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Abstract

The research work presented in this thesis consists of investigation of bounds on the four

most important distance measures (radius, diameter/fault-diameter, average eccentricity

and average distance) for graphs of girth at least 6 in terms of other graph parameters,

namely order, minimum degree and maximum degree.

Let G be a finite, connected graph. The distance between two vertices is defined to be the

length of a shortest path between them. The eccentricity of a vertex u is the distance from

u to a vertex farthest from u in G, i.e., eG(u) = maxv∈V (G)dG(u, v) where V (G) is the

vertex set of G. The radius rad(G) of G is the minimum eccentricity of a vertex, and the

diameter diam(G) of G is the maximum eccentricity of a vertex. The average eccentricity

avec(G) of G is the arithmetic mean of the eccentricities of the vertices of G, and the

average distance µ(G) of G is the average of the distance between all pairs of vertices of

G.

Erdös, Pach, Pollack and Tuzá [51] established in terms of order and minimum degree an

upper bound on the radius and diameter of connected C4-free graphs. In Chapter 2, we

improve this bound for graphs of girth at least 6 and for (C4, C5)-free graphs, i.e., graphs

not containing cycles of length 4 or 5. We prove that if G is a graph of girth at least 6 of

order n and minimum degree δ, then the diameter is at most 3n
δ2−δ+1

− 1, and the radius is

at most 3n
2(δ2−δ+1)

+ 10. If δ − 1 is a prime power, then both bounds are sharp apart from

an additive constant. This improves the bound given by Erdös et.al in [51] by a factor of

approximately 3/5 but under a stronger assumption.

For graphs of large maximum degree ∆, we show in Chapter 3 that these bounds can be

improved to 3n−∆δ
δ2−δ+1

− 3(δ−1)
√

∆(δ−2)

δ2−δ+1
+10 for the diameter, and 3n−3∆δ

2(δ2−δ+1)
− 3(δ−1)

√
∆(δ−2)

2(δ2−δ+1)
+

159
4 for the radius. We further show that only slightly weaker bounds hold for (C4, C5)-free

graphs. As a by-product we obtain a result on a generalisation of cages. For given δ,∆ ∈ N
with ∆ ≥ δ let n(δ,∆, g) be the minimum order of a graph of girth g, minimum degree

δ and maximum degree ∆. Then n(δ,∆, 6) ≥ ∆δ + (δ − 1)
√

∆(δ − 2) + 3
2 . If δ − 1 is a

prime power, then we construct graphs that show that there exist infinitely many values

of ∆ such that, for δ constant and ∆ large, n(δ,∆, 6) = δ∆ +O(
√

∆).

In Chapter 4, we show that for a connected graph G of girth at least six, order n and

minimum degree δ, avec(G) ≤ 9
2d

n
2δ2−2δ+2

e + 8. We construct graphs that show that

whenever δ−1 is a prime power, then this bound is sharp apart from an additive constant.

For graphs containing a vertex of large degree we give improved bounds. We further show

that if the girth condition on G is relaxed to G having neither a 4-cycle nor a 5-cycle as

a subgraph, then similar and only slightly weaker bounds hold.

In Chapter 5, we show that the average distance of a connected graph G of girth at least

vii



six, order n and minimum degree δ is at most n
δ2−δ+1

+ 11. Furthermore, we show that if

δ − 1 is a prime power, then this bound is sharp apart from an additive constant.

To date no upper bound on the average distance of graphs containing a vertex of large

degree is known in the literature, except for trees. We prove several such bounds. We show

in Section 5.3.3 of Chapter 5 that the average distance of graphs of order n, minimum

degree δ and maximum degree ∆ is at most (n−∆+δ)
n

(n−∆+δ−1)
n−1

(n+2∆+δ)
δ+1 +8 for connected

graphs and (n−∆+δ)(n−∆+δ−1)
n(n−1)

[
2
3

(n−∆+δ)
2δ + 2∆

δ

]
+ 35

3 for triangle-free graphs. These bounds

are sharp apart from an additive constant and in some sense generalizes the bound given

by Dankelmann and Entringer in [30]. Futhermore, we obtain improved bounds for C4-free

graphs and graphs of girth at least 6 in terms of order, minimum degree and maximum

degree and prove that these bounds are sharp or close to being sharp apart from the value

of the additive constants.

Let G be a (k+ 1)-connected or (k+ 1)-edge-connected graph, where k ∈ N. The k-fault-

diameter and k-edge-fault-diameter of G is the largest diameter of the subgraphs obtained

from G by removing up to k vertices and edges, respectively. Dankelmann [28] proved

that for a (k + 1)-connected C4-free graph G of order n, the k-fault-diameter is at most
5n

k2−k+1
− 5k2−5k+8

2 . This bound is close to being optimal for infinitely many values of k.

In Chapter 6, we give a corresponding bound on the k-edge-fault diameter for graphs not

containing 4-cycles thus filling a gap in literature. We also establish upper bounds on

the k-fault-diameter and k-edge-fault-diameter of graphs of graphs of girth at least 6 and

(C4, C5)-free graphs in terms of the order of the graph n. These bounds are asymptotically

sharp and improve on the bounds by Dankelmann in [28] under a stronger assumption.

We complete our study in Chapter 7 by giving a summary of the previous chapters, as

well as, concluding remarks and suggest possible future research arising from our study.
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Chapter 1

Introduction and Preliminaries

In this chapter, we define the most important terms that will be used in this thesis. Most

of the definitions and proofs presented herein are known results adapted from graph theory

and linear algebra textbooks, see [18] and [79]. We will define other terms that are not

defined in this chapter as the need arises. Within this introductory chapter, we present

a survey of results that are related to the study, underlying motivation for our study, as

well as, relevant background study on distance measures in graph.

1.1 General Terminology

1.1.1 Vertices, Edges, Adjacency and Incidence

Definition 1.1.1. A Graph G = (V,E) consists of a non-empty set of elements V referred

to as vertices and a set (possibly empty) E of 2-element subsets of V called edges. We

often write V (G) for V , and E(G) for E.

In this thesis we consider only finite graphs i.e, those graphs with a finite vertex set.

Definition 1.1.2. The order of a graph G, is the number of vertices in G denoted by n

or |V (G)|, while the size of G is the cardinality of the edge set E, denoted by m or |E(G)|.

A graph G is said to be trivial if G has order 1, otherwise G is non-trivial.

Definition 1.1.3. Two vertices u, v of G are said to be adjacent if {u, v} ∈ E(G). We

usually write uv for the edge {u, v}. Let e = uv. We say that e is incident with u and v

or simply e joins u and v.

1.1.2 Walks, Paths, and Distance

Definition 1.1.4. A walk W in a graph G is an alternating sequence of vertices and edges

such that ei = vi−1vi for i = 1, 2, . . . , k, denoted as W : v0, e1, v1, e2, v2, . . . , vk−1, ek, vk or

simply W : v0, v1, . . . , vk since the vertices that appear in a walk determine the edges in

the walk.

We say that W is a (v0, vk)-walk of length k since W starts at v0 and ends at vk. If

v0 = vk, then W is called a closed walk in G.

1
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Definition 1.1.5. Let n = |V (G)| ≥ 3. If all the vertices in a closed walk are distinct

except for v0 and vk, then the closed walk is called a cycle of length k or a k-cycle.

Definition 1.1.6. W is said to be a path if all vi are distinct. The path P : v0, v1, . . . , vk

is often referred to as a (v0, vk)-path since it begins at vertex v0 and ends at vk.

Definition 1.1.7. The girth of a graph is the length of a shortest cycle contained in the

graph. If a graph does not contain any cycle, then its girth is said to be infinite.

Definition 1.1.8. The distance, dG(u, v), between two vertices u, v of a graph G is the

length of a shortest (u, v)-path in G.

1.1.3 Subgraphs, Neighbourhood and Degrees

Definition 1.1.9. The degree of a vertex v of G denoted by degG(v) (or deg(v)) is the

number of edges incident with v. The minimum and maximum degree of a graph G

denoted as δ = δ(G) and ∆ = ∆(G) respectively is the minimum and maximum, of the

degrees of vertices in G. A vertex of degree one is called an end vertex or a leaf. A

graph is said to be k-regular if the degree of every vertex in G is k.

Definition 1.1.10. A graph H is said to be a subgraph of G if the vertex and edge sets

H are contained in the vertex and edge sets of G respectively, i.e., V (H) ⊆ V (G) and

E(H) ⊆ E(G). H is a spanning subgraph of G if V (H) = V (G).

Definition 1.1.11. Let S be a subset of V (G). Then the subgraph of G induced by

S is the maximal subgraph of G with vertex set S, denoted as G[S].

For e ∈ E(G), the subgraph G − e is the graph obtained from G by deleting the edge

e. Similarly, for vertex u ∈ G, the subgraph G − u is the graph obtained by deleting the

vertex u along with all edges which are incident to u.

Definition 1.1.12. The neighbourhood NG(v)(or simply N(v)) of a vertex v ∈ V is the

set of all vertices adjacent to v in G while the closed neighbourhood NG[v](N [v]) is the

union of {v} and its neighbourhood. Hence, |NG(v)| = degG(v) and |NG[v]| = |NG(v) ∪
{v}| = degG(v) + 1.

Definition 1.1.13. Let v be a vertex of G and k ∈ N . The k-th neighbourhood of v is

the set of vertices of G at distance exactly k from v, denoted by Nk
G(v). Furthermore, the

ball of radius k centred at v, Nk
G[v], is the set of vertices of G at distance not more than

k from v. For a non empty proper set A ⊆ V (G) and p ∈ N, the p-th neighbourhood of A,

denoted by Np
G[A], is the set of all vertices v of G of distance at most p to some vertex a ∈

A, i.e., for some a ∈ A and p ≥ 1, Np
G[A] := {v ∈ V (G) | dG(v, a) ≤ p for some a ∈ A}.
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1.1.4 Specific Graphs

Definition 1.1.14. A graph G is connected if every two of vertices of G are connected.

Definition 1.1.15. A graph G of order n is said to be a complete graph if all the vertices

of G are pairwise adjacent. A complete graph of order n is denoted by Kn.

Definition 1.1.16. A tree is a connected graph without cycles. A spanning tree T of G

is a spanning subgraph of G which is a tree. A spanning tree of G with the property that

dT (v, u) = dG(v, u) for each u ∈ V (G) is said to be distance-preserving from v.

Definition 1.1.17. A (not necessarily connected) graph with no cycles is a forest.

Definition 1.1.18. A component of a graph G is a maximal connected subgraph of G.

Hence each component of a forest is a tree.

Definition 1.1.19. Let U ⊆ V (G). G − U is the graph obtained from G by deleting all

vertices in U as well as the edges incident with the vertices in U . U is a separating set

or vertex-cut if G is connected and G− U has more than one component.

Definition 1.1.20. A separating set which consists of only one vertex is a cut vertex.

Definition 1.1.21. A subset F ⊆ E(G) whose deletion increases the number of compo-

nents of G is an edge-cut. G− F is the the graph obtained from G by deleting all edges

in F .

Definition 1.1.22. Let G1 and G2 be two connected graphs. The union G1 ∪ G2 of G1

and G2 is the graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2). The union

of k disjoint copies of G is denoted by kG. The join G1 +G2 of graphs G1 and G2 is the

graph consisting of the vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {uv|u ∈
V (G1), v ∈ V (G2)}.

Definition 1.1.23. For k ≥ 3 vertex disjoint graphs G1, G2, . . . , Gk , the sequential

join G1 +G2 + . . .+Gk is the graph (G1 +G2) ∪ (G2 +G3)∪ . . . ∪ (Gk−1 +Gk), and the

union G1 ∪ G2 ∪ . . . ∪ Gk is the graph with vertex set V (G1) ∪ V (G2) ∪ . . . ∪ V (Gk) and

edge set E(G1) ∪ E(G2) ∪ . . . ∪ E(Gk). If a ∈ N , then [G1 + G2 + . . . + Gk]
a stands for

G1 +G2 + . . .+Gk +G1 +G2 + . . .+Gk + . . .+G1 +G2 + . . .+Gk , where the pattern

G1 +G2 + . . .+Gk appears a times.

Definition 1.1.24. A graph G is bipartite if V (G) can be partitioned into two non empty

subsets V1 and V2 such that every edge of G joins a vertex of V1 to a vertex of V2. If each

vertex of V1 is joined to every vertex of V2 , then G is called a complete bipartite graph,

and is denoted as Kn,m where n = |V1| and m = |V2|, or vice versa.

Definition 1.1.25. The star graph Sm sometimes simply known as an m-star is a tree

with one internal vertex and m leaves. The star graph Sm is therefore isomorphic to the

complete bipartite graph K1,m.
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Definition 1.1.26. The k-th power of G, denoted as Gk, is the graph with the same vertex

set as G, in which two vertices u 6= v ∈ V (G) are adjacent if dG(u, v) ≤ k. For a subset

S ⊆ V (G), the subgraph of Gk induced by S is denoted by Gk[S].

Definition 1.1.27. For any graphs G and H, G is said to be H-free if it does not contain

a subgraph isomorphic to H (irrespective of whether the subgraph is induced or not).

The following lemma (see, for example [18]) is a classical result.

Lemma 1.1.28. Let G be an undirected graph with e edges. Then,

2|E| =
∑
v∈V

deg(v).

Lemma 1.1.28 is often referred as the handshaking lemma. It implies that every finite

undirected graph has an even number of vertices with odd degree.

1.1.5 Matching, Vertex and Edge Connectivity

Definition 1.1.29. A set M of pairwise non-adjacent edges in a graph G is called a

matching. In other words, no two edges of M share a common vertex in M . The set of

vertices incident with edges of M is denoted by V (M).

Definition 1.1.30. The vertex-connectivity κ(G) of G is defined to be the minimum

number of vertices whose deletion from G results in a disconnected or trivial graph. We

say that graph G is k-vertex-connected or simply k-connected if κ(G) ≥ k. Similarly, the

edge-connectivity λ(G) is the minimum cardinality of an edge-cut of G. We say that G

is k-edge- connected if k ≤ λ(G).

Lemma 1.1.31. [18] Let G be a k-connected graph and let k ≥ 1. If e is an edge of G,

then G− e is at least (k − 1)-connected.

Definition 1.1.32. If A,B are subsets of V , then (A,B)G denotes the set of edges joining

a vertex in A to a vertex in B. If M is a matching of G then we say that M is induced if

the only edges of G that join two vertices of V (M), the set of vertices incident with edges

in M , are the edges of M .

In the next section we give definitions to some of the distance concepts and measures in

graph theory which will be used in the subsequent chapters.

1.1.6 Distance Concepts and Distance Measures in Graphs

Definition 1.1.33. The eccentricity, eG(v), of a vertex v ∈ V (G) is the maximum

distance between v and any other vertex in G.
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Definition 1.1.34. The maximum eccentricity of vertices of G is the diameter of G,

denoted by diam(G) and the minimum eccentricity of vertices of G is the radius of G,

denoted by rad(G). More precisely,

diam(G) = max
u∈V (G)

eG(u) = max
u,v∈V (G)

dG(u, v),

rad(G) = min
u∈V (G)

eG(u) = min
u∈V (G)

max
v∈V (G)

dG(u, v).

Definition 1.1.35. The fault-diameter Dκ(G)−1 of a graph G is the largest diameter

obtained by deleting a set of (κ(G)− 1) vertices.

Definition 1.1.36. The total eccentricity EX(G) is the sum of all eccentricities of

vertices in G. The average eccentricity avec(G) of a connected graph G of order n is

the mean eccentricity of the vertices in G, that is avec(G) = 1
nEX(G).

Definition 1.1.37. The Wiener index (total distance) is the sum of distances between

all unordered pairs of vertices of a connected graph G, that is,

W (G) =
∑

{u,v}⊆V (G)

dG(u, v).

The average distance µ(G) of a connected graph G of order n is the average of the

distances between all pairs of vertices of G, i.e.,

µ(G) =

(
n

2

)−1 ∑
{u,v}⊆V (G)

dG(u, v).

Definition 1.1.38. Let v be a vertex of a connected graph G. We define the following.

i) An eccentric vertex of a vertex v is a vertex farthest away from v in G.

ii) Every vertex of G of minimum eccentricity is a centre vertex of G.

iii) The centre C(G) of G is the subgraph induced by the set of all centre vertices in G.

iv) If {u, v} ⊆ V (G) is a pair of vertices of G with dG(u, v) = diam(G), then {u, v} is

referred to as a diametral pair of G and any shortest (u, v)-path is called a diametral

path.

The first two parts of the following definition is the same as Definition 1.1.13 except that

we choose to use a slightly different notation to distinguish the i-th distance layer from

i-th neighbourhood.

Definition 1.1.39. Let u be a vertex of a connected graph G. For any i ∈ Z, we define

the following sets.
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a) The i-th distance layer of u, denoted by Ni(u), is defined as

Ni(u) = {x ∈ V (G) : dG(u, x) = i}.

where Ni(u) = ∅ for i < 0 or i > eG(u).

b) N≤j(u) =
⋃

i: 0 ≤ i ≤ j
Ni(u).

c) N≥j(u) =
⋃

i: j ≤ i ≤ eG(u)

Ni(u).

If it is clear which vertex is meant, then we write Ni instead of Ni(u).

Definition 1.1.40. Let G be a connected graph. A packing S of G is a set of vertices such

that the distance between any pair of vertices in that set is at least 3, that is dG(u, v) ≥ 3

for all u, v ∈ S and u 6= v, where S ⊂ V (G).

For a positive integer k, a k-packing of G is a subset A ⊂ V (G) with dG(u, v) > k for all

u, v,∈ A and u 6= v. The number of vertices in any k-packing of maximum cardinality is

referred to as the k-packing number βk(G) of G.

1.2 Linear Algebra Concepts

In this section we recall some concepts from linear algebra over finite fields which we need

for the construction of some graphs in later chapters.

Definition 1.2.1. A field is a set F together with two operations, addition (+) and mul-

tiplication (�) satisfying the following axioms for all a, b, c ∈ F :

• Associativity of addition and multiplication: a+ (b+ c) = (a+ b) + c and a � (b � c) =

(a � b) � c.

• Commutativity of addition and multiplication: a+ b = b+ a and a � b = b � a.

• Additive and multiplicative identity: there exist two different elements 0 and 1 in F

such that a+ 0 = a and a � 1 = a.

• Additive inverses: for every a in F , there exists an element in F , denoted −a, called

the additive inverse of a, such that a+ (−a) = 0.

• Multiplicative inverses: for every a 6= 0 in F , there exists an element in F , denoted

by a−1, or 1/a, called the multiplicative inverse of a, such that a � a−1 = 1.

• Distributivity of multiplication over addition: a � (b+ c) = (a � b) + (a � c).
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Definition 1.2.2. A finite field or Galois field is a field with finite order (number

of elements). Let q be a prime power. Then F = GF (q) is a finite field of order q

and Fn = GF (q)n denotes the n-dimensional vector space over GF (q) of all n-tuples of

elements of GF (q).

Definition 1.2.3. Let F be a field and let Fn be the vector space over F of all n−tuples

of elements of F. If u = (u1, u2, . . . , un) ∈ Fn and v = (v1, v2, . . . , vn) ∈ Fn, then the dot

product u · v of u and v is defined by

u · v = u1v1 + u2v2 + . . .+ unvn

Subsequently we use u1v1 instead of u1 · v1 to denote the multiplication in F.

Definition 1.2.4. If S = {v1, v2, . . . , vk} is a set of vectors in Fn, then the set of all

linear combinations of v1, v2, . . . , vk is called the span of v1, v2, . . . , vk, denoted by 〈S〉. S
is called a spanning set for Fn if span(S) = Fn

Definition 1.2.5. A set of vectors {v1, v2, . . . , vk} is linearly dependent if there are

scalars c1, c2, . . . , ck, at least one of which is not zero, such that

c1v1 + c2v2 + . . .+ ckvk = 0

A set of vectors that is not linearly dependent is said to be linearly independent.

Definition 1.2.6. A subspace of Fn is any collection S of vectors in Fn such that:

• the zero vector, 0, is in S.

• S is closed under addition and scalar multiplication.

Definition 1.2.7. A basis for a subspace S of Fn is a set of vectors in S that

• spans S and

• is linearly independent.

Definition 1.2.8. If S is a subspace of Fn, then the number of vectors in a basis for S is

called the dimension of S, denoted dim S.

Definition 1.2.9. Two vectors u and v in Fn are orthogonal to each other if u · v = 0.

A vector v in Fn is then said to be self-orthogonal if v · v = 0.

Definition 1.2.10. Let W be a subspace of Fn. We say that a vector v in Fn is

orthogonal to W if v is orthogonal to every vector in W . The set of all vectors that are

orthogonal to W is called the orthogonal complement of W , denoted W⊥. That is,

W⊥ = {v in Rn : v · w = 0 for all w in W}



Section 1.2. Linear Algebra Concepts Page 8

Theorem 1.2.11. [79] If W is a subspace of Fn, then W⊥ is a subspace of Fn and

dim W + dim W⊥ = n.

Theorem 1.2.12. [79] Let V be a vector space over a field F and let U , W be finite-

dimensional subspaces of V . Then dim (U +W ) = dim U + dim W − dim (U ∩W ).

Corollary 1.2.13. Given the n-dimensional vector space Fn, the orthogonal complement

W⊥ of a k-dimensional subspace W has dimension n− k.

The following result is a classical result. See, for example [60].

Theorem 1.2.14. Let GF (q) be a finite field of order q Then F∗ = GF (q)∗ = GF (q)\{0},
the multiplicative group of GF (q) is cyclic.

The following result is probably known. However, we were unable to find a reference in

the exact form as stated below. We observed that [7] has a formulation in a different

terminology (for example, see Lemma 3.8.1 in [7]). The proof written below is ours.

Claim 1.2.15. Let q be a prime power. Then there exists a self-orthogonal vector z in

GF (q)3.

Proof. Since q is a prime power, we can write q in the form pr for some prime p and a

positive integer r. Since GF (p) is a subfield of GF (q), and since GF (p) = Zp it suffices to

show that GF (p)3 contains a non-zero self-orthogonal vector. The multiplicative group F∗

of the field GF (p) = Zp contains the elements {1, 2, . . . , p− 1} and is cyclic (see Theorem

1.2.14).

Case 1: −1 is a square in F∗.

Then there exists b ∈ F∗ with b2 = −1. Then 1 + b2 = 0, and so the vector (1, b, 0)t is

self-orthogonal.

Case 2: −1 is not a square in F∗.

Let a be a generator of F∗. Then F∗ = {a0, a1, a2, . . . , aq−2}. Since −1 ∈ F∗, there

exists a unique k ∈ {0, 1, . . . , p − 2} such that ak = −1. Then k is odd, since otherwise

(ak/2)2 = ak = −1, contradicting the fact that −1 is not a square.

Let b ∈ F∗. We show that

if b is not a square, then −b is a square.

Assume that b is not a square. Then b = a` for some ` ∈ {0, 1, . . . , q−2}. Clearly, ` is odd

since otherwise b = (a`/2)2, a contradiction to b not being square. Then −b = (−1)b =

ak+` = (a(k+`)/2)2, so −b is a square since k + ` is even.
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Now 1 is a square in F∗, but p−1 = −1 is not. Choose b to be the smallest of the numbers

1, 2, 3, . . . , p− 1 that is not a square in F∗. Then b− 1 and −b are squares in F∗, so there

exist c, d ∈ F∗ such that b−1 = c2 and −b = d2. Then the vector (1, c, d)t is self-orthogonal

since (1, c, d) · (1, c, d)t = 12 + c2 + d2 = 1 + (b− 1) + (−b) = 0 in F.

1.2.1 Counting in Vector Spaces over Finite Fields

Remark 1.2.16. Any k-dimensional subspace of GF (q)n contains qk−1 non-zero vectors.

Claim 1.2.17. Let q be a prime power and n ∈ N. Every 1-dimensional subspace of

GF (q)n is contained in (qn−2 + qn−3 + qn−4 + . . .+ q+ 1) distinct 2-dimensional subspaces

of GF (q)n. Each 2-dimensional subspace of GF (q)n contains q+ 1 distinct 1-dimensional

subspaces of GF (q)n.

Proof. Let 〈u〉 be a 1-dimensional subspace of GF (q)n. We want to find the number of

2-dimensional subspaces containing 〈u〉. Every 2-dimensional subspace, say U , containing

〈u〉 is of the form 〈u, v〉, where {u, v} is a basis for U . So v ∈ GF (q)n − 〈u〉. There

are qn − q vectors in GF (q)n − 〈u〉. Since every 2-dimensional subspace containing 〈u〉
contains q2 − q different vectors that are linearly independent from vector u, the qn − q
vectors in GF (q)n− 〈u〉 come in sets of q2− q vectors, so that each of these together with

u generates the same 2-dimensional subspace. Hence there are exactly (qn− q)/(q2− q) =

(qn−1)/(q − 1) = (qn−2 + qn−3 + . . . + q + 1) different 2-dimensional subspaces. Thus,

every 1-dimensional subspace of GF (q)3 is contained in (qn−2 + qn−3 + . . .+ q+ 1) distinct

2-dimensional subspace of GF (q)n as desired.

We want to find the number of 1-dimensional subspaces contained in a 2-dimensional

subspace of GF (q)n. We know that in a 2-dimensional subspace, there are q2 − 1 choices

for a non-zero vector w and groups of q − 1 choices for w yields the same 1-dimensional

subspace. So we have that each 2-dimensional subspace of GF (q)n contains (q2 − 1)/(q−
1) = q + 1 different 1-dimensional subspaces.

Corollary 1.2.18. Every 1-dimensional subspace of GF (q)3 is contained in q+ 1 distinct

2-dimensional subspace of GF (q)3. Each 2-dimensional subspace of GF (q)3 contains q+1

distinct 1-dimensional subspace of GF (q)3.

Claim 1.2.19. [92] Let q be a prime power and k, n ∈ N with k ≤ n. Then there are
(qn−1)(qn−q)(qn−q2)...(qn−qk−1)
(qk−1)(qk−q)(qk−q2)...(qk−qk−1)

k-dimensional subspaces of GF (q)n.

Proof. Let W be a k-dimensional subspace of GF (q)n. Recall from Remark 1.2.16 that

any k-dimensional subspace of GF (q)n contains qk−1 non-zero vectors. Let k ∈ N and let

An be the set of k-tuples of linearly independent vectors in GF (q)n. We count the number

of ways in which we can construct a k-tuple (v1, v2, . . . , vk) of linearly independent vectors.
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Clearly, v1 can be selected in qn − 1 ways, v2 can be selected in qn − q ways and so on.

Hence,

|An| = (qn − 1)(qn − q)(qn − q2) . . . (qn − qk−1).

Next, we want to count the number of k-tuples of linearly independent vectors in W . To

select a basis for W , the first member could be selected in qk − 1 ways, second member in

qk − q ways and so on. Hence, each k-dimensional subspace is generated by Ak k-tuples

where

Ak = {(qk − 1)(qk − q)(qk − q2) . . . (qk − qk−1)}.

We know that any member of A in An generates W if and only if A lies in Ak. On the

other hand, any k-dimensional subspace of GF (q)n is generated by an element of Ak and

since W is a k-dimensional subspace of GF (q)n, in An, there are Ak elements which all

of them generates the same subspace. Therefore, the number of different k-dimensional

subspaces of GF (q)n is

An/Ak =
(qn − 1)(qn − q)(qn − q2) . . . (qn − qk−1)

(qk − 1)(qk − q)(qk − q2) . . . (qk − qk−1)
.

Corollary 1.2.20. There are (q2 + q + 1) 1-dimensional subspaces and (q2 + q + 1) 2-

dimensional subspaces of GF (q)3.

1.3 Rationale/Motivation for the Study

Herein, we give some motivation for our research and provide background for relevant

results.

Graphs can serve as mathematical models for many kinds of real world networks, such

as computer networks, the internet, social networks, and transportation networks. In the

analysis of graphs, distances play a major role because of its relevance for the efficiency of

the network structure and numerous applications, ranging from the construction of more

efficient computer networks and transportation networks to modelling the interactions

of species in environmental conservation, solving facility location problems and network

designs in operation research, to the design and analysis of floor plans in architecture and

predicting the properties of chemical compounds in chemistry. For example distances in

computer networks indicate through how many intermediate processors information has

to be transmitted; or in transportation networks such as the Gautrain it is an indicator

for the travel time, while in social networks it is an indicator for closeness of people. The

wide application of distance parameters in analysing real-world networks provides strong

motivation for studying distance concepts. Buckley and Harary [13], and many others
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have written extensively on this subject. Hence, research on distance measures in graphs

has attracted much attention in the literature.

A distance measure in a graph is a number that describes and quantifies a particular as-

pect of the distances between the vertices of the graph. Most distance measures of graphs

provide important information on the graph. The oldest and best studied distance mea-

sures are the diameter and the radius, while the average distance and average eccentricity

are more recent distance measures. For example, let a graph describe a transportation

network. Then its diameter, defined as the largest of all distances between the vertices

of a graph, is an indicator for the worst case travel time between destinations within the

network. On the other hand, the radius is an important measure of centrality. It is an

indicator for the worst case travel time starting from a vertex that is central within the

network. It is often used to identify possible sites for emergency facilities within a network.

The literature on the diameter and radius is vast with [51] been the most influential. [51]

presented bounds on the diameter and radius of graphs in terms of order and minimum

degree and observed that these bounds can be improved if restricted to certain graph

classes. Among others, the paper [51] contains sharp bounds on the diameter and radius

of triangle-free graphs and C4-free graphs. Subsequent to this paper, similar bounds for

other graph classes were proved, see for example [23]. In Chapters 2 and 3, we give an

upper bound on the radius and diameter of connected graphs of girth at least 6, as well as

(C4, C5)-free graphs of given order, minimum degree and maximum degree, thus improving

on the bound for C4-free graphs in [51] under the additional assumption that the graph

has girth at least 6 and is thus also C5-free.

The average distance of a graph can loosely be described as a measure for the travel time

on average within a transportation network, while the average eccentricity is an indicator

for the maximum travel time in a network from a typical vertex. The question how the

average distance of a graph can be bounded in terms of its order and minimum degree has

been considered in a number of papers, the most important ones being [30, 67]. Since its

first systematic investigation in [31], the average eccentricity has attracted much attention

in the literature. In particular conjectures by the creators of the computer programme

AutoGraphiX spurred much interest in the average eccentricity, see for example [32, 49,

73, 101]. The first bounds on the average eccentricity of graphs in terms of order and

minimum degree appeared in [31]. Other bounds on the average eccentricity of graphs

in terms of order, minimum degree, independence number, domination number and other

graph parameters have also been considered in quite a number of papers in the literature

see for example the most recent one [36]. These considerations is an indication that the

bounds can be improved for other graph classes if we have additional information on the

graph. In Chapters 4 and 5, we slightly modified the techniques developed in [30] and [31]

to strengthen these bounds for graphs of girth at least 6 and (C4, C5)-free graphs taken

into consideration the order, minimum and maximum degree of the graphs.
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Many networks are not static but change in time: for example new websites or links are

added to the internet or deleted, or processors or links in a computer can fail. These

changes in the network can also change distances, in particular the diameter, significantly.

For such networks the fault-diameter is an important distance measure since it gives more

information on the diameter of a graph after failure of links. It is defined as the largest

diameter of the graphs arising from deleting a prescribed number of vertices or edges

from the given graph. The fault-diameter has been studied for many very specific graph

classes. However, the first bounds on the fault-diameter for all connected graphs appeared

in [28]. This paper contains also bounds on the fault-diameter in terms of order and

minimum degree. In Chapter 6, we modified techniques developed in [28] to improve these

bounds for the classes of graphs considered herein. We also filled the gap in the literature

by giving bounds on the edge-fault-diameter for graphs not containing 4-cycles since for

C4-free graphs only bounds on the k-fault diameter are known (see [28].

These findings motivated our research which seek to contribute to a better understanding

of distance measures in graphs by finding new bounds in terms of other graph parameters.

In the remainder of this chapter, we give short survey of results for each of these distance

measures.

1.4 Literature Review

In this section we present a survey of some of the results on the radius and diameter of

graphs. We only give a detailed proof of some of the results that will be essential to the

proofs of our main results in subsequent chapters.

1.4.1 Survey of Results on Radius and Diameter

Several bounds on the diameter and radius are known in the literature.

The trivial upper bound, on the diameter of a connected graph on n vertices

1 ≤ diam(G) ≤ n− 1 (1.4.1)

is attained only by the path of order n. Furthermore for a nontrivial connected graph G,

the inequality

rad(G) ≤ diam(G) ≤ 2rad(G) (1.4.2)

is a well-known result which follows from the definition of radius and triangle inequality.

Thus, establishing a relationship between the radius and diameter of connected graphs.

According to Ostrand [81], for any given r, d ∈ N such that r ≤ d ≤ 2r, there exists a

graph with radius r and diameter d and so (1.4.2) is the only restriction on the diameter
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in terms of radius. However, Jordan [66] showed that for trees, there exists a stronger

relationship between the diameter and radius.

Theorem 1.4.1. [66] Let T be a tree of order n ≥ 2, then the centre of T consist of

a single vertex or of two adjacent vertices. Furthermore, if the centre of T consists of

a single vertex then diam(T ) = 2rad(T ), and if the centre of T consists of two adjacent

vertices then diam(T ) = 2rad(T )− 1.

Taking into account also other graph parameters or properties of a graph, bound (1.4.1)

can be improved. Ore [80] determined the maximum size of a graph of given order and

diameter, and thus gave a bound on the diameter in terms of order and size.

Theorem 1.4.2. [80] Let G be connected graph of order n and diameter d. Then, the

number of edges in G is at most d+ 1
2(n− d− 1)(n− d+ 4).

Ali, Mazorodze, Mukwembi and Vetŕık [3] improved Ore’s bound by taking into account

also the edge-connectivity. Fulek, Morić and Pritchard [59] determined the maximum size

of planar graphs of given order and diameter. Bounds on the diameter in terms of order

and edge-connectivity were given by Caccetta and Smyth [15].

Theorem 1.4.3. [3] Let G be a graph of order n, size m, diameter d and edge-connectivity

λ where λ ≥ 8 is a constant. Then

m ≤ 1

2

[
n− d

3
(λ+ 1)

]2
+O(n).

Theorem 1.4.4. [59] For every connected planar graph G, diam(G) ≤ 4(n−1)−m
3 .

Theorem 1.4.5. [15] Let G be a K-edge connected graph of order n. If α = d2
√
Ke, then

for n < 2(K + 1) + α, the maximum diameter D∗ of G is

D∗ =
⌊ n

K + 1

⌋
+
⌈ n

K + 1

⌉
− 1.

The following theorem is a well-known result on the radius of a connected graph

Theorem 1.4.6. If G is a connected graph of order n ≥ 2. Then

1 ≤ rad(G) ≤ bn
2
c. (1.4.3)

The bound bn2 c in (1.4.3) is attained, for example, by the path.

Vizing [93] gave the following bound on the size of a connected graph in terms of order

and radius.

Theorem 1.4.7. [93] For any natural numbers n and r such that n ≥ 2r ≥ 2, the

maximum number of edges in a connected graph of order n and radius at least r is f(n, r)

where
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(a) f(n, 1) = 1
2n(n− 1),

(b) f(n, 2) = 1
2n(n− 1)− d1

2ne = b1
2n(n− 2)c,

(c) f(n, r) = 1
2(n2 − 4rn+ 5n+ 4r2 − 6r) for n ≥ 2r ≥ 6.

On the other hand, Dankelmann et.al. in [41] gave a corresponding bound on the size of

a bipartite graph of given order n and radius r.

Theorem 1.4.8. [41] For any natural numbers n and r such that n ≥ 2r ≥ 2, the

maximum number of edges in a bipartite graph of order n and radius at least r is b(n, r)

where

(a) b(n, 1) = n− 1,

(b) b(n, 2) = bn2

4 c,

(c) b(n, 3) = bn2

4 c − b
n
2 c,

(d) b(n, r) = bn2

4 c − nr + r2 + 2(n− r) for n ≥ 2r ≥ 8.

Dankelmann and Volkmann [42] proved that a connected graph G of order n, radius r

and minimum degree δ, has at least 1
2δn + (n−1)(δ−2)

(δ−1)r−1 edges for large n. The bound is

sharp and they also gave similar bounds for digraphs. Iida and Kobayashi [64] gave upper

bounds on the radius in terms of order and connectivity. Ali et al. in [2] showed that

for G, a 3-connected planar graph of order n, maximum face length ` and radius rad(G),

the bound rad(G) ≤ n+5`
6 + 2

3 holds. Harant in [63] also investigated the radius of planar

graphs. For results on the radius on neighbourhood graphs see [78].

Bounds on the diameter and radius of a graph of given order and minimum degree that

are sharp apart from an additive constant were given by [51]

diam(G) ≤ 3n

δ + 1
− 1. (1.4.4)

Apart from [51], various sets of authors, see for example [6, 10, 61], independently proved

the same bound in (1.4.4) or variations thereof. Erdös, Pach, Pollack and Tuzá [51] showed

that the radius of a graph is bounded by approximately half the value of the upper bound

in (1.4.4).

rad(G) ≤ 3(n− 3)

2(δ + 1)
+ 5. (1.4.5)

Using a slightly different technique, [29] improved (1.4.5) to a stronger bound.

rad(G) ≤ 3n

2(δ + 1)
+ 1. (1.4.6)
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In addition, Dankelmann, Mukwembi and Swart [35] determined the maximum radius of

a 3-edge-connected graph of given order. Erdös, Pach, Pollack and Tuzá [51] also noticed

that their bounds on the radius and diameter can be improved for triangle-free graphs (see

details in Theorem 1.4.11). We give the details of the proof in full with more elaboration

since the idea of the technique will be useful in subsequent chapters, in particular Chapters

2 and 3.

We start with the following Lemma which will be very useful for the proofs on the bounds

on the radius in the subsequent theorem and chapters.

Definition 1.4.9. Let G be a connected graph and let v, u ∈ V (G) such that u is a

centre vertex. Let T be a spanning tree of G that preserves the distances from u and

denote the (u, v)-path in T by T (u, v). Let rad(G) = r and fix v′ ∈ Nr(u), then a vertex

v′′ ∈ V (G) is said to be related to v′ if there exists v′ ∈ V (T (u, v′)) ∩ N≥9(u) and

v′′ ∈ V (T (u, v′′)) ∩N≥9(u) such that

dG(v′, v′′) ≤ 4. (1.4.7)

u

v′

v′′
N9 Nr

v′

v′′

Figure 1.1: Illustration to show that vertices v′ and v′′ are related.

Lemma 1.4.10. [51] Let G be a connected graph of radius r ≥ 9, and let u be a centre

vertex of G. Let T be a spanning tree of G that preserves the distances from u, and let

v′ ∈ Nr(u). Then there exists a vertex w ∈ N≥r−9(u) that is not related to v′.

Proof. Suppose to the contrary that every vertex v ∈ N≥r−9 is related to v′. Let u′ be the

only vertex of T (u, v′) belonging to N9. We show that d(u′, v) ≤ r − 1 for all v ∈ V (G).

To achieve this, we consider the two cases when v ∈ N≤r−10 or v ∈ N≥r−9. For any

v ∈ N≤r−10, we have that

dG(u′, v) ≤ dG(u′, u) + dG(u, v) ≤ 9 + r − 10 = r − 1. (1.4.8)

On the other hand, if v ∈ N≥r−9, then by our assumption, v is related to v′ and so there
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exists v′ ∈ V (T (u, v′)) ∩ N≥9 and v′′ ∈ V (T (u, v)) ∩ N≥9 for which dG(v′, v′′) ≤ 4. We

have that

dG(u′, v) ≤ dG(u′, v′) + dG(v′, v′′) + dG(v′′, v).

≤ (dG(u, v′)− 9) + 4 + [r − dG(u, v′′)],

= r − 5 + dG(u, v′)− dG(u, v′′),

≤ r − 5 + dG(v′, v′′),

= r − 5 + 4,

≤ r − 1.

This implies that dG(u′, v) ≤ r − 1 for all v ∈ V (G), contradicting our assumption that

r = rad(G). Therefore, we conclude that there is a vertex w ∈ N≥r−9(u) that is not

related to v′.

uuuu

v1

v2

N0 N1 Ni−1
Ni Ni+1 Nd−1

Nd

Figure 1.2: The i-th distance layer.

Theorem 1.4.11. [51] Let G be a connected triangle-free graph of order n and with

minimum degree δ ≥ 2, then

(i) diam(G) ≤ 4(n− δ − 1)

2δ
, (1.4.9)

(ii) rad(G) ≤ n

δ
+ 9. (1.4.10)

(i) and (ii) are tight apart from the exact value of the additive constant, and for every

δ ≥ 2 equality can hold in (i) for infinitely many values of n.

Proof. Recall that Ni = Ni(u) denotes the i-th distance layer of u, i.e., the set of vertices at

distance exactly i from u (see figure 1.2 above). Let u and v be two vertices with dG(u, v) =

d, the diameter of G. A vertex in Ni can have neighbours only in Ni−1 ∪Ni ∪Ni+1 since

otherwise there is a shorter path from u to v. If u ∈ N0, we have that |N0| = 1, N(u) = N1
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and so |N1| ≥ δ. Similarly, if v ∈ Nd, we have that |Nd| ≥ 1 and N(v) ⊆ Nd−1∪(Nd−{v}).
Hence,

|N0|+ |N1| ≥ 1 + deg (u) ≥ 1 + δ, and |Nd−1|+ |Nd| ≥ 1 + deg (v) ≥ 1 + δ.

Considering the i-th distance layers, one of the following possibilities occurs. It is either

that vertices of Ni are independent, or Ni contains two adjacent vertices. If the vertices

of Ni are independent, then N(x) ⊆ Ni−1 ∪Ni+1 for all x ∈ Ni and so

|Ni−1|+ |Ni+1| ≥ δ. (1.4.11)

If Ni contains two adjacent vertices, say x and y, then N(x) ∩N(y) = ∅ since otherwise

G contains a triangle. Since the neighbours or x and y are in Ni−1 ∪Ni ∪Ni+1, we have

|Ni−1|+ |Ni|+ |Ni+1|+ ≥ 2δ. (1.4.12)

It follows from (1.4.11) and (1.4.12) that

|Ni−1|+ |Ni|+ |Ni+1|+ |Ni+2| ≥ 2δ for 0 ≤ i ≤ d− 1. (1.4.13)

Indeed equation (1.4.13) follows from (1.4.12) if Ni or Ni+1 contains an edge. Otherwise,

by (1.4.11), |Ni−1|+ |Ni+1| ≥ δ and |Ni|+ |Ni+2| ≥ δ, hence (1.4.13) is true.

Clearly, n =
d∑
i=0
|Ni| and the distance layers can be grouped into blocks, each containing

4 distance layers. We now consider the distinguishing cases according to the residue class

of d mod 4. Let k = bd4c − 1,

If d ≡ 0 (mod 4), then we have that

n =
d∑
i=0

|Ni|

=

k−1∑
i=0

(
|N4i−1|+ |N4i|+ |N4i+1|+ |N4i+2|

)
+ |Nd−5|+ |Nd−4|+ |Nd−3|

+|Nd−2|+ |Nd−1|+ |Nd|

≥
(
k
)
2δ + (δ + 1) + 2δ,

= (k + 1)2δ + δ + 1

=
⌊d

4

⌋
2δ + δ + 1.
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If d ≡ 1 (mod 4), then

n =
d∑
i=0

|Ni|

=

k∑
i=0

(
|N4i−1|+ |N4i|+ |N4i+1|+ |N4i+2|

)
+ |Nd−2|+ |Nd−1|+ |Nd|

≥
(
k + 1

)
2δ + 2δ,

=
⌊d

4

⌋
2δ + 2δ.

If d ≡ 2 (mod 4), then we have that

n =

d∑
i=0

|Ni|

=
k∑
i=0

(
|N4i−1|+ |N4i|+ |N4i+1|+ |N4i+2|

)
+ |Nd−3|+ |Nd−2|+ |Nd−1|+ |Nd|

≥
(
k + 1

)
2δ + 1 + 2δ,

=
(
k + 2

)
2δ + 1

=
(⌊d

4

⌋
+ 1
)

2δ + 1,

=
⌊d

4

⌋
2δ + 2δ + 1.

If d ≡ 3 (mod 4), then

n =

d∑
i=0

|Ni|

=
k∑
i=0

(
|N4i−1|+ |N4i|+ |N4i+1|+ |N4i+2|

)
+ |Nd|+ |Nd−4|+ |Nd−3|+

|Nd−2|+ |Nd−1|+ |Nd|

≥
(
k + 1

)
2δ + 2 + 2δ,

=
(
k + 2

)
2δ + 2,

=
(⌊d

4

⌋
+ 1
)

2δ + 2,

=
⌊d

4

⌋
2δ + 2δ + 2.
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From the above four cases, we have that

n =

d∑
i=0

|Ni| ≥
⌊d

4

⌋
2δ +



δ + 1 if d ≡ 0(mod 4),

2δ if d ≡ 1(mod 4),

2δ + 1 if d ≡ 2(mod 4),

2δ + 2 if d ≡ 3(mod 4).

(1.4.14)

and thus,

n ≥



(
d
4

)
2δ + δ + 1 if d ≡ 0(mod 4),(

d−1
4

)
2δ + 2δ if d ≡ 1(mod 4),(

d−2
4

)
2δ + 2δ + 1 if d ≡ 2(mod 4),(

d−3
4

)
2δ + 2δ + 2 if d ≡ 3(mod 4).

(1.4.15)

which implies that

d ≤



4(n−δ−1)
2δ if d ≡ 0(mod 4),

4(n−2δ)
2δ + 1 if d ≡ 1(mod 4),

4(n−2δ−1)
2δ + 2 if d ≡ 2(mod 4),

4(n−2δ−2)
2δ + 3 if d ≡ 3(mod 4).

(1.4.16)

Therefore

d ≤ 4(n− δ − 1)

2δ
. (1.4.17)

And thus inequality (1.4.9) holds.

The extremal graph, Gk,δ, described below shows that (1.4.9) is sharp apart from an

additive constant.

V0

V1

V2 V3 V4 V5 V6 V7 V8 V9 V10

V11

V12

Figure 1.3: The graph G3,δ.
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Let V (G) = V0 ∪ V1 ∪ . . . ∪ V4k with

|Vi| =


1 if i ≡ 0 or 1(mod 4) and i 6= 1,

δ if i = 1 or 4k − 1,

δ − 1 otherwise.

and let Vi and Vi+1 induce a complete bipartite subgraph of G for every i. Observe that

n = |V (Gk,δ)| = 2kδ + δ + 1. This implies that k = (n− δ − 1)/(2δ). Hence the diameter

of the graph, Gk,δ, is 4k. The extremal graph, G3,4 , is shown in Figure 1.3.

ii) Let u be a centre vertex of G. For any x ∈ Ni, pick a vertex x′ ∈ Ni−1 such that

xx′ ∈ E(G) (1 ≤ i ≤ r). The collection of the edges of the form {xx′ : x ∈ V (G) − {u}}
defines a distance preserving spanning tree, T ≤ G, from u, i.e., dT (u, v) = dG(u, v) for

all v ∈ V (G).

By Lemma 1.4.10, there is a vertex w ∈ N≥r−9 that is not related to x′. For any i ∈ Z,

let D′i and D′′i denote the set of all vertices in Ni whose distance from at least one vertex

of T (u, x′) ∩N≥9 (T (u,w) ∩N≥9 respectively) is at most 2 in G.

By our assumption that x′ and w are not related, we have that

( r⋃
i=7

D′i

) ⋂ ( r⋃
i=7

D′′i

)
= ∅,

Let s = dG(u,w). For 0 ≤ i ≤ r − 1, we have by (1.4.13) that

|Ni−1|+ |Ni|+ |Ni+1|+ |Ni+2| ≥ 2δ,

and following similar arguments, we obtain that

|D′i−1|+ |D′i|+ |D′i+1|+ |D′i+2| ≥ 2δ ∀i ∈ {8, 9, . . . r − 1}, (1.4.18)

|D′′i−1|+ |D′′i |+ |D′′i+1|+ |D′′i+2| ≥ 2δ ∀i ∈ {8, 9, . . . s− 1}, (1.4.19)

where s ≥ r − 9. Based on this fact, we have that

n =

r∑
i=0

|Ni| ≥ |N≤6|+
r∑
i=7

|D′i|+
s+1∑
i=7

|D′′i |, (1.4.20)

and so,

n ≥
6∑
i=0

|Ni|+
r∑
i=7

|D′i|+
r−8∑
i=7

|D′′i | since s ≥ r − 9.
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Let k be the largest integer with k ≤ r and k ≡ 2 (mod 4). Then k ≥ r − 3 and

n ≥
6∑
i=0

|Ni|+
k∑
i=7

|D′i|+
k−8∑
i=7

|D′′i |,

≥
6∑
i=0

|Ni|+

k−2
4∑
i=2

(
|D′4i−1|+ |D′4i|+ |D′4i+1|+ |D′4i+2|

)

+

k−10
4∑
i=2

(
|D′′4i−1|+ |D′′4i|+ |D′′4i+1|+ |D′′4i+2|

)
, by (1.4.18) and (1.4.19)

≥ 4δ +
(k − 2

4

)
2δ − 2δ +

(k − 10

4

)
2δ − 2δ,

=
(2k − 12

4

)
2δ,

= (k − 6)δ

≥ (r − 9)δ since k ≥ r − 3.

Thus, n ≥ (r−9)δ and it follows that r ≤ n/δ+9. Hence, the inequality (1.4.10) holds.

In the same paper [51], the authors conjectured an improvement of the bound (1.4.4) for

graphs not containing a complete subgraph of order k, k ≥ 4.

Conjecture 1.4.12. [51] Let r, δ ∈ N and let G be a connected graph on n vertices with

minimum degree δ.

(i) If G does not contain a complete subgraph on 2r vertices, and if δ is a multiple of

(r − 1)(3r + 2), then, for large n,

diam(G) ≤ 2(r − 1)(3r + 2)

(2r2 − 1)δ
n+O(1).

(ii) If G does not contain a complete subgraph on 2r + 1 vertices, and if δ is a multiple

of 3r − 1, then, for large n,

diam(G) ≤ 3r − 1

rδ
n+O(1).

This conjecture remains open, however Czabarka, Dankelmann and Szekély [23] gave a

bound on the diameter of 4-colourable graphs, and thus proved a weaker form of this

conjecture for k = 5. Recently, Czabarka, Singgih and Szekély [24] disproved part (i)

of the conjecture. They further proved the bound diam(G) ≤ (3 − 1
k−1)n + O(1) for k-

colourable graphs of minimum degree at least δ and order n. Further bounds on radius

or diameter in terms of vertex degrees can be found in [75, 76, 77]. By slightly modifying

the technique in [30, 31], Mazorodze and Mukwembi in [74] proved an upper bound on the

radius and diameter of connected graphs in terms of order, minimum degree and maximum
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degree.

diam(G) ≤ 3(n−∆)

δ + 1
+O(1). (1.4.21)

rad(G) ≤ 3(n−∆)

2(δ + 1)
+O(1). (1.4.22)

The authors showed that the bounds in (1.4.21) and (1.4.22) are asymptotically sharp and

can be improved for triangle-free and C4-free graphs. They also showed that given the

irregularity index t such that ∆ < 3
2 t, then their results on the radius and diameter of

triangle-free graphs can be also be improved.

