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Abstract

In this paper, we are interested in the dependence between lifetimes based on a joint sur-
vival model. This model is built using the bivariate Sarmanov distribution with Phase-Type
marginal distributions. Capitalizing on these two classes of distributions’ mathematical proper-
ties, we drive some useful closed-form expressions of distributions and quantities of interest in
the context of multiple-life insurance contracts. The dependence structure that we consider in
this paper is based on a general form of kernel function for the Bivariate Sarmanov distribution.
The introduction of this new kernel function allows us to improve the attainable correlation
range.
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1 Introduction

Dependence modeling is one of the most important topics in financial and actuarial modeling.
While the independence assumption seems to be very simple to implement and makes most of
the models very tractable, this assumption is not realistic in some cases and either underestimate
or overestimate the level of risks. To fairly evaluate and price risks, one should consider any
possible dependence between risks. In life contingencies, modeling dependence is not required
when individual risks are considered unless they are part of a group life insurance or subject to
multiple life insurance products. Multiple life products are contracts issued on two or more lives,
as opposed to a single individual. The payoff associated with such insurance policies is contingent
on the lifetimes of these individuals. It is usually assumed that the remaining lifetimes of the lives
involved are mutually independent, mainly because of this assumption’s computational feasibility.
In this paper, we relax this assumption and address the problem of evaluating multiple insurance
products for dependent risks. One way to introduce this dependence is using common shock models,
which allow positive dependence between risks. For this kind of model, it is generally assumed
that individual risks are following exponential distributions, limiting the practicability of such a
model. Alternatively, the dependence is modeled using copula functions. Copulas allow separating
the marginal distributions from the dependence structure of a given multivariate distribution,
which introduces some flexibility in building dependent multivariate models. Dufresne et al. (2018)
used copula theory to model the dependence between lifetimes within a married couple. Frees
et al. (1996) developed a model based on copulas to show positive dependence between couples’
lifetimes. Luciano et al. (2008) presented a bivariate stochastic mortality model where the joint
mortality intensities are modeled via an Archimedean copula. Gobbi et al. (2019) suggested an
extended Marshall-Olkin model and copulas to analyze the impact of dependence between risks
in joint life insurance products pricing. This paper adds to the literature on joint life modeling
with dependence by introducing a joint model based on the well-known Sarmanov multivariate
distribution. For simplicity and without loss of generality, we only consider policies with two
individuals. The generalization to three or more individuals follows easily. Sarmanov distribution
was first introduced in bivariate form in Sarmanov (1966) then extended to the multivariate case in
Lee (1996). Over the past few years, Sarmanov distribution has been used in many actuarial and
financial applications due to its flexibility and mathematical features, which allow the derivation
of closed-form expressions for some interesting actuarial and financial quantities. The applications
of Sarmanov distribution in insurance are mainly in risk theory, ruin theory, claim reserving, and
capital allocation, see e.g., Yang and Hashorva (2013), Hashorva and Ratovomirija (2015), Abdallah
et al. (2016a), Abdallah et al. (2016b), Ratovomirija et al. (2017), Vernic (2017), Vernic (2018),
and Bolancé and Vernic (2019). To our knowledge, no work has been done on applying Sarmanov
distribution to model multiple life insurance contracts, and this paper is unique in this context.

To build a suitable bivariate lifetime model, we need an accurate marginal distribution. Var-
ious parametric distributions are used to model mortality, including the exponential distribution,
Gompertz distribution, Weibull distribution. Stochastic mortality models have also been proposed
in the literature; see Pitacco et al. (2009) for more details. However, these laws are normally
focused on the underlying mortality itself. Simultaneously, actuarial quantities such as actuarial
present values, premium, and other important quantities are not readily available in analytic form.
This paper considers a large class of marginal distribution and works with the Phase-Type (PH)
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distribution. This specific distribution has been highly-used in risk theory; first introduced by
NEUTS (1975), Neuts (1994). The PH distribution has many applications in queuing systems,
engineering, and other applications due to its simple analytic expression and easy interpretation.
It is also a generalization for many well-known and extensively used distributions such as the expo-
nential distribution, Erlang distribution, and hyper-exponential distribution. X. Sheldon Lin PhD
and Liu (2007) have proposed the use of the PH distribution as a mortality law. They calibrate
the PH distribution to human mortalities of various countries and cohorts, based on the weighted
least squares method. They derived analytical forms for the actuarial present value of some of
the standard insurance products. Kim et al. (2017) extended the results of X. Sheldon Lin PhD
and Liu (2007) by finding closed-form life contingencies expressions for a wide range of common
life insurance products. They supported the efficiency of using the PH mortality model in risk
management by referring to many papers where the distribution was used in many actuarial ap-
plications. For example, Govorun and Latouche (2014) used the PH mortality model to estimate
the financial impact of health on profits and losses of a pension fund. Another example is Govorun
et al. (2015) who studied the distribution of the net present value of a health care contract based
on the PH model. Kim et al. (2017) provided analytic derivations for actuarial present values,
premiums, reserves, higher moments of benefit, loaded premiums, risk measures, and many other
applications for various standard life products. In the last section of their paper, they used the fact
that the PH distribution is closed under convolution to price actuarial present values of multiple
life products, assuming independence of the underlying mortalities. Zadeh et al. (2014) applied PH
distributions in actuarial calculations for disability insurance. Recently, Asmussen et al. (2019) fit
PH distribution to human mortality then price equity-linked life insurance contracts.

Motivated by the tractability and mathematical features of both Sarmanov and PH distribu-
tions, we build a bivariate survival model to evaluate multiple life insurance contracts. Capitalizing
on these two classes of distributions’ properties, we derive some closed-form expressions for rele-
vant distributions, actuarial present values, and risk measures. Using our model, we can calculate
premiums and reserves for life insurance and life annuities contingent on two dependent lives.

The rest of the paper will be organized as follows. We give a brief review of the PH distribu-
tion class with its main properties, and we also define the dependence structure using Sarmanov
distribution. In Section 3, we derive our main results, mainly arriving to the actuarial present
values of multiple life insurance and annuities contracts. To illustrate our findings, we provide
some numerical examples in Section 4. Then, a summary and conclusion are given in Section 5.

