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Abstract 

 

The fourth industrial revolution has brought about tremendous advancements in various sectors of 

the economy including the agricultural domain. Aimed at improving food production and 

alleviating poverty, these technological advancements through precision agriculture has ushered 

in optimized agricultural processes, real-time analysis and monitoring of agricultural data. The 

detrimental effects of applying agrochemicals in large or hard-to-reach farmlands and the need to 

treat a specific class of weed with a particular herbicide for effective weed elimination gave rise 

to the necessity of this research work. 

This research study involved the real-time detection of weeds and selective spray of herbicides on 

broadleaf and grass weed by applying deep learning algorithms on an embedded system. The deep 

learning algorithm deployed was a convolutional neural network model re-trained through transfer 

learning on the ResNet50 model using the soybean weed dataset and evaluated with the random 

forest classifier. The proposed smart selective herbicide sprayer was developed by assembling a 

quadcopter kit with the sprayer module and embedded system incorporated.  

The convolutional neural network model trained yielded training and validation accuracies of 

99.98% and 98.4% respectively thus outperforming the random forest classifier. Also, training and 

validation losses of 0.0039 and 0.0323 respectively were obtained giving a clear indication that 

the model was appropriate. The test conducted on the smart herbicide sprayer, weighing about 3kg, 

indicates that the proposed models was able to detect broadleaf and grass weeds accurately and 

selectively spray herbicides on the weeds in less than a second. The results obtained from this work 

create the opportunity for more research to be carried out in this field of precision agriculture as 

regards weed and pest detection.  
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Chapter 1-Introduction 

1.1 Research background  

The task of obliterating weeds on farmland has been a challenge faced by farmers hence this 

research focuses on proffering solutions aligned with the fourth industrial revolution, to the nodus 

of weeds and its attendant consequences. In a bid to increase food production by 2050 to feed a 

population of about 9 billion, the concept of precision agriculture through the application of 

technological solutions is imperative. 

 According to Kamilaris and Prenafeta-Boldú (2018), precision or smart agriculture involves 

optimizing agricultural processes, real-time analysis, and monitoring of agricultural data. It also 

involves automation, making intelligent predictions based on algorithms and various approaches 

aimed to maximize economic returns while preserving resources, and protecting the environment 

(Ojha, Misra, and Raghuwanshi, 2015). The word “smart” according to Miranda et al., (2019) 

relates to the ability of a system to integrate control and actuation tasks in analyzing situations to 

make real-time decisions given available data. Unmanned Aerial Vehicles(UAV), also known as 

drones, are one of the most economically important sectors of precision agriculture as they find 

application in weed detection, soil and field analysis, crop monitoring, nutrient deficiency 

detection, crop spraying, aerial planting, etc. (Maes and Steppe, 2019). Furthermore, the 

application of computer vision technology and machine learning in areas of image analysis and 

prediction, as regards weed, pest, and nutrient deficiency detection, has grown in recent years to 

meet the ever-increasing demand for fast and precise methods of monitoring. When applied to 

drones, they are used to collect data that could be analyzed and used to provide insights to improve 

yield. The widely used techniques for analyzing images include machine learning (K-means, 

Support Vector Machine (SVM), artificial neural networks (ANN), deep learning (DL), etc.), 

wavelet-based filtering, vegetation indices, and regression analysis. Of all the aforementioned 

techniques, deep learning is gaining momentum because of its high performance and precision 

level (Mohanty, Hughes, and Salathé, 2016).  

Deep learning algorithms are mostly theories and hence the implementation of these algorithms 

requires a hardware-software interface known as embedded systems. Embedded systems (e.g. 

Nvidia Jetson TX series, Raspberry Pi, Intel Edison, etc.) are elucidated according to Jha et al. 

(2019) as hardware built systems comprising of memory chips with custom software programmed 
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on it and their applications could be seen in driverless cars (Bojarski et al., 2016), monitoring 

systems (Rao and Sridhar, 2018), weed detection (Vikhram et al., 2018), etc. Furthermore, real-

time inferencing of deep learning algorithms using embedded systems could be carried out either 

on a cloud server or on-board (Hadidi et al., 2018). 

