Chapter 2 provides an overview of the existing literature on 

abiotic stress responses from signal perception to the activation of defence responses. It 

further assesses the current knowledge and gaps regarding the use of microbial-based 

biostimulants in enhancing plant growth, development and stress tolerance. Furthermore, 

Chapter 2 highlights epigenetics and metabolomics as comprehensive tools to investigate the 

underlying biochemical mechanisms in biostimulant-plant interactions. To investigate the 

differential metabolic changes induced by PGPR in the primary and secondary metabolism of 

maize plants, a targeted liquid chromatography-mass spectrometry metabolomics study was 

conducted and reported in Chapter 3. PGPR-induced metabolic reprogramming, pointing to 
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enhanced plant growth, priming and drought stress tolerance in maize plants under mild and 

severe drought conditions, was investigated. Additionally, morphophysiological 

modifications induced by PGPR-based biostimulant and drought treatment were assessed. 

Chapter 4 reports on global DNA methylation profiles in PGPR-treated maize plants, under 

well-watered, mild and severe drought stress conditions. An ELISA-based technique was 

employed to determine the relative global DNA methylation levels. The differences in the 

latter, among different treatment groups, were analysed and described. Furthermore, to 

complement the generated global methylation profiles, the expression of selected defence-

related genes was assessed. Chapter 5 is a general conclusion that integrates the findings of 

this work, highlighting key fundamental findings, that are actionably relevant for the 

biostimulant industry, and pointing out the potential use of PGPR-based biostimulants for 

sustainable agricultural practices.  
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Chapter 2   

Plant Responses to Abiotic Stresses, 
Microbial Biostimulants and Plant Priming: 
Metabolomics and Epigenetic Perspectives 

 

Summary 

 

Abiotic stresses are prime factors limiting plant growth and crop productivity. Considering 

the dual pressures of a booming population and detrimental abiotic stress effects on 

agricultural productivity, it is vital to decode the biological processes that regulate plant 

growth, development and productivity. In response to abiotic stresses, plants mount 

comprehensive stress-specific responses which mediate signal transduction cascades, 

transcription of relevant responsive genes and the accumulation of numerous different stress-

specific transcripts and metabolites, as well as coordinated stress-specific biochemical and 

physiological readjustments. These natural mechanisms employed by plants are however not 

always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such 

as plant growth promoting rhizobacteria (PGPR) are emerging as plant priming agents and 

novel strategies in improving crop quality, yield and resilience against adverse environmental 

conditions. Additionally, biostimulants are therefore progressively being integrated into 

production systems, with the goal of modifying underlying plant physiological and 

biochemical processes in order to enhance stress tolerance and productivity. To successfully 

formulate these microbial-based biostimulants and design efficient application programs, the 

understanding of molecular and physiological mechanisms that govern biostimulant-plant 

interactions under environmental perturbations is imperatively required. Systems biology is a 

comprehensive analysis that uses different ‘omics’ approaches providing insights of the 

complex regulatory molecular networks in biological systems. The integration of different 

omics approaches (epigenetics and metabolomics) can unravel insights on the complex 

network of plant-PGPR interactions allowing for identification of molecular targets 

responsible for stress tolerance. This review chapter highlights the current knowledge on 

plant defence responses to abiotic stresses, from perception to the activation of cellular and 

molecular events. The chapter further reviews current knowledge on the application of 

microbial biostimulants and the use of epigenetics and metabolomics approaches to elucidate 

mechanisms of action of microbial biostimulants. 

 

Keywords: Abiotic stress · Biostimulants · DNA methylation · Histone modifications · 

Epigenetics · Metabolomics · Priming · Memory 
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2.1 Introduction  

 

As sessile organisms, plants are constantly exposed to adverse environmental perturbations, 

such as abiotic stresses. Anthropogenic contributions and increasing climate change 

continuously exacerbate the detrimental effects of these stresses on crop productivity, thereby 

posing a threat to global food security. Evolutionarily, plants have developed a multi-layered, 

complex and highly regulated immune system that involves sensing various danger signals 

and integration of this information to produce appropriate responses to diverse challenges, 

ensuring growth and development (Espinas et al., 2016). These response mechanisms that are 

induced by stress exposure result in gene expression reprogramming and phenotypic 

modifications which, in turn, give rise to acquired memorisation, that can either be transient 

or long lasting (He & Li, 2018). Since plants are repeatedly exposed to different adverse 

environmental conditions, it is advantageous for plants to be able to remember past stress 

occurrences for adaptation and defence. In the last decade, progress has been made in 

elucidating and describing stress memory mechanisms in plants. One of these systems is 

known as defence priming, which sensitises and prepares the plant for future (a)biotic stress 

conditions (Pastor et al., 2014).  

 

Priming or pre-conditioning (of plant defences and adaptive mechanisms) as stress memory is 

a state in which plants are rendered more resistant to subsequent stresses, displaying faster 

and more efficient defence responses (Conrath et al., 2006; Beckers & Conrath, 2007; 

Conrath, 2011). Multiple examples of stress memory in response to stimuli such as drought, 

salinity and cold in higher plants have been shown across several species and discussed in 

great details (Herman & Sultan, 2011; Walter et al., 2011). In this regard, numerous 

molecular mechanisms underpinning plant memory have been elucidated to date. One 

mechanism thereof is sustained alterations in levels of key signalling transcription factors, 

enzymes and/or proteins, which provides an insight of how the plant metabolism is altered 

and maintained by exposure to various stresses (Conrath et al., 2006; Santos et al., 2011; 

Pecinka & Mittelsten Scheid, 2012; Kinoshita & Seki, 2014; Vriet et al., 2015). Another 

probable avenue could be chromatin alterations, such as DNA methylation, histone tail 

modifications or paused RNA polymerase II, which play an additional role in the coordinated 

changes in the patterns of gene expression that underpin memory responses (Chinnusamy et 

al., 2008; Mirouze & Paszkowski, 2011; Eichten et al., 2014; Avramova, 2015). 
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Consequently, the underlying mechanisms of these phenomena are the subject of much 

research. Hitherto, the potential impact of DNA methylation induced by priming as a stress 

memory has been reported in numerous studies (e.g., Lämke & Bäurle, 2017; He & Li, 2018), 

however, open questions still remain around the specificity of epigenetic marks and their 

stability throughout mitosis resulting in stress memory maintenance. Moreover, the exact 

mechanisms linking DNA modifications to transcriptional responses under abiotic stress are 

still enigmatic (Asensi-Fabado et al., 2017). During stress encounters, metabolic 

perturbations are induced as part of the defence phenomenology, and some of these metabolic 

responses may persist following recovery, where the plant physiology returns to equilibrium 

(Hemme et al., 2014; Pagter et al., 2017). This change in metabolite levels such as the 

accumulation of signalling compounds has been shown to play a major role in stress memory 

under abiotic stress (Bruce et al., 2007). For example, it has been reported that the 

accumulation of abscisic acid (ABA) is involved in short term drought stress memory (Ding 

et al., 2012). Alterations in the epigenome and metabolism remodel molecular circuits and 

networks that define stress memory mechanisms in plants. DNA methylation and metabolic 

reprogramming resultant from biostimulant treatment may therefore provide predictive 

understanding of priming mechanisms under drought stress. 

 

Biostimulants are substances which, when applied in low concentrations not only mitigate 

stress, but also promote plant growth (du Jardin, 2015). Although the physiological effects of 

biostimulants have been documented (Conrath, 2011), a comprehensive understanding of 

modes of action of biostimulants at the cellular and molecular levels is still required to better 

value and develop formulations that are effective and science-based credible. Such in-depth 

molecular studies will aid improvement of the efficacy of biostimulants and will help 

optimise their applications in agriculture.  

 

Metabolomics is a comprehensive ‘omics’ approach for the qualitative and quantitative 

analysis of metabolites in a biological system under certain physiological conditions 

(Tugizimana et al., 2013). Being a final recipient and translation of biological information, 

changes in the environment resulting in changes in gene expression and protein expression, 

are directly reflected in the metabolome, thus making it more complex when compared to 

other ‘-omes’ (Nalbantoglu, 2019). Moreover, the metabolome being a convolution of all 

upstream biological information (from genome to proteomic level) and closest to the 
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phenotype, metabolomics –the interrogation of the metabolome of a biological system– 

provides thus a holistic signature of the physiological state of a biological system as well as 

knowledge on its biochemical processes (Fiehn et al., 2000; Fiehn, 2001, 2002).  

 

In the post-genomic era, comprehensive analysis using different systematic ‘omics’ 

approaches (systems biology) has provided insights of the complex regulatory molecular 

networks associated with stress adaptation and tolerance in plants. Molecular components 

(transcripts, proteins and metabolites) of an organism are placed into functional networks or 

models which describe the dynamic activities of the organism under different environmental 

conditions. For example, transcriptomics, proteomics and metabolomics which analyse RNAs 

and their expression, protein modifications and metabolites, respectively, have offered an 

unprecedented understanding of plant regulatory networks (Cramer et al., 2011). 

Consequently, integration of the different ‘omics’ approaches can unravel insights on the 

complex network of plant-microbial interactions allowing for robust identification of 

molecular targets responsible for stress tolerance. Genetic modifications have been widely 

used for enhanced stress tolerance, however, the exploration of epigenetic modifications and 

metabolomic changes for potential crop improvement is still at an early stage. Thus, this 

Chapter provides an overview of the literature context of the work presented in this 

dissertation – to address some of these knowledge gaps.  

 

2.2 Stress perception, signalling and plant responses  

  

To counteract the adverse effect of environmental perturbations, plants have evolved 

comprehensive defence mechanisms that help them tolerate abiotic stresses by means of 

physical adaptation as well as integrated molecular and cellular responses. The initial and 

crucial step in abiotic stress defence mechanisms is the perception of the stress signals and 

their transduction in order to activate the relevant adaptive molecular responses to ensure 

survival. 

 

 2.2.1 Abiotic stress perception and downstream signalling 

 

Perception of the stress signals is performed by receptors/sensors such as histidine kinases 

(HKs) and receptor-like kinases (RLKs) (Shiu & Bleecker, 2001; Xu et al., 2008; Nongpiur 
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et al., 2012). Numerous receptors containing leucine-rich repeats (LRR), associated with 

abiotic stress have been identified in plants. These receptors are classified as either receptor-

like kinases or proteins (RLKs or RLPs). For the perception of abiotic stress, there is growing 

evidence that suggests RLKs as main regulators of environmental stress regulation. For 

example, receptor-like protein kinase1 (RPK1), proline-rich-extensin-like rlk4 (PERK4), 

guard cell hydrogen peroxide-resistant1 (GHR1) and calcium/calmodium-regulated cysteine-

rich rlk (CRK36) are involved in sensing drought and cold stress, and have been reported to 

regulate water stress signalling in Arabidopsis (Osakabe et al., 2005, 2010, 2013; Yang et al., 

2010; Hua et al., 2012). Furthermore, a variety of RLKs regulate a wide range of processes 

including root and shoot development, symbiosis and cellular differentiation (De Smet et al., 

2009). Following stress perception by the receptor proteins present on cell surfaces, the signal 

is transduced into different downstream signalling networks – a phenomenon known as signal 

transduction. A generic signal transduction pathway is initiated by perception, followed by 

the generation of secondary messengers resulting in the activation of a phosphorylation 

cascade that targets proteins involved in the regulation of stress defence genes. Early 

response signals have been unfolded and include cytosolic calcium (Ca2+) elevation (Knight 

& Knight, 2001; Steinhorst & Kudla, 2013), reactive oxygen species (ROS) (Boscaiu et al., 

2008; Suzuki et al., 2012; Choudhury et al., 2013), and mitogen-activated protein kinase 

(MAPK) cascade activation (Figure 2.1).  
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Figure 2.1: Overview of defence signalling in plants under abiotic stress. Upon perception of 

stress, several secondary messengers such as ROS and Ca2+ and NO are activated, which then induce 

different kinases such as CDPKs and MAPKs, resulting in the activation of transcription factors, 

enzymes and proteins which, in turn, activate the transcription of defence-related genes. 

Phytohormones, SA, JA, and ET, are also induced and contribute to plant immunity. Abbreviations: 

ROS, reactive oxygen species; Ca2+, calcium; NO, nitric oxide; CDPK, calcium dependent protein 

kinases; MAPK, mitogen-activated protein kinase; SA, salicylic acid; JA, jasmonic acid; ET, ethylene 

(generated by the author of this dissertation). 

 

2.2.1.1 Calcium signalling in response to abiotic stress 

 

Ca2+ signalling plays a vital role in the specificity of the plants’ cellular responses towards 

stress (Sanders et al., 2002; Dodd et al., 2010), and each stimulus perception is followed by a 

rapid increase in intracellular content of the said ions. Under normal physiological conditions, 

resting cytosolic Ca2+ ([Ca2+]cyt) is maintained at nanomolar concentration levels via active 

transportation into the calcium stores or outside the cells into the apoplast, resulting in Ca2+ 

gradients of numerous magnitudes (Steinhorst & Kudla, 2014). Changes in the cytosolic Ca2+ 

influx and efflux patterns are evoked upon various stimuli perception as a response 

mechanism, and this is controlled through different channels and pumps. These [Ca2+]cyt 

fluctuations by stimuli can occur in a repetitive manner in which the frequency and the 

amplitude of the signal are dependent on the type of the stimulus, thus making this a 
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signature (Dodd et al., 2010). Each calcium signature encodes information that is specific to a 

stimulus through the type of tissue, subcellular location, size and the frequency (Miwa et al., 

2006; McAinsh & Pittman, 2009) and, therefore, defines the type of defence response. For 

Ca2+ signals to be decoded, calcium signal sensors that can sense any variations in levels and 

relay the information depicted within the signatures to activate relevant signalling cascades, 

are mandatory. Numerous studies have identified and characterised the prominent calcium 

sensor proteins defined by the calmodulin (CaM) and calmodulin-like protein (CMLs) family, 

calcineurin-B like proteins (CBLS), the calcium and calmodulin-dependent protein kinase 

(CCaMK) and calcium-dependent protein kinase (CDPK) family, which are known to occur 

in numerous gene families forming complex signalling networks in plants (Harper et al., 

2004; Ranty et al., 2006; Yang et al., 2010; Hashimoto & Kudla, 2011; Perochon et al., 

2011). These proteins are very diverse since they exhibit numerous affinities for Ca2+ ions. 

The binding of calcium to these sensors induces a conformational change that activates 

downstream targets, thereby contributing to an additional layer of specificity and resulting in 

transduction of the initial stimuli perception into specific biological responses (Hashimoto & 

Kudla, 2011). 

 

2.2.1.2 Reactive oxygen species signalling in response to abiotic stress 

 

ROS production is an early response mechanism directed towards abiotic stress and serves as 

an important secondary messenger in plants. These molecules defined as atmospheric oxygen 

intermediates which have a high biological significance in plants, include hydrogen peroxide 

(H2O2), hydroxyl radical (.OH), singlet oxygen (1O2) and superoxide anion (O2
−) formed 

through definite pathways. Under normal plant growth conditions, ROS are present in 

moderate levels through the action of antioxidants and enzymes that keep the levels in 

balance, thereby rendering these molecules as excellent signalling transducers (Mittler et al., 

2011). However, abiotic stresses induce excessive ROS production known as the oxidative 

burst, which acts as a signal in adjusting the plant cellular machinery in the activation of 

defence responses under abiotic stress (KrishnaMurthy & Rathinasabapathi, 2013). Although 

the production of ROS differs between different cellular compartments, the generated ROS 

signal is still considered a signature.  

.  
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The generation thereof is common in all stress encounters in plants and a combination of 

different stresses is likely to result in different ROS levels, therefore different sensors can be 

utilised to decode these signatures and create a signal that is specific to each stress 

(Choudhury et al., 2013, 2017). NADPH oxidases (NOXs) catalyses the formation of 

superoxides and in plants are known as respiratory burst oxidase homologs (RBOHs) (Sagi & 

Fluhr, 2001; Sumimoto, 2008; Marino et al., 2012). Phosphorylation of receptor kinases 

under stress encounters results in elevated Ca2+ which, in turn, activates the respiratory burst 

oxidase homolog D (RbohD). Consequently, this induces excess production of ROS that 

causes depolarisation of plant cells walls (Jeworutzki et al., 2010). ROS spread through the 

entire plant in what is known as a ‘ROS wave’, and concomitantly triggering cell-to-cell 

communication that results in systemic signal(s) activation (Miller et al., 2009; Mittler et al., 

2011). Calcium and ROS enhance the induction of the each other during stress encounters in 

a phenomenon known as a mutual interplay, which results in the fine tuning of signalling 

(Görlach et al., 2015). For example, during salt stress, the superoxide produced activates 

calcium channels, which activate the vacuolar calcium channel TWO PORE CHANNEL1 

(TPC1). TPC1 then transports the Ca2+ from the vacuole and induces the activation of RBOH 

protein D. This feedback loop is responsible for the propagation of the ROS and Ca2+ waves 

resulting in an efficient acclimation response (Evans et al., 2016). 

 

2.2.1.3 MAPKs pathway activation in response to abiotic stress 

 

In addition to rapid systemic signalling induced by Ca2+ and ROS secondary messengers, 

kinase cascades of the MAPKs similarly play a crucial role in plant signalling of several 

environmental cues. The MAPK cascade is a result of a series of phosphorylation events that 

activate relevant genes in response to different stresses. In this system, the induced stress 

signals are transported from the receptors to specific effectors, thereby resulting in the 

regulation of relevant genes, different cellular activities and proteins involved in development 

and adaptation processes (Ligterink & Hirt, 2001; Galletti et al., 2011; Sinha et al., 2011; 

Moustafa et al., 2014; Yi et al., 2015). Signal transduction by MAPK cascades encompasses 

three types of kinases namely mitogen-activated protein kinase (MAPK), mitogen-activated 

protein kinase kinase (MAPKK) and mitogen-activated protein kinase kinase kinase 

(MAPKKK). Firstly, the MAPKKK, located downstream of specific receptors, is activated in 

response to extracellular stimuli which, in turn, activates a downstream MAPKK via 
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phosphorylation of its two serine or threonine residues located in the activation loop. 

Subsequently, MAPKK behaves as a specific kinase and phosphorylates a MAPK on its 

tyrosine or threonine residues located in the activation loop (Pitzschke et al., 2009; Moustafa 

et al., 2014; Jagodzik et al., 2018). The latter eventually leads to the activation of various 

effector proteins located in the nucleus or cytoplasm as well as additional protein kinases, 

enzymes or transcription factors involved in plant stress-driven signalling pathways (Figure 

2.1). Furthermore, MAPK cascades activated upon abiotic stresses such as drought, cold and 

salt show cross-talks with ROS, abscisic acid (ABA) and ethylene (ET) signalling (Menges et 

al., 2008; An et al., 2010; Chang et al., 2012).  

 

2.2.1.4 Phytohormone production in response to abiotic stress 

 

During stress exposure, plants can amplify the initial stress signals, depending on the type of 

stress encountered and they do this by making of use of phytohormones. These 

phytohormone-driven signalling can either trigger new signalling events that are similar to 

those of the initial signal, or they can initiate an entirely different signalling event with 

different components (Huang et al., 2012). The most-reported plant defence response 

phytohormone against abiotic stresses is ABA. Phytohormone accumulation has been linked 

to early plant stress signalling events such as rapid ROS production, showing the importance 

of the early and conventional plant responses in phytohormonal regulation that is dependent 

on the nature of the stress.  

 

For instance, the accumulation of ABA under water deficit and high salinity is dependent on 

ROS production via the NADPH oxidase (Kwak et al., 2003). This ABA-induced ROS 

accumulation can enter guard cells and activate Ca2+ channels which results in an increase in 

cytosolic Ca2+ and thus induce stomatal closure (Pel et al., 2000). ABA is first sensed by the 

cells via the ABA receptors RCAR/PYR1/PYL (Regulatory Components of ABA-

receptor/pyrabactin resistant protein/PYR-like proteins) (Ma et al., 2009), resulting in the 

activation of open stomata 1 (OST1). OST1 is a member of the SNF1-related protein kinase 2 

(SnRK2) family that mediates ABA-induced stomatal closing and the regulation of ROS 

production through the phosphorylation of the NADPH oxidase (Sirichandra et al., 2009). 

MAPK cascades have also been implicated in ABA-mediated stress responses that are either 

upstream or downstream of ROS production (Xing et al., 2008).  
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 2.2.2 Abiotic stress responses: cellular and molecular events 

 

Plant defence responses aiding in adaptation to abiotic stresses are coordinated and fine-tuned 

by changes in growth and development as well as cellular and molecular mechanisms. 

Significant progress has been made in elucidating these defence response mechanisms to 

environmental perturbations, which generally comprise alterations in the plant transcriptome, 

proteome and metabolome (Bokhari et al., 2007; Fernandes et al., 2008; Li et al., 2008; 

Shulaev et al., 2008). Following signal perception and transduction, adaptive responses are 

activated and result in the expression of stress-related genes regulated by TFs at the 

transcriptional level. A single TF can regulate the expression of numerous genes through the 

specific binding thereof to the cis- and trans-element in the promoters of target genes and this 

type of transcriptional regulation is termed regulon (Nakashima et al., 2009).  

 

Numerous regulons that are activated in response to abiotic stress have been identified in 

plants, and are components of ABA, a principal phytohormone involved in the regulation of 

abiotic stress in plants by regulating an intricate gene regulatory system that permits plants to 

tolerate environmental perturbations (Cutler et al., 2010; see section 2.2.1). Myeloblastosis 

oncogene (MYB)/myelocytomatosis oncogene (MYC) and the ABA-responsive element 

binding protein/ABA-binding factor (AREB/ABF) regulons function in ABA-dependent gene 

activation pathways (Saibo et al., 2009), whereas dehydration-responsive element binding 

protein 1 (DREB1)/C-repeat binding factor (CBF), DREB2, NAC (CUC, NAM, and ATAF) 

and the zinc-finger homeodomain (HD) regulons function in ABA-independent gene 

expression (Nakashima et al., 2009) (Figure 2.2). The different TFs involved in stress 

tolerance normally function independently of each other, however, it has been shown that the 

ABA-dependent and ABA-independent pathways converge at several points representing 

transcriptional repressors and enhancers which may interact directly or indirectly with the 

DREB and AREB, and hence initiate synergistic interactions between cold, drought and 

salinity stress (Baena-González & Sheen, 2008; Huang et al., 2012; Kimotho et al., 2019).   
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Figure 2.2: Transcriptional regulatory networks of abiotic stress signals. Signal transduction 

pathways in drought, heat and cold-stress responses are either ABA-dependent or ABA independent. 

In the ABA-dependent pathway, ABRE functions as a main ABA-responsive element. MYB2 and 

MYC2 function in ABA-inducible gene expression of the RD22 gene. MYC2 also functions in JA-

inducible gene expression. The RD26 NAC transcription factor is involved in ABA and JA-

responsive gene expression in stress responses. DRE is mainly involved in the regulation of genes not 

only by drought and salt but also by cold stress. DREB1/CBFs are involved in cold-responsive gene 

expression. DREB2s are important transcription factors in dehydration and high salinity stress-

responsive gene expression. Another ABA-independent pathway is controlled by drought and salt, but 

not by cold. Abbreviations: MYB, myeloblastosis oncogene; MYC, myelocytomatosis oncogene; 

AREB, ABA-responsive element binding protein; ABF, ABA-binding factor; DREB, Dehydration-

responsive element binding protein; CBF, C-repeat binding factor; ZF-HD, zinc-finger homeodomain 

(generated by the author of this dissertation). 
 

Abiotic stress-inducible genes that are regulated by the different regulons include late 

embryogenesis abundant (LEA) class genes (RD29B, RAB18), cell cycle regulator genes 

(ICK1) and PP2Cs (ABI1 and ABI2). RD22 and RD26 have received special attention as 

potential targets for improvement of abiotic stress tolerance (Arbona et al., 2017).  These 

stress-regulated genes together with their products have important roles in abiotic stress 

responses and tolerance. As previously mentioned in the above paragraphs, much progress 

has been made in the understanding of signal transduction, transcriptional regulation and 

gene expression in plant responses to different abiotic stresses (Hu et al., 2008; Yu et al., 

2016; Jin et al., 2017). In transgenic Arabidopsis thaliana for example, the overexpression 

Glycine soja NAC TF, designated as GsNAC019, induced alkaline stress tolerance at both the 
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seedling and mature stages, even though the transgenic plants had reduced sensitivity to ABA 

(Cao et al., 2017). In addition to all the plant defence responses induced by abiotic stress 

previously mentioned, plants can be primed for more rapid and stronger defence responses 

towards stress. 

 

2.3 Microbial biostimulants and enhancement of plant 
responses to abiotic stresses 
 

Plant growth and development regulation, together with the alleviation of detrimental effects 

of abiotic stresses, are crucial factors that determine the productivity of cultivated plants. 

Abiotic stresses are well known to negatively affect plant growth and development, and are 

responsible for crop losses globally. Despite the huge progress on plant abiotic stress research 

over the past decades that have paved the way to advance our knowledge on molecular and 

cellular mechanisms underlying plant tolerance to adverse conditions, much is yet to be 

understood. Furthermore, biostimulants are increasingly being integrated into production 

systems, with the goal of modifying underlying plant physiological and biochemical 

processes in order to enhance stress tolerance and productivity. By definition, biostimulants 

are diverse substances or microorganisms that stimulate the plant’s natural processes to 

enhance nutrient uptake, nutrient efficiency, stress tolerance and/or crop quality when applied 

to plants, irrespective of their nutrient content (du Jardin, 2015). Additionally, biostimulants 

foster plant growth and development throughout the plant’s life cycle from seed germination 

until maturity, improve the plant’s metabolism, improve stress tolerance, facilitate nutrient 

assimilation, translocation and utilisation, enhance soil physiochemical properties and drive 

the development of complementary soil microorganisms (Calvo et al., 2014). 

 

Plant biostimulants are available in a wide range of formulations with varying constituents, 

but are generally categorised into four major groups based on their source and content. These 

groups include amino acid-containing products (AACP), hormone-containing products 

(HCP), humic substances (HS) and plant growth-containing microorganisms (du Jardin, 

2015). Additionally, numerous categories of biostimulants have been extensively studied 

such as protein hydrolysates (Colla et al., 2015), seaweed extracts (SWE) (Battacharyya et 

al., 2015), silicon (Savvas & Ntatsi, 2015), humic and fulvic acids (Canellas et al., 2015), 

arbuscular mycorrhizal fungi (Rouphael et al., 2015) and plant growth-promoting 

rhizobacteria (PGPR) (Ruzzi & Aroca, 2015). In this regard, the potential effects of some 
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these of biostimulants in ameliorating abiotic stress in various plants have been extensively 

reviewed (Table 2.1). 

 

Table 2.1:  Summary of different biostimulants and their abiotic stress-alleviating effect in plants.  

Biostimulant Crop Stress 

Tolerance 

Reference 

Azospirillum brasilense Triticum aestivum Drought tolerance (Pereyra et al., 2012) 

Azotobacter chrococcum Zea mays Salt tolerance (Rojas-Tapias et al., 2012) 

Azotobacter chrococcum Triticum aestivum Temperature 

tolerance 

(Egamberdiyeva & 

Höflich, 2003) 

Azospirillum lipoferum Triticum aestivum Salt tolerance (Bacilio et al., 2004) 

Ascophyllum nodosum Kappaphycus alvarezii Cold tolerance (Loureiro et al., 2014) 

Ascophyllum nodosum Camellia sinensis Drought tolerance (Spann & Little, 2011) 

Burkholderia phytofirmans Vitis vinifera Cold tolerance (Fernandez et al., 2012) 

Flavobacterium glaciei Solanum lycopersicum Cold tolerance (Subramanian et al., 2016) 

Pantoea dispersa Triticum aestivum Cold tolerance (Selvakumar et al., 2008) 

Fulvic and humic acids Festuca arundinacea Drought tolerance (Zhang & Schmidt, 2000) 

Fulvic and humic acids Agrostis palustris Drought tolerance (Zhang & Ervin, 2004) 

Humic acid and 

phosporous 

Capsicum annuum Salt tolerance  (Çimrin et al., 2010) 

Humic acids Oryza sativa Oxidative and 

drought stress 

(García et al., 2012) 

Humic acids Phaseolus vulgaris Salt tolerance (Aydin, 2012) 

Protein hydrolysates Zea mays Salt tolerance (Ertani et al., 2013) 

Protein hydrolysates Lactuca sativa Salt tolerance, cold 

tolerance 

(Botta, 2013; Lucini et al., 

2015) 

Seaweed extracts Arabidopsis  thaliana Cold tolerance (Rayirath et al., 2009) 

Seaweed extracts Agrostis stolonifera Heat tolerance (Zhang & Ervin, 2008) 

Seaweed extracts  Spinach oleracea Drought tolerance (Xu & Leskovar, 2015) 

Seaweed extracts Zea mays Cold tolerance (Bradáčová et al., 2016) 

 

 

Several possible key mechanisms of action induced by biostimulants in relation to abiotic 

stress alleviation have been elucidated and include ROS scavenging, membrane stability, 

osmoprotection, stomatal regulation, ion homeostasis, nutrient availability and metal 

chelation (Van Oosten et al., 2017), however, the explicit underlying modes of action 

responsible for these effects remain largely unknown (Yakhin et al., 2017; Carolina Feitosa 

de Vasconcelos & Helena Garófalo Chaves, 2019).  
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 2.3.1 PGPR-based biostimulants and defence priming against abiotic   
stresses 
 

PGPR are increasingly being used as biostimulant formulations, showing potentials for 

improving plant health, development and sustainable increased yield. These soil bacteria that 

inhabit the rhizosphere interact symbiotically with the plant host to enhance plant growth. 

This chemical communication is translated into physiological benefits through various 

mechanisms. A detailed account of the complexity of the rhizosphere, its densely and diverse 

population, and molecular signalling web (Pineda et al., 2010, 2013; Pieterse et al., 2014; 

Venturi & Keel, 2016) is beyond the scope of this study. Although the rhizosphere chemistry 

remains largely unknown, and the establishment of plant-rhizomicrobiome mutualistic 

interactions is still poorly characterised, emerging studies have reported that various PGPR 

species enhance improvement in agronomic yields through direct or indirect mechanisms 

(Kevin, 2003; Niu et al., 2018; Barnawal et al., 2019), which include nitrogen fixation, 

production of growth-stimulating phytohormones and solubilisation of mineral phosphates 

(Singh, 2013). Similarly according to  Barnawal et al. (2019) and other recent studies (Table 

2.2), the improvement in agronomic yields by PGPR (or PGPR-based biostimulants) is due to 

the production of growth-stimulating phytohormones (indole-3-acetic acid (IAA), zeatin, 

abscisic acid (ABA), ethylene (ET) and gibberellic acid (GA)), secondary metabolites 

(siderophores, lipopeptides and  N-acyl homoserine lactone) and volatile organic compounds 

(hydrogen cyanide, acetoin and 2,3 butanediol). Most recently, it has been demonstrated that 

Azospirillum brasilense Sp245 lipopolysaccharides (LPS) stimulates growth (fresh weight 

and root length) in Arabidopsis thaliana (Méndez-Gómez et al., 2020) and this further 

suggest that PGPR-derived MAMPs also play a role in plant growth stimulation. 
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Table 2.2: Plant growth-promoting mechanisms induced by rhizobacteria 

Strain Mechanism Plant References 

Enterobacter 

aerogenes (LJL-

5), Pseudomonas 

aeruginosa (LJL-13) 

1-aminocyclopropane-1-

carboxylic acid (ACC) 

deaminase 

Alfalfa (Liu et al., 2019b) 

Burkholderia sp. MTCC 

12259 

IAA, ACC deaminase Rice (Sarkar et al., 2018) 

Bacillus 

aryabhattai MCC3374 

ACC, IAA, N2 fixation, 

siderophore 

Rice (Ghosh et al., 2018) 

Streptomyces sp. VITMS22 IAA Mustard (Kizhakedathil & Devi 

C, 2018) 

Azotobacter 

chroococcumCAZ3 

IAA, siderophores, 

ammonia, and ACC 

deaminase 

Maize (Rizvi & Khan, 2018) 

Enterobacter sp. ACC deaminase, IAA, 

siderophore, N2 fixation 

Rice (Mitra et al., 2018) 

E. aerogenes MCC 3092 IAA production, ACC 

deaminase, nitrogen fixation, 

and P solubilisation 

Rice (Pramanik et al., 2018) 

Bacillus safensis IAA, ACC deaminase Wheat (Chakraborty et al., 

2018) 

Enterobacter 

cloacae HSNJ4 

IAA Brassica napus L. 

(rapeseed) 

(Li et al., 2017) 

Acinetobacter strain RSC7 IAA Vigna 

radiate (mung 

bean) 

(Patel et al., 2017) 

Enterobacter ludwigii PS1 Auxin, siderophore, 

Hydrogen cyanide 

Sea buckthorn (Dolkar et al., 2018) 

 

 

Application of PGPR to induce abiotic stress tolerance in plants is extensively explored as an 

attractive strategy to regulate plant stress (Dimkpa et al., 2009; Kasim et al., 2013; Ben Rejeb 

et al., 2014), and several mechanisms through which these organisms induce stress tolerance 

have been deciphered (Figure 2.3). In addition to the plant growth mechanisms mentioned 

above, PGPR can also induce abiotic stress tolerance in plants by modifying phytohormonal 

activity, maintaining iron homeostasis and osmotic balance (Vandana et al., 2020).   
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Figure 2.3: Overview of induced systemic tolerance elicited by PGPR against drought, salinity 

and fertility stresses. Broken arrows indicate compounds secreted by PGPR under stress including 

cytokinin, antioxidants, ACC deaminase and volatiles. Cytokinins and antioxidants result in ABA 

accumulation and ROS degradation, respectively. ACC deaminase degrades ACC and inhibits 

ethylene production. The volatiles emitted by PGPR downregulate HKT1 expression in roots but 

upregulation in shoot tissue, resulting in the recirculation of Na+ in the whole plant under high salt 

conditions. Abbreviations: ABA, abscisic acid; ACC, 1-aminocyclopropane-1-carboxylate; HKT1, 

high-affinity K+ transporter 1; IAA, indole acetic acid; IST, induced systemic tolerance; PGPR, plant 

growth-promoting rhizobacteria; ROS, reactive oxygen species (adapted from Yang et al., 2009). 