For graphs not containing 4-cycles, Erdös, Pach, Pollack and Tuzá [51] showed that

diam(G) ≤ 5n

δ2 − 2bδ/2c+ 1
, (1.4.23)

and they proved that the radius of such a graph is bounded by approximately half the

value in the above bound (1.4.23). Similar bounds was obtained for graphs not containing

a complete bipartite graph K3,3, ` ≥ 2 in [29]. We present in full (see Section 2.2 of

Chapter 2) the proof of the bound in (1.4.23), including the sharpness construction since

some of the properties of the graph will be useful in subsequent chapters.

1.4.2 Survey of Results on Average Distance and Average Eccentricity

The average distance, also known as mean distance or transmission delay, originally intro-

duced in graph theory in 1977 by [45] has proven to be one of the tools used for performance

evaluation or measuring the efficiency of an interconnection network modelled by a graph.

One fact taken into account when investigating any communication network is the diam-

eter of a graph, which is the maximum distance between any two nodes of the network.

Nonetheless, those pairs of nodes that give the diameter may represent only a small frac-

tion of the total number of pairs. The average distance can therefore be a more effective

estimate of the network efficiency on average above its diameter since it is a measure of

the estimated travel time between two randomly selected points of the network.

The average distance (named in honour of Wiener) has been introduced in 1977, but

it received significant attention only after the classical paper by Plesnik [82], through

conjectures of the computer programme GRAFFITI and recently in chemical graph theory

[95]. The Wiener index W (G) of a graph G as defined by [95] is the sum of distances

between all unordered pairs of vertices. Thus,

W (G) =

(
n

2

)
µ(G).
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The following result is a trivial bound on the average distance of a connected graph

1 ≤ µ(G) ≤ diam(G).

Plesnik in [82] showed that aside from the above well known bound, the average distance

of a graph is independent of its radius and diameter. He proved that given the radius and

diameter of a graph and any t, ε > 0 ∈ R such that (1.4.2) holds and 1 ≤ t ≤ diam(G),

then there exists a graph G with |µ(G)− t| < ε.

Given that G is a connected graph of α independence number, [55] conjectured that

µ(G) ≤ α(G). (1.4.24)

This has generated considerable interest as several authors have obtained different bounds

for the average distance taken into account the order, minimum degree, size, indepen-

dence number, k-packing number, domination number and k-domination number, see for

example [30, 25, 26, 27].

Chung in [21] gave a proof to the above conjecture and showed that equality holds only if

α = 1, that is, if the graph is complete. This was later improved in [25] by Dankelmann.

In addition, [56] showed that a weaker version µ(G) ≤ α(G) + 1 of the conjecture also

holds. Two other GRAFFITI conjectures in [55] that involve the average distance are

rad(G) ≤ µ(G) +R(G), (1.4.25)

where R(G) is the Randic index of the graph, and

µ(G) ≤ n

δ
, (1.4.26)

for every δ-regular connected graph G of order n. The inequality (1.4.25) involving two

distance parameters was disproved by Dankelmann, Oellermann and Swart [39] while that

of (1.4.26) has generated tremendous interest as several authors attempted to improve on

the bound.

Kouider and Winkler in [67] proved a slightly asymptotically stronger bound on the above

conjecture (1.4.26).

Theorem 1.4.13. Let G be a connected graph with minimum degree δ and order n, then

µ(G) ≤ n

δ + 1
+ 2. (1.4.27)

Dankelmann and Entriger in [30] showed that for every connected graph G with n vertices

and minimum degree δ, there exists a spanning tree of G satisfying the bound in (1.4.27),
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that is,

µ(T ) ≤ n

δ + 1
+ 5.

In the same paper [30], the authors using the same technique showed that their bound can

be improved further for triangle-free graphs and graphs not containing a (not necessarily

induced) 4-cycle. The technique used in the proof of Theorem 1.4.15 will be useful in

Chapter 5, hence we omit the proof here and present it later.

Theorem 1.4.14. [30] Let G be a connected triangle-free graph of order n and minimum

degree δ ≥ 2. Then G has a spanning tree T with

µ(T ) ≤ 2n

3δ
+

25

3
.

This inequality is best possible apart from the additive constant.

Theorem 1.4.15. [30] (i) Let G be a connected C4-free graph of order n and minimum

degree δ. Then G has a spanning tree T with

µ(T ) ≤ 5

3

n

δ2 − 2b δ2c+ 1
+

29

3
.

(ii) There exists an infinite number of C4-free graphs with n vertices and minimum degree

δ for which δ − 1 is a prime power, such that for every spanning tree T of G,

µ(T ) ≥ 5

3

n

δ2 + 3δ + 2
+O(1).

Theorem 1.4.16. Let G be a connected graph of order n, then

1 ≤ µ(G) ≤ n+ 1

3
.

This bound is maximised by a path of order n, see [50, 45, 72].

A similar technique used in [30] will be used in Chapters 4 and 5 to obtain upper bounds

on the average eccentricity and average distance of graphs of girth at least 6 taken into

account the order and minimum degree. In that same chapter, we will now present in full

the proof to Theorem 1.4.15 with some elaborations on the original proof.

Since the radius, diameter and average eccentricity is defined to be the smallest, the largest

and average of all eccentricities in a graph respectively, we have for a connected graph G

of order n, the following inequality

rad(G) ≤ avec(G) ≤ diam(G),

which shows the relationship between the average eccentricity, radius and diameter of a

graph. The bound is attained by a self-centred graph, i.e. rad(G) = diam(G).
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Subsequently, we state some useful results on eccentricity of a vertex and average eccen-

tricity of a graph. For some of the results that will be useful in subsequent chapters, we

present their proof in full and intentionally omit the proof of others making reference to

the original proof.

The average eccentricity was introduced under the name eccentric mean by Buckley and

Harary [13], but it attracted major attention only after its first systematic study in [31].

One of the basic results in this paper determined the maximum average eccentricity of a

connected graph of given order:

Theorem 1.4.17. [31] If G is a connected graph of order n, then

avec(G) ≤ 1

n

⌊
3n2

4
− n

2

⌋
,

with equality if and only if G is a path.

In the same paper the authors established by direct calculations the following basic results

for the average eccentricity of a complete graph, the cycle and the complete bipartite graph.

Theorem 1.4.18. [31] Let G be a graph of order n, then

a) avec(Kn) = 1,

b) avec(Cn) = b1
2nc,

c) avec(Kn1,n2) = 2, if n1, n2 ≥ 2.

Furthermore, Dankelmann et al. [31] established a relation between average eccentricity

and average distance, and proved that in trees one can determine the average eccentricity

given information on the eccentricity and distance of the central vertex.

Theorem 1.4.19. [31] For any graph G,

• avec(G) ≥ µ(G),

• avec(G) ≤ 1
nσ(C(G)) + rad(G), where σ(C(G)) is the distance of C(G).

The following corollary is a consequence of the the previous theorem since the path and

its centre has maximum radius and maximum distance respectively.

Corollary 1.4.20. [31] The connected graph with maximum average eccentricity for given

order is the path.

The following lemma due to [32] is a well-known basic result on the eccentricity of a vertex.
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Lemma 1.4.21. [32] Let T be a tree and let u, v be two vertices at distance diam(T ).

Then,

eG(x) = max{d(x, u), d(x, v)} for all x ∈ V (T ).

The natural question if the bound in Theorem 1.4.17 can be improved for graphs whose

minimum degree is greater than 1 was answered in the affirmative in [31], where it was

shown that if G is a graph of order n and minimum degree δ, then

avec(G) ≤ 9n

4(δ + 1)
+

15

4
, (1.4.28)

and this inequality is best possible apart from a small additive constant. However, by a

slight modification, we show in the preliminary results in Chapter 4 that this bound is

at most 9n
4(δ+1) + 5

2 . In addition to the bounds already established in [31], the authors in

the same paper examined the change in the average eccentricity when a graph is replaced

either by a spanning tree or removing an edge. It was observed in [38] that the upper

bound (1.4.28) can be improved for triangle-free graphs and for graphs not containing

four-cycles. Using similar methods as in [30, 31], the authors proved the following results.

Theorem 1.4.22. [38] Let G be a connected triangle-free graph of order n and minimum

degree δ ≥ 2. Then G has a spanning tree T with

avec(T ) ≤ 3
⌈ n

2δ

⌉
+ 5.

This inequality is best possible apart from the additive constant.

Theorem 1.4.23. [38] (i) Let G be a connected C4-free graph of order n and minimum

degree δ. Then G has a spanning tree T with

avec(T ) ≤ 15

4

⌈ n

δ2 − 2b δ2c+ 1

⌉
+

11

2
.

(ii) If δ ∈ N such that δ + 1 is a prime power, then there exists an infinite number of

C4-free graphs with n vertices and minimum degree δ such that for every spanning tree T

of G,

avec(T ) ≥ 15

4

n

δ2 + 3δ + 2
+O(1).

In Chapter 4, we aim to further pursue the idea of improving (1.4.28) for graphs not

containing certain subgraphs.

Recently [37] gave upper bounds on the average eccentricity of connected graphs, triangle-

free graphs and connected C4-free graphs of given order, minimum and maximum degree.

Theorem 1.4.24. [37] Let G be a connected graph of order n and minimum degree δ and
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maximum degree ∆. Then,

avec(G) ≤ 9

4

n−∆− 1

δ + 1

(
1 +

∆− δ
3n

)
+ 7. (1.4.29)

Theorem 1.4.25. [37] Let G be a connected triangle-free graph of order n, minimum

degree δ and maximun degree ∆. Then,

avec(G) ≤ 3

2

n−∆

δ

(
1 +

∆− δ
3n

)
+

19

2
. (1.4.30)

Theorem 1.4.26. [37] (i) Let G be a connected C4-free graph of order n, minimum degree

δ and maximum degree ∆. Then

avec(G) ≤ 15

4

n− ϕ∆ + ϕδ
ϕδ

[
1 +

ϕ∆ − ϕδ
3n

]
+

37

4
, (1.4.31)

where ϕ∆ := ∆δ − 2b∆
2 c+ 1, ϕδ := δ2 − 2b δ2c+ 1.

(ii) If δ ≥ 3 ∈ Z such that δ + 1 is a prime power, then for n,∆ ∈ N with 2δ− 3 ≤ ∆ < n

and n ≡ 0 (mod (δ + 1)(δ + 2)) and ∆ ≡ δ + 1(mod δ + 2) there exists a C4-free graph

G with n vertices, minimum degree δ and maximum degree ∆ whose average eccentricity

satisfies,

avec(G) ≥ 3

4

n− ϕ∆

ϕ′δ

(
1 +

∆(δ + 1)

3n

)
+O(1),

where ϕ′δ := (δ + 1)(δ + 2).

By substituting δ for ∆ yields Theorem 1.4.24, except for a slightly weaker additive con-

stant. Hence, Theorem 1.4.24 is in some sense a generalisation of (1.4.28) (see also Theo-

rem 4.2.3). Moreover, the bound for C4-free graphs above is close to being best possible

and not far from being sharp if δ + 1 is a prime power.

Several other bounds on the average eccentricity also exist in literature. For example for

graphs of given order and size [1, 91], and for maximal planar graphs [1]. Furthermore,

several relations between the average eccentricity and other graph parameters, for example

independence number [32, 36, 65], domination number [32, 36, 49, 48, 47], clique number

[44, 65], chromatic number [90], proximity [73] and Wiener index [43] have also been

explored in the literature. Bounds on the average eccentricity of the strong product of

graphs were given in [17]. Further results relating the average eccentricity of a graph to its

vertex degrees are known. Bounds on the average eccentricity of trees of given order and

maximum degree were given in [65]. Trees with given degree sequence that minimise or

maximise the average eccentricity were determined in [88]. For relations between average

eccentricity and Randić index see [71]. An upper bound on the average eccentricity in

terms of order, size and first Zagreb index was also given in [44].
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1.4.3 Survey of Results on (Edge)-Fault-Diameter

Often graphs are not static, but change over time. For example, in a transportation or

communication network links may fail, which can change the diameter. Hence, it becomes

significant to consider faulty networks and investigate the fault-diameter since it is an

important measure of the network efficiency and reliability.

A number of researchers have investigated the diameter of graphs after an edge or a vertex

have been removed prior to the introduction of fault-diameter in [68].

Chung and Garey [22], and independently Plesńık [83], showed that if an edge is removed

that is not a bridge from a connected graph, then the diameter of the new graph is at most

double of the diameter of the original graph. Schoone, Bodlaender, and van Leeuwen [87]

proved that deleting two or three edges from a graph G of diameter d, either leaves the

resulting graph disconnected, or yields a graph whose diameter is at most 3d−1 or 4d−1.

The graph K1 + Pn−1 has diameter 2, but removing the universal vertex leaves a graph

with diameter n− 2. Thus, after a vertex or an edge has been removed from a graph, the

diameter cannot be bounded in terms of the diameter of the original graph. Consequently,

the diameter of a graph provides little or no information on the diameter after vertices

or edges are removed. This problem of determining what the diameter of resulting graph

after vertices or edges have been removed was addressed in [8] and [28] under the name k-

(edge-)fault diameter. Diameter vulnerability and fault-tolerant diameter are other names

used by different authors to mean fault-diameters.

Krishnamoorthy and Krishnamurthy [68] gave an upper bound of the fault-tolerant diam-

eter of the Cartesian product graph G1 ×G2 to be

Dk1+k2(G1 ×G2) ≤ Dk1(G1) +Dk2(G2),

where k1 + k2 is the diameter of G1 × G2. This bound however happened to be false as

Xu et al. [99] showed that the above bound ought to be

Dk1+k2(G1 ×G2) ≤ Dk1(G1) +Dk2(G2) + 1.

Banič and Žerovnik in [9] considered a generalisation, the Cartesian graph bundles.

Upper bounds on the diameter of a κ-connected and λ-edge-connected graphs of order n

also exist in literature. The first two results that follows are bounds on the diameter of a

graph and not the fault-diameter but since they are also related to removing vertices and

edges, we decided to include it under the survey for the fault-diameter.

Theorem 1.4.27. [94] Let G be a κ-connected graph of order n, then

diam(G) ≤ bn− 2

κ
c+ 1,
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and this bound is sharp.

In addition, Plesńık [82] also gave upper bound on the diameter of 2-edge-connected graphs

in terms of order while Caccetta and Smyth [15] proved same for 3 ≤ λ ≤ 7. They showed

that diam(G) ≤ 4 or diam(G) ≤ b2n−2
3 c, if λ ∈ {2}; diam(G) ≤ bn−1

2 c, if λ ∈ {3, 4};
diam(G) ≤ b2(n−3)

5 c if λ ∈ {5, 6}; diam(G) ≤ bn−5
3 c, if λ = 7. The above bounds are

asymptotically sharp.

Since the fault-tolerant diameter is not the only parameter used in measuring reliability

and efficiency of interconnection networks, studies on the wide-diameter also abound in the

literature. The wide diameter dk of a graph G is a natural generalisation of the diameter

that takes into account the connectivity of the graph. More precisely, it is defined to

be the minimum integer d′ for which there exists at least k internally disjoint paths of

length at most d′ between any two distinct vertices in G. Most authors are interested in

determining how large the difference between the wide diameter dk and the fault-tolerant

diameter Dk can be. For example, Flandrin and Li [58] established the following result

for any 2-connected graph G with diameter d,

d2 ≤

{
D2 + 1 if d = 2,

(d− 1)(D2 − 1) if d ≥ 3.

Yin et al. [100] improved on the bound and the result to

d2 ≤

{
max{D2 + 1, (d− 1)(D2 − d) + 2} if d ≤ d(D2 − 1)2e,
max{(D2 + 1), b(D2 − 1)2/4c+ 2} if d ≥ d(D2 − 1)/2e+ 1.

The fault-diameter and edge-fault-diameter have been studied for many very specific graph

classes , see for example, [19, 86, 70] for results on the fault-diameters of the 2-dimensional

mesh of trees and star graphs; [20, 16, 89, 57] for results on the fault-diameters of directed

double-loop, pyramid networks, folded Petersen graphs and generalised cycles respectively.

Moreover, results on the fault-diameter and the edge-fault-diameter prior 2001 were doc-

umented in [97].

Guowen and Zhang [62] determined the maximum size for k-connected graphs of order

n and with a given (k − 1)-fault diameter or k-diameter. Banic̆, Erves̆ and Z̆erovnik [8]

showed that in a (k+1)-connected graph the k-fault-diameter can exceed the k-edge-fault-

diameter by at most one. For results on the fault-tolerant diameter of product, see, for

example, [98]. The fault-tolerant diameter on hypercubes, undirected de Bruijn networks,

directed Kautz networks and undirected Kautz networks were given in [68, 53, 46, 69]

respectively. Bounds on the maximum value of the k-fault-diameter and the k-edge-fault-

diameter of graphs of given order appeared first in Dankelmann [28]. The author showed

that if G is a (k + 1)-connected graph G of order n then the k-fault-diameter of G is
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bounded from above by n − k + 1 while on the other hand the k-edge-fault-diameter is

bounded by n − 1 if k = 1, by b2n−1
3 c if k = 2, and by approximately 3

k+2n if k ≥ 3.

Dankelmann went further to show that the above bound can be improved for triangle-free

graphs.

Theorem 1.4.28. [28] Let G be a triangle-free (k+ 1)-connected graph of order n, where

k ≥ 2. Then

Dk(G) ≤ 4

k + 2
n− 4k

k + 2
,

and for k ≥ 2 this bound is sharp apart from an additive constant.

Theorem 1.4.29. [28] Let G be a triangle-free graph of order n

(i) If G is a 2-edge-connected and n ≥ 4, then

D′1(G) ≤ n− 1.

Equality holds, if and only if G = Cn.

(ii) If G is a 3-edge-connected graph of order n ≥ 6, then

D′2(G) ≤ b3n− 1

5
c.

The bound is sharp for all n ≥ 11.

(iii) If k ≥ 3 and G is (k + 1)-edge-connected, then

D′k(G) ≤ 2n

k + 1
+

4k

k + 1
,

and this bound is sharp apart except for an additive constant.

For k = 1, 2, the bounds in Theorem 1.4.29 are sharp for all n and for k ≥ 3, the bounds are

best possible. In particular, the bound strengthened the well-known bounds in [51] in the

sense that their bounds on the diameter of graphs with minimum degree δ is asymptotically

sharp even after removal of at most δ− 1 edges, given that the graph is δ-edge-connected.

In the same paper, Dankelmann showed that the bound on the k-fault diameter can be

further improved to approximately 5n
(k−1)2 if G does not contain 4-cycles. However he did

not give the corresponding result for the k-edge-fault-diameter. We intentionally omit the

proof of this result here and present it in detail in Chapter 6 since the proof of our original

result follows closely follows the proof given in [28].

In Chapter 6, we improve Dankelmann’s bound in Theorem 1.4.29 for graphs not contain-

ing 4-cycles thereby filling the gap in the literature. Using a similar technique, we also

give bounds on the (edge-)fault-diameter of graphs with girth at least 6 and (C4, C5)-free

graphs.
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1.5 Thesis Outline

The remaining chapters of this thesis is arranged as follows: In Chapter 2, we give upper

bounds on the diameter and radius of graphs of girth at least 6, as well as, (C4, C5)-

free graphs taken into account the minimum degree and the order of the graphs. We

first present lower bounds on the cardinality of the second neighbourhood, i.e., the set of

vertices at distance at most 2, of a vertex or a pair of adjacent vertices for both, graphs

of girth at least 6 and (C4, C5)-free graphs. This result will be used in the proofs in the

chapters that follow. In Chapter 3, we present lower bounds on the cardinality of the

third neighbourhood, i.e., the set of vertices at distance at most 3, of a vertex. These

results imply lower bounds on the order of graphs of girth at least 6 in terms of minimum

degree and maximum degree. This leads us to the generalisation of a cage, in which not

regular graphs of given girth but graphs of given minimum degree and maximum degree

and prescribed girth are considered. We also present a similar lower bound on the order

of (C4, C5)-free graphs in terms of minimum degree and maximum degree, and we discuss

our results in relation to a different, but related generalisation of cages introduced in [11].

Making use of these results, we give improved bounds on diameter and radius for graphs

of girth at least 6 and also for (C4, C5)-free graphs in terms of order and minimum degree

and maximum degree.

By slightly modifying the widely used technique for constructing spanning trees developed

by Dankelmann and Entringer [30], we obtain bounds on the average eccentricities and

average distance of graphs of girth at least 6 and (C4, C5)-free graphs in Chapters 4 and

Chapter 5 respectively. Bounds on the (edge)-fault-diameter of graphs of girth at least 6,

as well as, (C4, C5)-free graphs were obtained in Chapter 6.



Chapter 2

Upper Bounds on the Radius and

Diameter of Graphs of Girth at least 6

and (C4, C5)-free Graphs.

2.1 Introduction

In this chapter, we give upper bounds on the diameter and radius of graphs of girth at least

6, as well as, (C4, C5)-free graphs taking into account the minimum degree and the order

of the graphs. More precisely, we want to develop further a particular aspect of an idea

that appeared in [51] where the authors observed that bounds on distance measures can

be improved if information on the presence or absence of certain substructures is given.

Our results show that the bounds in [51] can be improved further by a factor of about 3/5

for graphs of girth at least 6 and that is best possible. The techniques used in [51], [30]

and [31], were very useful in obtaining these bounds. In addition, we construct graphs to

show that these upper bounds on the distance measures are asymptotically sharp.

2.2 Preliminary Results

The following bound is an extension of a bound on the number of vertices in the second

neighbourhood of a vertex given in [51] which takes into account only the minimum degree,

but not the degree of v.

Lemma 2.2.1. Let G be a C4-free graph of minimum degree at least δ and v a vertex of

G. Then

|N≤2(v)| ≥ deg(v)δ − deg(v) + εdeg(v) + 1,

where

εdeg(v) =

0 if deg(v) is even,

1 if deg(v) is odd.

Proof. Let v ∈ V (G). Clearly, |N≤2(v)| = |N0(v)| + |N1(v)| + |N2(v)| and since G is a

graph containing no 4-cycle, each vertex at distance 1 from v can only have one neighbour

in N1(v), otherwise G would contain a 4-cycle. So each vertex in N1(v) has at least δ − 2

neighbours in N2(v). Moreover, no two vertices in N1(v) have a common neighbour in

32
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N2(v), otherwise v, together with its two neighbours in N1(v) and their common neighbour

in N2(v) will then form a 4-cycle contradicting the fact that G is C4-free.

Based on the above established fact, we now give a bound on |N≤2(v)| by considering

different cases for the degree of v.

v

deg(v) : even

v

deg(v) : odd

Figure 2.1: Illustration to show vertices within distance two from a vertex.

If deg(v) is even, we have that

|N≤2(v)| ≥ 1 + deg(v) + deg(v)(δ − 2)

= deg(v)δ − deg(v) + 1. (2.2.1)

Note that if deg(v) is odd, then it follows from Lemma 1.1.28 that there is a vertex in

N1(v) that is not adjacent to any other vertex in N1(v), so this vertex has at least δ − 1

neighbours in N2(v). Hence, we have that

|N≤2(v)| ≥ 1 + deg(v) + (deg(v)− 1)(δ − 2) + (δ − 1)

= deg(v)δ − deg(v) + 2. (2.2.2)

Therefore,

|N≤2(v)| ≥ deg(v)δ − 2
⌊
deg(v)/2

⌋
+ 1

= deg(v)δ − deg(v) + εdeg(v) + 1. (2.2.3)

We now give a bound by [51] on the diameter of a C4-free graph. Since the idea of the

proof of our improvement for graphs of girth at least 6 is based on the proof of this result,
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we present their proof in full with some elaboration.

Theorem 2.2.2. [51] Let G be a connected C4-free graph of order n and minimum degree

δ ≥ 2, then

(i) diam(G) ≤ 5(n− 2δ)

δ2 − 2bδ/2c+ 1
− 1. (2.2.4)

(ii) rad(G) ≤ 5n

2(δ2 − 2bδ/2c+ 1)
+

11

2
. (2.2.5)

Proof. (i) Let u0 and ud be two vertices at distance d = diam(G) and u0u1u2 . . . ud be a

shortest (u0, ud)-path of length in G.

u0 udu5 u10

Figure 2.2: Illustration to show the (u0, ud)-path of length d in a graph.

By Lemma 2.2.1 we have |N≤2(u)| ≥ deg(u)δ−deg(u) + εdeg(u) + 1. Since deg(u) ≥ δ, this

implies

|N≤2(u)| ≥ δ2 − 2
⌊δ

2

⌋
+ 1 for every u ∈ V (G). (2.2.6)

For i ∈ {0, 1, . . . , d}, we have that N≤2(ui) ⊆ Ni−2 ∪Ni−1 ∪Ni ∪Ni+1 ∪Ni+2. Hence by

(2.2.6) we have that

|Ni−2|+ |Ni−1|+ |Ni|+ |Ni+1|+ |Ni+2| ≥ δ2 − 2
⌊δ

2

⌋
+ 1. (2.2.7)

In view of the fact that N≤2(u5i)∩N≤2(u5j) = ∅ for all 0 ≤ i 6= j ≤ d/5, we let k = bd5c−1

and consider the distinguishing cases according to the residue class of d mod 5. In our

bounds below, we also make use of the fact that |Ni−1| + |Ni| + |Ni+1| ≥ δ + 1 for all

i ∈ {0, . . . , d}. Clearly n =
d∑
i=0
|Ni|.
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If d ≡ 0 (mod 5), we have

n =
k∑
i=0

(
|N5i−2|+ |N5i−1|+ |N5i|+ |N5i+1|+ |N5i+2|

)
+ |Nd−2|+ |Nd−1|+ |Nd|

≥ (k + 1)
(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+
(
δ2 − 2

⌊δ
2

⌋
+ 1
)
,

= (k + 2)
(
δ2 − 2

⌊δ
2

⌋
+ 1
)
,

=
(⌊d

5

⌋
+ 1
)(
δ2 − 2

⌊δ
2

⌋
+ 1
)
.

If d ≡ 1 (mod 5), we have

n =

k∑
i=0

(
|N5i−2|+ |N5i−1|+ |N5i|+ |N5i+1|+ |N5i+2|

)
+ |Nd−3|+ |Nd−2|+ |Nd−1|+ |Nd|

≥ (k + 1).
(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+ 1 +
(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+ 1,

= (k + 2)
(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+ 1,

=
(⌊d

5

⌋
+ 1
)(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+ 1.

If d ≡ 2 (mod 5), we have

n =
k∑
i=0

(
|N5i−2|+ |N5i−1|+ |N5i|+ |N5i+1|+ |N5i+2|

)
+ |Nd−4|+ |Nd−3|+

|Nd−2|+ |Nd−1|+ |Nd|,

≥ (k + 1).
(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+ 2 +
(
δ2 − 2

⌊δ
2

⌋
+ 1
)
,

= (k + 2).
(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+ 2,

=
(⌊d

5

⌋
+ 1
)(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+ 2.

If d ≡ 3 (mod 5), we have

n =

k∑
i=0

(
|N5i−2|+ |N5i−1|+ |N5i|+ |N5i+1|+ |N5i+2|

)
+ |Nd−5|+ |Nd−4|+ |Nd−3|

+|Nd−2|+ |Nd−1|+ |Nd|,

≥ (k + 1).
(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+ (δ + 1) +
(
δ2 − 2

⌊δ
2

⌋
+ 1
)
,

= (k + 2).
(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+ δ + 1,

=
(⌊d

5

⌋
+ 1
)(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+ δ + 1.
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If d ≡ 4 (mod 5), we have

n =
k∑
i=0

(
|N5i−2|+ |N5i−1|+ |N5i|+ |N5i+1|+ |N5i+2|

)
+ |Nd−6|+ |Nd−5|+ |Nd−4|+

|Nd−3|+ |Nd−2|+ |Nd−1|+ |Nd|,

≥ (k + 1).
(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+ 2δ +
(
δ2 − 2

⌊δ
2

⌋
+ 1
)
,

= (k + 2).
(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+ 2δ,

=
(⌊d

5

⌋
+ 1
)(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+ 2δ.

From the above five cases, we conclude that

n =

d∑
i=0

|Ni| ≥
(⌊d

5

⌋
+ 1
)(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+



0 if d ≡ 0(mod 5),

1 if d ≡ 1(mod 5),

2 if d ≡ 2(mod 5),

δ + 1 if d ≡ 3(mod 5),

2δ if d ≡ 4(mod 5).

(2.2.8)

This implies that

n ≥



(
d+5

5

)(
δ2 − 2

⌊
δ
2

⌋
+ 1
)

if d ≡ 0(mod 5),(
d+4

5

)(
δ2 − 2

⌊
δ
2

⌋
+ 1
)

+ 1 if d ≡ 1(mod 5),(
d+3

5

)(
δ2 − 2

⌊
δ
2

⌋
+ 1
)

+ 2 if d ≡ 2(mod 5),(
d+2

5

)(
δ2 − 2

⌊
δ
2

⌋
+ 1
)

+ δ + 1 if d ≡ 3(mod 5),(
d+1

5

)(
δ2 − 2

⌊
δ
2

⌋
+ 1
)

+ 2δ if d ≡ 4(mod 5).

(2.2.9)

and thus

d ≤



5n

δ2−2
⌊
δ
2

⌋
+1
− 5 if d ≡ 0(mod 5),

5(n−1)

δ2−2
⌊
δ
2

⌋
+1
− 4 if d ≡ 1(mod 5),

5(n−2)

δ2−2
⌊
δ
2

⌋
+1
− 3 if d ≡ 2(mod 5),

5(n−δ−1)

δ2−2
⌊
δ
2

⌋
+1
− 2 if d ≡ 3(mod 5),

5(n−2δ)

δ2−2
⌊
δ
2

⌋
+1
− 1 if d ≡ 4(mod 5).

(2.2.10)

Therefore

d ≤ 5(n− 2δ)

δ2 − 2
⌊
δ
2

⌋
+ 1
− 1, (2.2.11)

and this yields inequality (2.2.4).
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The proof of (ii) follows essentially the same way as that of part (ii) of Theorem 1.4.11.

(ii) Let u be a centre vertex of G and let Ni = Ni(u). For any x ∈ Ni, pick a vertex

x′ ∈ Ni−1 such that xx′ ∈ E(G) (1 ≤ i ≤ r). The collection of the edges of the form

{xx′ : x ∈ V (G) − {u}} defines a distance preserving spanning tree, T ≤ G, from u, i.e.,

dT (u, v) = dG(u, v) for all v ∈ V (G).

For v ∈ V (G), denote the (u, v)-path in T by T (u, v). Fix a vertex v′ ∈ Nr. We say

that a vertex v′′ ∈ V (G) is related to v′ if there exists v′ ∈ V (T (u, v′)) ∩ N≥9 and v′′ ∈
V (T (u, v′′)) ∩N≥9 such that

dG(v′, v′′) ≤ 4. (2.2.12)

By Lemma 1.4.10, there is a vertex w ∈ N≥r−9 that is not related to v′.

For any i ∈ Z, let D′i and D′′i denote the set of all vertices in Ni whose distance from at

least one vertex of T (u, v′) ∩N≥9 (T (u,w) ∩N≥9 respectively) is at most 2 in G. By our

assumption that v′ and w are not related, we have that

( r⋃
i=7

D′i

) ⋂ ( r⋃
i=7

D′′i

)
= ∅.

Let s = dG(u,w). Let u0, u1, u2, . . . , ur be a shortest (u, v′)-path and let w0, w1, w2, . . . , ws

be a shortest (u,w)-path in T . Since N≤2(ui) ⊆ D′i−2 ∪ D′i−1 ∪ D′i ∪ D′i+1 ∪ D′i+2, and

N≤2(wi) ⊆ D′′i−2∪D′′i−1∪D′′i ∪D′′i+1∪D′′i+2, we have by the condition on |N≤2(u)| in 2.2.6

that

|D′i−2|+ |D′i−1|+ |D′i|+ |D′i+1|+ |D′i+2| ≥ δ2 − 2
⌊δ

2

⌋
+ 1 ∀i ∈ {9, 10 . . . r, } (2.2.13)

|D′′i−2|+ |D′′i−1|+ |D′′i |+ |D′′i+1|+ |D′′i+2| ≥ δ2 − 2
⌊δ

2

⌋
+ 1 ∀i ∈ {9, 10, . . . s, } (2.2.14)

where s ≥ r − 9.

Similarly to (1.4.20), we now obtain that

n =

r∑
i=0

|Ni| =
7∑
i=0

|Ni|+
r∑
i=8

|Ni| ≥ |N≤7|+
r∑
i=8

|D′i|+
s+2∑
i=8

|D′′i |. (2.2.15)

Since s ≥ r − 9, we have that

n ≥
7∑
i=0

|Ni|+
r∑
i=8

|D′i|+
r−7∑
i=8

|D′′i |,

≥
2∑
i=0

|Ni|+
7∑
i=3

|Ni|+
r−3∑
i=8

|D′i|+
r∑
r−2

|D′i|+
r−10∑
i=8

|D′′i |+
r−7∑
r−9

|D′′i |.
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Let k be the largest integer with k ≤ r and k ≡ 2 (mod 5). Then k ≥ r − 4 and

n ≥
2∑
i=0

|Ni|+
7∑
i=3

|Ni|+
k−3∑
i=8

|D′i|+
k∑
k−2

|D′i|+
k−10∑
i=8

|D′′i |+
k−7∑
k−9

|D′′i |,

≥
2∑
i=0

|Ni|+
7∑
i=3

|Ni|+

k−5
5∑
i=2

(
|D′5i−2|+ |D′5i−1|+ |D′5i|+ |D′5i+1|+ |D′5i+2|

)
+

k∑
i=k−2

|D′i|

+

k−12
5∑
i=2

(
|D′′5i−2|+ |D′′5i−1|+ |D′′5i|+ |D′′5i+1|+ |D′′5i+2|

)
+

k−7∑
i=k−9

|D′′i |,

n ≥ 2
(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+
(k − 5

5

)(
δ2 − 2

⌊δ
2

⌋
+ 1
)
−
(
δ2 − 2

⌊δ
2

⌋
+ 1
)
,

+
(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+
(k − 12

5

)(
δ2 − 2

⌊δ
2

⌋
+ 1
)
−
(
δ2 − 2

⌊δ
2

⌋
+ 1
)

+
(
δ2 − 2

⌊δ
2

⌋
+ 1
)
,

=
(

2 +
2k − 17

5

)(
δ2 − 2

⌊δ
2

⌋
+ 1
)
,

=
(2k − 7

5

)(
δ2 − 2

⌊δ
2

⌋
+ 1
)
,

≥
(2r − 11

5

)(
δ2 − 2

⌊δ
2

⌋
+ 1
)
,

with the last inequality holding since k ≥ r − 4, and so

n

δ2 − 2
⌊
δ/2
⌋

+ 1
≥ 2r − 11

5
.

Therefore,

r ≤ 5n

2
(
δ2 − 2

⌊
δ/2
⌋

+ 1
) +

11

2
.

Hence, the inequality (2.2.5) holds.

We now describe the following graph Hq constructed by [12] and [52] since it will be useful

later.

Example 2.2.3. Let q be a prime power and let GF (q)3 be a 3-dimensional vector space

over the finite field GF (q) of order q. Let Hq be the graph whose vertices are the 1-

dimensional subspaces of GF (q)3. Denote the subspace generated by x, as 〈x〉. Two

vertices, 〈x〉 and 〈y〉, are said to be adjacent in Hq if they are orthogonal, i.e., x · y = 0

where x · y denotes the dot product.

Claim 2.2.4. Hq is C4-free.

Proof. Let 〈a〉, 〈b〉 be distinct 1-dimensional subspaces of GF (q)3 representing vertices in

Hq. The following subclaims hold for any two vertices of Hq.
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(a) If 〈a〉 and 〈b〉 are adjacent in Hq, then at most one of a and b is self-orthogonal.

(b) If 〈a〉 and 〈b〉 are adjacent in Hq, and one of a and b is self orthogonal, then 〈a〉 and

〈b〉 have no common neighbour in Hq.

(c) If 〈a〉 and 〈b〉 are adjacent in Hq and both a and b are not self-orthogonal, then 〈a〉
and 〈b〉 have exactly one common neighbour in Hq.

(d) If 〈a〉 and 〈b〉 are not adjacent in Hq, then they have exactly one common neighbour.

We have previously shown in Theorem 1.2.11 that if X is a subset of GF (q)n, then X⊥ is

a subspace of GF (q)n.

Let X = {a, b} and X⊥ = 〈a, b〉⊥ = 〈c〉 for some c ∈ GF (q)3 such that c is not the zero

vector. Recall from Theorem 1.2.11 that the orthogonal complement of a k-dimensional

subspace of a vector space of dimension n has dimension n − k. Therefore, since X has

dimension 2, we have that X⊥ has dimension 3 − 2 = 1. The following two observations

will be used in the proving the above subclaims.

i) If 〈c〉 = 〈a〉 or 〈c〉 = 〈b〉, then one of a or b is self-orthogonal. Hence, 〈a〉 and 〈b〉
have no common neighbour in Hq. If the definition of Hq allowed loops, then the

self-orthogonal vertex would be the common neighbour of 〈a〉 and 〈b〉.

ii) If 〈c〉 6= 〈a〉 and 〈c〉 6= 〈b〉, then c is orthogonal to both a and b. Hence 〈c〉 is the

unique neighbour of 〈a〉 and 〈b〉 in Hq. Note that 〈a〉 and 〈b〉 can be adjacent or not

adjacent in Hq.

Next, we give a justification to the above subclaims (a) to (d).

subclaim (a): Since 〈a〉 and 〈b〉 are adjacent vertices in Hq, we have a ·b = 0. Suppose to

the contrary that both are self-orthogonal, then a ·a = 0 and b ·b = 0. Thus 〈a〉, 〈b〉 ⊆ X⊥.

This implies that X⊥ has dimension at least 2, a contradiction since X⊥ is 1-dimensional

subspace of GF (q)3. Hence at most one of a and b is self orthogonal if both are adjacent

in Hq.

subclaim (b): 〈a〉 and 〈b〉 are adjacent in Hq. Without loss of generality, let one of them,

say a, be self-orthogonal. Then 〈a〉 ⊆ X⊥ = 〈a, b〉⊥. Therefore 〈a〉 = 〈c〉 since X⊥ = 〈c〉.
Hence 〈a〉 and 〈b〉 have no common neighbour in Hq since loops are not defined in Hq.

subclaim (c): Since 〈a〉 and 〈b〉 are adjacent vertices in Hq but are not self orthogonal,

we have that 〈a〉, 〈b〉 * X⊥. This implies that 〈c〉 6= 〈a〉 and 〈c〉 6= 〈b〉. Hence, 〈c〉 is the

unique neighbour common to both 〈a〉 and 〈b〉 in Hq.

subclaim (d): Since 〈a〉 and 〈b〉 are not adjacent in Hq, a · b 6= 0 and 〈a〉, 〈b〉 * X⊥

since they are non-adjacent in Hq. Thus 〈c〉 6= 〈a〉 and 〈c〉 6= 〈b〉. Hence, 〈a〉 and 〈b〉 have

exactly one common neighbour, 〈c〉, in Hq.
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It follows from the above subclaims a) to d) that any two vertices of Hq have at most one

common neighbour. Hence Hq is C4-free and so Claim 2.2.4 holds.

Claim 2.2.5. (a) Hq has q2 + q + 1 vertices.

(b) For each vertex 〈v〉 in V (H), the degree of 〈v〉, degHq(〈v〉) = q if v is self-orthogonal

and degHq(〈v〉) = q + 1 otherwise.

(c) There exists a self-orthogonal vertex, say 〈z〉 in Hq.

(d) No two neighbours of a self-orthogonal vertex in Hq are adjacent.

Proof. (a) Since Hq is the graph whose vertices are the 1-dimensional subspaces of GF (q)3,

we have by Theorem 1.2.20, that Hq has q2 + q + 1 vertices.

(b) Since 〈v〉, a 1-dimensional subspace of GF (q)3, is a vertex of Hq, we have by Theorem

1.2.11, that 〈v〉⊥, its orthogonal complement, is a 2-dimensional subspace of GF (q)3.

Hence 〈v〉⊥ has q2 vectors and q2− 1 non-zero vectors. Thus the number of 1-dimensional

subspaces of 〈v〉⊥ is q2−1
q−1 = (q+ 1). And so, if 〈v〉 is self orthogonal, then degHq(〈v〉) = q.

Otherwise degHq(〈v〉) = q + 1.

(c) Recall from Claim 1.2.15 that there exists a non-zero self-orthogonal vector z in GF (q)3

and sinceHq is a graph whose vertices are the 1-dimensional subspaces ofGF (q)3 generated

by a non-zero vector. Then, we have that there is one of the 1-dimensional subspaces of

GF (q)3 generated by z. Hence Hq contains a self orthogonal vertex.

(d) Let 〈z〉 be the self orthogonal vertex in Hq and let 〈x〉 and 〈y〉 be neighbours of

〈z〉. Clearly, (d) follows directly from subclaim (b) of Claim 2.2.4. If 〈x〉 and 〈y〉 were

adjacent, then 〈z〉 and 〈x〉 would have a common neighbour, which is a contradiction to

subclaim (b) of Claim 2.2.4.

From here onwards, we fix a self-orthogonal vertex in Hq, 〈z〉 , and two of its neighbours

〈x〉, 〈y〉.

Let 〈x0〉 = 〈z〉, 〈x1〉, 〈x2〉, . . . , 〈xq〉 and 〈y
0
〉 = 〈z〉, 〈y

1
〉, 〈y

2
〉, . . . , 〈y

q
〉 denote the neigh-

bours of 〈x〉 and 〈y〉 in Hq respectively.

Since 〈x〉 and 〈y〉 are neighbours of a self-orthogonal vertex, we have by Claim 2.2.5(b)

that deg(〈x〉) = deg(〈y〉) = q + 1 since by subclaim (b) of Claim 2.2.4, 〈x〉 and 〈y〉
cannot be self-orthogonal. Moreover, by subclaim (c) of Claim 2.2.4, 〈x〉 and 〈z〉 have

no common neighbour in Hq and similarly 〈y〉 and 〈z〉 have no common neighbour in Hq.

We now prove the following claim.

Claim 2.2.6. For 1 ≤ i ≤ q,

(a) 〈z〉 is not adjacent to any 〈xi〉 or 〈y
i
〉.
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(b) There is a uniquely determined ji (1 ≤ ji ≤ q) such that 〈xi〉〈yji〉 ∈ E(H) for every

i with 1 ≤ i ≤ q.

(c) No 〈xi〉 is adjacent to 〈y〉 and no 〈y
i
〉 is adjacent to 〈x〉 in Hq.

Proof. (a) Suppose that 〈xi〉 is adjacent to 〈z〉 in Hq. By our assumption, 〈z〉 is a self-

orthogonal vertex and is also adjacent to 〈x〉 in Hq. We now have that both 〈x〉 and

〈xi〉 are neighbours of a self-orthogonal vertex. But 〈x〉 and 〈xi〉 are adjacent in Hq, a

contradiction to Claim 2.2.5(d). Hence, no 〈xi〉 is adjacent to 〈z〉 in Hq for 1 ≤ i ≤ q.

Similarly no 〈y
i
〉 is adjacent to 〈z〉 in Hq since the proof is analogous.

(b) Since each 〈xi〉 and 〈y〉 are not adjacent in Hq, it follows from subclaim (d) of

Claim 2.2.4 that each 〈xi〉 and 〈y〉 have exactly one common neighbour. We show that

the common neighbour is not 〈y
0
〉 = 〈z〉. By a), 〈z〉 is not adjacent to 〈xi〉. Hence, 〈xi〉

and 〈y〉 cannot have 〈y
0
〉 as a common neighbour. It immediately follows from above that

there exists ji with 1 ≤ ji ≤ q such that 〈y
ji
〉 is the common neighbour of 〈xi〉 and 〈y〉.

(c) Suppose 〈xi〉 is adjacent to 〈y〉 in Hq. Then, Hq contains a C4, vis 〈z〉, 〈x〉, 〈xi〉, 〈y〉, a

contradiction to Claim 2.2.4. Hence, no 〈xi〉 is a adjacent to 〈y〉 in Hq. Similarly no 〈y
i
〉

is a adjacent to 〈x〉 in Hq. This proves Claim 2.2.6.

Let H0 be the graph obtained from Hq by removing the self-orthogonal vertex 〈z〉 and all

edges of the form 〈xi〉〈yji〉 for 1 ≤ i ≤ q. We claim that dH0(〈x〉, 〈y〉) ≥ 4.

Claim 2.2.7. If 〈z〉, a self-orthogonal vertex, and two of its neighbours, 〈x〉 and 〈y〉 are

fixed in Hq, then dH0(〈x〉, 〈y〉) ≥ 4.

Proof. Recall that dHq(〈x〉, 〈y〉) = 2 since both 〈x〉 and 〈y〉 share a common neighbour,

〈z〉. Since 〈z〉 and and two of its neighbours 〈x〉, 〈y〉 were fixed in Hq, removal of 〈z〉 in H0

implies that there is no (〈x〉, 〈y〉)-path of length 2 in H0, thus dH0(〈x〉, 〈y〉) ≥ 3. Moreover,

removal of all edges of the form 〈xi〉〈yji〉 for 1 ≤ i ≤ q destroys all (〈x〉, 〈y〉)-path of length

3 in H0. Hence, dH0(〈u〉, 〈v〉) ≥ 4.

Since the degree of each vertex in Hq is either q or q+1, H0 has minimum degree δ = q−1

since the removal of 〈z〉 and all edges of the form 〈xi〉〈yji〉 for 1 ≤ i ≤ q will reduce the

degree of all neighbours of 〈z〉 and the degree of all vertices associated with the removed

edges, 〈xi〉〈yji〉 by 1. We note that the degree of these vertices that were affected by the

edge-removal cannot be reduced by 2 since they are not adjacent to 〈z〉, the self orthogonal

vertex. Thus, since some of these vertices that their degrees were affected are either a self-

orthogonal vertex or not, we have that the degree of vertices of H0 is either q − 1 or q.

The number of vertices in H0 is q2 + q and the number of edges in H0 will be reduced by

2q.
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Theorem 2.2.8. [51] If δ + 1 is a prime power, then there exists an infinite family of

C4-free graphs G of order n and minimum degree δ such that

(i) diam(G) ≥ 5n

δ2 + 3δ + 2
− 1. (2.2.16)

(ii) rad(G) ≥ 5n

2(δ2 + 3δ + 2)
− 1

2
. (2.2.17)

Proof. Let q = δ + 1 be prime power and H0 be the graph constructed above. Let Gk,δ

be the graph obtained from the union of k disjoint copies, H1
0 , H

2
0 , . . . ,H

k
0 , of H0 by

adding the following edges 〈yt〉〈xt+1〉 for every 1 ≤ t < k, where 〈xt〉,〈yt〉 ∈ V (Ht
0) are

the corresponding vertices to 〈x〉, 〈y〉 ∈ V (H0). Clearly, 〈yt〉 ∈ NGk,δ [〈xt+1〉] for every

1 ≤ t < k and the addition of the edges 〈yt〉〈xt+1〉 does not create any 4-cycle since no

two neighbours of 〈xt+1〉 share two common neighbours. Since H0 is obtained from Hq,

we have by Claim 2.2.4 that Gk,δ is C4-free. Moreover, since H0 has q2 + q vertices, there

are k(q2 +q) vertices in Gk,δ. The minimum degree of Gk,δ is δ = q−1 since the minimum

degree of vertices of H0 is δ = q − 1. The order of Gk,δ, is given by

|V (Gk,δ)| = n = k(q2 + q)

= k[(δ + 1)2 + (δ + 1)]

= k(δ2 + 3δ + 2).

By Claim 2.2.7, dH0(〈x〉, 〈y〉) ≥ 4, and so we have that diam(H0) ≥ 4. Thus,

diam(Gk,δ) ≥ k.diam(H0) + k − 1

≥ 4k + k − 1

= 5k − 1

=
5n

δ2 + 3δ + 2
− 1.

Part (ii) follows from the fact that

rad(Gk,δ) ≥
1

2
diam(Gk,δ) ≥

5n

2(δ2 + 3δ + 2)
− 1

2

The graph Gk,δ demonstrates that the bound in Theorem 2.2.2 is not far from, best

possible. Indeed, as δ gets large, then the ratio of the coefficient of n in the bound in

Theorem 2.2.2, and the coefficient of n in the diameter ofGk,δ equals { 5
δ2−2bδ/2c+1

/
5

δ2+3δ+2
}

which tends to 1 as δ gets large.
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2.3 Main Results

2.3.1 Bounds on Diameter and Radius of Graphs of Girth at least 6

In this subsection we improve the bounds on the diameter and radius of a connected C4-

free graph in Theorem 2.2.2 under the additional assumption that the graph also has girth

at least 6.

Lemma 2.3.1 and 2.3.2 are essentially the well-known Moore bounds on the order of a

graph of given minimum degree δ and girth at least 5 or 6, respectively. Since Lemma

2.3.1 takes into account the degree of a given vertex and is thus very slightly more general

than the Moore bound, we give a proof. The proof of Lemma 2.3.2 is well-known, and it

is almost identical to Case 1 in the proof of Lemma 2.3.9.

Lemma 2.3.1. Let G be a graph of girth at least 5 and v ∈ V (G). If every vertex in

V (G)− {v} has degree at least δ ≥ 3, then

|N≤2(v)| ≥ 1 + deg(v)δ.

Proof. There are deg(v) vertices at distance exactly 1 from v. Each vertex in N(v) has

only one neighbour in N≤1(v) since otherwise G would contain C3. Hence each vertex in

N(v) has at least δ − 1 neighbours in N2(v). Moreover, the sets N(x) ∩N2(v), x ∈ N(v),

are pairwise disjoint, otherwise G would contain C4. Hence |N2(v)| ≥ deg(v)(δ−1). Since

|N≤2(v)| = 1 + deg(v) + |N2(v)|, the proposition follows.

Lemma 2.3.2. Let G be a graph of minimum degree δ ≥ 3 and girth at least 6. If u and

v are adjacent vertices of G, then

|N≤2(u) ∪N≤2(v)| ≥ 2(δ2 − δ + 1).

Proof. We have by Lemma 2.3.1 that |N≤2(u)| ≥ degG(u)δ+1 and |N≤2(v)| ≥ degG(v)δ+

1 and by the inclusion-exclusion principle, that

|N≤2(u) ∪N≤2(v)| = |N≤2(u)|+ |N≤2(v)| − |N≤2(u) ∩N≤2(v)|.

We claim that N≤2(u)∩N≤2(v) = N(u)∪N(v). Clearly, N(u)∪N(v) ⊆ N≤2(u)∩N≤2(v) as

N(u) = N1(u). Conversely, let y ∈ N≤2(u)∩N≤2(v). Thus we have that y ∈ N0(u)∩N1(v),

or y ∈ N1(u) ∩ N2(v), or y ∈ N0(v) ∩ N1(u), or y ∈ N1(v) ∩ N2(u) since G has girth at

least 6. In either case, we get y ∈ N(u) ∪N(v). By Lemma 2.3.1 and using the fact that
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N(u) ∩N(v) = ∅, it follows that

|N≤2(u) ∩N≤2(v)| = |N≤2(u)|+ |N≤2(v)| − |N≤2(u) ∩N≤2(v)|,

≥ 1 + δ · degG(u) + 1 + δ · degG(v)− (degG(u) + degG(v)),

= (δ − 1)
(
degG(u) + degG(v)

)
+ 2,

≥ (δ − 1)(2δ) + 2.