2 The model

In this section, our joint lifetime model’s components are presented. First, the marginal risks are
specified to be following Phase-Type distribution, and the main definitions and characteristics of
this family of distributions are given. Then, the dependence structure is defined using a multivariate
Sarmanov distribution with a general kernel function.
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2.1 Phase-Type Distribution

Phase-Type (PH) distributions have attracted a lot of interest in the actuarial and financial lit-
erature due to their useful properties and tractability. It is also possible to approximate any
distribution on the non-negative real numbers by a PH distribution, which justifies its uses both in
practice and theory. The PH distribution is defined as the distribution of the time to absorption
for a given Markov chain. Consider a continuous-time Markov chain (CTMC) with a state space
{1, 2, ..., n, 0} where 0 is an absorbing state while all other states are transient. Let the initial
distribution of the CTMC be (α, 0) and the infinitesimal generator be(

Λ λ
01,n 0

)
, λ = −Λen,

where en is an n-dimensional column vector of 1’s and 01,n is an n-dimensional row vector of 0’s.
Note that α is an n dimensional row vector and Λ is an n × n matrix. Note also that Λ is a sub-
stochastic matrix. Thus it has non-negative off-diagonal elements and strictly negative diagonal
elements. The PH distribution is defined as the distribution of the time, T , till absorption in the
CTMC, and we write, T ∼ PH(α,Λ).

The cumulative distribution function (cdf) of T is

FT (t) = 1− αeΛten, (2.1)

and the probability density function (pdf) is given by

fT (t) = αeΛtλ, (2.2)

for t ≥ 0 where λ = −Λen. Many well-known and important distributions, such as the exponential,
Erlang, and hyper-exponential distributions, are special cases of the PH distribution, as shown in
the following examples.

Example 2.1. If T ∼ exp(λ) where λ > 0, and density function fT (t) = λe−λt, for t ≥ 0, then it
is a PH with

α = 1, Λ = −λ.

�

Example 2.2. If T follows hyper-exponential distribution with density function fT (t) =
∑n

i=1 αiλie
−λit,

for t ≥ 0, then it is a PH with

α = (α1, α2, ..., αn), Λ =


−λ1 0 . . . 0

0 −λ2 . . . 0
...

...
. . .

...
0 0 . . . −λn

 .

�

Example 2.3. If T has an Erlang (n) distribution with density

fT (t) =
λntn−1e−λt

(n− 1)!
, t ≥ 0, n ∈ N+, λ > 0
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then it is also PH with

α = (1, 0, ..., 0), Λ =



−λ λ 0 . . . 0 0
0 −λ λ . . . 0 0
0 0 −λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −λ λ
0 0 0 . . . 0 −λ


.

�

It is well-known that for any substochastic matrix, Λ, the real parts of its eigenvalues are non
positive since substochastic matrices are diagonally dominant and all their diagonals are negative
(see Definition 5.1 in the Appendix). Thus, we have the following proposition

Proposition 2.1. Let Λ be a non-singular, square substochastic matrix. Then

lim
t→∞

eΛt = 0.

Proof. This easily follows by the diagonalization of Λ, and using the definition of matrix exponential
(see Definition 5.2 in the appendix).

From the definition of the matrix exponential, we have

Λ

∫ τ

0
eΛt dt = eΛτ − In.

where In is the identity matrix. Using Proposition 2.1, and the fact that Λ is non-singular, we get∫ ∞
0

eΛt dt = lim
τ→∞

∫ τ

0
eΛt dt = lim

τ→∞
Λ−1(eΛτ − In) = −Λ−1. (2.3)

The expectation of T , it is given by

E[T ] =

∫ ∞
0

[1− FT (t)] dt

= α

∫ ∞
0

eΛt dt en

= −αΛ−1en.

From Eq. 2.3, and using the fact that the identity matrix In commutes with any other matrix
(see Proposition 5.1. in the appendix), one can derive the moment generating function (mgf) and
Laplace transform to T

MT (δ) =

∫ ∞
0

eδtfT (t) dt = α

∫ ∞
0

e(δIn+Λ)t dtλ = −α(δIn + Λ)−1λ, (2.4)

and

Φ(δ) =

∫ ∞
0

e−δtfT (t) dt = α

∫ ∞
0

e(−δIn+Λ)t dtλ = α(δIn − Λ)−1λ. (2.5)
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The kth moment is obtained by taking the kth derivative of the mgf using matrix-to-scalar identities
of matrix calculus (see the appendix)

E[T k] =
dk

dδk
MT (δ)|δ=0 = − dk

dδk
α(δIn − Λ)−1λ|δ=0

= −α(−1)kk!(δIn − Λ)−(k+1)λ|δ=0 = α(−1)kk!(δIn − Λ)−ken|δ=0

= α(−1)kk!Λ−ken.

(2.6)

One of the most useful properties of a PH distribution is that its excess life Ex = T − x|T > x
distribution is also a PH where

Pr(Ex > t) =
αeΛ(t+x)en
αeΛxen

,

i.e. Ex is a PH distributed with parameters (αx,Λ), with

αx =
αeΛx

αeΛxen
.

In a context of life insurance, this property offers a convenient way to construct various life con-
tingencies quantities because the future lifetime of an individual of age (x) is again PH(αx,Λx)
random variable. We refer readers to Bladt and Nielsen (2017) for more details on PH distributions
and its properties. We end this section by giving some closed form expressions for some Actuarial
Present Values (APV). Let δ be the continuous constant force of interest and consider an insured
of age (x), where Tx is PH(αx,Λx) random variable. The APV for a whole life insurance of a one
unit future benefit is

Ax =

∫ ∞
0

e−δTxfTx(t) dt =

∫ ∞
0

e−δTxαxe
Λxtλx dt = αx(δIn − Λx)−1λx. (2.7)

The APV for a whole life annuity of $1 is

ax =

∫ ∞
0

e−δTxF Tx(t) dt =

∫ ∞
0

e−δTxαxe
Λxten dt = αx(δIn − Λx)−1en. (2.8)

The APV of the t−term life insurance is given by

A
1
x:t| =

∫ t

0
e−δTxfTx(t) dt =

∫ t

0
e−δTxαxe

Λxtλx dt = αx(δIn − Λx)−1(In − e−(δIn−Λx)t)λx. (2.9)

2.2 The dependence structure

Consider two random variables Tx and Ty which are assumed to be dependent. These two rv’s
represent the future lifetimes for two lives ages x and y, respectively. The dependence could be
introduced using copulas or a common shock model. In this paper, we use the bivariate Sarmanov
distribution that is given by

h(s, t) = fx(s)fy(t) (1 + ωψx(s)ψy(t)) , (2.10)

where fx and fy are the marginal pdfs for Tx and Ty, respectively.
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The kernel functions ψi, for i = x, y, are assumed to be bounded and non-constant such that
E [ψi(Ti)] = 0. The parameter ω is a real number such that

1 + ωψx(s)ψy(t) ≥ 0, (2.11)

∀s, t ∈ R+. Note that the independence is reached when ω = 0. Define νi =
∫∞

0 sψi(s)fi(s)ds, for
i = x, y, then the covariance and correlation coefficient are given by

Cov (Tx, Ty) = ωνxνy, (2.12)

and
Corr (Tx, Ty) =

ωνxνy√
V ar[Tx]V ar[Ty]

. (2.13)

The maximum attainable correlation for a bivariate Sarmanov distribution is discussed in Shubina
and Lee (2004) for different marginal distributions. In our numerical applications, we show how
our model produces correlations that are very close to the bounds provided by Shubina and Lee
(2004) in the case of exponential marginal distributions.