 

Under abiotic stresses PGPR employ different mechanisms to help plants survive under such 

environment and these include:   (i) production of ACC deaminase which lowers ethylene 

levels in plants (Glick, 2014; Gamalero & Glick, 2015); (ii) osmolytes secretion (proline, 

choline and trehalose) which acts as osmoprotectants; (iii) bacterial volatile secretion to 

induce stress tolerance (i.e 2R,3R-butanediol induces stomatal closure);  (iv) secretes 

phytohormones (IAA, gibberelins and cytokinins) which stimulates lateral roots and root 

hairs formation, thus, increase water and nutrient uptake; (v) changes root cell membrane 

elasticity and improve membrane stability; (vi) exopolysaccharide secretion, which improve 

permeability by increasing soil aggression and maintaining high water potential around plant 

roots. Besides these know mechanisms, PGPR can trigger physiological events/processes in 

the interacting plant that lead to stress tolerance/priming (Mhlongo et al., 2018). 
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 2.3.2 PGPR-induced priming as strategy towards enhanced abiotic stress 
tolerance 
 

PGPR-plant interactions lead to enhanced resistance against abiotic stresses via PGPR-

induced preconditioning of the plant immunity and is known as priming. In this state, the 

plant responds more rapidly and/or robustly following exposure to stress, thereby resulting in 

better stress tolerance when compared to non-primed plants (Figure 2.4) (Conrath et al., 

2002; Bruce et al., 2007; Beckers & Conrath, 2007). This condition of preparedness achieved 

termed the ‘primed state’ has been linked to efficient activation of the defence responses 

which result in enhanced stress resistance. Priming can be induced by different factors 

including infection by pathogens, colonisation of roots by beneficial microbes, synthetic or 

natural chemicals, alteration of the primary metabolism and perception of volatile compounds 

(Conrath et al., 2006). Even though priming mechanisms are not fully understood yet, 

numerous hypotheses have been proposed and include the accumulation of inactive proteins 

involved in signal amplification such as MAPKs (Beckers et al., 2009), activation of 

transcription factors that enhance transcription of defence-related genes following stress 

perception (Conrath et al., 2006) and epigenetic changes involving DNA modifications, 

histone modifications or chromatin alterations (Madlung & Comai, 2004). Plant priming has 

been considered as a promising strategy for the control of stress because it enhances defence 

responses without affecting the overall fitness of a plant, and the resultant stress resistance or 

tolerance cannot be overcome by microbes, subsequently providing long-term resistance 

(Alagna et al., 2020).  
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Figure 2.4: Priming modifies responses upon stress encounter. A naïve plant may be primed by 

either exposure to stress or other priming factors such as microbes. Response patterns differ in primed 

and naïve plants; the primed plant may respond to inducing stress more rapidly or more robustly than 

a naïve plant. It may also be sensitised so that the response is triggered at a lower fitness cost. The 

primed plant may further modify its response mechanisms to regulate a network of genes that is 

different from that found in a naïve plant (adapted from Lämke & Bäurle, 2017). 

 

The rhizosphere chemistry remains largely unknown, and the establishment of plant-

rhizomicrobiome mutualistic relations is still poorly characterised, however, emerging studies 

have reported that various PGPR species can pre-condition the plants for augmented defence 

responses against abiotic stresses (Smékalová et al., 2014; García-Cristobal et al., 2015; Abd 

El-Daim et al., 2019; Brahim et al., 2019; Zubair et al., 2019). The molecular mechanisms 

underlying the rhizobacteria-related defence priming show that this induced state suggests a 

reprogramming in the cellular metabolism and regulatory machinery of the plants. Current 

insights propose that, preceding environmental perturbations, primed plants re-programme 

supporting metabolic pathways by altering the biosynthesis of different compounds such as 

sugars, amino acids and organic acids (Gamir et al., 2014; Pastor et al., 2014). The 

knowledge of biochemical and molecular mechanisms in defence priming is, however, still 

largely unknown, and a detailed mechanistic description of the various layers driving the 

priming events is still limited (Tugizimana et al., 2019a). Nevertheless, despite these 
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limitations, this potentiation of the immune system and stress adaptability is unquestionably a 

fundamental means that plants have evolved as an adaptive strategy: by memorising past 

stress encounters in order to amplify defensive capacity upon subsequent stresses. As such, 

defence priming represents a promising and complementary alternative strategy that can 

provide new opportunities for plant protection against abiotic stress.  

 

Priming mechanisms are described at different levels, and they can either be long- or short-

lived. DNA methylation and histone modification observed at the epigenetic level are long-

lasting mechanisms (Tugizimana et al., 2018), and modulation of enzyme activities and 

changes in the abundance of transcripts observed at the transcript or protein level are short-

lived mechanisms (Hilker et al., 2016). A comprehensive and mechanistic understanding (at 

molecular and cellular levels) of the beneficial effects of the biostimulants (e.g. PGPR-based 

biostimulants) would pave ways to design novel strategies that will aid plants in adverse 

environmental conditions, thereby contributing to sustainable food security. Thus, the current 

study intends to investigate both epigenetic and metabolic changes related to the effects of 

biostimulant applications (e.g. PGPR-based formulations) in maize under drought stress. 

 

2.4 Plant epigenetic mechanisms and their role in abiotic 
stress responses  
 

Epigenetics refers to heritable changes in gene expression without alterations in the 

underlying DNA sequence and a growing number of studies postulate such regulations to be 

part of the underlying mechanisms of priming effects (Bruce et al., 2007; Jaskiewicz et al., 

2011; Conrath et al., 2015). This epigenetic remodelling includes histone modification as 

well as small RNAs and DNA methylation events which participate in the regulation of 

stress-responsive genes at both the transcriptional and post-transcriptional levels by altering 

the chromatin status of the genes. Moreover, epigenetic modifications play crucial roles in the 

formation of stress memory, which may be inherited by the progeny resulting in enhanced 

stress tolerance. Some of these modifications persist longer and are considered as 

transgenerational ‘memory marks’, whereas others are short-lived, dynamic modifications 

which are quickly removed again – i.e. chromatin marks (Pecinka & Mittelsten Scheid, 2012; 

Gaydos et al., 2014; Hilker et al., 2016; Kishimoto et al., 2017; Schwachtje et al., 2019). 

Although the molecular workings that define the transgenerational primed state are still 

largely unknown, epigenetic modifications and imprints are key components of this cellular 
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and molecular phenomenology of stress memory for storing and retrieving stress-related 

information (Lämke & Bäurle, 2017). As such, epigenetic transgenerational memory in plants 

is defined as a memory mark that extends from a generation under stress exposure to the first 

generation not exposed to the same stress (Lämke & Bäurle, 2017) (Figure 2.5).  

 

Pecinka & Mittelsten Scheid (2012) cogently argued that the evidence of transgenerational 

epigenetic inheritance resultant from abiotic stress requires long-lasting changes of two 

generations or more that significantly influenced the plant’s stress responses and adaptation. 

Conversely, Yaish (2017) suggested that there is evidence for long-lasting epigenetically-

induced changes in stressed plants, however, it is difficult to spot. Consequently, for the past 

few years, several studies have reported on how plants acquire new traits induced by stress 

cues due to changes in epigenetic marks observed in the transposable elements (TEs) (Boyko 

et al., 2010), promoters (Bilichak et al., 2012) and gene coding regions (Jiang et al., 2014). 

 

 

 
Figure 2.5: A model of transgenerational epigenetic memory. Perception of environmental stress 

by plants may induce epigenetic modifications in the plant genome, while a loss of existing 

modifications can also occur. These epigenetic variations can be transient and revert to the initial 

epigenetic state. In some cases, induced epigenetic variations may be transmitted transgenerationally 

and may become adaptive if the offspring experiences environmental signals similar to the previous 

generation (adapted from Miryeganeh & Saze, 2020). 
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It has been proposed that transgenerational inheritance of epigenetic marks and stress 

tolerance form part of the adaptive process in plants (Kinoshita & Seki, 2014) through the 

transfer of epigenetic modifications from the parental genome to the progeny without any 

reprogramming occurring in the gametes and embryos. The degree of this reprogramming is, 

however, still blurred, thus leaving a question of how much of the stress-induced epigenetic 

marks induced by priming are transferred to the progeny. Key common molecular features 

underlying epigenetic modifications associated with priming in abiotic stresses have been 

reported in numerous studies and include transcriptional memory, histone methylation and 

DNA hypo- and/or hypermethylation (Ding et al., 2012; Singh et al., 2014; Feng et al., 2016; 

Wibowo et al., 2018) (Table 2.3). Zheng et al. (2017) reported the improvement of drought 

adaptability in rice plants due to multi-generational drought exposure. They identified 

drought induced epimutations, which could maintain altered DNA methylation levels in the 

subsequent generations. Analysis of the drought-associated genes revealed that the DNA 

methylation level of the genes was modified by the multigenerational drought stress. These 

results therefore suggest that epigenetic mechanisms play imperative roles in plant’s 

adaptations to environmental stresses. Consequently, the heritable epigenetic variations 

having morphological, physiological and ecological consequences can be considered 

important resources in plant improvement which may help improving adaptation and 

tolerance in crop plants for the adverse environments. 

 

Table 2.3: Epigenetic mechanisms induced in different crop species under abiotic stress. 

Crop Abiotic stress Epigenetic 

mechanism 

References 

Arabidopsis thaliana Salt and drought stress Histone acetylation (Zheng et al., 2016) 

Arabidopsis thaliana High salinity stress Histone acetylation (Sako et al., 2016) 

Arabidopsis thaliana Cold stress Hypermethylation (Kenchanmane Raju et 

al., 2018) 

Arabidopsis thaliana Salinity Hypomethylation (Arıkan et al., 2018) 

Hordeum vulgare Terminal drought stress Hypermethylation (Surdonja et al., 2017) 

Beta vulgaris Salt stress Histone acetylation (Yolcu et al., 2016) 

Hydrilla verticillata Metal (copper) stress Hypermethylation (Shi et al., 2017) 

Zea mays Heat Histone acetylation (Wang et al., 2015) 

Zea mays Cold Hypomethylation (Hu et al., 2012) 

Zea mays Cold Histone acetylation (Hu et al., 2011) 

Zea mays Cold DNA demethylation (Steward et al., 2002) 

Populas Drought stress Hypermethylation (Liang et al., 2014) 

Oryza sativa Salt stress Demethylation, (Zhu et al., 2015) 

Vicia faba Drought stress Demethylation (Abid et al., 2017) 

Triticum aestivum Salt stress Hypermethylation (Kumar et al., 2017) 
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2.4.1 DNA methylation and plant responses to abiotic stresses  

 

DNA methylation is an epigenetic mark which involves the transfer of a methyl group from 

S-adenosyl methionine (SAM) to the fifth carbon of the pyrimidine ring of cytosine 

nucleotide without altering the underlying DNA sequence (Robertson, 2005). The 

modification machinery involves a highly regulated series of enzymatic reactions and 

complex molecular rearrangement events. DNA methylation is generally catalysed by a 

variety of enzymes termed DNA methylases (MTases), comprising two main groups: (i) de 

novo MTases, which catalyse the transfer of a methyl group to unmethylated cytosines, and 

include methyltransferase 1 (MET1), chromomethylase 3 (CMT3) and domains rearranged 

methyltransferase (DRM); and (ii) maintenance MTases, which maintain methylation that has 

already been established (Zhu, 2008). This epigenetic mechanism is involved in various 

biological processes such as development, stress adaptation and genome stability and 

evolution. Methylation of cytosine bases can be symmetric CG and CHG, and asymmetric 

CHH (where H = A, C or T) (Law & Jacobsen, 2011; Matzke & Mosher, 2014; Wang et al., 

2014).  

 

Symmetrical methylation involves the recruitment of a MET to hemi-methylated daughter 

strands following DNA replication. Conversely, asymmetric methylation is determined de 

novo after every replication cycle and does not possess any inheritance mechanisms (Lämke 

& Bäurle, 2017). In plants, de novo methylation is catalysed by DRM2, and maintained by 

three different pathways: CG methylation by MET1, CHG methylation by CMT3, a plant 

specific DNA methyltransferase, and asymmetric CHH methylation through persistent de 

novo methylation by DRM2 (Chan et al., 2005). Studies have revealed that in plants, 

methylation occurs predominantly on the CG, then CHG and CHH context, respectively 

(Cokus et al., 2008). In addition, DNA methylation in plants is usually restricted to CGs 

located within the gene body while TE sequences tend to be methylated at most of their CG, 

CHG, and CHH sites (Gehring & Henikoff, 2008). The highly abundant methylation on 

repetitive DNA sequences suggests that one of the main functions of this epigenetic 

mechanism is to suppress the activity of transposons. 

 

TEs make up a considerable proportion of the plant’s genome, therefore the regulation 

thereof is essential because they are potentially highly mutagenic and their accumulation 
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limits survival (Saze et al., 2012). Moreover, DNA methylation is also observed in gene 

coding regions in plants and often assembled in regulatory regions of genes such as 

promoters where it plays a vital role in regulating the gene expression. Numerous studies 

have reported that methylation in the promoter region causes transcriptional silencing, 

suggesting that changes in methylation could lead to novel transcriptional regulation of the 

associated genes (Dowen et al., 2012; Du et al., 2015). As such, changes in DNA methylation 

contribute tremendously to the plant’s capability to conquer and respond to adverse 

conditions (Boyko & Kovalchuk, 2008). Under stress conditions, changes in 

hypermethylation of DNA (an increase in epigenetic DNA methylation) or hypomethylation 

of DNA (a decrease in methylation of DNA) (Chinnusamy & Zhu, 2009) result in gene 

expression alterations (activation/suppression) and are indicative of stress defence 

mechanisms, however, this is dependent on the type of stress response induced and varies 

between species. Given the changes orchestrated by DNA methylation, which result in gene 

silencing/activation, plants possess enzymes that counteract the activity of MTases to remove 

the methylation – a process known as DNA demethylation. DNA demethylases demethylate 

TEs or transcription start sites for gene expression regulation. These enzymes include 

demeter (DME), repressor of silencing 1 (ROS1) and demeter-like (DML) proteins (DML2 

and DML3), which initiate demethylation via a base excision repair (BER) mechanism (Ikeda 

& Kinoshita, 2009; Zhu, 2009; Wu & Zhang, 2010).  

 

Several examples have indicated that DNA methylation can either increase or decrease in 

response to stress and it appears that demethylation, which leads to gene expression 

activation, is a prompt response common in plants. In maize seedlings under cold stress 

exposure, hypomethylation was observed in root tissue following the expression of ZmMI1 

and after seven days of cold exposure (recovery), the cold-induced decrease in methylation 

levels was not restored to basal levels (Steward et al., 2002). Additionally, in Populus 

trichocarpa, an increase in methylation was observed under drought stress, with 10.04% 

compared to the watered plants with a 7.75% increase (Liang et al., 2014). Herein, it has been 

reported that there is a correlation between stress-induced gene expression and methylation 

levels under drought stress, with an up-regulation of 7329 genes together with 

hypermethylation as well as 10 322 down-regulated genes with hypomethylation shown 

(Liang et al., 2014). Methylation status/level differs between species and genotypes under 

different stress factors. For example, an increase in DNA methylation levels was reported in 
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different rice genotypes of 20% in Nagina-22 and 37% in IR-64-DYT1.1 under drought stress 

(Kumar & Singh, 2016). The accumulated knowledge on DNA methylation over the years 

has been a big accomplishment in plant biology and to understand this phenomenon better, 

the question to ask is whether adaptation and stress memory are determined by particular site-

specific methylation or methylated regions, and on how these regions are regulated by 

defence signalling.  

 

Furthermore, emerging studies have evidently pointed to DNA methylation as one of the key 

components of stress priming and memory (Crisp et al., 2016; Wibowo et al., 2016, 2018; 

Lämke & Bäurle, 2017; He & Li, 2018). Recently, Kuźnicki et al. (2019) provided evidence 

on how DNA methylation alterations impact on the regulation of stress-responsive gene 

expression for intergenerational resistance to Phytophthora infestans induced by β-

aminobutyric acid (BABA)-primed potato. Plants that were treated with BABA rapidly 

experienced DNA hypermethylation. This de novo induced DNA methylation correlated with 

the up-regulation of CMT3, DRM2, and ROS1 genes in potato. BABA transiently activated 

DNA hypermethylation in the promoter region of the R3a resistance gene triggering its 

downregulation in the absence of the stress. However, in the successive stages of priming, 

this DNA hypermethylation state changed into demethylation with the active involvement of 

potato DNA glycosylases. Interestingly, the methylation variations were transmitted to the 

next generation in the form of intergenerational stress memory and the progeny of the primed 

potato showed a higher transcription of R3a that associated with an augmented 

intergenerational resistance when compared to the inoculated progeny of unprimed plants. 

This epigenetic plasticity is postulated to mediate stress memory, although the open questions 

remain on the exact mechanisms of maintained memory.  

 

 2.4.2 Histone modifications, small RNAs and abiotic stress responses 
 

In addition to alterations of DNA molecules through methylation or other processes (section 

2.4.1), chemical modification of histones is another main component of the epigenome. 

Histones are essential proteins involved in packing and ordering of the DNA molecule into a 

fundamental structural unit of chromatin called a nucleosome. The latter consists of ~ 147 bp 

of DNA wrapped around a histone octamer that contains two copies each of H2A, H2B, H3 

and H4, and accessibility of genomic DNA is regulated at this core particle (Luger et al., 

1997). The N-terminal regions (or tails) of the histones protrude from the larger structure and 
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are prone to various reversible, chemical post-transcriptional modifications (PTMs) that 

affect chromatin structure and function (Eichten et al., 2014). Histone PTMs involved in 

enhancing/repressing gene expression include acetylation, phosphorylation, ubiquitination, 

biotinylation, de-acetylation, sumoylation, carbonylation and glycosylation catalysed by 

various enzymes.  These histone modifications thus alter gene accessibility for transcriptional 

machinery (Tariq & Paszkowski, 2004; Kouzarides, 2007; Liu et al., 2010; Lauria & Rossi, 

2011; Berr et al., 2012).  

 

In the context of plant-environment interactions, studies have revealed that histone 

modifications that are closely related to plant responses to abiotic stress exposure are histone 

acetylation, de-acetylation, methylation and demethylation, which are catalysed by histone 

acetyltransferases (HATs), histone deacetylases (HDACs), histone methyltransferases 

(HMTs) and histone demethylases (HDMs), respectively (Zhang, 2008; Luo et al., 2017). 

The trimethylation of H3K4 is reported to be associated with transcription activation whereas 

dimethylation of H3K9 and H3K27 represses gene transcription (Zhang et al., 2007). For 

instance, in Arabidopsis thaliana, a reference plant generally used for epigenetic studies in 

plant responses to abiotic stresses, under prolonged cold stress, an increase in H3K9 and 

H3K27 dimethylation and a decrease in H3K4 trimethylation was observed (Amasino & 

Sung, 2004). Furthermore, histone acetylation takes place at the flowering locus C (FLC), a 

flowering repressor. These histone modifications result in stable repression of FLC that 

permits flowering in winter-annuals types of A. thaliana that exhibit flowering delays in the 

first season (Amasino & Sung, 2004). Sokol et al. (2007), using western blotting to study the 

response of Arabidopsis T87 and tobacco BY-2 cell lines nucleosomes, demonstrated that 

phosphorylation and phosphoacetylation of histone H3 Ser-10, as well as acetylation of 

histone H4 lys14, were increased under cold stress and high salinity conditions.  

 

Similarly to DNA methylation (section 2.4.1), histone modifications as probable marks of 

priming and stress memory have been reported in several studies (Jaskiewicz et al., 2011; 

Sani et al., 2013; Liu et al., 2014; Feng et al., 2016; Lämke et al., 2016). A recent study by 

Liu et al. (2019) reported that extreme heat stressed Arabidopsis plants showed accelerated 

flowering which was also observed in the unstressed offspring, however, the mechanism 

remains unknown (Migicovsky et al., 2014). They further showed that the heat-induced heat 

shock transcription factor (HSFA2) activated the H3K27me3 demethylase relative of early 
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flowering 6 (REF6) which de-repressed HSFA2. The REF6 and HSFA2 form a loop that 

activates transgenerational degradation by the suppressor of gene silencing 3 (SGS3)-

interacting protein 1 (SGIP1) which, in turn, leads to the biosynthesis of trans-acting siRNA 

(tasiRNA) inhibition. The REF6-HSFA2 loop induces early flowering but decreases 

immunity. This feedback loop is a form of long-term epigenetic memory of heat that is 

maintained by the transgenerational ‘ON’ state of HSFA2. In addition to histone 

modifications, the stalling of RNA polymerase II was suggested as a drought stress-induced 

memory mark in A. thaliana (Ding et al., 2012) and could provide a chromatin content that is 

active, and prepares genes involved in development and stimuli responses for appropriate 

expression (Wu & Snyder, 2008).  

 

Target gene repressions by small non-coding RNAs have also been found to be engaged 

during plant abiotic stress and transcriptional gene silencing (TGS) by 24 nucleotides 

heterochromatic small interfering RNAs (hc-siRNAs), via RNA directed DNA methylation 

(RdDM), which is reported as an epigenetic mechanism of gene regulation in plants 

(Martínez de Alba et al., 2013; Matzke & Mosher, 2014). RdDM in plants is exclusive to 

small RNA-mediated chromatin modifications because it depends on a particular 

transcriptional machinery that is fixated around two plant-specific RNA polymerase II (Pol 

II)- related enzymes called Pol IV and Pol V (Haag & Pikaard, 2011). In brief, the canonical 

view of RdDM involves the following steps: (i) transcripts from Pol IV are first copied into 

long double-stranded RNAs (dsRNAs), (ii) processed by dicer-like 3 (DCL3) into siRNAs 

and transported to the cytoplasm, (iii) following loading of one strand of these siRNAs onto 

Argonaute (AGO4), they are re-imported to the nucleus, where the siRNA guides the 

targeting of transcripts from Pol V by sequence complementarity and (iv) ultimately, this 

targeting recruits DNA methyltransferase activity to mediate de novo methylation of 

cytosines in all classes of sequence contexts (Matzke & Mosher, 2014). Numerous examples 

of environmentally responsive siRNAs as key mechanisms for priming and stress have been 

reported (Boyko et al., 2010; Luna et al., 2012; Rasmann et al., 2012), however, the link and 

correlation between epigenetic modifications and acclimation is still an ongoing challenge.   

 

In addition to epigenetic modifications that result from the complex multi-layered defence 

responses induced by abiotic stress (section 2.4), primary and secondary metabolites are also 

altered as a form of metabolomic adaptation. As such, the crosstalk between epigenetics and 
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metabolism are fundamental aspects of cellular adaptation to abiotic stress. The epigenome is 

dynamically regulated by the metabolome and alterations arising from abiotic stress cues may 

therefore co-ordinately drive aberrant gene expression which, in turn, contributes to 

adaptation and stress memory (epigenetic and metabolomic memory).  

 

2.5 Metabolomics and the elucidation of plant responses to 
abiotic stresses 
 

Various cellular and biochemical changes induced by abiotic stress are defined at the plant 

metabolism level. In a simplified description, under abiotic stresses, the plant metabolism is 

perturbed due to factors such as inhibition of enzymes or increased demand for compounds 

required for normal growth and development. Consequently, the plant’s metabolic network 

must continually readjust under these conditions to maintain the normal metabolomic 

homeostasis and allow for the production of defence-related compounds that aid in stress 

tolerance. Accordingly, the current implementation of metabolomic approaches provides a 

thorough analysis of vital components of the plant’s defence responses to abiotic stress. Here, 

metabolomics is a powerful tool that provides an overview of how an organism’s metabolic 

network is regulated in response to stimuli. Metabolomics is a rapidly expanding omics 

science that has been widely applied in different fields. This multidisciplinary ‘omics’ 

science is defined as the comprehensive, qualitative and quantitative analysis of all the small 

molecules, termed metabolites, in a biological system (Fiehn, 2001; Dettmer et al., 2007).  

 

The metabolome can be described as a pool of low-molecular-weight metabolites usually less 

than 1500 Da, together with their precursors and intermediates of the corresponding 

biosynthetic pathways. These metabolites are considered final products of cellular regulatory 

processes (gene expression and protein activity), linking different biological information 

levels (genome to metabolome). Consequently, metabolite profiles potentially indicate the 

functional state of an organism and provide a holistic mark of the physiological state of the 

system under consideration (Fernie, 2003; Kopka et al., 2004; Bino et al., 2004; Tugizimana 

et al., 2013) (Figure 2.6). 
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Figure 2.6: Overview of the omics cascades illustrating the flow and link from the genome to the 

metabolome. The metabolome is the downstream output representing the physiological state of the 

phenotype resulting from direct flow of biological information. The downstream output represented 

by the metabolome not only reflects the integration of the genome, transcriptome and proteome 

output, but also the input from environmental influences such as abiotic stress (modified from Steuer 

et al., 2019).  

 

 

Additionally, these low-weight molecules form an indispensable part of the plant metabolism, 

influencing all biological processes such as plant defence or tolerance to abiotic stresses 

(Obata & Fernie, 2012). As a high-throughput technology, metabolomics has been 

extensively used for various studies ranging from drug discovery, enzyme discovery, 

nutrigenomics, microbial biotechnology, toxicology, to crop and stress tolerance 

improvement in plants (Gomez-Casati et al., 2013). 

 

2.5.1 Metabolomics as an investigatory tool in abiotic stress responses and 

defence priming  
 

Metabolomics is a multidisciplinary ‘omics’ science that has proven indispensable in 

interrogating cellular biochemistry and metabolism, and has established itself as a powerful 

research tool to address biological questions related to plant-environment interactions. 

Metabolite profiling of plants growing under abiotic stress conditions has provided crucial 

information about changes at biochemical and molecular levels underlying plant growth and 
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adaptation. It is worth mentioning that metabolomic changes that have been reported in plants 

subjected to stress conditions are dependent on different causes; thus, these metabolic 

alterations have different significance and are expected to differently correlate with stress 

tolerance. Metabolomic reprogramming due to adverse environmental conditions involves 

complex and highly regulated molecular events some of which include (1) the stability and 

catalytic activity of enzymes involved in the biosynthesis/degradation of particular 

metabolites, (2) the adjustment of metabolite concentrations to re-establish homeostasis and 

normal metabolic fluxes and (3) the accumulation of compounds involved in mediating stress 

tolerance mechanisms (Genga et al., 2011). 

 

Under stress conditions, the total number, concentration, and types of metabolites are 

significantly altered. The alteration in gene expression is directly reflected in the metabolite 

profiles of plants. Acquiring knowledge about these differential metabolite profiles (which 

play a vital role in the growth, development, survival of the plant), and their modulation upon 

the onset of various abiotic stresses is highly fundamental. Reported metabolite changes have 

opened up the scope for the identification of viable metabolic markers which are important 

for abiotic stress tolerance of plants (Obata & Fernie, 2012; Kumar et al., 2016; Freund & 

Hegeman, 2017; Parida et al., 2018). Numerous studies have reported on the use the of 

metabolomics to study metabolite fluctuations in plants under stressful conditions (Urano et 

al., 2009; Zhou et al., 2011; Bowne et al., 2012; Srivastava et al., 2013; Figueroa-Pérez et al., 

2014; Zhao et al., 2014; Shen et al., 2016). Thus, metabolomics has become an indispensable 

tool in comprehending molecular mechanisms underlying abiotic stress responses.  

 

For example, upon exposure to abiotic stresses such as temperature, salinity and drought, 

plants accumulate a wide of compatible osmolytes which primarily function to maintain 

turgor. The accumulated solutes which vary among species include sugars (glucose, sucrose 

and fructose), polyols, betaines and amino acids such as proline (Chen & Murata, 2002; 

Shulaev et al., 2008). Some of these compounds are known to play roles as osmoprotectants, 

low molecular weight chaperones, photosystem II complex stabilisers and ROS scavengers 

(Szabados & Savouré, 2010). Additionally, some metabolites may act as chelating agents 

(sequestering toxic metals and ions), energy sources and signalling molecules under abiotic 

stress (Alcázar et al., 2010; Szabados & Savouré, 2010). Metabolite fluctuations in response 

to individual abiotic stresses such as drought, salinity or heat have been widely studied, and 
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comprehensive reviews on this topic can be found in the literature cited here in (Obata & 

Fernie, 2012; Jorge et al., 2016; Jorge & António, 2018).  

 

The accumulation of various metabolites is one of the key mechanisms that plants use to cope 

with abiotic stresses; however, these natural mechanisms are not always adequate to ensure 

plant survival in all abiotic stress conditions; hence, the exploration of plant priming for more 

rapid and robust defence responses. As previously mentioned, priming mechanisms are 

described at different levels ranging from the epigenome to the metabolome. However, the 

metabolome as a key mediator of priming is largely unexplored. Additionally, deciphering of 

the priming event which leads to intense and faster defence responses is far from being fully 

fathomed at biochemical and molecular levels, consequently, dissecting metabolomic 

changes induced by priming may provide insight on some of the key underlying priming 

mechanisms. 

 

Evidence on plant metabolic changes that occur as a result of priming have been reported and 

include the reprogramming of the primary metabolism and differential biosynthesis of 

secondary metabolites (Conrath et al., 2015; Mhlongo et al., 2016; Tenenboim & Brotman, 

2016; Schwachtje et al., 2018; Tugizimana et al., 2019b), which are stored in a form of 

‘metabolic memory’ or ‘metabolic imprint’, resulting in rapid and robust defence responses 

upon  subsequent challenges (Mauch-Mani et al., 2017; Schwachtje et al., 2019). For 

example, the accumulation of sugars, amino acids and hormones or their conjugates as key 

metabolic events during the priming phase has been reported to render the plant in a state of 

alertness upon subsequent environmental challenges (Gamir et al., 2014; Balmer et al., 

2015). Additionally, a study by Pastor et al. (2014) reported on metabolic changes that take 

place during the priming phase. Following chemical priming by BABA to determine if 

priming pre-conditions the plant for attack by activating relevant metabolic pathways, A.  

thaliana’s primary metabolism was found to be boosted through alterations of the 

Tricarboxylic acid (TCA) cycle intermediates, namely citrate, fumarate, malate and 

oxoglutarate. Furthermore, the amplification of the phenylpropanoid biosynthesis and the 

octadecanoic pathway was also observed.  

 

The metabolic reprogramming of the primary and secondary metabolism indicates that 

multiple metabolic pathways are involved in the priming phenomenon. The 
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interconnectedness of these metabolic pathways has been reported to have feedback loops 

that allow for rapid activation of cellular defences to potential adverse conditions such as 

abiotic stress (Tugizimana et al., 2018). Despite the exponentially increasing efforts to 

elucidate these metabolic changes, gaps still exist in understanding the comprehensive 

molecular and biochemical mechanisms involved in the priming phenomenon due to its 

complexity. Regardless of these limitations, defence priming is unquestionably one of the key 

adaptive mechanisms plants employ under constantly fluctuating environmental conditions. 

Two approaches exist for investigating the metabolome: untargeted - and targeted analysis, 

with the typical workflow comprising of three main experimental steps namely sample 

preparation, data acquisition and data mining (Trygg et al., 2007; Verpoorte et al., 2008; Kim 

& Verpoorte, 2010; Tugizimana et al., 2013). An untargeted analysis is used for discovery-

driven studies such as the depiction of metabolomic changes induced by specific treatments, 

disease or genetic changes (Patti et al., 2012), simultaneously measuring as many metabolites 

as possible in the system in an unbiased manner. By contrast, a targeted analysis aims at 

identifying and quantifying metabolites in selected biochemical pathways, or specific classes 

of compounds in a hypothesis-driven approach (Dudley et al., 2010), and is the approach that 

will be employed to elucidate plant defence responses and priming mechanisms under mild 

and severe drought stress conditions (Chapter 3).    

 

The plant kingdom is reported to contain a diverse array of between 200,000 and 1,000,000 

metabolites which vary per their classes, chemical structures and polarities (Saito & Matsuda, 

2010; Obata & Fernie, 2012). Owing to this wide chemical diversity, as well as the wide 

concentration range, there is no single analytical platform currently for the comprehensive 

examination of the entire metabolome in toto (Bino et al., 2004). Consequently, a 

combination of different analytical platforms is often employed in plant metabolomics to 

detect and characterise these diverse compounds as holistically as possible. Current plant 

metabolomics approaches are reliant on either mass spectrometry (MS) or nuclear magnetic 

resonance (NMR) based approaches. Several comprehensive protocols on these approaches 

have been published (Lisec et al., 2006; De Vos et al., 2007; Tohge & Fernie, 2010), along 

with several excellent reviews (Fiehn et al., 2000, 2015; Cajka & Fiehn, 2014; Lu et al., 

2017; Rodrigues et al., 2019). Additionally, MS systems are often coupled to 

chromatographic platforms such as gas chromatography – mass spectrometry (GC-MS) and 

liquid chromatography – mass spectrometry (LC-MS); and such analytical systems have 
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become popular in metabolomics studies, providing more sensitive detection of metabolites 

and wide coverage of the metabolome under consideration (Tugizimana et al., 2013).  

 

2.6 Conclusion  

 

The present climate change is depleting natural resources and exerting negative impacts on 

crop production, thus threatening food security. Modern agriculture is shifting toward 

improved crop yield and quality by exploiting the natural priming phenomenon in plants. In 

this context, the exploitation of biostimulants to enhance abiotic stress tolerance has 

increasingly become a strategy worth pursuing among the scientific community. 