Hence,

|N≤2(u) ∪N≤2(v)| ≥ 2δ2 − 2δ + 2.

Lemma 2.3.3. Let G be a connected graph of girth at least 6 and minimum degree δ ≥ 3.

If P : x0, x1, . . . , xs is a shortest (x0, xs)-path in G, then

|N≤2(V (P ))| ≥ s

3
(δ2 − δ + 1) +

1

3
(δ2 + 2δ + 2).

Proof. Let P : x = x0, x1, x2, . . . , xs−1, xs = y be a shortest (x, y)-path. Clearly, we have

that N≤2(x) = N≤2(P ) if P is a path of length 0 containing only x. It follows immediately

from Lemmas 2.3.1 and 2.3.2 that |N≤2(x)| ≥ δ2+1 and |N≤2(x0)∪N≤2(x1)| ≥ 2δ2−2δ+2

for any x0x1 ∈ E(G). We now consider the set N≤2[V (P )].

In view of the fact that [N≤2(xi) ∪N≤2(xi+1)] ∩ [N≤2(xj) ∪N≤2(xj+1)
]

= ∅ if |i− j| ≥ 6,

we have that

N≤2[V (P )] =
s⋃
i=0

N≤2(xi),

⊇
b s−6

6
c⋃

i=0

[N≤2(x6i) ∪N≤2(x6i+1)] ∪
s⋃

j=6+6(b s−6
6
c)

N≤2(xj).

Considering the distinguishing cases according to the residue class of s(mod 6) with s ≥ 6,

we have that

N≤2[V (P )] ⊇
b s−6

6
c⋃

i=0

[N≤2(x6i) ∪N≤2(x6i+1)]

∪



N≤2(xs) if s ≡ 0(mod 6),

N≤2(xs−1) ∪N≤2(xs) if s ≡ 1(mod 6),

{xs−4} ∪N≤2(xs−1) ∪N≤2(xs) if s ≡ 2(mod 6),

{xs−5, xs−4} ∪N≤2(xs−1) ∪N≤2(xs) if s ≡ 3(mod 6),

N≤1(xs−5) ∪N≤2(xs−1) ∪N≤2(xs) if s ≡ 4(mod 6),

N≤1(xs−6) ∪N≤1(xs−5) ∪N≤2(xs−1) ∪N≤2(xs) if s ≡ 5(mod 6),
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This implies that

|N≤2[V (P )]| ≥
b s−6

6
c∑

i=0

|N≤2(x6i)∪N≤2(x6i+1)|+



δ2 + 1 if s ≡ 0 (mod 6),

2δ2 − 2δ + 2 if s ≡ 1 (mod 6),

2δ2 − 2δ + 3 if s ≡ 2 (mod 6),

2δ2 − 2δ + 4 if s ≡ 3 (mod 6),

2δ2 − δ + 3 if s ≡ 4 (mod 6),

2δ2 + 2 if s ≡ 5 (mod 6).

Hence by Lemma 2.3.2,

|N≤2[V (P )]| ≥ s

3
(δ2 − δ + 1) +



δ2 + 1 if s ≡ 0 (mod 6),

(5
3)(δ2 − δ + 1) if s ≡ 1 (mod 6),

(1
3)(4δ2 − 4δ + 7) if s ≡ 2 (mod 6),

δ2 − δ + 3 if s ≡ 3 (mod 6),

(1
3)(2δ2 + δ + 5) if s ≡ 4 (mod 6),

(1
3)(δ2 + 5δ + 1) if s ≡ 5 (mod 6).

It is easy to verify that |N≤2[V (P )]| ≥ s
3(δ2 − δ + 1) + 1

3(δ2 + 2δ + 2) in all cases, so the

lemma holds if s ≥ 6.

To check the remaining cases s < 6, we note that for s = 0 we have |N≤2(v0)| ≥ δ2 + 1,

for s ∈ {1, 2, 3} we have |N≤2(v0)∪N≤2(v1)| ≥ 2δ2− 2δ+ 2, for s = 4 we have |N≤2(v0)∪
N≤2(v1)∪{v4}| ≥ 2δ2−2δ+3, and for s = 5 we have |N≤2(v0)∪N≤2(v1)∪N [v5]| ≥ 2δ2−δ+3.

All of these terms are not less than s
3(δ2−δ+1)+ 1

3(δ2+2δ+2), and so the lemma holds.

For fixed δ we define a real function g by

g(x) :=
x

3
(δ2 − δ + 1) +

1

3
(δ2 + 2δ + 2). (2.3.1)

So the inequality in Lemma 2.3.3 becomes |N≤2(V (P ))| ≥ g(s). This inequality is used in

the proofs of all bounds on diameter and radius of graphs of girth at least 6 both in the

following section and next chapter.

Theorem 2.3.4. Let G be a connected graph of girth at least 6, order n and with minimum

degree δ ≥ 3, then

(i) diam(G) ≤ 3n

δ2 − δ + 1
− 1. (2.3.2)
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(ii) rad(G) ≤ max
{

18,
3n

2(δ2 − δ + 1)
+ 10

}
. (2.3.3)

Proof. Let v and w be two vertices at distance d := diam(G) and P : v0, v1, v2 . . . vd be a

shortest (v, w)-path where v0 = v, vd = w. It follows from Lemma 2.3.3 that

n ≥ |N≤2(V (P )| ≥ g(d) =
d

3
(δ2 − δ + 1) +

1

3
(δ2 + 2δ + 2).

Solving for d yields

d ≤ 3n

δ2 − δ + 1
− δ2 + 2δ + 2

δ2 − δ + 1
<

3n

δ2 − δ + 1
− 1,

as desired. This yields inequality (2.3.2). We now give a proof for (ii).

Let G be a graph of radius r, let u be a centre vertex of G and let v′ be a vertex at distance

r from v. For any w ∈ Ni(u), let w′ ∈ Ni−1(u) such that ww′ ∈ E(G) (1 ≤ i ≤ r). The

collection of the edges of the form {ww′ : w ∈ V (G)− {u}} defines a distance preserving

spanning tree, T ≤ G, from u. Recall from Definition 1.4.9 that a vertex v′′ ∈ V (G) is

related to v′ ∈ Nr(u) if there exists v′ ∈ V (T (u, v′)) ∩ N≥9 and v′′ ∈ V (T (u, v′′)) ∩ N≥9

such that dG(v′, v′′) ≤ 4. For v ∈ V (G), denote the (u, v)-path in T by T (u, v).

If rad(G) ≤ 18, then there is nothing to prove, hence we may assume that rad(G) ≥ 19.

Let u = v′0, v
′
1, v
′
2, . . . , v

′
r be the vertices of the path T (u, v′), and denote the segment

v′a, v
′
a+1, . . . , v

′
b by P ′a,b. Let u = v′′0 , v

′′
1 , v
′′
2 , . . . , v

′′
s be the vertices of the path T (u, v′′), where

s = d(u, v′′), and denote the segment v′′a , v
′′
a+1, . . . , v

′′
b by P ′′a,b. Consider the three paths

P ′0,4, P ′9,r and P ′′9,s. Since v′′ is not related to v′, the sets N≤2(V (P ′9,r)) and N≤2(V (P ′′9,s))

are disjoint. Both sets clearly do not share any vertices with N≤2(V (P ′0,4)). Hence we

have

n ≥ |N≤2(V (P ′0,4))|+ |N≤2(V (P ′9,r))|+ |N≤2(V (P ′′9,s))|.

Applying Lemma 2.3.3 to the three paths, in conjunction with the inequality s ≥ r − 9,

we obtain

n ≥ g(4) + g(r − 9) + g(s− 9)

≥ g(4) + g(r − 9) + g(r − 18)

=
2

3
r(δ2 − δ + 1)− 20

3
δ2 +

29

3
δ − 17

3
.

Solving for r now yields

r ≤ 3n

2(δ2 − δ + 1)
+

20δ2 − 29δ + 17

2(δ2 − δ + 1)
<

3n

2(δ2 − δ + 1)
+ 10.

as desired. This together with the assumption that r ≥ 18 yields inequality (2.3.3).
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The above bounds are sharp apart from the additive constant. We now describe the

construction of a graph due to [85] that we will make use of to demonstrate the sharpness

of our bound in Theorem 2.3.4.

Example 2.3.5. Let q be a prime power. Recall that GF (q)3 is the vector space of triples

of elements of the finite field GF (q). Let H∗q+1 be the graph whose vertices are the 1-

dimensional and 2-dimensional subspaces of GF (q)3 generated by w and {u, v} respectively

where w, u, v 6= 0. Let U be the set of all 1-dimensional subspaces of GF (q)3 and W be

the set of all 2-dimensional subspaces of GF (q)3. Two vertices, 〈w〉 ∈ U and 〈u, v〉 ∈ W
are said to be adjacent in H∗q+1 if and only if 〈w〉 is contained in 〈u, v〉.

Claim 2.3.6. The following are the properties of H∗q+1.

a) H∗q+1 is bipartite.

b) Each partite set has q2 + q + 1 vertices, and so H∗q+1 has 2(q2 + q + 1) vertices.

c) H∗q+1 contains no 4-cycle.

d) Every vertex of H∗q+1 has degree q + 1.

e) For any two vertices, u and v of H∗q+1, dH∗q+1
(u, v) ≤ 3.

f) If uv is an edge of H∗q+1 then, dH∗q+1−uv(u, v) ≥ 5.

Proof. a) From the description of H∗q+1, we have that the vertex sets of H∗q+1 can be parti-

tioned into two different sets, U and W , representing the 1-dimensional and 2-dimensional

subspaces of GF (q)3. Moreover, each vertex in U can only be adjacent to a vertex in W .

Hence, we conclude that H∗q+1 is bipartite.

b) Recall from Corollary 1.2.20 that there are (q2 + q + 1) 1-dimensional subspaces of

GF (q)3 and (q2 + q + 1) 2-dimensional subspaces of GF (q)3. Thus, each partite set (U ,

W ) of H∗q+1 has (q2+q+1) vertices since U and W are the 1-dimensional and 2-dimensional

subspaces of GF (q)3 generated by w and {u, v} respectively. Hence, H∗q+1 has 2(q2 +q+1)

vertices.

c) Let 〈x〉, 〈y〉 be any two vertices of H∗q+1 belonging to U . 〈x〉 and 〈y〉 are not adjacent

in H∗q+1 since they belong to the same partite set. 〈x〉 and 〈y〉 have exactly one common

neighbour. Since any two vertices in U have only one common neighbour. H∗q+1 contains

no 4-cycle.

d) Recall from Corollary 1.2.18(a) that every 1-dimensional subspace of GF (q)3 is con-

tained in q + 1 distinct 2-dimensional subspace of GF (q)3 and since the partite set, U , is

the set of all 1-dimensional subspaces of GF (q)3, we have that degH∗q+1
(〈u〉) = q + 1 for

every 〈u〉 ∈ U . By Corollary 1.2.18(b), each 2-dimensional subspace of GF (q)3 contains

q+ 1 distinct 1-dimensional subspaces of GF (q)3 and since the partite set, V , is the set of
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all 2-dimensional subspaces of GF (q)3, it follows immediately that degH∗q+1
(〈u, v〉) = q+ 1

for every 〈u, v〉 ∈ V . Hence each vertex of H∗q+1 has degree q + 1.

e) Let u and v be any two vertices of H∗q+1 and let u1, u2, . . . , uq+1 be the neighbours of

u. If u and v are adjacent in H∗q+1, then dH∗q+1
(u, v) = 1. If u and v belong to the same

partite set, then u and v are not adjacent in H∗q+1 and so they have a common neighbour

in H∗q+1. Hence, we can find (u, v)-path of length 2 in H∗q+1, that is, dH∗q+1
(u, v) = 2. If u

and v belong to different partite sets and are not adjacent in H∗q+1, then v and ui have a

common neighbour, w, since they belong to the same partite set and are not adjacent in

H∗q+1. Thus, there exists a (u, v)-path of length 3 in H∗q+1 and so dH∗q+1
(u, v) = 3. Hence

we conclude from the above cases that dH∗q+1
(u, v) ≥ 3 and diam(H∗q+1) = 3.

f) Clearly, the girth of H∗q+1 is at least 6 since H∗q+1 is a bipartite C4-free graph. If x and

y are adjacent vertices in H∗q+1, then since girth(H∗q+1) ≥ 6, we have that any (x, y)-path

together with the edge xy is a cycle of length at least 6 in H∗q+1. Thus, we have that any

(x, y)-path in H∗q+1 − uv is a path of length at least 5. Hence dH∗q+1−uv(x, y) ≥ 5.

From here onwards, we let u, v ∈ V (H∗q+1) be two fixed adjacent vertices. Let He be the

graph H∗q+1 − uv. By Claim 2.3.6 (f), dHe(x, y) ≥ 5. Moreover, He has minimum degree,

δ = q and |V (He)| = |V (H∗q+1)| = 2(q2 + q + 1).

Theorem 2.3.7. If δ − 1 is a prime power, then there exists an infinite family of graphs

G of girth at least 6, order n and minimum degree δ such that

(i) diam(G) ≥ 3n

δ2 − δ + 1
− 5, (2.3.4)

(ii) rad(G) ≥ 3n

2(δ2 − δ + 1)
− 5

2
. (2.3.5)

Proof. Let q = δ − 1 be a prime power. Let H1 and Hk be disjoint copies of H∗q+1

and let H2, H3, . . . ,Hk−1 disjoint isomorphic copies of He. From the disjoint union of

H1, H2, . . . Hk, we obtain the graphG∗k,δ by adding the edges v(t)u(t+1) for every (1 ≤ t < k)

where ut and vt are the vertices of Ht corresponding to the vertices u and v, respectively,

of H∗q+1 and He. Since G∗k,δ is the graph obtained from the union of both He and H∗q+1,

we have by Claim 2.3.6 (a and c) that G∗k,δ has girth 6. Moreover, since both H∗q+1 and

He has 2(q2 + q + 1) vertices, we have that there are 2k(q2 + q + 1) vertices in G∗k,δ. The

degree of vertices of G∗k,δ is either q + 1 or q + 2, hence the minimum degree of G∗k,δ is
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δ = q + 1. The order of G∗k,δ is

|V (G∗k,δ)| = 2k(q2 + q + 1)

= 2k[(δ − 1)2 + (δ − 1) + 1]

= 2k(δ2 − δ + 1)

By Claim 2.3.6(e), dH∗q+1
(x, y) ≤ 3 for any two vertices, x and y, of H∗q+1, and so we have

that diam(H1) = diam(Hk) = 3. By Claim 2.3.6(f) that dHe ≥ 5. Letting u1 be a vertex

of H1 with dH1(u1, v1) = 3, and vk a vertex of Hk with dHk(vk, uk) = 3, we have that the

diameter of G∗k,δ is

diam(G∗k,δ) ≥ d(u1, vk)

≥ diam(H1) + (k − 2).diam(He) + diam(Hk) + k − 1

≥ 3 + 5(k − 2) + 3 + k − 1

= 6k − 5

=
3n

δ2 − δ + 1
− 5.

H∗q+1 H∗q+1 − e H∗q+1 − e H∗q+1 − e H∗q+1

Figure 2.3: The graph G∗5,δ.

This concludes the proof of part (i) of Theorem (2.3.7). The proof for the part (ii) follows

from the fact that

rad(G∗k,δ) ≥
1

2
(diam(G∗k,δ)) ≥

3n

2(δ2 − δ + 1)
− 5

2
.

2.3.2 Bounds on Diameter and Radius of Connected (C4, C5)-Free Graphs.

In this subsection we show that very slightly weaker versions of the bound on the diameter

and radius of graphs of girth at least 6 in Theorem 2.3.4 hold. We note that if we relax the

conditions on the graph in Theorem 2.3.4 by allowing triangles, we obtain similar bounds

on the order of C4 free graphs in Lemma 2.3.8 and (C4, C5)-free graphs in Lemma 2.3.9.

The former is a very slightly more general version of the well-known lower bound on the

order of C4-free graphs of given minimum degree.
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Lemma 2.3.8. Let G be a C4-free graph and v a vertex of G. If every vertex in V (G)−{v}
has degree at least δ ≥ 3, then

|N≤2(v)| ≥ 1 + deg(v)(δ − 1) + εdeg(v).

where

εdeg(v) =

0 if εdeg(v) is even,

1 if εdeg(v) is odd.

Proof. There are deg(v) vertices at distance exactly 1 from v. Each vertex in N(v) is

adjacent to v and at most one vertex in N(v) since otherwise G would contain C4. If

deg(v) is odd, then at least one of the vertices in N(v) has no neighbour in N(v). Hence

all but εdeg(v) vertices in N(v) have at least δ− 2 neighbours in N2(v), and εdeg(v) vertices

in N(v) have at least δ−1 neighbours in N2(v). As above, the sets N(x)∩N2(v), x ∈ N(v),

are pairwise disjoint. Hence |N2(v)| ≥ deg(v)(δ − 2) + εdeg(v), and the lemma follows.

Lemma 2.3.9. Let G be a (C4, C5)-free graph of minimum degree δ ≥ 3. If u and v are

adjacent vertices of G, then

|N≤2(v) ∪N≤2(v)| ≥ 2δ2 − 5δ + 2 + 2εδ.

where

εδ =

0 if δ is even,

1 if δ is odd.

Proof. We consider two cases.

Case 1: N(u) ∩N(v) = ∅.

Consider G′ = G−uv. The sets N2
G′(u) and N2

G′(v) are disjoint, otherwise G would contain

a cycle C4 or C5 through uv. Clearly G′ is C4-free, and u and v have degree at least δ− 1.

By Lemma 2.3.8 we thus have |N2
G′(u)| ≥ 1+(δ−1)2+εδ−1 and |N2

G′(v)| ≥ 1+(δ−1)2+εδ−1.

Since N2
G(u) ∪N2

G(v) = N2
G′(u) ∪N2

G′(u) we obtain

|N2
G(u) ∪N2

G(v)| ≥ 2[(δ − 1)2 + 1 + εδ−1] ≥ 2δ2 − 5δ + 5 + 2εδ,

and the lemma follows.

Case 2: N(u) ∩N(v) 6= ∅.

Let w be a common neighbour of u and v. Then w is the only common neighbour since

otherwise G would contain C4. We first consider the second neighbourhood of u and v,

respectively, in G′ − w. As in Case 1, the sets N2
G′−w(u) and N2

G′−w(v) are disjoint, and

each has at least 1 + (δ− 2)(δ− 1) + εδ vertices. The set NG[w]− {u, v} is also contained
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in N2
G(u)∪N2

G(v), and it does not share any vertex with N2
G′−w(u)∪N2

G′−w(v), otherwise

G would contain a C4 or a C5. Hence

|N2
G(u) ∪N2

G(v)| ≥ 2[1 + (δ − 2)(δ − 1) + εδ] + (degG(w)− 1)

≥ 2δ2 − 5δ + 2 + 2εδ,

as desired.

If we now relax the condition in Theorem 2.3.3 that G has girth at least 6 to G being

(C4, C5)-free, then only marginally weaker bounds on the diameter and radius holds. We

omit the details of the proofs, which are very similar to the proofs of Lemma 2.3.3 and

Theorem 2.3.3.

Lemma 2.3.10. Let G be a connected (C4, C5)-free graph of order n and minimum degree

δ ≥ 3. If P : x0, x1, . . . , xs is a shortest (x0, xs)-path in G, then

|N≤2[V (P )]| ≥ s

6
(2δ2 − 5δ + 5 + 2εδ) +

1

3
δ2 − 7

6
δ +

5

6
+

1

3
εδ. (2.3.6)

Proof. The proof is analogous to that of Lemma 2.3.3. Recall that N≤2[V (P )], is the set

of those vertices of G that are within distance at most 2 to a vertex of P .

Let P := x0, x1, x2, . . . , xs−1, xs and consider the set N≤2[V (P )]. Recall from Lemma 2.3.3

that for s ≥ 6

|N≤2[V (P )]| ≥
b s−6

6
c∑

i=0

|N≤2(x6i) ∪N≤2(x6i+1)|

+



|N≤2(xs)| if s ≡ 0(mod 6),

|N≤2(xs−1) ∪N≤2(xs)| if s ≡ 1(mod 6),

|{xs−4} ∪N≤2(xs−1) ∪N≤2(xs)| if s ≡ 2(mod 6),

|{xs−5, xs−4} ∪N≤2(xs−1) ∪N≤2(xs)| if s ≡ 3(mod 6),

|N≤1(xs−5) ∪N≤2(xs−1) ∪N≤2(xs)| if s ≡ 4(mod 6),

|N≤1(xs−6) ∪N≤1(xs−5) ∪N≤2(xs−1) ∪N≤2(xs)| if s ≡ 5(mod 6).

Furthermore, we have by Lemma 2.3.8 that |N≤2(v)| ≥ δ2 − δ + 1 + εδ for any u ∈ V (G)

since deg(u) ≥ δ, and by Lemma 2.3.9 that |N≤2(u) ∪ N≤2(v)| ≥ 2δ2 − 5δ + 5 + 2εδ for

any uv ∈ E(G).
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Hence,

|N≤2[V (P )]| ≥ (1+bs− 6

6
c)(2δ2−5δ+5+2εδ)+



δ2 − δ + 1 + εδ if s ≡ 0 (mod 6),

2δ2 − 5δ + 5 + 2εδ if s ≡ 1 (mod 6),

2δ2 − 5δ + 6 + 2εδ if s ≡ 2 (mod 6),

2δ2 − 5δ + 7 + 2εδ if s ≡ 3 (mod 6),

2δ2 − 4δ + 6 + 2εδ if s ≡ 4 (mod 6),

2δ2 − 3δ + 5 + 2εδ if s ≡ 5 (mod 6).

This implies that

|N≤2[V (P )]| ≥ (
s

6
)(2δ2−5δ+5+2εδ)+



δ2 − δ + 1 + εδ if s ≡ 0 (mod 6),

(1
6)(10δ2 − 25δ + 25 + 10εδ) if s ≡ 1 (mod 6),

(1
3)(4δ2 − 10δ + 13 + 4εδ) if s ≡ 2 (mod 6),

(1
2)(2δ2 − 5δ + 9 + 2εδ) if s ≡ 3 (mod 6),

(1
3)(2δ2 − 2δ + 8 + 2εδ) if s ≡ 4 (mod 6),

(1
6)(2δ2 + 7δ + 5 + 2εδ) if s ≡ 5 (mod 6).

It is easy to verify that |N≤2[V (P )]| ≥ s
6(2δ2 − 5δ + 5 + 2εδ) + 1

3δ
2 − 7

6δ + 5
6 + 1

3εδin all

cases, so the lemma holds if s ≥ 6.

To check the remaining cases s < 6, we note that for s = 0 we have |N≤2(v0)| ≥ δ2 −
δ + 1 + εδ, for s ∈ {1, 2, 3} we have |N≤2(v0) ∪ N≤2(v1)| ≥ 2δ2 − 5δ + 5 + 2εδ, for

s = 4 we have |N≤2(v0) ∪ N≤2(v1) ∪ {v4}| ≥ 2δ2 − 5δ + 6 + 2εδ, and for s = 5 we have

|N≤2(v0) ∪ N≤2(v1) ∪ N [v5]| ≥ 2δ2 − 4δ + 6 + 2εδ. All of these terms are not less than
s
6(2δ2 − 5δ + 5 + 2εδ) + 1

3δ
2 − 7

6δ + 5
6 + 1

3εδ, and so the lemma holds.

From now on, we will define a function h(x), as

h(x) :=
s

6
(2δ2 − 5δ + 5 + 2εδ) +

1

3
δ2 − 7

6
δ +

5

6
+

1

3
εδ. (2.3.7)

Theorem 2.3.11. Let G be a connected (C4, C5)-free graph with n vertices and with

minimum degree δ ≥ 3. Then

diam(G) ≤ 6n

2δ2 − 5δ + 5 + 2εδ
− 1, (2.3.8)

rad(G) ≤ max
{

18,
3n

2δ2 − 5δ + 5 + 2εδ
+ 10

}
, (2.3.9)

where εδ takes on the value of 0 or 1 depending on whether δ is even or odd.

Proof. Let v and w be two vertices at distance d := diam(G) and P : v0, v1, v2 . . . vd be a
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shortest (v, w)-path where v0 = v, vd = w. It follows from Lemma 2.3.10 that

n ≥ |N≤2(V (P ))| ≥ h(d) =
d

6
(2δ2 − 5δ + 5 + 2εδ) +

1

3
δ2 − 7

6
δ +

5

6
+

1

3
εδ

Solving for d,we have

d ≤ 6n

2δ2 − 5δ + 5 + 2εδ
− 2δ2 − 7δ + 5 + 2εδ

2(δ2 − 5
2δ + 5

2 + εδ)
<

6n

2δ2 − 5δ + 5 + 2εδ
− 1, (2.3.10)

which yields inequality (2.3.8) as desired.

We now give a proof for the radius, which is analogous to the proof of Theorem 2.3.4(ii).

If rad(G) ≤ 18, then there is nothing to prove, hence we may assume that rad(G) ≥ 19.

Let u, r, T , v′ and v′′ be as defined in Theorem 2.3.4(ii). Let u = v′0, v
′
1, v
′
2, . . . , v

′
r be

the vertices of the path T (u, v′), and denote the segment v′a, v
′
a+1, . . . , v

′
b by P ′a,b. Let

u = v′′0 , v
′′
1 , v
′′
2 , . . . , v

′′
s be the vertices of the path T (u, v′′), where s = (d(u, v′′), and denote

the segment v′′a , v
′′
a+1, . . . , v

′′
b by P ′′a,b. Consider the three paths P ′0,4, P ′9,r and P ′′9,s. Since

v′′ is not related to v′, the sets N≤2(V (P ′9,r)) and N≤2(V (P ′′9,s)) are disjoint. Both sets

clearly do not share any vertices with N≤2(V (P ′0,4)). Hence we have

n ≥ |N≤2(V (P ′0,4))|+ |N≤2(V (P ′9,r))|+ |N≤2(V (P ′′9,s))|.

Applying Lemma 2.3.10 to the three paths, in conjunction with the inequality s ≥ r − 9,

we obtain

n ≥ h(4) + h(r − 9) + h(s− 9)

≥ h(4) + h(r − 9) + h(r − 18).

Solving for r, we have

n ≥ r

3
(2δ2 − 5δ + 5 + 2εδ)−

23

6
(2δ2 − 5δ + 5 + 2εδ) + δ2 − 7

2
δ +

5

2
+ εδ,

which now yields

r ≤ 3n

2δ2 − 5δ + 5 + 2εδ
+

20δ2 − 47δ + 50 + 20εδ
2δ2 − 5δ + 5 + 2εδ

<
3n

2δ2 − 5δ + 5 + 2εδ
+ 10, (2.3.11)

as desired.

We do not know if the bound in Theorem 2.3.11 is sharp. The graph G∗δ,k shows that the

coefficient 3
δ2− 5

2
δ+ 5

2
+εδ

of n is at least close to being best possible if δ is large. Indeed, the

ratio between the coefficients of n in the bound in Theorem 2.3.11 and in Theorem 2.3.7

tends to 1 as δ tends to infinity.



Chapter 3

Diameter, Radius, Maximum Degree and

Minimum Degree

3.1 Introduction

In the previous chapter, we gave bounds on the diameter and radius of graph of girth at

least 6 and (C4, C5)-free graphs of given order and minimum degree. In our sharpness

example, we saw that the degree of each vertex is close to the minimum degree, this

suggests that our bounds can be improved a little further if we have a vertex of large

degree, say ∆(G) = cn for some c ∈ R with 0 < c < 1. Herein, we present upper bounds

on the diameter and radius of graphs of girth at least 6 and (C4, C5)-free graphs taken

into consideration the order of the graph n, minimum degree δ and maximum degree ∆.

We also present a construction to show that the bound is best possible in a sense specified

later.

3.2 Main Results

3.2.1 Generalised Cages

In this section we obtain a bound on the cardinality of the third neighbourhood of a vertex

of large degree in a graph of girth at least 6. As a corollary, we obtain a lower bound on

the order of a graph of girth at least 6 whose minimum degree and maximum degree are

prescribed.

This leads us to a natural generalisation of the classical problem in the theory of cages.

Given positive integers δ ≥ 2 and g ≥ 3, a (δ, g)-cage is a δ-regular graph of girth g that

has minimum order among such graphs. The classical cage problem is to find, for given δ

and g, to determine a (δ, g)-cage and its order. See [54, 96] for a survey on this topic.

Our problem is closely related to a problem introduced by Boben, Jajcay and Pisanski

[11]: Given a positive integer N , a nonempty set A = {k1, k2, . . . , kt} ⊆ N with and a

possibly empty set B = {g1, g2, . . . , gs} ⊆ N with 3 ≤ gi < N for i = 1, 2, . . . , s. A graph

G is an (A,B,N)-graph if its degree set equals A and the set of cycle lengths less than N

occurring in G equals B. (Note that for this definition it is irrelevant if G has cycles of

lengths N or more.) In [11] it was shown that for every choice of N , A and B such graphs

exist if A 6= {1}. The minimum order of an (A,B,N)-graph is denoted by n(A,B,N),

54
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and an (A,B,N)-graph of order n(A,B,N) is an (A,B,N)-cage. The generalisation of

the cage problem introduced in [11] is to determine, for given A, B and N , the value

n(A,B,N) and an (A,B,N)-cage.

In our generalisation of the cage problem, only the minimum degree and maximum degree

are prescribed, but not the degree set, so it is not a special case of the problem in [11].

However, it follows from the above-mentioned existence result in [11], for example by

choosing A = {δ,∆}, B = ∅ and N = 6, that a graph of minimum degree δ, maximum

degree ∆ and girth at least 6 exists for every given values of δ and ∆ with ∆ ≥ δ ≥ 2.

Clearly, the minimum order of such a graph is minA⊆[δ+1,∆−1] n({δ,∆} ∪ A, ∅, 6), where

[δ + 1,∆− 1] is the set {δ + 1, δ + 2, . . . ,∆− 1}.

Lemma 3.2.1. Let G be a graph of girth at least 6, minimum degree δ and maximum

degree ∆. If y is a vertex of degree ∆, then

|N≤3(y)| ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
. (3.2.1)

Proof. Fix y ∈ Ni. We have by Definition 1.1.39 that |N≤3(y)| = |N≤2(y)|+ |N3(y)|. Since

by Lemma 2.3.1, |N≤2(y)| ≥ 1 + deg(y)δ = 1 + ∆δ, it suffices to show that

|N3(y)| ≥ 1

2
+ (δ − 1)

√
∆(δ − 2).

To achieve this, we now consider the sets, N2(y) and N3(y). Since G has no cycles of

length less than 6, every vertex in N(y) has all its neighbours except one in N2(y). Hence,

the sets N(v)/{y}, v ∈ N(y) are disjoint, and so we have that

|N2(u)| =
∑

v∈N(y)

(degG(v)− 1) ≥ (δ − 1)deg(y) = ∆(δ − 1). (3.2.2)

For every u ∈ N2(y), the number of 2-stars centered at u with leaves in N3(y) is
(

degG(u)−1
2

)
.

Hence, denoting by S2 the number of 2-stars with centre in N2 and leaves in N3, we have,

S2 =
∑

u∈N2(y)

(
degG(u)− 1

2

)
≥

∑
u∈N2(y)

(
δ − 1

2

)
, (3.2.3)

Using the result in (3.2.2), we conclude that

S2 ≥ ∆(δ − 1)

(
δ − 1

2

)
. (3.2.4)

Furthermore, no two 2−stars with leaves in N3(y) have the same two leaves. Otherwise,

G would contain a C4. Hence, for every set of 2 vertices in N3(y), there is at most one
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2−star having this set as its set of leaves. Thus,

S2 ≤
(
|N3(y)|

2

)
. (3.2.5)

Comparing (3.2.4) and (3.2.5), we have that

∆(δ − 1)

(
δ − 1

2

)
≤ S2 ≤

(
|N3(y)|

2

)
,

Thus, (
|N3(y)|

2

)
≥ ∆(δ − 1)

(
δ − 1

2

)
. (3.2.6)

By letting t := |N3(y)|, we have from (3.2.6) that t2 − t ≥ ∆(δ − 1)2(δ − 2). And

so, t2 − t − ∆(δ − 1)2(δ − 2) ≥ 0. Solving the inequality, we obtain that t ≥ 1
2 +√

1
4 + ∆(δ − 1)2(δ − 2) > 1

2 + (δ − 1)
√

∆(δ − 2). Thus,

|N3(y)| ≥ 1

2
+ (δ − 1)

√
∆(δ − 2). (3.2.7)

Hence, we conclude that

|N≤3(y)| = |N≤2(x)|+ |N3(y)| ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
.

Let n(δ,∆, g) be the minimum order of a connected graph of girth at least 6 with minimum

degree δ and maximum degree ∆ and girth g. Adding the bounds on |N≤2(v)| in Lemma

2.3.1 and |N3(v)| in Lemma 3.2.1, where y is a vertex of maximum degree, we obtain the

following corollary on n(δ,∆, 6).

Corollary 3.2.2. Given δ,∆ ∈ N with 3 ≤ δ ≤ ∆. Then

n(δ,∆, 6) ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
.

Rephrasing this result in the terminology of [11] we obtain the following corollary.

Corollary 3.2.3. Let A ⊆ N be nonempty and finite. If min(A) ≥ 3, then

n(A, ∅, 6) ≥ max(A) min(A) + (min(A)− 1)
√

max(A)(min(A)− 2) +
3

2
.

We also have a similar, only slightly weaker lower bound on the number of vertices within

distance three of a vertex of maximum degree in a (C4, C5)-free graph.

Lemma 3.2.4. Let G be a (C4, C5)-free graph of minimum degree δ and maximum degree
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∆. If v is a vertex of degree ∆, then

|N≤3(v)| ≥ ∆(δ − 1) + (δ − 2)
√

∆(δ − 3) +
3

2
.

Proof. Let y be a vertex of degree ∆. By Lemma 2.2.1 we have

|N≤2(y)| ≥ ∆(δ − 1) + 1. (3.2.8)

In order to bound |N3(y)| from below we count the number of unordered pairs of vertices

in N3(y). Clearly, there are exactly
(|N3(y)|

2

)
such pairs. On the other hand, each vertex

w ∈ N2(y) has at least deg(w) − 2 neighbours in N3(y). Indeed, if w1 ∈ N1(y) is the

unique common neighbour of w and v, then the only vertices in N≤2(y) to which w can

be adjacent are w1 and one other neighbour of w1, otherwise it is easy to see that w and

v lie on a 4-cycle or a 5-cycle, a contradiction. Hence there are at least
(

deg(w)−2
2

)
pairs

of vertices of N3(y) that are both adjacent to w. Since G is C4-free, no two vertices of

N2(y) have a common pair of neighbours in N3(y). Hence the number of pairs of vertices

in N3(y) is at least
∑

w∈N2(y)

(
deg(w)−2

2

)
. Since each vertex in N2(y) has degree at least δ,

this implies

|N2(y)|
(
δ − 2

2

)
≤
(
|N3(y)|

2

)
.

Since |N2(y)| ≥ ∆(δ − 2) by Lemma 2.2.1, we thus have

1

2
∆(δ − 2)2(δ − 3) ≤ 1

2
|N3(y)|(|N3(y)| − 1).

Solving for N3(y) yields |N3(y)| ≥ 1
2 +

√
1
4 + ∆(δ − 2)2(δ − 3) > 1

2 + (δ − 2)
√

∆(δ − 3).

This, in conjunction with (3.2.8), yields the lemma.

Lemma 3.2.4 yields a lower bound on the order of a (C4, C5)-free graph with given minimum

degree and maximum degree, which we state using the notation of [11].

Corollary 3.2.5. Let A ⊆ N be nonempty and finite. If min(A) ≥ 3, then

n(A, {3}, 6) ≥ max(A)(min(A)− 1) + (min(A)− 2)
√

max(A)(min(A)− 3) +
3

2
.

3.2.2 Graph of Girth 6 with Minimum Degree and Maximum Degree

In this section we construct a graph to show that the bound in Corollary 3.2.2 is close to

best possible.

We start by showing that for all δ for which δ − 1 is a prime power, there exist infinitely



Section 3.2. Main Results Page 58

many values of ∆ for which

∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
≤ n(δ,∆, 6) ≤ δ∆ + (δ + 1)

√
∆(δ − 2) + 2,

so the bound in Corollary 3.2.2 is close to being best possible in the sense that the second

term, (δ − 1)
√

∆(δ − 2), is of the right order of magnitude.

Our construction is based on the following graph F ∗, constructed first by [85].

Example 3.2.6. Let q be a prime power. Recall that GF (q)n is an n-dimensional vector

space over the finite field GF (q). Let X be the set of all 1-dimensional subspaces of GF (q)n

and Y be the set of all 2-dimensional subspaces of GF (q)n. Let F ∗ be the graph with vertex

set X ∪ Y , where two vertices, 〈w〉 ∈ X and 〈u, v〉 ∈ Y are adjacent if and only if 〈w〉 is

contained in 〈u, v〉.

Claim 3.2.7. The following are the properties of F ∗.

a) F ∗ is bipartite.

b) F ∗ has (qn−1)(qn+q3−2q)
(q2−1)(q2−q) vertices.

c) F ∗ contains no 4-cycle.

d) Each vertex in X has degree qn−2 + qn−3 + . . .+ q + 1. Each vertex in Y has degree

q + 1.

e) diam(F ∗) ≥ 4 if |F ∗| > 3.

Proof. a) From the definition of F ∗, we have that the vertex set of F ∗ can be partitioned

into two different sets, X and Y , representing the 1-dimensional and 2-dimensional sub-

spaces of GF (q)n. Moreover, each vertex in X can only be adjacent to a vertex in Y .

Hence, we conclude that F ∗ is bipartite.

b) Recall from Claim 1.2.19 that there are (qn−1)(qn−q)(qn−q2)...(qn−qk−1)
(qk−1)(qk−q)(qk−q2)...(qk−qk−1)

k-dimensional

subspaces of GF (q)n. Hence, we have (qn−1)
(q−1) 1-dimensional subspaces of GF (q)n and

(qn−1)(qn−q)
(q2−1)(q2−q) 2-dimensional subspaces of GF (q)n. Since F ∗ consists of both 1-dimensional

and 2-dimensional subspaces of GF (q)n, we have that

|F ∗| = |X|+ |Y | = (qn − 1)

(q − 1)
+

(qn − 1)(qn − q)
(q2 − 1)(q2 − q)

=
(qn − 1)(qn + q3 − 2q)

(q2 − 1)(q2 − q)
.

c) Let 〈u〉, 〈v〉 be any two vertices of F ∗ belonging to X. 〈u〉 and 〈v〉 are not adjacent

in F ∗ since they belong to the same partite set. 〈u〉 and 〈v〉 have exactly one common

neighbour. Since any two vertices in X have only one common neighbour. F ∗ contains no

4-cycle.
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d) Recall from Claim 1.2.17(a) that every 1-dimensional subspace of GF (q)n is contained

in qn−2 + qn−3 + . . . + q + 1 distinct 2-dimensional subspaces of GF (q)n and since the

partite set X is the set of all 1-dimensional subspaces of GF (q)n, we have that for every

〈w〉 ∈ X,
degF ∗(〈w〉) = qn−2 + qn−3 + . . .+ q + 1.

By Claim 1.2.17(b), each 2-dimensional subspace of GF (q)n contains q + 1 distinct 1-

dimensional subspace of GF (q)n and since the partite set, Y , is the set of all 2-dimensional

subspaces of GF (q)n, it follows immediately that for every 〈u, v〉 ∈ Y, degF ∗(〈u, v〉) = q+1.

e) Let u and v be any two vertices of F ∗ and let u1, u2, . . . , uq+1 be the neighbours of u..

If u and v are adjacent in F ∗, then dF ∗(u, v) = 1. If u and v belong to different partite

sets and are not adjacent in F ∗, then v and ui have a common neighbour, w, since they

belong to the same partite set and are not adjacent in F ∗. Thus, there exists a (u, v)-path

of length 3 in F ∗ and so dF ∗(u, v) = 3. If u and v belong to the same partite set, then

u and v are not adjacent in F ∗. Clearly u, v ∈ X or u, v ∈ Y have a common neighbour

in F ∗ if u, v have a nontrivial intersection. Thus, we can find a (u, v)-path of length 2

in F ∗, that is, dF ∗(u, v) = 2. For u, v ∈ Y , if their intersection is trivial then u and

v have no common neighbour and thus, dF ∗(u, v) 6= 2. It therefore follows immediately

that dF ∗(u, v) ≥ 4 since the distance between two vertices that represent 2-dimensional

subspaces that intersect only trivially must be even. Hence we conclude from the above

cases that dF ∗(u, v) ≥ 4 and so diam(F ∗) ≥ 4.

Lemma 3.2.8. Let q,m ∈ N with q a prime power and m ≥ 7. Then the set of 2-

dimensional subspaces of GF (q)m can be partitioned into parts U1, U2, . . . , Ut, where t =
(qm−1)(qm−1−1)

(q2−1)(q−1)q
− 1

q , |Ui| = q for all i ∈ {1, 2, . . . , t − 1}, and |U1| = q + 1, such that any

two 2-dimensional subspaces contained in the same part Ui intersect trivially.

Proof. We construct an auxiliary graph H whose vertices are the 2-dimensional subspaces

of GF (q)m, and in which two vertices are adjacent if, as subspaces, their intersection is

non-trivial. Define t = (qm−1)(qm−1−1)
(q2−1)(q−1)q

− 1
q . In order to prove the lemma it suffices to

prove that V (H) can be partitioned into independent sets U1, U2, . . . , Ut of the desired

cardinalities.

We first give an expression for the order of H. Clearly, n(H) = |V2| = (qm−1)(qm−1−1)
(q2−1)(q−1)

.

Simple calculations show that this equals

(qm−2 + qm−4 + qm−6 + · · ·+ q2 + 1)(qm−2 + qm−3 + qm−4 + · · ·+ 1) if m is even,

(qm−3 + qm−5 + qm−7 + · · ·+ q2 + 1)(qm−1 + qm−2 + qm−3 + · · ·+ 1) if m is odd.

We now determine the degrees of the vertices in H. Fix a 2-dimensional subspace U .

Choosing a non-zero vector a1 ∈ U and a non-zero vector b1 ∈ GF (q)m − U , we obtain

the 2-dimensional subspace W = 〈a1, b1〉 that has a nontrivial intersection with U . There
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are (q2 − 1)(qm − q2) ways to choose (a1, b1), and clearly every 2-dimensional subspace

that intersects U nontrivially can be obtained in this way. Since W shares q − 1 non-zero

vectors with U , and q2 − q non-zero vectors with GF (q)m − U , there are (q − 1)(q2 − q)
choices for the pair (a1, b1) that yield the same subspace W . Hence there are (q2−1)(qm−q2)

(q−1)(q2−q)
distinct 2-dimensional subspaces that have a non-trivial intersection with U . Since H is

clearly regular, every vertex has degree (q2−1)(qm−q2)
(q−1)(q2−q) .

We next prove that V (H) can be partitioned into t−1 sets, U1, U2, . . . , Ut−1 with q vertices

each, and one set Ut with q+1 vertices. Multiplying out the terms in the above expression

for n(H) we see that n(H) ≡ 1 (mod q). Hence there exists a partition of V (H) into

sets where all but one set have cardinality q and the remaining set has cardinality q + 1.

Clearly the number of sets in such a partition is |V2|−1
q , which equals t.

Among all such partitions, choose one for which
∑t

j=1m(G[Uj ]) is minimum. We claim

that
∑t

j=1m(G[Uj ]) = 0. Suppose not. Then there exists a set Ui containing two adja-

cent vertices vi and wi. Since each vertex has degree (q2−1)(qm−q2)
(q−1)(q2−q) , we have |N(Ui)| ≤

|Ui| (q
2−1)(qm−q2)
(q−1)(q2−q) ≤ (q + 1) (q2−1)(qm−q2)

(q−1)(q2−q) . It is easy to check that this is less than t for

m ≥ 7. Hence there exists a set U` not containing any neighbour of a vertex in Ui. Choose

a vertex v` ∈ U`, and replace in Ui vertex vi by v`, and replace in U` vertex v` by vi. Then

clearly
∑t

j=1m(G[Uj ]) has decreased, a contradiction to our choice of the sets U1, . . . , Ut.

Hence U1, U2, . . . , Ut are independent sets of H, and the lemma follows.

Claim 3.2.9. Let q,m ∈ N with q a prime power and m ≥ 4. Let Y be the set of all 2-

dimensional subspaces of the vector space GF (q)m. If δ = q+1 and ∆ = (qm−1)(qm−q)
q(q2−1)(q2−q) −

1
q ,

then

|Y | ≤ (δ + 1)
√

∆(δ − 2). (3.2.9)

Proof. By Claim 1.2.19, |Y |
q
√

∆(q−1)
=

qm−1
q−1

q
√

∆(q−1)
and since ∆ = (qm−1)(qm−q)

q(q2−1)(q2−q) −
1
q , we have

that

qm−1
q−1

q
√

∆(q − 1)
=

qm − 1

q − 1
· 1

q
·

√
q(q − 1)(q + 1)

(qm − 1)(qm−1 − 1)− (q2 − 1)(q − 1)
,

=

√
(qm − 1)2

q2(q − 1)2
· q(q − 1)(q + 1)

(qm − 1)(qm−1 − 1)− (q2 − 1)(q − 1)
,

=

√
(q2m − 2qm + 1)(q + 1)

(q2 − q)(q2m−1 − qm − qm−1 − q3 + q2 + q)
,

=

√
1 +

2q2m + qm+2 − 2qm+1 − 3qm + q5 − 2q4 + q2 + q + 1

q2m+1 − q2m − qm+2 + qm − q5 + 2q4 − q2
,

Since −2qm+1 − 3qm + q5 − 2q4 + q2 + q+ 1 < 0 for m ≥ 5 and qm − q5 + 2q4 − q2 > 0 for
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m ≥ 5, we have that

qm−1
q−1

q
√

∆(q − 1)
≤

√
1 +

2q2m + qm+2

q2m+1 − q2m − qm+2
,

=

√
1 +

2qm−2 + 1

qm−1 − qm−2 − 1
,

subclaim:

1. 2qm−2+1
qm−1−qm−2−1

< 4
q .

This is true if and only if (2qm−2 +1)q < 4(qm−1−qm−2−1)⇔ 0 < 2qm−1−4qm−2−
q − 4⇔ 0 ≤ (2qm−2 − 1)(q − 2)− 6.

2.
√

1 + x ≤ 1 + x
2 for x ∈ R.

This is true since
√

1 + x− 1 = (
√

1+x−1)(
√

1+x+1)√
1+x+1

= x√
1+x+1

≤ x
2 .

Using the above facts established above, we have that

qm−1
q−1

q
√

∆(q − 1)
<

√
1 +

2qm−2 + 1

qm−1 − qm−2 − 1
,

≤
√

1 +
4

q
,

≤ 1 +
2

q
,

Hence,

|Y | = qm − 1

q − 1
≤ q
√

∆(q − 1)
(

1 +
2

q

)
. (3.2.10)

Substituting q = δ − 1 in (3.2.10) yields inequality (3.2.9) as desired.

Theorem 3.2.10. Let δ,m ∈ N such that q := δ − 1 is a prime power and m ≥ 7.

Then there exist a graph Fq,m of girth 6, minimum degree at least δ, maximum degree

∆ = (qm−1)(qm−1−1)
(q2−1)(q2−q) − 1

q and order n(Fq,m), where

n(Fq,m) ≤ 2 + δ∆ + (δ + 1)
√

∆(δ − 2). (3.2.11)

Proof. Let δ be fixed such that q := δ − 1 is a prime power. For m ∈ N with m ≥ 7

consider the graph F ∗ with partite sets X and Y defined above. By Lemma 3.2.8 there

exists a partition of Y into t sets U1, U2, . . . , Ut of cardinality q or q + 1, where t =
(qm−1)(qm−1−1)

(q2−1)(q−1)q
− 1

q , such that two vertices in Y belonging to the same set Ui, as subspaces,

intersect trivially and thus have no common neighbour in X. Add vertices u1, u2, . . . , ut
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to F ∗ and join ui to all vertices in Ui for all i ∈ {1, 2, . . . , t}. Finally, add a vertex z and

join it to u1, u2, . . . , ut. Denote the obtained graph by Fq,m.

U1

Ut−1

Ut

Y X

F ∗z

u1

ut−1

ut

·
·
·

·
·
·

·
·
·

Figure 3.1: The graph Fq,m.

Clearly, Fq,m is bipartite with partite sets X ∪ {u1, u2, . . . , ut} and Y ∪ {z}. We have

|Y | = tq + 1. The degrees of the vertices in X and Y in Fq,m equal qm−1−1
q−1 and q + 2,

respectively, while deg(ui) = q + 1 for i = 1, 2, . . . , t − 1 and q + 2 for i = t. Finally,

deg(z) = t = (qm−1)(qm−1−1)
(q2−1)(q−1)q

− 1
q . Hence δ(Gq,m) = q+1 and ∆(Gq,m) = (qm−1)(qm−1−1)

(q2−1)(q−1)q
− 1
q .

We now show that Fq,m has girth 6. Clearly, Fq,m contains a cycle of length 6 through

z and a vertex in X. Hence we need to show that Fq,m does not contain a shorter cycle.

Since Fq,m is bipartite, it suffices to show that it is C4-free. Suppose to the contrary that

Fq,m contains a cycle C of length 4.

Since Fq,m[X ∪ Y ] = F ∗, and since F ∗ is C4-free, it follows that V (C) is not contained

in X ∪ Y , and so C contains a vertex in {u1, u2, . . . , ut}. On the other hand, C cannot

have two vertices in {u1, . . . , ut} since by the construction of Fq,m, any two vertices of

{u1, . . . , ut} have only z as a common neighbour. Hence C contains exactly one vertex,

ui say, of {u1, . . . , ut}, and z is not on C. Hence C contains ui, two neighbours of ui in

Ui, and a fourth vertex, which is in X. But by Lemma 3.2.8 no two vertices in Ui have,

as subspaces of GF (q)m, a nontrivial intersection, which means that no two vertices in Ui

have a common neighbour in X. This contradiction shows that no such cycle C exists,

and Fq,m is C4-free.

We now determine the order of Fq,m. Let ∆ = ∆(Fq,m). Since ∆(Fq,m) = t = |Y |−1
q =
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|Y |−1
δ−1 , we have t+ |Y | = δ∆ + 1, and thus

n(Fq,m) = 1 + t+ |Y |+ |X| = 2 + δ∆ + |X|.

Applying Claim 3.2.9, we have that

n(Fq,m) ≤ 2 + δ∆ + (δ + 1)
√

∆(δ − 2),

Thus the inequality (3.2.11) holds, completing the proof of the theorem.

3.2.3 Bounds on Diameter and Radius of Graphs of Girth at least 6 and

(C4, C5)-Free Graphs

In this section we give improved bounds on the diameter of graphs of girth at least 6 and

(C4, C5)-free graphs in terms of order, minimum degree and maximum degree.