Weeds are unwanted plants which compete with crops for water, light, nutrient, space and also 

increases the risk of pest and disease outbreak on farmland. This has caused adverse effects on 

crop yield, growth, and development. Also, traditional weed control methods which involve 

manual removal of weeds and the use of herbicides on the whole agricultural field is labor-

intensive, a waste of herbicides, and also a source of environmental pollution. Several pieces of 

research have been conducted for detecting weeds using deep learning techniques and smart 

spraying of herbicides using other techniques deployed on embedded systems. According to 

Ferreira et al. (2017), the application of herbicides yields better results if the treatment is targeted 

to the specific class of weeds (grass or broadleaf). Hence, a convolutional neural network (CNN) 

was trained on the Caffe framework to detect broadleaf and grass weeds on soybean farmland. 

Alsalam et al. (2017) recommended the use of deep learning technique for more precise weed 

detection in their study and implemented a UAV that could change its planned path, approach a 

target and perform a specific action such as spraying of herbicides. Vikhram et al. (2018) 

implemented a smartweed detection and herbicide sprayer robot which detected weeds using 

morphological thresholding, erosion, and dilation. The detection algorithm was deployed on a 

raspberry pi 3B, which had a sprayer module attached to it to carry out a selective spray of 

herbicides. 

However, none has been able to carry out a spray of a particular herbicide on a specific class of 

weed and also mount a DL inference-embedded device on a UAV. Hence, taking a leaf from the 

aforementioned reviews, the proposed study focuses on real-time detection of weeds and the 

selective spray of a particular herbicide on a specific class of weed(broadleaf or grass) using deep 

learning algorithms deployed on a raspberry pi 3B and mounted on a UAV. The following section 

describes the problem this research is addressing, point out the significance and the motivations 

behind this study, highlight the limitations and delimitations of this study and briefly discuss the 

approach adopted to conduct this research. 
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1.2 Rationale and Motivation 

The motivation for this study is based on the fact that grass weeds are resistant to herbicides which 

are effective for a broadleaf weed hence the need to develop a smart sprayer that selectively sprays 

herbicides based on the type of weed. 

1.3 Problem Statement 

The spraying of agrochemicals on large farmlands or hard-to-reach areas has proven to be time-

consuming, risky, and detrimental to human health. Also, excessive use of herbicides gives rise to 

waste, due to chemical residues, and emissions to the air. Furthermore, to make for an effective 

weed elimination, the need to treat a specific class of weed with a particular herbicide is imperative 

as suggested by Ferreira et al. (2017). This creates the need for a smartweed detector and selective 

herbicide quadcopter sprayer which sprays specific herbicides on a broadleaf weed and grass weed 

accordingly. 

1.4 Research Questions 

The questions this research sets out to answer are as follows: 

1. How can a weed detection CNN model be trained on a pre-trained ResNet50 model? 

2. Would a CNN model outperform a random forest classifier in weed classification? 

3. What are the procedures for deploying a trained CNN model on a raspberry pi 3B? 

4. What are the procedures for building a quadcopter? 

5. What is the significance of developing a selective herbicide sprayer? 

1.5 Research objectives 

The proposed study aims to develop a smart selective herbicide sprayer.                                                   

The objectives geared towards achieving this aim are: 

 To train a CNN model using a pre-trained residual network(ResNet50) model on 

TensorFlow framework and compare its performance with a random forest (RF) classifier 

 To deploy the trained model on a raspberry pi 3B and incorporate a sprayer module. 

 To build a quadcopter from an already existing quadcopter kit. 

 Mount the Raspberry Pi together with the sprayer module on the quadcopter and test run. 



Page | 4 
 

1.6 Significance of the research 

The selective spray of herbicides would reduce environmental pollution and air emissions (which 

may contain greenhouse gases). The spray of herbicides according to the class of weed eliminate 

weeds thus improving crop yield and giving rise to a corresponding decrease in production cost. 

Also, it would be easy to access hard-to-reach areas, especially in large farms when a UAV is 

being used. Furthermore, it is expected that the proposed project would bring about an increase in 

food production thus alleviating poverty in Africa. Finally, the proposed study, which generally 

involves applying precision agriculture technologies in identifying and selective spraying of weeds 

would make for effective protection of crops in the field. This project could potentially contribute 

to the propulsion of Africa into the 4th industrial revolution.  

1.7 Research methodology 

This section gives the procedures set out throughout the course of the project. A quantitative 

approach is employed to develop a quadcopter which differentiates between two classes of weeds 

using deep learning and sprays herbicides accordingly. Although chapter 3 provides a detailed 

methodology of this study, a summary is given as follows: 

 Preliminary study: To gain insight to the research work, extensive literature review was 

conducted and two research papers were written. The first involved the application of deep 

learning on an embedded device in detecting potassium deficiency in red grape vines. 

While the second involved a review of hardware accelerators in the agricultural domain. 