Biostimulants could pose as feasible alternatives in enhancing plant growth and increased 

stress tolerance. Numerous reports have elucidated the potential effects of biostimulant 

applications using various microorganisms such as PGPR; however, their comprehensive 

modes of action and underlying molecular mechanisms in relation to their priming effects and 

growth promotion are still enigmatic. This Chapter reviews and discusses the growing 

literature and the current knowledge on plant defence responses to abiotic stresses and the 

integration of biostimulants in agricultural production systems, pointing out some knowledge 

gaps, some of which are addressed by the work reported in this dissertation. The increasing 

use of biostimulants has demonstrated the positive effects of these formulations which 

include the modification of plant physiological and biochemical processes to enhance stress 

tolerance and productivity. This literature review Chapter further briefly highlights the 

application of metabolomics and epigenetic approaches in studying plant defence responses 

to abiotic stresses and defence priming. Thus, the metabolomics and epigenetics work 

presented in this dissertation (Chapters 3 and 4) contributes towards the on-going efforts of 

identifying the key underlying biochemical and molecular mechanisms induced by 

biostimulants in crop plants under abiotic stress conditions, such as drought stress, for 

improved growth and enhanced drought tolerance. 
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Chapter 3 

Altered Metabolic Profiles Associated with 
Microbial Biostimulant-Mediated Growth 

Enhancement and Drought Stress Tolerance 
in Maize: A Targeted Metabolomics Study  

 

Summary 

Microbial-based biostimulants are emerging as effective strategies to improve agriculture 

productivity; however, the modes of action of such formulations are still largely unknown. 

Thus, the present work aimed at elucidating metabolic changes in maize (Zea mays) leaves 

conferring growth promotion and drought stress tolerance induced by a microbial-based 

biostimulant (a consortium of plant growth-promoting rhizobacteria, PGPR) treatment. 

Measurement of the selected physiological stress markers representing the antioxidant system 

machinery together with relative shoot, root and total dry biomass of the various treatments 

revealed a significant increase in enzymatic regulators of oxidative stress and biomass in 

PGPR-treated plants compared to naïve plants. Also, a liquid chromatography-mass 

spectrometry-based targeted metabolomics approach revealed differential quantitative profiles 

in amino acid, phytohormone, flavonoids and phenolic acid levels in maize plants treated with 

PGPR under well-watered, mild, and severe drought stress conditions. These metabolic 

alterations point to the ability of this microbial-based biostimulant to promote plant growth 

and defence preconditioning. These measured metabolic changes, which gravitate towards 

growth promotion and enhanced drought stress responses, are translated in key biochemical 

and physiological events that include: (1) growth promotion of roots, leaves and shoots; (2) 

enhanced photosynthetic capacity; (3) energy production through amino acid recycling; (4) 

nutrient and water uptake; (5) ethylene inhibition through 1-aminocyclopropane-1-carboxylic 

acid degradation; (6) production of osmolytes; (7) protein biosynthesis; and (8) augmented 

antioxidant capacity. The findings of this study therefore unravelled key molecular 

mechanisms underlying the biostimulant-induced drought tolerance in maize plants, 

providing insights into biostimulant-based priming and growth promotion. 

 

 

Keywords: Biostimulants, drought stress, metabolomics, MRM, PGPR, Zea mays 
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3.1 Introduction 

 

As echoed in Chapter 2, drought remains one of the most severe environmental stresses that 

reduce crop productivity, hindering agricultural productivity globally. In the past years, 

drought stress has diminished yields of important cereals by over 10% (Lesk et al., 2016) and 

it is still the main limiting factor of food production in numerous countries (Lau & Lennon, 

2012). Drought negatively affects several crop plants such as maize (Zea mays L.), a primary 

food crop in South Africa, and an economically important cereal crop worldwide (Aslam et 

al., 2015). Generally, plants have evolved multi-layered defence or resistance mechanisms for 

survival in the ever-changing environment (Chapter 2). Plant adaptation or tolerance against 

drought stress conditions can be described into three strategies: escape, avoidance and 

tolerance; and each of these strategies may evolve either as inherent responses that occur 

independently of drought or can evolve as heritable plastic responses that are dependent on 

one or more environmental cues (Kooyers, 2015). Drought escape occurs when plants 

complete their life cycle before drought conditions become severe by efficiently using up the 

water stored in the soil for growth and development. Conversely, drought avoidance occurs 

when plants minimise water loss and/or maximise water uptake from the roots by reducing 

the transpiration rate, increasing root growth, or limiting vegetative growth to circumvent 

dehydration during drought. Lastly, drought-tolerant plants can endure water deficit by 

lowering osmotic potential inside the cells and maintaining cell turgor through the 

accumulation of ions and compatible solutes (Farooq et al., 2009, 2012; Sanders & Arndt, 

2012). 

 

Water deficit negatively impacts plant growth and development by inducing an array of 

changes at molecular and cellular levels, translated into alterations in plant physiology and 

morphology (Osakabe et al., 2014). These changes include stomatal closure, leaf senescence, 

decreased net photosynthesis and a decline in photosynthetic pigments, impaired nutrient 

metabolism and carbohydrate metabolism, reduced nutrient uptake, translocation and 

respiration and ultimately reduced yield production (Lawlor & Cornic, 2002; Chaves et al., 

2003; Farooq et al., 2009; Agustí et al., 2012) (Figure 3.1). The extent of these deleterious 

effects of drought stress on plant growth and development is highly dependent on the 

intensity and duration of the stress. At the molecular level, drought stress induces the 

accumulation of abscisic acid (ABA) which, in turn, induces drought-responsive genes via 
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different ABA pathways (Shinozaki & Yamaguchi-Shinozaki, 2007). To overcome these 

deleterious effects of drought stress on plants, several strategies have been employed. For the 

past decade, researchers relied on molecular tools and conventional breeding programs for 

genetics improvement to enhance environmental stress tolerance of different plant genotypes 

(Cattivelli et al., 2008); however, these techniques have limitations such as cost, and the 

controversy over genetically modified crops. Additionally, the use of fertilisers, fungicides 

and pesticides for environmental stress management pose negative effects on both the 

environment and the consumers. Consequently, alternative approaches that are 

environmental-friendly are considerably imperative at present time. 

  

 

Figure 3.1: A schematic model showing some of the drought stress effects and plant responses. 

Drought stress affects multiple plant growth processes and to counteract these effects, plants display a 

wide range of defence mechanisms which mediate plant growth and development (Generated by the 

author of this dissertation). 

 

As mentioned in Chapter 2 (section 2.3.1), recently, attention has been drawn to the use of 

beneficial microbes that mediate drought tolerance; and the application of plant growth-

promoting rhizobacteria (PGPR) to induce abiotic stress tolerance is being extensively studied 

as an attractive approach to control plant stress (Conrath et al., 2006; Kasim et al., 2013). The 

ability of microbes to mitigate drought stress was first reported by Timmusk & Wagner 

(1999) in which Arabidopsis thaliana inoculated with Paenibacillus polymyxa PGPR under 
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drought stress were found to be tolerant to subsequent drought stress challenges. Following 

this, various groups have reported on how PGPR can alleviate drought stress and induce 

stress tolerance (Arvin et al., 2012; Lim & Kim, 2013; Yogendra et al., 2015; Barnawal et al., 

2017; Rubin et al., 2017; Mutumba et al., 2018; Jochum et al., 2019; Khan et al., 2019b; Lin 

et al., 2020). PGPR are diverse in their chemical and physical mechanisms of promoting plant 

growth and several mechanisms have been proposed for PGPR-induced drought stress 

tolerance in various plants. In general, these mechanisms include: (1) production of 

phytohormones such as abscisic acid (ABA) and indole-3-acetic acid (IAA); (2), 1-

aminocyclopropane-1-carboxylic acid (ACC) deaminase to reduce ethylene synthesis; (3) 

accumulation of osmolytes; (4) exopolysaccharide production and (5) alteration of root 

morphology. Despite all these mechanisms that have been proposed, a comprehensive and 

mechanistic understanding of PGPR (or microbial-based biostimulant)–induced mechanisms 

(at molecular and cellular levels) in enhancing stress tolerance is still not fully understood. As 

previously mentioned in Chapter 2 (section 2.5), metabolomics, a multidisciplinary omics 

science, can provide actionable insights defining biochemical mechanisms underlying plant 

defence responses to abiotic stresses.  

 

Metabolomics has emerged as an indispensable tool that aims to quantify a set of metabolites 

in an organism at any developmental stage, in each cell type, tissue, or organ (Fiehn, 2001), 

thus providing the signature of the phenotype. This multidisciplinary omics science has been 

widely applied in various fields. In plant sciences, one of the domains in which metabolomics 

has been utilised is to investigate plant responses to environmental stress conditions (Bundy 

et al., 2009), decoding reconfigurations in both plant primary and secondary metabolism that 

underlie adaptive mechanisms against abiotic stresses (Figure 3.2). Plant primary metabolites 

are involved in all basic physiological processes that govern growth and development in 

plants, and they encompass components of processes such as photosynthesis, glycolysis, and 

the citric acid cycle and associated pathways. These metabolites include amino acids, 

tricarboxylic acids, sugars, and phytohormones. Conversely, secondary metabolites are 

synthesised by the plant through precursors derived from the plant primary metabolism 

(Thirumurugan et al., 2018); and these secondary metabolites are generally involved in plant 

responses to environmental factors. Profiling of the plant metabolome under stress conditions 

proposed that pools of different metabolites such as sugars, amino acids, polyols and organic 

acids play an essential role in drought tolerance (Farooq et al., 2012). For example, 
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metabolites such as amino acids (proline and glutamine), amines (polyamines and glycine 

betaine, GB), and γ-amino-N-butyric acid (GABA) can confer osmoprotection under drought 

stress conditions.  

  

 
Figure 3.2: Schematic representation of changes in plant metabolism in response to abiotic 

stresses. The primary and secondary metabolism of the plant is reprogrammed upon stress encounter, 

resulting in stress tolerance and sustained growth. This remodelling of the plant metabolism under 

stressful conditions spans a wide spectrum of metabolite classes including amino acids, sugars, 

organic acids, phytohormones, polyamines and flavonoids (modified from Moretti et al., 2020). 

 

Targeted metabolomic approaches allow for the analysis of certain groups of metabolites 

either cognate to a specific metabolic pathway or a class of compounds in a biological 

sample, providing absolute quantification (Lu et al., 2008; Wei et al., 2010; Begou et al., 

2017). Multiple reaction monitoring (MRM) is the most common mode of tandem mass 

spectrometry employed for targeted metabolomics analysis in which numerous different 

precursor-product ion pairs are monitored in a single analysis using a triple quadrupole 

(QqQ)-equipped MS instrument. In this mode, the metabolite precursor ion with a given m/z 

is selected in the first quadrupole (Q1). The precursor ion is then fragmented in the second 

quadrupole (q2, i.e. collision cell) through a process known as collision-activated dissociation 
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(CAD) or collision-induced dissociation (CID). Lastly, fragmented ions are accelerated into 

the third quadrupole (Q3), where the product ion with a specified m/z is selected and 

introduced to the detector (Roberts et al., 2012; Courant et al., 2014) (Figure 3.3).  

 

Figure 3.3: Overview of multiple reaction monitoring (MRM). MRM analyses specific precursors 

producing specific products by holding the precursor and product static at the given m/z in the two 

mass analysers, Q1 and Q3 respectively. Precursor ion fragmentation is induced via collision-activated 

dissociation (CAD) or collision-activated dissociation (CID) in q2 (collision cell), resulting in the 

product ion formation (Generated by the author of this dissertation). 

 

When coupled with separation techniques such as liquid chromatography (LC), or gas 

chromatography (GC), MRM-based analyses provide high sensitivity, selectivity, 

reproducibility, absolute quantification and cover a broad dynamic range of metabolites 

providing optimal analysis of complex biological samples (Morin et al., 2013). Thus, using 

liquid chromatography coupled to triple quadrupole mass spectrometry (LC-QqQ-MS)-based 

approach, the current study aims to investigate quantitative changes in selected metabolite 

classes – amino acids, phytohormones and phenolics – associated with the application of a 

microbial-based biostimulant on maize plants under well-watered, mild- and severe drought 

stress conditions. Such quantitative interrogation of selected metabolites can reveal key 

molecular events and alterations in plant metabolism, induced by the application of a 

biostimulant, that point to growth promotion and enhancement of drought resistance in maize. 

Thus, the study (reported in this Chapter 3) contributes towards the generation of a 

fundamental knowledgebase describing the molecular mechanisms underlying the 

biostimulant effects on plants. Such insights are necessary for advancement of the 

biostimulant industry and global food security at large. 
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3.2 Materials and methods 

  
3.2.1 Chemicals 

 

All the chemicals utilised for sample analyses were of analytical grade, highest purity and 

were obtained from different international providers. Methanol and acetonitrile were LC-MS 

grade from Romil (SPS, Cambridge, UK). Leucine enkephalin and formic acid from Sigma 

Aldrich (Munich, Germany). Water was purified using a Milli-Q Gradient A10 system 

(Siemens, Fahrenburg, Germany).  

 

3.2.2 Plant Materials, Growth conditions and Treatments 

 

Maize (Zea mays L.) plants, PAN 3Q-240, were cultivated in 15 L pots (8 seeds per pot), each 

filled with slightly acidic (pH 5.2) sandy soil (17 kg). The pots were placed in a completely 

randomised design (CRD) order in a greenhouse at Omnia facilities in Sasolburg, Free-State, 

South Africa. An experimental study design was developed in which all different conditions 

(control and treated), were described as treatment (T) (Table 3.1). The control groups were 

represented by T2 (well-watered without PGPR), T5 (mild drought without PGPR) and T6 

(severed drought without PGPR); and the treated groups were represented by T1 (well-

watered with PGPR), T3 (mild drought with PGPR), T4 (severe drought with PGPR). 

However, for the rest of the chapter, they will be referred to as control (C), mild drought 

without PGPR (MD), severe drought without PGPR (SD), well-watered with PGPR (PGPR), 

mild drought with PGPR (MD-PGPR) and severe drought with PGPR (SD-PGPR) 

respectively (Table 3.1). 
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Table 3.1: Description of treatment conditions used to study the effect of PGPR-based biostimulant 

application on mild and severe drought stressed plants. 

Treatment PGPR rate of 2 billion cfu 

per ml (L ha−1) 

Treatment description 

T1  2 Well-watered with biostimulant (PGPR) 

T2 0 Well-watered without biostimulant (Control; C) 

T3 2 Mild drought with biostimulant (MD-PGPR) 

T4 2 Severe drought with biostimulant (SD-PGPR) 

T5 0 Mild drought without biostimulant (MD) 

T6 0 Severe drought without biostimulant (SD) 

 

A PGPR-based biostimulant formulation (Omnia Group Ltd, Bryanston, South Africa) 

containing five Bacillus strains was used in this study. The formulation comprised of one 

strain of Bacillus amyloliquefaciens, two strains of Brevibacillus laterosporus and two strains 

of Bacillus licheniformis (Omnia Group Ltd, South Africa); however, the comprehensive 

description of how the formulation was prepared cannot be disclosed in this dissertation due 

to the Omnia trademark and commercialisation purposes. The PGPR-based biostimulant 

treatment diluted 100 times to 8 mL per pot was evenly applied at a rate of 2 L per Hectare at 

planting stage (Figure 3.4) using a micropipette in the furrow with the seed. Following the 

emergence, the 8 seedlings cultivated per pot were thinned to five plants per pot, by selecting 

uniform and healthy plants.  

 

Each pot was considered as a biological replicate and contained five plants at the harvesting 

time. Four biological replicates (i.e. four pots) per treatment were harvested at each time point 

(section 3.2.3). All pots were irrigated to 90% plant available water (PAW) to allow for good 

germination. Drought stress was imposed at the 2-leaf stage (2 weeks after emergence, WAE) 

by a withholding water method where the water level was allowed to drop to 50% PAW then 

maintained at that level for the mild drought stress group, and dropped to 20% PAW for the 

severe drought conditions. The well-watered plants were maintained at the 90% PAW 

throughout the study (Figure 3.4). Greenhouse conditions that were measured daily include 

temperature (midday, 28 ± 3 °C and night 12 ±2 °C), relative humidity (45 ± 8%) and 

(midday) light intensity (738 ± 41 µmole m−2s−1). 
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3.2.3 Plant material harvesting  

 

Leaf tissue harvesting for all treatments and biological replicates (Table 3.1; subsection 

3.2.2) was performed at two different time points; four and six weeks after emergence (WAE) 

and following mild and severe drought application referred to as (4 WAE and 6 WAE 

respectively) (Figure 3.4). The plant leaves were cut off and rapidly immersed in liquid 

nitrogen to quench any enzymatic reactions that can result in metabolite fluctuations caused 

by the handling and wounding of the plant during harvesting. This was then followed by the 

storage of the leave material at −20 °C prior to morphophysiological analysis and metabolite 

extraction.  

 

Figure 3.4: Cultivation and different growth stages of maize plants. PGPR treatment was applied 

at planting stage, and mild drought and severe drought stress initiated at 2 weeks after emergence. 

Harvesting was done at two time points, 4 and 6 weeks after emergence (Generated by the author of 

this dissertation). 

 

3.2.4 Morphophysiological analysis 

3.2.4.1 H2O2 content  

 

The H2O2 content was assayed according Brennan and Frenkel (1977). One hundred mg of 

chilled leaf tissue was macerated in 4 mL cold acetone and the homogenate was filtered 

through a Whatman No. 1 filter paper. Two mL of this filtrate were treated with 1 mL of 

titanium reagent (20% titanium tetrachloride in concentrated HCl, 32% v/v) and 1 mL of 

concentrated ammonia solution to precipitate the titanium-hydroperoxide complex. After 

centrifugation (at 5000 × g for 30 min) the precipitate was dissolved in 2 N H2SO4 and the 

absorbance was obtained at 415 nm. The H2O2 content was calculated from a standard curve 

prepared in a similar way and expressed as μmol.g−1 fresh mass (fm). 
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3.2.4.2 Total ascorbate content 

 

The ascorbate (AsA) content was assayed according to the method described by Hodges et 

al., (1996). To determine the total ascorbate content, 200 µL of the supernatant (from 

homogenization of 5 g of fresh weight leaf tissue and centrifuged) was added to 500 µL of a 

150 mM K2PO4 buffer solution (pH 7.0) containing 5 mM EDTA and 100 µL of 10 mM di-

thiothreitol (DIT) to reduce DHA to AsA. The reaction was allowed to continue for 15min, 

after which 100 µL of a 0.5% N-ethylmaleimide solution was added to the reaction mixture at 

25 °C to quench the excess DIT. The solution was colored by adding 400 µL of a 44% o-

phosphoric acid solution, 400 µL of a 10% trichloroacetic acid (TCA) solution, 200 µL of 30 

g.L−1 FeCl3 solution and 400 µL of a,a’-dipyridyl in 70% (v/v) ethanol solution. The solution 

was kept at 40 °C for 60 min after which the absorbance at 525 nm was measured 

spectrophotometrically. The concentration was estimated by using a standard curve. 

3.2.4.3 Malenoaldehyde content 

 

Malenoaldehyde was measured spectrophotometrically using the thiobarbituric (TBA) 

method according to Dhindsa et al. (1981). A volume of 2 ml of the extract was added to a 

solution containing 1 mL of a 20% trichloroaceticacid (TCA) and 0.5% thiobarbituric (TBA). 

The mixture was heated in a water bath at 95 °C for 30 min. The solution was allowed to cool 

to room temperature and centrifuged at 14,000 rpm for 10 min. The absorbance was read at 

532 nm and the non-specific absorbance at 600 nm was subtracted from the measured 

absorbance value. The MDA content was calculated by using an extinction coefficient of 155 

mM−1 cm−1. 

3.2.4.4 Extraction of antioxidant enzymes 

 

Frozen (−80 °C) leaf tissue (0.5 g) was homogenized in 1.5 mL of a 50 mM potassium 

phosphate buffer (PBS, pH 7.8) containing 1 mM EDTA, 1 mM di-thiotreitol (DIT) and 2% 

(w/v) polyvinylpyrrolidone (PVP) using a chilled mortar and pestle kept on ice. The 

homogenate was centrifuged at 15,000 ×g at 4 °C for 30 min. The clear supernatant was used 

for superoxide dismutase enzyme assays. For measuring ascorbate peroxidase activity, the 

tissue was separately ground in 50 mM PBS (pH 7.8) supplemented with 2 mM ascorbate, 1 

mM EDTA, 1 mM DIT and 2% (w/v) PVP. All assays were done at 25 °C. 
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3.2.4.5 Enzyme analysis 

 

3.2.4.5.1 Ascorbate peroxidase (APX) activity 

 

Ascorbate peroxidase (APX) (EC 1.11.1.11) was assayed according to Nakano and Asada 

(1981). This was done by taking 3 mL of a reaction mixture (described above) containing 50 

mM potassium phosphate buffer (pH 7.0), 0.1 mM EDTA, 0.5 mM ascorbate, 0.1 mM H2O2 

and 0.1 mL enzyme extract and following the hydrogen peroxide-dependent oxidation of 

ascorbate by measuring the decrease in the absorbance at 290 nm (E = 2.8 mM−1 cm−1). 

Ascorbate peroxidase activity was expressed as µmol ascorbate oxidized.min−1mg−1 protein. 

 

3.2.4.5.2 Superoxide peroxidase (SOD) activity  

 

Superoxide dismutase (EC 1.15.1.1) activity was assayed using the kit (A001-1) provided by 

Elabscience, Total superoxide dismutase (T-SOD) activity assay kit, WST-1 method, which is 

based on the method described by Beyer and Friedovich, (1987).  One unit of SOD activity 

was defined as the amount of enzyme required for 1 mg tissue proteins in 1 ml of a reaction 

mixture to raise SOD inhibition rates to 50% at 550 nm, expressed as µg.mg−1 protein. 

 

3.2.4.5.3 Catalase (CAT) activity 

 

Catalase (EC 1.11.1.6) activity was assayed using an assay kit provided by Elabscience, 

CAT-activity kit. Catalase activity was estimated as the amount of enzyme that decomposes 1 

µmol H2O2 at 405 nm sec−1 in 1 mg fresh tissue proteins, expressed as µg.mg−1 protein. 

During stress, a plant will show an increase in the non-enzyme compounds such as well as the 

activity of detoxification enzymes. If the stress is not too severe the natural antioxidant 

systems will be able to keep the oxidant species to a level where the damage to cellular 

structures is not severe to an extent that leads to large scale cell death. The severity of cellular 

damage can be followed by analysing the breakdown products of lipid membrane 

components. A popular marker that is used is malenoaldehyde (MDA) concentration. An 

increase in malenoaldehyde concentration is an indication of increase lipid peroxidation, 

which is indicative of increase membrane lipid damage (Yanling et al., 2015). 
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3.2.5 Extraction of metabolites 

 

Extraction of metabolites was initiated by adding liquid nitrogen to the frozen leave tissues 

and grinding them into a fine powder using a pestle and mortar. To avoid any chance of 

sample crossover, the pestle and mortar were cleaned (washed using dH2O and rinsed with 

80% aqueous methanol) between samples. Following this, two grams (2 g) of the powder was 

weighed in a sterile Falcon tube and 20 mL of 80% cold methanol was added in a 1:10 m/v 

ratio. The mixture was then homogenised for 2 min using an Ultra-Turrax homogeniser and 

sonicated for 30 s using a probe sonicator (Bandelin Sonopuls, Germany) set at 55% power. 

The homogenizer and the probe were cleaned with 80% aqueous methanol between samples 

to avoid sample crossover. The resulting homogenates were centrifuged at 5100 rpm for 20 

min at 4 °C. The supernatants were placed in 50 mL round-bottom flasks, evaporated to 1 mL 

at 55 °C using a Büchi Rotavapor R-200, and dried to completeness with a speed vacuum 

concentrator (Eppendorf, Merck, South Africa) set at 45 °C. Resuspension of the extracts was 

done using 500 µL LC-MS grade methanol : Milli-Q water (1:1, v/v), followed by filtration 

through 0.22 μm nylon filter into pre-labelled HPLC glass vials fitted with 500 µL inserts 

(Shimadzu, South Africa). The filtered samples were then stored at 4 °C pending LC-ESI-

QqQ-MS analysis. 

 

3.2.5.1 Preparation of standards and multiple reaction monitoring (MRM) 
method development 
 

Amino acid -, phytohormone -, flavonoid - and phenolic acid standards used in this study 

were of ≥98% purity, obtained from Merck (Germany), Sigma (United States of America) 

and BDH (England) manufacturers. Thirty-eight metabolites including internal standard (D-

flourophenylalanine) were selected and quantified, and these include amino acids, osmolytes, 

phytohormones, flavonoids and phenolics (Tables S3.1).  The amino acids, phytohormones 

and osmolytes, flavonoids and phenolics working solutions were over the concentration 

ranges of 25–1000 µg/L, 43.7-8.7×10−5 nM, 10–1000 µg/L and 7.78-250 nM respectively. 

The working solutions were all prepared in 50% aqueous methanol (Romil, Cambridge, UK) 

and stored at 4 °C. The analysis was performed using a triple quadrupole mass spectrometry 

(LCMS-8050 (Shimadzu, Kyoto, Japan)), equipped with an electrospray ionisation (ESI) 

source and ultra-fast liquid chromatography (UFLC) as a front-end. The MRM-MS method 
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was used for absolute quantification of the targeted metabolite classes. MRM-MS conditions 

(Table S3.1) were developed and optimisation was done by direct infusion into the ionisation 

source (ESI); and the MRM optimisation method tool (an integral component of LabSolutions 

LCMS software, Shimadzu Corporation) was used for collision energy (CE) optimisation for 

all the transitions, by collecting product ion scan data and finding the optimum CE for each 

transition.  

 

3.2.5.2 LC-ESI-QqQ-MS metabolite profiling by ultra-fast liquid 
chromatography 
 

The prepared samples and standards as described in sections 3.2.3 and 3.2.4 were analysed on 

the ultra-fast liquid chromatography (UFLC) system, equipped with a Shim-pack GIST C18 

column (2 μm; 100 × 2.1 mm l.D) (Shimadzu, Kyoto, Japan), thermostatted at 40 °C. 

Chromatographic separation was achieved using a gradient elution system consisting of 

eluent A (MilliQ water with 0.1% formic acid) and eluent B (methanol with 0.1% formic 

acid) (Romil Chemistry, UK) at a constant flow rate of 0.2 mL min−1. Each metabolite class 

(amino acids, phytohormones, flavonoids and phenolics) had a specific elution gradient 

(Table 3.2).  

 

Table 3.2: Stepwise gradient elution profile for amino acids, phytohormones, flavonoids and phenolic 

acids with MilliQ water and 0.1% formic acid (eluent A), and methanol with 0.1% formic acid (eluent 

B). 

Amino acids 

Time (min) Mobile phase A (%) Mobile phase B (%) 

1 98 2 

2 95 5 

2 90 10 

2 50 50 

1 98 2 

Phytohormones 

3 98 2 

3 90 10 

24 80 20 

8 95 5 

2 98 2 

Flavonoids 

2 70 30 

10 70 30 
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18 95 5 

1 98 2 

Phenolic acids 

3 95 5 

3 80 20 

8 70.2 20.8 

3 50 50 

7 70 30 

5 95 5 

 

The total chromatographic run time was 10, 40, 31 and 30 min; and injection volume 3, 1, 2, 

and 3 µL for amino acids, phytohormones, flavonoids and phenolic acids, respectively. The 

MRM-MS detection parameters developed and optimised as described in section 3.2.4 (Table 

S3.1) were then applied, and the MS conditions were as follows: nitrogen gas was used as a 

drying gas and a nebulising gas at flow rates of 10 L min−1 and 3 L min−1 respectively. The 

heating gas flow was set at 10 L min−1, interface temperature at 300 °C, interface voltage at 4 

kV, DL temperature at 250 °C, and heat block temperature at 400 °C.  

 

3.2.5.3 Data Analysis: Processing, pre-treatment and chemometric analysis 
 

LabSolution Quant BrowserTM (Shimadzu, Kyoto, Japan) was used to process the LC-MRM-

MS data acquired, from which the calibration curves were constructed to obtain the 

concentrations of the unknown samples expressed in ppb (for amino acids and phenolics) and 

nM (for hormones and flavonoids), which were then converted to ng/g to create a 

concentration data matrix. MetaboAnalyst 4.0 (Chong et al., 2018), a comprehensive web-

based tool, was used for processing, analysing, visualising and interpreting the data. Prior to 

data analysis, MetaboAnalyst performs a data integrity check by assessing the data labels 

(class and concentration values), pair specifications, and detecting the presence of missing 

values or features using its integral algorithms. The tool has a default method of replacing 

missing values using small numbers (one-fifth of the minimum positive values of their 

corresponding variables in the data) which assumes that the missing values are a result of low 

signal intensity metabolites that are below the detection limit; however, no values were 

replaced in this study. Following missing values replacement is the data filtering option 

which aims to identify and remove low-quality data points that have an improbable 

contribution to the modelling of the data, thus improving performance and reducing the false 
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discovery rate (FDR) for downstream statistical analysis (Hackstadt & Hess, 2009; Bourgon 

et al., 2010). Data filtering is highly recommended for large datasets (untargeted analysis) 

due to the large amount of noise present in the data (Xia et al., 2012a) and often omitted for 

quantitative datasets, therefore it was not performed for this particular dataset.  

 

Subsequent to the data integrity check, data normalisation, a data pre-treatment method was 

applied. The selected pre-treatment methods which were deemed appropriate for metabolite 

concentration adjustment in this study were transformation and Pareto scaling with no row-

wise normalisation. Data analysis was performed using chemometric analysis employed by 

MetaboAnalyst 4.0 collection of statistical and machine learning algorithms that are highly 

robust for multidimensional data analysis.  

 

Initially, unsupervised multivariate statistical methods such as principal component analysis 

(PCA) was performed to explore the structure of the data (trends, groupings), allowing the 

identification of any similarities or differences between and within the samples. Secondly, 

supervised multivariate methods including partial least squares – discriminant analysis (PLS-

DA) and orthogonal partial least squares – discriminant analysis (OPLS-DA) were then 

performed, driven by the knowledge obtained from the unsupervised analysis. From these, 

important features (metabolites) that discriminate the compared groups (e.g. control vs. 

treated) were selected using variable importance in projection (VIP) scores and loadings S-

plots respectively. Since PLS-DA and OPLS-DA are prone to data over-fitting, the computed 

chemometric models were validated using a 10-fold cross-validation (CV) method and a 

permutation test, where only statistically significant models were used in data mining. The 

former was applied as a tuning procedure during computation and expressed with Q2 metrics 

as measured performance (predictive ability of the model) and the latter as an estimation of 

the distribution of the performance measure between the data (X) and the newly permuted 

class labels (Y). Lastly, for quantitative analysis and biological interpretation, hierarchical 

cluster analysis (HCA) was performed and (Pearson’s correlation distance measure) 

visualised using heatmaps, boxplots, bar graphs, metabolite-metabolite correlation analysis 

(MMCA) and pathway analysis using MetaboAnalyst 4.0. Additionally, radar plots 

constructed using Microsoft excel were used to show the calculated logarithmic fold changes 

from the absolute quantification of each metabolite in different targeted classes, where the 

control group in each plot is set at zero.  
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3.3 Results and discussion 

 

As highlighted in Chapter 2 and section 3.1 of this Chapter, adaptation or resistance to 

abiotic stresses like drought is an important acquirement of agriculturally relevant crops like 

maize. Hence, development of strategies, such as the exploration and application of 

microbial-based biostimulants, to enhance plant resistance or tolerance to drought stress is 

imperatively essential. However, for the realisation of sustainable, efficient and innovative 

biostimulant formulations, decoding molecular choreography and cellular events that define 

the complex and multi-layered mechanisms of PGPR-based biostimulants, for growth 

promotion and defence priming, is a necessary step. Hence, the work presented in this 

Chapter 3 is a scientific effort to contribute to understanding microbial biostimulant-induced 

physiological and metabolic reprogramming that gravitates towards plant growth promotion 

and enhancement of drought tolerance in maize plants. Thus, this section which articulates the 

findings of this metabolomics study (Chapter 3) is subdivided into three main subsections: 

(i) morphophysiological changes regarding PGRP treatment under well-watered and drought 

stress conditions, (ii) a quantitative metabolome map correlated to growth promotion and 

priming effects of PGPR-based biostimulant, and (iii) a post-challenge metabolic landscape 

of maize treated with PGPR under mild and severe drought stress conditions.  

 

 

3.3.1 Morphophysiological changes in naïve and PGPR-treated maize plants 
under well-watered and drought stress conditions  
 

Drought-induced changes in the plant metabolism are highly complex, coordinated and 

translated at various cellular and organismal levels. Some of the drought-induced 

physiological changes are related to oxidative stress. The latter is mostly due to decreasing 

stomatal conductivity that confines CO2 influx into the leaves. This leads to the formation of 

ROS, the excess of which has deleterious effects on plant cells via oxidation of cellular 

components such as proteins, DNA and lipids (Mittler, 2002). The physiological responses to 

this drought-induced harmful ROS comprise an array of antioxidant machinery (Table 3.3) 

involving non-enzymatic elements (e.g. AsA, MDA) and an enzymatic component (e.g. CAT, 

SOD and APX).     
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Table 3.3: Selected physiological stress markers of the plant cellular milieu. Different letters indicate 

statistically significant differences between treatments; p ≤ 0.05. 

 

 

From the results, it is clear that the maize plants employed both non-enzymatic and enzymatic 

strategies to combat the osmotic (drought) stress conditions. The severe drought stress 

treatment had a much more significant impact on the stress biomarkers, which is to be 

expected. Apart from the leaf H2O2 and MDA concentration in the moderate drought stress 

treatment, all of the other biomarkers increased significantly (p ≤0.05) relative to the control 

(unstressed) treatment. This points to the fact that the plants were still managing the moderate 

stress, with no significant damage to cellular structures. Under the severe stress treatment, the 

MDA concentration increased 2.5-fold (Table 3.3), which indicates significant damage to 

membrane structures. 