Theorem 3.2.11. Let G be a connected graph of girth at least 6, order n, minimum degree

δ ≥ 3 and maximum degree ∆. Then

(i) diam(G) ≤ 3n− 3∆δ

δ2 − δ + 1
−

3(δ − 1)
√

∆(δ − 2)

δ2 − δ + 1
+ 11, (3.2.12)

(ii) rad(G) ≤ max
{

28,
3n− 3∆δ

2(δ2 − δ + 1)
−

3(δ − 1)
√

∆(δ − 2)

2(δ2 − δ + 1)
+ 22

}
. (3.2.13)

Proof. Let d, v, w, P be as in the proof of Theorem 2.3.4. Let y be a vertex of maximum

degree in G. We have by Lemma 3.2.1, that |N≤3(y)| ≥ ∆δ + (δ − 1)
√

∆(δ − 2) + 3
2 .

Let P : v0, v1, . . . , vd, where v0 = v and vd = w. Let z be a vertex of degree ∆ and let

j = dG(v, z). Then the only vertices x of P for which possibly N≤2(x) ∩N≤3(z) 6= ∅ are

the vertices in {vi ∈ V (P ) | |j − i| ≤ 5}. We consider two cases, depending on the value

of j.

Case 1: 6 ≤ j ≤ d− 6.

Define the subpaths P1 and P2 of P by

P1 : v0, v1, . . . , vj−6, P2 : vj+6, vj+7, . . . , vd.

The sets N≤2(V (P1)), N≤2(V (P2)) and N≤3(z) are disjoint. Applying Lemmas 2.3.3 and
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3.2.1 we obtain

n ≥ |N≤2(V (P1))|+ |N≤2(V (P2))|+ |N≤3(z)|,

≥ g(j − 6) + g(d− j − 6) + ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
,

=
d

3
(δ2 − δ + 1)− 10

3
δ2 +

16

3
δ − 7

6
+ ∆δ + (δ − 1)

√
∆(δ − 2). (3.2.14)

Solving for d now yields

d ≤ 3n− 3∆δ

δ2 − δ + 1
−

3(δ − 1)
√

∆(δ − 2)

δ2 − δ + 1
+

10δ2 − 16δ + 7/2

δ2 − δ + 1

<
3n− 3∆δ

δ2 − δ + 1
−

3(δ − 1)
√

∆(δ − 2)

δ2 − δ + 1
+ 10,

as desired.

Case 2: 0 ≤ j ≤ 5 or d− 5 ≤ j ≤ d.

If 0 ≤ j ≤ 5, then define the subpath P1 of P by P1 : v12, v13, . . . , vd. In the other case,

d− 5 ≤ j ≤ d, we choose P1 : v0, v1, . . . , vd−12. In both cases N≤3(z) and N≤2(V (P1)) are

disjoint. Now the same calculations as in Case 1 yields

n ≥ |N≤2(V (P1))|+ |N≤3(z)|,

≥ g(d− 12) + ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
,

=
d

3
(δ2 − δ + 1)− 11

3
δ2 +

14

3
δ − 11

6
+ ∆δ + (δ − 1)

√
∆(δ − 2). (3.2.15)

and solving for d now yields the desired bound. Hence, (3.2.12) holds.

We now give a proof for the radius

If rad(G) ≤ 28, then there is nothing to prove, hence we may assume that rad(G) ≥ 29.

Let u, r, T , v′, v′′, P ′a,b and P ′′a,b be as in the proof of Theorem 2.3.4.

Since v′ and v′′ are not related, the sets N≤2(V (P ′a,b)) and N≤2(V (P ′′c,d)) are disjoint for

all a, b, c, d with 9 ≤ a ≤ b ≤ r and 9 ≤ c ≤ d ≤ r − 9.

Let z be a vertex of degree ∆ and let j = dG(u, z). Then the only vertices x of T (u, v′) and

T (u, v′′) for which possibly N≤2(x) ∩N≤3(z) 6= ∅ are the vertices in {v′i, v′′i | |j − i| ≤ 5}.
We consider five cases, depending on the value of j.

Case 1: j ≤ 5.

Then the sets N≤3(z), N≤2(V (P ′11,r)) and N≤2(V (P ′′11,r−9)) are disjoint. Applying Lemmas
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2.3.3 and 3.2.1 we obtain

n ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
+ g(r − 11) + g(r − 20)

≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
2r

3
(δ2 − δ + 1)− 29

3
δ2 +

35

3
δ − 45

6
.

Case 2: 6 ≤ j ≤ 14.

Then the setsN≤3(z), N≤2(V (P ′0,j−6)), N≤2(V (P ′j+6,r)) andN≤2(V (P ′′j+6,r−9)) are disjoint.

Applying Lemmas 2.3.3 and 3.2.1 we obtain

n ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
+ g(j − 6) + g(r − j − 6) + g(r − j − 15)

≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
2r

3
(δ2 − δ + 1)− 38

3
δ2 +

47

3
δ − 61

6
.

Case 3: 15 ≤ j ≤ r − 15.

Then the sets N≤3(z), N≤2(V (P ′0,4)), N≤2(V (P ′9,j−6)), N≤2(V (P ′j+6,r)), N≤2(V (P ′′9,j−6))

and N≤2(V (P ′′j+6,r−9)) are disjoint. Applying Lemmas 2.3.3 and 3.2.1 we obtain

n ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
+ g(4) + g(j − 15) + g(r − j − 6) + g(j − 15) + g(r − j − 15)

≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
2r

3
(δ2 − δ + 1)− 42

3
δ2 +

57

3
δ − 65

6
.

Case 4: r − 14 ≤ j ≤ r − 6.

Then the setsN≤3(z), N≤2(V (P ′0,4)), N≤2(V (P ′9,j−6)), N≤2(V (P ′j+6,r)), andN≤2(V (P ′′9,j−6))

are disjoint. Applying Lemmas 2.3.3 and 3.2.1 we obtain

n ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
+ g(4) + g(j − 15) + g(r − j − 6) + g(j − 15)

≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
2r

3
(δ2 − δ + 1)− 42

3
δ2 +

54

3
δ − 67

6
.

Case 5: r − 5 ≤ j.

Then the sets N≤3(z), N≤2(V (P ′0,4)), N≤2(V (P ′9,r−11)), and N≤2(V (P ′′9,r−11)) are disjoint.

Applying Lemmas 2.3.3 and 3.2.1 we obtain

n ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
+ g(4) + g(r − 20) + g(r − 20)

≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
2r

3
(δ2 − δ + 1)− 33

3
δ2 +

42

3
δ − 21

6
.

It is easy to see that the smallest lower bound for n is always the expression in Case 4, so

we have, irrespective of the value of j,

n ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
2r

3
(δ2 − δ + 1)− 42

3
δ2 +

54

3
δ − 67

6
.
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Solving for r and using the estimate 42δ2−54δ+67/2
2(δ2−δ+1)

≤ 22 now yields inequality (3.2.13),

thus completing the proof of the theorem.

Theorem 3.2.12. If δ− 1 is a prime power, then there exists an infinite family of graphs

F ∗l,m,δ of girth at least 6 with n vertices, minimum degree δ, maximum degree ∆ such that

(i) diam(G) ≥ 3(n−∆δ)

δ2 − δ + 1
−

3(δ + 1)
√

∆(δ − 2)

δ2 − δ + 1
+ 3, (3.2.16)

(ii) rad(G) ≥ 3(n−∆δ)

2(δ2 − δ + 1)
−

3(δ + 1)
√

∆(δ − 2)

2(δ2 − δ + 1)
+

3

2
. (3.2.17)

Proof. Let q = δ− 1 be a prime power and m ∈ N with m ≥ 4. By Theorem 3.2.10, there

exists a connected graph Fq,m of girth at least 6 with minimum degree q + 1, maximum

degree ∆ = (qm−1)(qm−q)
q(q2−1)(q2−q) −

1
q whose order n satisfies n(Fq,m) ≤ 2+δ∆+(δ+1)

√
∆(δ − 2).

Let u1 ∈ Fq,m be a vertex of maximum degree, viz z, and let v1 ∈ Y where Y is as defined

in Theorem 3.2.10 (Example 3.2.6).

Now let l ∈ N with l ≥ 2 and l sufficiently large. Consider the graph G∗k,δ constructed in

the proof of Theorem 2.3.7, and let H1 be a copy of Fq,m. Denote the resulting graph by

F ∗l,m,δ. Figure 3.2 is an illustration of the graph F ∗5,m,δ.

v1u1 H∗q+1 − e H∗q+1 − e H∗q+1 − e H∗q+1

Figure 3.2: The graph F ∗5,m,δ.

We have by Theorem 3.2.10, Claims 2.3.6 and 3.2.7 that F ∗l,m,δ is a connected graph of girth

at least 6 with minimum degree δ = q + 1 and maximum degree is ∆ = (qm−1)(qm−q)
q(q2−1)(q2−q) −

1
q .

By Claim 2.3.6, graph Hi (for 2 ≤ i ≤ l) has 2(q2 + q + 1) vertices, and since n(Fq,m) ≤
2 + δ∆ + (δ + 1)

√
∆(δ − 2), we have that the order of F ∗l,m,δ is

n(F ∗l,m,δ) = |V (F ∗l,m,δ,| ≤ ∆δ + (δ + 1)
√

∆(δ − 2) + 2 + 2(l − 1)(q2 + q + 1)

= ∆δ + (δ + 1)
√

∆(δ − 2) + 2 + (l − 1)2(δ2 − δ + 1)
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By Claim 2.3.6(e), dH∗q+1
(x, y) ≤ 3 for any two vertices x and y of H∗q+1, and so we have

that diam(Hl) = 3. Similarly, we have by Claim 2.3.6(f) that dHe(x, y) ≥ 5. Thus, the

diameter of F ∗l,m,δ, is obtained as follows

diam(F ∗l,m,δ) = d ≥ dH1(u1, v1) + (l − 2) · dHe(u, v) + diam(Hl) + l − 1,

= 6l − 3.

This implies that l ≤ d+3
6 and so substituting this value in n(F ∗l,m,δ) and making use of

the fact that δ ≥ 3 we have that

3(n−∆δ)

δ2 − δ + 1
−

3(δ + 1)
√

∆(δ − 2)

δ2 − δ + 1
+

3(δ2 − δ − 1)

δ2 − δ + 1
≤ d.

Now using the estimate that 3(δ2−δ−1)
δ2−δ+1

< 3 yields the desired bound in Theorem 3.2.12.

The proof for part (ii) follows from the fact that

rad(F ∗l,m,δ) ≥
1

2
diam(F ∗l,m,δ) ≥

3(n−∆δ)

2(δ2 − δ + 1)
−

3(δ + 1)
√

∆(δ − 2)

2(δ2 − δ + 1)
+

3

2
.

The graphs constructed in Theorem 3.2.12 show that the bound on the diameter in Theo-

rem 2.3.7 is best possible if δ− 1 is a prime power in the following sense. For δ− 1 a fixed

prime power and n and δ large, the maximum diameter of a graph of girth at least 6 with

n vertices, minimum degree δ and maximum degree ∆ is 3(n−∆δ)
δ2−δ+1

− (1 + f(δ))
√

∆(δ − 2)

where |f(δ)| ≤ 2
δ−1 .

Theorem 3.2.13. Let G be a connected (C4, C5)-free graph of order n, minimum degree

δ ≥ 3 and maximum degree ∆. Then

(i) diam(G) ≤ 3n− 3∆(δ − 1)

δ2 − 5
2δ + 5

2 + εδ
−

3(δ − 2)
√

∆(δ − 3)

δ2 − 5
2δ + 5

2 + εδ
+ 11. (3.2.18)

(ii) rad(G) ≤ max
{

28,
3n− 3∆(δ − 1)

2δ2 − 5δ + 5 + 2εδ
−

3(δ − 2)
√

∆(δ − 3)

2δ2 − 5δ + 5 + 2εδ
+ 20

}
. (3.2.19)

Proof. Let d, v, w, P be as in the proof of Theorem 2.3.11.

Let P : v0, v1, . . . , vd, where v0 = v and vd = w. Let z be a vertex of degree ∆and let

j = dG(v, z). Then the only vertices x of P for which N≤2(x)∩N≤3(z) 6= ∅ are the vertices

in {vi ∈ V (P ) | |j − i| ≤ 5}.

We consider two cases, depending on the value of j.

Case 1: 6 ≤ j ≤ d− 6.
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Define the subpaths P1 and P2 of P by

P1 : v0, v1, . . . , vj−6, P2 : vj+6, vj+7, . . . , vd.

The sets N≤2(V (P1)), N≤2(V (P2)) and N≤3(z) are disjoint.

Applying Lemmas 2.3.10 and 3.2.4 we obtain

n ≥ |N≤2(V (P1))|+ |N≤2(V (P2))|+ |N≤3(z)|

≥ h(j − 6) + h(d− j − 6) + ∆(δ − 1) + (δ − 2)
√

∆(δ − 3) +
3

2
.

Recall from Lemma 2.3.10 that

|N≤2(V (P )| ≥ h(d) =
d

6
(2δ2 − 5δ + 5 + 2εδ) +

1

3
δ2 − 7

6
δ +

5

6
+

1

3
εδ,

and so we have that

n ≥ d− 12

6
(2δ2 − 5δ + 5 + 2εδ) +

2

3
δ2 − 7

3
δ +

19

6
+

2

3
εδ + ∆(δ − 1) + (δ − 2)

√
∆(δ − 3),

Solving for d now yields

d ≤ 3n− 3∆(δ − 1)

δ2 − 5
2δ + 5

2 + εδ
−

3(δ − 2)
√

∆(δ − 3)

δ2 − 5
2δ + 5

2 + εδ
+

20δ2 − 46δ + 41 + 20εδ

2(δ2 − 5
2δ + 5

2 + εδ)

<
3n− 3∆(δ − 1)

δ2 − 5
2δ + 5

2 + εδ
−

3(δ − 2)
√

∆(δ − 3)

δ2 − 5
2δ + 5

2 + εδ
+ 10,

as desired

Case 2: 0 ≤ j ≤ 5 or d− 5 ≤ j ≤ d.

If 0 ≤ j ≤ 5, then define the subpath P1 of P by P1 : v12, v13, . . . , vd. In the other case,

d− 5 ≤ j ≤ d, we choose P1 : v0, v1, . . . , vd−12. In both cases N≤3(z) and N≤2(V (P1) are

disjoint. Now the same calculations as in Case 1

n ≥ |N≤2(V (P1))|+ |N≤3(z)|

≥ h(d− 12) + ∆(δ − 1) + (δ − 2)
√

∆(δ − 3) +
3

2

=
d− 12

6
(2δ2 − 5δ + 5 + 2εδ) +

1

3
δ2 − 7

6
δ +

14

6
+

1

3
εδ + ∆(δ − 1) + (δ − 2)

√
∆(δ − 3).

Solving for d, we have that

d ≤ 3n− 3∆(δ − 1)

δ2 − 5
2δ + 5

2 + εδ
−

3(δ − 2)
√

∆(δ − 3)

δ2 − 5
2δ + 5

2 + εδ
+

22δ2 − 53δ + 46 + 22εδ
2δ2 − 5δ + 5 + 2εδ

,

<
3n− 3∆(δ − 1)

δ2 − 5
2δ + 5

2 + εδ
−

3(δ − 2)
√

∆(δ − 3)

δ2 − 5
2δ + 5

2 + εδ
+ 11.
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This yields inequality (3.2.18) and so the theorem holds.

We now give a proof for the radius.

If rad(G) ≤ 28, then there is nothing to prove, hence we may assume that rad(G) ≥ 29.

Let u, r, T , v′, v′′, P ′a,b and P ′′a,b be as in the proof of Theorem 2.3.11.

Since v′ and v′′ are not related, the sets N≤2(V (P ′a,b)) and N≤2(V (P ′′c,d)) are disjoint for

all a, b, c, d with 9 ≤ a ≤ b ≤ r and 9 ≤ c ≤ d ≤ r − 9.

Let z be a vertex of degree ∆ and let j = dG(v, z). Then the only vertices x of T (u, v′)

and T (u, v′′) for which N≤2(x) ∩N≤3(z) 6= ∅ are the vertices in {v′i, v′′i | |j − i| ≤ 5}. We

consider five cases, depending on the value of j.

Case 1: j ≤ 5.

Then the sets N≤3(z), N≤2(V (P ′11,r)) and N≤2(V (P ′′11,r−9)) are disjoint. Applying Lemmas

2.3.10 and 3.2.4 we obtain

n ≥ ∆(δ − 1) + (δ − 2)
√

∆(δ − 3) +
3

2
+ h(r − 11) + h(r − 20).

Thus,

n ≥ ∆(δ− 1) + (δ− 2)
√

∆(δ − 3) +
(2r − 31

6

)
(2δ2− 5δ+ 5 + 2εδ) +

2

3
δ2− 7

3
δ+

19

6
+

2

3
εδ.

Case 2: 6 ≤ j ≤ 14.

Then the setsN≤3(z), N≤2(V (P ′0,j−6)), N≤2(V (P ′j+6,r)) andN≤2(V (P ′′j+6,r−9)) are disjoint.

Applying Lemmas 2.3.10 and 3.2.4 we obtain

n ≥ ∆(δ − 1) + (δ − 2)
√

∆(δ − 3) +
3

2
+ h(j − 6) + h(r − j − 6)

+h(r − j − 15),

and so,

n ≥ ∆(δ − 1) + (δ − 2)
√

∆(δ − 3) +
(2r − 41

6

)
(2δ2 − 5δ + 5 + 2εδ) + δ2 − 7

2
δ + 4 + εδ.

Case 3: 15 ≤ j ≤ r − 15.

Then the sets N≤3(z), N≤2(V (P ′0,4)), N≤2(V (P ′9,j−6)), N≤2(V (P ′j+6,r)), N≤2(V (P ′′9,j−6))

and N≤2(V (P ′′j+6,r−9)) are disjoint. Applying Lemmas 2.3.10 and 3.2.4 we obtain

n ≥ ∆(δ − 1) + (δ − 2)
√

∆(δ − 3) +
3

2
+ h(4) + h(j − 15) + h(r − j − 6) + h(j − 15)

+h(r − j − 15).
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Thus,

n ≥ ∆(δ−1)+(δ−2)
√

∆(δ − 3) +
(2r − 45

6

)
(2δ2−5δ+5+2εδ)+

5

3
δ2− 35

6
δ+

44

6
+

5

3
εδ.

Case 4: r − 14 ≤ j ≤ r − 6.

Then the setsN≤3(z), N≤2(V (P ′0,4)), N≤2(V (P ′9,j−6)), N≤2(V (P ′j+6,r)), andN≤2(V (P ′′9,j−6))

are disjoint. Applying Lemmas 2.3.10 and 3.2.4 we obtain

n ≥ ∆(δ − 1) + (δ − 2)
√

∆(δ − 3) +
3

2
+ h(4) + h(j − 15) + h(r − j − 6) + h(j − 15),

and so,

n ≥ ∆(δ−1) + (δ−2)
√

∆(δ − 3) +
(2r − 38

6

)
(2δ2−5δ+ 5 + 2εδ) +

4

3
δ2− 14

3
δ+

29

6
+

4

3
εδ

Case 5: r − 5 ≤ j.

Then the sets N≤3(z), N≤2(V (P ′0,4)), N≤2(V (P ′9,r−11)), and N≤2(V (P ′′9,r−11)) are disjoint.

Applying Lemmas 2.3.10 and 3.2.4 we obtain

n ≥ ∆(δ − 1) + (δ − 2)
√

∆(δ − 3) +
3

2
+ h(4) + h(r − 20) + h(r − 20).

Thus,

n ≥ ∆(δ − 1) + (δ − 2)
√

∆(δ − 3) +
(2r − 36

6

)
(2δ2 − 5δ + 5 + 2εδ) + δ2 − 7

2
δ + 4 + εδ.

Clearly, from the different cases considered, we can see that the smallest lower bound for

n is always the expression in Case 3, so we have, irrespective of the value of j that

n ≥ ∆(δ−1)+(δ−2)
√

∆(δ − 3) +
(2r − 45

6

)
(2δ2−5δ+5+2εδ)+

5

3
δ2− 35

6
δ+

44

6
+

5

3
εδ.

Solving for r now yields

r ≤ 3n− 3∆(δ − 1)

2δ2 − 5δ + 5 + 2εδ
−

3(δ − 2)
√

∆(δ − 3)

2δ2 − 5δ + 5 + 2εδ
+

40δ2 − 95δ + 181/2 + 40εδ
2δ2 − 5δ + 5 + 2εδ

,

<
3n− 3∆(δ − 1)

2δ2 − 5δ + 5 + 2εδ
−

3(δ − 2)
√

∆(δ − 3)

2δ2 − 5δ + 5 + 2εδ
+ 20.

This yields inequality (3.2.19), thus completing the proof of the Theorem 3.2.13.



Chapter 4

Upper Bounds on the Average

Eccentricity of Graphs of Girth at least 6

and (C4, C5)-free Graphs.

4.1 Introduction

In this Chapter, we give bounds on the average eccentricity of graphs of girth at least

6, as well as connected (C4, C5)-free graphs taken into account the minimum degree and

the order of the graphs. To achieve this goal, we adapt the approach given in [30] and

[31] wherein the average eccentricity of graphs is bounded. Moreover, we show that for

certain values of δ the bounds obtained for graphs of girth at least 6 are sharp apart from

an additive constant. We also prove upper bounds on the average eccentricity that take

into account not only order and minimum degree, but also maximum degree. Our bound

is best possible in a sense specified later.

4.2 Preliminary Results

We first present a definition of the weighted eccentricity and weighted average eccentricity

and a bound on the weighted average eccentricity. Both play an important role in the

proof of our main results in this chapter.

Definition 4.2.1. [31] Let G be a connected graph and c : V (G) → R be a nonnegative

weight function on the vertices of G. Then the eccentricity of G with respect to c is defined

by

EXc(G) =
∑

v∈V (G)

c(v)eG(v).

Let N =
∑

v∈V (G)

c(v) be the total weight of the vertices of G. If N > 0, then we define the

weighted average eccentricity of G with respect to c as

avecc(G) =
EXc(G)∑

v∈V (G)

c(v)
.

Lemma 4.2.2. [31] Let G be a weighted graph with a weight function c : V (G)→ R such

71
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that c(v) ≥ 1 for every vertex v. Then for N =
∑

v∈V (G) c(v),

avecc(G) ≤ avec(PdNe).

Proof. Let k =
d
∑
v∈V (G) c(v)e∑
v∈V (G) c(v) and c(v) = k c(v) be a new weight function defined on G.

We now prove the following.

i) c(v) ≥ 1,

ii)
∑

v∈V (G)

c(v) = dNe,

iii) avecc(G) = avecc(G).

Clearly c(v) ≥ 1 since c(v) is a nonnegative weight function and k ≥ 1. The total weight

of vertices of G with respect to the new function is given by
∑

v∈V (G)

c(v), so the second

statement follows from ∑
v∈V (G)

c(v) =
∑

v∈V (G)

kc(v)

= k
∑

v∈V (G)

c(v)

=
d
∑

v∈V (G) c(v)e∑
v∈V (G) c(v)

∑
v∈V (G)

c(v)

= dNe. (4.2.1)

By Definition 4.2.1, we have that

avecc(G) =

∑
v∈V (G) c(v)eG(v)∑

v∈V (G) c(v)

=

∑
v∈V (G) kc(v)eG(v)∑

v∈V (G) kc(v)

=
k
∑

v∈V (G) c(v)eG(v)

k
∑

v∈V (G) c(v)

= avecc(G), (4.2.2)

and the third statement follows.

Hence, it suffices to show that avecc(G) ≤ avec(PdNe). We prove the equivalent statement

EXc(G) ≤ EX(PdNe). Since deleting an edge does not decrease the eccentricity of any

vertex, we have avec(G) ≤ avec(T ) for every spanning tree T of G. Hence it suffices to

prove the bounds for trees.

Given N ∈ R+, let T be a tree with weight function c such that c ≥ 1 and dNe =
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∑
v∈V (T ) c(v) satisfying the hypothesis of the lemma for which EXc(T ) is maximum. We

show that EXc(T ) ≤ EX(PdNe) holds. To do this, we first show that T is a path, then

we show that T = PdNe.

CLAIM 1: T is a path.

Suppose T is not a path. Then T has a vertex of degree at least 3.

v0

vi

vd

u

T :

Figure 4.1: The spanning tree T with a vertex of degree 3.

Let P = v0, v1, v2, v3, · · · , vd be a diametral (longest) path of T of length d and let vi be

a vertex on P of degree at least three. Since P is a diametral path of T , we have that for

each vertex w ∈ V (T ), at least one of the vertices v1 and vd is an eccentric vertex, hence

by Lemma 1.4.21

eT (w) = max{dT (w, v0), dT (w, vd)}. (4.2.3)

Let u be a neighbour of vi in T which is not on P and let Tu be the component of T−V (P )

containing u. Without loss of generality, we let v1 to be an eccentric vertex of u and thus

of every vertex of Tu.

Now we consider the tree T with weight function c defined by T = T − uvi + uvd. Then

for each vertex in Tu, the distance to v1 increased by d − i, hence its eccentricity also

has increased by d − i. On the other hand, for every vertex, x, not in Tu, the distances

to v1 and vd remains unchanged, hence its eccentricity has not decreased. Thus for all

x ∈ V (T )− V (Tu), we have by Lemma 1.4.21 that

eT (x) ≥ max{dT (x, v0), dT (x, vd)} = max{dT (x, v0), dT (x, vd)} = eT (x). Therefore,

EXc(T ) ≥ EXc(T ) + c(d− i)|V (Tu)| > EXc(T ),

a contradiction to our choice of T since EXc(T ) is maximum. Hence T is a path v0, v1, v2, · · · , vd
and so Claim 1 holds.

CLAIM 2: all internal vertices of T have weight exactly 1.

Suppose not, then there is an internal vertex, vj , of V (T ) with weight greater than 1. That

is, there exists j ∈ {1, 2, 3, · · · , d} with c(vj) = 1 + k where k is a positive real number.

Next, we define a new weight function, c′, on V (T ) for which c′(vj) = 1 and move the
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extra weight on vj to one of the end vertices of T , say v0. Thus, for all vi ∈ V (T ), the

new weight function c′(vi) is defined by

c′(vi) =


1 if i = j,

c(vi) if i 6= j or i 6= 0,

c(vi) + k if i = 0.

Then,

EXc′(T )− EXc(T ) =
d∑
i=0

c′(vi)eT (vi)−
d∑
i=0

c(vi)eT (vi),

=

d∑
i=0

eT (vi)[c
′(vi)− c(vi)],

= eT (v0)[c′(v0)− c(v0)] + eT (vj)[c
′(vj)− c(vj)]

= eT (v0)[c(v0) + k − c(v0)] + eT (vj)[1− (1 + k)],

= k[eT (v0)− eT (vj)],

and so, EXc′(T ) = EXc(T ) + k[eT (v0) − eT (vi)]. We have that eT (vj) < eT (v0) since vj

is an internal vertex of T . Hence, EXc′(T ) > EXc(T ), is a contradiction to our choice

of T and assumption that EXc(T ) is maximum. Therefore, we conclude that all internal

vertices of T must have weight exactly 1.

CLAIM 3: the end vertices of T also have weight exactly 1.

Suppose not, then at least one of v0 or vd has weight greater than 1. If one of them, say

c(v0) > 1, then similarly as in the proof for the internal vertices, we can define a new

weight function, c′′(vk), for which c′′(v0) = 1 and transfer the extra weight to vd. Since we

have shown that all internal vertices of T has weight exactly 1, c′′(vk) is then defined by,

c′′(vk) =

1 if i = 0, 1, 2, . . . d− 1,

c(vd) + c(v0)− 1 if i = d.

Clearly c′′(vk) ≥ 1 for all vk ∈ V (T ) and
∑

vk∈V (T ) c
′′(vk) = dNe.

Observe that eT (v0) = eT (vn) = d and so we have that

EXc′′(T ) = c′′(v0)eT (v0) +
d−1∑
k=1

c′′(vk)eT (vk) + c′′(vd)eT (vd),
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= eT (v0) +

d−1∑
k=1

c(vk)eT (vk) + [c(vd) + c(v0)− 1]eT (vd)

=

d−1∑
k=0

c(vk)eT (vk) + c(vd)eT (vd) + c(v0)eT (vd),

=
d−1∑
k=1

c(vk)eT (vk) + c(vd)eT (vd) + c(v0)eT (v0),

=
d∑

k=0

c(vk)eT (vk),

= EXc(T ).

Hence EXc′′(T ) is also maximal. Next we show that c(vd) = 1.

Suppose to the contrary that c(vd) > 1. Since v0, v1, . . . , vd−1 have weight 1, and since the

sum of all weights is an integer, we have c(vd) ≥ 2 then c(vd) ≥ 2.

Thus, we can define a new graph T ∗ = T + vn+1 and transfer one weight unit from vn

to vd+1. In other words, T ∗ is the path v0, v1, v2, . . . vd, vd+1 with weight function c∗(vk)

where

c∗(vk) =

1 if i = 0, 1, 2, . . . d− 1 and i = vd+1

c(vd)− 1 if i = d.

Clearly T ∗ is a weighted tree with higher eccentricity than T , that is, EXc′(T ) > EXc(T ),

a contradiction to the assumption that EXc(T ) is maximum. Therefore, we conclude that

c(vd) = 1 and T ∗ = T = v0, v1, v2, . . . , vd.

CLAIM 4: T = PdNe.

Let d + 1 = |V (T )|. Then it follows from Claim 1 that T = v0, v1, v2, · · · , vd is a path

of order d + 1. We have by Claim 2 and Claim 3 that all vertices of T have weight

exactly 1. Since c = 1 for all vertices of T , it follows that the total weight of vertices of

T ,
∑

v∈V (T ) c(v) = d + 1. But from (4.2.1),
∑

v∈V (T ) c(v) = dNe, and so d + 1 = dNe.
Therefore, T = Pd+1 = PdNe. This proves Claim 4.

Since T = PdNe, we then have that EXc(T ) = EXc(PdNe) and so avecc(T ) = avecc(PdNe).

By (4.2.2), avecc(PdNe) = avec(PdNe), so we have that avecc(T ) = avec(PdNe). Hence we

conclude that avec(T ) ≤ avec(PdNe) and thus avecc(G) ≤ avec(PdNe). And so, Lemma

4.2.2 holds.

The following result appeared in [31]. The proof follows the proof in [31], but we have

added some elaboration.
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Theorem 4.2.3. [31] Let G be a connected graph of order n and minimum degree δ. Then

avec(G) ≤ 9

4

⌈ n

δ + 1

⌉
+

5

2
.

This inequality is best possible apart from the additive constant.

Proof. Recall that for k ∈ N, a k-packing is a set of vertices whose pairwise distance is

greater than k. To prove this, we start first by finding a maximal 2-packing, A, of G as

follows. Choose an arbitrary vertex u1 of G and let A = {u1}. If there exists a vertex u2

in G with dG(u2, A) = 3, add u2 to A. Add vertices uj with dG(uj , A) = 3 to A until, after

k steps, say, every vertex not in A is within distance two of A. Thus A = {u1, u2, . . . uk}
and |A| = k.

Let N [A] denote the vertex set consisting of A and any vertex adjacent to A. Let T1 ≤ G
be the subforest of G with vertex set N [A], whose edge set consists of all edges incident

with a vertex in A, such that each component of T1 is a star centered at a vertex in A.

By our construction of A, there exist |A| − 1 edges in G, each one joining two neighbours

of distinct vertices of A, whose addition to T1 yields a subtree T2 of G. Now, each vertex

v ∈ V (G) − V (T2) is adjacent to some vertex v′ ∈ V (T2). Let T be a spanning tree of G

with edge set E(T ) = E(T2) ∪ {vv′ : v ∈ V (G) − V (T2)}. Since taking a spanning tree

or deleting edges does not decrease the eccentricity or average eccentricity and we have

avec(G) ≤ avec(T ), so it suffices to prove that

avec(T ) ≤ 9

4

⌈ n

δ + 1

⌉
+

5

2
. (4.2.4)

For every vertex u ∈ V (T ), let uA be a vertex in A closest to u in T . We define a weight

function c : V (T )→ R+ by

c(u) = |{x ∈ V (T ) | xA = u}| for u ∈ V (T ),

where c(u) = 0 if u /∈ A, c(u) ≥ deg(u) + 1 ≥ δ+ 1 for each u ∈ A, and
∑

u∈V (T ) c(u) = n.

For each vertex u of T , the weight of u is moved to uA and since each vertex of T is within

distance two of uA, each weight was moved over a distance not exceeding two, hence

avec(T ) ≤ avecc(T ) + 2. (4.2.5)

Observe that the weight c is concentrated only on the vertices of A. Next, let U be the

induced subgraph T 3[A] of T 3 with A as the vertex set.

Claim 1: U is connected.

To verify that U is connected, it suffices to prove using induction on i that for any ui ∈
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A, i ∈ {1, 2, · · · , k}, there exists a path from ui to u1 in U . For i = 1, we have u1 and

hence there is a walk from u1 to u1 of zero length. For i > 1, we have by our construction

of A, that there is an j for which j < i, and dT (uj , ui) = 3. Therefore, by the induction

hypothesis, there is a path from uj to u1 in U = T 3[A]. This path together with the edge

ujui in U yields a path from ui to u1 in U . Hence U is connected.

Since A is a maximal 2-packing, we have that dT (ui, uj) ≥ 3 for all pairs ui, uj ∈ A. It

follows immediately that dT (ui, uj) ≤ 3dU (ui, uj) for all pairs of vertices ui, uj ∈ A. Since

every vertex of T that is not in A is within distance two of A, we have that eT (ui) ≤
3eU (ui) + 2 for each vertex ui ∈ A. Hence

avecc(T ) ≤ 3avecc(U) + 2. (4.2.6)

Recall that for all vertices u ∈ A, c(u) ≥ δ + 1 and since n =
∑

u∈A c(u), we have that

|A|(δ + 1) ≤ n and so |A| ≤ n/(δ + 1).

To normalize the weight, c(u), on the vertices of A, we now define a new weight c′(u) on

V (U) by c′(u) = c(u)/(δ + 1). Observe that c′(u) ≥ 1 for all u ∈ V (U) and
∑

u∈A c
′(u) =

1/(δ + 1)
∑

u∈A c(u) = n/(δ + 1). Letting N =
∑

u∈A c
′(u), we have that N = n

δ+1 and

|A| ≤ N .

We have that

avecc′(U) =
EXc′(U)∑
u∈A c

′(u)
=

1/(δ + 1)
∑

u∈A c(u)eU (u)

1/(δ + 1)
∑

u∈A c(u)
= avecc(U). (4.2.7)

Now, c′(ui) ≥ 1 for all ui in A. Applying (4.2.7), Lemma 4.2.2 and Theorem 1.4.18(c), we

have that

avecc(U) = avecc′(U) ≤ avec(PdNe) ≤
3dNe

4
− 1

2

In order to bound avec(T ), we apply the inequalities in (4.2.5) and (4.2.6) together with

the fact that N = n
δ+1 . Thus

avec(T ) ≤ avecc(T ) + 2,

≤ 3avecc(U) + 2 + 2,

≤ 3
(3dNe

4
− 1

2

)
+ 4,

=
9dNe

4
+

5

2
,

=
9

4

⌈ n

δ + 1

⌉
+

5

2
.

Thus, we have proved (4.2.4). Therefore the theorem holds since avec(G) ≤ avec(T ).
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The graph, Gk,δ, described below shows that the bound in (4.2.4) is sharp apart from an

additive constant.

For positive integers, k, n, δ, let n = k(δ + 1) and let xiyi ∈ E(Gi) where Gi = Kδ+1 for

i = 1, 2, . . . , k. Let Gk,δ be the graph obtained from G1 ∪ G2 ∪ . . . ∪ Gk by deleting the

edges xiyi for i = 2, 3, . . . , k − 1 and adding the edges xi+1yi for i = 1, 2, . . . , k − 1. Then

for large n,

avec(Gk,δ) =
9n

4δ + 4
+O(1).

G1 G2 G3 G4 G5

Figure 4.2: The graph Gk,δ with δ = 3 and k = 5.

4.3 Main Results

4.3.1 Bounds on Average Eccentricity of Graphs of Girth at least 6

If G is a graph of girth at least 6, then the following theorem shows that the bound in

Theorem 1.4.23 can be improved by a factor of about 5/3.

Theorem 4.3.1. Let G be a graph of girth at least 6 with n vertices and minimum degree

δ ≥ 2. Then G has a spanning tree T with

avec(T ) ≤ 9

2

⌈ n

2(δ2 − δ + 1)

⌉
+ 8. (4.3.1)

Proof. To prove this, we start by finding a matching, M , of G as follows: Choose an

arbitrary edge e1 = uv ∈ E(G) and let M = {e1}. Let V (M) be the set of vertices

incident with some edge of M . Recall that for an edge e, dG(e, V (M)) is the smallest

distance between a vertex incident with e and a vertex in V (M). If there exists an edge

e2 in G with dG(e2, V (M)) = 5, add e2 to M . Add edges ei with dG(ei, V (M)) = 5 to M

until each of the edges not in M is within distance four of M . Thus M = {e1, e2, · · · ek}
where |M | = k.

Let N≤2(u) denote the set of vertices at distance at most 2 from u. For i ∈ {1, 2, . . . , k}
let ei = uivi. Let T ∗ei be a subtree of G with vertex set N≤2(ui) ∪N≤2(vi) that preserves

the distance to {uivi}.
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Let T1 = ∪ei∈MT ∗ei . Then, T1 ≤ G is a subforest of G with vertex set N≤2[V (M)]. By our

construction of M , there exist |M |−1 edges in G, each joining two distinct components of

T1, whose addition to T1 yields a tree T2 ≤ G, which contains T1 and has the same vertex

set as T1.

Now, each vertex v ∈ V (G)− V (T2) is within distance five of some vertex w in V (T2).

Let T ≥ T2 be a spanning tree of G in which dT (x, V (M)) = dG(x, V (M)) for each

x ∈ V (G).

Since taking a spanning tree or removal of an edge, which is not a bridge, does not decrease

the eccentricity or average eccentricity and we have avec(G) ≤ avec(T ), so it suffices to

show that

avec(T ) ≤ 9

2

⌈ n

2(δ2 − δ + 1)

⌉
+ 8. (4.3.2)

For every vertex u ∈ V (T ), let uM be a vertex in V (M) closest to u in T . The tree, T , can

be viewed as a weighted tree where each vertex has weight exactly 1. We now move the

weight of every vertex to the closest vertex in V (M), that is, we define a weight function

c : V (T )→ R+ by:

c(u) = |{x ∈ V (M) | xM = u}| for u ∈ V (T ).

Since each vertex of T is within distance five from some vertex in M , we have that

dT (x, xM ) ≤ 5 and each weight was moved over a distance not exceeding five, hence

avec(T ) ≤ avecc(T ) + 5. (4.3.3)

Observe that the weight c is concentrated only on the vertices of V (M). Our interest is

to ensure that the weights are concentrated on the edges of T . We consider the line graph

L = L(T ) and define a new weight function c on V (L) = E(T ) by

c(wz) =

c(w) + c(z) if wz ∈ M,

0 if wz /∈ M.

Let wz ∈M . For each vertex x ∈ N≤2(w) ∪N≤2(z), we have xM ∈ {w, z}. Hence

c(w) + c(z) ≥ |N≤2(w) ∪N≤2(z)|.

By Lemma 2.3.2, we have

|N≤2(w) ∪N≤2(z)| ≥ 2(δ2 − δ + 1), (4.3.4)
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and so we have that

c(wz) ≥ 2δ2 − 2δ + 2 for wz ∈M. (4.3.5)

Note that c(wz) = 0 if wz /∈M and
∑

e∈M c(wz) =
∑

u∈V (T ) c(u) = n.

Claim 1: Let x, y ∈ V (T ) and let ex, ey ∈ E(T ) be edges of T incident with x and y

respectively. Then,

dT (x, y) ≤ dL(ex, ey) + 1. (4.3.6)

Let k = dL(ex, ey). Let the vertices of L on a shortest (ex, ey)-path be ex, f1, f2, . . . , fk−1, ey.

So {ex, f1, f2, . . . , fk−1, ey} induces a connected subgraph of T with k + 1 edges, and it

contains vertices x and y. Hence, dT (x, y) ≤ k + 1 = dL(ex, ey) + 1.

Assume that u, v ∈ V (T ), and that v is an eccentric vertex of u. Then eT (u) = dT (u, v).

Let eu ∈ E(T ) be an edge incident with u and ev. We have by Claim 1 that dT (u, v) ≤
dL(eu, ev) + 1 ≤ eL(eu) + 1. Hence, eT (u) ≤ eL(eu) + 1. Consequently, we have that∑

v∈V (T )

eT (v)c(v) =
∑
uv∈M

[eT (u)c(u) + eT (v)c(v)],

≤
∑
uv∈M

c(uv)
(
eL(uv) + 1

)
,

=
∑
e∈M

c(e)eL(e) +
∑
e∈M

c(e).

It follows immediately from above that EXc(T ) ≤ EXc(L)+
∑

e∈M c(e) and since
∑

e∈M c(e) =∑
v∈V (T ) c(v) and avec(G) = EXc(G)/

∑
v∈V (T ) c(v), we have that

avecc(T ) ≤ avecc(L) + 1. (4.3.7)

Now, if the distance dT (e1, e2) between two matching edges e1, e2 in M equals five, then

dL(e1, e2) ≤ 6. Let U = L6[M ]. Following a similar argument as in the proof of Claim 1

of Theorem 4.2.3, we have that L6[M ] is connected, and for all pairs e, f ∈M,

dL(e, f) ≤ 6dL6[M ](e, f).

Now, for every e′ ∈ V (L) = E(T ), there exists an edge f ′ ∈ M such that dL(e′, f ′) ≤ 5,

and so for every f ∈M , we have that eL(f) ≤ 6eL6[M ](f) + 5.

avecc(L) ≤ 6avecc(L
6[M ]) + 5. (4.3.8)

Recall that for all edges in M , c(e) ≥ 2δ2−2δ+2 and since n =
∑

e∈M c(e) =
∑

v∈V (T ) c(v),

we have that |M |(2δ2 − 2δ + 2) ≤ n and so |M | ≤ n/(2δ2 − 2δ + 2).

To normalise the weight, c(u), on the vertices of L6[M ], we now define a new weight, c′,

on V (L6[M ]) by c′(v) = c(v)/(2δ2 − 2δ + 2). Observe that c′(u) ≥ 1 for all u ∈ V (L6[M ])
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and ∑
v∈V (L6[M ])

c′(v) =
1

2δ2 − 2δ + 2

∑
v∈L6[M ]

c(v) =
n

2δ2 − 2δ + 2
.

Letting N∗ =
∑

v∈V (L6[M ]) c
′(v), we have that N∗ = n

2δ2−2δ+2
and |M | ≤ N∗.

We have that avecc′(L
6[M ]) = avecc(L

6[M ]), since

avecc′(L
6[M ]) =

EXc′(L
6[M ])∑

v∈V (L6[M ]) c
′(v)

,

=
1

2δ2−2δ+2

∑
v∈A c(v)eU (v)

1
2δ2−2δ+2

∑
v∈V (L6[M ]) c(v)

,

= avecc(L
6[M ]). (4.3.9)

Now, c′(ei) ≥ 1 for all ei in M . Applying (4.3.9), Lemma 4.2.2 and Theorem 1.4.18(c), we

have that

avecc(L
6[M ]) = avecc′(L

6[M ]) ≤ avec(PdN∗e) ≤
3dN∗e

4
− 1

2
.

To bound avec(T ), we apply the inequalities in (4.3.3), (4.3.7) and (4.3.8) in conjunction

with the fact that N∗ = n
2δ2−2δ+2

.

avec(T ) ≤ avecc(T ) + 5,

≤ avecc(L) + 6,

≤ 6avecc(L
6[M ]) + 11,

≤ 6
(3dN∗e

4
− 1

2

)
+ 11,

=
9

2
dN∗e+ 8

=
9

2

⌈ n

2δ2 − 2δ + 2

⌉
+ 8..

This completes the proof of Theorem 4.3.1.

We now prove that for δ − 1 a prime power. the above bound in Theorem 4.3.1 is sharp

apart from the additive constant. This is shown in the next theorem.

Theorem 4.3.2. If δ − 1 is a prime power, then there exists an infinite family of graphs

of girth at least 6, G, with n vertices and minimum degree δ such that

avec(G) ≥ 9n

2κδ.
− 5, (4.3.10)

where κδ := 2(δ2 − δ + 1).

To prove this theorem, we let H∗q+1 be the graph described in Example 2.3.5.
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Recall that H∗q+1 be the graph whose vertices are the 1-dimensional and 2-dimensional

subspaces of GF (q)3 . Let U be the set of all 1-dimensional subspaces of GF (q)3 and V

be the set of all 2-dimensional subspaces of GF (q)3. Two vertices, 〈w〉 ∈ U and 〈u, v〉 ∈ V
are said to be adjacent in H∗q+1 if and only if 〈w〉 is contained in 〈u, v〉.

By Claim 2.3.6, H∗q+1 has girth 6 and contains no 4-cycle. H∗q+1 has 2(q2 + q+ 1) vertices,

each vertex is of degree q+ 1. Moreover for any two vertices of u and v of H∗q+1, it is easy

to verify that dH∗q+1
(u, v) ≤ 3 and so diam(H∗q+1) = 3.

Let u ∈ V (H∗q+1) be a fixed vertex of H∗q+1 and let v be a neighbour of u. Let He be the

graph H∗q+1 − uv.

By Claim 2.3.6(f), we have that for any two vertices, k and l, of He, dHe(k, l) ≥ 5 and so

diam(He) ≥ 5. He has 2(q2 + q + 1) vertices and minimum degree δ.

Let G∗k,δ be the graph obtained from the union of k − 2 copies of H2,H3, . . . ,Hk−1 of He

and two copies H1 and Hk by adding the edges v(i)u(i+1) for every (1 ≤ i < k) where ui

and vi are the vertices of Hi corresponding to the vertices u and v, respectively of H∗q+1.

Since G∗k,δ is the graph obtained from the union of both He and H∗q+1, we have by Claim

2.3.6 (a and c) that G∗k,δ is bipartite, contains no 4-cycle and has of girth at least 6.

Moreover, since both H∗q+1 and He have 2(q2 + q + 1) vertices, we have that there are

2k(q2 + q + 1) vertices in G∗k,δ. The degree of vertices of G∗k,δ is either q + 1 or q + 2,

hence the minimum degree of G∗k,δ is δ = q+ 1. Therefore, q = δ− 1 is a prime power and

n = |V (G∗k,δ)| = 2k(q2 + q + 1) = 2k(δ2 − δ + 1).

In order to bound the average eccentricity of G∗k,δ from below choose vertices u∗ of H1

and v∗ of Hk with d(u∗, v1) = d(uk, v∗) = 3. Since H∗q+1 has girth at least 6, the distance

between u(i) and v(i) in Hi is at least 5 for i = 2, 3, . . . , k − 1. Clearly diam(G∗k,δ) =

d(u∗, v∗) ≥ 6k − 5 = 3n
δ2−δ+1

− 5.

If w ∈ V (Hi), then e(w) = d(w, v∗) ≥ d(vi, v∗) = 6(k − 1 − i) + 4 if i ≤ k
2 , and e(w) ≥

d(w, u∗) ≥ d(ui, v∗) = 6(i− 2) + 4 if i > k
2 . Hence

eHi(w) ≥

6(k − i)− 2 if 1 ≤ i ≤ k
2 ,

6(i− 1)− 2 if k
2 + 1 ≤ i ≤ k,



Section 4.3. Main Results Page 83

and so,

EX(G∗k,δ) =

k/2∑
i=1

∑
w∈V (Hi)

e(w) +

k∑
i=k/2+1

∑
w∈V (Hi)

e(w)

≥
k/2∑
i=1

2(δ2 − δ + 1)
[
6(k − i)− 2

]
+

k∑
i=k/2+1

2(δ2 − δ + 1)
[
6(i− 1)− 2

]
= 2(δ2 − δ + 1)(

9

2
k2 − 5k).

Since n = 2k(δ2 − δ + 1), division by n yields that

avec(G∗k,δ) ≥
2(δ2 − δ + 1)(9

2k
2 − 5k)

2k(δ2 − δ + 1)
=

9

2
k − 5 =

9n

4(δ2 − δ + 1)
− 5,

as desired.

4.3.2 Bounds on Average Eccentricity of (C4, C5)-Free Graphs.

If we relax the condition of G having girth at least 6 to the weaker condition that G

contains no 4-cycle and 5-cycle as subgraphs, we show in the next theorem that a very

slightly weaker version of the bound on average eccentricity of graphs of girth at least 6

holds.

Theorem 4.3.3. Let G be a connected (C4, C5)-free graph of order n and with minimum

degree δ ≥ 2. Then, G has a spanning tree T with

avec(T ) ≤ 9

2

⌈ n

2δ2 − 5δ + 5 + 2εδ

⌉
+ 8, (4.3.11)

where

εδ =

1 if δ is odd,

0 if δ is even.

Proof. The proof of this theorem follows essentially the same way as that of Theorem 4.3.1

except for little modification.

We start by finding a maximal matching, M
′
, of G using the procedure described below:

Choose an arbitrary edge f1 = vivi+1 ∈ E(G) and let M
′

= {f1}. Let V (M
′
) be the set

of vertices incident with some edge of M
′
. Let dG(e, V (M

′
)) and N≤2(v) be as defined

in the proof of Theorem 4.3.1. If there exists an edge f2 in G with dG(f2, V (M
′
)) = 5,

add f2 to M
′
. Subsequently, add edges fi with dG(fi, V (M

′
)) = 5 to M

′
until each of the

edges not in M
′

is within distance four of M
′
. Thus M

′
= {f1, f2, · · · ft} where |M ′ | = t.

For i ∈ {1, 2, . . . , t} let fi = viui. Let T ∗fi be a subtree of G with vertex set N≤2(vi) ∪
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N≤2(ui) that preserves the distance to {viui}.

Let T = ∪fi∈M ′T
∗
fi

. Then, T ≤ G is a subforest of G with a vertex set N≤2[V (M
′
)].

By our construction of M
′
, there exist |M ′ | − 1 edges in G, each one joining two distinct

components of T , whose addition to T yields a tree T ∗ ≤ G, which contains T and has

the same vertex set as T .

Now, each vertex x ∈ V (G) − V (T ∗) is within distance five of some vertex y in V (T ∗).
Let T ≥ T ∗ be a spanning tree of G in which dT (u, V (M

′
)) = dG(u, V (M

′
)) for each

u ∈ V (G). Since taking a spanning tree or removal of an edge, which is not a bridge, does

not decrease the eccentricity or average eccentricity, and we have avec(G) ≤ avec(T ), it

suffices to show that

avec(T ) ≤ 9

2

⌈ n

2δ2 − 5δ + 5 + 2εδ

⌉
+ 8. (4.3.12)

For every vertex v ∈ V (T ), let vM ′ be a vertex in V (M
′
) closest to v in T . The tree,

T , can be viewed as a weighted tree where each vertex has weight exactly 1. We now

move the weight of every vertex to the closest vertex in V (M
′
), that is, we define a weight

function c′ : V (T )→ N ∪ {0} by:

c′(v) = |{w ∈ V (M
′
) | wM ′ = v}| for v ∈ V (T ).

