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Research article 
Morphology and elemental analysis of freshly 
emitted particles from packed-bed domestic coal 
combustion 

Introduction 
The Despite efforts to reduce dependence on solid fuel, more 
than 3 billion people continue to burn coal and wood for cooking 
and space heating (Naeher et al., 2007; Gordon et al., 2014). 
Small diameter (< 2.5 μm) particulate matter has been singled 
out as posing a significant threat to both the environment and 
human health. Suspension of fine particles has been associated 
with household emissions from wood and coal burning (Mc 
Donald and Biswas, 2004; Chafe et al., 2015). 

Several epidemiological studies have shown that particles 
below PM2.5 are strongly associated with infection of the 
lower respiratory tract, cardiovascular system disruption, 
and morbidity (Lim et al., 2012, 2013). Despite severe health 

effects, the source to exposure mechanisms from domestic coal 
and wood-burning has not yet been established. Researchers 
recommend that an understanding of particle evolution from 
its point of release to the microenvironment of the receptor is 
important for source and hazard mapping (Shen et al., 2013; 
Torvela et al., 2014). Therefore, the correct determination of the 
physicochemical properties of coal/ wood emissions particles 
is essential for source identification and characterisation. 
However, very few studies have been conducted on the 
physicochemical properties of particles emitted from small 
scale coal combustion technologies, even though significant 
associated health risks have been reported in countries such 
as China, India and Finland (Niemi et al., 2006; Wilkinson et al., 
2009; Zhang and Tao, 2009).  

Abstract
This study was conducted in a laboratory-controlled environment to analyse the physical properties and elemental composition of 
coal combustion particles in a brazier.  Particles were sampled ~1 m above the stove, using a partector. Particles were collected on gold 
transmission electron microscopy (TEM) grids, and polycarbonate filters for TEM and inductively coupled plasma mass spectrometry 
(ICP-MS) analysis, respectively. Particles for elemental analysis were collected on a 37 µm polycarbonate filter, and the exhaust was 
drawn in using a GilAir Plus pump. During sampling, a 2.5 µm cyclone was attached to the sampling cassette to isolate larger particles. 
Combustion particles emitted during the early stage of combustion were single organic spherical particles with similar characteristics 
to tarballs. As the combustion progressed, the particle diameter gradually decreased (from 109 nm), and the morphology changed to 
smaller particles (to 34.3 nm). The particles formed accretion chain structures, showing evidence of agglomeration. Furthermore, a 
fluffy microstructure, resembling the formation of soot, was formed in the post flaming phase. In the char-burning phase, an irregular 
structure of semi-spherical particles was formed, showing evidence of mineral particles infused with small carbonaceous particles. 
Similarly, with the findings of previous studies, the present research also observed organic spherical particles similar to tarballs. 
Given that during the ignition phase there was a simultaneous burning of wood as kindling and coal, the provenance of these particle 
emissions can be attributed to both coal and wood.
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Characterisation of the organic fractions emitted from domestic 
coal-burning technologies has been reported globally (Bazilian 
et al., 2012; Zhang et al., 2012). However, very few studies have 
focused on the characterisation of trace elements emitted 
from residential coal burning (Bazilian et al., 2012; Silva et 
al., 2012). Studies conducted in China have reported possible 
health effects of trace elements emitted from residential coal 
burning (Smith et al., 2014; Zhang, Zou, et al., 2018). In 2004 it 
was reported that, in  Guizhou province, more than 3 000 people 
had suffered arsenic poisoning, bone deformation, human 
selenosis and fluorosis because of exposure to residential coal 
burning (Finkelman, 2004; Zhou et al., 2015). Furthermore, it 
was established that the health effects of trace elements from 
coal-burning vary according to the properties of the coal, and 
exposure scenarios (Masekameni, Makonese and Annegarn, 
2014; Zhang, Zou, et al., 2018). In South Africa, especially in 
the central plateau of the Highveld region, coal burning, using 
unvented stoves, continues to be a significant source of energy 
for domestic cooking and heating (Balmer, 2007; Makonese et 
al., 2017). Efforts to reduce dependence on coal at the domestic 
level in South Africa have been commissioned, although they 
have not yet been fully implemented (Bonjour et al., 2013; 
GroundWork, 2016). 