 

PGPR have been identified and studied extensively during the last few decades, and recent 

studies suggest that these organisms can help plants to cope with drought stress (Yang et al., 

2016). The physiological parameters analysed during this current study revealed that one 

mechanism by which this is achieved is the influence of PGPR on the antioxidant capacity of 

plants. As mentioned earlier, plants employ enzymatic and non-enzymatic strategies to help 

fight oxidative stress. Various studies including the studies by Khan et al., (2019b) and Yang 

et al., (2016), have shown that PGPR have a positive effect on the antioxidant capacity of 

various plant species. During this study, we found that the PGPR consortium used had a 

positive influence on both the enzymatic and non-enzymatic strategy of Zea mays plants 

 

Level / Concentration  

Without PGPR With PGPR 

Control MD SD Control MD SD 

Non-enzymatic stress markers (µmol. g FW−1) 

Leaf H2O2  61.7a 91.2a 137.9b 56.5a 79.7a 101.3ab 

Leaf malondialdehyde (MDA) 25.3a 34.6a 63.9b 23.7a 28.9a 42.1c 

Leaf ascorbate (AsA) 227.5a 329.3b 598.1c 241.1a 409.7d 634.8c 

Enzyme activities (µmol. min−1.mg−1 protein) 

Superoxide dismutase (SOD)  54.7a 67.9b 89.8c 61.2ab 91.9c 118.6d 

Ascorbate peroxidase (APX) 40.4a 46.7b 59.8c 43.6ab 49.8b 72.7d 

Catalase (CAT)  4.1a 7.6b 11.5c 4.4a 8.2b 15.4d 
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during drought stress conditions. This was apparent under moderate and severe drought stress 

conditions (Table 3.3).  

  

Figure 3.5: Morphological changes: Relative shoot, root and total dry biomass of the various 

treatments. Treatments containing the same letters are not significantly different from one another 

(p ≤ 0.05); LSD dry shoot biomass = 24.1, *LSD dry root biomass = 20.8, **LSD total dry biomass = 

16.7. 

When comparing PGPR-treated plants with non-treated plant in terms of the popular stress 

marker, leaf H2O2, the PGPR consortium did not have a statistically significant (p ≤ 0.05) 

effect on the leaf H2O2 concentration for moderately drought stress maize plants, but plants 

subjected to severe drought stress showed a significant (p ≤ 0.05) reduction (27%) in leaf 

H2O2 concentration (Table 3.3). The decrease in H2O2 concentration also led to a significant 

(p ≤ 0.05) decrease (35%) in MDA concentration for the severe drought stressed plants, 

suggesting that significantly less damage to membranes, lipids and proteins were encountered 

in PGPR drought stressed plants. The enzymatic detoxification processes in the plants also 

showed marked improvement when the plants were treated with the PGPR consortium. The 

PGPR caused significant (p ≤ 0.05) increases in the SOD activity of 35% and 32% over the 

non-PGPR treated moderately and severely stressed plants, respectively (Table 3.3). The 

APX and CAT activity was also significantly (p ≤ 0.05) increased in the PGPR-treated 

severely stressed plants, with respective increases of 21% and 34% over non-PGPR-treated 

severely stressed plants (Table 3.3).  
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The increase in cellular detoxification led to significantly more biomass accumulation in the 

PGPR-treated plants (Figure 3.5). This is to be expected due to the decrease in damage to 

membranes, lipids, proteins etc. According to the results, the PGPR-treated moderately 

stressed plants showed a 19%, 59% and 38% increase in the shoot, roots and total dry 

biomass, respectively. The severely stressed plants also showed a 23%, 78% and 49% 

increase in the shoot, roots and total dry biomass, respectively (Figure 3.5). All of these 

increases were significant at p ≤ 0.05. These morphophysiological changes phenotypically 

demonstrate the effects of PGPR in enhancing drought-related defence responses resulting in 

enhanced growth promotion and stress tolerance. At the molecular level, these phenotypic 

reflections of PGPR effects are defined by PGPR-induced reprogramming of the primary and 

secondary metabolism in maize plants under naïve (well-watered) and drought stress 

conditions.   

 

3.3.2 PGPR-induced reprogramming in primary and secondary 
metabolism for growth promotion and defence sensitisation 
 

To understand and further explain these phenotypically observed PGPR-induced effects 

related to growth promotion and enhancement of maize responses to drought stress conditions 

(section 3.3.1), the maize metabolism was interrogated. The targeted approach applied 

(subsection 3.2.5) offered opportunities to quantitatively examine a selected chemical space 

of primary and secondary metabolism, defined by amino acids, phytohormones, flavonoids 

and phenolic acids (Figure 3.6).  
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Figure 3.6. Metabolome coverage: A Chord diagram showing metabolites classes targeted in this 

study. The diagram displays infographically the fraction of the metabolome (metabolite classes 

extracted from the different treatments) covered in this study, situating the studied metabolome in the 

‘undefined dimension’ of the maize’s chemical space.  

  

 

Previous studies (Touraine et al., 2013; Saia et al., 2015; Ahanger et al., 2018; Khan et al., 

2019a; Tugizimana et al., 2019; Mhlongo et al., 2020) utilising untargeted metabolomics 

approaches have demonstrated/revealed that one of the key characteristics of plant growth 

promotion and priming induced by microbial biostimulants is a reconfiguration of plant 

metabolism that spans a wide range of (bio)chemistries entailing amino acids, phytohormones 

and secondary metabolites. Thus, to further zoom-in into the reported hypothetical 

metabolomic reprogramming in response to PGPR application leading to enhanced plant 

growth and priming, a targeted metabolomics approach was employed in the current study, 

covering a fraction of the maize metabolome (Figure 3.6), with diverse biological 

functionalities. Targeted metabolomics provide a more quantitative evaluation of the pre-

defined groups as a confirmation and elaboration for the novel findings obtained from 

untargeted analysis (Alonso et al., 2015). 
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3.3.2.1 PGPR-induced alterations in amino acids and phytohormones 
levels – growth promotion and priming 
 

Chemometrics models, PCA and PLS-DA, by summarising the variation in multivariate space 

into a smaller number of latent components, revealed distinct treatment-related sample 

groupings (Figures 3.7 and S3.1) and allowed the description of differential quantitative 

metabolic changes in naïve (T2) and PGPR-treated (T1) plants. These models revealed that 

PGPR induced differential metabolomic changes in non-stressed plants as infographically 

depicted in a distinct separation in the two groups (Figure 3.7A). As previously mentioned 

(section 3.2), targeted analysis was performed at two different time points (4 and 6 WAE). It 

is worth noting that PLS-DA modelling revealed a clear distinction of the two time points 

separated in the first component and the naïve and PGPR-treated groups (T1) were clearly 

separated in the second component. The use of OLPS-DA loading S-plots and variable 

importance in projection (VIP) plots (Figure 3.7B) further allowed the extraction of 

statistically significant variables driving the differentiation between naïve plants and PGPR-

treated plants.  

 

 

Figure 3.7. Models describing the comparative quantification analysis of amino acid and 

phytohormones. (A) Partial least squares-discriminant analysis (PLS-DA) score plot. (B) Variable 

importance projection plot showing the discriminant metabolite (VIP > 1) responsible for the class 

separation. Abbreviations: C, control; PGPR, refers to PGPR-treated plants; WAE, weeks after 

emergence; IAA, Indole-3-acetic acid; NHP, N-Hydroxyethylpthalimide; ICA, Indole-3-carboxylic 

acid; and ICAld, Indole-3-carboxyaldehyde. 
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Overall differential changes of amino acid, phytohormone and betaine (an osmolyte) profiles 

induced by PGPR in non-stressed plants are represented by radar plots (Figure 3.8) at 4 and 6 

WAE. These infographics depict the logarithmic fold changes of the measured metabolites, 

reflecting quantitative changes associated with the PGPR treatment in maize plants, pointing 

to PGPR-induced reprogramming of primary metabolism. Hierarchical clustering heatmap 

analysis allowed for the visualisation of these quantitative changes of both phytohormones 

and betaine (Figure 3.9A) and amino acids (Figure 3.9B) between the two comparisons (C 

and PGPR).   

 

 

Figure 3.8: Radar plots showing quantitative ratio changes of amino acids, phytohormones and 

osmolyte profiles under well-watered conditions with and without PGRP treatment. Plots show 

the calculated logarithmic fold changes from the quantification of each metabolite. (A) Amino acid 

and (B) phytohormone and Betaine profile from well-watered conditions (T2) and well-watered 

conditions with PGPR (T1) showing metabolite changes at 4 WAE and 6 WAE. Abbreviations: Ser, 

Serine; Gly, Glycine; Hyp, Hydroxyproline; Pro, Proline; Val, Valine; Thr, Threonine; Asp, Aspartic 

acid; Phe, Phenylalanine; Tyr, Tyrosine; Met, methionine; Trp; Tryptophan; Cys, Cysteine; Ala, 

Alanine; NHP, N-Hydroxyethylpthalimide; SA, Salicylic acid; ACC, 1-aminocyclopropane-1-

carboxylic acid; IAA, Indole-3-acetic acid; Zea, Zeatin; ICA, Indole-3-carboxylic acid; ICAld, Indole-

3-carboxyaldehyde; Bet, Betaine. 

 

Quantitative measurement of selected phytohormones showed indole-3-carboxylic acid 

(ICA), salicylic acid (SA), indole-3-carboxaldehyde (ICAld), 1-aminocyclopropane-1-

carboxylic acid (ACC), N-hydroxyphthalimide (NHP), indole-3-carboxylic acid (ICA) and 

zeatin (Zea) to be signatory makers of PGPR treatment in maize plants (Figure 3.7B and 

Figure S3.2). PGPR treatment revealed an accumulation of phytohormones; SA, and ICA at 

4 WAE and Zea, ACC and SA at 6 WAE (Figure 3.9A). Primary metabolites such as 

carbohydrates, amino acids, fatty acids, phytohormones and organic acids are considered as 

imperative for plants in their growth and development including biological processes such as 
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respiration and photosynthesis. Phytohormones are signalling molecules produced in 

minuscule quantities that also regulate every aspect of plant growth and development, as well 

as adaptation under constantly changing environments (Srivastava, 2002; Peleg & Blumwald, 

2011). Phytohormone biosynthesis has been reported as one of the direct mechanisms 

employed by PGPR for enhanced plant growth promotion and which correlates with the 

findings of this study (Figure 3.9A) in which an increase in SA, ICA and Zea is observed 

when compared to naïve plants. SA is a signalling molecule involved in plant defence 

mechanisms by regulating physiological and biochemical functions; and several studies have 

suggested SA as a growth regulator. An increased accumulation of SA induced by PGPR 

treatment (Figure 3.9A) is associated with enhanced plant growth due to SA’s ability to 

modulate specific plant responses such as seed germination, vegetative growth and 

respiration. Additionally, SA enhances photosynthetic rate, increasing plant energy 

production (Mateo et al., 2006; Janda et al., 2012, 2014) which is utilised by biological 

processes governing plant growth and development. This increase in SA induced by PGPR 

results in enhanced plant growth and energy production, which serves as a priming 

mechanism for future stress encounters in which the plant development has been fully 

established to withstand any environmental cues. Several PGPR strains have been reported to 

have the ability to induce increase in the SA levels (Bakker et al., 2014), and this 

phenomenon has been linked to rhizomicrobe-induced plant priming (Mhlongo et al., 2018) 

in tomato plants. 

 

Zea is one of the most common forms of naturally occurring cytokinins in plants. Cytokinins 

are essential plant hormones that do not only regulate plant immunity but also influence 

various traits of plant growth and development (Kieber & Schaller, 2014). Cytokinins 

stimulate cell division, leaf shoot and growth, differentiation and growth of axillary buds. 

Biogenesis of chloroplasts and the rate of photosynthesis are highly dependent on cytokinins. 

The inhibition of leaf senescence which is associated with chlorophyll breakdown, 

photosynthetic machinery disintegration and oxidative damage is modulated by cytokinins 

(Hönig et al., 2018). In roots, cytokinins control root morphology and uptake and 

translocation of nutrients from the soil. The metabolism and transport of amino acids, 

carbohydrates and macromolecules such as nitrogen, iron, phosphorus and sulphur which are 

vital for plant growth (Argueso et al., 2009). Additionally, mediation of ROS production 

https://doi.org/10.1016/B978-012660570-9/50145-3%20and%2022:36


 
85 

 

through the enhancement of the antioxidant system has been reported in cytokinins (Synková 

et al., 2006; Aremu et al., 2014; Brizzolari et al., 2016).  

 

The cytokinin content and activities of several enzymes have been elucidated with the aim of 

determining cytokinin effect on the plant antioxidant system. Synková et al. (2006), reported 

an increase in the activity of SOD, ascorbate peroxidase (APOD) which was correlated to the 

increased Zea content. As highlighted in section 3.3.1, these antioxidative enzymes scavenge 

H2O2 resulting in the detoxification of any active ROS species. PGPR treatment induced the 

accumulation of antioxidative enzymes (section 3.3.1) and therefore the observed 

accumulation of Zea functionally correlates to the measured differential levels of these 

enzymes, as Zea can act as an enhancer of the antioxidative enzymes. Thus, it can be 

postulated that the inhibition of ROS by PGPR application protects cell membranes and 

photosynthetic machinery from oxidative damage, resulting in enhanced plant growth. 

Additionally, the established antioxidant system may serve as a priming mechanism in 

PGPR-treated plants through the maintenance of the redox state upon abiotic stress 

encounters in which ROS production is accelerated. Several reports have elucidated the 

capacity of PGPR to synthesise cytokinins (Timmusk & Wagner, 1999; Sandhya et al., 2010; 

Asari et al., 2017) correlated to enhanced plant growth and development. The mode of action 

induced by PGPR-based biostimulant for enhanced plant growth pointing to the ‘primed 

state’ through the accumulation of Zea therefore involves shoot and leave initiation and 

growth, increase in the rate of photosynthesis, enhanced nutrient uptake and antioxidant 

system establishment. 

 

PGPR-induced accumulation of ICA (Figure 3.9A) can be linked to the catabolism of indole-

3-acetic acid (IAA) into ICA, which has been recognised as a priming secondary metabolite 

(Gamir et al., 2012). Auxins, primarily IAA, are endogenous plant hormones known for their 

regulatory role in plant growth and development such as root growth promotion. Previous 

studies have demonstrated how plants have evolved a complex system that regulates IAA 

levels, including its synthesis from the tryptophan-dependent pathway (Mashiguchi et al., 

2011; Stepanova et al., 2011). IAA can be catabolised via two processes: the decarboxylative 

and non-decarboxylative pathways. Catabolism of IAA in plants is usually performed through 

the non-decarboxylative pathway with major degradation products being indole-3-carboxylic 

acid (ICA), indole-3-aldehyde (IAld), 2-oxindole-3-acetic acid (oxIAA), and indole-3-
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carbinol (I3C) (Ljung et al., 2002). Low concentrations of IAA generally stimulate root 

growth, and therefore the PGRP-induced catabolism of IAA into ICA and other intermediates 

is a plant growth promotion mechanism employed by this PGPR-based biostimulant: the 

application of this biostimulant leads to catabolism of IAA into ICA, resulting in increased 

root growth. This increased root growth ultimately promotes nutrient uptake from the soil 

which are essential for normal plant development. Additionally, the stimulation of root 

growth may pose as a priming mechanism resulting in the enhanced uptake of nutrients and 

water under limiting environmental stress conditions (Sanchez-Calderon et al., 2013). The 

accumulation of ICA complements the observed decrease in ICAld because previous studies 

have reported that ICAld can be oxidised to ICA (Böttcher et al., 2014; Müller et al., 2019).   

 

Furthermore, PGPR treatment resulted in a downregulation of NHP, ICAld and ACC at 4 

WAE (Figure 3.9A). In this regard, 1-aminocyclopropane-1-carboxylic acid (ACC), is an 

immediate precursor of ethylene, involved in the regulation of plant homeostasis, 

development (Yoon & Kieber, 2013; Vanderstraeten & van Der Straeten, 2017) and defence 

responses (Tsang et al., 2011). ACC is degraded by ACC deaminase into nitrogen and α-

ketobutyrate (can be converted to succinyl-CoA, a TCA cycle intermediate required for 

energy production). The measured decreased level of ACC in PGPR-treated plants can be 

postulated to be linked to its degradation, providing a nitrogen source and energy for plant 

growth and development. Previous studies have reported the ability of certain PGPR to 

produce ACC deaminase enzyme which degrades ACC, resulting in shoot and root growth 

promotion which enhanced plant growth and development by reducing ethylene present in 

plants (Zahir et al., 2011; Gamalero & Glick, 2015; Singh et al., 2015). Ethylene is a plant 

hormone that accumulates in plants under a variety of abiotic stresses (Cheng et al., 2007; 

Indiragandhi et al., 2008; Pourbabaee et al., 2016) inhibiting plant growth through increased 

abscission and premature plant senescence. The production of ACC deaminase by PGPR to 

inhibit ethylene production can therefore prime plants under environmental stress by 

modulating its negative effects on plant growth, leading to enhanced organ development and 

stress tolerance.   
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Figure 3.9: Quantitative analysis of amino acids and phytohormone abundances in naïve plants (Control, T2) and PGPR-treated plants (T1). 

Hierarchical clustering heatmap displayed with VIP scores and logarithmic fold changes of (A) phytohormones and (B) amino acids at 4 and 6 WAE. 

Discriminant metabolites obtained from both OPLS-DA modelling and VIP scores plots are highlighted in red.  
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Quantitative analysis of the selected amino acids revealed an accumulation of cysteine (Cys), 

tyrosine (Tyr), glycine (Gly) and serine (Ser) at 4 WAE and Ser, alanine (Ala), Cys, Tyr, 

valine (Val), hydroxyproline (Hyp) and Gly at 6 WAE to be signatory makers of PGPR 

treatment in maize (Figure 3.9B). Amino acids are the basic building blocks of proteins and 

they fulfil multiple functions in the plants including the stimulation of plant growth. 

Following degradation, amino acids’ carbon skeletons can serve as key metabolic 

intermediates. The skeletons are generally converted into precursors or intermediates of the 

tricarboxylic acid (TCA cycle) (Hildebrandt et al., 2015) - a central metabolic hub required 

for ATP production. Amino acids therefore contribute to the mitochondrial metabolism and 

ATP production. The energy produced from the TCA cycle is utilised for biological processes 

that aid in plant growth and development such as fatty acids biosynthesis and protein 

synthesis (Cleveland & Morris, 2015). The carbon skeleton of all amino acids can be 

funnelled into only seven TCA intermediates namely: acetyl CoA, pyruvate, acetoacetyl 

CoA, α-ketoglutarate, succinyl CoA, fumarate, and oxaloacetate (Figure 3.10), driving the 

production of energy. PGPR-induced accumulation of Tyr, Cys, Gly at 4 WAE and Ser, Ala, 

Cys, Tyr, Val, Hyp and Gly at 6 WAE (Figure 3.9B) is therefore suggested to be associated 

with the increased flux of their catabolism into TCA intermediates for ATP production, 

thereby enhancing the fuelling of a wide-range of energy-demanding biochemical processes 

involved in plant growth and development such as gene expression, mobility and metabolism. 

Cellular ATP has been reported to regulate numerous processes involved in abiotic stress 

responses such as ROS regulation under abiotic stress (Sun et al., 2012). The increased ATP 

production induced by PGPR treatment through the amino acid accumulation can be 

postulated to be a form of pre-conditioning for subsequent environmental stress encounter by 

powering plant defence responses aiding survival and tolerance. Interestingly, the number of 

amino acids accumulated due to PGPR treatment differed between the two time points. At 6 

WAE, all the signatory amino acids (Ser, Ala, Cys, Tyr, Val, Hyp and Gly) were increased, 

whereas under 4 WAE (Tyr, Cys and Gly), Ser and Ala were decreased. This therefore points 

to the dynamism in cellular metabolism and suggests that energy production induced by 

PGPR treatment is enhanced as the plant develops due to increased energy demand for 

normal plant growth and development processes.  

 

PGPR treatment induced the accumulation of Tyr, common to both time points in non-

stressed plants (Figure 3.9B). Tyr is an aromatic amino acid (AAA) involved in the synthesis 
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of proteins (Parthasarathy et al., 2018), which can be catabolised into fumarate and serve as a 

precursor of secondary metabolite such as auxins, phytoalexins, alkaloids and flavonoids 

(Facchini et al., 2004; Hudson & Prabhu, 2010). Increased levels of Tyr is due to its 

degradation into precursors of the phenylpropanoid pathway, where it is a direct precursor of 

coumarate (MacDonald & D’Cunha, 2007). Tyr can also serve as a  precursor for the 

biosynthesis of tocopherols such as vitamin E through its transamination into homogentisate 

from which vitamin E is synthesised from (DellaPenna & Pogson, 2006; Mène-Saffrané & 

DellaPenna, 2010; DellaPenna & Mène-Saffrané, 2011). Vitamin E can modulate ROS 

production, and therefore its accumulation may be beneficial to plant growth and survival by 

mitigating oxidative stress resulting from environmental cues.  

 

PGPR-induced increase in the level of phenylalanine (Phe), an additional AAA, was also 

observed (Figure 3.9B). Phe can be catabolised into phenylpropanoid pathway precursors. 

The phenylpropanoid pathway plays a significant role in plant development and it confers 

resistance to environmental stresses such as ROS scavenging. Considering its functional role 

and involvement in plant defence, the PGPR-induced activation of this pathway could be a 

form of pre-conditioning, preparing the plant for stress conditions through enhanced defence 

responses. Additionally, Garcia-Seco et al., (2015) and Mandal, (2019) have reported the 

upregulation of the phenylpropanoid pathway leading to the biosynthesis of flavonoids as part 

of an induced systemic response (ISR) induced by PGPR. The activation of ISR by PGPR is 

crucial for enhanced tolerance against abiotic stress conditions.  
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Figure 3.10. Catabolism of the amino acid carbon skeletons into TCA intermediates. The carbon 

skeleton of the signatory amino acids can be fed directly into the TCA cycle by being degraded to 

acetyl CoA, pyruvate, acetoacetyl CoA, succinyl CoA, and fumarate for energy production. The 

heatmaps depict the quantitative levels of the amino acids, pointing to enhanced energy production 

through increased metabolic flux of amino acid degradation. Abbreviations: TCA, tricarboxylic acid 

cycle; 3PGA, 3-phosphoglyceric acid; PEP, phosphoenolpyruvate. 

 

To further describe the interrelationships between the different measured metabolites, based 

on their quantitative profiles, a correlation analysis was employed, pointing to the 

biochemical modifications and framework underlying the PGPR-induced growth promotion 

and defence priming. Metabolite-metabolite correlation analysis (MMCA) was performed in 

which the magnitude and direction of the correlation between the metabolites was computed, 

revealing underlying biologically functional interconnectivities of measured metabolites, an 
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atlas of cellular dynamisms in response to experimental conditions (Hu et al, 2014). A 

positive correlation indicates an increase/decrease in the metabolite levels, and a negative 

correlation indicates an inversely proportional relationship between the metabolites, where if 

one metabolite increases, the other decreases (Rosato et al., 2018). Furthermore, the 

exploitation of the metabolite ratios represented by each box on the correlation-heatmaps can 

indicate the direction of the quantitative metabolic profiles in a biochemical pathway.  

 

Ala and Ser both have a negative correlation with Gly, Cys, Val, and Phe, and Zea, Bet, SA, 

IAA, Gly, Cys, Trp and Phe respectively (Figure 3.11), indicating that these metabolites can 

be degraded into their respective carbon skeletons to drive the metabolic flux towards the 

synthesis of other amino acids (Hildebrandt et al., 2015; Hildebrandt, 2018). Additionally, 

the general level of correlation was relatively low between the amino acids and 

phytohormones; however, there were a number of clusters that indicated highly positive or 

negative correlations among the metabolites. The clusters that were most prominent, showing 

a positive correlation were amino acids. Strong correlation among amino acids reflects their 

mutual constrained relationship (Du et al., 2003). The observed positive correlation between 

different amino acids under PGPR treatment in well-watered conditions therefore suggests 

that different amino acids have mutual functions and feed-forward interactions involved in 

plant growth promotion and defense preconditioning.  

 

 

 

 

 



 
92 

 

 
Figure 3.11: Metabolite-metabolite correlation analysis heatmap. Correlation analysis heatmap 

based on Pearson’s r distance measure where red represents positive correlation and blue negative 

correlation between naïve- and PGPR-treated maize plants, both under well-watered conditions. 

Abbreviations: ACC, 1-aminocyclopropane-1-carboxylic acid. 

 

Furthermore, to situate the observed metabolic reprogramming induced by PGRP treatment, 

in a metabolome view context, a pathway analysis was carried out using the metabolic 

pathway analysis (MetPA) – an integral module of MetaboAnalyst 4.0 (Chong et al., 2019). 

Pathway enrichment analysis refers to the quantitative enrichment analysis directly using the 

metabolite concentration values, as compared to compound lists used by over-representation 

analysis. As a result, it is highly sensitive and has the potential to identify subtle but 

consistent changes amongst different metabolites under study that are involved in the same 

biological pathway. Metabolites are mapped and visualised  to known and most relevant 

biochemical pathways (Xia et al., 2012b, 2015; Alonso et al., 2015; Chong et al., 2018). The 

selected amino acids and phytohormones were uploaded into MetPA for the overview 
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representation and pathway topological analysis based on a hypergeometric test algorithm 

and relative-betweenness centrality respectively. MetPA revealed ten significant 

metabolomic pathways with impact score > 1.0, out of a total of 30 pathways that were 

uniquely altered by PGRP treatment. The significant pathways included Trp metabolism, Gly, 

Ser and The metabolism, Phe metabolisms, isoquinoline alkaloid metabolism, Cys and Met 

metabolism and Tyr metabolism (Table 3.4 and Figure 3.12), with Trp and Gly, Ser and Thr 

metabolism pathways showing the highest hits. 

 

Table 3.4: Significant metabolic pathways involved in response to PGRP treatment in non-stressed 

Zea mays.  

No Pathway  Total Expected Hits Impact 

1 Tryptophan metabolism 23 0.32787 2 0.5862 

2 Glycine, serine and threonine metabolism 33 0.47042 6 0.5134 

3 Phenylalanine metabolism 12 0.17106 1 0.4230 

4 Isoquinoline alkaloid biosynthesis 6 0.085531 1 0.4117 

5 Cysteine and methionine metabolism 46 0.65574 5 0.2012 

6 Tyrosine metabolism 18 0.25659 1 0.1675 

7 Arginine and proline metabolism 28 0.39914 2 0.1601 

8 Alanine, aspartate and glutamate metabolism 22 0.31361 2 0.1259 

9 Glyoxylate and dicarboxylate metabolism 29 0.4134 2 0.1194 

10 Aminoacyl-tRNA biosynthesis 46 0.65574 12 0.1111 
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Figure 3.12. Summary of pathway analysis with MetPA. Representation of MetPA-computed 

metabolic pathways and their significance/pathway impact under control (T2) and PGPR treatment 

(T1). (A) The graph, “metabolome view” contains all the matched pathways (the metabolome) 

arranged by p-values (pathway enrichment analysis) on the y-axis, and the pathway impact values 

(pathway topology analysis) on the x-axis, with the numbers corresponding to the mapped pathways 

listed in Table 3.4. The node colour is based on the p-value and the node radius is defined by the 

pathway impact values. The latter is the cumulative percentage from the matched metabolite nodes. 

(B) Topology map of glycine, serine and threonine metabolism displaying altered amino acids in 

response to PGPR treatment 

 

As highlighted above, amino acids serve as precursors for secondary metabolites, and 

Phe/Trp are precursors of the phenylpropanoid pathway which play a crucial role in the 

interconnection between the primary and secondary metabolism in plants, regulating plant 

growth and development. Phe metabolism is of paramount importance for plants under 

drought stress. Phe is used as a building block for proteins, and also serves as a precursor for 

numerous plant compounds that are crucial for plant growth, development and abiotic stress 

tolerance (Tohge et al., 2013; Pascual et al., 2016). The Gly, Ser, and Thr pathway which 

was also significantly altered plays a key role in the synthesis of amino acids including Lys, 

Thr, Met, and isoleucine (Ile)  (Hildebrandt et al., 2015) under stress conditions. Consistent 

with this finding, Ser and Gly were the most significantly affected metabolites in the 

topology map (Figure 3.12B). A recent study by Khan et al. (2019b) reported on different 

metabolic pathways induced by PGPR under drought stress. The authors revealed Trp 
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metabolism, Phe metabolism and Gly, Ser and Thr metabolism as one of the significantly 

altered pathways which are involved in conferring drought stress tolerance in chickpea (Cicer 

arietinum L.). 

 

3.3.2.2 PGPR-induced changes in secondary metabolism – growth 
promotion and priming 
 

Chemometric models, PCA (Figure S3.3) and PLS-DA (Figure 3.13), revealed distinct 

treatment-related sample groupings and allowed the description of differential quantitative 

metabolic changes on flavonoids and phenolic acids in naïve (T2) and PGPR-treated (T1) 

plants. These models revealed that PGPR induced differential metabolomic changes in non-

stressed plants through a distinct separation in the two groups (Figure 3.13A). The computed 

PLS-DA models revealed a clear separation of the groups; two time points separated in the 

first component, and the naïve and PGPR-treated groups separated in the second component. 

The use of OLPS-DA loading S-plots and variable importance in projection (VIP) plots 

(Figure 3.13B) further allowed the extraction of statistically significant variables driving the 

differentiation between naïve plants and PGPR-treated plants. 

 

Figure 3.13. Chemometric models of comparative quantification analysis of flavonoids and 

phenolic acids. (A) Partial least squares-discriminant analysis (PLS-DA) score plot. (B) Variable 

importance projection plot showing the discriminant metabolite (VIP > 1) responsible for the class 

separation. Abbreviations: C, control; PGPR refers to the biostimulant used; WAE, weeks after 

emergence. 
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Overall quantitative changes (logarithmic fold changes) in flavonoids and phenolic acid 

profiles induced by PGPR treatment are represented by radar plots at 4 and 6 WAE (Figure 

3.14). The observed changes indicate that PGPR treatment influences the plant’s secondary 

metabolism to mediate plant growth and development. PGPR treatment revealed an 

accumulation and downregulation of the selected flavonoids and phenolic acids (Figure 3.14) 

for time points 4 and 6 WAE.  

 

Figure 3.14: Radar plots showing quantitative ratio changes of flavonoid and phenolic acid 

profiles under well-watered conditions with (T1) and without PGRP treatment (T2). Plots show 

the calculated logarithmic fold changes from the quantification of each metabolite. (A) Flavonoid and 

(B) phenolic acid profiles from well-watered conditions with PGPR showing metabolite changes at 4 

WAE and 6 WAE.  

 

Hierarchical clustering heatmap analysis allowed for the visualisation of these quantitative 

changes of both flavonoids (Figure 3.15A) and phenolic acids (Figure 3.15B) between the 

two treatments (C and PGPR, T2 vs. T1).  Quantitative measurement of selected flavonoids 

revealed apigenin, vicenin-2 (apigenin-6,8-di-C-β-D-glucoside), vicenin-3 (apigenin-6-C-β-

D-glucoside-8-C-β-D-xyloside), apigetrin (apigenin-7-O-β-D-glucoside), luteoside, 

naringenin, and luteolin to be signatory markers of PGPR treatment (Figure 3.15; Figure 

S3.4). As previously mentioned in section 3.1, secondary metabolites are various chemical 

compounds produced by plants through metabolic pathways and functionally linked to the 

primary metabolism. These secondary metabolites are widely distributed in plants and are 

usually classified based on their biosynthetic pathways and three major families are generally 

considered: alkaloids, terpenes/steroids and phenolics (Bourgaud et al., 2001). 

Phenylpropanoid compounds are a class of secondary metabolites that are synthesised from 

primary metabolites – Phe/Tyr, through a series of enzyme-catalysed reactions. They have 
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been suggested to play various roles in plant development, including regulation of cell 

physiology and signalling. Phenylpropanoids can be divided into five groups depending on 

their chemical structures and this includes flavonoids, phenolic acids, coumarins, and 

monolignols (Liu et al., 2015).   

 

Flavonoids are polyphenol containing compounds that are ubiquitously present in plants, and 

their roles in plant growth and development have been widely discussed. They are found in 

numerous modified forms, synthesised through hydroxylation, methylation, acylation and 

glycosylation enzyme catalysed reactions (Lepiniec et al., 2006; Saito et al., 2013), among 

which glycosylated flavonoids are by far the most common natural compounds which may 

occur as C-glycosyl flavanones (Rauter et al., 2007). Flavonoids have been reported to have 

diverse functions that have evolved in plants to regulate growth and development. These 

functions include control of respiration and photosynthesis (Cushnie & Lamb, 2005), 

antioxidant and chelating capacity (Agati et al., 2012; Stolarzewicz et al., 2013), drivers of 

symbiosis between plants and rhizobacteria (Weston & Mathesius, 2013), regulators of auxin 

transport and catabolism. The accumulation of apigenin, apigetrin and vicenin induced by 

PGPR (Figure 3.15) enhances photosynthesis and respiration capacity providing energy for 

plant growth and maintenance. The produced energy indicates PGPR-induced priming 

mechanisms in which the increased energy pool can be utilised under environmental stress 

encounters to ensure sustained plant growth and development. As highlighted (Chapter 2, 

section 2.2.2), ROS are present in moderate levels under normal plant growth conditions, 

however, stress induces excess production of ROS, resulting in deleterious effects such as 

cell death. Accumulation of flavonoids can inhibit the generation of ROS, by scavenging 

ROS and hindering the production of ROS producing enzymes, thus maintaining a redox state 

inside the cells. This indicates a priming mechanism induced by PGRP, to pre-condition the 

plants’ antioxidant system resulting in a stronger defence system following stress cues. 

Martinez et al. (2016), reported a decrease in oxidative damage due to the accumulation of 

flavonoids in tomato plants and this, correlates to the findings of the current study.  

 

PGPR treatment induced a decrease in the levels of naringenin when compared to the control 

group (Figures 3.15 and 3.16). Naringenin is a general precursor for the synthesis of 

isoflavones, flavones and flavonols. Flavonols are synthesised from naringenin through the 

action of flavone synthase I (FSI) or flavone synthase II (FNSII) (Martens & Mithöfer, 2005). 
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The expression profile of FNSII gene is investigated in Chapter 4 (section 4.3.3). The down-

regulation effect induced by PGPR on naringenin may possibly be due to its 

degradation/conversion into flavones apigenin and its glycosides (vicenin-2, vicenin-3, and 

apigetrin) (Figure 3.15A). Several bacteria have been reported to degrade flavonoids for 

various functions such as utilizing them as carbon or detoxification sources. Pillai & Swarup 

(2002) reported the ability of Pseudomonas putida (PGPR) to catabolise naringenin and 

quercetin. It is therefore logical to postulate that the consortium of PGPR strains (Bacillus 

spp.) used in this study promotes plant growth by inducing the degradation of naringenin into 

flavones which have been identified as the most crucial class of flavonoids that participate in 

plant defence mechanisms (Pollastri & Tattini, 2011). Naringenin has also been reported to 

suppress plant growth in several species such as Spinacia oleracea, Lactuca sativa and 

Glycine max L. (Wei et al., 2004; Bido et al., 2010), through its inhibitory effect on 4-

coumarate: CoA ligase, a key enzyme in the phenylpropanoid pathway involved in the 

synthesis of phenolics and other products such as lignin. The observed decrease in naringenin 

levels induced by PGPR (Figures 3.15A and 3.16) may therefore suggest the inhibition of 

naringenin accumulation associated with plant growth suppression. A decrease in naringenin 

may result in low concentrations with no inhibitory effect on4-coumarate: CoA ligase, and 

promotion of secondary metabolites biosynthesis through the phenylpropanoid pathway.  
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Figure 3.15. Quantitative analysis of flavonoids and phenolic acids abundances in naïve plants (Control, T2) and PGPR-treated (T1) plants. 