Since the weight of each vertex was moved over a distance not exceeding four, we have

that dT (w,wM ′ ) ≤ 5 and so

avec(T ) ≤ avecc′(T ) + 5. (4.3.13)

Clearly, the weight c′ is concentrated only on the vertices of V (M
′
). To ensure that the

weights are now concentrated on the edges of T , we consider the line graph L = L(T ) and

define a new weight function c′ on V (L) = E(T ) by

c′(vivi+1) =

c′(vi) + c′(vi+1) if vivi+1 ∈ M
′
,

0 if vivi+1 /∈ M
′
.

Let vivi+1 ∈M
′
. For each vertex w ∈ N≤2(vi)∪N≤2(vi+1), we have that wM ′ ∈ {vi, vi+1}.

Hence,

c′(vi) + c′(vi+1) ≥ |N≤2(vi) ∪N≤2(vi+1)|.

Since G is a (C4, C5)-free graph, we have by Lemma 2.3.9 that

|N≤2(vi) ∪N≤2(vi+1)| ≥ 2δ2 − 5δ + 5 + 2εδ,
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and so we have that

c′(vivi+1) ≥ 2δ2 − 5δ + 5 + 2εδ for vivi+1 ∈M
′
. (4.3.14)

Note that c′(vivi+1) = 0 if vivi+1 /∈M
′

and
∑

f∈M ′ c
′(vivi+1) =

∑
v∈V (T ) c(v) = n.

Let y, z ∈ V (T ) and let PT be the (y, z)-path in T . If ey, ez, are edges of T incident with

y and z respectively, then

dT (y, z) ≤ dL(ey, ez) + 1, (4.3.15)

following a similar argument as in the proof of Claim 1 of Theorem 4.3.1.

By letting v to be an eccentric vertex of w for any v, w ∈ V (T ), we have that eT (w) =

dT (v, w). If ew ∈ E(T ) is an edge incident with w, then we have by (4.3.15) that dT (v, w) ≤
dL(ev, ew) + 1. Hence, eT (w) ≤ eL(ew) + 1. Consequently, we have that∑

v∈V (T )

eT (v)c′(v) =
∑

vivi+1∈M ′
[eT (vi)c

′(vi+1) + eT (vi)c
′(vi+1)],

≤
∑

vivi+1∈M ′
c′(vivi+1)

(
eL′ (vivi+1) + 1

)
,

=
∑
f∈M ′

c′(f)eL(f) +
∑
f∈M ′

c′(f).

It follows immediately from above that EXc′(T ) ≤ EXc′(L) +
∑

f∈M ′ c
′(f).

Since
∑

f∈M ′ c
′(f) =

∑
v∈V (T ) c

′(v) and avec(G) = EXc′(G)/
∑

v∈V (T ) c
′(v), we have that

avecc′(T ) ≤ avecc′(L) + 1. (4.3.16)

Consider two matching edges f1, f2. If the distance dT (f1, f2) between f1, f2 in M
′

equals

five, then dL(f1, f2) ≤ 6. Let U ′ be the subgraph of L6 induced by M
′
, that is U ′ = L6[M

′
].

Clearly U ′ is connected and for all pairs f, g ∈M ′
,

dL(f, g) ≤ 6dU ′(f, g).

Now, for every f ′ ∈ V (L) = E(T ), there exists an edge g′ such that dL(f ′, g′) ≤ 5, and so

for every f ∈M ′
, we have that eL(f) ≤ 6eU ′(f) + 5. Hence,

avecc′(L) ≤ 6avecc′(U
′) + 5. (4.3.17)

Recall that for all edges in M
′
, c′(f) ≥ 2δ2 − 5δ + 5 + 2εδ and since n =

∑
f∈M ′ c

′(f) =∑
v∈V (T ) c

′(v), we have that |M ′ |(2δ2−5δ+5+2εδ) ≤ n and so |M ′ | ≤ n/(2δ2−5δ+5+2εδ).
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We normalise the weight on the vertices of U ′, by defining a new weight, c, by

c(v) = c′(v)/(2δ2 − 5δ + 5 + 2εδ).

Clearly c′ ≥ 1 for all u ∈ V (U ′) and

∑
v∈V (U ′)

c(v) =
1

2δ2 + 5δ + 5 + 2εδ

∑
v∈U ′

c′(v) =
n

2δ2 + 5δ + 5 + 2εδ
.

Letting N∗ =
∑

v∈V (U ′) c(v), we have that N∗ = n
2δ2+5δ+5+εδ

and |M ′ | ≤ N∗. We have

that avecc(U
′) = avecc′(U

′), since

avecc(U
′) =

EXc(U
′)∑

v∈V (U ′) c(v)
,

=
1

2δ2 + 5δ + 5 + 2εδ

∑
v∈M ′

c′(v)eU ′(v)
/ 1

2δ2 + 5δ + 5 + 2εδ

∑
v∈V (U ′)

c′(v),

= avecc′(U
′). (4.3.18)

Clearly, c(fi) ≥ 1 for all fi in M
′
. Applying (4.3.18), Lemma 4.2.2, and Theorem 1.4.18(c),

we have that

avecc(U
′) = avecc′(U

′) ≤ avec(PdN∗e) ≤
3dN∗e

4
− 1

2
.

Next, we bound avec(T ) by applying the inequalities in (4.3.13), (4.3.16) and (4.3.17) in

conjuction with the fact that N∗ = n
2δ2+5δ+5+2εδ

.

avec(T ) ≤ avecc′(T ) + 5,

≤ avecc′(L) + 6,

≤ 6avecc′(L
6[M

′
]) + 11,

≤ 6
(3dN∗e

4
− 1

2

)
+ 11,

=
9

2
dN∗e+ 8

=
9

2

⌈ n

2δ2 + 5δ + 5 + 2εδ

⌉
+ 8.

Therefore, Theorem (4.3.3) holds since avec(G) ≤ avec(T ).
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4.3.3 Average Eccentricity, Maximum and Minimum Degree

In the previous section, we gave bounds on the average eccentricity of graphs of girth at

least 6 and connected (C4, C5)-free graphs of given order and minimum degree. We saw

from the sharpness example of the bound that the degree of each vertex is close to the

minimum degree. That is an indication that the bounds can be improved if the graph

under consideration contains a vertex of large degree. Herein, we show that the bounds

for connected C4-free graphs can be improved by a factor of about 3/5 if the graph has

girth at least 6. We also give corresponding bound for graphs containing neither 4-cycle

or 5-cycle. Moreover, we construct graphs to show that our bound for connected graphs

of girth at least 6 is best possible in the sense that the coefficient of n in the bound is best

possible, and the minor order term
√
n is of the right order of magnitude.

4.3.3.1 Bounds on Average Eccentricity, Minimum Degree and Maximum

Degree of Graphs of girth at least 6

We begin by presenting our result on the average eccentricity of connected graphs of girth

at least 6 of given order, minimum degree and maximum degree. The technique used

throughout this section is a modification of that used in previous sections, it follows the

approach taken in [37].

Theorem 4.3.4. Let G be a graph of girth at least 6 with n vertices, minimum degree

δ ≥ 2, and maximum degree ∆. Then,

avec(G) ≤ n− κ∆

2κδ

[9n+ 3κ∆

n

]
+ 21 (4.3.19)

where κ∆ := ∆δ + (δ − 1)
√

∆(δ − 2) + 3
2 and κδ := 2(δ2 − δ + 1). This bound is sharp

apart from the value of the additive constant.

Proof. Let v1 be a vertex of degree ∆ and let e1 be an edge incident with v1. We obtain

a maximal matching M of G as follows. Let M = {e1}. Let V (M) be the set of vertices

incident with an edge of M . Recall that for an edge e, dG(e, V (M)) is the minimum of

the distances between a vertex incident with e and a vertex in V (M). If there exists an

edge e2 with dG(e2, e1) = 6, add e2 and let M0 = {e2}. If there exists an edge e3 with

(i) dG(e3, e1) ≥ 6

(ii) dG(e3, e2) ≥ 5 and

(iii) we have equality in (i) or (ii) or both,

then we add e3 to M0. Repeat this process: Let M0 = {e2, e3, . . . , ei−1}. If there exists

an edge ei satisfying
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(a) dG(ei, e1) ≥ 6

(b) min{dG(ei, ej) | j = 2, 3, . . . , i− 1} ≥ 5, and

(c) we have equality in (a) or (b) or both,

then add ei to M0. We repeat this process until, after k steps say, no further edge can be

added to M0. Let M = {e1} ∪M0, so M = {e1, . . . , ek} and |M | = k. Then every edge

not in M is within distance 5 of an edge in M .

Let T ∗v1
be a tree with vertex set N≤3(v1) which is distance preserving from v1. For

i ∈ {1, 2, . . . , k} let ei = uivi. Let T ∗ei be a subtree of G with vertex set N≤2(ui)∪N≤2(vi)

that preserves the distance to {uivi}.

Let T1 = T ∗v1
∪
⋃

ei∈M
T ∗ei . Then, T1 ≤ G is a subforest of G with vertex set, N≤3(v1) ∪

N≤2

(
V (M) − {v1}

)
. By our construction of M , there exists |M | − 1 edges in G, each

joining two distinct components of T1, whose addition to T1 yields a tree T2 ≤ G, so that

T2 contains T1 and has the same vertex set as T1.

Now, each vertex v ∈ V (G)−V (T2) is within distance five of some vertex w in V (M) closest

to it. Let T ≥ T2 be a spanning tree of G containing T2 and distance preserving from

V (M), i.e. dT (x, V (M)) = dG(x, V (M)) for each x ∈ V (G). Clearly, tree T has the same

maximum degree as G since degT(v1) = degG(v1). Furthermore, since avec(G) ≤ avec(T ),

it suffices to prove the bound for T .

For every vertex u ∈ V (T ), let uM be a vertex in V (M) closest to u in T . We can view T as

a weighted tree where each vertex has weight exactly 1. We now move the weight of every

vertex to the closest vertex in V (M), by defining a new weight function c : V (T )→ N∪{0}
by:

c(u) = |{x ∈ V (M) | xM = u}| for u ∈ V (T ).

Note that c(u) = 0 if u /∈ V (M) and
∑

u∈V (M) c(u) = n, where n is the order of G.

Since the weight of each vertex was moved over a distance not exceeding six, we have that

dT (x, xM ) ≤ 6 and |eT (x)− eT (xM )| ≤ 6. Hence,

avec(T ) =
1

n

∑
x∈V (T )

eT (x),

≤ 1

n

∑
x∈V (T )

(eT (xM ) + 6),

≤
( 1

n

∑
u∈V (M)

c(u)eT (u)
)

+ 6,

≤ avecc(T ) + 6. (4.3.20)
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Clearly the weight of c is concentrated on the vertices incident with an edge of M . To

ensure that the weights are concentrated on the edges of T , we consider the line graph

L = L(T ) and define a new weight function c on V (L) = E(T ) by

c(wz) =

c(w) + c(z) if wz ∈ M,

0 if wz /∈ M.

Let wz ∈M − {e1}. For each vertex x ∈ N≤2(w) ∪N≤2(z), we have xM ∈ {w, z}. Hence

c(w) + c(z) ≥ |N≤2(w) ∪N≤2(z)|.

By Lemma 2.3.2, we have

|N≤2(w) ∪N≤2(z)| ≥ (δ − 1)
(
deg(w) + deg(z)

)
+ 2 ≥ 2(δ2 − δ + 1) (4.3.21)

and so we have that

c(wz) ≥ 2δ2 − 2δ + 2 for wz ∈M − {e1}. (4.3.22)

On the other hand, let e1 := v1w. For each vertex x ∈ N≤3(v1), we have xM ∈ {v1, w}.
Hence,

c(v1) + c(w) ≥ |N≤3(v1)|.

By Lemma 3.2.1, we have

|N≤3(v1)| ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
. (4.3.23)

and so we have that

c(e1) = c(v1w) ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
. (4.3.24)

Note that c(wz) = 0 if wz /∈M and
∑

e∈M c(e) =
∑

u∈V (T ) c(u) = n. It follows that

n ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
+

∑
x∈M−{e1}

(2δ2 − 2δ + 2),

= ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
+ (2δ2 − 2δ + 2)(|M | − 1),

and rearranging yields

|M | ≤
n−

[
∆δ + (δ − 1)

√
∆(δ − 2) + 3

2

]
2δ2 − 2δ + 2

+ 1. (4.3.25)



Section 4.3. Main Results Page 90

Following a similar argument as in the proof of Theorem 4.3.1 (See Claim 1), we have that

|dT (x, y) − dL(ex, ey)| ≤ 1 where L is the line graph of T , ex, ey ∈ E(T ) are edges of T

incident with x and y respectively. Hence, if u is a vertex of G, v an eccentric vertex of u,

and eu and ev are edges incident with u and v, respectively, then

eT (u) = dT (u, v) ≤ dL(eu, ev) + 1 ≤ eL(eu) + 1.

Summation over all the vertices of T yields that∑
v∈V (T )

eT (v)c(v) =
∑
uv∈M

[eT (u)c(u) + eT (v)c(v)],

≤
∑
uv∈M

c(uv)
(
eL(uv) + 1

)
,

=
∑
e∈M

c(e)eL(e) +
∑
e∈M

c(e),

It follows immediately from the above that

EXc(T ) ≤ EXc(L) +
∑
e∈M

c(e),

and since
∑

e∈M c(e) =
∑

v∈V (T ) c(v) = n and avec(G) = EXc(G)/
∑

v∈V (T ) c(v), we have

that

avecc(T ) ≤ avecc(L) + 1. (4.3.26)

If f1, f2 are two matching edges in M with dT (f1, f2) = 5, then dL(f1, f2) ≤ 6. Now the

weights lie solely on M . Let H be the graph obtained from L6[M ] by joining e1 to every

ei in M for which dL(e1, ei) ≤ 7. Such edges exist since by construction of M we have

that dT (e1, e2) = 6 and thus dL(e1, e2) ≤ 7. Essentially the same argument as in the proof

of Theorem 4.2.3) shows that H is connected.

Let e, f ∈M and let P be a shortest path from e to f in H of length ` say. First assume

that P does not pass through e1. Then each edge of P yields a path in L of length 6, so

P yields a path from e to f of length at most 6`. Now assume that P passes through e1.

Then each edge on P not incident with e1 yields a path of of length at most 6 in L, while

each edge of P incident with e1 yields a path of length at most 7 in L. Since P has at

most two edges incident with e1, P yields a path of length at most 6`+ 2. Hence

dL(e, f) ≤ 6dL6[M ](e, f) + 2 for every e, f ∈M.

Now, for every e′ ∈ V (L) = E(T ), there exists an edge f ′ ∈ M such that dL(e′, f ′) ≤ 6,
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so that eL(f) ≤ 6eL6[M ](f) + 6 for every f ∈M . Hence,

avecc(L) ≤ 6avecc(L
6[M ]) + 8. (4.3.27)

We now modify the weight function c to obtain a new weight function c′ on M for which

c′(e) ≥ 1 for all e ∈M .

For e ∈M − {e1}, we define

c′(e) =
c(e)

2δ2 − 2δ + 2
,

and

c′(e1) =
c(e1)−

[
∆δ + (δ − 1)

√
∆(δ − 2) + 3

2

]
+ (2δ2 − 2δ2 + 2)

2δ2 − 2δ2 + 2
.

Since c(e1) ≥ ∆δ + (δ − 1)
√

∆(δ − 2) + 3
2 and c(e) ≥ 2δ2 − 2δ2 + 2 for e ∈M − {e1}, we

have that c′(ei) ≥ 1 for all ei ∈M . Furthermore,

∑
v∈V (L6[M ])

c′(v) =
[ 1

2δ2 − 2δ + 2

∑
e∈M−{e1}

c(e)
]

+ c′(e1)

=
1

2δ2 − 2δ + 2

[ ∑
e∈M

c(e)−
(

∆δ + (δ − 1)
√

∆(δ − 2) +
3

2

)]
+ 1

=

∑
v∈V (T ) c(v)−

(
∆δ + (δ − 1)

√
∆(δ − 2) + 3

2

)
+ (2δ2 − 2δ2 + 2)

2δ2 − 2δ + 2
.

Letting N∗ =
∑

v∈V (L6[M ]) c
′(v), we have that N∗ =

n−
(

∆δ+(δ−1)
√

∆(δ−2)+ 3
2

)
+(2δ2−2δ2+2)

2δ2−2δ+2

and |M | ≤ N∗. We now express avecc(L
6[M ]) in terms of avecc′(L

6[M ]).

Let κ∆ := ∆δ + (δ − 1)
√

∆(δ − 2) + 3
2 and κδ := 2δ2 − 2δ2 + 2, then

avecc′(L
6[M ]) =

EXc′(L
6[M ])∑

v∈V (L6[M ]) c
′(v)

,

=

1
κδ

[∑
u∈M−{e1} c(u)eL6[M ](u) + (c(e1)− κ∆ + κδ)eL6[M ](e1)

]
N∗

,

=
EXc(L

6[M ]) + (κδ − κ∆)eL6[M ](e1)

n− κ∆ + κδ
,

=

∑
v∈V (T ) c(v)

n− κ∆ + κδ
avecc(L

6[M ]) +
(κδ − κ∆)eL6[M ](e1)

n− κ∆ + κδ
,

=
n

n− κ∆ + κδ
avecc(L

6[M ]) +
(κδ − κ∆)eL6[M ](e1)

n− κ∆ + κδ
,

and rearranging, we have that

avecc(L
6[M ]) =

n− κ∆ + κδ
n

avecc′(L
6[M ]) +

(κ∆ − κδ)
n

eL6[M ](e1) (4.3.28)

We now bound the two terms on the right hand side of (4.3.28) separately. Since L6[M ]
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has order |M | and since |M | ≤ n−κ∆+κδ
κδ

, we have

eL6[M ](e1) ≤ diam(L6[M ]) ≤ |M | − 1 ≤ n− κ∆

κδ
. (4.3.29)

Now, c′(ei) ≥ 1 for all ei in M . Applying (4.3.9), Lemma 4.2.2 and Theorem 1.4.18(c), we

have that

avecc′(L
6[M ]) ≤ avec(PdN∗e) ≤

3dN∗e
4
− 1

2
.

Since dN∗e = dn−κ∆+κδ
κδ

e < n−κ∆
κδ

+ 2, we have that

avecc′(L
6[M ]) ≤ avec(PdN∗e) <

3

4

[n− κ∆

κδ
+ 2
]
− 1

2
=

3(n− κ∆)

4κδ
+ 1. (4.3.30)

Substituting (4.3.29) and (4.3.30) in (4.3.28), we have that

avecc(L
6[M ]) <

n− κ∆ + κδ
n

(3(n− κ∆)

4κδ
+ 1
)

+
κ∆ − κδ

n

n− κ∆

κδ
,

=
(n− κ∆

n
+
κδ
n

)(3n− 3κ∆ + 4κδ
4κδ

)
+
κ∆ − κδ

n

n− κ∆

κδ
,

=
(n− κ∆

n

)(3n− 3κ∆ + 4κδ
4κδ

)
+

3n− 3κ∆ + 4κδ
4n

+
κ∆ − κδ

n

n− κ∆

κδ
,

=
n− κ∆

n

(3n− 3κ∆ + 4κδ
4κδ

+
κ∆ − κδ
κδ

)
+

3n− 3κ∆ + 4κδ
4n

,

≤ n− κ∆

n

(3n+ κ∆

4κδ

)
+ 1. (4.3.31)

Applying the inequalities in (4.3.20), (4.3.26), (4.3.27) and (4.3.31), we obtain a bound on

avec(T ), as follows

avec(T ) ≤ avecc(T ) + 6,

≤ avecc(L) + 7,

≤ 6avecc(L
6[M ]) + 15,

< 6
[n− κ∆

n

(3n+ κ∆

4κδ

)
+ 1
]

+ 15,

=
n− κ∆

2κδ

9n+ 3κ∆

n
+ 21.

Thus, we have proved Theorem (4.3.4).

Theorem 4.3.5. Let δ ≥ 3 be an integer such that δ − 1 is a prime power. Then for

n,∆ ∈ N , there exists infinitely many values of ∆ for which there exists infinitely many

values of n such that there exists a graph of girth at least 6 F ∗`,δ,∆ with n vertices, minimum

degree δ and maximum degree ∆ whose average eccentricity satisfies
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avec(F ∗`,δ,∆) ≥ n− κ∆

2κδ

9n+ 3κ∆

n
−O(

√
∆), (4.3.32)

where κδ := 2δ2 − 2δ + 2 and κ∆ := ∆δ + (δ − 1)
√

∆(δ − 2) + 3
2 .

To prove this theorem, we make use of the graph described in Example 3.2.6. For the

readers convenience, we briefly recall its construction here.

Proof. Let q = δ − 1 be a prime power and m ∈ N with m ≥ 4. Recall from Section 3.2.2

(Theorem 3.2.10), there exists a connected graph of girth at least 6 Fm,δ,∆ whose order n

satisfies ∆δ + (δ − 1)
√

∆(δ − 2) + 3
2 ≤ n(Fm,δ,∆) ≤ 2 + δ∆ + (δ + 1)

√
∆(δ − 2). Fm,δ,∆

has of girth at least 6, minimum degree δ and maximum degree ∆ = (qm−1)(qm−1−1)
(q2−1)(q2−q) − 1

q .

Let u1 ∈ Fm,δ,∆ be a vertex of maximum degree, viz z, and let v1 be any vertex of Fm,δ,∆

that is not of degree ∆. Without loss of generality, we let v1 ∈ Y as defined there.

Now let ` ∈ N with ` ≥ 2. Consider the graph G∗k,δ constructed in the proof of Theorem

4.3.2, and let H1 be a copy of Fm,δ,∆ and H2, . . . ,Hl as defined there. Denote the resulting

graph by F ∗`,δ,∆. The sketch of the graph F ∗`,δ,∆ in Figure 3.2 is reproduced in Figure 4.3

below.

v1u1

Fm,δ,∆

H∗q+1 − e H∗q+1 − e H∗q+1 − e H∗q+1

Figure 4.3: The graph F ∗5,δ,∆.

By Claim 2.3.6, graph Hi (for 2 ≤ i ≤ l) has κδ := 2(q2 + q + 1) vertices and so for the

order n of F ∗`,δ,∆, we have that

n = |V (F ∗`,δ,∆| = n(H1) + (`− 1)κδ. (4.3.33)

In subsequent calculations, we denote the order of H1 of F ∗`,δ,∆ as ω∆. F ∗`,δ,∆ is bipartite,

C4-free, has girth at least 6, minimum degree δ, maximum degree ∆. As shown in Theorem

3.2.12, the diameter of F ∗`,δ,∆ is d(u1, v`) = 6` − 3. Moreover, by Section 3.2.2 (Theorem
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3.2.10) we have that

κ∆ ≤ ω∆ ≤ κ∆ + 2
√

∆(δ − 2) +
1

2
. (4.3.34)

We now bound the average eccentricity of F ∗`,δ,∆. Let ` be even since for odd ` the proof

is similar. If w ∈ V (Hi), i ≤ `
2 , then e(w) ≥ d(w, v`) ≥ d(vi, v`) = 6(` − 1 − i) + 4. If

w ∈ V (Hi), i >
`
2 , then we have e(w) = d(w, u1) ≥ d(ui, u1) = 6(i− 2) + 4. Hence,

eHi(w) ≥

6(`− i)− 2 if 1 ≤ i ≤ `
2 ,

6(i− 1)− 2 if `
2 + 1 ≤ i ≤ `,

and so we have,

EX(F ∗`,δ,∆) =

`/2∑
i=1

∑
w∈V (Hi)

e(w) +
∑̀

i=`/2+1

∑
v∈V (Hi)

e(v),

≥ eH1(u)ω∆ +

`/2∑
i=2

∑
w∈V (Hi)

e(w) +
∑̀

i=`/2+1

∑
v∈V (Hi)

e(v),

≥ (6`− 8)ω∆ +
( `/2∑
i=1

κδ[6(`− i)− 2]
)

+
( ∑̀
i=`/2+1

κδ[6i− 8]
)
,

= (6`− 8)ω∆ + κδ

(9`2

2
− 11`+ 8

)
,

= (6`− 8)(n− (`− 1)κδ) + κδ

(9`2

2
− 11`+ 8

)
,

= (6`− 8)n− κδ
(3`2

2
− 3`

)
.

Now ` = n−ω∆
κδ

+ 1 by (4.3.33). Substituting this and dividing by n yields, after simplifi-

cation,

avec(F ∗`.δ,∆) ≥ n− ω∆

2κδ

9n+ 3ω∆

n
− 2 +

3κδ
2n

>
n− ω∆

2κδ

9n+ 3ω∆

n
− 2.

Now let ε = ω∆ − κ∆. Replacing ω∆ by κ∆ + ε in the above lower bound, we obtain

avec(F ∗`,δ,∆) >
n− κ∆ − ε

2κδ

9n+ 3κ∆ + 3ε

n
− 2

=
n− κ∆

2κδ

9n+ 3κ∆

n
− ε

2κδn
(6n+ 6κ∆ + 3ε)− 2.

Since 6n + 6κ∆ + 3ε ≤ 12n, and since 0 ≤ ε ≤ 2
√

∆(δ − 2) + 1
2 by (4.3.34) we have, for
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constant δ and large n and ∆,

avec(F ∗`,δ,∆) >
n− κ∆

2κδ

9n+ 3κ∆

n
−O(

√
∆),

=
9(n− κ∆)

2κδ
+
n− κ∆

2κδ

3κ∆

n
−O(

√
∆),

as desired in Theorem 4.3.5.

Theorem 4.3.4 generalises Theorem 4.3.1 in the sense that it implies (by setting ∆ = δ) a

bound that differs from Theorem 4.3.1 only by having a weaker additive constant.

The next theorem shows that slightly weaker bounds hold for graphs containing no cycles

of length 4 or 5-cycle as subgraphs. We omit the proof, since it is very similar to the proof

of Theorem 4.3.4 except for little modification. We do not know if this bound is sharp

Theorem 4.3.6. Let G be a connected (C4, C5)-free graph with n vertices, minimum

degree δ ≥ 2, maximum degree ∆. Then,

avec(G) ≤ n− τ∆

2τδ

9n+ 3τ∆

n
+ 21. (4.3.35)

where τ∆ := ∆(δ − 1) + (δ − 2)
√

∆(δ − 3) + 3
2 , τδ := 2δ2 − 5δ + 5 + 2εδ and

εδ =

1 if δ is odd,

0 if δ is even.



Chapter 5

Upper Bounds on the Average Distance

of Graphs of Girth at least 6 and

Connected (C4, C5)-Free Graphs.

5.1 Introduction

In this Chapter, we give bounds on the average distance of graphs with girth at least 6 as

well as connected (C4, C5)-free graphs, taken into account the minimum degree and the

order of the graphs. To achieve this goal, we adapt the approach given in [30]. Moreover,

we show that the bounds are asymptotically sharp apart from additive constants. In

addition, we give upper bounds on the average distance of connected graphs, triangle-free,

C4-free graphs, graphs of girth at least 6 and (C4, C5)-free graphs that take into account

not only order and minimum degree, but also maximum degree.

5.2 Preliminary Results

The following definition and lemma will be very useful in proving our results.

Definition 5.2.1. [30] Let G be a weighted graph with weight function c : V (G) → R+,

then the distance of G with respect to c and average distance of G with respect to c is

defined by

σc(G) =
∑

{x,y}⊂V (G)

c(x)c(y)dG(x, y),

and

µc(G) =

(
N

2

)−1

σc(G),

respectively, where N =
∑

x∈V (G) c(x) is the total weight of the vertices in G.

It was proved in [50], [45] and [72] that the average distance of a connected graph of order

n is maximised by the path. The following lemma generalises this fact. The proof given

follows the proof in [30], but is simplified slightly.

Lemma 5.2.2. [30] Let G be a weighted graph with a weight function c : V (G) → R≥0

and let k,N be positive integers, N a multiple of k such that c(v) ≥ k for every vertex v

96
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of G and
∑

v∈V (G) c(v) ≤ N . Then

µc(G) ≤ N − k
N − 1

N + k

3k
.

Equality holds if and only if G is a path and c(v) = k for every v ∈ V (G).

Proof. We prove the equivalent statement

σc(G) ≤ N(N − k)(N + k)

6k
.

The proof is by induction on N/k. If N/k = 1, then N = k and c(v) = k. Thus, G has

only one vertex of weight k and the average distance of G equals zero. Hence let N > k.

Let G be a graph satisfying the hypothesis of the lemma such that σc(G) is maximum.

Then G is a tree. We note that the order of G is not specified in the statement of the

lemma, hence we denote the order of G by n. We now show that G is a path and one of

the end vertices has weight exactly k.

Claim 1: G is a path.

Suppose G is not a path, then there is a vertex of G whose degree is at least 3. Let u be

the vertex on G of degree at least three and let u1, u2, · · · , ud denote be the neighbours

of u. Let Gi and Ci denote the component of G − u containing ui and the total weight

of Gi respectively. Without loss of generality, we assume that C1 ≥ C2 ≥ · · · ≥ Cd.

Now consider the graph H with the same vertex weight function c defined by H = G −
uud + udud−1. By our definition of H, the distance from vertices in Gd to each vertex

in {u} ∪ V (G1) ∪ V (G2) ∪ · · ·V (Gd−2), have increased by one. On the other hand, the

distances between the vertices of Gd−1 and Gd have decreased by one. Hence the distance

of H with respect to c is given by

σc(H) = σc(G) + c(u)Cd + C1Cd + C2Cd + · · ·+ Cd−2Cd − CdCd−1,

= σc(G) + c(u)Cd + Cd(C1 + C2 + · · ·+ Cd−2 − Cd−1),

≥ σc(G) + c(u)Cd,

> σc(G),

contradicting our choice ofG since σc(G) is maximum. HenceG is a path, say, v1, v2, · · · , vn.

Claim 2: c(v1) = k or c(vn) = k.

By the statement of the Lemma, c(v) ≥ k for every vertex v of G. We consider two cases,

c(v1) ≥ 2k and c(v1) ≤ 2k− 1. First assume that c(v1) ≥ 2k, then we create a new vertex

v0 and join it to v1 and assign to v0 the weight k, and reduce the weight of v1 by k. Let G′

be the graph obtained from G by adding v0 and the edge v0v1. Clearly G′ has the same
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total weights as G and c(v0), c(v1), c(v2), · · · , c(vn) ≥ k. Thus,

σc(G
′) ≥ σc(G) + k

[
c(v1)− k + c(v2) + c(v3) + · · ·+ c(vn)

]
,

= σc(G) + k(N ′ − k),

= σc(G) + k(nk),

> σc(G).

The addition of the new vertex v0 and splitting the weight of v1 between v1 and v0 yielded

a graph with larger average distance, contradicting our choice of G. Hence, c(v1) ≤ 2k−1.

Similarly, we have that vn ≤ 2k − 1. Now suppose that c(v1), c(vn) ≥ k + 1. Let

vr ∈ V (G)− {v1} be the vertex closest to v1 with c(vr) > k. Define the weight function c

by

c(vi) =


c(v1) + 1 if i = 1,

c(vr)− 1 if i = r,

c(vi) otherwise.

By our definition, we have that

σc(G) = σc(G) + (r − 1)
[
c(vr)− 1 + c(vr+1) + · · ·+ c(vn)

]
− (r − 1)c(v1)

]
,

= σc(G) + (r − 1)
[
− c(v1)− 1 + c(vr) + c(vr+1) + · · ·+ c(vn)

]
,

= σc(G) + (r − 1)
[
− c(v1)− 1 +N − (c(v1) + c(v2) + · · ·+ c(vr−1))

]
,

= σc(G) + (r − 1)
[
− c(v1)− 1 +N − c(v1)− k(r − 2)

]
,

= σc(G) + (r − 1)
[
N − (r − 2)k − 2c(v1)− 1

]
.

Since σc(G) is maximum, we have that

N − (r − 2)k − 2c(v1)− 1 ≤ 0 ⇔ N ≤ (r − 2)k + 2c(v1) + 1,

=⇒ N ≤ (r − 2)k + 1 + 4k − 2 ⇔ N ≤ (r + 2)k − 1

=⇒ N ≤ (r + 1)k.

But N > nk =⇒ N ≥ (n + 1)k. Thus, (n + 1)k ≤ N ≤ (r + 1)k. Therefore r = n. This

means that the end vertex vn is the closest vertex to v1 with weight greater than k. Hence

each vertex except v1 and vn has weight exactly k.

Recall that c(v1) ≤ 2k−1 and c(vn) ≤ 2k−1. Thus c(v1)+c(vn) ≤ 4k−2 and c(v1)+c(vn) =

3k. Let c(v1) = x and c(vn) = 3k− x. We introduce a new vertex v0 to G and reduce the

weight of v1 and vn to k by shifting the difference to v0. Let G′′ be the graph obtained

from G by adding v0 and the edge v0v1. It suffices to show that G′′ is a graph with larger

average distance than G. Since c(v1) = x and c(vn) = 3k− x, then we are moving (x− k)
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and (2k− x) respectively from v1 and vn to v0. Now, c(v) = k for all vertices v of G′′ and

σc(G
′′) = σc(G) + (x− k)

[
nk
]

+ (2k − x)
[
nk
]
− (x− k)(2k − x)(n− 1),

= σc(G) + nk2 − (n− 1)(x− k)(2k − x).

Observe that n − 1 < n and (x − k) + (2k − x) = k. If (x − k) + (2k − x) = k, then

(x− k)(2k − x) ≤
(
k
2

)2
. Thus,

σc(G
′′) ≥ σc(G) + nk2 − nk2

4
,

= σc(G) +
n

4

(
3k2
)
,

= σc(G) +
nk

4

[
c(v1) + c(vn)

]
(since c(v1) + c(vn) = 3k),

> σc(G) +
N

4

[
c(v1) + c(vn)

]
(since N is a multiple of k and N > nk),

> σc(G).

Hence, G′′ is a graph with a larger average distance than G, contradicting our choice of G

since σc(G) is maximum. Therefore, our assumption that both c(v1) and c(vn) has weight

greater than k is false. Hence, G has at least one end vertex of weight k, that is, c(v1) = k

or c(vn) = k. This proves our claim.

Without loss of generality, let v1 be the end vertex with weight k. Let c be the vertex

weight function restricted to V (G)−{v1}. The total weight on V (G)−{v1} is N − k. By

the induction hypothesis,

σc(G− v1) ≤ (N − k)(N − k − k)(N − k + k)

6k
=

(N − k)(N − 2k)N

6k
.

Since σc(v1, G) is maximized subject to
∑

i≥2 c(vi) = n− k, if c(v2), c(v3), · · · , c(vn) = k,

we have that

σc(v1, G) =
n∑

vi∈V (G), i=2

c(vi)d(v1, vi),

= k[1 + 2 + 3 + · · ·+ n− 1],

< k
[
1 + 2 + 3 + · · ·+ N − k

k

]
(since N > nk),

=
N

2

N − k
k

.
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This yields in total

σc(G) = σc(G− v1) + kσc(v1, G),

≤ (N − k)(N − 2k)N

6k
+

1

2
N(N − k),

=
N(N − k)(N + k)

6k
,

as desired.

We now present a bound on the average distance of a connected graphs in terms of order

and minimum degree. The proof we give is an elaboration of the original proof.

Theorem 5.2.3. [30] Let G be a connected graph of order n and minimum degree δ. Then

(i) G has a spanning tree T with

µ(T ) ≤ n

δ + 1
+ 5.

(ii)

µ(G) ≤ n

δ + 1
+ 5.

(iii) The bounds in (i) and (ii) are sharp apart from an additive constant.

Proof. The proof is similar to the proof of Theorem (4.2.3).

(i) We find a maximal 2-packing, B, of G as follows. Choose an arbitrary vertex v1 of G

and let B = v1. If there exists a vertex vi in G with dG(vi, B) = 3, add vi to B. Add

vertices vi with dG(vi, B) = 3 to B until every vertex not in B is within distance two of

B. Thus B = {v1, v2, · · · vk}.

Let NG[B] denote the vertex set consisting of B and any vertex adjacent to B. Also, let

T1 be the subforest of G with vertex set NG[B] and whose edge set consists of all edges

incident with a vertex in B. Each component of T1 is a star with a vertex in B as the

center. By our construction of B, there exist |B| − 1 edges in G, each one joining two

neighbours of distinct vertices of B, whose addition to T1 yields a subtree T2 of G. Now,

each vertex u ∈ V (G)− V (T2) is adjacent to some vertex u′ ∈ V (T2).

Let T be a spanning tree of G with edge set E(T ) = E(T2) ∪ {uu′ : u ∈ V (G) − V (T2)}.
We now prove that

µ(T ) ≤ n

δ + 1
+ 5. (5.2.1)

For every vertex x ∈ V (T ), let xB be a vertex in B closest to u in T . We now move the

weight of every vertex to the closest vertex in B by defining the weight function as follows,
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c : V (T )→ R+ by

c(u) = |{x ∈ V (T ) | xB = u}| for u ∈ V (T ),

where c(u) = 0 if u /∈ B, c(u) ≥ δ + 1 for each u ∈ B and
∑

u∈B c(u) = n.

Since each vertex of T is within distance two of the nearest vertex in B, each weight

was moved over a distance not exceeding two and no distance between two weights have

changed by more than 4. Hence,

µ(T ) ≤ µc(T ) + 4.

Observe that the weight c is concentrated only on the vertices of B. Let T ′ = T 3[B].

Following a similar argument as in the proof of Claim 1 in Theorem 4.2.3, T ′ is connected.

Since B is a maximal 2-packing, we have that dT (u, v) ≥ 3 for all pairs u, v ∈ B. We also

have that dT (u, v) ≤ 3dT ′(u, v) for all pair of vertices u, v ∈ B and since V (B) = V (T ′),

we have that σc(T ) ≤ 3σc(T
′). Hence,

µc(T ) ≤ 3µc(T
′).

Recall that c(v) ≥ δ + 1 for all vertices v ∈ B. Let N be the least multiple of δ + 1 such

that
∑

v∈B c(v) = n ≤ N . By Lemma (5.2.2) we have

µc(T
′) ≤ N − δ − 1

N − 1

N + δ + 1

3(δ + 1)
≤ N + 1

3(δ + 1)
.

Combining these inequalities, in conjunction with N ≤ n+ δ, yields

µ(T ) ≤ µc(T ) + 4,

≤ 3µc(T
′) + 4,

≤ 3
( N + 1

3(δ + 1)

)
+ 4,

≤ n+ δ + 1

δ + 1
+ 4,

=
n

δ + 1
+ 5,

as desired.

(ii) Since the average distance of a spanning tree of G is not more than that the average

distance of G itself, the statement of (ii) holds.

(iii) Next we show that the bound is best possible apart from the value of the additive

constant. To show this, we consider the graph illustrated in [30]. For given integers, n, δ, k

with n = k(δ+1), let G1, G2, · · · , Gk be disjoint copies of the complete graph Kδ+1 and let
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uivi ∈ E(Gi). Let Gn,δ be the graph obtained from the union of G1, G2, · · · , Gk by deleting

the edges uivi for i = 2, 3, · · · , k − 1 and adding the edges ui+1vi for i = 1, 2, · · · , k − 1.

Gn,δ has order n and minimum degree δ.

For each v ∈ V (Gi), if w ∈ V (Gj) where i < j, we have that d(v, w) ≥ 1 + 3(j − i − 1).

Thus

∑
{v,w}⊂V (Gn,δ)

d(v, w) ≥
∑

1≤i<j≤k

(
1 + 3(j − i− 1)

)
(δ + 1)2 +

k∑
i=1

(
(δ + 1)

2

)
,

=
(
δ + 1

)2 ∑
1≤i<j≤k

[
3(j − i)− 2

]
+ k

δ(δ + 1)

2
,

=
(
δ + 1

)2 ∑
1≤i<j≤k

[
3(j − i)− 2

]
+ k

δ(δ + 1)

2
,

=
(
δ + 1

)2[
1/2(k3 − k)− k(k − 1)

]
+
k

2
δ(δ + 1),

=
1

2
(δ + 1)2

[
k3 − 2k2 + k

]
+
k

2
δ(δ + 1),

>
1

2
(δ + 1)2

[
k3 − 2k2

]
+
k

2
δ(δ + 1),

=
1

2
k(δ + 1)

[
k(δ + 1)(k − 2)

]
+ δ,

>
1

2
k(δ + 1)

[
k(δ + 1)(k − 2)

]
.

Since n = k(δ + 1), dividing by
(
n
2

)
yields

µ(Gn,δ) ≥
n2(k − 2)

n(n− 1)
,

≥ n2(k − 2)

n2
,

= k − 2,

=
n

δ + 1
− 2.

Therefore,

µ(Gn,δ) >
n

δ + 1
− 2.

Hence every spanning tree of Gn,δ has average distance greater than n/(δ + 1).

The bound in Theorem 5.2.3 can be improved further for graphs not containing a (not

necessarily induced) 4-cycle. The proof is a slight variation of the proof in Theorem 5.2.3.

Since the proof of our main result follows the same idea, we present the proof in full, with

some elaborations of the original proof.

Theorem 5.2.4. [30] (i) Let G be a connected C4-free graph of order n and minimum
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degree δ. Then G has a spanning tree T with

µ(T ) ≤ 5

3

n

δ2 − 2b δ2c+ 1
+

29

3
.

(ii) There exists an infinite number of C4-free graphs with n vertices and minimum degree

δ such that for every spanning tree T of G

µ(T ) ≥ 5

3

n

δ2 + 3δ + 2
+O(1).

Proof. We first construct a spanning tree in exactly the same way as in the proof of the

upper bound on the average eccentricity of connected graphs and C4-free graphs(Theorem

4.2.3 and Theorem 1.4.23). For the reader’s convenience we repeat the construction.

We start first by finding a maximal 4-packing, C, of G using the following procedure.

Choose an arbitrary vertex x1 of G and let C = x1. If there exists a vertex xi in G with

dG(xi, C) = 5, add xi to C. Add vertices xi with dG(xi, C) = 5 to C until, after k steps

say, every vertex not in C is within distance four of C. Thus C = {x1, x2, · · ·xk}.

Let NG[u] and N≤2(u) denote the closed neighbourhood and set of vertices within distance

two of u, respectively. For each u ∈ V (C) let T1(u) be a tree with vertex set N≤2(u)

satisfying dT (u, v) = dG(u, v) for each v ∈ N≤2(u). T1(u) is distance preserving to u.

Then T1 =
⋃
u∈V (C) T1(u) is a subforest of G. By our construction of C, there exist |C|−1

edges in G, each one joining two distinct components of T1, whose addition to T1 yields a

tree T2 ≤ G. Now, each vertex v ∈ V (G)− V (T1) is within distance five of some vertex in

T2.

Let T ≥ T2 be a spanning tree of G in which dT (x, V (C)) = dG(x, V (C)) for each x ∈
V (G). We now prove that

µ(T ) ≤ 5

3

n

δ2 − 2bδ/2c+ 1
+

29

3
.

For every vertex u ∈ V (T ), let uC be a vertex in C closest to u in T . We move the weight

of every vertex to the closest vertex in C by defining a weight function c : V (T )→ R+ by

c(u) = |{x ∈ V (T ) | xC = u}| for u ∈ V (T ),

where c(u) = 0 if u /∈ C.

By Lemma 2.2.1,
∣∣N≤2[xi]

∣∣ ≥ δ2 − 2bδ/2c+ 1 for all xi ∈ C. Therefore,

c(xi) ≥ δ2 − 2bδ/2c+ 1 for all xi ∈ C.

Since each weight was moved over a distance not exceeding four and no distance between
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two weights has changed by more than 8 and thus

µ(T ) ≤ µc(T ) + 8.

We now construct an induced subgraph, T 5[C] = T ′′, of T 5. Following a similar argument

as in the proof of Claim 1 in Theorem 4.2.3, T ′′ is connected. Clearly dT (u, v) ≤ 5dT ′′(u, v)

for all pair of vertices u, v ∈ C and since V (C) = V (T ′′), we have that σc(T ) ≤ 5σc(T
′′).

Hence,

µc(T ) ≤ 5µc(T
′′).

Recall that c(v) ≥ δ2 − 2bδ/2c + 1 for all vertices v ∈ C. Let N be the least multiple of

δ2 − 2bδ/2c+ 1 such that
∑

v∈C c(v) ≤ N and N ≥ n. By Lemma 5.2.2 we have that

µc(T
′′) ≤ N − δ2 + 2bδ/2c − 1

N − 1

N + δ2 − 2bδ/2c+ 1

3(δ2 − 2bδ/2c+ 1)
≤ N + 1

3(δ2 − 2bδ/2c+ 1)
.

Combining these inequalities, in conjunction with N ≤ n+ δ2 − 2bδ/2c, yields

µ(T ) ≤ µc(T ) + 8,

≤ 5µc(T
′′) + 8,

≤ 5
[ N + 1

3(δ2 − 2bδ/2c+ 1)

]
+ 8,

≤ 5
[n+ δ2 − 2bδ/2c+ 1

3(δ2 − 2bδ/2c+ 1)

]
+ 8,

=
5

3

n

δ2 − 2bδ/2c+ 1
+

29

3
,

as desired.

To prove the second part of the theorem, we consider the following graph G′′n,δ that was

first described in [51] and the detailed proof shown in (2.2.16) of Theorem (2.2.2).

Let q = δ + 1 be a prime power. Let Hq be the graph described in Example 2.2.3 whose

vertices are the 1-dimensional subspaces of GF (q)3. Two vertices are adjacent in Hq if, as

subspaces of GF (q)3, they are orthogonal. Clearly Hq is C4-free, has q2 + q + 1 vertices,

each of degree q or q+ 1 and diam(Hq) = 2. By Claim 2.2.5, there exists a self orthogonal

vertex z in Hq. Let u and v be two neighbours of z. Let H0 denote the graph obtained

from Hq by deleting the vertex z and all edges of joining a neighbour of u to a neighbour

of v. Then n(H0) = q2 + q, dH0(u, v) = diam(H0) = 4 and δ(H0) ≥ q − 1 in H0.

For n a multiple of q2 + q = δ2 + 3δ+ 2, let G′′n,δ be the graph obtained from the union of

k = n/(δ2 + 3δ + 2) disjoint copies H1
0 , H

2
0 , · · · , Hk

0 of H0 by adding the edges utvt+1 for

1 ≤ t ≤ k − 1, where ut and vt are the vertices in Ht
0 corresponding to 〈u〉 and 〈v〉 in H0.

There are q2 + q vertices in each H i
0, hence |V (G′′n,δ)| = n = k(q2 + q) = k(δ2 + 3δ + 2).
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For each v ∈ V (H i
0), if w ∈ V (Hj

0) where i < j, we have that d(v, w) ≥ 1 + 5(j − i − 1).

Thus

∑
{v,w}⊂V (G′′n,δ)

d(v, w) ≥
∑

1≤i<j≤k

(
1 + 5(j − i− 1)

)[
(q2 + q)

]2
+

k∑
i=1

(
(q2 + q)

2

)
,

=
(
q2 + q

)2∑
i<j

[
5(j − i)− 4

]
+
k

2
(q2 + q)

[
(q2 + q)− 1

]
,

=
(
q2 + q

)2∑
i<j

[
5(j − i)− 4

]
+
k

2
(q2 + q)

[
(q2 + q)− 1

]
,

=
(
q2 + q

)2[5

6
(k3 − k)− 1

2
k(k − 1)

]
+
k

2
(q2 + q)

[
(q2 + q)− 1

]
,

=
1

6
k(q2 + q)2

[
5k2 − 3k − 2

]
+
k

2
(q2 + q)

[
(q2 + q)− 1

]
,

>
1

6
k(q2 + q)2

[
5k2 − 3k − 2

]
.

Since n = k(q2 + q), q2 + q = δ2 + 3δ + 2, dividing by
(
n
2

)
yields and so

µ(G′′n,δ) ≥
k(q2 + q)

[
(q2 + q)(5k2 − 3k − 2)

]
3n(n− 1)

≥
k(q2 + q)

[
(q2 + q)(5k2 − 3k − 2)

]
3n2

=
5k

3
− 1− 2

3k

Hence,

µ(G′′n,δ) ≥
5

3

n

δ2 + 3δ + 2
− 2δ2 + 6δ + 4

3n
− 1.

Corollary 5.2.5. Let G be a connected C4-free graph of order n and minimum degree δ.

Then

µ(G) ≤ 5

3

n

δ2 − 2b δ2c+ 1
+

29

3
.

While we don’t know if the bounds in Theorems 5.2.3 and 5.2.5 are sharp, the graph

constructed in part (ii) show that for δ + 1 a prime power the coefficient of n is close to

best possible.

5.3 Main Results

We now present upper bounds on the average distance of graphs of girth at least 6 and for

graphs not containing a C4 or C5 as a subgraph. These bounds improve on the bounds
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on the average distance of C4-free graphs in the previous sections. Unlike the bounds for

C4-free graphs, the bounds for graphs of girth at least 6 are sharp apart from an additive

constant, provided δ − 1 is a prime power.

5.3.1 Bounds on Average Distance of Graphs of Girth at least 6.

Theorem 5.3.1. Let G be a graph of girth at least 6 with order n and with minimum

degree δ ≥ 2. Then,

i) G has a spanning tree T with

µ(T ) ≤ n

δ2 − δ + 1
+ 11. (5.3.1)

ii)

µ(G) ≤ n

δ2 − δ + 1
+ 11. (5.3.2)

iii) If δ − 1 is a prime power, then there exists an infinite number of graphs with girth at

least 6, G∗, with n vertices and minimum degree δ ≥ 2 such that (ii) above holds and

µ(G∗) >
n

δ2 − δ + 1
− 5. (5.3.3)

Proof. The proof is similar to that of the previous theorem with some minor modification.

i) We start by first finding a matching, M ′, of G as follows: Choose an arbitrary edge

f1 ∈ E(G) and let M ′ = f1. If there exists an edge f2 in G with dG(f2,M
′) = 5,

then add f2 to M ′. Repeat and add edges at distance 5 to M ′ until each of the edges

not in M ′ is within distance four of M ′. Thus M ′ = {f1, f2, · · · fk} and |M ′| = k.

Recall that V (M ′) is the vertex set consisting of vertices incident with an edge in

M ′.

Let NG[u] and N≤2(u) denote the closed neighbourhood and set of vertices within

distance two of u respectively. For each u ∈ V (M ′), let T1(u) be a tree with vertex

set N≤2(u) satisfying dT (u, v) = dG(u, v) for each v ∈ N≤2(u). T1(u) is distance

preserving to u. Then T1 =
⋃
u∈V (M ′) T1(u) is a subforest of G. By our construction

of M ′, there exist |M ′| − 1 edges in G, each one joining two distinct components of

T1, whose addition to T1 yields a tree T2 ≤ G. Now, each vertex v ∈ V (G)− V (T1)

is within distance five of some vertex in T2. Let T ≥ T2 be a spanning tree of G in

which dT (x, V (M ′)) = dG(x, V (M ′)) for each x ∈ V (G). We now prove that

µ(T ) ≤ n

δ2 − δ + 1
+ 11.