In this paper, it is assumed that both Tx and Ty are following PH distribution with orders nx
and ny, i.e.

Tx ∼ PH(αx,Λx) and Tx ∼ PH(αy,Λy).

The resulting joint distribution is referred to as Sarmanov Phase-Type (SPH) distribution. The
choice of a suitable kernel function is very important in the definition of our SPH distribution. In
the literature, the most used kernel functions are (See Lee (1996) for details)

(i) Farlie-Gumbel-Morgenstern (FGM) copula case: ψi(t) = 1−2Fi(t) where Fi is the cdf associated
to Ti;

(ii) Exponential Kernel: ψi(t) = e−γit − E[e−γiTi ];

(iii) The marginal Kernel: ψi(t) = fi(t)− E[fi(Ti)].

Yang and Hashorva (2013) considered the case where ψ depends on some function g as follows

ψi(t) = gi(t)− E [gi(Ti)] , (2.14)

where E [gi(Ti)] <∞. In order to satisfy the condition 2.11, the dependence parameter ω is set to
be in the following range

−1

max {CxCy, (Mx − Cx) (My − Cy)}
6 ω 6

1

max {Cx (My − Cy) , (Mx − Cx)Cy}
, (2.15)

where Ci = E (gi (Ti)) and Mi = maxs∈R gi(s), i = x, y.

Given that the marginal distributions are PH distributed, we consider a general form for the
functions gi and it is assumed that

gi(t) = βie
Bitbi, (2.16)

where βi, Bi, and bi are 1×mi vector, mi ×mi matrix, and mi × 1 vector, respectively.

This general kernel function includes all the well-known kernel functions and we have
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(I) For the FGM copula, we have ψi(t) = 1− 2Fi(t), then

gi(t) = 2F̄i(t).

The survival function for a PH has the following form

F̄i(t) = αie
Λiteni .

It follows that
βi = 2αi, Bi = Λi, and bi = eni .

(II) For the exponential kernel case, it is assumed that ψi(t) = e−γit − E[e−γiTi ]. Then, it is
straightforward to identify

βi = 1, Bi = −γi, and bi = 1.

(III) For the marginal kernel function, we have ψi(t) = fi(t)− E[fi(Ti)], then

βi = αi, Bi = Λi, and bi = λi = −Λieni .

It is also possible to consider new forms of kernel functions. For example, we suggest the following
Erlang-type kernel function with

gi(s) =

k−1∑
r=0

(γs)r

r!
e−γs (2.17)

where γ ≥ 0 and k is an integer. From Example 2.3, it is clear that gi is the survival function for
an Erlang distribution and it could be written as in Eq. 2.16. It is obvious that when k = 1 the
Erlang-kernel function is reduced to the exponential kernel function.

Remark 2.1. Note that it is possible to set some parameters in the kernel function gx and gy to
have the same values which could simplify the model. Although, we keep the general form in our
results.

In order to have a valid distribution, we need some conditions on the general kernel function in
Eq. 2.16. The joint distribution is defined as long as E [gi (Ti)] is finite. Thus, we assume that this
expectation exists and the conditions for its existence are given in the following subsection.

2.3 The joint distribution of Tx and Ty

The joint pdf of Tx and Ty in Eq. 2.10 could be written as follows

h(s, t) = fx(s)fy(t) (1 + ωCxCy)− ωCyfx(s)gx(s)fy(t)

− ωCxfx(s)fy(t)gy(t) + ωfx(s)gx(s)fy(t)gy(t), (2.18)

or in a compact form

h(s, t) = fx(s)fy(t) + ω
1∑

k,l=0

ck,lfx(s)gkx(s)fy(t)g
l
y(t), (2.19)
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with g0
i (s) = 1, for i = x, y and for all s with

ck,l = (−1)k+lC1−k
1 C1−l

2 ,

for l and k in {0, 1}. The following lemma is used to compute the products fi(.)gi(.) for i = x and
y.

Lemma 2.1. Assume that
K(t) = αeAta,

and
L(t) = βeBtb,

where α, β, A, B, c, and b are 1 × n vector, 1 ×m vector, n × n matrix, m ×m matrix, n × 1
vector and m× 1 vector, respectively. Let M(t) = K(t)L(t), then

M(t) = (α⊗ β) e(A⊕B)t (a⊗ b) .

Proof. First, we note that
M(t) =

[
αeAta

]
⊗
[
βeBtb

]
.

By the mixed product property of the Kronecker product (see Proposition 5.3), we find

M(t) = (α⊗ β) eAt ⊗ eBt (a⊗ b) .

Then, the desired result follows by using the following property of the matrix exponential

eAt ⊗ eBt = e(A⊕B)t.

Using Lemma 2.1, one can write

fi(s)g(s) = (αi ⊗ βi) eΛi⊕Bis (λi ⊗ bi) . (2.20)

In the rest of the paper, we use the notations

α
(k)
i =

{
αi, if k = 0

αi ⊗ βi, if k = 1
,

Λ
(k)
i =

{
Λi, if k = 0

Λi ⊕Bi, if k = 1
,

and

λ
(k)
i =

{
λi, if k = 0

λi ⊗ bi, if k = 1
,

As stated above, the validity of our SPH model holds only if E [gi (Ti)] <∞ where

E [gi (Ti)] =

∫ ∞
0

fi(s)gi(s)ds

= α
(1)
i

∫ ∞
0

eΛi⊕Bisdsλ
(1)
i .
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Then, a sufficient condition to have E [gi (Ti)] < ∞ is to satisfy the condition
∫∞

0 eΛi⊕Bisds < ∞.
Following a similar reasoning as in Proposition 2.1, we can state that our model is defined if and
only if the real parts of the eigenvalues of Λi ⊕Bi are negative. Using Proposition 5.4, we can find
a concrete condition on the matrix Bi.

Proposition 2.2. Let v be the largest real part of the eigenvalues of Bi and let z be the smallest
real part of the eigenvalues of Λi. Then

∫∞
0 eΛi⊕Bisds <∞ if and only if v + z < 0.

Proof. This result is a simple application of Proposition 5.4.