Household air pollution inventories in South Africa are limited 
due to inadequate data from source apportionment studies. 
Only a few studies used scanning electron microscopy (SEM) 
to confirm the physical properties of particles emitted from 
domestic coal and wood burning. Nevertheless, data generated 
from SEM analysis are not sufficient for source apportionment. 
Contrary to SEM, transmission electron microscopy (TEM) 
analysis is considered to provide a better characterisation of 
the internal structures of particles and is the preferred method 
for studying the shape and morphology of aerosol particles 
(Schneider et al., 2006; Gwaze, 2007). 

Equipped with energy dispersive X-ray (EDX) or electron energy 
loss (ELL) spectroscopy, the instruments provide information 
about the elemental composition of the analysed particles 
(Nussbaumer et al., 2001). For TEM, very thin grids (often copper/ 
gold), coated with a carbon or gold film are used. The quality 
of the film is essential to obtain good resolution (Mathis et al., 
2005). If samples are used for quantitative analysis (e.g. the size 
distribution), care must be taken to have defined size fractions 
during the sampling process (Nussbaumer et al., 2001; Bond 
et al., 2006). In addition to particle morphology, the correct 
identification and determination of the elemental composition 
rely on the use of effective analytical techniques. Inductively 
coupled mass spectrometry (ICP-MS) has been widely used to 
study the elemental composition of combustion particles. In 
this study, we analysed the physical properties and selected 
elemental composition (Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, 
Ni, Cu, Zn) of particles generated during residential coal burning 
during three combustion phases (ignition, flaming and coking).

Currently, in South Africa, several studies on emissions from 
industries are underway, but there are limited studies to 
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apportion the contribution of domestic coal/wood burning to 
air pollution. Our study aimed to examine the morphology and 
chemical analysis of particles emitted during the combustion of 
D-grade coal, during three combustion phases (ignition, flaming 
and char burning), to determine the source contribution of 
particulate matter and to further our understanding of pollutant 
source distribution. 

We used lumps of D-grade type coal that were burned in a high-
ventilated stove and lit with a top-lit updraft (TLUD) ignition 
method in three combustion phases (ignition, flaming and char 
burning). The limitation of D-grade coal was fostered, as it is 
the most common fuel available in the informal settlements 
and townships of South Africa. D-grade coal is considered poor 
quality coal with ash content of over 14%, carbon content of 
55% and volatiles at about 25%.

Materials and methods
 
Experimental stove and fuel analysis
D-grade coal was burned in a high-ventilated stove lit using a 
Top-lit Updraft (TLUD) ignition method in a laboratory-controlled 
environment. Particles emitted during three combustion phases 
(ignition, flaming and char burning) were analysed. Due to 
variations of field-based factors, several variables were kept 
constant (i.e. ventilation rates, the position of the fuel grate 
inside the stove, size of coal lumps, ignition method and kindling 
fuel). The stove characteristics are shown in Figure 1. 
 

Coal particle size was determined by sieving the coal using a 40 
mm x 60 mm diameter mesh. The coal was analysed by Bureau 
Veritas Inspectorate Laboratories (Pty) Ltd., using the standard 
methods. Experimental results are based on the proximate and 
ultimate air-dried D-grade coal analyses (Table 1). 

During the TLUD ignition method, 2 500 g of coal were placed on 
the grate, followed by 35 g of paper, 400 g of wood kindling, and 
another 1 500 g of coal. Details on the division of the combustion 
phases, fuel properties and ignition method are detailed in a 
previous paper (Masekameni et al., 2018).

Figure 1: A photograph and schematic representation of a high ventilation 
field purchased brazier stove used in the experiments (Not drawn to scale 
– dimensions are in mm).
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Particle sampling
Particles were collected on TEM gold grids and polycarbonate 
membrane filters, for TEM and ICP-MS analyses, respectively. 
The gold grids were placed on a grid holder from the partector 
aerosol dosimeter TEM sampler (Naneos particle solutions, 
Switzerland), and the particles were deposited directly onto the 
grid. The sampling train included a Teflon tube, connecting the 
partector inlet to the sampling cassette that was fitted with a 
2.5 µm cyclone, with a PM4 cutoff point at 50%. The partector 
was set at a flow rate of 2.8 L/minute, according to the cyclone’s 
specification. Sampling for inductively coupled plasma 
Mass spectrometry (ICP-MS) was done using polycarbonate 
membrane filters (37 mm diameter). The exhaust was drawn 
onto the membrane filter inside a cassette, using a GilAir Plus 
pump (Model) set at a flow rate of 2.2 L/minute. The filters were 
changed at the start of each combustion phase (ignition, flaming 
and char burning/coking).