For every vertex u ∈ V (T ), let uM ′ be a vertex in V (M ′) closest to u in T . We now

move the weight of every vertex to a closest vertex in V (M ′) by defining a weight
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function c : V (T )→ R+ by

c(u) = |{x ∈ V (M ′) | xM ′ = u}| for u ∈ V (T ),

where c(u) = 0 if u /∈ V (M ′).

The weight of each vertex was moved over a distance not exceeding four, and so we

have that no distance between two weights has changed by more than 8. Thus

µ(T ) ≤ µc(T ) + 8. (5.3.4)

Observe that the weight c is concentrated exclusively on the vertices belonging to

V (M ′). We consider the line graph L = L(T ) and define a new weight function c′

on V (L) = E(T ) by

c′(e) = c′(uv) =

c(u) + c(v) if uv ∈M ′,

0 if uv /∈ M ′.

The weight, c′, on e is the sum of the weights on u and v. We have by Lemma 2.3.2

that

c′(uv) ≥ 2δ2 − 2δ + 2 for uv ∈M ′,

and c′(uv) = 0 if uv /∈ M ′. We have shown in the previous proof of Claim 1 in

Theorem 4.3.1 that if e1, e2 ∈ E(T ) are edges incident with vertices v1, v2 ∈ V (T )

respectively, then dT (v1, v2) ≤ dL(e1, e2) + 1. Hence, no distance between weights

has increased by more than one and thus

µc(T ) ≤ µc′(L) + 1. (5.3.5)

We now construct an induced subgraph, L6[M ′], of L6. L6[M ′] is connected following

a similar argument as in the proof of Claim 1 in Theorem 4.2.3. Furthermore,

dL(e, f) ≤ 6dL6[M ′](e, f) for all pairs e, f ∈ M ′ and since V (M ′) = V (L6[M ′]), we

have that σc′(L) ≤ 6σc′(L
6[M ′]). Hence,

µc′(L) ≤ 6µc′(L
6[M ′]).

Recall that c′(v) ≥ 2δ2 − 2δ + 2 for all vertices v ∈ M ′ and that
∑

v∈M ′ c
′(v) = n.

Let N be the least multiple of 2δ2 − 2δ + 2 such that N ≥ n. By Lemma (5.2.2) we
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have

µc′(L
6[M ′]) ≤ N − (2δ2 − 2δ + 2)

N − 1

N + (2δ2 − 2δ + 2)

3(2δ2 − 2δ + 2)
,

=
N2 − (2δ2 − 2δ + 2)2

6(N − 1)(δ2 − δ + 1)
,

<
N2 − 12

6(N − 1)(δ2 − δ + 1)
,

=
N + 1

6(δ2 − δ + 1)
.

Combining these inequalities, in conjunction with N ≤ n+ (2δ2 − 2δ + 1), yields

µ(T ) ≤ µc(T ) + 8,

≤ µc′(L) + 9,

≤ 6µc′(L
6[M ′]) + 9,

≤ 6
[ N + 1

6(δ2 − δ + 1)

]
+ 9,

≤ n+ 2(δ2 − δ + 1)

δ2 − δ + 1
+ 9,

=
n

δ2 − δ + 1
+ 11,

as desired. Thus, we have proved the first part of Theorem 5.3.1.

ii) Since the average distance of a spanning tree of a graph is not more than the average

distance of the graph itself, (5.3.2) holds.

iii) To prove the last part of the theorem, we consider the graph, G∗ described in Ex-

ample 2.3.5. For the reader’s convenience we briefly recall its definition.

Let H∗q+1 be graph whose vertices consists of the 1-dimensional and 2-dimensional

subspaces of GF (q)3.

Two vertices, 〈u〉 ∈ U and 〈v〉 ∈ V are adjacent in H∗q+1 if and only if 〈u〉 is contained

in 〈v〉. Clearly H∗q+1 is bipartite, C4 free and has girth at least 6. Moreover, H∗q+1

has 2(q2 +q+1) vertices, each of degree q+1 and diam(H∗q+1) = 3. Let u ∈ V (H∗q+1)

be fixed. Let H0 be the graph obtained from H∗q+1 after the removal of one of the

edges, uv, incident with u. Then, dH0(u, v) = 5 and the minimum degree of H0 is q.

Let G∗ be the graph obtained from the union of H ′k(k ≥ 2) disjoint copies of

H∗q+1 with H ′2, · · · , H ′k−2 being disjoint isomorphic copies of H0 by adding the edges

u(t)v(t+1) for every (1 ≤ t < k), where ut and vt are vertices in H ′t corresponding to u

and v in H∗q+1. A simple calculation shows that G∗ has 2k(q2 +q+1) = 2k(δ2−δ+1)

vertices since δ = q + 1. Thus n = 2k(q2 + q + 1).

For each v ∈ V (H ′i), if w ∈ V (H ′j) where i < j, we have that d(v, w) ≥ 1+6(j−i−1).

Thus
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∑
{v,w}⊂V (G∗) d(v, w) ≥

∑
1≤i<j≤k

(
1+6(j−i−1)

)[
2(q2+q+1)

]2
+
∑k

i=1

(
2(q2+q+1)

2

)
,

= 4
(
q2 + q + 1

)2∑
i<j

[
6(j − i)− 5

]
+ k(q2 + q + 1)

[
2(q2 + q + 1)− 1

]
,

= 4
(
q2 + q + 1

)2[
(k3 − k)− 5/2(k2 − k)

]
+ k(q2 + q + 1)

[
2(q2 + q + 1)− 1

]
,

= 2k
(
q2 + q + 1

)2[
2k2 − 5k + 3

]
+ k(q2 + q + 1)

[
2(q2 + q + 1)− 1

]
,

> 2k
(
q2 + q + 1

)2[
2k2 − 5k

]
.

Since n = 2k
(
q2 + q + 1

)
and q2 + q + 1 = δ2 − δ + 1, dividing by

(
n
2

)
yields

µ(G∗) ≥
2k
(
q2 + q + 1

)[
k(q2 + q + 1)(2k − 5)(
n
2

) ]
≥

2n
[
nk − 5n

2

]
n(n− 1)

≥
2n
[
nk − 5n

2

]
n2

= 2k − 5

Hence,

µ(G∗) ≥ n

δ2 − δ + 1
− 5.

5.3.2 Bounds on Average Distance of Connected (C4, C5)-Free Graphs

Theorem 5.3.2. Let G be a connected (C4, C5)-free graph of order n and with minimum

degree δ ≥ 2. Then,

i) G has a spanning tree T with

µ(T ) ≤ n+ 1

δ2 − 5
2δ + 5

2 + εδ
+ 11. (5.3.6)

ii)

µ(G) ≤ n+ 1

δ2 − 5
2δ + 5

2 + εδ
+ 11. (5.3.7)

Proof. The proof is essentially similar to that of the previous theorem except for some

minor modification.

We start by first finding a matching, M ′, of G as follows: Choose an arbitrary edge

f1 ∈ E(G) and let M ′ = f1. If there exists an edge f2 in E(G) with dG(f2,M
′) = 5, then

add f2 to M ′. Repeat and add edges at distance 5 to M ′ until each of the edges not in M ′



Section 5.3. Main Results Page 110

is within distance four of M ′. Thus M ′ = {f1, f2, · · · fk} and |M ′| = k. Denote by V (M ′)

the vertex set consisting of vertices incident with an edge in M ′.

For each u ∈ V (M ′), let NG[u], N≤2(u) and T1(u) be as defined in previous section. Recall

that T1 =
⋃
u∈V (M ′) T1(u) is a subforest of G and by our construction of M ′, there exist

|M ′| − 1 edges in G, each one joining two distinct components of T1, whose addition to T1

yields a tree T2 ≤ G. Now, each vertex v ∈ V (G)− V (T1) is within distance five of some

vertex in T2.

By letting T ≥ T2 to be a spanning tree of G in which dT (x, V (M ′)) = dG(x, V (M ′)) for

each x ∈ V (G), we now prove that

µ(T ) ≤ 2(n+ 1)

2δ2 − 5δ + 5 + 2εδ
+ 11.

For every vertex u ∈ V (T ), let uM ′ be a vertex in V (M ′) closest to u in T . We now move

the weight of every vertex to the closest vertex in V (M ′) by defining a weight function

c : V (T )→ R+ by

c(u) = |{x ∈ V (M ′) | xM ′ = u}| for u ∈ V (T ),

where c(u) = 0 if u /∈ V (M ′).

The weight of each vertex was moved over a distance not exceeding four, and so we have

that no two distance between two weights has changed by more than 8. Thus,

µ(T ) ≤ µc(T ) + 8. (5.3.8)

Clearly the weight c is concentrated exclusively on the vertices belonging to V (M ′). We

now consider the line graph L = L(T ) and define a new weight function c′ on V (L) = E(T )

by

c′(e) = c′(uv) =

c(u) + c(v) if uv ∈M ′,

0 if uv /∈ M ′.

The weight, c′, on e is the sum of the weights on u and v. We have by Lemma 2.3.9 that

c′(uv) ≥ 2δ2 − 5δ + 5 + 2εδ for uv ∈M ′,

and c′(uv) = 0 if uv /∈ M ′. We have shown previously in Theorem 4.3.1 (see Claim 1)

that if e1, e2 ∈ E(T ) are edges incident with vertices v1, v2 ∈ V (T ) respectively, then

dT (v1, v2) ≤ dL(e1, e2) + 1. Hence, no distance between weights has increased by more

than one and thus

µc(T ) ≤ µc′(L) + 1. (5.3.9)
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Next, we construct an induced subgraph, L6[M ′], of L6. Let L′′ = L6[M ′]. Following a

similar argument as in the proof of Claim 1 in Theorem 4.3.1, L′′ is connected.

Furthermore, dL(e, f) ≤ 6dL′′(e, f) for all pairs e, f ∈ M ′ and since V (M ′) = V (L′′), we

have that σc′(L) ≤ 6σc′(L
′′). Hence,

µc′(L) ≤ 6µc′(L
′′).

Recall that c′(v) ≥ 2δ2 − 5δ + 5 + 2εδ for all vertices in M ′. Let N be the least multiple

of 2δ2 − 5δ + 5 + 2εδ such that
∑
v∈L′′

c′(v) ≤ N and N ≥ n.

By Lemma (5.2.2) we have

µc′(L
′′) ≤ N − (2δ2 − 5δ + 5 + 2εδ)

N − 1

N + (2δ2 − 5δ + 5 + 2εδ)

3(2δ2 − 5δ + 5 + 2εδ)
,

=
N2 − (2δ2 − 5δ + 5 + 2εδ)

2

3(N − 1)(2δ2 − 5δ + 5 + 2εδ)
,

<
N2 − 12

3(N − 1)(2δ2 − 5δ + 5 + 2εδ)
,

=
N + 1

3(2δ2 − 5δ + 5 + 2εδ)
.

Combining these inequalities, in conjunction with N ≤ n+ (2δ2 − 5δ + 5 + 2εδ), yields

µ(T ) ≤ µc(T ) + 8,

≤ µc′(L) + 9,

≤ 6µc′(L
′′) + 9,

≤ 6
[ N + 1

3(2δ2 − 5δ + 5 + 2εδ)

]
+ 9,

≤ 2n+ 2(2δ2 − 5δ + 5 + 2εδ) + 2

2δ2 − 5δ + 5 + 2εδ
+ 9,

=
2(n+ 1)

2δ2 − 5δ + 5 + 2εδ
+ 11.

Hence

µ(T ) ≤ n+ 1

δ2 − 5
2δ + 5

2 + εδ
+ 11. (5.3.10)

Therefore, Theorem 5.3.2 (ii) holds since µ(G) ≤ µ(T ).

5.3.3 Average Distance, Maximum and Minimum Degree

In the previous section, bounds on the average distance of connected graphs, triangle

free graphs, connected C4-free graphs, connected graphs of girth at least 6 and connected
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(C4, C5)-free graphs of given order and minimum degree were presented. We observed from

the sharpness example of the bounds that the degree of each vertex is close to the minimum

degree for each class of graph considered. This is an indication that these bounds can be

improved if the graph under consideration contains a vertex of large degree. Herein, we

present our results on the average distance of given order, minimum and maximum degree

for each of the graph considered in the previous section. Furthermore, we construct graphs

to show that our bounds are sharp apart from an additive constants for connected graphs,

triangle-free graphs. For connected C4-free graphs and graphs of girth at least 6, we show

that the bounds are best possible in a sense specified later. The technique used here is

based on that used in previous sections, but had to be modified. Since there are no upper

bounds in the literature on the average distance of graphs with given minimum degree and

maximum degree (except for trees), we also present such bounds for triangle-free graphs

and for graphs with no forbidden subgraphs.

5.3.3.1 Bounds on Average Distance in terms of Order, Minimum Degree

and Maximum Degree

We now present bounds on the average distance of connected graphs in terms of order,

minimum degree and maximum degree.

Theorem 5.3.3. Let G be a connected graph of order n, minimum degree δ and maximum

degree ∆. Then

(i) G has a spanning tree T with

µ(T ) ≤ (n−∆ + δ)

n

(n−∆ + δ − 1)

(n− 1)

n+ 2∆

δ + 1
+ 4.

(ii)

µ(G) ≤ (n−∆ + δ)

n

(n−∆ + δ − 1)

(n− 1)

n+ 2∆

δ + 1
+ 4.

(iii) The bounds in (i) and (ii) are sharp apart from an additive constant.

Proof. (i) Let w1 be a vertex of maximum degree ∆. We find a maximal 2-packing, A,

of G as follows: Let A = {w1}. If there exists a vertex w2 in G with dG(w2, A) = 3,

add w2 to A. Repeat and add vertices at distance 3 to A until every vertex not in

A is within distance two of A. Then A = {w1, w2, w3, · · ·wr} and |A| = r.

Let NG[A] denote the vertex set consisting of A and any vertex adjacent to some

vertex in A. Furthermore, let T1 be the subforest of G with vertex set NG[A] and

whose edge set consists of all edges incident with a vertex in A. Clearly, each

component of T1 is a star with a vertex in A as the center. By our construction of A,

there exist |A|− 1 edges in G, each one joining two neighbours of distinct vertices of
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A, whose addition to T1 yields a subtree T2 of G. Now, each vertex u ∈ V (G)−V (T2)

is adjacent to some vertex u′ ∈ V (T2).

Let T be the spanning tree of G with edge set E(T ) = E(T2) ∪ {uu′ : u ∈ V (G) −
V (T2)}. We now prove that

µ(T ) ≤ (n−∆ + δ)

n

(n−∆ + δ − 1)

(n− 1)

n+ 2∆

δ + 1
+ 4. (5.3.11)

We think of T as a weighted tree in which each vertex has weight 1. We now obtain

a new weight function by moving the weight of every vertex to a a nearest vertex in

A. More specifically, for every vertex x ∈ V (T ), let xA be a vertex in A closest to u

in T . Let c : V (T )→ R+ be the new weight function defined by

c(u) = |{x ∈ V (T ) | xA = u}| for x ∈ V (T ).

Then c(u) = 0 if u /∈ A, c(u) ≥ δ+ 1 for each u ∈ A−{w1} and c(w1) ≥ ∆ + 1. Note

that
∑

u∈A c(u) = n where n is the order of G. It follows that n =
∑

u∈V (T ) c(u) =∑
u∈A c(u) ≥ |A|(δ + 1) + ∆− δ and so

|A| ≤ n−∆ + δ

δ + 1
. (5.3.12)

Since each vertex of T is within distance two of the nearest vertex in A, each weight

was moved over a distance not exceeding two and no distance between two weights

have changed by more than 4. Hence,

µ(T ) ≤ µc(T ) + 4. (5.3.13)

Note that the weight c is concentrated only on the vertices of A. Thus we construct

an induced subgraph, T 3[A], of A which by our construction of A is connected. Let

T ′ = T 3[A]. Since A is a maximal 2-packing, we have that dT (u, v) ≥ 3 for all pairs

u, v ∈ A. We also have that dT (u, v) ≤ 3dT ′(u, v) for all pairs of vertices u, v ∈ A
and since V (A) = V (T ′), we have that σc(T ) ≤ 3σc(T

′). Hence,

µc(T ) ≤ 3µc(T
′). (5.3.14)

We now modify the weight function c to obtain a new weight function c′ which

satisfies c′(a) ≥ δ + 1 for all a ∈ A. Define the new weight c′ by

c′(u) =

c(u) if u ∈ A− {w1},

c(u)−∆ + δ if u = w1.

Since degG(w1) = ∆ while degG(wi) ≥ δ for all wi ∈ A − {w1}, we have that
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c′(u) ≥ δ + 1 for all u ∈ A.

Furthermore, ∑
u∈A

c′(u) =
∑
u∈A

c(u)−∆ + δ = n−∆ + δ.

By letting N =
∑

u∈A c
′(u), we have that N = n−∆ + δ. We now express µc(T

′) in

terms of µc′(T
′).

µc′(T
′) =

(
N

2

)−1

σc′(T
′),

=

(
N

2

)−1[ r∑
i=2

(c(w1)−∆ + δ)c(wi)dT ′(w1, wi)
]

+

(
N

2

)−1[ ∑
(u,v)⊆A−{w1}

c(u)c(v)dT ′(u, v)
]
,

=

(
N

2

)−1[ ∑
(u,v)⊆A

c(u)c(v)dT ′(u, v)−
r∑
i=2

(∆− δ)c(wi)dT ′(w1, wi)
]
,

=

(
N

2

)−1[(n
2

)
µc(T

′)− (∆− δ)
r∑
i=2

c(wi)dT ′(w1, wi)
]
,

and thus, by rearranging

µc(T
′) =

N(N − 1)

n(n− 1)
µc′(T

′) +
2(∆− δ)
n(n− 1)

r∑
i=2

c(wi)dT ′(w1, wi). (5.3.15)

Clearly
r∑
i=2

c(wi)dT ′(w1, wi) = σc(w1, T
′). We now bound the two terms of the right

hand side of (5.3.15) separately.

Let the vertices w2, w3, . . . , wr be relabelled u1, u2, . . . , ur−1 respectively such that

dT ′(w1, u1) ≤ dT ′(w1, u2) ≤ . . . dT ′(w1, ur−1). Since T ′ is connected, we have

dT ′(w1, u1) ≤ 1, dT ′(w1, u2) ≤ 2, dT ′(w1, u3) ≤ 3, . . . , dT ′(w1, ur−1) ≤ r − 1.

Hence we have
r∑
i=2

c(ui)dT ′(w1, ui) ≤
r−1∑
i=1

i c(ui). (5.3.16)

Now c(ui) ≥ δ + 1 for i = 1, 2, . . . , r − 2 and
∑r−1

i=1 c(ui) = n − c(w1) ≤ n −∆ − 1,

Subject to these conditions, the right hand side of (5.3.16) is maximised if c(u1) =

c(u2) = . . . = c(ur−2) = δ+ 1 and c(ur−1) = n−∆− 1− (r− 2)(δ+ 1). Substituting
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these values yields, after simplification,

r−1∑
i=1

i c(ui) ≤ (n−∆− 1)(r − 1)− 1

2
(δ + 1)(r − 1)(r − 2). (5.3.17)

By (5.3.12), we have

r ≤ n−∆ + δ

δ + 1
, (5.3.18)

and it is easy to verify that the right hand side of the inequality (5.3.17) is increasing

in r for r ≤ n−∆+δ
δ+1 . Substituting this value for r yields thus

r−1∑
i=1

i c(ui) ≤
(n−∆− 1)2

2(δ + 1)
+

1

2
(n−∆− 1). (5.3.19)

Since (n−∆−1)2

2(δ+1) + n−∆−1
2 = (n−∆−1)(n−∆+δ)

2(δ+1) ≤ N(N−1)
2(δ+1) , this implies that

r−1∑
i=1

ic(ui) ≤
(N − 1)N

2(δ + 1)
. (5.3.20)

To bound µc′(T
′), we recall that c′(u) ≥ δ + 1 for all vertices u ∈ T ′. Let M be the

least multiple of δ+ 1 such that
∑

u∈A c
′(u) = n−∆ + δ ≤M . Since n−∆ + δ = N ,

we have that M ≤ N + δ and so by Lemma 5.2.2

µc′(T
′) ≤ M − δ − 1

M − 1

M + δ + 1

3(δ + 1)
≤ M + 1

3(δ + 1)
≤ N + δ + 1

3(δ + 1)
. (5.3.21)

Substituting (5.3.19) and (5.3.21) into (5.3.15) yields

µc(T
′) ≤ N(N − 1)

n(n− 1)

N + δ + 1

3(δ + 1)
+

2(∆− δ)
n(n− 1)

N(N − 1)

2(δ + 1)

≤ N(N − 1)

n(n− 1)

n+ 2∆

3(δ + 1)
. (5.3.22)

Combining the inequalities (5.3.13), (5.3.14) and (5.3.22), we obtain

µ(T ) ≤ µc(T ) + 4,

≤ 3µc(T
′) + 4,

≤ N(N − 1)

n(n− 1)

n+ 2∆

(δ + 1)
+ 4. (5.3.23)

Thus (5.3.23) yields the desired result.

(ii) The bound on µ(G) follows immediately from the above proof since the average

distance of a spanning tree of G is not more than that the average distance of G

itself.
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(iii) To see that the bound above is sharp apart from the value of the additive

constant, let n, δ,∆, ` ∈ N for which ∆ ≥ δ and n ≥ ∆ + δ + 1.

Consider the following graph. Let G1, G2, · · · , G`−1 be disjoint copies of the complete

graph Kδ+1 and G`, a copy of the complete graph K∆. Let uivi ∈ E(Gi). Let G`,δ,∆

be the graph obtained from the union of G1, G2, · · · , G` by deleting the edges uivi

for i = 2, 3, · · · , `− 1 and adding the edges ui+1vi for i = 1, 2, · · · , `− 1. The graph

G6,3,8 is illustrated in Figure 5.1

G1 G2 G3 G4 G5 G6

Figure 5.1: The graph G6,3,8

We now bound the average distance of G`,δ,∆ from below. The graph Gi has δ + 1

vertices for i = 1, 2, . . . , `−1, and ∆ vertices for i = `. If v ∈ V (Gi) and w ∈ V (Gj),

where 1 ≤ i < j ≤ `, then d(v, w) ≥ 1 + 3(j − i− 1) = 3(j − i)− 2. Hence

W (G`,δ,∆) =
∑

{x,y}⊆V (G`,δ,∆)

d(x, y)

>
∑

1≤i<j≤`−1

∑
x∈V (Gi),y∈V (Gj)

d(x, y) +

`−1∑
i=1

∑
x∈V (Gi),y∈V (G`)

d(x, y)

≥ (δ + 1)2
∑

1≤i<j≤`−1

(
3(j − i)− 2

)
+ (δ + 1)∆

`−1∑
i=1

(
3(`− i)− 2

)
.

Straightforward calculations shows that
∑

1≤i<j≤`−1

(
3(j−i)−2

)
= 1

2(`−1)(`−2)2 =
1
2(`3 − 5`2 + 8` − 4) > 1

2(`3 − 5`2) and
∑`−1

i=1

(
3(` − i) − 2

)
= 1

2(` − 1)(3` − 4) =
1
2(3`2 − 7`+ 4) > 1

2(3`2 − 7`). Substituting these values, we obtain

W (G`,δ,∆) >
1

2
(δ + 1)2(`3 − 5`2) +

1

2
(δ + 1)∆(3`3 − 7`)

=
1

2

(
(δ + 1)2`3 + 3(δ + 1)∆`2

)
− 5

2
(δ + 1)2`2 − 7

2
(δ + 1)∆`.

Since N = n−∆+δ and (`−1)(δ+1) = n−∆ = N−δ, we have that `(δ+1) = N+1.

Therefore, (δ + 1)2`3 + 3(δ + 1)∆`2 = (N+1)3

δ+1 + 3∆(N+1)2

δ+1 > N(N−1)(n+2∆)
δ+1 . Also

5
2(δ+1)2`2 + 7

2(δ+1)∆` < 7
2(N+1)((δ+1)`+∆) = 7

2(N+1)(n+δ+1) < 7n(n−1).

Applying these inequalities to the bound on W (G`,δ,∆) and dividing by
(
n
2

)
thus
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yields

µ(G`,δ,∆) >
N(N − 1)

n(n− 1)

n+ 2∆

δ + 1
− 14,

which differs from the upper bound by at most 18.

Observe that the bound in Theorem 5.3.3 in some sense is a generalization of the bound in

Theorem 5.2.3 given by [30]. This is true since ∆ ≥ δ and replacing ∆ by δ yields a bound

on the average distance in terms of order and minimum degree that has an only slightly

weaker additive constant than Theorem 5.2.3. Now define µ(`, δ,∆) and W (`, δ,∆) to

be the maximum average distance and maximum Wiener index, respectively, among all

connected graphs of order n, minimum degree δ and maximum degree ∆. Theorem 5.3.3

shows that

µ(`, δ,∆) =
(n−∆ + δ)(n−∆ + δ − 1)

n(n− 1)

n+ 2∆

δ + 1
+O(1)

and

W (`, δ,∆) =

(
n−∆ + δ

2

)
n+ 2∆

δ + 1
+O(n2).

We show in the next theorem that the bound in Theorem 5.3.3 can be improved by a

factor of 2/3 for triangle-free graphs. The proof techniques follow essentially the previous

one with slight modification.

Theorem 5.3.4. Let G be a connected triangle-free graph of order n, minimum degree δ

and maximum degree ∆. Then

(i) G has a spanning tree T with

µ(T ) ≤ 2

3

(n−∆ + δ)

n

(n−∆ + δ − 1)

n(n− 1)

n+ 2∆

δ
+ 7.

(ii)

µ(G) ≤ 2

3

(n−∆ + δ)

n

(n−∆ + δ − 1)

n(n− 1)

n+ 2∆

δ
+ 7.

(iii) The bounds in (i) and (ii) are sharp apart from an additive constant.

Proof. (i) Let w1 be a vertex of degree ∆ in G. We start by finding a matching, M , of

G as follows: Choose an arbitrary edge e1 incident with w1 in G and let M = {e1}.
Let V (M) be the set of vertices incident with some edges of M . Recall that for an

edge e, dG(e, V (M)) is the smallest distance between a vertex incident with e and a

vertex in V (M). If there exists an edge e2 in G with dG(e2, V (M)) = 3, add e2 to

M . Add edges ei with dG(ei, V (M)) = 3 to M until each of the edges not in M is

within distance two of M . Thus M = {e1, e2, · · · er} where |M | = r.
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Let T1 be the subforest of G with vertex set NG[V (M)] and whose edge set consists

of all edges incident with a vertex in V (M). By our construction of M , there exist

|M | − 1 edges in G, each one joining two components of T1, whose addition to T1

yields a subtree T2 of G such that T2 which contains T1 and has the same vertex set

as T1. Now, each vertex u ∈ V (G) − V (T2) is within distance two of some vertex

u′ ∈ V (T2) closest to it, i.e., dG(u, u′) ≤ 2.

Let T be a spanning tree of G that is distance preserving from V (M) and with edge

set E(T ) = E(T2) ∪ {uu′ : u ∈ V (G)− V (T2)}. Hence it suffices to prove the bound

for T , that is

µ(T ) ≤ 2

3

(n−∆ + δ)

n

(n−∆ + δ − 1)

n(n− 1)

n+ 2∆

δ
+ 7. (5.3.24)

For every vertex u ∈ V (T ), let uM be a vertex in V (M) closest to u in T . The tree,

T , can be viewed as a weighted tree where each vertex has weight exactly 1. We now

move the weight of every vertex to the closest vertex in V (M), that is, we define a

weight function c : V (T )→ R+ by:

c(u) = |{x ∈ V (M) | xM = u}| for u ∈ V (T ).

Then c(u) = 0 if u /∈ V (M) and
∑

u∈V (M) c(u) = n where n is the order of G.

Since G is triangle-free, no two incident vertices of an edge in M have a common

neighbour. Hence deg(u) ≥ δ and so we have that c(u) ≥ δ for u ∈ V (M) − {w1}
and deg(w1) = ∆.

Since the weight of each vertex was moved over a distance not exceeding three and

no distance between two weights has changed by more than 6. Thus,

µ(T ) ≤ µc(T ) + 6. (5.3.25)

Clearly, the weight c is concentrated only on the vertices of V (M). We now consider

the line graph L = L(T ) and define a new weight function c on V (L) = E(T ) by

c(uv) =

c(u) + c(v) if uv ∈ M,

0 if uv /∈ M.

Since e1 is an edge incident with w1 in T , we have that c(e1) ≥ ∆ + δ and c(e) ≥ 2δ

for e ∈M − {e1}. Observe that
∑
e∈M

c(e) =
∑

u∈V (T )

c(u) = n and so we have that

n ≥ ∆ + δ +
∑

e∈M−{e1}

2δ = ∆ + δ + 2δ(|M | − 1).
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This implies that

|M | ≤ n−∆ + δ

2δ
. (5.3.26)

Following a similar argument as in the proof of Theorem 4.3.1 (See Claim 1), we

have that |dT (u, v)−dL(eu, ev)| ≤ 1 where L is the line graph of T , eu, ev ∈ E(T ) are

edges of T incident with u and v respectively. Hence, no distance between weights

has increased by more than one and thus

µc(T ) ≤ µc(L) + 1. (5.3.27)

We now construct an induced subgraph, L4[M ], of L4. L4[M ] is connected following

a similar argument as in the proof of Claim 1 in Theorem 4.2.3. Furthermore,

dL4[M ](ei, ej) ≤ 4dL4[M ](ei, ej) for all pairs ei, ej ∈M and since V (M) = V (L4[M ]),

we have that σc(L) ≤ 4σc(L
4[M ]). Hence,

µc(L
4[M ]) ≤ 4µc(L

4[M ]). (5.3.28)

We now modify the weight function c to obtain a new weight function c′ which

satisfies c′(e) ≥ 2δ for all e ∈M . Define the new weight c′ by

c′(e) =

c(e) if e ∈M − {e1},

c(e1)−∆ + δ if e = e1.

Since c(e) ≥ 2δ for all e ∈ M and c(e1) ≥ ∆ + δ, we have that c′(e) ≥ 2δ for all

e ∈M .

By letting N =
∑

v∈V (M) c
′(u), we have that N = n − ∆ + δ. We now express

µc(L
4[M ]) in terms of µc′(L

4[M ]).

µc′(L
4[M ]) =

(
N

2

)−1

σc′(L
4[M ]),

=

(
N

2

)−1[ r∑
i=2

(c(e1)−∆ + δ)c(ei)dL4[M ](e1, ei)
]

+

(
N

2

)−1[ ∑
(e,f)⊆M−{e1}

c(e)c(f)dL4[M ](e, f)
]
,

=

(
N

2

)−1[ ∑
(e,f)⊆M

c(e)c(f)dL4[M ](e, f)−
r∑
i=2

(∆− δ)c(ei)dL4[M ](e1, ei)
]
,

=

(
N

2

)−1[(n
2

)
µc(L

4[M ])− (∆− δ)
r∑
i=2

c(ei)dL4[M ](e1, ei)
]
,
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and thus, by rearranging

µc(L
4[M ]) =

N(N − 1)

n(n− 1)
µc′(L

4[M ]) +
2(∆− δ)
n(n− 1)

r∑
i=2

c(ei)dL4[M ](e1, ei).

(5.3.29)

Clearly
r∑
i=2

c(ei)dL4[M ](e1, ei) = σc(e1, L
4[M ]). We now bound the two terms of the

right hand side of (5.3.29) separately.

Following an argument similar to the proof of Theorem 5.3.3, we obtain

σc(e1, L
4[M ]) ≤ (n−∆− δ)(r − 1)− δ(r − 1)(r − 2). (5.3.30)

Since r ≤ n−∆+δ
2δ , and since the right hand side of the above inequality is increasing

in r for r ≤ n−∆+δ
2δ , we obtain by substituting this value for r that

σc(e1, L
4[M ]) ≤ (n−∆− δ)2

4δ
+

1

2
(n−∆− δ). (5.3.31)

Since N = n −∆ + δ, the right hand side equals (N−2δ)2

4δ + 1
2(N − 2δ) = N(N−2δ)

4δ ,

and so we obtain

σc(e1, L
4[M ]) ≤ N(N − 2δ)

4δ
<
N(N − 1)

4δ
. (5.3.32)

To bound µc′(L
4[M ]), we recall that c′(u) ≥ 2δ for all u ∈ M . Let C be the least

multiple of 2δ such that
∑

u∈M c′(u) ≤ C. Then by Lemma 5.2.2 we have

µc′(L
4[M ]) ≤ C − 2δ

C − 1

C + 2δ

6δ
≤ C + 1

6δ
.

Now
∑

u∈M c′(u) = N so C ≤ N + 2δ − 1. Hence we obtain

µc′(L
4[M ]) ≤ N + 2δ

6δ
. (5.3.33)

Substituting (5.3.32) and (5.3.33) into (5.3.29) yields

µc([L
4[M ]) ≤ N(N − 1)

n(n− 1)

N + 2δ

6δ
+

∆− δ
n(n− 1)

N(N − 1)

2δ
=
N(N − 1)

n(n− 1)

N + 3∆− δ
6δ

,

and thus

µc[L
4[M ]) ≤ N(N − 1)

n(n− 1)

n+ 2∆

6δ
. (5.3.34)
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Combining the inequalities (5.3.25), (5.3.27) and (5.3.28) yields

µ(T ) ≤ µc(T ) + 6

≤ µc(L) + 7

≤ 4µcL
4[M ]) + 7

≤ 2

3

N(N − 1)

n(n− 1)

n+ 2∆

δ
+ 7,

as desired.

(ii) The bound on µ(G) follows immediately from (i) since the average distance of a

spanning tree of G is not more than that the average distance of G itself.

(iii) To see that the bound above is sharp apart from the value of the additive

constant, let δ,∆, `, be positive with ∆ ≥ 2δ.

Consider the following graph described below. For 1 ≤ i ≤ `; i 6= 2, ` − 1, let H ′i
be a disjoint copy of the empty graph bδ/2cK1 if i ≡ 1 or 2(mod 4) and dδ/2eK1 if

i ≡ 0 or 3(mod 4). Furthermore, let H ′2 be a copy of (∆− dδ/2e)K1 and H ′`−1 be a

copy of the empty graph δK1. Let H ′`,δ,∆ be the graph obtained from the union of

H ′1, H
′
2, · · · , H ′` by joining each vertex in H ′i to each vertex in H ′i+1 for 1 ≤ i ≤ `−1.

A sketch of H ′12,5,10 is shown in Figure 5.2.

Figure 5.2: The graph H ′12,5,10

Clearly H ′`,δ,∆ is the graph defined by the sequential sum

Kb δ
2
c+K∆−d δ

2
e+Kd δ

2
e+Kd δ

2
e+Kb δ

2
c+Kb δ

2
c+. . .+Kd δ

2
e+Kd δ

2
e+Kb δ

2
c+Kb δ

2
c+Kδ+Kd δ

2
e

For the calculation that follows, we consider only the case that δ is even. For odd δ

a similar calculation yields the same result.
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Fix δ,∆ ∈ N. For ` ∈ N and δ even, it is easy to see that H ′`,δ,∆ is triangle-free, has

maximum degree ∆, minimum degree δ and n(H ′`,δ,∆) = ∆ + δ
(
`
2

)
− δ

2 .

Now, the Wiener index of H ′`,δ,∆, W (H ′`,δ,∆) becomes

W (H ′`,δ,∆) =
∑

1≤i<j<`

∑
v∈V (H′i)
w∈V (H′j)

d(v, w) +
∑̀
i=1

∑
v,w∈V (H′i)

d(v, w). (5.3.35)

For i ∈ {1, 2, . . . , `}−{2, `−1} let Vi = V (H ′i), and for i ∈ {2, `−1} let Vi be a set of
δ
2 vertices of V (H ′i), and let Wi = V (H ′i)−Vi. So |Vi| = δ

2 for 1 ≤ i ≤ `, |W2| = ∆−δ
and |W`−1| = δ

2 . Now the distance between two vertices x ∈ V (H ′i) and y ∈ V (H ′j),

where i < j, equals j−i. Counting only the distances between pairs (x, y) of vertices

that are either in distinct Vi, or x ∈W2 and y ∈ Vj for j ∈ {3, 4, . . . , `}, we obtain

W (H ′`,δ,∆) >
∑

1≤i<j≤`

∑
x∈Vi

∑
y∈Vj

d(x, y) +
∑
x∈W2

∑̀
j=3

∑
y∈Vj

d(x, y)

=
∑

1≤i<j≤`
|Vi| · |Vj | · (j − i) +

∑̀
j=3

|W2| · |Vj | · (j − 2)

=
δ2

4

∑
1≤i<j≤`

(j − i) + (∆− δ)δ
2

`−2∑
i=1

i.

Now N = n−∆ + δ,
∑

1≤i<j≤`(j − i) = `3−`
6 and

∑`−2
i=1 i = `2−3`+2

2 . Hence

W (H ′`,δ,∆) >
1

24
δ2(`3 − `) +

1

4
(∆− δ)δ(`2 − 3`+ 2).

We now make use of the fact that (` + 1) δ2 = N and so ` + 1 = 2N
δ . Clearly,

`3 − ` > (`+ 1)3 − 3(`+ 1)2 and `2 − 3`+ 2 > (`+ 1)2 − 5(`+ 1). Hence

W (H ′`,δ,∆) >
1

24
δ2(`+ 1)3 − 3

24
δ2(`+ 1)2 +

1

4
(∆− δ)δ(`+ 1)2 − 5

4
(∆− δ)δ(`+ 1)

=
N3

3δ
− N2

2
+

(∆− δ)N2

δ
− 5(∆− δ)N

2

=
N2(N + 3∆)

3δ
− 1

2
N(3N − 5(∆− δ))

>
N(N − 1)(N + 3∆)

3δ
− 4n(n− 1).

Now N + 3∆ = n− 2∆ + δ > n+ 2∆. Division by
(
n
2

)
now yields

µ(H ′`,δ,∆) >
2

3

N(N − 1)

n(n− 1)

n+ 2∆

δ
− 8.
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This implies that the bound on the average distance in Theorem 5.3.4 is sharp apart

from an additive constant.

Define µ′(`, δ,∆) and W ′(`, δ,∆) to be the maximum average distance and maximum

Wiener index, respectively, among all connected, triangle-free graphs of order n, minimum

degree δ and maximum degree ∆. Theorem 5.3.4 shows that

µ′(`, δ,∆) =
2

3

(n−∆ + δ)(n−∆ + δ − 1)

n(n− 1)

n+ 2∆

δ + 1
+O(1)

and

W ′(`, δ,∆) =
2

3

(
n−∆ + δ

2

)
n+ 2∆

δ + 1
+O(n2).

In the next theorem we show that the bound in Theorem 5.3.3 can be improved significantly

for graphs not containing a 4-cycle. If δ+1 is a prime power, then our bound is best possible

in a sense specified later.

Theorem 5.3.5. Let G be a connected C4-free graph of order n, minimum degree δ and

maximum degree ∆. Then

i) G has a spanning tree T with

µ(T ) ≤ 5

3

n− ξ∆ + ξδ
n

n− ξ∆ + ξδ − 1

n− 1

n+ 2ξ∆

ξδ
+ 8.

ii)

µ(G) ≤ 5

3

n− ξ∆ + ξδ
n

n− ξ∆ + ξδ − 1

n− 1

n+ 2ξ∆

ξδ
+ 8.

where ξ∆ = ∆δ − 2b∆/2c+ 1 and ξδ = δ2 − 2bδ/2c+ 1.

Proof. Let w1 be as defined previously. We first construct a spanning tree in exactly

the same way as in the previous proofs. For the reader’s convenience we repeat the

construction. We start first by finding a maximal 4-packing, B, of G using the following

procedure. Let B = w1. If there exists a vertex wi in G with dG(wi, V (B)) = 5, add wi to

B. Add vertices wi satisfying dG(wi, V (B)) = 5 to B until, after r steps say, every vertex

not in B is within distance four of B. Thus B = {w1, w2, · · ·wr}.

Let NG[u] and N≤2(u) denote the closed neighbourhood and set of vertices within distance

two of u, respectively. For each u ∈ B let T1(u) be a tree with vertex set N≤2(u) satisfying

dT (u, v) = dG(u, v) for each v ∈ N≤2(u). T1(u) is distance preserving to u. Then T1 =⋃
u∈V (B) T1(u) is a subforest of G. By our construction of B, there exist |B| − 1 edges
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in G, each one joining two distinct components of T1, whose addition to T1 yields a tree

T2 ≤ G. Now, each vertex v ∈ V (G)− V (T1) is within distance five of some vertex in T2.

Let T ≥ T2 be a spanning tree of G in which dT (x, V (B)) = dG(x, V (B)) for each x ∈
V (G). Hence it suffices to prove the bound for T , that is

µ(T ) ≤ 5

3

n− ξ∆ + ξδ
n

n− ξ∆ + ξδ − 1

n− 1

n+ 2ξ∆

ξδ
+ 8.

For every vertex u ∈ V (T ), let uB be a vertex in B closest to u in T . We move the weight

of every vertex to the closest vertex in B by defining a weight function c : V (T )→ R+ by

c(u) = |{u ∈ V (T ) | uB = v}| for v ∈ V (T ),

where c(u) = 0 if u /∈ B.

By Lemma 2.2.1, ∣∣N≤2[wi]
∣∣ ≥ δ2 − 2bδ/2c+ 1 for all wi ∈ B.

Therefore, c(wi) ≥ δ2−2bδ/2c+ 1 for all wi ∈ B−{w1}. It follows immediately from the

same argument that c(w1) ≥ ∆δ−2b∆/2c+1. Subsequently, we let ξ∆ = ∆δ−2b∆/2c+1.

and ξδ = δ2−2bδ/2c+1. This implies that c(w1) ≥ ξ∆ and c(wi) ≥ ξδ for all wi ∈ B−{wi}.
We also note that

∑
v∈V (T ) c(u) = n. This yields n =

∑
u∈B c(u) ≥ ξ∆ + (r− 1)ξδ, and so

r ≤ n− ξ∆ + ξδ
ξδ

. (5.3.36)

Since each weight was moved over a distance not exceeding four and no distance between

two weights has changed by more than 8 and thus

µ(T ) ≤ µc(T ) + 8. (5.3.37)

As in the proof of previous theorem, we construct an induced subgraph, T 5[B] = T ′′, of

T 5. T ′′ is connected. Clearly dT (u, v) ≤ 5dT ′′(u, v) for all pair of vertices u, v ∈ B and

since V (B) = V (T ′′), we have that σc(T ) ≤ 5σc(T
′′). Hence,

µc(T ) ≤ 5µc(T
′′). (5.3.38)

We now modify the weight function c to obtain a new weight function c′ satisfying c′(u) ≥
ξδ for all u ∈ B. Define the new weight c′ by

c′(u) =

c(u) if u ∈ B − {w1},

c(u)− ξ∆ + ξδ if u = w1.
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Since c(u) ≥ ξδ for all u ∈ B and c(w1) ≥ ξ∆, we have that c′(u) ≥ ξδ for all u ∈ B.

Furthermore, ∑
u∈B

c′(u) =
∑
u∈A

c(u)− ξ∆ + ξδ = n− ξ∆ + ξδ.

By letting N ′′ =
∑

u∈A c
′(u), we have that N ′′ = n− ξ∆ + ξδ. We now express µc(T

′′) in

terms of µc′(T
′′).

µc′(T
′′) =

(
N ′′

2

)−1

σc′(T
′′),

=

(
N ′′

2

)−1[ r∑
i=2

(c(w1)− ξ∆ + ξδ)c(wi)dT ′′(w1, wi) +
∑

(u,v)⊆B−{w1}

c(u)c(v)dT ′′(u, v)
]
,

=

(
N ′′

2

)−1[ ∑
(u,v)⊆B

c(u)c(v)dT ′′(u, v)−
r∑
i=2

(ξ∆ − ξδ)c(wi)dT ′′(w1, wi)
]
,

=

(
N ′′

2

)−1[(n
2

)
µc(T

′′)− (ξ∆ − ξδ)
r∑
i=2

c(wi)dT ′′(w1, wi)
]
,

and thus, by rearranging

µc(T
′′) =

N ′′(N ′′ − 1)

n(n− 1)
µc′(T

′′) +
2(ξ∆ − ξδ)
n(n− 1)

r∑
i=2

c(wi)dT ′′(w1, wi) (5.3.39)

Clearly
r∑
i=2

c′(ei)dT ′′(w1, wi) = σc′(w1, T
′′). We now bound the two terms of the right hand

side of (5.3.39) separately. Following an argument similar to the proof of Theorem 5.3.3,

we obtain

σc′(w1, T
′′) ≤ (n− ξ∆)(r − 1)− 1

2
ξδ(r − 1)(r − 2). (5.3.40)

Since r ≤ n−ξ∆+ξδ
ξδ

, and since the right hand side of the above inequality is increasing in r

for r ≤ n−ξ∆+ξδ
ξδ

, we obtain by substituting this value for r that

σc′(w1, T
′′) ≤ (n− ξ∆)2

2ξδ
+

1

2
(n− ξ∆). (5.3.41)

SinceN ′′ = n−ξ∆+ξδ, the right hand side of (5.3.41) equals (N ′′−ξδ)2

2ξδ
+N ′′−ξδ

2 = N ′′(N ′′−ξδ)
2ξδ

,

and so we obtain

σc′(w1, T
′′) ≤ N ′′(N ′′ − ξδ)

2ξδ
<
N ′′(N ′′ − 1)

2ξδ
. (5.3.42)

To bound µc′(T
′′), we recall that c′(u) ≥ ξδ for all u ∈ B. Let C ′ be the least multiple of

ξδ such that
∑

u∈B c
′(u) ≤ C ′. Then by Lemma 5.2.2 we have

µc′(T
′′) ≤ C ′ − ξδ

C ′ − 1

C ′ + ξδ
3ξδ

≤ C ′ + 1

3ξδ
.
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Now
∑

u∈B c
′(u) = N ′′ so C ′ ≤ N ′′ + ξδ − 1. Hence we obtain

µc′(T
′′) ≤ N ′′ + ξδ

3ξδ
. (5.3.43)

Substituting (5.3.42) and (5.3.43) into (5.3.39) yields

µc′(T
′′) ≤ N ′′(N ′′ − 1)

n(n− 1)

N ′′ + ξδ
3ξδ

+
ξ∆ − ξδ
n(n− 1)

N ′′(N ′′ − 1)

ξδ
=
N ′′(N ′′ − 1)

n(n− 1)

N ′′ + 3ξ∆ − 2ξδ
3ξδ

,

and thus

µc′(T
′′) ≤ N ′′(N ′′ − 1)

n(n− 1)

n+ 2ξ∆ − ξδ
3ξδ

<
N ′′(N ′′ − 1)

n(n− 1)

n+ 2ξ∆

3ξδ
. (5.3.44)

Combining the inequalities (5.3.37), (5.3.38) and (5.3.44) yields

µ(T ) ≤ µc(T ) + 8

≤ 5µc′(T
′′) + 8

≤ 5

3

N ′′(N ′′ − 1)

n(n− 1)

n+ 2ξ∆

ξδ
+ 8,

as desired. Hence, Theorem 5.3.5 holds.

(ii) The proof of part (ii) follows from part (i).

The following theorem shows that the bound in Theorem 5.3.5 is not far from being best

possible in the sense described later if δ + 1 is prime power. Our construction is based on

the graph Hq constructed independently by Erdös and Rényi [52] and Brown [12], and a

modification H0, first described in [51] (see Example 2.3.5). For the readers convenience,

we recall below the description of the graph Hq and its modification H0.

Let q be a prime power. Let GF (q) be the field of order q and let GF (q)3 be the 3-

dimensional vector space over GF (q) whose vectors are the triples of elements of GF (q).

We define Hq to be the graph whose vertices are the 1-dimensional subspaces of GF (q)3,

where two vertices are adjacent if, as subspaces, they are orthogonal. It is easy to verify

that Hq has q2 + q + 1 vertices, that its vertices have degree either q or q + 1, and that

Hq is C4-free and connected.

Erdös, Pach, Pollack and Tuza [51] described a modification H0 of the graph Hq, obtained

as follows. Choose a vertex z of degree q in Hq and let u, v be two distinct neighbours of

z. Delete z and all edges joining a neighbour of u to a neighbour of v. The resulting graph

H0 is connected, C4-free and has q2 + q vertices, its minimum degree is at least q− 1, and

dH0(u, v) ≥ 4.

Theorem 5.3.6. Let δ ∈ N such that δ ≥ 3 and δ + 1 is a prime power. Let ∆ ∈ N
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such that ∆ − 1 is a positive multiple of δ + 2. Let n ∈ N such that n − (∆ − 1)(δ + 1)

is a positive multiple of (δ + 1)(δ + 2). Then there exists a C4-free graph G of order n,

maximum degree ∆ and minimum degree at least δ which satisfies

µ(G) >
5

3

(n− θ∆ + θδ)(n− θ∆ + θδ − 1)

n(n− 1)

n+ 2θ∆

θδ
− 13,

where θ∆ = (∆− 1)(δ + 1) + 1 and θδ = (δ + 2)(δ + 1).

Proof. Let q = δ + 1. By the assumptions on ∆ and n we can find k, ` ∈ N with ` ≥ 2

such that ∆ = k(q + 1) + 1 and n = (k + `− 1)(q2 + q).

We construct a graph G1 by taking k disjoint copies of Hq, choosing a vertex of degree

q + 1 in each copy, and then identifying these k vertices to a new vertex v1. Clearly,

n(G1) = k(q2 + q) + 1 and degG1
(v1) = k(q + 1). For i = 2, 3 . . . , ` let Gi be a copy of the

graph H ′q. Let ui and vi denote the vertices of Gi corresponding to u and v, respectively,

of H ′q. Let Gk,`,q be the graph obtained from the disjoint union
⋃`
i=1Gi by adding the

edges viui+1 for i = 1, 2, . . . , ` − 1. A sketch of the graph G2,5,q is shown in Figure 5.3.

Then Gk,`,q has order n, maximum degree ∆ and minimum degree at least δ. We define

θ∆ = (∆− 1)(δ + 1) + 1, θδ = (δ + 2)(δ + 1), and M = n− θ∆ + θδ.

v1 v2 v3 v4 v5u2 u3 u4 u5

H0 H0 H0 H0

Hq

Hq

G1

G2 G3 G4 G5

Figure 5.3: The graph Gk,`,q for k = 2 and ` = 5.

We now bound the average distance of Gn,∆,δ from below in terms of n, θ∆ and θδ. Let

Vi := V (Gi) for i = 1, 2, . . . , `. Then |V1| = θ∆ and |Vi| = θδ for i = 2, 3, . . . , `.

For our lower bound we only count the distances between pairs x, y with either x ∈ Vi and

y ∈ Vj where 2 ≤ i < j ≤ `, or x ∈ V1 and y ∈ Vj for j = 2, 3, . . . , `, ignoring all other

pairs of vertices. Clearly, if x ∈ Vi, y ∈ Vj and i < j, then d(x, y) ≥ 5(j − i)− 4. If x ∈ V1
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and y ∈ Vj , then d(x, y) ≥ 5j − 9. Hence

W (Gk,`,q) >
∑

2≤i<j≤`

∑
x∈Vi,y∈Vj

d(x, y) +
∑̀
j=2

∑
x∈V1,y∈Vj

d(x, y)

≥
∑

2≤i<j≤`
|Vi| |Vj |

(
5(j − i)− 4

)
+
∑̀
j=2

|V1| |Vj |
(
5j − 9

)
= θ2

δ

∑
2≤i<j≤`

(
5(j − i)− 4

)
+ θδθ∆

∑̀
j=2

(
5j − 9

)
.