Since all eigenvalues of Λi are supposed to be negative, a sufficient condition on Bi follows

Proposition 2.3. If all the eigenvalues of Bi are nonpositive, then
∫∞

0 eΛi⊕Bisds <∞.

For all examples that we consider in this paper the condition in Proposition 2.3 holds.

Using our notation, the joint pdf in Eq. 2.19 becomes

h(s, t) =
(
αxe

Λxsλx
) (
αye

Λytλy
)

+ ω

1∑
k,l=0

ck,l

(
α(k)
x eΛ

(k)
x sλ(k)

x

)(
α(l)
y e

Λ
(l)
y tλ(l)

y

)
. (2.21)

While, in general, the product figi is not a pdf and does not have the form of a Phase-type distri-
bution, it is still possible to see the joint pdf in 2.21 as a combination of joint pdf’s for independent
bivariate Exponential Matrix (EM) distributions. More details on the EM distributions are avail-
able in Bladt and Nielsen (2017). Alternatively, one can write the joint pdf h as a combination of
joint pdf’s of independent PH distributions as we are going to show in the Subsection 2.4.

Remark 2.2. It is interesting to notice that the expressions for α
(1)
i , Λ

(1)
i , and λ

(1)
i are not unique.

For example, consider the case of FGM, we have fi(s)gi(s) = 2fi(s)F̄i(s) which is the pdf of the
minimum of two independent rvs following PH(αi,Λi). It is well known that the PH distributions
are stable with respect to the order statistics and the distribution of the minimum is also following
PH with parameters αi ⊗ αi and Λi ⊕ Λi (See Bladt and Nielsen (2017)). It follows that

fi(s)gi(s) = −(αi ⊗ αi)e(Λi⊕Λi)s(Λi ⊕ Λi)en2
i
. (2.22)

From the joint pdf in Eq. 2.21, expressions for the cdf and survival functions follow

H̄(s, t) =
(
αxe

Λxsenx

) (
αye

Λyteny

)
+ ω

1∑
k,l=0

ck,l

(
α(k)
x eΛ

(k)
x sλ̂(k)

x

)(
α(l)
y e

Λ
(l)
y tλ̂(l)

y

)
, (2.23)

where

λ̂
(k)
i =

[
Λ

(k)
i

]−1
λ

(k)
i ,

and

H(s, t) =
(
1− αxeΛxsenx

) (
1− αyeΛyteny

)
(2.24)

+ ω

1∑
k,l=0

ck,l

(
1− α(k)

x eΛ
(k)
x sλ̂(k)

x

)(
1− α(l)

y e
Λ
(l)
y tλ̂(l)

y

)
.
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An expression for the joint Laplace transform is derived and we have

L(p, q) = E
[
e−(pTx+qTy)

]
(2.25)

=
(
αx [pInx − Λx]−1 λx

)(
αy
[
qIny − Λy

]−1
λy

)
+ ω

1∑
k,l=0

ck,l

(
α(k)
x

[
pInxmk

x
− Λ(k)

x

]−1
λ(k)
x

)(
α(l)
y

[
qInyml

y
− Λ(l)

y

]−1
λ(l)
y

)
.

Differentiating the LT, we get an expression for joint moments

E
[
T ixT

j
y

]
= (−1)i+ji!j!

{(
αxΛ−ix enx

) (
αyΛ

−j
y eny

)
+ ω

1∑
k,l=0

ck,l

(
α(k)
x

[
Λ(k)
x

]−i
λ̂(k)
x

)(
α(l)
y

[
Λ(l)
y

]−j
λ̂(l)
y

)}
.

(2.26)

2.4 The joint distribution as a combination of PH joint distributions

In this subsection, we show that the joint pdf in Eq. 2.21 could be written in terms of PH pdfs.
This result is based on the following lemma.

Lemma 2.2. Consider a function M(t) = αeAta such that 0 <
∫∞

0 M(t)dt <∞, where α, A, and
a are 1× n vector, n× n matrix, and n× 1 vector, respectively. Then,

M(t) = cN(t),

where N is a pdf of an n order PH(α̃, Ã) with

c = −αA−1a, α̃ =
α∆

c
, Ã = ∆−1A∆,

and ∆ is a diagonal matrix with diag(∆) = −A−1a.

Proof. Define

c =

∫ ∞
0

M(t)dt.

We have c = −αA−1a and ∆en = −A−1a. Then, c = α∆en. The function M could be written as
follows

M(t) = c
[
α̃∆−1eAta

]
.

Using the definition of exponential matrix, we get

∆−1eAt = ∆−1

[ ∞∑
k=0

Ak

k!
tk

]
∆∆−1

=
∞∑
k=0

Ãk

k!
tk∆−1

= eÃt∆−1.
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Thus,

M(t) = c
[
α̃eÃt∆−1a

]
.

The proof is concluded by showing that

∆−1a = ∆−1AA−1a = −∆−1A∆en = −Ãen,

i.e. α̃eÃt∆−1a = −α̃eÃtÃen is a pdf of PH(α̃, Ã).

Using the previous lemma, one can write the joint pdf in Eq. 2.21 as follows

h(s, t) =
(
αxe

Λxsλx
) (
αye

Λytλy
)

+ ω
1∑

k,l=0

c̃k,lfx,k(s)fy,l(t), (2.27)

where fu,i is a pdf of a PH(α̃
(i)
u , Λ̃

(i)
u ) with

α̃(i)
u =

α
(i)
u ∆

c
, Λ̃(i)

u = ∆−1Λ(i)
u ∆,

and ∆ is a diagonal matrix with diag(∆) = −[Λ
(i)
u ]−1λ

(i)
u , for u = x, y and i = k, l. The constant

c̃k,l is given by

c̃k,l = ck,l

[
α(k)
x (Λ(k)

x )−1λ(k)
x

] [
α(l)
y (Λ(l)

y )−1λ(l)
y

]
.

This result is very important to analyze the statistical characteristics for the SPH distribution
but for the sake of simplicity we work in the rest of the paper with joint pdf defined in Eq. 2.21.
Although, similar results could be derived using the joint pdf in Eq. 2.27.

3 Multiple-life insurance model

In this section, we apply the SPH distributions in the context of joint-life insurance modeling. This
family of distributions allow us to derive some closed-form expression for many useful actuarial
quantities. The survival of the two lives is referred to as the status of interest or simply the status.
There are two common types of status: the joint life status and the last survival status.

3.1 Joint life status

The joint-life status is one that requires the survival of both lives. Accordingly, the status terminates
upon the first death of one of the two lives. The joint-life status of two lives (x) and (y) will be
denoted by (xy), and the moment of death random variable is given by T(xy) = min(Tx, Ty).