Preparation of filters
A total of 12 (four samples for each combustion phase), 37 mm 
diameter polycarbonate membrane filters, with a pore size of 
0.08 μm, were stored in a controlled laboratory environment 
before sampling campaign. The temperature ranged from 22 – 
23 °C and the humidity was recorded as 35 %. The filters were 
conditioned for 24 hours and pre-weighed, using a Sartorius 

electronic microbalance (model CPA225D, supplied with a 
balance pan) with a minimum resolution of 0.001 mg and a 
precision of 0.001 mg. The same procedure was repeated after 
a three-hour burn sequence of sampling particulate matter was 
completed. A field blank was handled in the same way as the field 
filter. However, the field blank was not exposed to the particulate 
matter. The objective of using a field blank is to overcome or 
account for moisture loss due to meteorological conditions, 
particularly during transportation and contamination when 
handling the filters. The determination of the final mass was 
calculated using equation 1.

Final mass=Field filter (post–pre)+field blank (post–pre)	  (1)

where the field filter (post) mass is the mass collected from 
the filter after sampling while the field pre-mass is the mass 
recorded before sampling. The field blank ‘post’ and ‘pre’ are 
the masses recorded after and before transportation of the 
filters, respectively.

Inductively coupled mass spectrometry
The sample filters for ICP-MS analysis were folded and placed 
inside pre-cleaned microwave digestion vessels; about 9 mL 
supra pure (Merc) nitric acid (HNO3) and 1 mL supra pure (Merc) 
hydrogen peroxide (H2O2) were added to each vessel. A reagent 
blank was included with the batch as a control. The vessels 
were closed and placed in a Mars 6 microwave. The digestion 
method made the vessels ramp to 200 °C for 20 minutes, and 
hold the temperature for another 15 minutes. The samples 
were then quantitatively transferred to 50 mL volumetric flasks 
and made up to the mark using 18.2 M Ω /cm ultrapure water. 
Calibration standards of 0 µg/L, 0.1 µg/L, 0.5 µg/L, 1.0 µg/L, 5.0 
µg/L and 10 µg/L were prepared from 100 mg/L NIST traceable 
stock standards. The samples were then filtered using a 0.45 
µm syringe filter and diluted 10 times (1 ml diluted to 10 ml) 
before analysis by ICP-MS. The blank filter analysis, using the 
ICP-MS technique, was carried out in the same manner as the 
sample filters. Since our samples were mostly carbon from a 
combustion process, we did not use hydrogen fluoride (HF) 
which is often used in dissolving samples of non-carbonaceous 
nature. For quality assurance, the instruments were optimized 
with a tune solution before analysis and calibrated with NIST 
traceable standards. 

In this study, we noted that ICP-MS is a sensitive technique and 
that caution should be exercised when analysing samples. Many 
sources can contribute to the overall accuracy and precision of 
the analysis. Therefore, internal standards with a mass number 
close to that of the analyte element(s) were used to minimise 
errors inherent in the analytical method. The internal standards 
assist to correct for matrix differences between calibration 
standards and samples. Since samples can easily suffer from 
Easy Ionizable Elements (EIE) effect, the loss of ionization 
efficiency can be corrected. Moreover, imprecision arising 
from small variations in dilutions can also be corrected. The 
correction procedure followed in this study is similar to that 
detailed in Vanhaecke et al. (1992).

Table 1: Proximate and ultimate analysis values for the coal (merchants 
and colliery) on an air-dried basis