Hierarchical clustering heatmap displayed with VIP scores and logarithmic fold changes of (A) Flavonoids and (B) Phenolic acids at 4 and 6 WAE. 

Discriminant metabolites obtained from both OPLS-DA modelling and VIP scores plots are highlighted in red. 
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PGPR treatment led to an accumulation of signatory phenolic acids: coumaric acid, cinnamic 

acid, protocatechuic acid, coniferyl alcohol at 4 WAE; syringic acid, ferulic acid and 

coniferyl alcohol at 6 WAE (Figure 3.15B). Phenolic acids are extensively spread-out 

through the plant kingdom and form a diverse group of plant metabolites including 

hydroxybenzoic and hydroxycinnamic acids (Mandal et al., 2010). The accumulation of 

phenolic acids induced by PGPR has been widely reported (Singh et al., 2002, 2003, 2012; 

Ahemad & Kibret, 2014). These secondary metabolites mediate plant growth and 

reproduction by influencing physiological processes related to growth and development 

including cell division, seed germination and synthesis of photosynthetic pigments (Tanase et 

al., 2019). The degradation products of phenolic acids contribute to nitrogen mineralisation 

and formation of humus. The latter thus actively provides the plant with essential nutrients 

required for growth and development (Halvorson et al., 2009; Kefeli et al., 2012; Min et al., 

2015). Phenolic acids also chelate metals and improve soil porosity, enhancing absorption 

sites and increasing the mobility and availability of elements, such as potassium, calcium, 

magnesium, copper, zinc, manganese and iron for plants (Seneviratne & Jayasinghearachchi, 

2003).  

 

The observed accumulation of the various phenolic acids induced by PGPR treatment 

(Figure 3.15B and 3.16) indicates a PGPR-induced enhancement of plant growth and 

development through the increased flux of organic and inorganic nutrient uptake by the plant. 

The increased nutrient availability ensures plant survival under adverse environmental 

conditions, which indicates a possible priming mechanism induced by PGPR treatment. 

Phenolic acids are produced in moderate levels under optimal conditions in plants and in 

excess under suboptimal conditions in response to environmental perturbations (Kefeli et al., 

2012; Cheynier et al., 2013), and numerous studies have reported on the antioxidant activity 

of these compounds (reducing agents, quenchers of singlet oxygen formation and free radical 

scavengers) related to plant adaptation under abiotic stress (Michalak, 2006; Ghasemzadeh & 

Ghasemzadeh, 2011; Lee et al., 2013; Król et al., 2014). The accumulation of phenolic acids 

resultant from PGPR treatment can serve as a priming mechanism through increased 

antioxidant capacity, resulting in the mitigation of oxidative stress under stressful conditions.  
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Figure 3.16. General phenylpropanoid and related metabolomic pathways. The simplified 

scheme comprises of the phenylpropanoid pathway branching into phenolic acids, flavonoids and 

isoflavonoids biosynthesis. The pathways show the measured quantitative changes of phenolic acids 

and flavonoids induced by PGPR treatment in well-watered plants and the inter-connection of the 

metabolites in different pathways. Abbreviations: CHI, chalcone isomerase; FLS, flavonol synthase; 

PAL, phenylalanine ammonia-lyase; C4H, cinnamate-4-hydroxylase; 4CL, 4-coumarate CoA ligase; 

C3H, coumarate 3-hydroxylase COMT, Caffeic acid/5-OH ferulic acid O-methyltransferase; GT, 

glycosyltransferase.  

 

Cinnamic acid was the most abundant when compared to the rest of the upregulated phenolic 

acids (Figure S3.5). As previously mentioned, phenolic acids together with flavonoids are 

synthesised from primary metabolites - Phe/Tyr, through a series of enzyme-catalysed 

reactions via the phenylpropanoid pathway. Cinnamic acid formed from the deamination of 

phenylalanine through the action of phenylalanine ammonia lyase (PAL) is a pivotal branch 

of primary and secondary metabolism, representing a crucial regulatory step in the formation 

of numerous phenolic acids (Mandal et al., 2010; Fraser & Chapple, 2011; Yin et al., 2012). 

It is converted into phenolic acids including coumaric acid and ferulic acid. The increased 

accumulation of cinnamic acid induced by PGPR is therefore to drive the flux for the 

biosynthesis of additional phenolic acids required for sustained plant growth and 

development (Figure 3.16). A decrease in caffeic acid, ferulic acid, coumaric acid, gallic 
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acid, and syringic acid and protocatechuic acid was observed due to PGPR treatment. This 

downregulation can also drive the accumulation of their immediate precursors such as 

cinnamic acid and ferulic acid, in order to sustain homeostasis (Figure 3.16). Moreover, the 

accumulation of some phenolic acids is phytotoxic. Phenolic acids including gallic acid have 

been reported to have a phytotoxic effect by inhibiting either seed germination or root growth 

in various plant species (Li et al., 2010; Goleniowski et al., 2013) and the maintenance of this 

phenolic acids at moderate levels will enhance root growth. This growth mechanism can 

therefore pre-condition the plant by facilitating increased nutrient uptake under adverse 

environmental conditions. 

 

 

 
 
Figure 3.17. Proposed schematic diagram representing key mechanisms induced by microbial 

biostimulants in plant growth promotion and priming based on the finding reported above. In 

the pre-challenge phase (well-watered conditions), PGPR treatment induced biochemical mechanisms 

which are associated to plant growth promotion and defence priming, such as reprogramming of plant 

morphophysiology and changes in levels of amino acids, flavonoids, phytohormones and phenolic 

acids. Abbreviations: H2O2, Hydrogen peroxide; MDA, Malenoaldehyde; AsA, Ascorbate; SOD, 

superoxide dismutase (SOD), ascorbate peroxidase (APX); catalase, (CAT); and ACC; 1-

aminocyclopropane-1-carboxylic acid. 

 

Thus, the decoded differential (quantitative) metabolic profiles, described in a metabolism 

view and cellular language, reveal key molecular and physiological processes (in maize 

plants) activated by the microbial-based biostimulant for growth promotion and 

preconditioning of defences (Figure 3.17). The model emerging from these results suggests 

that the microbial-based biostimulant promotes the development of maize plants via altering 

levels of amino acids, phytohormones and phenolics. These quantitative metabolic changes 

span a wide range of metabolic pathways (in both primary and secondary metabolism), 
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activating and positively rerouting physiological events towards growth and healthily 

(organismal) development. These physiological events include increased respiration, 

enhancement of photosynthesis machinery, favouring nutrient and water uptake (Figure 

3.17). Furthermore, the elucidated metabolic landscape points to biostimulant-induced 

preconditioning of maize defences against drought stress conditions. In addition to 

physiological events directly related to plant growth and development, the microbial-based 

biostimulant activated biochemical and physiological events of a ‘stress-preparedness’ state 

(Figure 3.17): increased pool of amino acids, activation of a stress-related hormonal network, 

a pre-conditioned antioxidant capacity and a regulation of protein synthesis machinery.     

 

3.3.3 Metabolomic changes induced by PGPR treatment under mild and 
severe drought stress conditions and their impact on drought tolerance 
 

Chapter 3 (section 3.3.2) of this dissertation decoded some of the key metabolic changes 

characterising the pre-challenge (non-stressed) phase induced by PGPR treatment in the 

primary and secondary metabolism. This subsection therefore extensively focuses on the 

quantitative changes of amino acids, hormones, flavonoids and phenolic acids induced by 

PGPR-based biostimulant under mild and severe drought stress conditions (T3 and T4 vs. T5 

and T6). To explicitly evaluate the effects of PGPR treatment on drought stressed plants, 

naïve plants (C), mild drought (MD) and severe drought (SD) stressed plants (Table 3.1; 

subsection 3.2.2) were initially investigated, followed by PGPR-treated drought stressed 

plants (MD/SD-PGPR). PCA (Figures S3.6 and S3.7) and PLS-DA (Figure 3.18) modelling, 

by summarising the variation in multivariate space into a reduced number of latent 

components, revealed distinct treatment-related sample groupings, allowing for the 

description of differential quantitative metabolic changes in naïve plants, drought stressed 

plants and PGPR-treated stressed plants.   

 

These models revealed that drought stress and PGPR induced differential metabolomic 

changes in maize plants, as infographically depicted by distinct treatment-related sample 

groupings in scores space (Figures 3.18A and B). Interestingly, for amino acids and 

phytohormones analysis (Figure 3.18A), there is a clear discrimination between the naïve 

group and all the treatments (the drought stressed and PGPR-treated drought stressed groups). 

This therefore implies that the metabolism of naïve plants and primed plants is readjusted due 

to mild and severe drought stress treatment. Conversely, PLS modelling of the flavonoids and 
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phenolic acids only showed a clear discrimination of the control group from the other 

treatments which were all grouped into one (Figure 3.18B). To identify key signatory 

metabolites driving the separation the different classes under study, OLPS-DA loading S-

plots (Figures S3.8 – S3.11) and variable importance in projection (VIP) plots were 

employed for amino acids and phytohormones (Figure 3.18C), and flavonoids and phenolic 

acids (Figure 3.18D). 

 

 

Figure 3.18. Chemometric models of comparative quantification analysis of the primary and 

secondary metabolites. Partial least squares-discriminant analysis (PLS-DA) scores plot (A) Amino 

acids and phytohormones, (B) Flavonoids and phenolic acids, and variable importance in projection 

plot showing the discriminant metabolite (VIP scores > 1) responsible for the class separation (C) 

Amino acids and phytohormones, (D) Flavonoids and phenolic acids. Abbreviations: C, control; 

PGPR, plant growth-promoting rhizobacteria; MD, mild drought; SD, severe drought. 
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Overall differential changes of amino acids, phytohormones, flavonoids and phenolic acids 

profiles induced by mild and severe drought stress conditions in naïve plants are represented 

by radar plots (Figure 3.19) at 4 WAE. The evaluation of the metabolic changes indicates 

that drought stress influences both the primary and secondary metabolism by differentially 

altering quantitative changes in the different metabolite classes. Hierarchical clustering 

heatmap analysis allowed for the visualisation of these quantitative changes for amino acids 

and phytohormones in both naïve- and PGPR-primed maize plants under mild- and severe 

drought stress conditions (Figure 3.20). 

 

 

Figure 3.19: Radar plots showing quantitative ratio changes of metabolites under well-watered 

(T2) conditions with and drought treatment (T3, T4).  Plots show the calculated logarithmic fold 

changes from the quantification of each metabolite (A) Amino acids (B) Hormones (C) Flavonoids 

and (D) Phenolic acids showing metabolite changes at 4 WAE. 

 

Signatory amino acids that showed decreased levels under MD conditions included Ser, Ala, 

Cys, Gly, and HyP; and for SD conditions included Ser, Met, Asp, Gly, and Hyp (Figure 

3.20). The decrease in levels of Ser, Gly, and Hyp evident in both MD and SD may suggest a 

common drought stress response mechanism induced in plants to combat mild or severe 
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drought stress. Under drought stress, these amino acids can be catabolised into TCA 

intermediates for increased energy production required for sustained plant growth as 

highlighted in section 3.3.2. The downregulation of Gly is coupled to increased energy 

production due to low Gly concentrations’ inhibitory effect on photorespiration, an energy 

wasteful process that inhibits photosynthesis in plants (Eisenhut et al., 2007; Kang et al., 

2018). Ala and Cys unique to MD which were also downregulated can also serve as TCA 

cycle intermediates for increased energy production. Met downregulation under severe 

drought conditions has been reported as a drought induced defence mechanism in plants 

(Larrainzar et al., 2014), and this correlates with the findings of the present study. Not only is 

Met catabolised into acetyl-CoA – a TCA cycle precursor, but it can also be adenosylated 

into S-adenosyl methionine (SAM), a common precursor for ethylene signalling and 

polyamine biosynthesis (Pandey et al., 2000; Amir, 2010).  

 

The production of polyamines upregulates the biosynthesis of osmolytes such as soluble 

sugars under severe drought conditions. In plants, the synthesis of osmolytes serves as an 

effective mechanism for water deficit. Osmolytes are frequently used by cells to 

accommodate osmotic pressure within the plant cells by acting as osmoprotectants which 

directly stabilise protein and membrane structures under dehydration conditions (Iqbal, 

2018).  It is worth noting that the decrease in the concentrations of the overall amino acids 

differed in MD and SD conditions. Under MD, more amino acids were downregulated when 

compared to SD conditions (Figure 3.20). This finding implies that under MD conditions, the 

plant can downregulate several amino acids for the induction of numerous proteins, whereas 

under SD conditions, protein biosynthesis is limited due to the severity of the drought stress. 

A recent proteomics study by Iqbal (2018) reported on protein accumulation under mild, 

moderate and severe drought stress conditions in which differential increase in proteins 

involved in carbohydrate energy metabolism, protein homeostasis, transcription, cell 

structure, cell membrane transport, signal transduction, stress and defence responses was 

observed. Since drought stress often gives rise to protein denaturation, plants therefore need 

to balance between synthesis and degradation of proteins to maintain normal cellular 

metabolic activities required for plant growth and defence responses. (Reinbothe et al., 2010; 

Hildebrandt et al., 2015).  

 

In contrast to the normal defence mechanisms employed by plants under mild and severe 

drought stress discussed above, PGPR-primed plants induced an accumulation of numerous 
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signatory amino acids (Gly, Cys, Ser, Thr, Val, HyP, and Pro) under mild drought stress 

conditions and (Gly, Cys, and Met) under severe drought stress conditions (Figure 3.20).  

This suggests that the application of microbial-based biostimulants activates cellular and 

molecular defence mechanisms under drought stress which involve dynamic changes in 

amino acid levels. Numerous studies have reported the increase of the amino acid pool as one 

of the PGPR-based mechanisms in enhancing drought tolerance (Vardharajula et al., 2011; 

Ahemad & Kibret, 2014b; Khan et al., 2019b). As previously mentioned, these amino acids 

can be catabolised into TCA intermediates for energy production, and therefore the increase 

in their pool may point to this need of energy production. The latter can then be used for 

sustained plant growth under unfavourable drought stress conditions. PGPR treatment 

revealed the accumulation of Pro, HyP, and Tyr (also observed in MD with no PGPR) under 

mild drought stressed plants. The accumulation of osmolytes is a general mechanism plants 

deploy to cope with water deficit, and is documented as a PGPR-based priming mechanism 

for enhanced growth under drought in several plants (Paul et al., 2008; Sandhya et al., 2010, 

2015; Ansary et al., 2012; Shintu & Jayaram, 2015). Pro accumulation under drought stress is 

a  key adaptive plant response mechanism under drought stress (Szabados & Savouré, 2010; 

Fàbregas & Fernie, 2019). This amino acid is an osmolyte that regulates water potential in 

plant cells, enabling plants to sustain normal growth under drought stress conditions. 

Moreover, it can act as a signalling molecule that modulates mitochondrial functions, 

influence cell proliferation and trigger the expression of genes crucial for plant recovery 

following stress encounters (Szabados & Savouré, 2010; Meena et al., 2019). Additionally, 

Pro can act as a free radical scavenger, cell redox balancer, source of carbon, nitrogen and 

energy, stabiliser for cellular structures and membranes, and an activator of detoxification 

pathways (Kishor et al., 2005; Trovato et al., 2008; Hayat et al., 2012).  

 

Interestingly, additional osmolytes Hyp and Bet accumulation increased in PGPR-treated 

plants under both mild and severe drought stress conditions. Bet enhances drought stress by 

maintaining membrane integrity, cell osmolarity, and protecting the photosynthesis systems. 

Additionally, due to its zwitterion state, it can interact with protein complexes and 

membranes, protecting them from ROS (Gupta et al., 2014). The Ser content, which also 

increased under PGPR treatment in drought stressed plants (Figure 3.20), is involved in the 

biosynthesis of glycine betaine – an osmoprotectant. Ser can be catabolised into choline 

through the decarboxylation reactions to produce choline which then undergoes oxidation 
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reactions to form glycine betaine (Sakamoto & Murata, 2001, 2002), which has been reported 

to be one of the most efficient osmoprotectants (Kurepin et al., 2015). The quantitative 

increase in Ser content in PGPR-treated stressed plants can be therefore be channelled 

towards the biosynthesis of glycine betaine conferring drought stress tolerance. For example, 

Gou et al. (2015) reported an increase in betaine under drought stress in maize plants, 

induced by a PGPR strain Pseudomonas fluorescens, and an improvement of water retention 

and plant growth under drought stress conditions was observed. Additionally,  Gagné-

Bourque et al. (2016)  reported an accumulation of serine in B. subtilis B26 treated plants 

under drought stress. 

 

In contrast to the accumulation of the amino acids highlighted above, PGPR treatment also 

induced a decrease in quantitative levels of signatory metabolites Tyr, Trp, Phe, Val and Thr. 

As deciphered in subsection 3.3.2.1, AAAs Tyr, Trp, and Phe are central molecules in plant 

metabolism (Figure 3.20). Aside from their function as protein building blocks, these amino 

acids serve as precursors for a variety of plant hormones (Figure 3.20), as well as for a very 

wide range of aromatic secondary metabolites with multiple biological functions. The 

degradation of these amino acids initiates the phenylpropanoid pathway which produces 

numerous plant defence-related compounds such as flavonoids, lignin, vitamin E and suberin. 

PGPR treatment therefore drives the degradation of these amino acids to the biosynthesis of 

phenylpropanoids, resulting in increased production of defence-related compounds to 

enhance drought stress tolerance The AAAs levels were higher in PGPR-primed plants when 

compared to PGPR-primed stressed plants (subsection 3.3.2.1). Thus, this indicates that 

during the PGPR-priming phase AAAs synthesis is preconditioned to provide a pool of 

precursors for the synthesis of defence related metabolites under drought stress.  
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Figure 3.20. Quantitative analysis of amino acids and phytohormones. Heatmap hierarchical cluster analysis displaying metabolite abundances under 

control (T2), mild /severe drought stress (T5, T6) and mild /severe drought stress conditions with PGRP treatment (T3, T4), together with differentially 

altered metabolic pathways.  Abbreviations: Mild drought, MD; Severe drought, SD; and  Control, C. 
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The chemometric modelling (Figure 3.18A) revealed that the signatory metabolites related to 

drought stress conditions are NHP, Bet, ICAld, Zea, ACC and SA (Figure 3.20), where mild 

and severe drought stress conditions led to a decrease in levels of these phytohormones. Plant 

development is regulated and coordinated through the action of several hormones which may 

act either close to or distant from their sites of synthesis to mediate responses to 

environmental stimuli (Davies, 2010). Plants can modify their biochemistry and physiology 

in rapid responses to fluctuations in their environment through the action of phytohormones, 

a critical requirement for their survival. Environmental perturbations therefore elicit changes 

to the production, distribution or signal transduction of growth hormones as well as stress 

hormones, which may promote specific protective mechanisms. The downregulation of 

phytohormones under drought stress may therefore suggest a form of stress tolerance for 

enhanced survival through the regulation of hormonal homeostasis directed towards normal 

conditions (naïve plants with no stress). As previously mentioned (section 3.3.2), ICAld can 

be catabolised into ICA and IAA, supported by the observed accumulation of ICA associated 

with enhanced stress tolerance. This was also phenotypically observed where the biomass 

(root and shoot) of PGPR-primed stressed plant was found to be higher than that of naïve 

stressed plants or that of PGPR-primed plants compared to naïve plants (section 3.3.1; 

Figure 3.5). Conversely, PGRP treatment induced ICAld accumulation under drought stress 

which may suggest increased flux in IAA biosynthesis through indole-3-acetaldehyde 

dehydrogenase action. Drought stress generally stimulates ACC (an ethylene precursor), 

which increases ethylene synthesis in plants (Wang et al., 2003). Apart from ethylene being a 

positive regulator of many physiological responses in plants, it is also associated with 

reduced plant growth and senescence.  

 

The downregulation of ACC under drought may suggest a stress response mechanism by the 

plant, to inhibit the production of ethylene. Additionally, under mild and severe drought 

stress conditions with PGPR treatment, ACC levels were upregulated (Figure 3.20). PGPR 

have been reported to synthesise ACC deaminase enzymes that degrade ACC and lower 

ethylene levels by converting ACC into nitrogen and α-ketobutyrate (Gamalero & Glick, 

2015; Olanrewaju et al., 2017; Nascimento et al., 2018). However, the high ACC content 

observed in PGPR-primed stressed plant, suggest that PGPR-priming preconditions ACCs 

pathway for enhance the synthesis of ethylene to initiated plant defence response/stress 

tolerance. Recent studies have shown that ACC also act as a signalling molecule that 
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regulates plant growth and development independent of ethylene. For example, (Xu et al., 

2008; Tsang et al., 2011) reported ACC as part of the plant signalling mechanisms where root 

cell elongation was observed following ACC application. Thus, the high levels of ACC may 

indicate a PGPR induced drought tolerance mechanism in primed plants which enhances root 

growth under drought stress.  

 

NHP quantitative levels were decreased in naïve plants under both mild and drought stress 

conditions (Figure 3.20). N-substituted phthalimides have been reported to mimic multiple 

gibberellins (GAs) effects on growth and development (Li et al., 2015; Jiang et al., 

2017). The GA signalling pathway has been shown to be a major target for stress responses 

and the central role of GA in response to abiotic stress has become increasingly evident. For 

example, Achard et al. (2006) and  Colebrook et al. (2014) showed that GAs 

negatively/inversely affect drought stress responses in plants. Here, the authors demonstrated 

that GA over accumulation leads to water sensitivity in wild type plants, whereas, GA-

deficient mutants showed an increased water deficit tolerance. Additionally, Plaza-Wüthrich 

et al. (2016) has reported on how GA deficiency confers drought tolerance in staple crops tef 

(Eragrostis tef  Zucc.) and finger millet (Eleusine coracana Gaertn). The drought stress-

induced decrease in the levels of NHP may therefore be an adaptive mechanism employed by 

plants under drought stress for survival. 

 

Furthermore, PGPR treatment induced an increase in the levels of Zea, SA, ICAld and NHP 

as in maize plants under mild and severe drought stress conditions (Figure 3.19). Zeatin 

stimulates cell division, root hair proliferation, controls differentiation of root meristem, and 

regulates water balance and growth under drought stress. PGPR treatment induced the 

accumulation of Zea under both mild and severe drought stress conditions, suggesting its role 

in drought stress tolerance through enhanced root development, osmotic adjustment and 

growth. The increased accumulation of cytokinins by different PGRP strains under drought 

stress has been reported in previous studies (Timmusk & Wagner, 1999; Pospíšilová et al., 

2005; Liu et al., 2013). SA on the other hand is a phytohormone that has diverse roles in 

plant development, such as mitigating oxidative stress under drought stress. It also influences 

stomatal closure through SA-mediated ROS accumulation and activated mitogen-activated 

protein kinases (MAPKs) thereby initiating the expression of key enzymes and drought stress 

responses. A recent study by Jochum et al. (2019) reported elevated levels of SA and 
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increased root growth in wheat and maize plants inoculated with Bacillus spp. 

and Enterobacter spp. under drought stress. Interestingly, under both mild and severe drought 

conditions, PGPR treatment induced the accumulation of all phytohormones except ICA and 

NHP for mild stress and severe drought stress treatment, respectively. The association of 

PGPR with profound changes in the plant's hormone homeostasis as well as growth 

and development related to abiotic stress tolerance has been well established. These changes 

encompass, but are not limited to enhanced growth, root and shoot architecture modifications, 

and synthesis of secondary metabolites (Spaepen et al., 2014; Verbon & Liberman, 2016). 

The accumulation of the phytohormones reported in this study therefore reveals one of the 

key drought tolerance mechanisms through which PGPR acts to mediate drought stress.  

 

The metabolic reprogramming in naïve and primed (PGPR-treated) plants under mild and 

severe drought stress also involved differential changes in the levels of flavonoids and 

phenolic acids (Figure 3.21). Under mild drought stress, an accumulation of signatory 

metabolites namely flavonoids (vicenin, apigenin) (Figure 3.21) and phenolic acids 

(coniferyl alcohol, syringic acid, cinnamic acid, caffeic acid and coumaric acid) (Figure 

3.21) was observed. In response to the constantly fluctuating environmental conditions such 

as drought, plants have evolved the capacity to synthesise various phenolic acids (Caldwell et 

al., 2003) and flavonoids. Under stress conditions, the phenylpropanoid and flavonoid 

metabolic pathways are altered resulting in the increased accumulation of different flavonoids 

and phenolic acids.  Drought stress disturbs the balance between ROS generation and 

scavenging, and thus accelerates ROS propagation which damages vital macromolecules such 

as nucleic acids and proteins, ultimately leading to cell death. ROS induce protein damage by 

oxidising amino acid residues resulting in irreversible carbonylation in side chains 

(Kristensen et al., 2004). Additionally, ROS limit CO2 fixation in chloroplasts and react with 

chlorophyll during photosynthesis to form the chlorophyll triplet state which can rapidly 

generate singlet oxygen (1O2), thus causing damage to photosynthetic complexes (Asada, 

2006; Buchert & Forreiter, 2010).   

 

As previously mentioned in subsection 3.3.2.2, the accumulation of flavonoids and phenolic 

acids has been linked to strong radical scavenging activity. These antioxidants therefore 

contribute to the mitigation of oxidative stress induced by drought stress. This defence 

mechanism employed by plants under mild and severe drought stress conditions is indicative 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/secondary-metabolite
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/host-plants
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/homeostasis
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of drought stress tolerance through antioxidant production. Numerous studies in different 

plant species have reported phenolic acids as indicators of drought tolerance through 

increased antioxidant capacity (Caldwell et al., 2003; Weidner et al., 2009; Robert et al., 

2010; Gharibi et al., 2016; Varela et al., 2016; Sarker & Oba, 2018; Laxa et al., 2019). 

Contrary to the increased accumulation of flavonoids and phenolics under mild and severe 

drought stress conditions, most of the flavonoids (apigetrin, vitexin, naringenin, vicenin, 

isovitexin, and luteolin) (Figure 3.21) and phenolic acids (protocatechuic acid, ferulic acid, 

cinnamic acid and caffeic acid) (Figure 3.21) were downregulated under severe drought 

stress conditions in non-primed plants. Since plants depend on the antioxidant system 

(flavonoids and phenolic acids) to counteract the effect of ROS induced by drought stress, the 

downregulation of these compounds indicates that the plants’ natural defence system may be 

overwhelmed, resulting in plants succumbing to death due to severe drought as observed in 

section 3.3.1 (Figure 3.5), where non-primed stressed plants had lower antioxidant markers 

and root and shoot biomass when compared to the PGPR-primed stressed plants.  
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Figure 3.21. Quantitative analysis of flavonoids and phenolic acids. Heatmap hierarchical cluster analysis displaying metabolite abundances under control, 

mild /severe drought stress and mild / severe drought stress conditions with PGRP treatment (T5/T6 vs. T3/T4), together with differentially altered metabolic 

pathways. Abbreviations: Mild drought, MD; severe drought, SD; and control, C. 
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It is worth noting that the downregulation of apigetrin and naringenin was the highest when 

compared to the other flavonoids. Since naringenin is a general precursor for the synthesis of 

flavonoids, it can be degraded to drive the synthesis of other flavonoids involved in stress 

responses (Petrussa et al., 2013). Moreover, coumaric acid and caffeic acid had the highest 

accumulation rate when compared with other phenolics and this is due to these molecules 

serving as upstream precursors for the rest of the phenolic acids (Figure 3.21). Metabolite-

metabolite correlation analysis was employed (Figure 3.22) to unravel the inter-relationship 

of these metabolites using the magnitude and direction of the correlation. Naringenin and 

apigetrin both displayed a strong negative correlation between numerous phenolic acids and 

flavonoids including gallic acid, coumaric acid, shikimic acid, coniferyl alcohol, 

protocatechuic acid, cinnamic acid syringic acid and coniferyl alcohol. Conversely, coumaric 

acid showed a negative correlation between syringic acid, apigenin, vicenin, isovitexin and 

naringenin (Figure 3.22).  

 

As previously mentioned in section 3.3.2, a negative correlation is indicative of an inversely 

proportional relationship between metabolites where an increase in another metabolite may 

result in the decrease of the other. The decrease in quantitative levels of naringenin, apigetrin, 

coumaric acid and caffeic acid induced by mild and severe drought stress suggest that these 

metabolites serves as precursors, for the biosynthesis of other phenolic acids and flavonoids 

with increased antioxidant capacity for drought stress tolerance. The overall metabolite-

metabolite correlation analysis (Figure 3.22) revealed a negative correlation between 

flavonoids and phenolic acids as indicated by the blue clustering patterns. The weak 

correlation could be associated to the independent functions of these metabolite classes under 

drought stress or the biosynthesis of flavonoids from upstream phenolic acids, resulting in the 

rise of flavonoids concentrations causing a decrease in the concentrations of phenolic acids or 

vice versa.   
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Figure 3.22. Metabolite-metabolite correlation analysis heatmap. Correlation analysis heatmap 

based on Pearson’s r distance measure where red represents positive correlation and blue negative 

correlation between drought stressed without PGPR plants (T5/T6) and drought stressed plants with 

PGPR (T3/T4 ) under both mild and severe drougth conditions.  

 

PGPR-primed maize plants, on the other hand, had different profiles of these secondary 

metabolites, pointing to enhanced drought stress tolerance. The primed plants showed an 

accumulation of naringenin and ferulic acid, and a decrease of isovitexin, luteolin, luteoside, 

coniferyl alcohol, cinnamic acid, caffeic acid and coumaric acid under mild drought stress 

(Figure 3.21). As mentioned above, naringenin upregulation is suggested to be due to the 

metabolite being a primary intermediate in flavonoid synthesis in which it can be degraded 

into other flavonoid classes resulting in enhanced suppression of ROS production and 

drought stress. A recent study by Yildiztugay et al. (2020) reported naringenin as an 

alleviator of short term osmotic stress by controlling the toxicity of hydrogen peroxide in the 

chloroplast. Similarly, ferulic acid is an upstream intermediate in the biosynthesis of plant 

secondary metabolites. This suggests enhanced drought stress tolerance induced by PGPR 

under drought conditions. Accumulation of numerous flavonoids and phenolic acids indicates 
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a more enhanced antioxidant capacity resulting in drought stress tolerance. The accumulation 

of these defence related metabolites can be linked to the morphological changes observed in 

Figure 3.2, where PGPR-primed plants exposed to mild/severe stress were found to have 

higher relative biomasses (shoot, root and dry) when compared to naïve plants. Moreover, the 

antioxidant markers were found to be higher in PGPR-primed stressed plants when compared 

to naïve stressed (Table 3.3), indicating that PGPR-primed plants have an augmented 

antioxidant system to negate the effects of excess ROS production induced by drought stress. 

During plant priming, the underlining molecular mechanisms leading to defence related 

metabolite accumulation are pre-conditioned. Thus, the high accumulation of phenolic acids 

(Singh et al., 2002, 2003, 2012; Ahemad & Kibret, 2014a) and flavonoids (Alexander et al., 

2019; Asghari et al., 2020; Mirzaei et al., 2020) in PGPR-primed plants under severe drought 

stress is mechanism in which primed plant used to withstand drought. Phenolic acids and 

flavonoids are known to act as antioxidants that suppress ROS by scavenging free radicals, 

inhibition of pro-oxidant enzymes, potent metal chelators of metals involved in ROS 

production and recycling of other antioxidants in the plant. 

 

To further understand the functional impact of PGPR treatment under drought stress and 

situate this differential changes in a metabolome view, MetPA was employed. The 

quantitative metabolomic profiles of amino acids, phytohormones, flavonoids and phenolic 

acids for treatments SD, MD, SD-PGPR and MD-PGPR were analysed using the following 

parameters: (1) enrichment analysis using the global test method, and (2) centrality 

measurement using relative betweenness. The most significantly altered pathways with an 

impact score greater than 0.1 related to PGPR treatment under drought stress include Phe 

metabolism, Trp metabolism, Tyr metabolism, Gly, Ser and Thr metabolism, and Cys and 

Met metabolism, with Trp and Cys and Met metabolism common to both amino acids and 

phytohormones quantitative levels (Figure 3.20). In contrast, flavonoid biosynthesis, flavone 

and flavonol biosynthesis, Tyr metabolism, Trp metabolism, phenylalanine metabolism and 

phenylpropanoid biosynthesis pathways were significantly altered due to PGPR treatment 

under drought stress (Figure 3.21). Additionally, Khan et al. (2019b,a) similarly reported Phe 

metabolism as one of the key pathways altered in response to the application of PGPR and 

plant growth regulators (PGRs) in chickpea under drought stress. As underlined in 

subsection 3.3.2.1, Phe and Trp are upstream precursors for various secondary metabolites 

such as phenylpropanoids, which play essential roles in plant growth and defence against 
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drought stress. Additionally, the phenylpropanoid pathway which was significantly altered 

due to PGPR treatment can, in turn, induce flavonoid biosynthesis (Figure 3.21), thereby 

enhancing the drought stress tolerance through over accumulation of antioxidants shown via 

increased quantitative levels of flavonoids in this study. Trp metabolism has also been 

reported as one of the most enriched pathways in the tolerant genotype of maize kernels 

(Wang et al., 2019) and spring wheat (Michaletti et al., 2018)  than sensitive genotype under 

drought stress, indicating that this pathway is essential in heightened drought adaptation and 

plant development.  