12



Theorem 3.1. The survival function for T(xy) could be written as

F T(xy)(t) = αxye
Λxytenxy + ω

1∑
k,l=0

ck,lα
(kl)
xy e

Λ
(kl)
xy tλ̂(kl)

xy , (3.1)

where

nxy = nxny, αxy = αx ⊗ αy, Λxy = Λx ⊕ Λy, (3.2)

α(kl)
xy = α(k)

x ⊗ α(l)
y , Λ(kl)

xy = Λ(k)
x ⊕ Λ(l)

y , and λ̂(kl)
xy = λ̂(k)

x ⊗ λ̂(l)
y . (3.3)

Proof. The survival function of T(xy) is given by

F T(xy)(t) = HTx,Ty(t, t). (3.4)

It follows that

F T(xy)(t) =
(
αxe

Λxtenx

) (
αye

Λyteny

)
+ ω

1∑
k,l=0

ck,l

(
α(k)
x eΛ

(k)
x tλ̂(k)

x

)(
α(l)
y e

Λ
(l)
y tλ̂(l)

y

)
. (3.5)

Applying Lemma 2.1, we can state that(
αxe

Λxtenx

) (
αye

Λyteny

)
= (αx ⊗ αy) eΛx⊕Λytenxny , (3.6)

and

(
α(k)
x eΛ

(k)
x tλ̂(k)

x

)(
α(l)
y e

Λ
(l)
y tλ̂(l)

y

)
=
(
α(k)
x ⊗ α(l)

y

)
eΛ

(k)
x ⊕Λ

(l)
y t
(
λ̂(k)
x ⊗ λ̂(l)

y

)
. (3.7)

Which leads to the desired result.

Using the survival function, we derive the following pdf for T(xy) is given by

fT(xy)(t) = αxye
Λxytλxy + ω

1∑
k,l=0

ck,lα
(kl)
xy e

Λ
(kl)
xy tλ(kl)

xy , (3.8)

where

λxy = −Λxyenxy ,

and

λ(kl)
xy = −Λ(kl)

xy λ̂
(kl)
xy .

Example 3.1. For the case of FGM and using the result in Remark 2.2, we get

α
(k)
i = α

⊗k+1

i , Λ
(k)
i = Λ

⊕k+1

i ,

λ
(k)
i = Λ

(k)
i enk+1

i
, and λ̂

(k)
i = enk+1

i
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It follows that

α(kl)
xy = α

⊗k+1
x ⊗ α⊗l+1

y ,

Λ(kl)
xy = Λ

⊕k+1
x ⊕ Λ

⊕l+1
y

and

λ̂(kl)
xy = enk+1

x nl+1
y
,

where for any matrix A the kth Kronecker power, A⊗k+1, and the kth Kronecker sum, A⊕k+1, are
defined in the appendix. Then, the expression for F T(xy) is as follows

F T(xy)(t) = αxye
Λxytenxy + ω

1∑
k,l=0

ck,l(⊗k+1αx)⊗ (⊗k+1αy)e
(⊕k+1Λx)⊕(⊕l+1Λy)tenk+1

x nl+1
y
.

Example 3.2. Assume that the kernel functions are exponential with the same parameter γ. We
find

α
(k)
i = αi, Λ

(k)
i = Λi − kγIni ,

λ
(k)
i = λi, and λ̂

(k)
i = (Λi − kγIni)

−1 λi.

It follows that

α(kl)
xy = αx ⊗ αy,

Λ(kl)
xy = [Λx − kγInx ]⊕

[
Λy − lγIny

]
= [Λx − kγInx ]⊗ Iny + Inx ⊗

[
Λy − lγIny

]
= Λx ⊗ Iny − kγInxny − lγInxny + Inx ⊗ Λy

= Λx ⊕ Λy − (k + l)γInxny ,

and

λ(kl)
xy =

(
Λ(k)
x ⊗ Λ(l)

y

)−1
(λx ⊗ λy) .

The sf of Txy becomes

F T(xy)(t) = (αx ⊗ αy)

eΛx⊕Λyt + ω
1∑

k,l=0

ck,le
[Λx⊕Λy−(k+l)γInxny ]t

(
Λ(k)
x ⊗ Λ(l)

y

)−1

 (λx ⊗ λy) .

3.2 The last survivor status

The other common status is the last-survivor status. The last-survivor status is one that ends
upon the death of both lives. That is, the status survives as long as at least one of the component
members remains alive. The last-survivor status of two lives (x) and (y) will be denoted by (xy),
and the moment of death random variable is given by

T(xy) = max(Tx, Ty).
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The cdf for T(xy) is given by

FT(xy)(t) = H(t, t),

where the joint cdf H is given by 2.24. The expression for the cdf FT(xy) is given in the following
theorem.

Theorem 3.2. The cdf for T(xy) could be written as

FT(xy)(t) =
(
1− αxyeΛxytenxy

)
+ ω

1∑
k,l=0

ck,l

(
1− α(kl)

xy e
Λ
(kl)
xy tλ̂

(kl)
xy

)
,

where

nxy = nxny + nx + ny, αxy = (αx, αy,−αx ⊗ αy), Axy = diag(Λx,Λy,Λx ⊕ Λy), (3.9)

α
(kl)
xy = (α(k)

x , α(l)
y ,−α(k)

x ⊗α(l)
y ), Λ

(kl)
xy = Blocdiag(Λ(k)

x ,Λ(l)
y ,Λ

(k)
x ⊕Λ(l)

y ), λ̂
(kl)
xy = diag(λ̂(k)

x , λ̂(l)
y , λ̂

(k)
x ⊗λ̂(l)

y ).
(3.10)

Proof. The result follows by applying Lemma 1 to expressions with the following forms

M(t) = K(t)L(t),

with
K(t) = 1− αeAtC,

and
L(t) = 1− βeBtD.

We note that
M(t) = 1− αeA1C − βeBtD +

(
αeAtC

) (
βeBtD

)
.

By Lemma 1, we can state that
M(t) = 1− µeEtF,

where
µ = (α, β,−α⊗ β),

E = diag(A,B,A⊕B),

and
F = diag(C,D,C ⊗D).

The result in the theorem follows easily.

The survival function and density function for T(xy) are as follows

F T(xy)(t) = αxye
Λxytenxy + ω

1∑
k,l=0

ck,lα
(kl)
xy e

Λ
(kl)
xy tλ̂

(kl)
xy ,
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and

fT(xy)(t) = αxye
Λxytλxy + ω

1∑
k,l=0

ck,lα
(kl)
xy e

Λ
(kl)
xy tλ

(kl)
xy ,

where
λxy = −Λxyenxy ,

and
λ

(kl)
xy = −Λ

(kl)
xy λ̂

(kl)
xy .