Straightforward calculations show that
∑

2≤i<j≤`
(
5(j−i)−4

)
= 1

6(5`3−27`2+46`−24) ≥
1
6(5`3 − 27`2) and

∑`
j=2

(
5j − 9

)
= 1

2(5`2 − 13` + 8) ≥ 1
2(5`2 − 13`). Substituting these

values we obtain

W (Gk,`,q) >
1

6
θ2
δ (5`

3 − 27`2) +
1

2
θδθ∆(5`2 − 13`)

=
5

6

(
θ2
δ`

3 + 3θδθ∆`
2
)
− 9

2
θ2
δ`

2 − 13

2
θ∆θδ`.

Since `θδ = M , we have θ2
δ`

3 + 3θδθ∆`
2 = M3

θδ
+ 3 θ∆M

2

θδ
≥ M(M−1)(n+2θ∆)

θδ
. Also 9

2θ
2
δ`

2 +
13
2 θ∆θδ` = 13

2 θδ`(
9
13θδ` + θ∆) < 13

2 (M − 1)M ≤ 13
2 (n − 1)n. Dividing the above lower

bound on W (Gk,`,q) by
(
n
2

)
thus yields

µ(Gk,`,q) >
5

3

M(M − 1)

n(n− 1)

n+ 2θ∆

θδ
− 13,

as desired.

To see that Theorem 5.3.5 is not far from best possible, even for very large maximum

degree, assume that δ,∆ ∈ N satisfy the hypothesis of Theorem 5.3.6, and that moreover

∆ = cn for some c ∈ R with 0 < c < 1
δ+1 (note that by Lemma 2.2.1 c cannot be greater

than 1
δ+1). Then the leading term in the upper bound in Theorem 5.3.5 is 5

3
(1−cδ)2(1+2cδ)
δ2−2bδ/2c+1

n

while the leading term in the lower bound in Theorem 5.3.6 is 5
3

(1−c(δ+1)2(1+2c(δ+1))
δ2+δ−2

n. It

is easy to see that the ratio of the two coefficients of n approaches 1 as δ gets large. So

the larger δ, the closer the bound in Theorem 5.3.5 to being sharp.

The next theorem shows that the bound on the average distance can be improved if in

addition, the graph described in Theorem 5.3.5 has girth at least 6. The proof tech-

nique follows essentially from Theorem 4.3.4 with a little modification. For the readers

convenience, we repeat the proof here.

Theorem 5.3.7. Let G be a graph of girth at least 6 with n vertices, minimum degree

δ ≥ 2, and maximum degree ∆. Then,
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i) G has a spanning tree T with

µ(T ) ≤ 2(n− κ∆ + κδ)

n

n− κ∆ + κδ − 1

n− 1

n+ 2κ∆

κδ
+ 13. (5.3.45)

ii)

µ(G) ≤ 2(n− κ∆ + κδ)

n

n− κ∆ + κδ − 1

n− 1

n+ 2κ∆

κδ
+ 13. (5.3.46)

where κ∆ := ∆δ + (δ − 1)
√

∆(δ − 2) + 3
2 , and κδ := 2(δ2 − δ + 1).

Proof. Let v1 be a vertex of degree ∆ and let e1 be an edge incident with v1. We obtain

a maximal matching M of G as follows. Let M = {e1}. Let V (M) be the set of vertices

incident with an edge of M . Recall that for an edge e, dG(e, V (M)) is the minimum of

the distances between a vertex incident with e and a vertex in V (M). If there exists an

edge e2 with dG(e2, e1) = 6, add e2 and let M0 = {e2}. If there exists an edge e3 with

(i) dG(e3, e1) ≥ 6

(ii) dG(e3, e2) ≥ 5 and

(iii) we have equality in (i) or (ii) or both,

then we add e3 to M0. Repeat this process: Let M0 = {e2, e3, . . . , ei−1}. If there exists

an edge ei satisfying

(a) dG(ei, e1) ≥ 6

(b) min{dG(ei, ej)‖ j = 2, 3, . . . , i− 1} ≥ 5, and

(c) we have equality in (a) or (b) or both,

then add ei to M0. We repeat this process until, after k steps say, no further edge can be

added to M0. Let M = {e1} ∪M0, so M = {e1, . . . , ek} and |M | = k. Then every edge

not in M is within distance 5 of an edge in M .

Let T ∗v1
be a tree with vertex set N≤3(v1) which is distance preserving from v1. For

i ∈ {1, 2, . . . , k} let ei = uivi. Let T ∗ei be a subtree of G with vertex set N≤2(ui)∪N≤2(vi)

that preserves the distance to {uivi}.

Let T1 = T ∗v1
∪
⋃

ei∈M
T ∗ei . Then, T1 ≤ G is a subforest of G with vertex set, N≤3(v1) ∪

N≤2

(
V (M) − {v1}

)
. By our construction of M , there exists |M | − 1 edges in G, each

joining two distinct components of T1, whose addition to T1 yields a tree T2 ≤ G, so that

T2 contains T1 and has the same vertex set as T1.
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Now, each vertex v ∈ V (G) − V (T2) is within distance five of some vertex w in V (M)

closest to it. Let T ≥ T2 be a spanning tree of G containing T2 and distance preserving

from V (M), i.e. dT (x, V (M)) = dG(x, V (M)) for each x ∈ V (G). Clearly, tree T has the

same maximum degree as G since degT(v1) = degG(v1). It suffices to prove the bound for

T since it directly implies part (ii) of the theorem.

For every vertex u ∈ V (T ), let uM be a vertex in V (M) closest to u in T . We can view T as

a weighted tree where each vertex has weight exactly 1. We now move the weight of every

vertex to the closest vertex in V (M), by defining a new weight function c : V (T )→ N∪{0}
by:

c(u) = |{x ∈ V (M) | xM = u}| for u ∈ V (T ).

Note that c(u) = 0 if u /∈ V (M) and
∑

u∈V (M) c(u) = n, where n is the order of G.

Since the weight of each vertex was moved over a distance not exceeding five and no

distance between two weights have changed more than 10, we have that

µ(T ) ≤ µc(T ) + 10 (5.3.47)

Now the weight of c is concentrated exclusively on the vertices incident with an edge of M .

Consider the line graph L = L(T ) and define a new weight function c on V (L) = E(T ) by

c(wz) =

c(w) + c(z) if wz ∈ M,

0 if wz /∈ M.

Let wz ∈M − {e1}. For each vertex x ∈ N≤2(w) ∪N≤2(z), we have xM ∈ {w, z}. Hence

c(w) + c(z) ≥ |N≤2(w) ∪N≤2(z)|.

By Lemma 2.3.2, we have

|N≤2(w) ∪N≤2(z)| ≥ (δ − 1)
(
deg(w) + deg(z)

)
+ 2 ≥ 2(δ2 − δ + 1) (5.3.48)

and so we have that

c(wz) ≥ 2δ2 − 2δ + 2 for wz ∈M − {e1}. (5.3.49)

On the other hand, let e1 := v1w. For each vertex x ∈ N≤3(v1), we have xM ∈ {v1, w}.
Hence,

c(v1) + c(w) ≥ |N≤3(v1)|.
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By Lemma 3.2.1, we have

|N≤3(v1)| ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
. (5.3.50)

and so we have that

c(e1) = c(v1w) ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
. (5.3.51)

Note that c(wz) = 0 if wz /∈M and
∑

e∈M c(e) =
∑

u∈V (T ) c(u) = n. It follows that

n ≥ ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
+

∑
x∈M−{e1}

(2δ2 − 2δ + 2),

= ∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
+ (2δ2 − 2δ + 2)(|M | − 1),

and rearranging yields

|M | ≤
n−

[
∆δ + (δ − 1)

√
∆(δ − 2) + 3

2

]
2δ2 − 2δ + 2

+ 1. (5.3.52)

Following a similar argument as in the proof of Theorem 4.3.1 (See Claim 1), we have that

|dT (x, y) − dL(ex, ey)| ≤ 1 where L is the line graph of T , ex, ey ∈ E(T ) are edges of T

incident with x and y respectively. Hence no distance between weights has increased by

more than 1 and thus

µc(T ) ≤ µc(L) + 1. (5.3.53)

If f1, f2 are two matching edges in M with dT (f1, f2) = 5, then dL(f1, f2) ≤ 6. Now the

weights lie solely on M . Let H be the graph obtained from L6[M ] by joining e1 to every

ei in M for which dL(e1, ei) ≤ 7. Such edges exist since by construction of M we have

that dT (e1, e2) = 6 and thus dL(e1, e2) ≤ 7. Essentially the same argument as in the proof

of Theorem 4.2.3) shows that H is connected.

Let e, f ∈ M and let P be a shortest path from e to f in H of length ` say. A similar

argument as in the proof of Theorem 4.3.4 shows that P yields a path of length at most

6`+ 2. Hence

dL(e, f) ≤ 6dH(e, f) + 2 for every e, f ∈M,

and so we have that

µc(L) ≤ 6µc(H) + 2. (5.3.54)

We now modify the weight function c to obtain a new weight function c′ on M for which

c′(e) ≥ 2δ2 − 2δ + 2 for all e ∈M .

Let c′(e1) = c(e1)−
[
∆δ+ (δ− 1)

√
∆(δ − 2) + 3

2

]
+ (2δ2 − 2δ+ 2) and let c′(e) = c(e) for
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e ∈M − {e1}.

Clearly c′(ei) ≥ 2δ2 − 2δ + 2 for all ei ∈M since c(e1) ≥ ∆δ + (δ − 1)
√

∆(δ − 2) + 3
2 and

c(e) ≥ 2δ2 − 2δ + 2 for e ∈M − {e1}.

Furthermore,∑
v∈V (L6[M ])

c′(v) =
∑

e∈M−{e1}

c(e) + c′(e1)

=
∑
e∈M

c(e)−
(

∆δ + (δ − 1)
√

∆(δ − 2) +
3

2

)
+ (2δ2 − 2δ + 2)

]
=

∑
v∈V (T )

c(v)−
(
∆δ + (δ − 1)

√
∆(δ − 2) +

3

2

)
+ (2δ2 − 2δ + 2)

Let κ∆ := ∆δ + (δ − 1)
√

∆(δ − 2) + 3
2 and κδ := 2δ2 − 2δ + 2. By letting N∗ =∑

v∈V (L6[M ]) c
′(v), we have that N∗ = n− κ∆ + κδ.

We now express µc(H) in terms of µc′(H).

µc′(H) =

(
N∗

2

)−1

σc′(H),

=

(
N∗

2

)−1[ r∑
i=2

(c(e1)− κ∆ + κδ)c(ei)dH(e1, ei)
]

+

(
N∗

2

)−1[ ∑
(e,f)⊆M−{e1}

c(e)c(f)dH(e, f)
]
,

=

(
N∗

2

)−1[ ∑
(e,f)⊆M

c(e)c(f)dH(e, f)−
r∑
i=2

(κ∆ − κδ)c(ei)dH(e1, ei)
]
,

=

(
N∗

2

)−1[(n
2

)
µc(H)− (κ∆ − κδ)

r∑
i=2

c(ei)dH(e1, ei)
]
,

and thus, by rearranging

µc(H) =
N∗(N∗ − 1)

n(n− 1)
µc′(H) +

2(κ∆ − κδ)
n(n− 1)

r∑
i=2

c(ei)dH(e1, ei)

(5.3.55)

Clearly
r∑
i=2

c(ei)dH(e1, ei) = σc(e1, H). We now bound the two terms of the right hand

side of (5.3.55) separately. Following an argument similar to the proof of Theorem 5.3.3,

we obtain

σc(e1, H) ≤ (n− κ∆)(r − 1)− 1

2
κδ(r − 1)(r − 2). (5.3.56)
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Since r ≤ n−κ∆+κδ
κδ

, and since the right hand side of the above inequality is increasing in

r for r ≤ n−κ∆+κδ
κδ

, we obtain by substituting this value for r that

σc(e1, H) ≤ (n− κ∆)2

2κδ
+

1

2
(n− κ∆). (5.3.57)

Since N∗ = n − κ∆ + κδ, the right hand side equals (N∗−κδ)2

2κδ
+ N∗−κδ

2 = N∗(N∗−κδ)
2κδ

, and

so we obtain

σc(e1, H) ≤ N∗(N∗ − κδ)
2κδ

<
N∗(N∗ − 1)

2κδ
. (5.3.58)

To bound µc′(H), we recall that c′(u) ≥ κδ for all u ∈M . Let C ′′ be the least multiple of

κδ such that
∑

u∈M c′(u) ≤ C ′′. Then by Lemma 5.2.2 we have

µc′(H) ≤ C ′′ − κδ
C ′′ − 1

C ′′ + κδ
3κδ

≤ C ′′ + 1

3κδ
.

Now
∑

u∈M c′(u) = N∗ so C ′′ ≤ N∗ + κδ − 1. Hence we obtain

µc′(H) ≤ N∗ + κδ
3κδ

. (5.3.59)

Substituting (5.3.58) and (5.3.59) into (5.3.55) yields

µc(H) ≤ N∗(N∗ − 1)

n(n− 1)

N∗ + κδ
3κδ

+
κ∆ − κδ
n(n− 1)

N∗(N∗ − 1)

κδ
=
N∗(N∗ − 1)

n(n− 1)

N∗ + 3κ∆ − 2κδ
3κδ

,

and thus

µc(H) ≤ N∗(N∗ − 1)

n(n− 1)

n+ 2κ∆ − κδ
3κδ

<
N∗(N∗ − 1)

n(n− 1)

n+ 2κ∆

3κδ
. (5.3.60)

Combining the inequalities (5.3.47), (5.3.53), (5.3.54) and (5.3.60) yields

µ(T ) ≤ µc(T ) + 10

≤ µc(L) + 11

≤ 6µc(H) + 13

≤ 2N∗(N∗ − 1)

n(n− 1)

n+ 2κ∆

κδ
+ 13,

as desired. Hence, Theorem 5.3.7 holds.

The following theorem shows that the bound in Theorem 5.3.7 is sharp apart from an

additive constant. To prove the theorem, we make use of the graph constructed in Example

3.2.6 and briefly recall its construction here.

Theorem 5.3.8. Let δ ≥ 3 be an integer such that δ − 1 is a prime power. Then for
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n,∆ ∈ N, there exists infinitely many values of ∆ for which there exists infinitely many

values of n such that there exists a graph of girth at least 6, F ∗`,δ,∆ with n vertices, minimum

degree δ and maximum degree ∆ whose average distance satisfies

µ(F ∗`,δ,∆) ≥ 2(n− κ∆)(n− κ∆ − 1)

n(n− 1)

n+ 2κ∆

κδ
+O(

√
∆), (5.3.61)

where κδ := 2δ2 − 2δ + 2 and κ∆ := ∆δ + (δ − 1)
√

∆(δ − 2) + 3
2 .

Proof. Let q = δ − 1 be a prime power and m ∈ N with m ≥ 4. Recall from Section 3.2.2

(Theorem 3.2.10), there exists a connected graph of girth at least 6, Fq,m whose order n

satisfies

∆δ + (δ − 1)
√

∆(δ − 2) +
3

2
≤ n(Fq,m) ≤ 2 + δ∆ + (δ + 1)

√
∆(δ − 2).

Fq,m has minimum degree δ and maximum degree ∆ = (qm−1)(qm−1−1)
(q2−1)(q2−q) − 1

q .

Let u0 ∈ Fq,m be a vertex of maximum degree, viz z, and let v0 be any vertex of Fq,m that

is not of degree ∆. Without loss of generality, we let v0 ∈ Y as defined there.

Let ` ∈ N with ` ≥ 2 and ` sufficiently large. Now consider the graph H∗q+1 constructed in

Example 2.3.5. Recall that if e = uv is an edge of H∗q+1, then we have by Claim 2.3.6 that

dH∗q+1−uv(u, v) ≥ 5. Let F0 be a copy of Fq,m and let F1, . . . , F` be disjoint isomorphic

copies of He. From the disjoint copies of F1, F2, . . . , F`, we obtain a graph of girth at least

6, F ∗`,δ,∆ by adding the edges viui+1 for every (0 ≤ i ≤ ` − 1). For 1 ≤ i ≤ `, vertices ui

and vi of Fi correspond to vertices u and v, respectively, of He. The sketch of the graph

F ∗`,δ,∆ in Figure 3.2 is reproduced in Figure 5.4 below.

v0u0 H∗q+1 − e H∗q+1 − e H∗q+1 − e H∗q+1

F0

F1 F2 F3 F4

Figure 5.4: The graph F ∗4,δ,∆.

It is easy to verify that F ∗`,δ,∆ has minimum degree δ and maximum degree ∆. By Claim

2.3.6, graph Fi (for 1 ≤ i ≤ `) has κδ := 2(q2 +q+1) vertices and so if we denote the order
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of F0 by ω∆, then we have that the order of the graph F ∗`,δ,∆ is n = |V (F ∗`,δ,∆)| = ω∆ +`κδ,

and by Section 3.2.2 (Theorem 3.2.10),

κ∆ ≤ ω∆ ≤ κ∆ + 2
√

∆(δ − 2) +
1

2
. (5.3.62)

We now bound the average distance of F ∗`,δ,∆ from below.

For i ∈ {1, 2, . . . , `}, let Ui = V (Fi) and let U ′ = V (F0). So |Ui| = κδ and |U ′| = ω∆. Now

the distance between two vertices v ∈ Ui, if w ∈ Uj where i < j is at least 6(j − i) − 5.

Counting only the distances between pairs of vertices (v, w) for v ∈ U ′ and w ∈ Ui and

the pairs in Ui and Uj , we obtain that

W (F ∗`,δ,∆) >
∑

1≤i<j≤`

∑
v∈Ui

∑
w∈Uj

d(v, w) +
∑
v∈U ′

∑̀
j=1

∑
w∈Uj

d(v, w)

=
∑

1≤i<j≤`
|Ui| · |Uj | · (6(j − i)− 5) +

∑̀
j=1

|U ′| · |Uj | · (6j − 5)

= (κδ)
2
∑

1≤i<j≤`
(6(j − i)− 5) + ω∆κδ

∑̀
j=1

(6j − 5).

Simple calculation shows that
∑

1≤i<j≤`(6(j−i)−5) = 1
2(`2−`)(2`−3) and

∑`
j=1(6j−5) =

3`2 − 2`. Substituting these values and using the fact that n = ω∆ + `κδ, we obtain

W (F ∗`,δ,∆) >
1

2
(κδ)

2(2`3 − 5`2 + 3`) + ω∆κδ(3`
2 − 2`)

=
1

κδ
(n− ω∆)2(n+ 2ω∆)− 1

2
(n− ω∆)(5n− ω∆ − 3κδ)

Clearly, (n−ω∆)2 > (n−ω∆)(n−ω∆−1), n−ω∆ ≤ n−1 and, since 5n−ω∆−3κδ ≤ 5n,

we have that 1
2(n− ω∆)(5n− ω∆ − 3κδ) ≤ 5

(
n
2

)
. Now, division by

(
n
2

)
yields

µ(F ∗`,δ,∆) >
n+ 2ω∆

κδ

2(n− ω∆)(n− ω∆ − 1)

n(n− 1)
− 5.

Now let ε = ω∆ − κ∆. Replacing ω∆ by κ∆ + ε in the above lower bound, we obtain

µ(F ∗`,δ,∆) >
n+ 2κ∆ + 2ε

κδ

2(n− κ∆ − ε)(n− κ∆ − ε− 1)

n(n− 1)
− 5

=
2

κδn(n− 1)

[
(n+ 2κ∆)(n− κ∆)(n− κ∆ − 1) + ε[6κ2

∆ − 6nκ∆ + 4κ∆ − n]

+ε2[−3n+ 6κ∆ + 2] + 2ε3
]

Since (κ2
∆−6nκ∆+4κ∆−n ≥ −7nκ∆ ≥ −7n(n−1) and −3n+6κ∆+2 ≥ −3n ≥ −n(n−1),
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and also since 0 ≤ ε ≤ 2
√

∆(δ − 2) + 1
2 = O(

√
∆) by (5.3.62), we have for constant δ and

large n and ∆,

µ(F ∗`,δ,∆) >
2(n− κ∆)(n− κ∆ − 1)

n(n− 1)

n+ 2κ∆

κδ
+O(

√
∆),

as desired in Theorem 5.3.7.

The graph F ∗`,δ,∆ constructed above demonstrates that for δ− 1 a prime power, the bound

on the average distance in Theorem 5.3.7 is sharp apart from a termO(
√

∆), and the

second term is of the right order of magnitude.

The next theorem shows that slightly weaker bounds hold for graphs containing no cycles

of length 4 or 5-cycle as subgraphs. We omit the proof, since it is very similar to the proof

of Theorem 5.3.7 except for little modification. We do not know if this bound is sharp

Theorem 5.3.9. Let G be a connected (C4, C5)-free graph with n vertices, minimum

degree δ ≥ 2, maximum degree ∆. Then,

i) G has a spanning tree T with

µ(T ) ≤ 2(n− τ∆ + τδ)(n− τ∆ + τδ − 1)

n(n− 1)

n+ 2τ∆

τδ
+ 13. (5.3.63)

ii)

µ(G) ≤ 2(n− τ∆ + τδ)(n− τ∆ + τδ − 1)

n(n− 1)

n+ 2τ∆

τδ
+ 13. (5.3.64)

where τδ := 2δ2 − 5δ + 5 + 2εδ, τ∆ := ∆(δ − 1) + (δ − 2)
√

∆(δ − 3) + 3
2 and

εδ =

1 if δ is odd,

0 if δ is even.



Chapter 6

Bounds on the (Edge-)Fault-Diameter of

Graphs of Girth at least 6 and

(C4, C5)-free graphs.

6.1 Introduction

In Chapter 2, we gave bounds on the diameter of graphs of girth at 6 and connected

(C4, C5)-free graphs of given order and minimum degree. Since graphs are not always

static, for example graphs modelling communication networks can change if communica-

tion links or relays fail, it is also desirable to have information on the diameter increase

or decrease in some of the vertices or edges of the network fail. Hence, we consider the

concept of the k-fault-diameter and k-edge-fault-diameter first introduced in [68] and give

upper bounds on the k-fault-diameter and k-edge-fault-diameter of graphs at least girth

6 and (C4, C5)-free graphs in terms of the order of the graph n. Our results show that the

bounds in [28] can be improved further for graphs of girth at least 6. The techniques used

in [28] were very useful in obtaining these bounds. We further present a construction to

show that the bound is best possible in a sense specified later.

6.2 Preliminary Results

Herein, we recall some recent results by [28] on the k-fault-diameter and k-edge-fault-

diameter of connected graphs, triangle free graphs and connected C4-free graphs of given

order. From now onwards, all graphs are considered to be (k + 1)-connected since the

k-fault-diameter of a graph that is not (k + 1)-connected is infinite. We will make use of

some of the definitions in Chapter 1 and some of the notation used in [28].

Definition 6.2.1. Let G be a (k + 1)-connected-graph or (k + 1)-edge-connected-graph

where k ∈ N. The k-fault diameter Dk(G) and the k-edge-fault-diameter D′k(G) of G is

the largest diameter of the subgraphs obtained from G by removing at most k vertices and

edges, respectively.

In the proofs of the subsequent theorems and bounds, we make use of the following nota-

tion. G is a (k + 1)-(edge-)connected graph, d denotes the k-(edge-)fault-diameter of G.

The set S ⊆ V (G) is a set of k vertices of G such that diam(G−S) = d. If we consider the

edge-fault-diameter, then S is a set of edges. We denote G − S by H. Then H contains

137
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v0, vd with dH(v0, vd) = d. Let P : v0v1 . . . vd be a (v0, vd)-path of length d in H. For

i ∈ Z, we define the set Ni to contain the vertices whose distance to v0 (in H) equals i,

and we let ni = |Ni|. So Ni 6= ∅ only for i = 0, 1, . . . , d.

The following upper bound on Dk(G) follows from the fact that removing a set of k vertices

from a (k + 1)-connected graph of order n yields a connected graph of order n− k.

Proposition 6.2.2. [28] Let G be a (k + 1)-connected graph of order n. Then

Dk(G) ≤ n− k − 1.

Equality holds, for example, if G = Kk + Pn−k.

We present the following result and its proof since it is closely related to the original

results on the fault-diameter presented in the next section, in particular the bound on the

fault-diameter of graphs of girth 6 in Theorem 6.3.2. The proof closely follows the proof

given in [28].

Theorem 6.2.3. [28] Let G be a (k+ 1)-connected C4-free graph of order n, where k ≥ 2.

Then

Dk(G) ≤ 5

k2 − k + 1
n− 5k2 − 5k + 8

2
. (6.2.1)

Proof. Since G is (k + 1)-connected, we have that δ(G) ≥ k + 1. For i ∈ {0, 1, 2, . . . , d}
and vi ∈ Ni, we have that that N2

H [vi] ⊆ Ni−2 ∪ Ni−1 ∪ Ni ∪ Ni+1 ∪ Ni+2. Hence, we

now consider the set N2
H [v5i] for i = 0, 1, 2, . . . , bd5c and show that N2

H [v5i] are disjoint.

Suppose there exists i 6= j with N2
H [v5i]∩N2

H [v5j ] 6= ∅, then dH(v5i, v5j) ≤ 4 and replacing

the (v5i, v5j)-section of P with a shortest (v5i, v5j)-path would yield a shorter (v0, vd)-path

than P , a contradiction.

We now bound the number of vertices in N2
H [v5i].

Since H = G− S, it is possible that for i = 0, 1, . . . , bd5c, N
2
H [v5i] has a neighbour in S. If

it happens that a vertex v ∈ NH [v5i] has only one common neighbour in S, then, degH(v)

drops by 1 and this won’t significantly affect the bound in N2
H [v5i]. On the other hand, if

v ∈ NH [v5i] has more than one neighbour in S, say ` neighbours, then degH(v) drops by

` and if ` is almost close to deg(v), then this would adversely affect the bound in N2
H [v5i].

Thus, we partition the set {0, 1, 2, . . . , bd5c} into two disjoint sets I1 and I2 such that for

each i ∈ {0, 1, 2, . . . , bd5c}, we have that i ∈ I1 if |NG(v)∩ S| ≤ 1 for each v ∈ NH [v5i] and

i ∈ I2 if |NG(v) ∩ S| ≥ 2 for some v ∈ NH [v5i].

CLAIM 1: |N2
H [v5i]| ≥ k2 − k + 1 if i ∈ I1.

Fix i ∈ I1. For all v ∈ NH [v5i], degH(v) = degG(v)− |NG(v)∩S| ≥ (k+ 1)− 1 = k. Since

H is C4-free, any two vertices in NH(v5i) have no common neighbour other than v5i, and
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each vertex in NH(v5i) has at most one neighbour in NH(v5i). It follows that,

|N2
H [v5i]| ≥ 1 + degH(v5i) +

∑
x∈NH(v5i)

[
degH(x)− 2

]

≥ 1 + k +

degH(v5i)∑
j=1

[
degH(xj)− 2

]
≥ 1 + k + k(k − 2)

= k2 − k + 1, (6.2.2)

as desired in Claim 1.

CLAIM 2: |I2| ≤
(
k
2

)
Recall that for i ∈ {0, 1, 2, . . . bd5c}, i ∈ I2 if |NG(v)∩S| ≥ 2 for some v ∈ NH [v5i]. If there

are too many i for which NH [v5i] contains a vertex with two or more neighbours in S,

then G contains two vertices that share two neighbours in S, a contradiction to G being

C4-free. Thus we want to show that there are not many such sets NH [v5i] containing a

vertex with more than 2 neighbours in S.

For each set N2
H [v5i], i ∈ I2, choose a vertex wi with |NG(wi) ∩ S| ≥ 2 and a subset

Si ⊂ NG(wi)∩S of order two. Observe that the sets Si, i ∈ I2 are distinct, since otherwise

two vertices of H share two common neighbours in S and G contains a C4, a contradiction.

Hence |I2| ≤
(
k
2

)
, which is Claim 2.

CLAIM 3: n ≥
(
d−4

5 −
(
k
2

))
(k2 − k + 1).

It follows from Claim 2 that

|I1| ≥
⌊d

5

⌋
−
(
k

2

)
≥ d− 4

5
−
(
k

2

)
.

Clearly,

n ≥
b d

5
c∑

i=0

|N2
H [v5i]|

≥
∑
i∈I1

|N2
H [v5i]|

≥
[d− 4

5
−
(
k

2

)]
(k2 − k + 1).
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Solving for d, we have that

d ≤ 5
( n

k2 − k + 1

)
+ 5

(
k

2

)
+ 4

=
5n

k2 − k + 1
+ 5
(k2 − k

2

)
+ 4

=
5n

k2 − k + 1
+

5k2 − 5k + 8

2
,

which yields the desired bound on d as stated in inequality (6.2.1).

The subsequent theorem by Dankelmann [28] shows that the order of magnitude of the

bound in Theorem 6.2.3 is close to being optimal for infinitely many values of k. The

construction is based on a modification of the graph Hq described in Example 2.2.3, first

constructed by Erdös and Rényi [52] and independently Brown [12].

Recall from Example 2.2.3 that two vertices x and y of Hq are said to be adjacent if x and

y, as 1-dimensional subspaces of GF (q)3, are orthogonal. Furthermore by Claim 2.2.5, we

have that Hq is C4-free and has q2 + q + 1 vertices. The degree of each vertex of Hq is q

if the vertex is self-orthogonal and q + 1 otherwise. Subsequently, we denote by Vq+1 and

Vq the set of vertices of Hq of degree q + 1 and q, respectively.

The following properties of Vq and Vq+1 in Hq which follow from Claim 2.2.4 (see subclaims

a-d) will be useful in the proofs of subsequent lemmas and theorems.

(i) the vertices in Vq are pairwise non-adjacent,

(ii) if u ∈ Vq and v ∈ Vq+1 are adjacent, then N(u) ∩N(v) = ∅,

(iii) if u ∈ Vq and v ∈ Vq+1 are non-adjacent, then |N(u) ∩N(v)| = 1,

(iv) if u, v ∈ Vq or u, v ∈ Vq+1 then |N(u) ∩N(v)| = 1.

Lemma 6.2.4. [28] Let q be a prime power and let GF (q)3 be the 3-dimensional vector

space over the finite field GF (q) of order q. Let Hq be the graph whose vertices are the

1-dimensional subspaces of GF (q)3, where two vertices are adjacent if, as subspaces, they

are orthogonal.

κ(Hq) ≥ q. (6.2.3)

Lemma 6.2.5. [28] Choose z ∈ Vq and two neighbours u and v.

Let N(u) = {z, u1, u2, . . . , uq−1} and N(v) = {z, v1, v2, . . . , vq−1}. Then there exists a

perfect matching M between N(u)− {z} and N(v)− {z}. Then,

i) V (M) ⊆ Vq+1.

ii) M is an induced matching of Hq
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Lemma 6.2.6. [28] Let Hq and M be as defined above. If H ′q = Hq −M , then

κ(H ′q) = q. (6.2.4)

Theorem 6.2.7. [28] Let k ∈ N be such that k + 1 is a prime power. Then for infinitely

many values of n there exists a (k + 1)-connected, C4-free graph Gn of order n with

Dk(Gn) ≥ 5n

k2 + 3k + 2
− 2.

Proof. Let q = k + 1, so q is a prime power. Let the graph Hq be as defined above. By

Lemma 6.2.4, κ(Hq) ≥ q. Let M and H ′q be as defined above. By Lemma 6.2.6, κ(H ′q) = q.

For i = 1, 2, . . . , t let Fi be a copy of H ′q. We now let ui, ui1, u
i
2, . . . , u

i
q−2, v

i, and zi be the

vertices of Fi corresponding to u, u1, u2, . . . , uq−2, v and z in H ′q. For i = 1, 2, . . . , t − 1,

let viui+1 be an edge of Fi. For j = 1, 2, . . . , q − 2 and i = 1, 2, . . . , t, let w1, w2, . . . , wq−2

be new vertices of Fi such uijwj is an edge of Fi. Furthermore we identify the vertices

z1, z2, . . . , zt to a single vertex z0.

Let Gn be the graph with vertex set V (Gn) = V (F1) ∪ V (F2) ∪ . . . V (Ft), and edge set

E(Gn) = E(F1) ∪ E(F2) ∪ . . . E(Ft) ∪{v1u2, v2u3, . . . , vt−1ut} ∪ {u1
1w1, u

2
1w1, . . . u

t
1w1}

∪{u1
2w2, u

2
2w2, . . . u

t
2w2} . . . ∪{u1

q−2wq−2, u
2
q−2wq−2, . . . u

t
q−2wq−2}. A sketch of the graph

Gn for t = 3 is shown in Figure 6.1. The order of Gn is t(q2 + q + 1)− (t− 1) + q − 2 =

t(k2 + 3k + 2) + k.

F1 − z1

u1

u1
1

u1
q−1

v1
1

v1
q−1

v1

F2 − z2

u2

u2
1

u2
q−1

v2
1

v2
q−1

v2

F1 − z3

u3

u3
1

u3
q−1

v3
1

v3
q−1

v3

z0

wq−2

w2

w1

Figure 6.1: The graph Gn for t = 3.



Section 6.3. Main Results Page 142

subclaim: Gn is a C4-free, (k + 1)-connected graph.

We first show that Gn is q-connected. Let S be a set of q − 1 vertices of Gn. Then each

subgraph Fi− (S ∩ V (Fi)) is connected since Fi is q-connected. Since each subgraph Fi is

connected to other subgraphs Fj through at least q vertices, viz z0, w1, w2, . . . , wq−2 and

at least one of ui, vi, Gn − S is connected and Gn is q-connected. Clearly H ′q is C4-free

since Hq is C4-free. Moreover, since Gn is obtained from the disjoint union of Fi’s with

each Fi a copy of H ′q, we have that Gn is also C4-free.

To bound the k-fault-diameter from below, we choose the set S as {z0, w1, w2, . . . , wq−2}.
Since d(ui, vi) = 4 in Fi − zi , we have

Dq−1(Gn) ≥ dGn−S(u1, vt) = 5t− 1 =
5

k2 + 3k + 2
n− k2 + 8k + 2

k2 + 3k + 2
≥ 5

k2 + 3k + 2
n− 2.

Hence there exist infinitely many values of n for which there is a C4-free graph with the

desired properties.

6.3 Main Results

In this section we present our original results on the fault-diameter and the edge-fault-

diameter.

6.3.1 Bounds on the Fault-Diameter of (k+1)-connected Graphs of Girth

at least 6

We begin by presenting our result on the fault-diameter of (k + 1)-connected graphs of

girth at least 6. The technique used throughout this section is a slight modification of

that used in the previous section. We omit the proof of Lemma 6.3.1 since it is identical

to that of Lemma 2.3.2.

Lemma 6.3.1. Let G be a connected graph of girth at least 6. If u and v are adjacent

vertices of G such that all vertices in NG(u) ∪NG(v) has degree at least δ, then

|N≤2(u) ∪N≤2(v)| ≥ 2(δ2 − δ + 1).

Theorem 6.3.2. Let k ≥ 2 ∈ N and let G be a (k+ 1)-connected graph of girth at least 6

graph of order n. Then

Dk(G) ≤ 3n

k2 − k + 1
+ 3(k2 − k + 2). (6.3.1)

Proof. Let P , d, S, H, Ni, N
2
G(v), vi be as defined in the proof of Theorem 6.2.3. For
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i ∈ {0, 1, 2, . . . , d− 1}, we have that,

N2
H [vi] ∪N2

H [vi+1] ⊆ Ni−2 ∪Ni−1 ∪Ni ∪Ni+1 ∪Ni+2 ∪Ni+3,

and so for i = 0, 1, 2, . . . , bd−1
6 c, we consider the sets N2

H [v6i]∪N2
H [v6i+1] which are clearly

disjoint. Clearly, the sets
(
N2
H [v6i]∪N2

H [v6i+1]
)

and
(
N2
H [v6j ]∪N2

H [v6j+1]
)

are disjoint for

all distinct i, j ∈ {0, 1, 2 . . . bd−1
6 c}. Indeed if there exists i 6= j with

(
N2
H [v6i]∪N2

H [v6j+1]
)
∩

(N2
H [v6j ] ∪ N2

H [v6j+1]
)
6= ∅, then dH(v6i, v6j) ≤ 5 or dH(v6i+1, v6j+1) ≤ 5. Replacing

the (v6i, v6j)-section of P with a shortest (v6i, v6j)-path or replacing the (v6i+1, v6j+1)-

section of P with a shortest (v6i+1, v6j+1)-path or replacing the (v6i, v6j+1)-section of P

with a shortest (v6i, v6j+1)-path or replacing the (v6i+1, v6j)-section of P with a shortest

(v6i+1, v6j)-path would yield a shorter (v0, vd)-path than P , a contradiction.

Following a similar argument as in the proof of Theorem 6.2.3, we partition the set

{0, 1, 2, . . . , bd−1
6 c} into two disjoint sets I ′1 and I ′2 such that for each i ∈ {0, 1, 2, . . . , bd6c},

we have that i ∈ I ′1 if |NG(v) ∩ S| ≤ 1 for each v ∈ NH [v6i] ∪ NH [v6i+1] and i ∈ I ′2 if

|NG(v) ∩ S| ≥ 2 for some v ∈ NH [v6i] ∪NH [v6i+1]. We now bound the number of vertices

in
[
N2
H [v6i] ∪N2

H [v6i+1]
]

for i ∈ I ′1.

CLAIM 1: |N2
H [v6i] ∪N2

H [v6i+1]| ≥ 2(k2 − k + 1) if i ∈ I ′1.

Fix i ∈ I ′1. Since G is (k + 1)-connected, δ(G) ≥ k + 1. Moreover for all v ∈ NH [v6i] ∪
NH [v6i+1], degH(v) = degH(v)− |NG(v) ∩ S| ≥ (k + 1)− 1 = k and since H has girth at

least 6, we have by Lemma 6.3.1 that

|N2
H [v6i] ∪N2

H [v6i+1]| = 2k2 − 2k + 2,

as desired in Claim 1.

Following a similar argument as in the proof of Claim 2 (Theorem 6.2.3), |I ′2| ≤
(
k
2

)
. It

follows immediately that

|I ′1| ≥
⌊d− 1

6

⌋
−
(
k

2

)
≥ d− 6

6
−
(
k

2

)
. (6.3.2)

CLAIM 2: n ≥
(
d−6

6 −
(
k
2

))
(2k2 − 2k + 2).

Applying Claim 1 and (6.3.2) we obtain,

n ≥
b d−1

6
c∑

i=0

|N2
H [v6i] ∪N2

H [v6i+1]|

≥
∑
i∈I′1

|N2
H [v6i] ∪N2

H [v6i+1]|

≥
[d− 6

6
−
(
k

2

)]
(2k2 − 2k + 2).
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Solving for d, we have that

d ≤ 6
( n

2(k2 − k + 1)

)
+ 6

(
k

2

)
+ 6

=
3n

k2 − k + 1
+ 6
(k2 − k

2

)
+ 6

=
3n

k2 − k + 1
+ 3k2 − 3k + 6,

which yields the desired bound on d as stated in inequality (6.3.1).

Next, we show in the following theorem that the bound in Theorem 6.3.2 is best possible

for infinitely many values of k. The construction makes use of the graph H∗ described in

Example 2.3.5 however with some modifications. We will make use of some of the notation

and definitions from the Linear Algebra Section used in Example 2.3.5.

Let H∗q+1 be the graph described in Example 2.3.5, whose vertices correspond to the one-

dimensional subspaces and two-dimensional subspaces of the vector space GF (q)3 with

two vertices x and y being adjacent if x is a subspace of y or y is a subspace of x. Denote

by Uq+1 and Wq+1 the set of 1-dimensional and 2-dimensional subspaces, respectively. By

Claim 2.3.6, we have the following properties of H∗q+1.

a) H∗q+1 is bipartite with partite sets Uq+1 and Wq+1, contains no 4-cycle.

b) Uq+1 and Wq+1 have q2 + q+ 1 vertices each, and so H∗q+1 has 2(q2 + q+ 1) vertices.

c) Every vertex of H∗q+1 has degree q + 1.

d) If x, y ∈ Uq+1 or x, y ∈Wq+1, then |N(x) ∩N(y)| = 1.

Claim 6.3.3. H∗q+1 is (q + 1)-connected.

Proof. For u,w ∈ V (H∗q+1), let κ(u,w) be the number of internally disjoint (u,w)-path in

H∗q+1. It suffices to show that κ(u,w) ≥ q + 1 for all pairs u,w of non-adjacent vertices

of H∗q+1. For any u,w ∈ V (H∗q+1) that are non-adjacent, we have the following cases to

consider.

CASE A: u,w belong to the same partite set

We assume that u,w ∈ Uq+1; the case u,w ∈Wq+1 is analogous. By property (d) above u

and w have a common neighbour z in Wq+1. Let

N [u]− {z} = {u1, u2, . . . , uq} and N [w]− {z} = {w1, w2, . . . , wq}.

Observe that for i ∈ {1, 2, . . . , q}. the vertices ui and wi are elements of Wq+1 and by the

same property (d), any two elements of Wq+1 have a common neighbour xi in Uq+1.
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Let Pi be the path uuixiwiw and P0 be the path uzw. We claim the following

i) xi 6= w, u for all i ∈ {1, 2, . . . q}. Suppose that xi = w for some i ∈ {1, 2, . . . q}, then

uuixiz or xiuiwiz forms a 4-cycle contradicting the hypothesis of the theorem. Thus,

xi 6= w, u for all i ∈ {1, 2, . . . q}.

ii) xi 6= xj for i 6= j. Suppose to the contrary that xi = xj , then uuixiuj now forms a

4-cycle, a contradiction to the fact that H∗q+1 is C4-free. Hence xi 6= xj for i 6= j

Therefore Pi for i ∈ {1, 2, . . . , q} are internally disjoint. Hence, P0, P1, P2, . . . , Pq are

internally disjoint (u,w)-paths, and so we have that κ(u,w) = q + 1.

CASE B: u and w belong to different partite sets.

Let u ∈ Uq+1 and let w ∈ Wq+1. Since H∗q+1 is bipartite by property (a), u and w have

no common neighbour since they belong to different partite sets. Let

N [u] = {u0, u1, u2, . . . , uq} and N [w] = {w0, w1, w2, . . . , wq}.

Observe that for i ∈ {0, 1, 2, . . . , q}, ui ∈ Wq+1 and wi ∈ Uq+1. Furthermore, w 6= ui

and u 6= wi for some i ∈ 0, 1, 2, . . . , q else u and w are adjacent, a contradiction to the

assumption that u and w are non adjacent vertices of Hq.

Let U ′q+1 = {u} ∪N [w] and W ′q+1 = {w} ∪N [u]. Thus, U ′q+1 ⊂ Uq+1 and W ′q+1 ⊂ Wq+1.

By property (d), any two vertices, say u, v ∈ U ′q+1 have a common neighbour. Clearly,

N(wi) ∩ N(wj) = {u} for i 6= j. For i ∈ {0, 1, 2, . . . , q}, let vi be the unique common

neighbour of u and wi. Clearly, the vi are distinct, otherwise H∗q+1 would contain a 4-

cycle. Hence {v0, v1, . . . , vq} = {u0, u1, . . . , uq}. Renumbering the ui, we may assume that

ui = vi for all i ∈ {0, 1, . . . , q}.

It follows immediately that there is an edge ei = uiwi such that Pi : u, uiwiw is a (u,w)-

path. For i ∈ {0, 1, 2, . . . , q}, Pi are internally disjoint paths. Hence we conclude that for

u ∈ Uq+1, w ∈ Wq+1, there are (q + 1)-internally disjoint (u,w)-paths and so κ(u,w) ≥
k + 1.

Theorem 6.3.4. Let k ∈ N be such that k is a prime power. Then for infinitely many

values of n, there exists a (k + 1)-connected graph G of girth at least 6 with

Dk(G) ≥ 3n

k2 + k + 1
− 5,

where n is the order of G.

Proof. Let q = k, so q is a prime power. Fix two adjacent vertices u ∈ Uq+1, w ∈ Wq+1

of H∗q+1 and let H ′q+1 = H∗q+1 − uw. By Claim 6.3.3, κ(H∗q+1) ≥ q + 1 and so we have by

Lemma 1.1.31 that κ(H ′q+1) ≥ q.
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Let n ∈ N be such that n = 2t(k2 + k + 1) + k for some t ∈ N with t ≥ 3. Let F1 and let

Ft be disjoint copies of H∗q+1 and let F2, F3, . . . , Ft−1 be disjoint copies of H ′q+1. Let ui

and wi be the vertices of Fi corresponding to the vertices u and w, respectively, of H∗q+1

and H ′q+1.

For i ∈ {2, . . . , t − 1}, let N(wi) = {wi1, wi2, . . . , wiq} and for i ∈ {1, t}, let N(wi) =

{wi0, wi1, . . . , wiq} where wi0 = ui. From the disjoint union of F1, F2, . . . Ft, we obtain

the graph G by adding the edges wiui+1 for every (1 ≤ i < t) and q new vertices

{α1, α2, α3, . . . , αq} joining αj to wij for j = 1, 2, . . . , q and for i = 1, 2, . . . , t. A sketch of

the graph is shown below in Figure 6.2.

F1

u1

w1
q

w1

w1
1

w1
q−1

F2

w2
1

u2

w2
q

w2

w2
q−1

F3

w3
1

u3

w3
q

w3

w3
q−1

αq

α2

α1

Figure 6.2: The graph G for t = 3.

The order of G is n. Let Xq = {α1, α2, α3, . . . , αq}. Let Ui and Wi be the partite set

corresponding to Uq+1 and Wq+1 in Fi. If we denote by U =
t⋃
i=1

Ui and W =
t⋃
i=1

Wi ∪Xq,

then G is bipartite and contains no 4-cycle.

We now show that G is (q + 1)-connected.

Suppose to the contrary that κ(G) ≤ q. Then there is a set S ⊆ V (G) with |S| ≤ q such

that G− S is disconnected.

Claim 1: Let i ∈ {1, 2, . . . , t}. Then the vertices in V (Fi) − S belong to the same

component of G− S.

It suffices to show that between every two vertices x, y ∈ V (Fi). There exist q+1 internally

disjoint paths in G. This is immediate for i = 1 or i = t since then Fi is isomorphic to

H∗q+1 and κ(H∗q+1) = q + 1, so assume i ∈ {2, 3, . . . , t− 1}. Since Fi + uiwi is isomorphic

to H∗q+1, we have q + 1 internally disjoint (x, y)-paths that are contained in Fi + uiwi. If

none of these paths uses the edge uiwi, then we are done, and if one of these paths uses
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the edge uiwi, then replacing this edge with a path through ui, wi−1, wi−1
1 , α1, w

i+1 and

then in Fi+1 to ui+1 and wi. Hence any two vertices in V (Fi) are joined in G by q + 1

internally disjoint paths, and so they belong to the same component of G− S.

Claim 2: If i ∈ {1, 2, . . . , t− 1}, then the vertices in (V (Fi)∪ V (Fi+1))− S belong to the

same component of G− S.

It suffices to show that there exist q + 1 disjoint paths in G from V (Fi) to V (Fi+1). The

q + 1 paths wi, αi, w
i+1 for i = 1, 2, . . . , q and the path wiui+1 are such paths, so Claim 2

follows.

It follows from Claims 1 and 2 that the vertices of
⋃t
i=1(V (Fi) − S) all belong to the

same component of G − S. Since each vertex in Xq − S has at least one neighbour in⋃t
i=1(V (Fi)−S), it follows that also all vertices of Xq−S belong to this component. This

proves that G− S is connected.

In order to bound the k-fault diameter from below, choose the set S as Xq. By Claim

2.3.6(f) that dH′q+1
(ui, wi) ≥ 5. Choosing a vertex x1 of F1 with d(x1, w

1) ≥ 3, and a

vertex xt, we have that

Dq(G) ≥ diam(G− S) ≥ d(x1, xt) = d(x1, w
1) +

t−1∑
i=2

d(ui, wi) + d(ut, xt) + t− 1

≥ 3 + 5(t− 2) + 3 + (t− 1)

= 6t− 5

=
3n

k2 + k + 1
− 5k2 + 8k + 5

k2 + k + 1
,

which yields the desired result.

As in the previous chapters, we show that a bound slightly weaker than that in Theorem

6.3.2 holds if we relax the condition to (C4, C5)-free graphs.

Lemma 6.3.5. Let G be a connected (C4, C5)-free graph. If u and v are adjacent vertices

of G such that all vertices in NG(u) ∪NG(v) have degree at least δ, then

|N≤2(u) ∪N≤2(v)| ≥ 2δ2 − 5δ + 5 + 2εδ.

where

εδ =

0 if δ is even,

1 if δ is odd.

The proof is identical to that of Lemma 2.3.9, hence we omit it.
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Theorem 6.3.6. Let k ≥ 2 ∈ N and let G be a (k + 1)-connected (C4, C5)-free graph of

order n. Then

Dk(G) ≤ 3n

χk
+ 3(k2 − k + 2). (6.3.3)

where χk = k2 − 5
2k + 5

2 if k + 1 is even and χk = k2 − 5
2k + 7

2 if k + 1 is odd.

Proof. Let P , d, S, H, Ni, vi, N
2
G(v) be as defined in the proof of Theorem 6.2.3. By the

hypothesis of Theorem 6.3.6, G may contain triangles. Since G is (k + 1)-connected, we

have that δ(G) ≥ k + 1. For i ∈ {0, 1, 2, . . . , d− 1}, we have that,

N2
H [vi] ∪N2

H [vi+1] ⊆ Ni−2 ∪Ni−1 ∪Ni ∪Ni+1 ∪Ni+2 ∪Ni+3,

and so for i = 0, 1, 2, . . . , bd−1
6 c, the set

(
N2
H [v6i] ∪ N2

H [v6i+1]
)
∩
(
N2
H [v6j ] ∪ N2

H [v6j+1]
)

are disjoint for i 6= j. We now bound the number of vertices in
[
N2
H [v6i] ∪N2

H [v6i+1]
]

for

i = 0, 1, 2, . . . , bd−1
6 c.

Following a similar argument as in the proof of Theorem 6.2.3, we partition the set

{0, 1, 2, . . . , bd−1
6 c} into two disjoint sets I ′1 and I ′2 such that for each i ∈ {0, 1, 2, . . . , bd−1

6 c},
we have that i ∈ I ′1 if |NG(v) ∩ S| ≤ 1 for each v ∈ N2

H [v6i] ∪ N2
H [v6i+1] and i ∈ I ′2 if

|NG(v) ∩ S| ≥ 2 for some v ∈ N2
H [v6i] ∪N2

H [v6i+1].

CLAIM 1: |N2
H [v6i] ∪N2

H [v6i+1]| ≥ 2(k2 − k + 1) if i ∈ I ′1.

Fix i ∈ I ′1. For all v ∈ NH [v6i]∪N2
H [v6i+1], degH(v) = degH(v)−|NG(v)∩S| ≥ (k+1)−1 =

k. Since H is (C4, C5)-free and i ∈ I ′1, we have by Lemma 6.3.5 that

|N2
H [v6i] ∪N2

H [v6i+1]| ≥ 2k2 − 5k + 5 + 2εδG ,

as desired in Claim 1.