Parameter  
(air-dried basis) Standard method Slater mine 

D-grade coal

Moisture content (%) ISO 5925 1.8

Volatiles (%) ISO 562 20.3

Ash (%) ISO 1171 24.2

Fixed carbon (%) By difference 57.5

Calorific value (MJ kg–1) ISO 1928 23.4

Calorific value (Kcal kg–1) ISO 1928 5590

Total sulphur (%) ASTM D4239 0.63

Carbon (%) ASTM D5373 62.6

Hydrogen (%) ASTM D5373 2.76

Nitrogen (%) ASTM D5373 1.0

Oxygen (%) By difference 5.0

Total silica as SiO2 (%) ASTM D4326 58.6

Aluminium as Al2O3 (%) ASTM D4326 27.6

Total iron as Fe2O3 (%) ASTM D4326 6.63

Titanium as TiO2 (%) ASTM D4326 0.82

Phosphorous as P2O5 (%) ASTM D4326 0.55

Calcium as CaO (%) ASTM D4326 2.30

Magnesium as MgO (%) ASTM D4326 0.83

Sodium as Na2O (%) ASTM D4326 0.42

Potassium as K2O (%) ASTM D4326 0.79

Sulphur as SO3 (%) ASTM D4326 1.10

Manganese as MnO2 (%) ASTM D4326 0.12
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Transmission electron microscopy (TEM)
Combustion smoke particles were imaged for their morphologies, 
using JEM-2100, in a multipurpose, 200 kV analytical electron 
microscope, at the University of Johannesburg, South Africa 
(Jeol Ltd from Akishima, Tokyo, Japan, manufactures the 
instrument). TEM has been used to study the semi-structure 
especially respirable particles, in contrast to optical microscopy, 
which uses light as an illumination source for imaging.  TEM 
uses electrons which provide an opportunity to separate 
arrangements of atoms in small structure/ combustion soot 
aggregates (Kocbach et al., 2005; Wang et al., 2018).  TEM 
combines the JEM-2100 optic system with an advanced control 
system for ease of operation.

Physical properties of coal emissions 
In an earlier study, Masekameni et al. (2018) reported physical 
properties of coal emissions particles for similar combustion 
activities. Particle size distribution (PSD) of around 109 nm, 54 
nm and 31 nm for the ignition, flaming and coking phase were 
reported respectively (Table 2). The particle morphology shown 
by Masekameni et al. (2018), suggests that particle diameter 
was larger at the ignition phase and gradually decreased as the 
combustion process progressed.

Results and discussion
Morphology of coal particles from TEM 
analysis

Morphology of smoke particles emitted during the ignition 
phase
The morphology of particles observed using a TEM for the 
ignition phase shows giant single spherical particles. Moreover, 
we used TEM analysis to study and distinguish different smoke 
particle morphologies similar to previously conducted studies 
(Pósfai et al., 2004; Chakrabarty et al., 2010; Tóth et al., 2014a). 
Figure 2 shows the morphology of smoke particles emitted 
during the ignition phase of coal combustion.
 
Figure 2a shows a spherical organic particle, with the 
characteristics of tarballs, collected from low-temperature 
combustion during the ignition phase. Emission of spherical 
organic particles is synonymous with smouldering combustion 
conditions. This suggests that the spherical particles are emitted 
because of low-temperature combustion. Posfai et al. (2003) 
contended that these carbonaceous particles are formed in 
smouldering fires and that they increase in abundance in the 
atmosphere as the smoke plume ages.

Furthermore, Posfai et al. (2004) reported similar morphologies 
to the ones reported in this study. However, the source 
contribution in their study was veld fires, which are often 
dominated by biomass burning. Figure 2b shows large organic 
spherical particles infused with diffusion accretion chains, 
forming soot. It was observed that, since these particles were 
collected at 1 m above the stove, the morphology might change 
with an increase in the height of sampling due to ageing of the 
particles.

Figure 2c shows particle growth as the spherical organic 
particles fuse, probably due to collision. Thajudeen et al. 
(2015) suggested that particle-particle collision is the dominant 
particle growth mechanism during combustion, even though 
the particles may restructure or rearrange after the collision and 
fail to coalesce.  Particles with similar morphologies to those 
found in our study were observed from biomass burning fires 
(Shraim et al., 2003; Thajudeen, Jeon and Hogan, 2015). Figure 
2d shows the onion-like structure of emitted organic particles, 
with disordered graphic layers, observed in the high-resolution 
TEM image.

Spherical organic particles shown in Figure 2 indicate a 
homogeneous structure (spherical), showing darker and 
lighter areas under TEM. The spherical organic particles have 
properties similar to tarballs produced during biomass burning. 
Similar morphologies were observed in previous studies (Pósfai 
et al., 2003; Tóth et al., 2014a). However, the literature suggests 
that tarballs are only released as a consequence of smouldering 
wood-burning fires. Several scholars have reported that tarballs 
are not emitted during coal or oil combustion (Pósfai et al., 2003; 
Tissari et al., 2008; Tóth et al., 2014b, 2014a).