3.3 Actuarial Present Values

From Theorems 3.1 and 3.2, we notice that the distributions for Txy and T(xy) have the same form
with different parameters. In the rest of the paper, let u be the status of interest that could be
either xy or xy. Given the results in the previous subsections, we derive expressions for some
well-known actuarial present values. First, we give the APV for an n-year term insurance that
pays $1 at the moment of the decrement of the status u. This means that the insurance pays $1
at the moment of the first death if u = xy or at the moment of the last death if u = xy. Let Z be
the present value for this life insurance, we have

Z = e−δmin(Tu,n),

where δ is the constant force of interest. The expected value for Z is as follows

A
1
u:n| =

∫ n

0
e−δtfTu(t)dt

= αu(δInu − Λu)−1(Inu − e−(δInu−Λu)n)λu

+ ω
1∑

k,l=0

ck,lα
(kl)
u (δI

n
(kl)
u
− Λ(kl)

u )−1(I
n
(kl)
u
− e
−(δI

n
(kl)
u
−Λ

(kl)
u )n

)λ(kl)
u ,

Letting n→∞ leads to the APV for whole life insurance and we obtain

Au = αu(δInu
− Λu)−1λu + ω

1∑
k,l=0

ck,lα
(kl)
u (δI

n
(kl)
u

− Λ(kl)
u )−1λ(kl)

u .

Define W to be the present of a continuous life annuity that pays $1 per year as long as the status
u exists and let au:n| be its expected value. Then, we have

au:n| =

∫ n

0
e−δtF Tu(t)dt

= αu(δInu
− Λu)−1(Inu − e−(δInu−Λu)n)enu

+ ω

1∑
k,l=0

ck,lα
(kl)
u (δI

n
(kl)
u
− Λ(kl)

u )−1(I
n
(kl)
u
− e
−(δI

n
(kl)
u
−Λ

(kl)
u )n

)λ̂(kl)
u .
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For a whole life annuity, we get

au =

∫ ∞
0

e−δtF Tu(t)dt

= αu(δInu − Λu)−1enu + ω

1∑
k,l=0

ck,lα
(kl)
u (δI

n
(kl)
u
− Λ(kl)

u )−1λ̂(kl)
u .

3.4 Other properties of Tu

Laplace transform for Tu is given by

L(r) = E
[
e−rTu

]
= αu [rInu − Λu]−1 λu + ω

1∑
k,l=0

ck,lα
(kl)
u

[
rI
n
(kl)
u
− Λ(kl)

u

]−1
λ(kl)
u .

The higher moment for Tu are as follows

E [T ru ] = (−1)rr!

αuΛ−ru enu + ω
1∑

k,l=0

ck,lα
(kl)
u

[
Λ(kl)
u

]−r
λ̂(kl)
u

 .

Another Way to measure uncertainty is the Conditional Tail Expectation (also known as Tail Value
at Risk, TVaR). the Conditional Tail Expectation (CTE) has received much attention in insurance
risk management applications, such as the solvency or risk capital measurement. Let the underlying
random variable be Tu, the CTE of Tu at a confidence level 0 < p < 1 is defined as

CTEp(Tu) = E(Tu|Tu > Qp),

where Qp is the p quantile of the distribution of the distribution of Tu. Given the distribution of
Tu, the CTE is analytically obtained as follows

CTEp(Tu) = Qp + E[Tu −Qp|Tu > Qp]

= Qp −
eQpΛuαu(Λu)−1eu + ω

∑1
k,l=0 ck,le

QpΛ
(kl)
u α

(kl)
u (Λ

(kl)
u )−1λ̂

(kl)
u

1− p
.

(3.11)

4 Applications of SPH distribution in multiple life insurance

This section gives some numerical examples to illustrate our model’s features and its applications
in life insurance. Some of the applications are a simple adaptation of the work done in Kim et al.
(2017) to the context of insurance policies contingent on two dependent lives.
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4.1 The correlation structure

Our first numerical illustration aims to analyze the correlation generated by joint SPH distribu-
tion. We mainly compute the upper and lower bounds for the correlation coefficient based on the
condition in Eq. 2.15. We consider three examples with a Gamma kernel function.

Example 4.1. The Erlang kernel function with exponential marginal distributions
Assume that

fTx(t) = µxe
−µxt,

and

fTy(t) = µye
−µyt.

We present our results for the following two cases

(i) µx = µy = 1

(ii) µx = 0.02 and µy = 0.021.

The first case aims the comparison of our attainable correlation bounds and those obtained by
Shubina and Lee (2004). The second case assumes realistic values for µx and µy in the context of life
insurance. For both cases, we consider the Erlang-type kernel functions with k = 1, 2, 3, 4, 5, 10, 30
and 70. Then, for each value of k, we compute the upper and the lower bounds for the correlation
between Tx and Ty. Tables 1 and 2 give the obtained range of correlation for different values
in each case. It worths noting that the correlation structure improves from k = 1 (exponential
kernel) to the case with large values of k. This shows that the introduction of our PH-type form
of kernel functions provide a flexible tool to fit a wide range of dependence structure compared to
the exponential kernel of the FGM dependence structure. It is important to note that the obtained
values of the upper and lower correlations are very close to those given by Shubina and Lee (2004).
In the case of µx = µy = 1, Shubina and Lee (2004) states that the maximal attainable correlation
range is [−0.4804, 0.6476] and the values displayed in Table 1 show how our Erlang-type kernel
functions allow us to cover most of this maximal attainable interval.

k 1 2 3 4 5 10 30 50 70
ρupper 0.2551 0.3608 0.4231 0.4633 0.4912 0.5586 0.6150 0.6276 0.6332
γupper 1.0207 1.6191 2.2406 2.8651 3.4905 6.6232 19.1694 31.7190 44.2677
ρlower -0.2551 -0.3433 -0.3830 -0.4050 -0.4189 -0.4485 -0.4695 -0.4738 -0.4757
γlower 1.0205 2.4154 3.8474 5.2852 6.7250 13.9327 42.7828 71.6359 100.4895

Table 1: The values of the upper and lower bounds for the correlation coefficient when µx = µy = 1
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k 1 2 3 4 5 10 30 50 70
ρupper 0.2440 0.3499 0.4090 0.4467 0.4728 0.5354 0.5871 0.5986 0.6037
γupper 0.0205 0.0334 0.0464 0.0595 0.0726 0.1383 0.4017 0.6653 0.9288
ρlower -0.2501 -0.3431 -0.3830 -0.4049 -0.4189 -0.4484 -0.4694 -0.4738 -0.4756
γlower 0.0205 0.0495 0.0789 0.1083 0.1378 0.2856 0.8769 1.4682 2.0596

Table 2: The values of the upper and lower bounds for the correlation coefficient when µx = 0.02
and µy = 0.021

The previous example gives a good illustration that our model could generate a better depen-
dence structure in the case of bi-variate exponential distribution. The next example considers the
case of mixture exponential marginal distribution (i.e. Hyper-exponential).