 

In summary, PGPR induced differential morphophysiological and metabolic changes, 

enhanced physiological events that govern drought stress tolerance in the post-challenge 

phase (Figure 3.23). PGPR treatment in mild and severe drought stress conditions mediated 

key mechanisms involved in drought stress tolerance as shown in Figure 3.23. These key 

mechanisms include increased levels of amino acids, flavonoids, hormones, phenolic acids 

and antioxidant markers. The observed changes when situated in the maize metabolome 

spanned key impacted pathways including Phe metabolism, Gly metabolism, and flavonoid 

biosynthesis associated with enhanced drought stress tolerance.  
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Figure 3.23. Schematic diagram of a model representing key mechanisms induced by microbial 

biostimulants in enhancing drought stress tolerance. PGPR treatment induced 

morphophysiological and metabolic changes which are associated to enhanced drought stress 

tolerance, such as accumulation of antioxidant markers, reprogramming of amino acids, flavonoids, 

phytohormones and phenolic acids metabolic profiles. These changes induced by PGPR point to 

physiological events that enhance drought stress tolerance whereas naïve plants display low drought 

stress responsive mechanisms and thus cannot tolerate drought stress. Abbreviations: H2O2, 

Hydrogen peroxide; MDA, Malenoaldehyde; AsA, Ascorbate; SOD, superoxide dismutase; APX, 

ascorbate peroxidase; and CAT, catalase. 

 

PGPR-mediated drought stress tolerance mechanisms elucidated herein include enhanced (i) 

energy production facilitated by amino acid degradation into TCA intermediates, (ii) 

osmoregulation, (iii) cellular and membrane stabilization, (iv) antioxidant machinery, (v) root 

hair proliferation and (vi) activation of MAPK cascades pointing to enhanced expression of 

drought stress responsive genes. Naïve plants however do not efficiently exhibit the drought 

stress tolerance mechanisms mediated by PGPR and therefore cannot negate the deleterious 

effects of drought stress and succumb to the stress.  
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3.4 Conclusion 

 

Plant-microbe interactions are complex, dynamic and very crucial, particularly in terms of 

crop agriculture, and it is of specific interest in plant metabolomics for abiotic stress control. 

Numerous studies have stressed the amplitude of the importance of microbial biostimulants, 

predominantly PGPR-based formulations, in plant-microbe interactions under various 

environmental conditions. PGPR have also been shown to improve overall plant growth and 

development and stress tolerance mechanisms under abiotic stress conditions. As illustrated 

in the introduction, this study focused on elucidating PGPR-based biostimulant-induced 

morphological and metabolic differentiations in maize plants, indicatory of probable 

mechanisms by which the microbial-based biostimulant stimulates plant growth and enhances 

drought stress tolerance through priming. In terms of morphological results, under PGPR 

treatment, non-enzymatic markers were decreased whereas enzymatic stress markers were 

elevated. This upregulation of antioxidant enzymes revealed one key mechanism through 

which PGPR alleviates oxidative stress in both unstressed and drought stressed plants. 

Additionally, PGPR induced increase in relative shoot, root and dry biomass could be 

attributed to PGPR enhancing the plants overall element and nutrient uptake. Targeted 

metabolomics approach employed in this study revealed metabolic reconfigurations of the 

primary and secondary metabolism induced by PGPR under well-watered, mild and severe 

drought stress conditions. These differential changes in amino acids, phytohormones, 

flavonoids and phenolic acids observed in this study elicited by PGPR revealed the probable 

mechanisms employed by PGPR in promoting plant growth and priming mediation resulting 

in enhanced drought stress tolerance (a model summarized in Figures 3.17 and 3.23).  

 

These mechanisms include increased energy production (amino acid channelling into TCA 

intermediates), increased root, leaf and shoot growth, enhanced photosynthesis, nutrient and 

water uptake, ACC degradation, increased osmolyte production, increased protein 

biosynthesis, increased secondary metabolite biosynthesis and oxidative stress mitigation. 

The observed differential metabolic profiles were mapped onto various metabolic pathways 

linked to the priming phenomenon and plant growth promotion. Results drawn from this 

study therefore suggest PGPR as a potential priming agent, enhancing plant growth and 

development as well as mild and severe drought stress tolerance. The work presented herein 

is therefore a contribution to the ongoing efforts of elucidating the biochemical and molecular 
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complex mechanisms underlying plant-PGPR interactions in enhancing drought stress 

tolerance through the exploitation of targeted metabolomics analysis. Metabolomics therefore 

offers opportunity to decode the molecular mechanisms that explain the modes of actions of 

biostimulants. 
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3.7 Supplementary Materials 

 

The supplementary figures and tables are provided as additional information to support the main results reported here in Chapter 3. All the 

experimental raw data, figures and tables that are not included in this dissertation are available in the Department of Biochemistry at the 

University of Johannesburg; and accessible with permission from Dr. Fidele Tugizimana 

 

Table S3.1: Development and optimisation of MRM parameters by direct infusion and optimisation of the collision energy (CE) for each compound transition 

using the MRM optimisation method tool. 

Compound name Rt (min) Ion 

mode 

m/z Transition  CE (eV) Quadrupole 1 

(V) 

Quadrupole 3 

(V) 

Dwell time 

(ms) 

Amino acids         

Proline 1.50 [M+H]+ 116.20 116.20>70.15 

116.20>43.10 

-18.0 

-28.0 

-14.0 

-13.0 

-11.0 

-15.0 

17.0 

17.0 

Cysteine 1.31 [M+H]+ 241.20 241.20>151.90 -14.0 -12.0 -15.0 37.0 

Serine 1.34 [M+H]+ 106.20 106.20>59.95 

106.20>88.10 

-13.0 

-13.0 

-12.0 

-12.0 

-10.0 

-18.0 

17.0 

17.0 

Alanine 1.40 [M+H]+ 90.20 90.20>44.05 

90.20>44.90 

-13.0 

-30.0 

-10.0 

-18.0 

-15.0 

-16.0 

17.0 

17.0 

Threonine 1.40 [M+H]+ 120.20 120.20>56.05 

120.20>74.10 

-16.0 

-12.0 

-13.0 

-13.0 

-20.0 

-28.0 

17.0 

17.0 

Aspartic acid 1.41 [M+H]+ 134.05 134.05>74.10 -15.0 -10.0 -13.0 37.0 

Valine 1.73 [M+H]+ 118.20 118.20>72.10 

118.20> 55.05 

-12.0 

-23.0 

-14.0 

-14.0 

-12.0 

-23.0 

17.0 

17.0 

Methionine 2.14 [M+H]+ 150.20 150.20>60.90 

150.20>56.10 

-17.0 

-24.0 

-10.0 

-11.0 

-20.0 

-24.0 

17.0 

17.0 
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Tyrosine 3.29 [M+H]+ 182.00 182.0>136.10 -14.0 -13.0 -24.0 37.0 

Phenylalanine 5.93 [M+H]+ 166.00 166.00>120.10 -14.0 -12.0 -21.0 131.0 

Tryptophan 6.77 [M+H]+ 205.20 205.20>188.05 

205.20>146.10 

-11.0 

-17.0 

-14.0 

-14.0 

-19.0 

-14.0 

64.0 

64.0 

Glycine 

 

1.40 [M+H]+ 76.10 76.10>76.10 -13.0   100 

Betaine* (Osmolyte) 1.55 [M+H]+ 118.05 118.05 -25.0 - - 100 

Hormones         

N-hydorxyethylpthalimide* 30.08 [M+H]+ 192.15 192.15>192.15 -10.0 - - 100 

Indole-3-carboxyaldehyde* 16.60 [M+H]+ 146.05 146.05 -25.0 - - 100 

Indole-3-carboxylic acid* 22.00 [M+H]+ 161.95 161.95>161.95 -15.0 - - 100 

Indole-3-acetic acid (IAA) 26.81 [M+H]+ 176.10 176.10>130.10 

176.10>77.20 

176.10>103.10 

-15.0 

-43.0 

-30.0 

-20.0 

-12.0 

-12.0 

-20.0 

-20.0 

-22.0 

65.6 

65.6 

65.6 

Zeatin 12.98 [M+H]+ 220.15 220.15>202.05 

220.15>136.00 

220.15>119.00 

-19.0 

-24.0 

-34.0 

-10.0 

-11.0 

-10.0 

-19.0 

-24.0 

-11.0 

100.0 

100.0 

100.0 

Salicylic acid (SA) 22.60 [M-H]- 137.00 137.00>92.95 

137.00>65.00 

137.00>75.05 

15.0 

28.0 

32.0 

20.0 

14.0 

14.0 

20.0 

10.0 

27.0 

65.6 

65.6 

65.6 

1-Amino-cyclopropane carboxylic acid 

(ACC) 

1.58 [M+H]+ 101.60 101.60>56.20 

101.60>28.15 

101.60>30.20 

-14.0 

-23.0 

-37.0 

-18.0 

-18.0 

-18.0 

-21.0 

-10.0 

-30.0 

65.6 

65.6 

65.6 

Flavonoids         

Luteoside 9.98 [M+H]+ 449.0 449.0>287.15 

449.0>417.15 

449.0>153.10 

-21.0 

-9.0 

-54.0 

-11.0 

-13.0 

-11.0 

-19.0 

-21.0 

-29.0 

100.0 

100.0 

100.0 

Vicenin 2 4.36 [M+H]+ 595.0 595.0>324.90 

595.0>475.25 

595.0>379.20 

-35.0 

-17.0 

-30.0 

-22.0 

-20.0 

-22.0 

-22.0 

-16.0 

-27.0 

100.0 

100.0 

100.0 
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Vicenin 3 5.99 [M-H]- 563.0 563.0>353.0 

563.0>383.05 

563.0>473.20 

30.0 

34.0 

29.0 

28.0. 

28.0 

20.0 

17.0 

26.0 

14.0 

100.0 

100.0 

100.0 

D-fluorophenylalanine 

(internal standard) 

1.50 [M+H]+ 184.0 184.0>138.15 

184.0>91.15 

184.0>118.15 

-14.0 

-30.0 

-22.0 

-12.0 

-10.0 

-11.0 

-26.0 

-17.0 

-11.0 

100.0 

100.0 

100.0 

Apigetrin 15.04 [M-H]- 431.0 431.0>268.10 

431.0>269.15 

431.0>210.90 

35.0 

25.0 

51.0 

20.0 

11.0 

15.0 

29.0 

29.0 

20.0 

100.0 

100.0 

100.0 

Isovitexin 6.21 [M-H]- 431.0 431.0>311.15 

431.0>341.00 

431.0>283.10 

22.0 

22.0 

36.0 

20.0 

20.0 

15.0 

21.0 

16.0 

29.0 

100.0 

100.0 

100.0 

Vitexin 6.22 [M-H]- 431.0 431.0>311.15 

431.0>283.05 

431.0>341.20 

21.0 

33.0 

20.0 

20.0 

15.0 

20.0 

21.0 

19.0 

24.0 

100.0 

100.0 

100.0 

Naringenin 7.19 [M-H]- 271.0 271.0>151.05 

271.0>119.10 

271.0>106.95 

16.0 

26.0 

24.0 

13.0 

13.0 

13.0 

26.0 

21.0 

19.0 

100.0 

100.0 

100.0 

Luteolin 16.80 [M-H]- 285.0 285.0>132.95 

285.0>151.15 

285.0>175.15 

34.0 

26.0 

24.0 

13.0 

10.0 

10.0 

23.0 

29.0 

19.0 

100.0 

100.0 

100.0 

Apigenin 18.37 [M-H]- 269.0 269.0>117.05 

269.0>88.95 

269.0>151.10 

34.0 

20.0 

23.0 

18.0 

28.0 

13.0 

19.0 

15.0 

26.0 

100.0 

100.0 

100.0 

Phenolics         

Coumaric acid 10.24 [M-H]- 163.0 163.0>119.10 

163.0>93.05 

163.0>117.15 

17.0 

17.0 

18.0 

16.0 

30.0 

29.0 

22.0 

16.0 

20.0 

100.0 

100.0 

100.0 

Gallic acid 1.92 [M-H]- 169.20 169.20>125.15 

169.20>79.15 

169.20>80.95 

20.0 

18.0 

15.0 

11.0 

20.0 

12.0 

12.0 

15.0 

22.0 

100.0 

100.0 

100.0 

Caffeic acid 6.75 [M-H]- 179.05 179.05>135.10 

179.05>134.15 

18.0 

18.0 

11.0 

23.0 

24.0 

23.0 

100.0 

100.0 
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179.05>79.0 20.0 19.0 12.0 100.0 

Cinnamic acid 19.33 [M+H]+ 149.10 149.10>77.05 

149.10>42.90 

149.10>92.85 

-12.0 

-17.0 

-11.0 

-27.0 

-13.0 

-16.0 

-28.0 

-15.0 

-17.0 

100.0 

100.0 

100.0 

Ferulic acid 15.69 [M-H]- 193.20 193.20>134.10 

193.20>178.30 

193.20>149.10 

13.0 

17.0 

13.0 

15.0 

17.0 

10.0 

29.0 

21.0 

15.0 

100.0 

100.0 

100.0 

Protocatechuic acid 1.95 [M-H]- 153.20 153.20>109.15 

153.20>108.15 

16.0 

17.0 

14.0 

23.0 

22.0 

23.0 

100.0 

100.0 

Shikimic acid 0.72 [M-H]- 173.05 173.05>111.20 

173.05>93.05 

173.05>105.05 

18.0 

15.0 

12.0 

12.0 

15.0 

9.0 

17.0 

29.0 

19.0 

100.0 

100.0 

100.0 

Syringic acid 9.39 [M-H]- 197.0 197.0>182.10 

197.0>123.10 

197.0>167.20 

27.0 

16.0 

15.0 

6.0 

25.0 

180 

20.0 

26.0 

18.0 

100.0 

100.0 

100.0 

Coniferyl alcohol  6.66 [M-H]- 179.20 179.20>134.95 

179.20>110.90 

179.20>78.80 

18.0 

12.0 

13.0 

9.0 

10.0 

26.0 

29.0 

21.0 

27.0 

100.0 

100.0 

100.0 

                * Single ion monitoring (SIM) was used for quantification of these compounds because they did not fragment.
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Figure S3.1: PCA modelling showing the overall structure of data. A 3D scores scatter plot of the 

PCA model of all the metabolite classes and treatments: model explains 92.4% (5-components) of the 

total variation in the log-transformed and Pareto scaled data at 4 and 6 weeks after emergence (WAE) 

leading to PCA modelling of well-watered plants (C, T2) and well-watered plants with PGRP (PGPR, 

T1) at 4 WAE for amino acids and phytohormones.  
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Figure S3.2: OPLS-DA modelling of phytohormones and amino acids under control conditions and 

PGPR treatment. (A) 4 WAE and (B) 6 WAE.   

 

 
Figure S3.3: PCA modelling showing the overall structure of data. A 3D scores scatter plot of the 

PCA model of all the metabolite classes and treatments: model explains 92.4% (5-components) of the 

total variation in the log-transformed and Pareto scaled data at 4 and 6 WAE leading to PCA 

modelling of well-watered plants (C) and well-watered plants with PGRP (PGPR) at 4 WAE for 

flavonoids and phenolics. 
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Figure S3.4: OPLS-DA modelling of flavonoids and phenolic acids under control conditions and 

PGPR treatment. (A) 4 WAE and (B) 6 WAE.   

 

 

Figure S3.5: Box plots representing significant phenolic acids accumulated due to PGPR treatment in 

naïve maize plants. 
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Figure S3.6: PCA scores plot showing treatment related groupings. PCA analysis of amino acids 

and phytohormones under control, mild drought, severe drought, mild drought with PGPR and severe 

drought with PGPR conditions at 4 and 6 WAE. 
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Figure S3.7: PCA scores plot showing treatment related groupings. PCA analysis of flavonoids 

and phenolic acids under control, mild drought, severe drought, mild drought with PGPR and severe 

drought with PGPR conditions at 4 and 6 WAE. 
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Figure S3.8: OPLS-DA modelling of amino acids and phytohormones under control conditions 

versus mild drought and severe drought stress together with PGPR treatment at 4 WAE. 
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Figure S3.9: OPLS-DA modelling of amino acids and phytohormones under control conditions 

versus mild drought and severe drought stress together with PGPR treatment at 6 WAE. 
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Figure S3.10: OPLS-DA modelling of flavonoids and phenolic acids under control conditions versus 

mild drought and severe drought stress together with PGPR treatment at 4 WAE. 
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Figure S3.11: OPLS-DA modelling of flavonoids and phenolic acids under control conditions versus 

mild drought and severe drought stress together with PGPR treatment at 6 WAE. 

 

 

 

 

 

  

 



Chapter 4 

Global DNA Methylation Landscape and 
Targeted Gene Expression Profiles 

Associated with Microbial Biostimulant-
Mediated Growth Enhancement and 

Drought Stress Tolerance in Maize Plants 

Index 

 

Summary ..................................................................................................................................................... 148 

4.1 Introduction ...................................................................................................................................... 149 

4.2 Materials and Methods ................................................................................................................ 153 

4.2.1 Plant material, growth conditions, drought stress and PGPR application .......... 153 

4.2.2 DNA extraction and quantification of global DNA methylation ............................... 154 

4.2.2.1 Statistical analysis of global DNA methylation ....................................................... 156 

4.2.3 RNA extraction and gene expression study by real-time quantitative PCR (qPCR)

 ...................................................................................................................................................................... 157 

4.3 Results and Discussion ................................................................................................................ 160 

4.3.1 Global DNA methylation profiles in naïve and PGPR-treated maize leaves under 

well-watered conditions .................................................................................................................... 160 

4.3.2 Comparative analysis of global DNA methylation patterns in naïve and PGPR-

primed maize plants under mild and severe drought stress conditions ........................ 164 

4.3.3 Expression profiles of stress-related genes in naïve and PGPR-treated maize 

plants under drought conditions .................................................................................................... 167 

4.4 Conclusion .......................................................................................................................................... 177 

4.5 List of References ........................................................................................................................... 178 

4.6 Supplementary Materials ........................................................................................................... 185 

 

 

 



 
 148 
 

Chapter 4 

Global DNA Methylation Landscape and 
Targeted Gene Expression Profiles 

Associated with Microbial Biostimulant-
Mediated Growth Enhancement and 

Drought Stress Tolerance in Maize Plants 

Summary 

Metabolism carries imprints of genetic and environmental variations; hence investigating the 

gene space can provide a more detailed and integrated understanding of a metabolic 

landscape, such as that in Chapter 3. DNA methylation is an epigenetic modification in 

plants; playing a vital role in the gene regulation and genome maintenance. There is growing 

evidence suggesting that epigenetic changes may be implicated in gene regulation in response 

to abiotic stresses, such as drought. Spatial epigenetic variations may therefore contribute to 

variations in stress susceptibility and tolerance, but the scale and structure of epigenetic 

variation remains poorly defined. The present study sought to investigate epigenetic changes 

in microbial biostimulant-treated Zea mays plants under drought stress, which may point to a 

role in acclimation towards drought stress. To unravel molecular mechanisms underpinning 

biostimulant-induced drought stress tolerance and possible transgenerational epigenetic 

inheritance in Zea mays, global DNA methylation and gene expression (defence-responsive 

genes – P5CS, DREB2A, PAL, FSNII) analyses were carried out. The results showed that 

PGPR-treatment significantly increased DNA methylation levels in the pre-challenge and 

post-challenge phases, making DNA methylation an additional key mechanism through 

which PGPR-based biostimulant enhances plant growth, priming and drought stress 

tolerance. In addition, expression of targeted genes was upregulated, suggesting that PGPR 

not only influences the epigenome but also gene regulation to enhance the expression of 

drought-related defence-responsive genes. The findings of this study provide insight into 

PGPR-induced epigenome reprogramming and gene regulation dynamics, identifying them as 

part of the key mechanisms employed by PGPR-based biostimulant to enhance plant growth 

and drought tolerance. Although a transgenerational effect of these modifications on 

succeeding generations was not investigated in this study, it can be postulated that PGPR-

induced epigenetic modifications may be transferred to the progeny resulting in a 

transgenerational enhanced drought tolerance. 

 

 

Keywords: Biostimulants, DREB2A, drought stress, epigenetics, FSNII, global methylation, 

PGPR,  P5CS,  PAL, Zea mays 
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4.1 Introduction 

 

The epigenetic events within the plant cell, such as DNA methylation, have been the focus of 

various studies, illuminating many mechanisms by which gene expression is regulated and 

patterns of expression inherited through cell divisions. DNA methylation, histone 

modifications and small non-coding RNAs have been shown to act in coordination to 

influence chromatin structure and gene expression (Chinnusamy & Zhu, 2009; Santos et al., 

2011). DNA methylation levels are modulated by an intricate interplay of enzymes (Chapter 

2, subsection 2.4.1) such as DNA methyltransferases, and DNA demethylases, as well as 

other mechanisms, including the RNA-directed DNA methylation (RdDM) pathway mediated 

by small interfering RNA (siRNA). The functional significance of DNA methylation in plant 

responses to environmental stress conditions is still enigmatic; however, emerging studies 

have reported the involvement of DNA methylation (both hypo/hyper-methylation) in 

modulating abiotic stress responses and tolerance in plants. Changes in DNA methylation 

profiles are, hence, currently regarded as one of the general responses not only to drought 

stress, but also to other abiotic stresses that underlie stress memory and stress tolerance 

(Urano et al., 2010; Kim et al., 2015).  

 

DNA methylation is known to regulate gene expression at the transcriptional as well as post-

transcriptional levels, and such alterations are (or can be) contextually influenced by various 

abiotic factors such as drought conditions (Angers et al., 2010; Kumar & Singh, 2016). 

Coordinated activation and expression of a repertoire of genes underlies plant development 

and shapes phenotypic plasticity in responses to the environmental and internal cues. Various 

studies have contributed to the current knowledge-base and understanding of the molecular 

mechanisms underlying plant responses to drought stress conditions. Several drought-

responsive genes have been identified, which include membrane stabilising proteins, late 

embryogenic abundant proteins (LEA) and heat shock proteins (HSPs) which increase the 

plant cells’ water binding capacity and stabilises protein structure (Wang et al., 2004; Farooq 

et al., 2009; Hanin et al., 2011; Hasanuzzaman et al., 2013; Kosová et al., 2014; Zhang et al., 

2018). Furthermore, numerous transcription factors (TFs) involved in the regulation of 

drought stress responses have been identified (see Chapter 2, subsection 2.2.1), and include 

myeloblastosis (MYB), dehydration responsive element binding (DREB), C-repeat binding 



 
150 

 

factor (CBF), abscisic acid responsive elements binding factor (ABF), abscisic acid 

responsive elements binding (AREB) and NAC which is derived from no apical meristem 

(NAM) (for), Arabidopsis thaliana ACTIVATING FACTOR 1/2 (ATAF1/2), and cup-shaped 

cotyledon (CUC2) (Puranik et al., 2012; Nuruzzaman et al., 2013; Singh & Laxmi, 2015; 

Mun et al., 2017). 

 

The current knowledge and understanding of the gene network landscapes of drought stress 

responses are still limited. Furthermore, a systems biology view implies an appreciation of 

the multi-dimensionality of biochemical networks in a biological system, producing 

physiological and phenotypic coherence. Thus, a comprehensive understanding of the 

regulatory networks involving multi-layered molecular players (at epigenome, transcriptome, 

proteome and metabolome levels) that modulate the dynamic adaptive changes and response 

to abiotic stresses is an imperative for developing stress tolerant crop plants or agricultural 

strategies (Min et al., 2016). Chapter 3 of this dissertation revealed metabolic 

reprogramming events associated with microbial biostimulant-mediated growth enhancement 

and drought stress tolerance in maize plants. This metabolomics study (Chapter 3) points out 

that the PGPR-induced drought response phenomenology in maize involved remodelling of 

primary and secondary metabolism – alterations in amino acid-, phytohormone- and phenolic 

profiles – as pre-conditioning events. As echoed in Chapter 2, this priming memory is not 

only articulated at the metabolome level, it is also encrypted at the epigenome, and that the 

biochemical actions of metabolites are far-reaching, including regulation of epigenetic 

mechanisms and post-translational modifications.    

 

Genome-wide epigenetic changes have been associated with variations in gene expression 

during plant developmental and environmental perturbations. These epigenetic changes, as 

well as the level of gene expression, may revert back to the pre-stress state (normal condition) 

once the stress is withdrawn; however, some of these epigenetic modifications are retained 

and may be carried forward to subsequent generations as stress memory (Grafi, 2013; Kumar, 

2018). The accumulation of these epigenetic variations in response to environmental stimuli 

resulting in transgenerational epigenetic memory ensures plasticity and adaptability in the 

plant (Figure 4.1). For example, Zheng et al. (2017) identified a high proportion of stress-

induced DNA methylation modifications under drought stress that were maintained in 

subsequent generations, suggesting that epigenetic mechanisms play a vital role in 
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transgenerational tolerance to environmental stresses. Mechanistic understanding of 

transgenerational stress memory is still fragmented. The current understanding proposes the 

involvement of DNA methylation, histone modifications and siRNA pathways in adaptation 

and stress memory in numerous plants (Lämke & Bäurle, 2017). 

 

 

Figure 4.1: The interaction between genetic and epigenetic variation in plant populations under 

abiotic stress. Genetic and epigenetic variations enhance the stress responses mainly by altering the 

expression of genes involved in the development and physiology of the plant which, in turn, result in 

plastic phenotypic variation (short-term stress) or in heritable phenotypic variation (long-term stress) 

leading to stress tolerance and survival (Diagram created by the author of this dissertation) 

 

How plants adapt to environmental changes via DNA methylation modifications and how this 

influences processes such as gene expression is still elusive. Knowledge gaps and 

contradictions in existing models point to the fact that the elucidation of epigenetic 

mechanisms underlying different cellular events is still an active research area. For example, 

hypermethylation of transposable elements (TEs) is often associated with increased gene 

expression of nearby genes (Secco et al., 2015) but hypermethylation of TEs has also been 

found near downregulated genes (Eichten et al., 2012). Additionally, increased DNA 

methylation in genes or near transcription start sites (TSS) is often believed to repress 

expression but there are also examples where methylated genes are moderately expressed and 

even cases where gene body methylation seems to stabilise expression (Suzuki & Bird, 

2008).  
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Several techniques exist for the profiling of whole genome methylation which mostly rely on 

a methylation-dependent pre-treatment of genomic DNA in order to reveal the presence or 

absence of the methyl group at cytosine residues. Three main approaches to study DNA 

methylation include the endonuclease digestion, affinity enrichment of methylated regions 

and bisulfite conversion (Zuo et al., 2009; Gupta et al., 2010). Additional techniques 

available for the determination of the methylation status of DNA samples include mass 

spectrometry and Enzyme-Linked Immunosorbent Assay (ELISA). The method of choice for 

the detection of DNA methylation analysis depends on the biological questions and factors 

such as amount and quality of DNA samples, sensitivity, specificity, robustness and cost. In 

this study, ELISA was used for the determination of global genome methylation due to cost 

efficiency and identification of large changes in DNA methylation (Kurdyokov & Bullock, 

2016). Briefly, the DNA sample is captured inside wells of an ELISA plate, and the 

methylated cytosines are detected through successive incubations steps with: (1) a primary 

antibody raised against 5-mC; (2) a labelled secondary antibody; and then (3) 

colourimetric/fluorometric detection reagents (Figure 4.2). 

 

 

Figure 4.2: ELISA-based DNA methylation profiling. Global DNA methylation (5-methyl 

cytosine) detection using ELISA. The workflow for the 5-methylcytosine DNA ELISA technique 

utilises the indirect ELISA methodology where denatured, single-stranded DNA (ssDNA) samples are 

coated on the plate-well surfaces and an anti-5-mC-mAb and conjugate Horseradish peroxidase-

secondary antibody are added to the wells (Diagram created by the author of this dissertation) 
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This work focuses in evaluating global DNA methylation levels, associated gene expression 

of selected genes in (i) key metabolic pathways: phenylalanine ammonia-lyase (PAL), 

flavone synthase II (FNSII); and (ii) drought responsive genes: pyrroline-5-carboxylate 

synthase (P5CS), dehydration-responsive element-binding protein 2A (DREB2A) in maize 

plants to complement the metabolic changes reported in Chapter 3. Thus, this work (reported 

in this Chapter 4) aims at evaluating global DNA methylation levels together with 

corresponding gene expression changes induced by the application of PGRP-based 

biostimulant in Zea mays plants under mild and severe drought stress conditions. The link 

between the epigenome, genome and metabolome in regard to abiotic stresses and priming is 

enigmatic, and therefore the integration and analysis of data of differential gene expression, 

epigenetic and metabolomic regulation can reveal a comprehensive picture of the dynamics 

of the stress-responsive genome in generating phenotypic diversity and could have significant 

implications in agriculture. Additionally, this will contribute to the current knowledge on the 

modes of action of biostimulants in promoting plant growth. The need to understand the 

underlying molecular mechanisms that define the benefit of biostimulants in plants is crucial 

for the formulation of novel biostimulants with optimal efficacy. 

 

4.2 Materials and Methods 

 

 4.2.1 Plant material, growth conditions, drought stress and biostimulant 
application 
 

The details regarding the experimental design, maize plant cultivation, treatment applications 

(both PGPR and drought conditions), harvesting of plant materials and sample preparation 

are provided in Chapter 3, subsection 3.2.2 – 3.2.3. It suffices to briefly mention that maize 

(Zea mays) plants, PAN 3Q-240, were cultivated in 10 L-pots, containing a sandy soil, placed 

in a randomised order on rotating tables in a greenhouse at Omnia facilities in Sasolburg, 

Free State, South Africa. A PGPR (Bacilli strains)-based biostimulant formulation (Omnia 

Group Ltd, South Africa) was applied at planting: a 5-strain formulation is referred to as 

PGPR (Chapter 3, subsection 3.2.2, Table 3.1). The semantics used in regards to different 

groups referred to as ‘treatment’ (T) is again provided in Table 4.1; and the expressions 

microbial-based biostimulant or biostimulant or PGPR will be used interchangeably to simply 

refer to the biostimulant formulation (a consortium of Bacilli strains) used in this study.   
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Table 4.1: Description of treatment conditions used to study the effect of PGPR-based biostimulant 

application on mild and severe drought stressed plants. 

Treatment Treatment description 

T1  Well-watered with biostimulant (PGPR) 

T2 Well-watered without biostimulant (Control; C) 

T3 Mild drought with biostimulant (MD-PGPR) 

T4 Severe drought with biostimulant (SD-PGPR) 

T5 Mild drought without biostimulant (MD) 

T6 Severe drought without biostimulant (SD) 

 

4.2.2 DNA extraction and quantification of global DNA methylation  

 

Genomic DNA (gDNA) was extracted from well-watered plants, drought stressed plants and 

PGPR-treated plants, four and six weeks after emergence (4 and 6 WAE), each comprising of 

three biological- and two technical replicates, using a modified Cetyltrimethylammonium 

bromide (CTAB) method. gDNA extraction was performed using 500 mg of leaf tissue, 

which was ground into a fine powder using liquid nitrogen. This plant material was added to 

500 μL of extraction buffer (2% w/v CTAB, 2% w/v polyvinylpyrrolidone (PVP), 0.5 M 

ethylenediaminetetraacetic acid (EDTA), 5 M sodium chloride (NaCl), 100 mM 

tris(hydroxymethyl)aminomethane-hydrochloride (Tris-HCl) pH 8.0 and 0.2% v/v β-

mercaptoethanol) and incubated at 65 °C for 60 min. Following incubation, 500 μL of 

chloroform : isoamyl alcohol (24:1) was added to each sample and the mixture then 

centrifuged at 13 000 × g for 10 min at 4 °C. The aqueous phase was aspirated into a new 

microcentrifuge tube, to which an equal volume (500 μL) of isopropanol was added to induce 

DNA precipitation. The mixture was then centrifuged 13 000 × g for 10 min at 4 °C. The 

supernatant was discarded, and the precipitated pellet was washed in 1 mL ice cold 70% 

ethanol (v/v) and centrifuged at 12 000 × g for 5 min. DNA pellets were dried by heating at 

55 °C for 5 min on a heating block and resuspended in TE buffer containing 20 µg/mL of 

RNase A. The extracted DNA quality and quantity was estimated using the NanoDrop 2000 

(NanoDrop Technologies Inc., Rockland, DE, USA), followed by ethidium bromide staining 

on 1% agarose electrophoresis gels in 1X Tris-acetate-EDTA (TAE) buffer. 
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Figure 4.3. Schematic procedure for global DNA methylation quantification. DNA is extracted 

from plant tissue and coated onto DNA wells where methylation is measured through the 

colourimetric development arising from the antibody binding to methyl-cytosines. (Diagram created 

by the author of this dissertation).  

 

Relative quantification of global DNA methylation levels was acquired with an ELISA-based 

colourimetric assay (Figure 4.3) using the 5-mC DNA ELISA Kit (Zymo Research, Irvine, 

CA) according to manufacturer's instructions. In brief, the DNA samples and methylation 

standards (0 %, 5 %, 10 %, 25 %, 50 %, 75 % and 100 % - provided in the kit) were diluted 

to 100 ng/μL in TE buffer and denatured at 98 °C for 5 min in a thermal cycler (Master 

cycler, Eppendorf AG, Hamburg, Germany), followed by immediate incubation on ice for 10 

min. The denatured DNA was then added to the plate wells and incubated at 37 ºC for 1 h.  

To prevent non-specific binding to the wells, the buffer from the wells was discarded and 

each well washed 3 times with 200 μL of 5-mC ELISA buffer, discarding the buffer after 

each wash. Following this, 200 μL of 5-mC ELISA buffer was added to each well, and the 

plate was covered with foil and incubated at 37 ºC for 30 min. A prepared antibody mix (100 

μL) consisting of anti-5-methylcytosine (1:2000) and secondary antibody (1:1000) in 5-mC 

ELISA buffer was added to each well. The plate was then covered with foil and incubated at 

37 ºC for 1 h. The antibody mix was discarded from the wells and each well washed 3 times 

with 200 μL of 5-mC ELISA buffer. Colour development was performed by adding 100 μL 
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of HRP Developer to each well and allowed to develop for 10-60 min at room temperature. 