Morphology of coal particles emitted during the flaming 
phase
During the flaming phase, particle diameter (54.9) was smaller 
than that during the ignition phase (Figure 3a, 3b and 3c). The 

Table 2: PSD of coal emission particles in a brazier 

Phase Duration 
(minutes)

GMD  
(nm)

GSD  
(nm)

Entire Combustion Sequence 180 51.9 2.1

Ignition 20 109.8 18.4

Flaming 60 54.9 5.9

Coking 100 34.3 5,1

Figure 2: TEM images of particles emitted during the ignition phase of 
coal combustion. a) carbonaceous spherical particle, b) internal structure 
of spherules with evidence of aggregates, c) onion-like structured soot 
particles, d) single-particle exposed to high beam resolution.

Research article: Morphology and elemental analysis of freshly emitted particles from packed-bed domestic coal combustion Page 4 of 10



CLEAN AIR JOURNAL 
Volume 30, No 2, 2020

© 2020. The Author(s). Published under a 
Creative Commons Attribution Licence. 5

formation of the spherical particles during ignition is thought 
to be influenced by the release of polar compounds from 
smouldering fires. During flaming, fewer polar compounds, 
which affect particle growth, are emitted than during the 
ignition stage (Pósfai et al., 2004). The particles observed, using 
TEM, resemble fused small particles with diffusion accretion 
chains that have characteristics similar to soot (Figure 3 a, b and 
c). Soot contains aggregates of small particles often less than 60 
nm in the diameter. A morphology similar to the present study 
was reported from a study in Guizhou Province, China (Shraim et 
al., 2003). However, the researchers who conducted that study 
investigated the morphology of particles in ageing smoke, from 
a wood fire. It is important to note that, in the study reported 
in this paper, the images were obtained from freshly produced 
particles. A well-arranged morphology, consisting of single 

particles, can be seen in figure 3b. Other researchers have also 
reported that the particle diameter decreases as the combustion 
conditions progress (Niemi et al., 2006).

Shraim et al. (2003) and Posfai et al. (2004) reported that there 
was an increase on the number of tar balls in samples collected 
at further distances from the emitting source, suggesting 
that there was particle growth because of condensation of 
organic gases, or transformation due to collision with other 
organic atmospheric particles.  In our study, we have shown a 
mechanism to which particles transform as the combustion 
progresses (Figure 3c). We established that, as coal heats up, 
it swells and cracks. It is through these cracks that organic 
particles are released and, depending on the ignition method 
and combustion conditions, a brown to thick white plume is 
evident, which may pass through a cold zone above the burning 
coal into the ambient air. We previously demonstrated that, as 
combustion progresses, fine particles, often enriched with low 
volatile organic gases, are emitted (Masekameni et al., 2018). 
Furthermore, particle growth is as a result of the water injection 
in the coal and which is released as water vapour during coal 
pyrolysis (Chang et al., 2004). Therefore, accretion chains may 
be caused by coagulation of particles emitted during the flaming 
phase (Makonese, 2015; Makonese, Masekameni and Annegarn, 
2017). As the coal fully pyrolyze, fluffy microstructures are 
formed, which have the same characteristics as soot particles.
 
In summary, the findings from our study build on the work of 
Makonese (2015) and Toth et al. (2014b), who recommended that 
further studies be conducted to affirm the existence of spherical 
organic particles, tarballs and related particle formation 
mechanisms in domestic combustion processes. We confirm that 
spherical organic particles with similar characteristics to tarballs 
are emitted as a consequence of smouldering combustion 
conditions. In this study, we have demonstrated that residential 
coal burning may be a source of - spherical organic particle-
like tarball emissions. However, since wood kindling was used 
during the ignition phase, it might be that some of the emissions 
of the spherical organic particles similar to tarballs could have 
been released from the simultaneous combustion of wood 
kindling and coal.