Example 4.2. The Erlang kernel function with Hyper-exponential marginal distribu-
tions We assume the same kernel functions as in the previous example but with marginal risks
following Hyper-exponential distributions, i.e.

fTx(t) = 0.8(0.025e−0.025t) + 0.2(0.02e−0.02t).

Similarly,
fTy(t) = 0.3(0.03e−0.03t) + 0.7(0.02e−0.02t).

For each value of k, we compute the upper and the lower bounds for the correlation between Tx
and Ty. The obtained values are given in Table 3. As in the previous example, this illustration
shows the usefulness of the Phase-Type kernel function and how it improves the attainable range of
correlation compared to the well-known kernel functions (FGM, exponential,...,etc).

k 1 2 3 4 5 7 9 15 30
ρupper 0.2413 0.3456 0.4035 0.4403 0.4656 0.4982 0.5183 0.5492 0.5748
γupper 0.0225 0.0368 0.0514 0.0660 0.0808 0.1103 0.1399 0.2289 0.4517
ρlower -0.2482 -0.3382 -0.3765 -0.3975 -0.4108 -0.4266 -0.4357 -0.4488 -0.4590
γlower 0.0232 0.0562 0.0896 0.1231 0.1566 0.2238 0.2911 0.4928 0.9973

Table 3: The values of the upper and lower bounds for the correlation coefficient

4.2 Joint life insurance premiums

For simplicity, we consider the insurance policy where the unit benefit paid upon the death of both
lives, and the premium payment terminates upon the first death too. The loss of this contract is
given by

Z(xy) − P
1− Z(xy)

δ
.

The net premium for this insurance policy is found by setting the expected value of the above
expression to zero. Thus, the net premium is

P =
A(xy)

a(xy)
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Figure 1: The impact of the dependence parameters on ρ (top left), R(A(xy)) (top right), R(a(xy))
(bottom left), and R(P ) (bottom right).

where A(xy) and a(xy) are the expressions obtained in Section 3. For this policy, we would like to
measure the impact of the dependence on the level of the APV as well as on the premiums. In our
example, we consider The Erlang kernel function with the Hyper-exponential marginal distributions
as in the previous example. Given each set of dependence parameters, we can compute the values

for correlation coefficient ρ, A(xy), a(xy), and P . Let A
ind
(xy), a

ind
(xy), and P ind be the values of the

APVs and the net premium under the independence assumption (i.e. when ω = 0). Note that the
independence could be reached as a limiting case when γ → 0. The following ratios are computed

R(A(xy)) =
A(xy)

A
ind
(xy)

, R(a(xy)) =
a(xy)

aind(xy)

, R(P ) =
P

P ind
.

These ratios allow us to quantify the impact of modeling dependence between lives in joint life
contingencies contract.

Example 4.3. We set δ = 10% and k = 7. First, we find

A
ind
(xy) = 0.3190, aind(xy) = 6.8105, and P ind = 0.0468.

Figure 1 shows the values of the correlation ρ as well as these three ratios. From this figure, we
can see the correlation coefficient is not linear in terms of the parameter γ. Regarding the impact
of the dependence on the APVs, the positive dependence between the two lifetimes reduces the value
for A(xy) by up to 20% and increases the value of A(xy) by up to 10%. This leads to a reduction in
the net premium up to 25%.
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4.3 Percentile and CTE premiums

Based on the result derived in Section 4, we have an expression for the survival function of Tu which
would allow us to obtain the percentiles for Tu,Qp, at a given level 0 < p < 1. Then, we compute
the CTEp risk measure for different values of the dependence parameters. Let us now consider the
whole life insurance random variable for the status u. Then,

E
[
Z(u)|Z(u) > Qp(Z(u))

]
= E

[
e−δT(u) |e−δT(u) > QP (e−δT(u))

]
= E

[
e−δT(u) |T(u) < τp

]
=

∫ τp
0 e−δT(u)fT(u)(t) dt

1− p

=
A

1
u:τp|

1− p
,

(4.1)

where τp = Q(1−p)(T(u)) and the expression for A
1
u:τp| is given in Subsection 3.3. The CTE’s deriva-

tion for the present value of other standard joint-life insurance policies is quite similar, following
the same steps as in the univariate case in Kim et al. (2017).

The obtained actuarial present values in Section 4 facilitate the calculations for the premiums
and reserves of difference standard multiple-life insurance contracts using the equivalence principle;
for more details, see Bowers et al. (1997) and Dickson et al. (2019). Alternatively, one can consider
two other pricing principles: the percentile principle and the CTE-loaded premium (e.g., Kim et al.
(2017)). Consider a life insurance contingent on the status u with premium paid continuously at a
rate P as long as the status u holds. We define the loss function at time 0, L, as follows

L = Z(u) − P
1− Z(u)

δ
=

(
1 +

P

δ

)
Z(u) −

P

δ
. (4.2)

Finding a risk-loaded premium can be done in different ways, and it depends on which risk measure
is adopted as a loading factor. First, we compute the percentile or the value at risk premium, Pvar,
which is defined as the solution for

P (L > 0) = 1− p, (4.3)

for a certain confidence level p. This means that the premium Pvar is set such that the probability
to generate an actual loss is 1− p. From Eq. 4.3 and using Eq. 4.2, the condition on Pvar could be
written

FZ(xy)

(
Pvar

Pvar + δ

)
= 1− p,

i.e.,

F T(xy)

(
−1

δ
ln

(
Pvar

Pvar + δ

))
= p,

where F T(xy) is giving in Eq. 3.1. The premium is as follows

Pvar =
δexp

(
−δF−1

T(xy)
(p)
)

1− exp
(
−δF−1

T(xy)
(p)
) ,
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i.e.,

Pvar =
δexp (−δτp)

1− exp (−δτp)
. (4.4)

Another possible premium is computed based on the CTE risk measure, which we call the CTE-
premium. Under this principle, the premium rate Pcte is such that

CTEp(L) = 0, (4.5)

for a confidence level 0 < p < 1. It follows that

CTEp[L] = CTEp

[
−Pcte

δ
+

(
1 +

Pcte
δ

)
Z(xy)

]
= −Pcte

δ
+

(
1 +

Pcte
δ

)
CTEp(Z(xy)) = 0,

where the second line holds because the CTE is a coherent risk measures (e.g. Artzner et al.
(1999)). Thus, the PCTE loaded-premium is given by

Pcte =
δCTEp(Zxy)

1− CTEp(Zxy)
, (4.6)

where CTEp(Z(xy)) is given by Eq. 4.1.