Following a similar argument as in the proof of Claim 2 (Theorem 6.2.3), |I ′2| ≤
(
k
2

)
. It

follows immediately that

|I ′1| ≥
⌊d− 1

6

⌋
−
(
k

2

)
≥ d− 6

6
−
(
k

2

)
. (6.3.4)

Applying Claim 1 above and (6.3.4), we obtain

n ≥
b d−1

6
c∑

i=0

|N2
H [v6i] ∪N2

H [v6i+1]|

≥
∑
i∈I′1

|N2
H [v6i] ∪N2

H [v6i+1]|

≥
[d− 6

6
−
(
k

2

)]
(2k2 − 5k + 5 + 2εδG).
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Solving for d, we have that

d ≤ 6
( n

2k2 − 5k + 5 + 2εδG

)
+ 6

(
k

2

)
+ 6

=
3n

k2 − 5
2(k − 1) + εδG

+ 6
(k2 − k

2

)
+ 6

=
3n

k2 − 5
2k + 5

2 + εδG
+ 3k2 − 3k + 6,

which yields the desired bound on d as stated in inequality (6.3.3).

6.3.2 Bounds on the (Edge-)Fault-Diameter of (k + 1)-connected C4-free

Graphs

In this section we give upper bounds on the k-edge-fault-diameter in terms of their order.

We aim to improve the bound in Theorem 1.4.29 for graphs not containing 4-cycles. This

fills a gap in the literature since for C4-free graphs only bounds on the k-fault diameter are

known (see [28]). We also give bounds on the edge-fault-diameter of graphs with girth at

least 6 and (C4, C5)-free graphs. We present an upper bound on the k-edge-fault-diameter

of C4-free graphs. Since our bound is close to being sharp for large values of k, but not for

small values, we first present a sharp bound on the 2-edge-fault diameter of 3-connected

C4-free graphs.

We make use of the following notation in the proofs of the subsequent lemmas and theorems

where P , d, S, H, Ni, vi, N
2
G(v) is as before. Let {i0, i1, . . . , is} be the set of all indices

i ∈ {0, 1, . . . , d} for which ni = 1, where 0 = i0 < i1 < · · · < is. For convenience we also

define is+1 = d+ 1. For j ∈ {0, 1, . . . , s} we denote the set {ij , ij + 1, . . . , ij+1 − 1} by Ij .

and refer to it as the jth segment of H. For V ′, U ′ ⊆ V (G) and E′ ⊆ E(G) we further

define (V ′, U ′)G to denote the set of edges joining a vertex in V ′ to a vertex in U ′ and

inc(E′, V ′) to be the total number of incidences of E′ with vertices in V ′. By inc(S, Ij),

we mean inc(S,
⋃
p∈Ij Np). We make repeated use of the fact that inc(E′, V (G)) = 2|E′|

for every set E′ of edges in G.

We begin with a sharp bound on the 2-edge fault-diameter of 3-connected graphs. The

subsequent lemmas will be useful in the proof of our main results.

Lemma 6.3.7. Let G be 3-connected and S ⊆ E(G) with |S| = 2. Then H has at most

one bridge.

Proof. Suppose to the contrary that H contains two bridges e1 and e2. Then H − e1

contains two components. One of these components contains e2, and e2 is a bridge of this

component. Hence H−{e1, e2} contains three components. Let their vertex sets be V1, V2

and V3. Since G is 3-edge-connected, there are at least three edges in (Vi, V (G)−Vi)G for
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each i ∈ {1, 2, 3}. These edges are necessarily in S∪{e1, e2}. Hence inc(S∪{e1, e2}, Vi) ≥ 3

for every i ∈ {1, 2, 3}. Since the Vi form a partition of V (G) we have

8 = 2|S ∪ {e1, e2}| = inc(S ∪ {e1, e2}, V (G)) ≥
3∑
i=1

inc(S ∪ {e1, e2}, Vi) ≥ 9,

and this contradiction to |S| = 2 proves the lemma.

Lemma 6.3.8. Let G be 3-edge-connected and let S, H, d, n, Ni, ni, s, ij and Ij be

as above. Assume that s ≥ 2. For j ∈ {0, 1, . . . , s − 1} define βj to be 1 if the set

EH(Nij+1−1, Nij+1) contains a bridge, and 0 otherwise.

(a) If j > 0 and ij+1 ≥ ij + 2, then

∑
p∈Ij

np ≥ 2|Ij | −
1

2
inc(S, Ij)−

1

2
βj . (6.3.5)

(b) For the segment I0 we have

∑
p∈I0

np ≥ 2|I0| −
1

2
inc(S, I0)− 1

2
β0 +

1

2
. (6.3.6)

(c) If nd = 1, then we have Is = {d} and

∑
p∈Is−1∪Is

np ≥ 2|Is−1 ∪ Is| −
1

2
inc(S, Is−1 ∪ Is)−

1

2
βs−1 −

1

2
. (6.3.7)

Proof. Let Ij be the set {ij , ij + 1, . . . , ij+1 − 1}. By definition of a segment we have

nij = 1 and nij+1, nij+2 . . . , nij+1−1 ≥ 2. Hence∑
p∈Ij

np ≥ 2|Ij | − 1. (6.3.8)

If now
⋃
p∈Ij Np contains a vertex of degree 1 or two vertices of degree 2 in H, then it

follows from the fact that these vertices have degree at least three in G, that there are

at least two incidences of edges in S with these vertices, so inc(S,
⋃
p∈Ij Np) ≥ 2, which

implies 2|Ij |− 1
2 inc(S, Ij) ≤ 2|Ij |−1, and (6.3.5) holds in this case. Hence we may assume

that
⋃
p∈Ij Np contains at most one vertex of degree less than 3 in H, and if there is such

a vertex it has degree 2. Moreover we may assume that equality holds in (6.3.8) since

otherwise, if
∑

p∈Ij np ≥ 2|Ij |, (6.3.5) clearly holds.

Let a := ij and b := ij+1. Then na = nb = 1 and na+1 = na+2 =, · · · = nb−1 = 2. For

p ∈ {a+ 1, a+ 2, . . . , b− 1} denote the two vertices of Np by vp and wp.

We prove that

va+1wa+1 ∈ E(H). (6.3.9)
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Suppose to the contrary that va+1wa+1 /∈ E(H). We may assume that degH(va+1) ≥ 3

and degH(wa+1) ≥ 2. Then va+1 has two neighbours in Na+2, and wa+1 has a neighbour

in Na+2. This neighbour, together with va+1, wa+1 and va form a 4-cycle, a contradiction

to G being C4-free. Hence (6.3.9) follows.

Case 1: degH(wa+1) ≥ 3.

We first observe that va+1 and wa+1 cannot have a common neighbour in Na+2 since

otherwise H would contain a 4-cycle. Hence the set Na+2 contains two vertices, va+2 and

wa+2. We may assume that va+1va+2, wa+1wa+2 are in E(H). Since H is C4-free, we have

va+1wa+2, wa+1va+2, va+2wa+2 /∈ E(H).

At least one of the vertices in Na+2 has degree at least three, without loss of generality

degH(va+2) ≥ 3. Since va+2 has only one neighbour in Na+1 ∪ Na+2, va+2 is adjacent

to both vertices of Na+3. Since wa+2 shares at most one neigbour in Na+3 with va+2, it

follows, in conjunction with the above, that

degH(wa+2) = 2. (6.3.10)

We furthermore claim that

va+3wa+3 ∈ E(H). (6.3.11)

Suppose to the contrary that va+3wa+3 /∈ E(H). Since degH(va+3) ≥ 3 and degH(wa+3) ≥
3, va+3 has two neighbours in Na+4, and wa+3 has one neighbour in Na+4. Hence va+3

and wa+3 have a common neighbour in Na+4, in addition to va+2, and so H contains a

4-cycle, a contradiction. This proves (6.3.11).

Since the two vertices in Na+3 have va+2 as a common neighbour, it follows that they

cannot have a common neighbour in Na+4, otherwise H would contain C4. Hence, if now

na+4 = 1, so ij+1 = a + 4, then va+4 has only one edge joining it to Na+3, so this edge

would be a bridge. Since by degH(wa+2) = 2 implies inc(S, Ij) ≥ 1, it follows that (6.3.5)

holds in this case. Hence we may assume that na+4 = 2 and that H contains the edges

va+3va+4 and wa+3wa+4. None of the edges va+3wa+4, wa+3va+4 and va+4wa+4 are present

in H since H is C4-free. Since both, va+4 and wa+4 have degree at least three, and since

they are non-adjacent and have only one neighbour each in Na+3, it follows that both,

va+4 and wa+4 have two (common) neighbours in Na+5, and so H contains a 4-cycle, a

contradiction.

Case 2: degH(wa+1) = 2.

We first show that

na+2 = 1. (6.3.12)

Suppose to the contrary that na+2 = 2. Since degH(wa+1) = 2, both vertices of Na+2 are

adjacent to va+1, but non-adjacent to wa+1. The same considerations as in Case 1, with
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a replaced by a+ 1, now prove that degH(wa+3) = 2 as in (6.3.10). This contradiction to

our assumption that we have only one vertex of degree two proves (6.3.12).

It follows from na+2 = 1 that va+2 is adjacent to only one vertex in Na+1, say va+1,

otherwise va+1 and wa+1 have two common neighbours and so H contains a 4-cycle, a

contradiction. Hence EH(Na+1, Na+2) contains only one edge, va+1va+2, which is a bridge.

We have inc(S, Ij) ≥ 1 since degH(w2) = 2. Therefore 2|Ij | − 1
2 inc(S, Ij)− 1

2 ≤ 2|Ij | − 1,

and by (6.3.8) we have that (6.3.5) holds. This completes the proof of (a).

(b) First assume that n1 ≥ 3. Since n0 = 1, n1 ≥ 3 and np ≥ 2 for p = 2, 3, . . . , i1 − 1,

we have
∑

p∈I0 np ≥ 2|I0|. If the inequality is strict, then (6.3.6) clearly holds. Hence we

may assume that
∑

p∈I0 np = 2|I0|. Then we have n1 = 3 and n2 ≤ 2. We bound the sum

of the degrees in H of the vertices in N1. There are exactly three edges joining a vertex

in N1 to the vertex in N0. Since H contains no C4, there is most one edge joining two

vertices in N1, and each vertex in N2 has at most one edge joining it to vertices in N1.

Hence
∑

x∈N1
degH(x) ≤ 5 + n2 ≤ 7. Since every vertex of G has degree at least 3, it

follows that inc(S, I1) ≥ inc(S,N2) ≥ 2, and so (6.3.6) holds if n1 ≥ 3.

Now assume that n1 = 2. Then the proof of part (a) in conjunction with the fact that

there is an additional incidence between v0 and S, yields (6.3.6). If n1 = 1, then I0 = {0}.
Since degH(v0) = 1, we have inc(S, I0) ≥ 2, so (6.3.6) holds.

(c) Let nd = 1. Then clearly Is = {d}. First assume that degH(vd) ≥ 3. Then nd−1 ≥
degH(vd). Each of the degH(vd) neighbours of vd has a neighbour in Nd−2, and these

degH(vd) neighbours in Nd−2 are distinct since H is C4-free.

It follows that nd−2, nd−1 ≥ degH(vd) ≥ 3, and since nis−1+1, nis−1+2, . . . , nd−3 ≥ 2, we

have
∑

p∈Is−1∪Is np ≥ 2|Is−1 ∪ Is| and (6.3.7) follows in this case. Now assume that

degH(vd) = 2. Then EH(Nd−1, Nd) does not contain a bridge. Hence by (a) and the fact

that inc(S,Nd) ≥ 1, we have that

∑
p∈Is−1∪Is

np ≥ 2|Is−1| −
1

2
inc(S, Is−1) + 1 ≥ 2|Is−1 ∪ Is| −

1

2
inc(S, Is−1 ∪ Is)−

1

2
,

as desired. The proof for the case that degH(vd) = 1 is similar and thus omitted. This

completes the proof of the lemma.

Theorem 6.3.9. Let G be a 3-edge-connected C4-free graph of order n, then

D′2(G) ≤ n

2
. (6.3.13)

The bound is sharp for all n ≥ 22 with n ≡ 2 (mod 10).

Proof. Let G, S, H, d, ij for j = 0, 1, . . . , s+ 1 and Ij for j = 0, 1, . . . , s be as above. We
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clearly have

n =

s∑
j=0

∑
p∈Ij

np.

Since
∑

p∈Ij np ≥ 2|Ij | − 1 for all j ∈ {0, 1, . . . , d}, we have n ≥
∑s

j=0(2|Ij | − 1) =

2d + 2 − (s + 1) = 2d + 1 − s. Hence the theorem holds if s ≤ 1, and so we may assume

that s ≥ 2.

Case 1: nd > 1 and there is no i with ni = ni+1 = 1.

Applying (6.3.6) and (6.3.5) we obtain

n =
∑
p∈I0

np +

s∑
j=1

∑
p∈Ij

np

≥ 2|I0| −
1

2
inc(S,

⋃
p∈I0

Np)−
1

2
β0 +

1

2
+

s∑
j=1

(
2|Ij | −

1

2
inc(S,

⋃
p∈Ij

Np)−
1

2
βj

)

= 2
s∑
j=0

|Ij | −
1

2

s∑
j=0

inc(S,
⋃
p∈Ij

Np)−
1

2

s−1∑
j=0

βj +
1

2
.

Now
∑s

j=0 |Ij | = d+1,
∑s

j=0 inc(S,
⋃
p∈Ij Np) = inc(S, V (G)) = 2|S| = 4, and

∑s−1
j=0 βj ≤ 1

by Lemma 6.3.7. Hence n ≥ 2d, as desired.

Case 2: nd = 1 and there is no i with ni = ni+1 = 1.

Applying (6.3.6), (6.3.5) and (6.3.7) we obtain

n =
∑
p∈I0

np +
s−2∑
j=1

∑
p∈Ij

np +
s∑

j=s−1

∑
p∈Ij

np

≥ 2|I0| −
1

2
inc(S,

⋃
p∈I0

Np)−
1

2
β0 +

1

2
+

s−2∑
j=1

(
2|Ij | −

1

2
inc(S,

⋃
p∈Ij

Np)−
1

2
βj

)
+2|Is−1 ∪ Is| −

1

2
inc(S,

⋃
p∈Is−1∪Is

Np)−
1

2
βs−1 −

1

2

= 2

s∑
j=0

|Ij | −
1

2

s∑
j=0

inc(S,
⋃
p∈Ij

Np)−
1

2

s−1∑
j=0

βj .

As above,
∑s

j=0 |Ij | = d + 1,
∑s

j=0 inc(S,
⋃
p∈Ij Np) = inc(S, V (G)) = 2|S| = 4, and∑s−1

j=0 βj ≤ 1 by Lemma 6.3.7. Hence n ≥ 2d− 1
2 . Since n and d are integers, this implies

n ≥ 2d as desired.

Case 3: nd > 1 and there exists i with ni = ni+1 = 1.

We note that there is only one i ∈ {0, 1, . . . , s − 1} for which ni = ni+1 = 1, otherwise
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H would have more than one bridge in contradiction to Lemma 6.3.7. Then {i} forms a

segment of H, Ik say. We have that k 6= s− 1 since nd > 1.

Applying (6.3.6) and (6.3.5) we obtain

n =
∑
p∈I0

np +
( ∑
j∈{1,2,...,s}−{k}

∑
p∈Ij

np

)
+ 1

≥ 2|I0| −
1

2
inc(S,

⋃
p∈I0

Np)−
1

2
β0 +

1

2

+
∑

j∈{1,2,...,s}−{k}

(
2|Ij | −

1

2
inc(S,

⋃
p∈Ij

Np)−
1

2
βj

)
+ 1

= 2
∑

j∈{0,1,...,s}−{k}

|Ij | −
1

2

∑
j∈{0,1,...,s}−{k}

inc(S,
⋃
p∈Ij

Np)−
1

2

∑
j∈{0,1,...,s−1}−{k}

βj +
3

2
.

Now
∑

j∈{0,1,...,s}−{k} |Ij | = d,
∑

j∈{0,1,...,s}−{k} inc(S,
⋃
p∈Ij Np) ≤ inc(S, V (G)) = 2|S| =

4, and βj = 0 for all j ∈ {0, 1, . . . , s}−{k} since by Lemma 6.3.7 there exists no bridge in

H besides the bridge joining the vertices in Ni and Ni+1. Hence n ≥ 2d− 1
2 . Since n and

d are integers, this implies n ≥ 2d, as desired.

Case 4: nd = 1 and there exists i with ni = ni+1 = 1.

As in Case 3 let {i} = Ik. We may assume that k ≥ 1 since otherwise, if k = 0, inequality

(6.3.6) holds for I0 and the proof of Case 1 applies. We may further assume that k < s−1

since otherwise, if k = s−1, inequality (6.3.7) holds for I0 and the proof of Case 2 applies.

Applying (6.3.6), (6.3.7) and (6.3.5) we obtain

n =
∑
p∈I0

np +
( ∑
j∈{1,2,...,s}−{k,s−1,s}

+
∑

j∈{s−1,s}

)∑
p∈Ij

np + 1

≥ 2|I0| −
1

2
inc(S,

⋃
p∈I0

Np)−
1

2
β0 +

1

2

+
∑

j∈{1,2,...,s}−{k,s−1,s}

(
2|Ij | −

1

2
inc(S,

⋃
p∈Ij

Np)−
1

2
βj

)

+2|Is−1 ∪ Is| −
1

2
inc(S,

⋃
p∈Is−1∪Is

Np)−
1

2
βs−1 −

1

2
+ 1 (6.3.14)

= 2
∑

j∈{0,1,...,s}−{k}

|Ij | −
1

2

∑
j∈{0,1,...,s}−{k}

inc(S,
⋃
p∈Ij

Np)−
1

2

∑
j∈{0,1,...,s−1}−{k}

βj + 1.

As above,
∑

j∈{0,1,...,s}−{k} |Ij | = d,
∑

j∈{0,1,...,s}−{k} inc(S,
⋃
p∈Ij Np) ≤ inc(S, V (G)) =

2|S| = 4, and βj = 0 for all j ∈ {0, 1, . . . , s} − {k} since by Lemma 6.3.7 there exists no

bridge in H besides the bridge joining the vertices in Ni and Ni+1. Hence n ≥ 2d− 1.
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To complete the proof, it suffices to show that this inequality is strict. Suppose that

n = 2d − 1. Therefore, we have equality in (6.3.14). This implies that
∑

p∈I0 np =

2|I0| − 1
2 inc(S,

⋃
p∈I0 Np) + 1

2 , so inc(S,
⋃
p∈I0 Np) is odd, otherwise the right hand side

of the equation would not be an integer. For all j ∈ {1, 2, . . . , s} − {k, s − 1, s} we have∑
p∈Ij np = 2|Ij | − 1

2 inc(S,
⋃
p∈Ij Np), implying that inc(S,

⋃
p∈Ij Np) is even. Finally,

we have
∑

j∈{s−1,s}
∑

p∈Ij np = 2|Is−1 ∪ Is| − 1
2 inc(S,

⋃
p∈Is−1∪Is Np) − 1

2 implying that

inc(S,
⋃
p∈Is−1∪Is Np) is odd. We also have that

∑
j∈{0,1,...,s}−{k} inc(S,

⋃
p∈Ij Np) = 4. It

follows that one of the following occurs. A: inc(S,
⋃
p∈I0 Np) = inc(S,

⋃
p∈Is−1∪Is Np) = 1

and inc(S,
⋃
p∈Ij Np) = 2 for some j ∈ {1, 2, . . . , s−2}−{k}, or B: one of inc(S,

⋃
p∈I0 Np)

and inc(S,
⋃
p∈Is−1∪Is Np) equals 1 while the other one equals 3.

In both cases, A and B, we have that three of the incidences of S with V (G) occur with

vertices in
⋃k−1
j=0

⋃
p∈Ij Np and one occurs in

⋃s
j=k+1

⋃
∈Ij Np, or vice versa. In either case

only one one edge in S joins a vertex in
⋃ik
p=0Np to a vertex in

⋃d
p=ik+1Np. Now H

contains only one edge joining these two sets, viz vikvik+1. It follows that G contains only

two edges joining these two sets. This contradiction to G being 3-edge-connected proves

that our assumption n = 2d − 1 is false, hence we have n ≥ 2d, and so (6.3.13) follows

completing the proof of the theorem.

We now construct graphs to show the sharpness of the bound in (6.3.13).

u w v

Figure 6.3: The graph H5.

Let H5 be the graph depicted in Figure 6.3 above. Let u, v, and w be the vertices described

above in H5. Clearly diam(H5) = 5 and V (H5) = 11. For t ∈ N, let F0, F1, . . . , Ft be

disjoint copies of H5. Let ui, vi, wi be vertices of Fi corresponding to u, v and w respectively

of H5. Consider the disjoint union of F0, F1, . . . , Ft. Let z be a new vertex and e1 = zu0,

e2 = zubt/2c, e3 = zvt be new edges respectively. Let Gn be the graph with vertex set

V (Gn) = V (F1) ∪ V (F2) . . . ∪ V (Ft) ∪ {z} and edge set E(Gn) = E(F1) ∪ E(F2) . . . ∪
E(Ft) ∪ {e1, e2, e3}. By identifying vi and ui+1 as ui+1 (for 0 ≤ i ≤ t − 1), we obtain a

3-edge-connected C4-free graph. Figure 6.4 is an illustration of Gn when t = 2.
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u0 u1 u2w1 v2

ze1 e3

e2

Figure 6.4: The graph Gn for t = 2.

The order of Gn is

n = |Gn| = 10(t+ 1) + 2 (6.3.15)

Then, letting S = {e1, e2},

D′2(Gn) ≥ diam(Gn − S)

= dGn−S(z, u0)

= 1 +
1

2
(n− 2)

=
n

2
.

This shows that for all n with n ≥ 22 and n ≡ 2 (mod 10) the bound in Theorem 6.3.9 is

sharp.

Theorem 6.3.10. Let G be a C4-free graph of order n. If k ≥ 3 and G is (k + 1)-edge-

connected, then

D′k(G) ≤ 5n

k2 + k + 1
+

9k2 + 9k − 1

k2 + k + 1
. (6.3.16)

Proof. Let P , d, S, H, Ni, vi, N
2
G(v) be as defined previously. Since G is (k + 1)-edge

connected, we have that δ(G) ≥ k + 1. For i ∈ {0, 1, 2, . . . , d}, we have that,

N2
H [vi] ⊆ Ni−2 ∪Ni−1 ∪Ni ∪Ni+1 ∪Ni+2,

and so for 0 ≤ i 6= j ≤ bd5c, the sets N2
H [v5i] and N2

H [v5j ] are disjoint. It follows that

n ≥
bd/5c∑
i=0

|N2
H [v5i]|. (6.3.17)

Since H is C4-free, any two vertices in NH(v5i) have no common neighbour other than

v5i and each vertex in NH(v5i) has at most one neighbour in NH(v5i). Moreover since
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H = G−S, it is possible that an edge in S is incident with a vertex (vertices) in NH [v5i].

We now bound the number of vertices in N2
H [v5i].

Fix i ∈ {0, 1, . . . , bd5c} and consider v5i. Let w1, w2, . . . , wdegH(v5i) be the neighbours of v5i

in H. Let ai be the number of incidences of edges in S with v5i, and let ci be the number

of incidences of edges in S with vertices in NH [v5i]. Then degH(v5i) = degG(v5i) − ai

and
∑degH(v5i)

j=1 degH(wj) =
∑degH(v5i)

j=1 degG(wj) − ci + ai. Since H is C4-free, each wj

is adjacent to at most one other vertex in NH(v5i) and has thus at least degH(wj) − 2

neighbours in N2
H(v5i). Moreover, no two neighbours of v5i have a common neighbour in

N2
H(v5i). Hence

|N2
H [v5i]| ≥ 1 + degH(v5i) +

degH(v5i)∑
j=1

(degH(wj)− 2)

≥ 1 + degG(v5i)− ai + (degG(v5i)− ai)(k − 1)− (ci − ai)

≥ k + 2 + (k + 1− ai)(k − 1)− ci
≥ k2 + k + 1− cik,

with the last inequality holding since ai ≤ ci.

Since removing the k edges of S reduces the total degree sum of G by 2k and
bd/5c∑
i=0

ci ≤ 2k,

equation 6.3.17 yields

n ≥
bd/5c∑
i=0

(k2 + k + 1− cik)− 2k

≥
bd/5c∑
i=0

(k2 + k + 1)− k
bd/5c∑
i=1

ci − 2k

≥ (bd/5c+ 1)(k2 + k + 1)− 2k2 − 2k (6.3.18)

Since bd/5c ≥ d−4
5 , we have that n ≥ (d+1

5 )(k2 + k + 1) − 2k2 − 2k. Solving for d yields

the desired result in (6.3.16).

We now construct graphs to show that the bound in (6.3.16) is close to the being optimal.

Let q be an odd prime power. Let Hq be the graph described in Example 2.2.3 whose ver-

tices are the 1-dimensional subspaces of the field GF (q)3, where two vertices are adjacent

if, as subspaces, they are orthogonal.By Claim 2.2.5 we have Vq 6= ∅. Vertices in Hq have

degree q or q + 1 and so we denote by Vq and Vq+1 the set of vertices of Hq of degree q

and q + 1 respectively. The following results will be useful in the our construction.

Proposition 6.3.11. Let q be a prime power. Then Hq contains a vertex z such that

N(z) can be partitioned into two sets U and W such that:
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(i) |U | ≥ q
2 and |W | ≥ q

2 , and

(ii) there is no edge in Hq joining a vertex in W to a vertex in U .

Proof. Case 1: q is even.

Let z be a vertex of degree q. Then N(z) is an independent set by Claim 2.2.4. Partition

N(z) into two sets U and W of cardinality q/2.

Case 2: q is odd.

Since every vertex of Hq has degree either q or q + 1, and since there exists a vertex of

degree q, it follows from the handshake lemma that Hq has at least two vertices, x and y

say, of degree q. Let z be the common neighbour of x and y. Then deg(z) = q+ 1. Let Iz
be the subgraph of Hq induced by N(z).

Claim 1: Iz has at least two vertices of degree 0, and its maximum degree is at most 1.

Clearly, every vertex in NHq(z) ∩ Vq is non-adjacent to every other vertex in NHq(z) by

Claim 2.2.4(b), so it has degree 0. Since x, y ∈ NHq(z)∩Vq, Iz has at least two vertices of

degree 0. Every vertex in NHq(z)∪Vq+1 is adjacent to exactly one other vertex in NHq(z)

by Claim 2.2.4(c). This proves the claim.

Let e1, e2, . . . , es be the set of edges of Iz. Then there are q+ 1−2s vertices of degree 0 in

Iz, and q+1−2s ≥ 2 by Claim 1. If s is even, let the vertices incident with one of the edges

e1, e2, . . . , es/2 be in U , let the vertices incident with one of the edges es/2+1, es/2+2, . . . , es

be in W , and distribute the remaining vertices, which have degree 0, evenly between U

and W . If s is odd, let the vertices incident with one of the edges e1, e2, . . . , e(s+1)/2 be in

U , let the vertices incident with one of the edges e(s+3)/2, e(s+5)s/2, . . . , es as well as x and

y be in W , and distribute the remaining vertices, which have degree 0, evenly between U

and W .

Now, replace vertex z by two vertices, u and w, where u is adjacent to all vertices in U ,

and w is adjacent to all vertices in W . Denote the new graph by H ′′q . Clearly, H ′′q is

C4-free, has q2 + q+ 2 vertices, and all vertices other than u and w have degree q or q+ 1,

while u and w have degree at least q
2 .

We note some properties which will be used later.

Claim 1: dH′′q (u,w) ≥ 5.

Indeed u and w are neither adjacent nor have a common neighbour, Hence dH′′q (u,w) ≥ 3

and every (u,w)-path in H ′′q is of the form u, u1, . . . , w1, w, where u1 ∈ U and w1 ∈ W .

Since there is no edge joining a vertex in U to a vertex in W since any two vertices

of N(z) have no common neighbour other then z, we have dH′′q (u1, w1) ≥ 3, and thus

dH′′q (u,w) ≥ 5, as desired.
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Claim 2: Let S ⊆ E(H ′′q ) with |S| < q and v ∈ V (H ′′q ). Then H ′′q − S contains a

(v, u)-path or a (v, w)-path.

If v ∈ {u,w}, then the statement holds trivially, so assume that v /∈ {u,w}. We make use

of the fact that Hq is obtained from H ′′q by identifying u and w to obtain vertex z. Since

Hq is q-edge-connected, there exists a (v, z)-path in Hq. This path yields a (v, u)-path or

a (w, u)-path in H ′′q − S. (Here and below we denote by S a set of edges in H ′′q , and we

denote the set of corresponding edges in Hq also by S.)

Claim 3: Let S ⊆ E(H ′′q ) with |S| < q
2 and v ∈ V (H ′′q ). Then H ′′q − S is connected.

By Lemma 6.2.4, graph Hq is q-connected, so Hq − z is (q − 1)-connected and thus q
2 -

connected. Since H ′′q is obtained from Hq − z by attaching two vertices of degree at least
q
2 , it follows that H ′′q is also q

2 -connected. Claim 3 follows.

Theorem 6.3.12. Let k ∈ N such that k + 1 is a prime power. Then for infinitely many

values of n, there exists a (k + 1)-edge-connected, C4-free graph G∗q,` of order n and with

k-fault diameter

D′k(G
∗
q,`) ≥

5n

k2 + 3k + 3
− 6k2 + 18k + 13

k2 + 3k + 3
. (6.3.19)

Proof. For a given prime power q and an integer ` with ` ≥ 2 we define the graph G∗q,` as

follows. Let G1 and G` be disjoint copies of Hq, and let G2,G3, . . . ,G`−1 be disjoint copies

of H ′′q . Let w1 and u` be vertices of G1 and G`, respectively, and for i = 2, 3, . . . , `− 1 let

ui and wi be the vertices of Gi corresponding to u and w. Now G∗q,` is obtained from the

union of G1, . . . ,G` by identifying wi with ui+1 for i = 1, 2, . . . , `−1 by adding q−1 edges,

each joining a vertex of G1 to a vertex of G`. A sketch of the graph G∗q,` for q and ` = 3 is

shown in Figure 6.5.
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u1
1

u1
q−1

w1
1

w1
q−1

z1

G2

u2
1

u2
q/2

w2
1

w2
q/2

G3

u3
1

u3
q−1

w3
1

w3
q−1

w3

z3

fq−1

fq−3

f2

f1

Figure 6.5: The graph G∗q,` for ` = 3
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We first show that G∗q,` is q-edge-connected. Assume that S is a set of q− 1 edges of G∗q,`.

We show that G∗q,` − S is connected.

Case 1: There exists i ∈ {2, 3, . . . , `− 1} with |S ∩ V (Gi)| ≥ q
2 .

Then for each j ∈ {0, 1, . . . , `} − {i} the subgraph Gj − S is connected by Claim 3 since

S has less than q
2 vertices in Gj . Hence G1,G2, . . . ,Gi−1 belong to the same component of

G∗q,` − S, and Gi+1,Gi+2, . . . ,G` belong to the same component of G∗q,` − S. Since not all

q − 1 edges between G1 and G` are in S, it follows that all Gj with j 6= i are in the same

component of G1,G2, . . . ,Gi−1 belong to the same component of G∗q,` − S. Since for every

vertex x of Gi there exists a path from x to ui or to wi in Gi − S by Claim 2, it follows

that G∗q,` − S is connected, as desired.

Case 2: For all i ∈ {2, 3, . . . , `− 1} we have |S ∩ V (Gi)| < q
2 .

Then it follows that Gi − S is connected for all i ∈ {1, 2, . . . , `− 1} by Claim 3. Since Hq

is q-edge-connected, the graphs G1 − S and G` − S are also connected. Hence G∗q,` − S is

connected, as desired.

We now bound the k-edge-fault-diameter from below. Choose the set S as the q− 1 edges

joining a vertex of G1 to a vertex of G`. Since dH′′q (ui, wi) = 5 by Claim 1. Choosing

vertices u1 and w` of G with d(u1, w1) = 2 = d(u`, w`), we have

D′q−1(G∗q,`) ≥ d(u1, w1) + dG∗q,`−S(w1, u`) + d(uu`, w`)

= 5(`− 2) + 4

= 5`− 6.

Hence

D′k(G
∗
q,`) ≥

5n

k2 + 3k + 3
− 6k2 + 18k + 13

k2 + 3k + 3
,

as desired in (6.3.19).

6.3.3 Bounds on the (Edge-)Fault-Diameter of (k+1)-connected Graphs

of Girth at least 6

In this section we give upper bounds on the k-edge-fault diameter of (k+1)-edge connected

graphs of girth 6 in terms of order. We make use of the notation described in the previous

section.

Theorem 6.3.13. Let G be a connected graph with girth at least 6 and order n.

(i) If G is 2-edge-connected and n ≥ 6, then

D′1(G) ≤ n− 1. (6.3.20)
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Equality holds, if and only if G = Cn.

(ii) If k ≥ 2 and G is (k + 1)-edge-connected, then

D′k(G) ≤ 3n

k2 + k + 1
+

6k2 + 6k

k2 + k + 1
, (6.3.21)

and this bound is sharp apart from an additive constant.

Proof. (i) Since H is connected and has n vertices, we have diam(H) ≤ n− 1. On the

other hand, equality holds if and only if G is 2-connected and G contains an edge e

such that G− e is a path which only holds if G is a cycle.

(ii) Let H, S, P , d, vi be as defined earlier. Since G is (k + 1)-edge connected, we have

that δ(G) ≥ k + 1. For i ∈ {0, 1, 2, . . . , d− 1}, we have that,

N2
H(vi) ∪N2

H(vi+1) ⊆ Ni−2 ∪Ni−1 ∪Ni ∪Ni+1 ∪Ni+2 ∪Ni+3,

and so for 0 ≤ i 6= j ≤ bd−1
6 c, the sets

(
N2
H [v6i] ∪ N2

H(v6i+1)
)

and
(
N2
H(v6j) ∪

N2
H(v6j+1)

)
are disjoint. It follows that

n ≥
b d−1

6
c∑

i=0

|N2
H(v6i) ∪N2

H(v6i+1)| (6.3.22)

Since H is a graph of girth at least 6, any two vertices in NH(v6i) have no common

neighbour other than v6i and each vertex in NH(v6i) can only be adjacent to v6i and

to vertices in N2
H(v6i) since otherwise each H has a cycle of length less than 6.

We now bound the number of vertices in N2
H(v6i) ∪N2

H(v6i+1). Note that the mini-

mum degree of H is not necessarily k + 1 or more.

Fix i ∈ {0, 1, . . . bd−1
6 c} and consider v6i and v6i+1. Let x1, x2, . . . , xdegH(v6i) and

y1, y2, . . . , ydegH(v6i+1) be the neighbours of v6i and v6i+1 respectively in H. Let

τi(ρi resp.) be the number of incidences of edges in S with v6i(v6i+1 resp.). Let

αi(βi resp.) be the number of incidences of edges in S with vertices in NH(v6i)

(NH(v6i+1) resp.). Then degH(v6i) = degG(v6i)−τi, degH(v6i+1) = degG(v6i+1)−ρi,∑degH(v6i)
j=1 degH(xj) =

∑degH(v6i)
j=1 degG(xj) − αi + τi and

∑degH(v6i+1)
j=1 degH(yj) =∑degH(v6i+1)

j=1 degG(yj)− βi + ρi.

Since H is a graph with girth at least 6, each xj can only be adjacent to v6i and

to a vertex in N2
H(v6i) and has thus degH(xj)− 1 neighbours in N2

H(v6i). Similarly

each yj has degH(yj) − 1 neighbours in N2
H(v6i+1). Moreover, no two neighbours

of v6i(v6i+1 resp.) have a common neighbour in N2
H(v6i)(N

2
H(v6i+1) resp.) since

otherwise H has a cycle of length less than 6.

Claim: NH(v6i) ∩NH(v6i+1) = ∅.
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Consider H − v6iv6i+1 and let H ′ = H − v6iv6i+1. The sets N2
H′(v6i) and N2

H′(v6i+1)

are disjoint, otherwise H would contain a cycle of length less than 6. Clearly H ′ is

a graph of girth at least 6 and degree of v6i and v6i+1 in H ′ is at least degH(v6i)− 1

and degH(v6i+1)− 1 respectively. It follows from Lemma 2.3.1 that

|N2
H′(v6i)| ≥ 1 + degH′(v6i) +

degH′ (v6i)∑
j=1

(degH′(xj)− 1)

≥ degG(v6i)− τi + (degG(v6i)− τi − 1)(k)− (αi − τi)

≥ k + 1− τi + (k − τi)k − (αi − τi)

≥ k2 + k + 1− αi(k + 1), (6.3.23)

with the last inequality holding since τi ≤ αi. A similar argument yields

|N2
H′(v6i+1)| ≥ k2 + k + 1− βi(k + 1). (6.3.24)

Since N2
H(v6i) ∪N2

H(v6i+1) = N2
H′(v6i) ∪N2

H′(v6i+1) we obtain

∣∣N2
H(v6i) ∪N2

H(v6i+1)
∣∣ ≥ 2k2 + 2k + 2− (αi + βi)k. (6.3.25)

Since removing the k edges of S reduces the total degree sum of G by 2k, equation

(6.3.22) yields

n ≥
b d−1

6
c∑

i=0

[2k2 + 2k + 2− k(αi + βi)]− 2k

≥
b d−1

6
c∑

i=0

(2k2 + 2k + 2)− k
b d−1

6
c∑

i=0

(αi + βi)− 2k

≥ (bd− 1

6
c+ 1)(2k2 + 2k + 2)− 2k − k

b d−1
6
c∑

i=0

(αi + βi)

≥ (bd− 1

6
c+ 1)(2k2 + 2k + 2)− 2k − 2k2, (6.3.26)

with the last inequality holding since
b d−1

6
c∑

i=0
(αi + βi) ≥ 2k. Since bd−1

6 c >
d−6

6 , we

have that n ≥ (d3)(k2 + k + 1)− 2k2 − 2k. Solving for d yields the desired result in

(6.3.21).

We now construct graphs to show that the bound in (6.3.21) is sharp apart from an

additive constant for infinitely many values of k.
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Consider the graph H∗q+1 described in Example 2.3.5, whose vertices correspond to the 1-

dimensional and 2-dimensional subspaces of GF (q)3. Clearly H∗ is C4-free, has girth 6 and

(k+ 1)-connected (see Claim 2.3.6 and Claim 6.3.3). By Claim 2.3.6, H∗ has 2(q2 + q+ 1)

vertices and is (q + 1)-regular.

Fix a vertex z of H∗q+1. Partition NH∗q+1
(z) into two sets U and W of order q+1

2 . Replace

vertex z by two vertices, u and w, where u is adjacent to all vertices in U , and w is

adjacent to all vertices in W . Denote the new graph by F∗q+1. Clearly, F∗q+1 is C4-free,

has 2q2 + 2q + 3 vertices, and all vertices other than u and w have degree q + 1, while u

and w have degree q+1
2 .

The following properties will be useful later in our construction.

Claim 1: dF∗q+1
(u,w) ≥ 6.

Indeed u and w are neither adjacent nor have a common neighbour, Hence dF∗q+1
(u,w) ≥ 3.

By identifying u and w, we get the original graph H∗q+1. This implies that the shortest

path between these two vertices will form a cycle and since H∗q+1 has girth at least 6, this

cycle must have length at least 6. Thus, dF∗q+1
(u,w) ≥ 6, as desired.

Claim 2: Let S ⊆ E(F∗q+1) with |S| < q + 1 and v ∈ V (F∗q+1). Then F∗q+1 − S contains

a (v, u)-path or a (v, w)-path.

If v ∈ {u,w}, then the statement holds trivially, so assume that v /∈ {u,w}. We make use

of the fact that H∗q+1 is obtained from F∗q+1 by identifying u and w to obtain vertex z.

Since H∗q+1 is q + 1-edge-connected, there exists a (v, z)-path in H∗q+1. This path yields a

(v, u)-path or a (w, u)-path in F∗q+1 − S. (Here and below we denote by S a set of edges

in F∗q+1, and we denote the set of corresponding edges in H∗q+1 also by S.)

Claim 3: Let S ⊆ E(F∗q+1) with |S| < q+1
2 and v ∈ V (F∗q+1). Then F∗q+1−S is connected.

By Claim 6.3.3, H∗q+1 is q+ 1-connected, so H∗q+1− z is q-connected and thus
(
(q+ 1)/2

)
-

connected. Since F∗q+1 is obtained from H∗q+1 − z by attaching two vertices of degree at

least q+1
2 , it follows that F∗q+1 is also

(
(q + 1)/2

)
-connected. Claim 3 follows.

Theorem 6.3.14. Let k ∈ N such that k is an odd prime power. Then, there exists a

(k+1)-edge-connected graph with girth at least 6, Gq,`, of order n and k-edge-fault diameter

D′k(Gq,`) ≥
3n

k2 + k + 1
− 6k2 + 6k + 3

k2 + k + 1
(6.3.27)

Proof. For a given odd prime power q and an integer ` with ` ≥ 2 we define the graph

Gq,` as follows. Let G1 and G` be disjoint copies of H∗q+1, and let G2,G3, . . . ,G`−1 be

disjoint copies of F∗q+1. Let w1 and u` be vertices of G1 and G`, respectively, and for

i = 2, 3, . . . , `− 1 let ui and wi be the vertices of Gi corresponding to u and w. Now Gq,`

is obtained from the union of G1, . . . ,G` by identifying wi with ui+1 for i = 1, 2, . . . , `− 1
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by adding q edges, each joining a vertex of G1 to a vertex of G`. A sketch of the graph

Gq,` for ` = 3 is shown in Figure 6.6.
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1
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1
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2

w2
1

w2
q+1

2

G3

u3
1

u3
q+1

w3
1

w3
q+1

w3

fq

f2

f1

Figure 6.6: The graph Gq,` for ` = 3

We first show that Gq,` is (q + 1)-edge-connected. Assume that S is a set of q edges of

Gq,`. We show that Gq,` − S is connected.

Case 1: There exists i ∈ {2, 3, . . . , `− 1} with |S ∩ V (Gi)| ≥ q+1
2 .

Then for each j ∈ {0, 1, . . . , `} − {i} the subgraph Gj − S is connected by Claim 3 since

S has less than q+1
2 vertices in Gj . Hence G1,G2, . . . ,Gi−1 belong to the same component

of Gq,` − S, and Gi+1,Gi+2, . . . ,G` belong to the same component of Gq,` − S. Since not

all q edges between G1 and G` are in S, it follows that all Gj with j 6= i are in the same

component of G1,G2, . . . ,Gi−1 belong to the same component of Gq,` − S. Since for every

vertex x of Gi there exists a path from x to ui or to wi in Gi − S by Claim 2, it follows

that Gq,` − S is connected, as desired.

Case 2: For all i ∈ {2, 3, . . . , `− 1} we have |S ∩ V (Gi)| < q+1
2 .

Then it follows that Gi − S is connected for all i ∈ {1, 2, . . . , ` − 1} by Claim 3. Since

H∗q+1 is (q + 1)-edge-connected, the graphs G1 − S and G` − S are also connected. Hence

Gq,` − S is connected, as desired.

We now bound the k-edge-fault-diameter from below. Choose the set S as the q edges

joining a vertex of G1 to a vertex of G`. Since dF∗q+1
(ui, wi) = 6 and by choosing vertices
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u1 and w` of G with d(u1, w1) = 3 = d(u`, w`),

D′q−1(Gq,`) ≥ d(u1, w1) + dGq,`−S(w1, u`) + d(u`, w`)

= 6(`− 2) + 6

= 6(`− 1).

Hence

D′k(Gq,`) ≥
3n

k2 + k + 1
− 6k2 + 6k + 3

k2 + k + 1
,

as desired in (6.3.27).

Next we show that a slightly weaker bound than the one given in Theorem 6.3.2 holds if

we relax the condition to (C4, C5)-free (k+1)-edge connected graphs.

Theorem 6.3.15. Let k ≥ 2 ∈ N and let G be a (k+1)-edge-connected (C4, C5)-free graph

of order n. Then the k-edge-fault-diameter is given by

D′k(G) ≤ 3n

k2 − 1
2k + 2 + εk+1

+
6k2 + 6k

k2 − 1
2k + 2 + εk+1

, (6.3.28)

where εk+1 = 0 if k + 1 is even and εk+1 = 1 if k + 1 is odd.

Proof. Let P, d, S,H,Ni, vi, N
2
G be as defined earlier. By the hypothesis of Theorem 6.3.15,

G may contain triangles. Since G is (k + 1)-connected, we have that δ(G) ≥ k + 1. For

i ∈ {0, 1, 2, . . . , d− 1} and vi ∈ Ni, vi+1 ∈ Ni+1, we have that,

N2
H(vi) ∪N2

H(vi+1) ⊆ Ni−2 ∪Ni−1 ∪Ni ∪Ni+1 ∪Ni+2 ∪Ni+3,

and so for i = 0, 1, 2, . . . , bd−1
6 c, the sets

(
N2
H(v6i)∪N2

H(v6i+1)
)

and
(
N2
H(v6j)∪N2

H(v6j+1)
)

are disjoint for i 6= j. It follows that

n ≥
b d−1

6
c∑

i=0

|N2
H [v6i] ∪N2

H [v6i+1]|. (6.3.29)

We now bound the number of vertices in N2
H(v6i) ∪N2

H(v6i+1).

Fix i ∈ {0, 1, . . . bd−1
6 c} and consider v6i and v6i+1.

Let x1, x2, . . . , xdegH(v6i) and y1, y2, . . . , ydegH(v6i+1) be the neighbours of v6i and v6i+1

respectively in H. Let τi(ρi resp.) be the number of incidences of edges in S with v6i(v6i+1

resp.). Furthermore, let αi(βi resp.) be the number of incidences of edges in S with vertices

in NH(v6i) (NH(v6i+1) resp.). Then degH(v6i) = degG(v6i)−τi, degH(v6i+1) = degG(v6i)−
ρi,
∑degH(v6i)

j=1 degH(xj) =
∑degH(v6i)

j=1 (degG(xj)− 2)−αi + τi and
∑degH(v6i+1)

j=1 degH(yj) =∑degH(v6i+1)
j=1 (degG(yj)− 2)− βi + ρi.
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We consider the following cases since H is (C4, C5)-free and v6i can either have (or not

have) a common neighbour with v6i+1.

Case 1 : NH(v6i) ∩NH(v6i+1) = ∅.

Consider H − v6iv6i+1 and let H ′ = H − v6iv6i+1. The sets N2
H′(v6i) and N2

H′(v6i+1) are

disjoint, otherwise H would contain a cycle of C4 or C5 through v6iv6i+1. Clearly H ′ is

C4-free and degree of v6i and v6i+1 in H ′ is at least degH(v6i) − 1 and degH(v6i+1) − 1

respectively. It follows from Lemma 2.3.8 that

|N2
H′(v6i)| ≥ 1 + degH′(v6i) +

degH′ (v6i)∑
j=1

degH′(xj) + εdegH′ (v6i)

≥ 1 + degH′(v6i) + degH′(v6i)(degG(xj)− 2)− (αi − τi) + εdegH′ (v6i)

≥ k + 1− τi + (k − τi)(k − 1)− (αi − τi) + εdegH′ (v6i)

≥ 1 + k2 − kαi + εdegH′ (v6i),

with the last inequality holding since τi ≤ αi. A similar argument yields

|N2
H′(v6i+1)| ≥ 1 + k2 − kβi + εdegH′ (v6i).

Since N2
H(v6i) ∪N2

H(v6i+1) = N2
H′(v6i) ∪N2

H′(v6i+1) we obtain

∣∣N2
H(v6i) ∪N2

H(v6i+1)
∣∣ ≥ 2k2 + 2− k(αi + βi) + 2εk+1. (6.3.30)

Case 2: NH(v6i) ∩NH(v6i+1) 6= ∅.

Let w be a common neighbour of v6i and v6i+1. Then w is the only common neighbour

since otherwise H would contain C4. We first consider the second neighbourhood of v6i

and v6i+1, respectively, in H ′ − w. As in Case 1, the sets N2
H′−w(v6i) and N2

H′−w(v6i+1)

are disjoint, and each has at least k2 − k + 2 − kαi + 2εk+1 vertices. The set NH [w] −
{v6i, v6i+1} is also contained in N2

H(v6i) ∪ N2
H(v6i+1), and it does not share any vertex

with N2
H′−w(v6i) ∪N2

H′−w(v6i+1), otherwise H would contain a C4 or a C5. Hence

|N2
H(v6i+1) ∪N2

H(v6i+1)| ≥ 2[k2 − k + 2− kαi + 2εk+1] + (degH(w)− 1)

≥ 2k2 − k + 4− k(αi + βi) + 2εk+1, (6.3.31)

Comparing equations (6.3.30) and (6.3.31), we conclude that

|N2
H(v6i) ∪N2

H(v6i+1)| ≥ 2k2 − k + 4 + 2εk+1 − k(αi + βi).

Since removing the k edges of S reduces the total degree sum of G by 2k, equation (6.3.29)
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yields

n ≥
b d−1

6
c∑

i=0

[2k2 − k + 4 + 2εk+1 − k(αi + βi)]− 2k

≥
b d−1

6
c∑

i=0

(2k2 − k + 4 + 2εk+1)− k
b d−1

6
c∑

i=0

(αi + βi)− 2k

≥ (bd− 1

6
c+ 1)(2k2 − k + 4 + 2εk+1)− 2k − k

b d−1
6
c∑

i=0

(αi + βi)

≥ (bd− 1

6
c+ 1)(2k2 − k + 4 + 2εk+1)− 2k − 2k2, (6.3.32)

with the last inequality holding since
b d−1

6
c∑

i=0
(αi + βi) ≥ 2k. Furthermore, we have that

bd−1
6 c >

d−6
6 and so n ≥ (d6)(2k2 − k + 4 + 2εk+1) − 2k − 2k2. Solving for d yields the

desired result in (6.3.28).

We do not know if the bound in Theorem 6.3.15 is sharp. The graph Gq,` constructed in

Theorem 6.3.14 shows that the coefficient 3
k2− 1

2
k+2+εk+1

of n is at least close to being best

possible if k + 1 is large.



Chapter 7

Conclusion

In this thesis, we considered the four most important distance measures in graph theory:

diameter, radius, average distance and average eccentricity, and determined upper bounds

on each of these measures for certain graph classes, in particular graphs of girth at least 6,

as well as, (C4, C5)-free graphs in terms of order and minimum degree. We further obtained

similar bounds for the radius and diameter that take into account also the maximum

degree. For this purpose we introduced a very natural generalisation of the classical

cage problem, the determination of the minimum order of graphs of given minimum and

maximum degree and given girth. We also proved upper bounds on the average distance

of graphs with given minimum degree and maximum degree. This problem has not been

considered in the literature to date. We also considered altered graphs which arises as

a result of deleting an edge or vertex from the original graph and determined what the

diameter will be for the graphs considered above.

A natural question for further research that arises from the results in this thesis is if similar

results can be obtained for graphs of larger girth than 6. While it seems possible to prove

similar bounds for larger girth, it is not clear if these bounds will be sharp. This remains

an interesting challenge for future research.
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