Morphology of coal particles emitted during the char burning 
phase
Figure 4 shows images of particles collected during the char 
burning stage of coal-combustion, in a typical brazier used in 
South African informal settlements. During the char-burning 
phase,  almost all volatile organic compounds have been 
released during the ignition and flaming phases (Masekameni 
et al., 2018). This results in the emission of non-carbonaceous 
matter during the coking phase, usually in the form of mineral 
particles from the burning char (Figure 4 a, b and c). In this stage, 
the fire burns uniformly if there is sufficient oxygen supply, and 
particles emitted during this stage are similar to those particles 
reported in studies of ash. The mineral particles are irregular in 
shape and tend to have a much smaller diameter (34.3 nm) than 
soot and homogeneous spherical organic particles (Figure 4a). 

Figure 3: TEM images of carbonaceous particles emitted during the 
flaming phase- a) carbonaceous soot particles showing as aggregates, 
b) a more established and well-arranged accretion chain, c) fluffy 
microstructure, resembling soot.particles, d) single-particle exposed to 
high beam resolution.

Figure 4: TEM images of particles emitted during the char burning phase- 
a) irregular structure of semi-spherical particles, b) mineral particles 
infused with small carbonaceous particles, c) a fully established macro-
structure, indicating the presence of non-water soluble compounds.
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In Figure 4b, a closer look on the mineral particle indicates that 
there are several smaller particles of irregular shapes fused or 
agglomerated. Existing literature recognizes these particles as 
being composed of several mineral elements, including Si, Ca, 
Al, Fe, Na, K, Mg, and P (Wang and Luo, 2009). In Figure 4c, a 
mineral enriched irregular particle was imaged under the TEM. 
This particle is different from particles shown for the ignition 
and flaming phases, respectively.

This study did not employ EDX to determine the composition of 
each mineral particle semi-quantitatively. It is recommended 
that further studies be carried out to determine the elemental 
composition of specific mineral particles emitted during the 
char burning stage of domestic fixed-bed coal combustion. 
This study has employed ICP-MS to ascertain the elemental 
contribution of each combustion stage to the overall emissions 
of elements across the entire burn cycle sequence.
 
Elemental analysis of coal combustion particles during the 
ignition, flaming and char burning phases
Table 3 lists the ICP-MS results of selected trace elements 
collected during the three combustion phases (ignition, flaming, 
and char/coking burning), and across the entire burn cycle. 
During the ignition phase, Ca, Si, Fe and K were released in the 
highest proportions. The elemental composition derived from 
the total PM is expressed in mg, while the total trace elements 
are expressed in µg as shown in Table 3 and Table 5.  These 
results, especially the emission of Si and K, suggest a particle 
partitioning, similar to that shown in previous studies (Hand et 
al., 2005; Meij and te Winkel, 2007; Zhang, Liu, et al., 2018). The 
smoke particles with high Si content can be used as a marker 
for coal combustion emissions, while the smoke particles with a 
high K percentage suggest emissions from biomass burning (in 
this case, wood kindling was used during the ignition phase).
 
During the ignition phase, the percentages of both Si and K were 
high because wood fuel was used as kindling to ignite the coal 
nuggets. In the flaming phase, the percentage contribution of 
K was higher than in the ignition and char burning phases. The 
increase in the percentage of K during flaming is possibly due to 
the pyrolysis of the wood kindling. A noticeable decline in the 
percentage of potassium can be seen during the char burning 
phase. For the marker of coal emissions, a relatively steady 
increase in Si emission confirms that the particles are from 

coal combustion. All trace element emissions, except Ca and 
K, steadily increased as the combustion progressed. K and Ca 
emissions are thought to be associated with the pyrolysis wood 
kindling which often completes in the second half of the flaming 
stage (Makonese et al., 2014).

In previous studies, the elemental composition of emissions from 
coal-burning boilers/ furnaces was limited to fly ash, with little 
emphasis on the elemental composition of smoke emissions 
from the different combustion phases (McElroy et al., 1982; 
Petaloti et al., 2006). Particles emitted during the coking phase 
are enriched with volatile organic trace elements categorized as 
class one (i.e. Al, Ca, Ce, Cs, Eu, Fe, Hf, K, La, Mg, Sc, Sm, Si, Sr, 
Th and Ti) and are comparable to emissions in ash.  During coal 
combustion, the minerals in the coal are deposited as bottom 
ash, and some are given off as fly ash (Lu et al., 2017). The types 
of mineral elements released are related to the mineral content 
of the fuel (Table 4). 