Example 4.4. Consider the same model and parameters as in the previous example. For different
value of γ and ω, the values for the net premium P are given in Table 4 and risk loaded premiums
Pvar and Pcte are displayed in Table 5. In our numerical application , the level of confidence that
we consider are p = 60%.

ω γ = 0.01 γ = 0.11 γ = 0.21 γ = 0.31 γ = 0.41 γ = 0.51

0 0.0468 0.0468 0.0468 0.0468 0.0468 0.0468
0.9886 0.0468 0.0460 0.0451 0.0446 0.0443 0.0442
1.9772 0.0468 0.0452 0.0434 0.0424 0.0419 0.0417
2.9658 0.0468 0.0444 0.0417 0.0402 0.0395 0.0393
3.9544 0.0468 0.0435 0.0401 0.0382 0.0373 0.0369
4.9430 0.0468 0.0427 0.0385 0.0361 0.0351 0.0347

Table 4: The net premiums, P , for different values for γ and ω
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Pvar ω γ = 0.01 γ = 0.11 γ = 0.21 γ = 0.31 γ = 0.41 γ = 0.51

0 0.0507 0.0507 0.0507 0.0507 0.0507 0.0507
0.9886 0.0507 0.0497 0.0481 0.0466 0.0453 0.0446
1.9772 0.0507 0.0487 0.0455 0.0422 0.0396 0.0385
2.9658 0.0506 0.0478 0.0427 0.0373 0.0338 0.0328
3.9544 0.0506 0.0467 0.0396 0.0320 0.0281 0.0278
4.9430 0.0506 0.0457 0.0363 0.0263 0.0230 0.0236

Pcte ω γ = 0.01 γ = 0.11 γ = 0.21 γ = 0.31 γ = 0.41 γ = 0.51

0 0.1756 0.1756 0.1756 0.1756 0.1756 0.1756
0.9886 0.1756 0.1743 0.1724 0.1704 0.1684 0.1668
1.9772 0.1756 0.1729 0.1690 0.1648 0.1607 0.1573
2.9658 0.1756 0.1716 0.1655 0.1587 0.1523 0.1474
3.9544 0.1756 0.1702 0.1618 0.1522 0.1432 0.1370
4.9430 0.1756 0.1688 0.1579 0.1449 0.1336 0.1264

Table 5: Impact of the dependence parameters on risk loaded premiums Pvar and Pcte

In general, the VaR-based and CTE-based premiums are more conservative than the equivalence
premium (i.e., net premium). From the obtained premiums, we can see that our results reflect
this feature of risk-loaded premiums for some values for the dependence parameters. But for other
values of these parameters, the value of Pvar could be less than the value of P , which means that
the tail of Txy is very light. This is very important to keep in mind when our model is implemented
using real data. It is also obvious that the positive dependence has the same impact on the three
premiums, and taking into consideration this dependence reduces the level of the premium. But the
severity of this impact is different for each premium.

5 Conclusion

This paper presented a joint lifetime model based on Sarmanov bivariate distribution and PH
marginal distributions. This work extends the fields of applications of Sarmanov distribution to
life insurance. We also introduced a general form of Kernel distributions inspired by the PH
distributions, which allows us to extend the range of the correlation that our bivariate model
can generate. The suggested model has many tractable and mathematical properties that help to
derive closed-form expressions for distributions and actuarial quantities in the multiple life insurance
contexts. We believe that this paper’s main contribution is to introduce and study the properties
of SPH distribution and its applications in modeling dependent lifetimes. Although the paper is
limited to life insurance modeling, the SPH model can easily be applied in risk theory, capital
allocation, claim reserving, and joint default modeling.
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Appendix

Substochastic matrix

Definition 5.1. A substochastic matrix is a square matrix with nonnegative entries so that every
row adds up to at most 1

Matrix exponential

Definition 5.2. Let A be a square matrix of order n, then we call matrix exponential, denoted by
eA, the matrix

eA =

∞∑
k=0

1

k!
Ak,

with e0n = In, where 0n is the zero matrix of order n.

It is well known that f(x) = ex is the only function to have the property that f(x + y) =
f(x)f(y), i.e. exey = ex+y, where x, y ∈ R. However, this is not true for matrix exponential.

Proposition 5.1. Let A and B be square matrices of order n. Then,

etAetB = et(A+B), t ∈ R,

if ABB = BA.

The derivative of matrix exponential function is given in the following proposition.

Proposition 5.2. The derivative of a matrix exponential function is given by

d

dx
eAx = AeAx = eAxA.

Kronecker product and Kronecker sum

The Kronecker product and the Kronecker sum are defined as follows

Definition 5.3. Let A = (aij) and B be (n×m) and (l × k) real matrices, respectively. Then the
Kronecker product A⊗B ∈ Rnl∗mk is the partitioned matrix

A⊗B =


a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

. . .
...

an1B an2B . . . anmB

 .
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Definition 5.4. Let A and B be square matrices of orders n and m respectively. Then the Kro-
necker sum A⊕B is a square matrix of order nm and is given by

A⊕B = A⊗ Im + In ⊗B.

Definition 5.5. Consider a matrix A. For k ≥ 1, the kth Kronecker power, A⊗k+1, and the kth
Kronecker sum, A⊕k+1, are defined inductively by

� A⊗1 = A and A⊗k = A⊗A⊗(k−1) for k = 2, 3, . . . .

� A⊕1 = A and A⊕k = A⊕A⊕(k−1) for k = 2, 3, . . . .

Some properties of Kronecker product and Kronecker sum

Proposition 5.3. Define Let Ml,j denote the space of i × j real (or complex) matrices. Let A ∈
Mm,n, B ∈Mp,q, C ∈Mn,k, and D ∈Mq,r. Then

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Proposition 5.4. Define Let Ml the space of square real (or complex) matrices. Consider two
matrices A ∈Mp and B ∈Mq

(i) Assume that µ is an eigenvalue for A with corresponding eigenvector x, and ξ is an eigen-
value for B with corresponding eigenvector y. Then µ + ξ is an eigenvalue of A ⊕ B with
corresponding eigenvector y ⊗ x.

(ii) Any eigenvalue of A⊕B arises as such a sum of eigenvalues of A and B

We refer the readers to Horn and Johnson (1991) for more details on Matrix Mathematics and
proofs of the previous propositions.
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