The absorbance was read on a microplate reader at 450 nm (BioTek Power Wave XS, 

Vermont, USA).  

 

The readings obtained from the ELISA reader were exported into Microsoft Excel and a 

standard curve was constructed by plotting absorbance (y-axis) against the percentage 

methylation (x-axis) of controls. The percentage methylation (5-mC) each DNA sample was 

quantified relative to the standard negative and positive methylated control DNA by 

extrapolation from the standard curve, using the equation;  % 5mC =

e
{

(Absorbance −  y−intercept)

Slope
}
, derived from the logarithmic second order regression. All samples 

were assayed in duplicate according to the manufacturer’s recommendation and to ensure 

accurate global DNA methylation detection and quantitation.  

 

4.2.2.1 Statistical analysis of global DNA methylation  

 

Statistical analysis was performed using IBM’s Statistical Product and Services Solutions 

software version 26 (SPSS 26, IBM, NY, https://www.ibm.com/analytics/spss-statistics-

software),  following Pallant (2007, 2010) guidelines. To evaluate the distribution of the data, 

tests of normality (parametric – Shapiro-Wilk test; non-parametric – Kolmogorov-Smirnov 

test with Lilliefors significance correction) were employed. The distribution of the data sets 

was normal according to the Shapiro-Wilk test, and the p-values according to the 

Kolmogorov-Smirnov test could not be computed. Although the data distribution was found 

to follow a normal/Gaussian distribution in which parametric tests are employed, non-

parametric tests were reported due to sample size (n ≤ 50).  Parametric analysis tests are used 

for large sample sizes (n > 50), whereas non-parametric analysis are typically used for small 

sample sizes which follow a skewed distribution (Pallant, 2007). The overall significant 

differences between the groups reported as p ≤ 0.05*, p ≤ 0.01** and p ≤ 0.001*** were 

analysed using the Kruskal-Wallis test. The global methylation levels for the control, PGPR 

treatment, mild and severe drought stress and mild and severe drought stress together with 

PGPR treatment were analysed for 4 and 6 WAE.  

 

 

https://www.ibm.com/analytics/spss-statistics-software
https://www.ibm.com/analytics/spss-statistics-software
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 4.2.3 RNA extraction and gene expression study by real-time quantitative 
PCR (qPCR)  
 

RNA was extracted from 200 mg of Zea mays leaves (done for all the treatments - Table 4.1) 

using Direct-zolTM RNA miniprep plus (Zymo Research, Irvine, CA) according to the 

manufacturer’s recommendation. Frozen leaf tissue (200 mg) was ground in liquid nitrogen 

to which 600 μL of TRI Reagent was added. The lysed samples were centrifuged at 16 000 × 

g for 1 min and an equal volume ethanol (95-100%) was added. The mixture was thoroughly 

mixed and transferred into a Zymo-Spin™ IIICG column placed in a collection tube. The 

samples were centrifuged at 16 000 × g for 30 sec and the column was transferred into a new 

collection tube. DNase I treatment was performed on the samples by first adding 400 μL 

RNA Wash Buffer to the column and centrifuging at 16 000 × g for 30 sec. Following this, a 

prepared mixture of 5 μL DNase I (6 U/μL) and 75 μL DNA digestion buffer was added 

directly to the column matrix in each tube and the samples were incubated at room 

temperature (20-30 °C) for 15 min. RNA bound to the column in each tube was washed by 

adding 400 μL Direct-zol™ RNA Prewash, followed by centrifugation at 16 000 × g for 30 

sec, and this was performed twice.  A wash step was performed by adding 700 μL RNA wash 

buffer to the column and centrifuging for 1 min at 16 000 × g to ensure complete removal of 

the wash buffer. The column was then transferred into an RNase-free tube and the RNA 

eluted by adding 100 μL of DNase/RNase-free water directly to the column matrix followed 

by centrifugation at 16000 × g for 30 sec. Concentrations of extracted RNA samples were 

determined using the NanoDrop™ 1000 spectrophotometer (Thermo Fisher Scientific; 

Waltham, USA) and RNA integrity was assessed by electrophoresis on 1% agarose gel.  

 

Five hundred nanograms of the total RNA extracted from each biological replicate per 

treatment was used for first strand cDNA synthesis (Table 4.2), which was performed using 

random hexamers and LunaScript® RT SuperMix Kit (E3010, New England Biolabs, 

Massachusetts, USA) in 20 µL reactions, per the manufacturer’s recommendation. The 

synthesised cDNA (1 µL) was used in the second step PCR using LunaScript® Universal 

qPCR Master Mix (M3003, New England Biolabs, Massachusetts, USA), per the 

manufacturer’s recommendations. Reactions (Table 4.3) were performed on a CFX-96 

(BioRad, Johannesburg, SA) system, with the thermal cycling conditions as follows: initial 

denaturation 95 °C for 1 min followed by 40 cycles of 95 °C for 15 sec and 61.2 °C for 30 

sec. The lyophilized primer sets (Integrated DNA Technologies, Coralville, IA) used in this 
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study, defined in Table 4.5, were dissolved in TE buffer (Integrated DNA Technologies, 

Coralville, IA) to a stock solution of 100 µM and aliquots of 10 µM were prepared in 

nuclease-free water. Following this, preparation, primer amplification efficiency was checked 

before any further analysis and the primers were stored at – 20 °C. Elongation factor 1 alpha 

(EF1α), and β-tubulin (β-TUB) primer sets were used for normalisation of gene expression 

which have been reported to be the most stability expressed reference genes under abiotic 

stress (Reddy et al., 2018) and ‘no template’ and ‘no RT’ (Table 4.4) controls were included 

in each run.  

 

Table 4.2: Reaction components for cDNA synthesis.  

Component 20 µL Reaction Final concentration 

LunaScript RT SuperMix (5X) 4 µL 1X 

RNA sample Variablea (up to 1 µg) 

Nuclease-free Water to 20 µLb  

aThe concentration of each RNA sample determined the volume to be added to the reaction, ensuring that the 

final concentration of the cDNA consisted of 500ng RNA. 
bThe volume of nuclease-free water added was dependent on the volume of the RNA added to the mixture. 

 

Table 4.3: Reaction components for qPCR analysis. 

Component 20 μl Reaction Final Concentration 

Luna Universal qPCR Master Mix  5 µL 1X 

10 μM forward primer 0.4 µL 0.25 μM 

10 μM reverse primer 0.4 µL 0.25 μM 

cDNA products 1 µL < 4 µL 

Nuclease-free water 3.2 µL  

 

Table 4.4: Reaction components for no -RT control reactions. 

Component 20 μL Reaction Final Concentration 

No-RT Control Mix (5X) 4 µL 1X 

RNA (up to 1 µg)* variable (up to 1 µg) 

Nuclease-free water to 20 µL   

aThe concentration of each RNA sample determined the volume to be added to the reaction, ensuring that the 

final concentration of the cDNA consisted of 500ng RNA. 
bThe volume of nuclease-free water added was dependent on the volume of the RNA added to the mixture. 
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Table 4.5: Targeted key genes and primer sequences used in this study. 

Gene Primer sequences (5’-3’) Amplicon 

length (bp) 

Reference 

Δ1-Pyrroline-5-carboxylate 

synthetase (P5CS)  

F: GCGAGGAAGTGGGCAAGTGGT 

R: TTGGGGAGGTGGGGTGGC 

 

250 

 

(Sun et al., 2018) 

Flavone synthase type 2 (FSNII) F: CAAGATCGACATGTCGGAGTC 

R: GCATGGTATCCACATTCTTCG 

 

115 

 

(Righini et al., 2019) 

Phenylalanine ammonia-lyase 

(PAL) 

F: CGAGGTCAACTCCGTGAACG 

R: GCTCTGCACGTGGTTGGTGA 

 

318 

 

(Farag et al., 2005) 

Dehydration-responsive element 

binding protein 2 (DREB2A) 

F: GCAGCCCGGAAGGAAGAA 

R: GATGACAGCTGCCACTGACGTA 

 

70 

 

(Qin et al., 2007) 

Elongation factor 1-alpha  

(EF1α – Ref) 

F: TGGGCCTACTGGTCTTACTACTGA 

R: ACATACCCACGCTTCAGATCCT 

 

135 

 

(Phillips et al., 2018) 

Beta-tubulin 

 (β-TUB – Ref) 

F: CTACCTCACGGCATCTGCTATGT 

R: GTCACACACACTCGACTTCACG 

 

139 

 

(Phillips et al., 2018) 

 

 

Relative quantity (∆Cq) (1) for each sample per gene of interest against control samples was 

calculated according to the CFX Maestro Software (BioRad, Johannesburg, SA) equations 

and guidelines. Following this, normalised expression (∆∆Cq) (2) of each target gene was 

calculated using the same software against the two reference genes. Normalised gene 

expression was expressed as logarithmic fold change and fold change.  

(1) Relative Quantity Sample (GOI) = E
GOI

(Cq(control)− Cq(sample)
 

 

(2) Normalised Expressionsample (GOI) =  
RQsample (GOI)

(RQsample (Ref 1) × RQsample(Ref 2))
1
2

  

 

 

Where: E = Efficiency; RQ = relative quantity; GOI = gene of interest (one target); Ref = Reference 

gene. 

 

Statistical analysis and graphical representations were carried out in GraphPad Prism 9.0.0. 

(Motulsky, 1999). The Mann-Whitney U test was employed to compare the differences 

between the different groups (C, PGPR, MD-PGPR and SD-PGPR). The Mann-Whitney 

U test is the non-parametric equivalent of the independent samples t-test and in this study, it 

was used to complement the non-parametric tests employed in the DNA methylation analysis. 
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4.3 Results and Discussion 

  

In this study, to complement the findings reported in Chapter 3 (a metabolomics study), 

informing microbial biostimulant-induced alterations in maize gene space, the global DNA 

methylation profiles of naïve and PGPR-treated maize leaves under normal and drought stress 

(mild and severe) conditions were generated using ELISA. Furthermore, gene expression 

levels of drought stress-inducible genes (PAL, DREB, FSNII and P5CS), in naïve and PGPR-

treated maize plants, were assessed. Thus, this section is divided into three main subsections: 

(i) DNA methylation patterns in naïve and PGPR-treated plants, (ii) DNA methylation 

patterns in PGPR-treated plants under mild and severe drought conditions, (iii) differential 

expression profiles of stress-related genes in naïve and PGPR-treated maize under drought 

stress conditions.  

 

Firstly, the quality of the extracted DNA was evaluated using two different techniques: (i) 

spectrophotometric measurements to estimate purity by using the absorbance ratio at 260 nm 

and 280 nm wavelengths (A260/A280); and (ii) to assess the integrity and size of the 

extracted DNA, agarose gel electrophoresis was performed (Figure S4.1). As previously 

highlighted in sub-subsection 4.2.2.1, tests of normality were performed to determine the 

distribution of the data. The Kolmogorov-Smirnov test could not be computed, and the 

Shapiro-Wilk Test resulted in non-significant results (p > 0.05) (Table S4.1). This therefore 

showed that the data in the present study was normally distributed since the assumption of 

normality was not violated except for *SD-PGPR where p < 0.05. Additionally, normality 

was assessed graphically using normality quantile-quantile (Q-Q) plots (Figure S4.2) which 

compare the quantiles of a data distribution with the quantiles of a standardised theoretic 

distribution from a specified family of distributions which follow a normal distribution (Rani 

Das, 2016). 

 

4.3.1 Global DNA methylation profiles in naïve and PGPR-treated maize 
leaves under well-watered conditions 
 
 

The quantification of global amounts of 5-mC was performed in leaf tissues of naïve and 

PGPR-treated maize plants to assess the effect of PGPR on the plant methylome. Differential 

methylation levels between the two test groups were observed, suggesting that PGPR-based 
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biostimulant alter the epigenome landscape of maize plants. Global DNA methylation levels 

were higher in PGPR-treated plants than in naïve plants (Figure 4.4). PGPR-treated plants 

showed an increase of 2.4-fold (33.3%) of global DNA methylation when compared to the 

naïve plants; however, these differences were not found to be statistically significant based on 

the Kruskal-Wallis test under the study’s experimental conditions. However, these 

differences are considered biologically significant since DNA methylation (to such extent) 

influences gene regulation and phenotype. Similar to the findings of this study, Gagné-

Bourque et al. (2015) reported an increase of 6-fold and 1.5-fold of global DNA methylation 

in model grass Brachypodium distachyon under normal plant growth conditions triggered by 

plant-growth promoting bacteria (PGB) Bacillus subtilis B26. The reported hypermethylation 

was correlated to an increase in the abundance of methyltransferases involved in the 

maintenance and regulation of DNA methylation. Additionally, the PGB-induced 

hypermethylation levels remained constant when compared to the naïve plants after five and 

eight days of drought treatment, suggesting that Bacillus subtilis B26 potentially acts at an 

epigenetic level to increase drought stress tolerance in Brachypodium distachyon by inducing 

DNA methylation changes under normal conditions that, in turn, increase drought resistance 

by allowing the expression of drought responsive genes. 

 

 

Figure 4.4: Global DNA methylation levels in naïve and PGPR-treated plants under well-

watered conditions. Genomic DNA from maize leaves in control and PGPR conditions was used to 

determine the relative global DNA methylation using ELISA. The horizontal line within a box-plot 

represents the median. The lower and upper edges of boxes show the 25th and 75th percentiles, 

respectively. Whiskers represent the maximum and minimum values. Abbreviations: C, control; 

PGPR, plant growth-promoting rhizobacteria and n.s, non-significant. The Kruskal-Wallis test 

reported no statistical significance between the two groups; however, since methylation levels directly 

influence the genome, this change suggests that the reported difference may be biologically 

significant.  
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Studies have evidenced that DNA methylation plays a critical role in the regulation of 

defence priming since it regulates the transcription of defence-related genes through 

evolutionarily conserved functions (Espinas et al., 2016). The observed hypermethylation in 

PGPR-treated maize plants under well-watered conditions (Figure 4.4) suggests that the 

molecular mechanisms activated by the PGPR consortium in maize plants include altering 

DNA methylation status. Supported by the results in Chapter 3, it can be postulated that this 

PGPR-induced epigenetic modification (hypermethylation), in maize plants under well-

watered conditions, gravitates towards enhancement of growth and priming the plants against 

subsequent stress conditions. Evidence of epigenetic regulation as one of the key mechanisms 

in the priming phenomenology has been reported in various studies. A recent study by De 

Palma et al. (2019) reported a Trichoderma harzianum T22-induced modification of the 

epigenome in which hypermethylation was observed in tomato roots. Abiotic stress tolerance 

can be mediated by stimulating memory responses at the epigenetic level improved by pre-

treatment with several other non-pathogenic bacterial strains such as PGPR, the focus of this 

study.   

 

DNA methylation plays a crucial role in the orchestration of varying gene expression profiles 

during the plant life cycle, i.e. during seed development, shoot/root apical meristem 

regulation, floral transition (from vegetative phase to reproductive phase), gametogenesis and 

embryogenesis (Kaufmann et al., 2010; Kawashima & Berger, 2014). This regulation results 

in enhanced plant growth and thus the observed increase in DNA methylation  due to PGPR 

treatment implies an additional mechanism through which PGPR promotes plant growth and 

preconditioning of the plant for future stress encounters. Yang et al. (2018) reported that 

DNA methylation regulates the expression of key genes involved in the biosynthesis of 

phenolic acids in Salvia miltiorrhiza. The accumulation of these secondary metabolites can 

precondition the plant through various mechanisms such as the establishment of antioxidant 

machinery as reported in Chapter 3. From this finding, it is epistemologically logical to 

extrapolate that the observed DNA methylation changes, induced by PGPR-based 

biostimulant, would affect the expression of various genes including those involved in the 

biosynthesis of secondary metabolites, which subsequently can activate ROS detoxification 

under drought stress (Figure 4.5). 
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Figure 4.5. Proposed model of PGPR-induced DNA methylation changes. PGPR activates DNA 

hypermethylation in non-stressed plants, inducing the biosynthesis of secondary metabolites which 

may be a key mechanism in priming (the diagram was created by the author of this dissertation). 

 

Plants possess multiple transposable elements (TEs) which represent a large portion of the 

genome with potential to modify gene expression and rearangements. TEs are DNA 

sequences that can move from one location to the other within the genome via different 

cut/copy and paste mechanisms (Vicient, 2010a). In maize, ~ 85% of the genome is 

composed by TEs of numerous families (Baucom et al., 2009; Vicient, 2010b), making maize 

an ideal system for studying genome-wide influence of TEs on gene regulation. As 

highlighted above, PGPR treatment induced global hypermethylation in maize when 

compared to the control (Figure 4.4). Epigenetic regulation of TEs has been employed to 

inhibit unrestricted movement of TEs that would result in unfavourable effects due to 

insertion in essential defence-responsive genes. Additionally, under the absence of 

enviromental elicitors, TEs are highly methylated and remain silent, resulting in normal gene 

transcription (Galindo-González et al., 2018). DNA methylation has been reported to silence 

TEs and repeats along with gene expression regulation (Finnegan et al., 2000; Gehring & 

Henikoff, 2007; Bartels et al., 2018). Although TE methylation and their genomic context is 

outside the scope of the present study, it can be suggested that priming by PGPR induces 

global hypermethylation to influence gene regulation towards enhanced genomic stability to 
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support targeted and regulated expression of key genes involved in the metabolic processes 

for plant growth and priming. Furthermore, the observed epigenome reprogramming (DNA 

methylation increase) induced by PGPR can be identified as a key mechanism through which 

this PGPR-based biostimulant enhances plant growth and preconditions the maize plant 

defence machinery.  

 

4.3.2 Comparative analysis of global DNA methylation patterns in naïve and 
PGPR-primed maize plants under mild and severe drought stress 
conditions 
 

The metabolomics study, reported in Chapter 3, revealed that the PGPR consortium (the 

microbial biostimulant, referred to as PGPR) conferred to maize plants enhanced responses to 

drought stress conditions via the priming phenomenology, involving reprogramming of 

metabolic landscapes of maize plants. Primed plants showed alterations in amino acids, 

hormonal signalling networks and phenolic profiles – manifestations of metabolic memory 

mediated by PGPR. This priming memory (towards enhanced defences and resistance 

mechanisms) is multi-layered and regulated at different levels including transcriptional 

reprogramming and epigenetic alterations. As evidenced in section 4.3.1, the microbial 

biostimulant induced differential global DNA methylation profiles in treated-maize plants 

compared to naïve plants under well-watered conditions (Figure 4.4). These PGPR-induced 

modifications in the methylome of maize plants were also reflected under (mild and severe) 

drought stress conditions (Figure 4.6). Shifts in global DNA methylation levels revealed a 

decrease in DNA methylation (hypomethylation) due to mild and severe drought imposition 

with a decrease of 0.23- and 0.1-fold change (18.9% and 23.2%) respectively when compared 

to naïve plants. It is worth noting that PGPR can restore methylation levels closer to the 

control levels irrespective of severity of drought stress as there is no difference between MD-

PGPR and SD-PGPR which both display an increase in DNA methylation (Figure 4.6).   
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Figure 4.6. Global DNA methylation levels in control, drought stress and drought-stress PGPR 

treatment conditions in maize leaves. Genomic DNA from leaves in the different conditions were 

used to determine the relative global DNA methylation using a commercial ELISA-based kit. The 

methylation values represented in the plot correspond to the percentage methylation of the samples 

relative to the methylated control DNA samples supplied with the kit. The horizontal line within a 

box-plot represents the median. The lower and upper edges of boxes show the 25th and 75th 

percentiles, respectively. Whiskers represent the maximum and minimum values. Abbreviations: C, 

control; PGPR, plant growth-promoting rhizobacteria; MD, mild drought and SD, severe drought. 

Statistical significance findings were reported as p ≤ 0.05* and p ≤ 0.01**. 

 

DNA methylation is an epigenetic mechanism which plays a fundamental role in tuning gene 

expression in response to enviromental perturbations resulting in phenotypic variations that 

do not stem from genetic variation in plants. DNA methylation is therefore considered a 

marker of plant stress reponses under abiotic stresses; and several studies have highlighted 

the involvement of DNA methylation in drought stress regulation (Yaish, 2013; Baulcombe 

& Dean, 2014). Under stress, plants exhibit dynamic DNA methylation patterns which are 

dependent  on the plant species, tissues and the type of stress. For example, hypermethylation 

is observed under salt stress in alfafa (Al-Lawati et al., 2016), however, hypomethylation is 

observed in salt-sensitive rapeseed (Marconi et al., 2013). It has been reported that drought 

stress induces both a decrease/increase in the methylation of DNA throughout the genome of 

barley (Chwialkowska et al., 2016) and ryegrass (Tang et al., 2014). Under drought 

treatment, a decrease in the level of total  DNA methylation was observed  in leaf tissues of 

two faba bean genotypes (Abid et al., 2017), rice (Wang et al., 2011; Gayacharan & Joel, 

2013) and rye grass (Tang et al., 2014), which coincides with the findings of the current 

study.  
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Plant DNA methylation targets TEs and other repetitive sequences where it is associated with 

either transcriptional activation or repression. Long TEs are primarily located in 

heterochromatin and methylated by CMT2 and CMT3, however, gene-rich euchromatic 

regions contain  shorter TEs or TE-derived sequences that are targeted by RdDM (Stroud et 

al., 2014). The primary role of plant DNA demethylation is to maintain genome stability by 

counteracting DNA methylation, thus preventing the spread of methylation to neighbouring 

genes. Another major role of DNA demethylation in plants is to activate genes in response to 

abiotic stimuli, in many cases by targeting TE sequences located at their 5´ regions. 

  

DNA methylation promotes transcriptional regulation by inhibiting transcription activators 

from binding to their respective target sites. This regulation serves as a form of stress 

adaptation towards different abiotic stresses such as drought. The degree of regulation is 

highly dependent upon the intensity and duration of the stress (Urano et al., 2010), and the 

extent of epigenome modifications under mild and severe drought conditions differed 

(Figure 4.6). Under mild and severe drought stress, PGPR-primed plants showed a change in 

the global DNA methylation levels when compared to the corresponding controls. A positive 

increase in DNA methylation levels was observed under both mild and severe drought stress 

conditions (3.7- and 6.4-fold; 9.2 % and 21.5 % respectively) in PGPR-primed plants (Figure 

4.6). Interestingly, under mild drought stress, the DNA methylation level was closer to that of 

the control suggesting that the primed plants may exhibit growth and development properties 

similar to the control plants. The observed DNA methylation increase due to PGPR treatment 

may suggest this epigenome modification as a mechanism for enhanced drought stress 

tolerance. DNA methylation has been widely implicated in physiological and developmental 

processes in plants and evidence that genome-wide DNA methylation changes are involved in 

abiotic stress responses in maize plants has been reported (Eichten & Springer, 2015).  

 

DNA hypomethylation has been reported to often have negative effects on the plant’s ability 

to tolerate environmental stresses. For example, under drought stress, reduction in DNA 

methylation decreased the ability of Arabidopsis to cope under salt stress (Baek et al., 2011). 

However, a recent study by Sapna et al. (2020) assessed the DNA methylation patterns in rice 

plants under drought stress. In rice, increased DNA methylation seems to be an imperative 

mechanism associated with drought stress responses, which probably regulates methylation 
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sensitive gene expression. The drought-induced changes in DNA methylation were suggested 

to contribute for epigenetic mechanism and the study provided evidence to argue that 

drought-induced increased methylation might be one of the main mechanisms associated with 

acclimation responses in field crops like rice.  

 

In the present study, PGPR-induced increase in DNA methylation in mild and severe drought 

stress (Figure 4.6) can be postulated to be a key mechanism through which PGPR augments 

drought stress tolerance by regulating gene expression and remodelling the methylation 

profiles. Additionally, as mentioned in section 4.3.1, in non-stressed plants, PGPR treatment 

induced an increase in DNA methylation when compared to the control. The observed 

increase may serve as a priming mechanism regulating gene expression directed towards 

drought stress tolerance. Gagné-Bourque et al. (2015) reported changes in DNA methylation 

levels induced by PGB Brachypodium distachyon under drought stress which coincides with 

the findings of the present study. Furthermore, Branchypodium colonised plants were 

reported to be more tolerant to drought stress when compared to the naïve plants. 

 

4.3.3 Expression profiles of stress-related genes in naïve and PGPR-treated 
maize plants under drought conditions  

 

In this study (Chapter 4) no direct link between observed global DNA methylation levels 

(Figures 4.4 and 4.6) and particular gene expression profiles can pragmatically be made. 

However, in an epistemological outlook of methylation-and-gene regulation framework, it is 

worth investigating the expression status of stress-related genes involved in key metabolic 

pathways revealed in Chapter 3. The targeted genes were pyrroline-5-carboxylate synthetase 

(P5CS), dehydration-responsive element-binding protein 2A (DREB2A), phenylalanine 

ammonia lyase (PAL) and flavone synthase (FSNII). Quantitative real-time PCR assays were 

carried out to monitor the transcript accumulation profiles of selected maize genes (Table 

4.2) which have been previously characterised to play dynamic roles in drought-stress 

responses. Prior to analysis, gradient PCR analysis was conducted to determine the optimum 

annealing temperature (Ta) of the primers. Identical reactions, each containing a fixed primer 

concentration across a temperature range of 58.0 °C – 63.0 °C, were performed (Figure 4.7A 

and S4.3) and the primer sets were successfully annealed at all the temperatures. 

Additionally, melt curve analysis was performed to assess whether the PCR products 

produced single, specific products. The melt curves generated for each gene primer set all 
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gave rise to single distinct peaks at specific temperatures (Figure 4.7B and S4.3), indicating 

that the amplified DNA products are single discrete amplicons.  

 

 

Figure 4.7. Primer efficiency check. Representative agarose gel (A) and melt curve analysis of 

qPCR amplicons for FSNII and P5CS genes (B). The melt curve plots the change in relative 

fluorescence units over time (-d(RFU)/dT) against temperature (°C) and shows single melt peaks for 

both genes, FSNII (pink) and P5CS (blue). 

 

PGPR triggered differential gene expression levels of all the genes (Figure 4.8) under normal 

conditions (pre-challenge phase) and drought conditions (post-challenge phase). Under 

normal conditions (pre-challenge phase), PGPR treatment induced an upregulation of P5CS 

expression (1.8 fold) when compared to the control (Figure 4.8A). Plants synthesise proline 

from glutamic acid and ornithine. This reaction is catalysed by the P5CS enzyme, yielding 

pyrroline-5-carboxylate (P5C) which is further reduced to proline by Δ1-pyrroline-5-

carboxylate reductase (Hu et al., 1992). In this proline biosynthesis pathway, P5C5 is a rate-

limiting enzyme and owing to this, P5CS has a crucial role in the regulation of proline 

accumulation. The expression pattern of P5CS gene therefore is a direct indicator of proline 
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levels in plants. The overexpression of P5CS induced by PGPR can therefore be correlated to 

increased proline biosynthesis in plants during the pre-challenge phase of priming. In 

agreement to this, quantitative analysis revealed an accumulation of proline due to PGPR 

treatment in the pre-challenge phase (Chapter 3, sub-subsection 3.3.2.1, Figure 3.9B). 

 

Proline is a compatible solute that affects numerous cellular and molecular aspects of a plant 

in both normal and stressful conditions. Proline forms a part of many proteins involved in 

osmotic regulation, cell wall and membranes and it is essential for maintaining their stability 

(Szabados & Savouré, 2010). Additionally, in the absence of stress, proline is transported to 

organelles, mainly vacuoles and plastids where it is stored and only distributed to the cytosol 

under water-deficit conditions (Lehmann et al., 2010). Finally, proline can act as a source of 

nitrogen, carbon, and energy (Verbruggen & Hermans, 2008; An et al., 2013). From this, 

PGPR therefore pre-conditions the plants by activating the overexpression of P5CS which, in 

turn, enhances proline production in order to maintain cellular structures, increase proline 

reserves and energy production which may be utilised upon stress encounters thus ensuring 

survival. 

 

Mild and severe drought stress conditions caused a decrease and increase in the expression of 

P5CS respectively (0.69- and 1.14-fold).  Proline accumulation under stressful conditions is a 

well-known defence response employed by plants. Under drought stress, proline retains 

osmotic potential, redox balance inside the cells, acts as an antioxidant by scavenging 

reactive oxygen species (ROS), protects macromolecules from denaturation by acting as a 

chemical chaperone and regulates cytosolic pH (Hare et al., 1999; Hong et al., 2000; 

Guerzoni et al., 2014). Interestingly, in PGPR-primed drought stressed plants (post-challenge 

phase), the overexpression of P5CS was very evident and higher than all the treatments (8.2 

and 2.6 fold), with MD-PGPR exhibiting the highest overexpression (8.2 fold). This suggests 

that PGPR-induced accumulation of proline observed in the pre-challenge phase become 

maintained throughout the post-challenge phase, enhancing drought stress tolerance. Recent 

studies (Maghsoudi et al., 2018; Anton et al., 2020) have reported on the accumulation of 

P5CS and proline under drought stress. In these studies, the overexpression of P5CS was 

correlated to the measured levels of proline, suggesting that this gene is involved in the 

regulation of proline biosynthesis and has the potential to be used for improvement of 

drought stress tolerance. Yoshiba et al. (1997) first reported an increase in proline content 
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attributed to the upregulation of P5CS due to Bacillus inoculation under drought stress. 

Similarly, a recent study by Ghosh et al. (2017) reported on how Pseudomonas putida 

alleviates the effects of drought stress in Arabidopsis thaliana by drastically changing proline 

gene expression profiles. In this study, an upregulation of the expression of genes involved in 

proline biosynthesis, i.e. ornithine-Δ-aminotransferase (OAT), P5CS was observed. These 

observations were positively correlated with morphophysiological evidences of water-stress 

mitigation in the plants inoculated with Pseudomonas putida that showed improved growth, 

increased fresh weight, enhanced plant water content, reduction in primary root length, 

enhanced chlorophyll content in leaves, and increased accumulation of proline.  

 

Under normal conditions, PGPR induced a slight upregulation of DREB2A expression (1.5-

fold) when compared to the control (Figure 4.8B). As previously mentioned in Chapter 2 

(subsection 2.2.2), TFs are involved in the regulation of stress-responsive gene expression 

through the abscisic acid (ABA)-dependent/independent pathways. DREB is an ABA-

independent regulon which regulates the expression of numerous stress-responsive genes and 

plays a crucial role in improving abiotic stress tolerance by interacting with cis-elements 

present in the promoters of these abiotic stress-responsive genes. DREB2A is a DREB 

encoding gene which similarly induces the expression of various stress-responsive genes 

(RD29/ERD1/RD22) (Nakashima & Yamaguchi-Shinozaki, 2006; Nakashima et al., 2009). In 

the pre-challenge phase, it is plausible to suggest that PGPR induces the expression of 

downstream stress-responsive genes through the overexpression of DREB2A, augmenting 

stress tolerance in stressful conditions.  
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Figure 4.8. Normalised gene expression expressed as logarithmic fold change. Violin plots show the differential gene expression of (A) P5CS, (B) DREB, 

(C) PAL and (D) FSNII under control, PGPR treatment, mild and severe drought stress (MD and SD respectively), and PGPR-primed mild and severe drought 

stressed conditions. The relative quantification of each gene against reference genes (EF1α and β-TUB) was calculated, which was then used to calculate 

normalised gene expression. Violin plots depict the distribution of data using density curves, which are overlaid by boxplots. The horizontal line within a 

violin plot represents the median. The lower and upper dotted lines show the 25th and 75th percentiles, respectively.  Abbreviations: C, control; PGPR, plant 

growth-promoting rhizobacteria; MD, mild drought and SD, severe drought.  
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On the other hand, DREB2A expression was downregulated under mild drought stress 

conditions (0.46-fold) (Figure 4.8B) in the absence of PGPR treatment. This defence 

response in naïve plants suggests a different drought stress defence mechanism in which the 

expression of DREB2A is repressed. Although DREB2A regulates the expression of many 

genes involved in stress response and tolerance as highlighted previously, it has been 

implicated in growth retardation and reduced reproduction rate in plants and its transcript and 

protein levels are therefore tightly regulated (Yoshida et al., 2014). Under drought stress, 

plants can therefore supress DREB2A gene expression to allow for growth and development 

under adverse environmental conditions. This, however, poses a threat to non-primed plants 

since the induction of stress-responsive gene expression would be suppressed, resulting in 

enhanced susceptibility to drought stress.  

 

PGPR-primed plants exhibited an upregulated expression of DREB2A under both mild and 

severe drought stress conditions (8.4- and 5.7-fold respectively) (Figure 4.8B). DREB genes 

have been reported as the best studied group of TFs involved in the activation of gene 

expression of many target genes responsible for controlling aspects such as osmoprotection 

under abiotic stress (Shinozaki & Yamaguchi-Shinozaki, 2007; Hussain et al., 2011). For 

example, under drought stress, DREB2A induces the expression of various drought stress-

responsive genes such as RD29A. Qin et al. (2007) first reported on the accumulation of 

DREB2A in maize plants under drought stress. Additionally, DREB2A was significantly 

induced by drought stress and this induction was directly correlated to the upregulation of 

RD29A gene expression. Furthermore, the stress-induced expression of DREB2A resulted in 

improved drought stress tolerance. The modulation of the expression of drought responsive 

genes by Bacillus has been reported by Gagné-Bourque et al. (2015), in which plants 

inoculated with Bacillus subtilis displayed a higher accumulation of DREB and enhanced 

drought tolerance when compared to the non-inoculated plants. This correlates with the 

findings of the current study, and therefore it can be postulated that PGPR-based biostimulant 

enhances drought stress tolerance by inducing DREB encoding gene, which consecutively 

activates the expression of downstream drought-responsive genes.  

 

In the pre-challenge phase, PGPR induced the upregulated expression of PAL (6.3-fold) 

(Figure 4.8C) and a decrease in the expression level of FSNII (0.6-fold) (Figure 4.8D). The 

differential expression of PAL and FSNII indicates that PGPR activates the expression and 
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translation of these key enzymes involved in the phenylpropanoid pathway to drive the 

biosynthesis of secondary metabolites such as flavonoids and phenolics. As previously 

mentioned in Chapter 3 (subsection 3.3.2.2), phenylpropanoids are grouped into flavonoids, 

phenolic acids, coumarins and monolignols depending on their chemical structures. PAL is a 

key gateway enzyme that links the primary and secondary metabolism, particularly via the 

phenylpropanoid pathway, which branches into a network of other pathways. This PAL 

enzyme catalyses the deamination of phenylalanine giving rise to cinnamic acid, which is 

then drives the biosynthesis of other phenylpropanoids (Huang et al., 2010; Kong, 2015).  