A comparison of the composition of the fuel burned with 
corresponding elements is provided in Table 4. Although 
there was a relatively low amount of K in the coal, the emitted 
particles contained K. This was expected as wood was used as 
kindling to ignite the coal. The results reported in this study on 
trace elements are similar to those described for emissions of 
ash in other studies (Makonese, Meyer and Solms, 2019).

Table 5 shows the percentage and mass concentration of trace 
element composition of particles emitted during the three 
combustion phases. With decreasing volatile matter from the 
burning fuel, mineral particles dominated the char burning 
phase. The mass of the trace elements emitted during the char 
burning phase was 3 times higher than that emitted during the 
ignition phase, and twice that emitted during the flaming phase. 
As expected, the bulk of the elements was emitted during the 
char burning phase relative to the flaming and ignition phases 
(Zhang, Liu, et al., 2018). This finding suggests that the majority 
of particles emitted during the ignition and flaming phases 
could be dominated by volatile organic compounds (Zhou et al., 
2016).  During the char-burning phase, most non-water-soluble 
trace elements are expected to be released.

Table 3: Elemental composition results from inductively coupled plasma mass spectrometry (ICP-MS) analysis

Combustion phase Element 
(µg/g)

Na Mg Al Si K Ca Ti V Cr Mn Fe Co Ni Cu Zn 

Ignition (µg/g) 0.8 0.2 0.2 2.3 1.4 3.9 0.1 0.0 0.1 0.0 0.8 0.0 0.1 0.0 0.2

% contribution 8.3 2.3 2.0 22.5 13.8 38.4 0.7 0.0 1.4 0.2 7.5 0.1 0.5 0.1 2.2

Flaming (µg/g) 0.9 0.4 2.0 3.8 3.2 1.6 0.1 0.0 0.3 0.1 2.6 0.0 0.0 0.0 1.1

% contribution 5.3 2.7 12.5 23.3 20.0 9.9 0.9 0.0 1.6 0.4 16.0 0.1 0.1 0.2 7.0

Char burning (µg/g) 1.3 1.0 6.3 8.1 4.8 2.3 0.4 0.0 0.2 0.2 5.7 0.0 0.0 0.1 1.7

% contribution 4.1 3.1 19.7 25.3 14.9 7.3 1.1 0.0 0.6 0.5 17.9 0.0 0.1 0.2 5.3
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Conclusion 
This study was conducted to examine the morphology and 
elemental characteristics of freshly emitted individual particles 
emitted during three distinct combustion phases in domestic 
packed-bed coal. Three types of particles were classified 
viz., spherical organic particles with characteristics similar 
to tarballs, soot particles, and mineral particles. Spherical 
organic compounds were predominant in the ignition stage 
due to smouldering combustion conditions, while soot particles 
dominated the flaming stage. The identification of spherical 
organic particles is essential to understand how particles 
evolve once released into the atmosphere. Spherical organic 
compounds have been previously reported in smouldering 
wood-burning fires (Makonese, Meyer and von Solms, 2019). 
This finding brings new knowledge, suggesting that organic 
spherical particles may also be released during coal smouldering 
combustion conditions. This was demonstrated in a study 
conducted by Makonese et al. (2019) where coal was ignited 
using burning coal embers instead of wood kindling. As wood 
was used as kindling in this study, some of the emissions of 
organic spherical particles resembling tarballs could have been 
released from the wood fuel.

Mineral particles were predominant in the char burning stage 
where > 55% of the elements were released, suggesting that 
the combustion conditions were taking place at sufficient 
oxygen and temperature resulting in almost all volatiles being 

completely given off and burned. Elemental composition 
analysis showed that the particles were rich in Si, K, Al, Fe, Ca, 
Zn, Na, Mg, and Ti, depending on the combustion phase. The 
type of mineral elements released was related to the mineral 
content of the fuel.

This information is essential for updating emission inventory 
sources, understanding radiation forcing potential, and providing 
a basis for warming estimation. In addition to information about 
the morphology of the emitted particles, the information on trace 
elements may be useful in source identification due to chemical 
signatures or emission markers. Both Si and K were high during 
the ignition phase indicating simultaneous combustion of wood 
kindling and coal. For the marker of coal emissions, a relatively 
steady increase in Si emission was confirmed across the entire 
combustion sequence indicating that the particles were emitted 
from coal combustion instead of wood. Further studies should 
be conducted to describe the morphology of emitted particles 
at distances further from the source.
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