 

Phenylpropanoids play numerous roles in plant growth and development. For example, 

lignin, which is synthesised from the phenylpropanoid pathway, is a complex phenolic 

polymer which is indispensable for plant growth. Lignin enhances cell wall integrity and 

promotes mineral and photosynthetic products translocation through vascular bundles in 

plants (Barros et al., 2015; Liu et al., 2018). The induced overexpression of PAL by the 

microbial biostimulant, which leads to the accumulation of phenylpropanoids, is thus one of 

the mechanisms governing enhanced plant growth and development. The PGPR-primed 

plants exhibit enhanced growth and development through activation of the phenylpropanoid 

pathway and compounds such as lignin. Quantitative analysis of phenolic acids and 

flavonoids induced by PGPR in the pre-challenge phase (Chapter 3, subsection 3.3.2.2) 

revealed an augmented accumulation of these secondary metabolites linked to plant growth 

and pre-conditioning of defences. The observed overexpression of PAL in the current study 

therefore complements the reported metabolomics findings.  

 

In the absence of PGPR, drought stress induced the downregulation of both PAL and FSNII 

(0.26- and 0.24-fold respectively) (Figure 4.8 C-D) when compared to the control. A rapid 

transient production of excessive amounts of ROS is one of the prime aspects of plant 

response to different types of environmental stresses including drought stress. ROS pose a 

major threat to plant growth and development due to their toxicity in plant system which 

causes membrane damages that often lead to the cell death (Blokhina et al., 2003). In 

contrast, plants have evolved antioxidative mechanisms to combat the danger posed by ROS 

through the production of antioxidants. Plants normally employ the accumulation of the 

defensive phenylpropanoid pathway compounds (phenolics and flavonoids) which act as 

antioxidants through the induction of PAL to mitigate the deleterious effects of drought stress.  
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An increase in PAL activity under drought stress has been reported in numerous plants 

including maize (Gholizadeh, 2011). PAL and activities of other key enzymes of the 

phenylpropanoid pathway regulate the biosynthesis of phenolics under abiotic stress. 

Additionally, enhanced performance of these  enzymes is accompanied by the up-regulation 

of the transcript levels of genes encoding key biosynthetic enzymes such 

as PAL, C4H (cinnamate 4-hydroxylase), CHI (chalcone isomerase), F3′H (flavonoid 3′-

hydroxylase), FLS (flavonol synthase), IFS (isoflavone synthase), IFR (isoflavone reductase) 

and FSNII (Ma et al., 2014; Gharibi et al., 2019). The downregulation of PAL and FSNII 

therefore indicates supressed PAL and FNSII enzyme activity in non-primed plants, resulting 

in the decreased biosynthesis of phenylpropanoids and enhances drought susceptibility due to 

the absence of antioxidant compounds.  

 

In contrast to the downregulation of PAL and FSNII gene expression in non-primed plants 

under drought stress, PGPR-primed plants induced an upregulated expression of these genes 

under mild drought stress conditions (4.6- and 12.7-fold) and a down-regulation of FNSII 

under severe drought stress conditions (0.6-fold) (Figure 4.8). The enhanced expression of 

these genes can be correlated to increased PAL and FSNII activity implying increased 

biosynthesis of phenylpropanoids. As echoed in the paragraphs above, PAL is the first 

enzyme in the phenylpropanoid pathway. Similarly, FSNII is a key enzyme in the 

phenylpropanoid pathway but only in the biosynthesis of flavones – a major class of 

flavonoids, stemming from the main phenylpropanoid pathway. The accumulation of 

flavonoids and phenolic compounds derived from the phenylpropanoid pathway has been 

linked to enhanced ROS scavenging through various mechanisms including inhibition of 

enzymes involved in ROS production and quenching. These antioxidants contribute to the 

mitigation of oxidative stress induced by drought stress. The suggested accumulation of 

phenolics due to PAL and FSNII overexpression induced by PGPR is supported by the 

downstream metabolic reprogramming in which phenolic acids and flavonoids were 

accumulated due to PGPR treatment as evidenced in Chapter 3, section 3.3, Figures 3.16 

and 3.20.  

 

Numerous studies have reported phenolic acids as indicators of drought tolerance through 

increased antioxidant capacity (Weidner et al., 2009; Varela et al., 2016; Laxa et al., 2019). 

Coinciding with the findings of the current study, Singh et al. (2020) reported an 
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overexpression of PAL, DREB and antioxidant enzymes (e.g. superoxide dismutase, SOD), 

H2O2 peroxidation (APX, PO) and oxidative defence response (CAT) in rice plants inoculated 

with Pseudomonas fluorescens. This resulted in enhanced antioxidant capacity and 

contributed towards drought stress mitigation. In Chapter 3 (subsection 3.3.1), enzymatic 

antioxidant machinery markers (CAT, SOD and APX) were measured under drought stress in 

PGPR-primed plants and all these markers were significantly increased. Thus, the postulated 

(hypothetical) model (Figure 4.9), emerging from these findings, is that the PGPR-based 

biostimulant triggers DNA hypermethylation, which (by an epistemological extrapolation) 

could be linked to the (up)regulation of the expression of key defensive genes such as P5CS, 

DREB, PAL and FSNII. The activation of these defence mechanisms amplifies drought 

inducible stress responses such as the accumulation of osmolytes and the activation of the 

phenylpropanoid pathway, resulting in enhanced drought stress tolerance when compared to 

naïve plants.  

  

 

Figure 4.9. Summary diagram of DNA methylation and gene expression alterations triggered by 

PGPR under drought stress. PGPR-primed plants exhibit enhanced induction of drought stress 

responsive mechanisms such as increased DNA methylation and expression of key stress-responsive 

genes, resulting in stress tolerance (the diagram was created by the author of this dissertation). 
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The ability of plants to maintain their primed state throughout their life cycle and successfully 

passing the primed state modifications onto their progeny has been reported in numerous 

studies (Mauch-Mani et al., 2017). As mentioned in the introduction section (section 4.1), the 

transfer of these epigenetic modifications onto successive generations serves as a 

transgenerational memory which can contribute to phenotypic plasticity and improved stress 

tolerance (Boyko & Kovalchuk, 2008; Chinnusamy & Zhu, 2009). In this case, 

transgenerational memory refers to observable and stable stress memory effects over multiple 

generations in the absence of  the original stress (Molinier et al., 2006). Bird (2002) and 

Mirouze & Paszkowski (2011) proposed that stress memory mechanisms in plants are 

encoded by epigenetic modifications.  

 

Experimental evidence of stress-induced transgenerational memory, resulting from epigenetic 

modifications changes covering different abiotic stresses in various plant species has been 

reviewed in Crisp et al. (2016). In a recent study by Cong et al. (2019), heavy metal 

responsive genes were upregulated in response to heavy metal stress. Additionally, evidence 

of transgenerational memory via these changes in gene regulation even after the removal of 

heavy metals was reported. The study further reported on DNA methylation alterations in 

response to the heavy metal stress which showed transgenerational inheritance. In this study 

(reported in this Chapter 4), PGPR application led to the reprogramming of the epigenetic 

landscape through altered DNA methylation profiles. In spite of the fact that monitoring of 

transgenerational effects over subsequent generations was outside the scope of this study, 

based on the findings highlighted above, it can be suggested that these epigenetic 

modifications (Figure 4.9) can potentially be passed onto succeeding generations resulting in 

heritable phenotypic variation leading to stress tolerance and survival. 
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4.4 Conclusion  

 

Herein, the PGPR-induced reprogramming of DNA methylation in maize plants under mild 

and severe drought stress conditions was investigated using ELISA. PGPR induced an 

increase in DNA methylation in maize, under both drought stress and non-stress conditions. 

This increase in DNA methylation was assumed to be one of the modes of action of 

microbial-based biostimulants in enhancing growth promotion, priming activation and 

drought stress tolerance. These findings correlate to the observed morphophysiological and 

metabolic changes reported in Chapter 3. Drought responsive genes were overexpressed due 

to PGPR treatment in both well-watered and drought stress conditions, suggesting that PGPR 

induces the expression of these key genes for priming activation and drought stress tolerance 

enhancement. To the best of our knowledge, this study is the first suggesting an involvement 

of epigenetic and transcriptional regulatory mechanisms (Figure 4.9) underlying the effects 

of PGPR-based biostimulants on crop plants (e.g. maize as in this case), under normal and 

stress conditions. However further investigation is required to elucidate PGPR-induced 

modifications in gene specific DNA methylation profiles and the downstream regulation of 

gene expression. 

 

 

.  

 



 
178 

 

4.5 List of References 

 

Abid G, Mingeot D, Muhovski Y, Mergeai G, Aouida M, Abdelkarim S, Aroua I, El 

Ayed M, M’hamdi M, Sassi K, et al. 2017. Analysis of DNA methylation patterns 

associated with drought stress response in faba bean (Vicia faba L.) using methylation-

sensitive amplification polymorphism (MSAP). Environmental and Experimental Botany 

142: 34–44. 

Al-Lawati A, Al-Bahry S, Victor R, Al-Lawati AH, Yaish MW. 2016. Salt stress alters 

DNA methylation levels in alfalfa (Medicago spp). Genetics and Molecular Research 15: 1–

16. 

An Y, Zhang M, Liu G, Han R, Liang Z. 2013. Proline accumulation in leaves of Periploca 

sepium via both biosynthesis up-regulation and transport during recovery from severe 

drought. PLoS ONE 8: 1–10. 

Angers B, Castonguay E, Massicotte R. 2010. Environmentally induced phenotypes and 

DNA methylation: How to deal with unpredictable conditions until the next generation and 

after. Molecular Ecology 19: 1283–1295. 

Anton DB, Guzman FL, Vetö NM, Krause FA, Kulcheski FR, Coelho APD, Duarte GL, 

Margis R, Dillenburg LR, Turchetto-Zolet AC. 2020. Characterization and expression 

analysis of P5CS (Δ1-pyrroline-5-carboxylate synthase) gene in two distinct populations of 

the Atlantic Forest native species Eugenia uniflora L. Molecular Biology Reports 47: 1033–

1043. 

Baek D, Jiang J, Chung JS, Wang B, Chen J, Xin Z, Shi H. 2011. Regulated AtHKT1 

gene expression by a distal enhancer element and DNA methylation in the promoter plays an 

important role in salt tolerance. Plant and Cell Physiology 52: 149–161. 

Barros J, Serk H, Granlund I, Pesquet E. 2015. The cell biology of lignification in higher 

plants. Annals of Botany 115: 1053–1074. 

Bartels A, Han Q, Nair P, Stacey L, Gaynier H, Mosley M, Huang QQ, Pearson JK, 

Hsieh TF, An YQC, et al. 2018. Dynamic DNA methylation in plant growth and 

development. International Journal of Molecular Sciences 19(7): 2144. 

Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, Westerman RP, 

SanMiguel PJ, Bennetzen JL. 2009. Exceptional diversity, non-random distribution, and 

rapid evolution of retroelements in the B73 maize genome. PLoS Genetics 5(11): e1000732. 

Baulcombe DC, Dean C. 2014. Epigenetic regulation in plant responses to the environment. 

Cold Spring Harbor Perspectives in Biology 6(9): a019471. 

Bird A. 2002. DNA methylation patterns and epigenetic memory. Genes & Development 16: 

6–21. 

Blokhina O, Virolainen E, Fagerstedt K V. 2003. Antioxidants, oxidative damage and 

oxygen deprivation stress: A review. Annals of Botany 91: 179–194. 

Boyko A, Kovalchuk I. 2008. Epigenetic control of plant stress response. Environmental and 

Molecular Mutagenesis 49: 61–72. 

Chinnusamy V, Zhu J-K. 2009. Epigenetic regulation of stress responses in plants. Current 

Opinion in Plant Biology 12: 133–139. 



 
179 

 

Chwialkowska K, Nowakowska U, Mroziewicz A, Szarejko I, Kwasniewski M. 2016. 

Water-deficiency conditions differently modulate the methylome of roots and leaves in barley 

(Hordeum vulgare L.). Journal of Experimental Botany 67: 1109–1121. 

Cong W, Miao Y, Xu L, Zhang Y, Yuan C, Wang J, Zhuang T, Lin X, Jiang L, Wang N, 

et al. 2019. Transgenerational memory of gene expression changes induced by heavy metal 

stress in rice (Oryza sativa L.). BMC Plant Biology 19: 1–14. 

Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ. 2016. Reconsidering plant 

memory: Intersections between stress recovery, RNA turnover, and epigenetics. Science 

Advances 2: 1–14. 

Eichten SR, Ellis NA, Makarevitch I, Yeh C-T, Gent JI, Guo L, McGinnis KM, Zhang 

X, Schnable PS, Vaughn MW, et al. 2012. Spreading of Heterochromatin Is Limited to 

Specific Families of Maize Retrotransposons (BS Gaut, Ed.). PLoS Genetics 8: e1003127. 

Eichten SR, Springer NM. 2015. Minimal evidence for consistent changes in maize DNA 

methylation patterns following environmental stress. Frontiers in Plant Science 6: 1–10. 

Espinas NA, Saze H, Saijo Y. 2016. Epigenetic Control of Defense Signaling and Priming 

in Plants. Frontiers in Plant Science 7: 1–7. 

Farag MA, Fokar M, Abd H, Zhang H, Allen RD, Paré PW. 2005. (Z)-3-Hexenol induces 

defense genes and downstream metabolites in maize. Planta 220: 900–909. 

Farooq M, A.Wahid, Kobayashi N, Fujita D, Basra SMA. 2009. Review article Plant 

drought stress : e ff ects , mechanisms and management. Agron. Sustain. Dev 29: 185–212. 

Finnegan EJ, Peacock WJ, Dennis ES. 2000. DNA methylation, a key regulator of plant 

development and other processes. Current Opinion in Genetics and Development 10: 217–

223. 

Gagné-Bourque F, Mayer BF, Charron JB, Vali H, Bertrand A, Jabaji S. 2015. 

Accelerated growth rate and increased drought stress resilience of the model grass 

brachypodium distachyon colonized by bacillus subtilis B26. PLoS ONE 10: 1–23. 

Galindo-González L, Sarmiento F, Quimbaya MA. 2018. Shaping plant adaptability, 

genome structure and gene expression through transposable element epigenetic control: 

Focus on methylation. Agronomy 8: 180. 

Gayacharan, Joel AJ. 2013. Epigenetic responses to drought stress in rice (Oryza sativa L.). 

Physiology and Molecular Biology of Plants 19: 379–387. 

Gehring M, Henikoff S. 2007. DNA methylation dynamics in plant genomes. Biochimica et 

Biophysica Acta - Gene Structure and Expression 1769: 276–286. 

Gharibi S, Sayed Tabatabaei BE, Saeidi G, Talebi M, Matkowski A. 2019. The effect of 

drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related 

genes in Achillea pachycephala Rech.f. Phytochemistry 162: 90–98. 

Gholizadeh A. 2011. Effects of drought on the activity of Phenylalanine ammonia lyase in 

the leaves and roots of maize inbreds. Australian Journal of Basic and Applied Sciences 5: 

952–956. 

Ghosh D, Sen S, Mohapatra S. 2017. Modulation of proline metabolic gene expression in 

Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas 

putida strain. Annals of Microbiology 67: 655–668. 

Grafi G. 2013. Epigenetic Memory and Control in Plants. 



 
180 

 

Guerzoni JTS, Belintani NG, Moreira RMP, Hoshino AA, Domingues DS, Filho JCB, 

Vieira LGE. 2014. Stress-induced Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene 

confers tolerance to salt stress in transgenic sugarcane. Acta Physiologiae Plantarum 36: 

2309–2319. 

Gupta R, Nagarajan A, Wajapeyee N. 2010. Advances in genome-wide DNA methylation 

analysis. BioTechniques 49(4): 3-11. 

Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K. 2011. Plant dehydrins and 

stress tolerance: versatile proteins for complex mechanisms. Plant signaling & behavior 6: 

1503–1509. 

Hare PD, Cress WA, Van Staden J. 1999. Proline synthesis and degradation: A model 

system for elucidating stress-related signal transduction. Journal of Experimental Botany 50: 

413–434. 

Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. 2013. 

Physiological, biochemical, and molecular mechanisms of heat stress tolerance in  plants. 

International journal of molecular sciences 14: 9643–9684. 

Hong Z, Lakkineni K, Zhang Z, Verma DPS. 2000. Removal of feedback inhibition of Δ1-

pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection 

of plants from osmotic stress. Plant Physiology 122: 1129–1136. 

Hu CAA, Delauney AJ, Verma DPS. 1992. A bifunctional enzyme (Δ1-pyrroline-5-

carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. 

Proceedings of the National Academy of Sciences of the United States of America 89: 9354–

9358. 

Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z. 2010. Functional 

analysis of the Arabidopsis PAL gene family in plant growth, development, and response to 

environmental stress. Plant Physiology 153: 1526–1538. 

Hussain SS, Kayani MA, Amjad M. 2011. Transcription factors as tools to engineer 

enhanced drought stress tolerance in plants. Biotechnology Progress 27: 297–306. 

Kaufmann K, Pajoro A, Angenent GC. 2010. Regulation of transcription in plants: 

mechanisms controlling developmental switches. Nature Reviews Genetics 11: 830–842. 

Kawashima T, Berger F. 2014. Epigenetic reprogramming in plant sexual reproduction. 

Nature Reviews Genetics 15: 613–624. 

Kim J-M, Sasaki T, Ueda M, Sako K, Seki M. 2015. Chromatin changes in response to 

drought, salinity, heat, and cold stresses in plants. Frontiers in Plant Science 6: 114. 

Kong JQ. 2015. Phenylalanine ammonia-lyase, a key component used for phenylpropanoids 

production by metabolic engineering. RSC Advances 5: 62587–62603. 

Kosová K, Vítámvás P, Prášil IT. 2014. Wheat and barley dehydrins under cold, drought, 

and salinity - what can LEA-II  proteins tell us about plant stress response? Frontiers in plant 

science 5: 343. 

Kumar S. 2018. Epigenetic memory of stress responses in plants. J. Phytochem. Biochem 2: 

e102. 

Kumar S, Singh A. 2016. Epigenetic regulation of abiotic stress tolerance in plants. 

Advances in Plants & Agriculture Research 5: 517–521. 

Kurdyokov S, Bullock M. 2016. DNA Methylation Analysis : Choosing the right method. 



 
181 

 

biology 5: 1–21. 

Lämke J, Bäurle I. 2017. Epigenetic and chromatin-based mechanisms in environmental 

stress adaptation and stress memory in plants. Genome Biology 18: 1–11. 

Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ. 2019. The role of the plant 

antioxidant system in drought tolerance. Antioxidants 8. 

Lehmann S, Funck D, Szabados L, Rentsch D. 2010. Proline metabolism and transport in 

plant development. Amino Acids 39: 949–962. 

Liu Q, Luo L, Zheng L. 2018. Lignins: Biosynthesis and biological functions in plants. 

International Journal of Molecular Sciences 19. 

Ma D, Sun D, Wang C, Li Y, Guo T. 2014. Expression of flavonoid biosynthesis genes and 

accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiology 

and Biochemistry 80: 60–66. 

Maghsoudi K, Emam Y, Niazi A, Pessarakli M, Arvin MJ. 2018. P5CS expression level 

and proline accumulation in the sensitive and tolerant wheat cultivars under control and 

drought stress conditions in the presence/absence of silicon and salicylic acid. Journal of 

Plant Interactions 13: 461–471. 

Marconi G, Pace R, Traini A, Raggi L, Lutts S, Chiusano M, Guiducci M, Falcinelli M, 

Benincasa P, Albertini E. 2013. Use of MSAP markers to analyse the effects of salt stress 

on DNA methylation in rapeseed (Brassica napus var. oleifera). PLoS ONE 8: 1–16. 

Mauch-Mani B, Baccelli I, Luna E, Flors V. 2017. Defense priming: An adaptive part of 

induced resistance. Annual Review of Plant Biology 68: 485–512. 

Min H, Chen C, Wei S, Shang X, Sun M, Xia R, Liu X, Hao D, Chen H, Xie Q. 2016. 

Identification of drought tolerant mechanisms in Maize seedlings based on transcriptome 

analysis of recombination inbred lines. Frontiers in Plant Science 7. 

Mirouze M, Paszkowski J. 2011. Epigenetic contribution to stress adaptation in plants. 

Current Opinion in Plant Biology 14: 267–274. 

Molinier J, Ries G, Zipfel C, Hohn B. 2006. Transgeneration memory of stress in plants. 

Nature 442: 1046–1049. 

Motulsky H. 1999. Analyzing Data with GraphPad Prism. 

Mun BG, Lee SU, Park EJ, Kim HH, Hussain A, Imran QM, Lee IJ, Yun BW. 2017. 

Analysis of transcription factors among differentially expressed genes induced by drought 

stress in Populus davidiana. 3 Biotech 7: 1–12. 

Nakashima K, Ito Y, Yamaguchi-Shinozaki K. 2009. Transcriptional regulatory networks 

in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology 149: 88–95. 

Nakashima K, Yamaguchi-Shinozaki K. 2006. Regulons involved in osmotic stress-

responsive and cold stress-responsive gene expression in plants. Physiologia Plantarum 126: 

62–71. 

Nuruzzaman M, Sharoni AM, Kikuchi S. 2013. Roles of NAC transcription factors in the 

regulation of biotic and abiotic stress responses in plants. Frontiers in Microbiology 4: 1–16. 

Pallant J. 2007. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using SPSS 

for Windows Version 15. USA: Open University Press. 

Pallant J. 2010. SPSS survival manual : a step by step guide to data analysis using SPSS. 

Fourth edition. Maidenhead : Open University Press/McGraw-Hill, 2010. 



 
182 

 

De Palma M, Salzano M, Villano C, Aversano R, Lorito M, Ruocco M, Docimo T, 

Piccinelli AL, D’Agostino N, Tucci M. 2019. Transcriptome reprogramming, epigenetic 

modifications and alternative splicing orchestrate the tomato root response to the beneficial 

fungus Trichoderma harzianum. Horticulture Research 6: 1–15. 

Phillips K, Majola A, Gokul A, Keyster M, Ludidi N, Egbichi I. 2018. Inhibition of NOS- 

like activity in maize alters the expression of genes involved in H2O2 scavenging and glycine 

betaine biosynthesis. Scientific Reports 8: 1–9. 

Puranik S, Sahu PP, Srivastava PS, Prasad M. 2012. NAC proteins: Regulation and role in 

stress tolerance. Trends in Plant Science 17: 369–381. 

Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, 

Yamaguchi-Shinozaki K. 2007. Regulation and functional analysis of ZmDREB2A in 

response to drought and heat stresses in Zea mays L. Plant Journal 50: 54–69. 

Rani Das K. 2016. A brief review of tests for normality. American Journal of Theoretical 

and Applied Statistics 5: 5-12. 

Reddy PS, Dhaware MG, Reddy DS, Reddy BP, Divya K, Sharma KK, Bhatnagar-

Mathur P. 2018. Comprehensive evaluation of candidate reference genes for real-time 

quantitative PCR (RT-qPCR) data normalization in nutri-cereal finger millet [Eleusine 

Coracana (L.)]. PLoS ONE 13: 1–17. 

Righini S, Rodriguez EJ, Berosich C, Grotewold E, Casati P, Falcone Ferreyra ML. 

2019. Apigenin produced by maize flavone synthase I and II protects plants against UV-B-

induced damage. Plant Cell and Environment 42: 495–508. 

Santos AP, Serra T, Figueiredo DD, Barros P, Lourenço T, Chander S, Oliveira MM, 

Saibo NJM. 2011. Transcription Regulation of Abiotic Stress Responses in Rice: A 

Combined Action of Transcription Factors and Epigenetic Mechanisms. OMICS: A Journal 

of Integrative Biology 15: 839–857. 

Sapna H, Ashwini N, Ramesh S, Nataraja KN. 2020. Assessment of DNA methylation 

pattern under drought stress using methylation-sensitive randomly amplified polymorphism 

analysis in rice. Plant Genetic Resources: Characterization and Utilization: 1–9. 

Secco D, Wang C, Shou H, Schultz MD, Chiarenza S, Nussaume L, Ecker JR, Whelan J, 

Lister R. 2015. Stress induced gene expression drives transient DNA methylation changes at 

adjacent repetitive elements. : 1–26. 

Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress 

response and tolerance. Journal of Experimental Botany 58: 221–227. 

Singh D, Laxmi A. 2015. Transcriptional regulation of drought response: A tortuous network 

of transcriptional factors. Frontiers in Plant Science 6: 1–11. 

Singh DP, Singh V, Gupta VK, Shukla R, Prabha R, Sarma BK, Patel JS. 2020. 

Microbial inoculation in rice regulates antioxidative reactions and defense related genes to 

mitigate drought stress. Scientific Reports 10: 1–17. 

Stroud H, Do T, Du J, Zhong X, Feng S, Patel DJ, Jacobsen SE. 2014. The roles of non-

CG methylation in Arabidopsis. Nat Struct Mol Biol 21: 64–72. 

Sun Y, Mu C, Zheng H, Lu S, Zhang H, Zhang X, Liu X. 2018. Exogenous Pi 

supplementation improved the salt tolerance of maize (Zea mays L.) by promoting Na+ 

exclusion. Scientific Reports 8: 1–14. 



 
183 

 

Suzuki MM, Bird A. 2008. DNA methylation landscapes: provocative insights from 

epigenomics. Nature Reviews Genetics 9: 465–476. 

Szabados L, Savouré A. 2010. Proline: a multifunctional amino acid. Trends in Plant 

Science 15: 89–97. 

Tang XM, Tao X, Wang Y, Ma DW, Li D, Yang H, Ma XR. 2014. Analysis of DNA 

methylation of perennial ryegrass under drought using the methylation-sensitive 

amplification polymorphism (MSAP) technique. Molecular Genetics and Genomics: 1075–

1084. 

Urano K, Kurihara Y, Seki M, Shinozaki K. 2010. ‘Omics’ analyses of regulatory 

networks in plant abiotic stress responses. Current opinion in plant biology 13: 132–138. 

Varela MC, Arslan I, Reginato MA, Cenzano AM, Luna MV. 2016. Phenolic compounds 

as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina). Plant 

Physiology and Biochemistry 104: 81–91. 

Verbruggen N, Hermans C. 2008. Proline accumulation in plants: A review. Amino Acids 

35: 753–759. 

Vicient CM. 2010. Transcriptional activity of transposable elements in maize. BMC 

Genomics 11: 601. 

Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK. 2011. Drought-

induced site-specific DNA methylation and its association with drought tolerance in rice 

(Oryza sativa L.). Journal of Experimental Botany 62: 1951–1960. 

Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and 

molecular chaperones in the abiotic stress  response. Trends in plant science 9: 244–252. 

Weidner S, Karolak M, Karamać M, Kosińska A, Amarowicz R. 2009. Phenolic 

compounds and properties of antioxidants in grapevine roots (Vitis vinifera l.) under drought 

stress followed by recovery. Acta Societatis Botanicorum Poloniae 78: 97–103. 

Yaish MW. 2013. DNA Methylation-Associated Epigenetic Changes in Stress Tolerance of 

Plants. In: Rout GR, Das AB, eds. Molecular Stress Physiology of Plants. India: Springer 

India, 427–440. 

Yang D, Huang Z, Jin W, Xia P, Jia Q, Yang Z, Hou Z, Zhang H, Ji W, Han R. 2018. 

DNA methylation: A new regulator of phenolic acids biosynthesis in Salvia miltiorrhiza. 

Industrial Crops and Products 124: 402–411. 

Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. 1997. 

Regulation of levels of proline as an osmolyte in plants under water stress. Plant and Cell 

Physiology 38: 1095–1102. 

Yoshida T, Mogami J, Yamaguchi-Shinozaki K. 2014. ABA-dependent and ABA-

independent signaling in response to osmotic stress in plants. Current Opinion in Plant 

Biology 21: 133–139. 

Zhang X, Lei L, Lai J, Zhao H, Song W. 2018. Effects of drought stress and water recovery 

on physiological responses and gene expression in maize seedlings. BMC Plant Biology 18: 

1–16. 

Zheng X, Chen L, Xia H, Wei H, Lou Q, Li M, Li T, Luo L. 2017. Transgenerational 

epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation 

to drought condition. Scientific Reports 7: 1–13. 



 
184 

 

Zuo T, Tycko B, Liu TM, Lin HJL, Huang THM. 2009. Methods in DNA methylation 

profiling. Epigenomics 1: 331–345. 

 

 



 
185 

 

4.6 Supplementary Materials 

 

 

Figure S4.1: Representative gel for the DNA integrity check of the extracted DNA from samples 

using 1% agarose gel electrophoresis.  

 

Table S4.1: Summary of the normality tests for DNA methylation levels in different treatments. 

Tests of Normality 

Treatment Kolmogorov-Smirnova Shapiro-Wilk 

Statistic Degrees 

of 

freedom 

Sig. Statistic df Sig. 

% 5-mC PGPR 0.309 12 - 0.902 4 0.440 

C 0.312 12 - 0.878 4 0.331 

MD-PGPR 0.376 12 - 0.751 4 *0.040 

SD-PGPR 0.181 12 - 0.992 4 0.965 

MD 0.273 12 - 0.901 4 0.434 

SD 0.267 12 - 0.903 4 0.446 

a. Lilliefors Significance Correction 
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Figure S4.2: Normal Q-Q plots depicting the distribution of the DNA methylation levels in different 

treatments. 
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Figure S4.3: Primer efficiency check. Agarose gel electrophoresis of qPCR amplicons and melt 

curve analysis. (A and B) β-TUB and EF1α1, (C and D) DREB and PAL. (B) β-TUB (Blue) and 

EF1α1 (green) and (D) DREB (yellow) and PAL (green).  
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Chapter 5 

General Conclusions and Perspectives 

 

Improving plant adaptation to abiotic stresses, for sustainable food production, has long been 

a pursuit of crop plant breeders. However, this is understandably difficult to achieve since 

abiotic stress resistance is a multigenic - and quantitative trait controlled by multi-layered 

cellular and molecular events. Hence, innovative and efficient strategies to improve crop 

quality and tolerance against abiotic stresses are imperatively required. As mentioned in 

Chapters 1 and 2, microbial biostimulants represent potentials to provide sustainable and 

economically favourable solutions that could introduce novel approaches to improve 

agricultural practices and crop productivity. However, to effectively establish and devise 

novel biostimulant-based agricultural strategies, there is a necessity to firstly understand the 

physiology and biochemistry governing the interactions between biostimulants and plants at 

both cellular and molecular levels. This knowledge gap – decoding molecular and 

physiological mechanisms underlying biostimulant action – is one of the main bottlenecks 

that hamper the biostimulant field and industries from implementing and maximising the 

value of (traditional and novel) such formulations in agronomic practices (Chapter 1). Thus, 

the current work, presented in this dissertation, contributes to on-going scientific efforts to 

elucidate biochemical and molecular frameworks as well as predictive models that describe 

the mechanisms activated/stimulated by biostimulants (in crop plants) towards growth 

promotion and enhanced adaptability to abiotic stress conditions. The work was designed to 

explore both the chemical and gene space of maize plants treated with a PGPR consortium (5 

strains of Bacilli), under both mild- and severe drought stress conditions. 

 

Chapter 3, an LC-MS-based targeted metabolomics study, revealed altered metabolic 

profiles associated with PGPR-mediated growth enhancement and drought stress tolerance in 

maize plants. The microbial biostimulant induced differential changes in the levels of amino 

acids, phytohormones, flavonoids and phenolic acids in maize plants under well-watered, 

mild and severe drought stress conditions. These quantitative (metabolic) alterations spanned 

several pathways in both primary and secondary metabolism, and reflect underlying 
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mechanisms employed by PGPR in promoting plant growth and defence priming for 

enhanced drought stress tolerance. These metabolic reconfigurations lead to biochemical and 

physiological events that include (i) growth promotion of roots, leaves and shoots; (ii) 

enhanced photosynthetic capacity; (iii) energy production through amino acid recycling; (iv) 

nutrient and water uptake; (v) ethylene inhibition through ACC degradation; (vi) production 

of osmolytes; (vii) protein biosynthesis; and (viii) augmented antioxidant capacity. 

Furthermore, this PGPR-induced metabolic reprograming was translated into 

morphophysiological alterations as confirmed by a significant increase in enzymatic 

regulators of oxidative stress and biomass accumulation in PGPR-treated plants compared to 

naïve plants. At the gene space level (Chapter 4), PGPR-treatment significantly increased 

DNA methylation levels in the pre-challenge and post-challenge phases, making DNA 

methylation an additional key mechanism through which PGPR-based biostimulant enhances 

plant growth, priming and drought stress tolerance. In addition, expression levels of targeted 

genes (defence-responsive genes – P5CS, DREB2A, PAL, FSNII) were upregulated, 

suggesting that PGPR not only influences the epigenome but also gene regulation to enhance 

the expression of drought defence-responsive genes.  

 

Future studies could include targeted DNA methylation analyses to gain more insights into 

specific spatiotemporal methylation status, and correlating these methylations to downstream 

gene expression profiles. Furthermore, the interrogation of transgenerational effects of 

PGPR-induced changes in the maize methylome could shed light on stress memory, i.e. the 

extent of biostimulant-induced stress priming. These future studies (and alike), build on the 

knowledge generated from this work, and would be part of on-going scientific efforts to 

decode molecular mechanisms governing biostimulant effects in crop plants. Thus, the work 

presented in this dissertation revealed that microbial-based biostimulant (a consortium of 

Bacilli spp.) can enhance growth and improve maize responses to drought stress conditions 

by modulating cell metabolic pathways and gene regulation events. This mechanistic and 

predictive framework, explaining the modes of action of the microbial-based biostimulant, is 

an actionable (fundamental) knowledge necessary for the biostimulant industry, and can be 

used to derive novel biostimulant formulations and design biostimulant-based agricultural 

programs for sustainable food production.    
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