 Building the quadcopter: A quadcopter kit has been purchased with an emphasis on its 

weight and power specifications. The kit would consist of a lithium-polymer battery, 

brushless motors, electronic speed controllers (ESC), flight controller, Global Positioning 

System (GPS), frame, propellers, receiver and transmitter, and other accessories. These 

components would be assembled and tested.  

 Training the CNN model: Soybean weed dataset which consists of soybean, grass weed, 

and broadleaf weed images has been obtained from a publicly available source, Kaggle. 

They were divided in a ratio of 7:2:1 into training, validation, and test dataset respectively. 

A total of 5349 images with an input shape of 224×224×3 and batch size of 20 has been 

used to train, through transfer learning, a CNN model. The ResNet50 model (winner of the 
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Imagenet Large Scale Visual Recognition Challenge (ILSVR) 2015) is the CNN model 

selected and by applying transfer learning, its last layer bearing the softmax activation 

function has been modified to a 3-neuron layer. The model has been trained on the 

TensorFlow framework for 10 epochs. Also, the datasets has been trained on the random 

forest classifier to evaluate the performance of the CNN model. 

 Weed detection and spraying actuation: The trained model has been converted to the 

TensorFlow Lite format and deployed on a raspberry pi3 using the FileZilla client software. 

Python codes has been developed to access the General Purpose Input/output (GPIO) pins 

of the raspberry pi for a fixed time interval when a grass or broadleaf weed is detected by 

the raspberry pi camera. When a weed is detected, a specific GPIO pin sends voltage 

combined with a 5V from another GPIO pin to turn on a relay which in turn connects the 

spray pump to a 12V DC power source. The spray pump draws herbicide from the tank and 

pumps it through the nozzle. The system comprising the raspberry pi3 and the sprayer 

module have been incorporated on the assembled quadcopter for a final test-run. 

1.8 Delimitation and Limitation 

The proposed study sets out to build a quadcopter from an already existing quadcopter kit. A pre-

trained ResNet50 model will be re-trained on a Tensorflow framework and deployed on a raspberry 

pi 3B to detect broadleaf and grass weeds. A sprayer module has been incorporated to spray 

accordingly.  

1.9 Main contribution from this research 

The main contributions of this research work are listed as follows: 

  A smart herbicide sprayer for the real-time and selective spray of weeds has been 

developed. 

 Publication of two research papers involving the application of DL on an embedded system 

and a review on DL hardware accelerators in agriculture. The references to the research 

papers are as follows: 

o Ukaegbu, U.F, Tartibu L.K, Laseinde T, Okwu M.O, Olayode I.O. (2020). ‘"A deep 

learning algorithm for detection of potassium deficiency in a red grapevine and 

spraying actuation using a raspberry pi3," 2020 International Conference on 
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Artificial Intelligence, Big Data, Computing and Data Communication Systems 

(icABCD), Durban, South Africa, 2020, pp.(1-6), doi: 

10.1109/icABCD49160.2020.9183810. 

o Ukaegbu U.F, Tartibu L.K and Okwu M.O.(2020).’Deep Learning Hardware 

Accelerators for High Performance in Smart Agricultural Systems: An Overview’. 

Proceedings of the 31st Annual South African Institute for Industrial Engineering 

Conference, South Africa Volume: ISSN: 2308-8265,pp (558-570). 

1.10 Research Structure  

This dissertation is structured into five chapters to comprehensively describe the research study 

undertaken. Chapter two provides a review of existing literature that used deep learning for weed 

classification and also executed deep learning algorithms on embedded systems. Also, it discusses 

theories such as the unmanned aerial vehicle, deep learning, computer vision, embedded systems, 

and sprayer module to aid a better understanding of the study. 

Chapter three describes the application of deep learning on an embedded system by detecting 

potassium deficiency on a red grape vine and prompting a spraying actuation. This preliminary 

study gives a summary of the methodology and results obtained. 

Chapter four is concerned with the materials used and methodology implemented in building the 

prototype. It describes how the image datasets were obtained and talked about the software used 

for training the CNN model. It further gives a breakdown of the raspberry pi 3B as well as its setup 

procedures. The calculations involved in selecting and the procedures for assembling the 

quadcopter components. 

Chapter five analyzes and discusses the results obtained. It outlines the accuracies obtained from 

training the CNN model and RF classifier. It also points out some observations from carrying out 

a test-run on the prototype. Chapter six gives a summary of the achievements of this research work 

and possible recommendations for the improvement of the proposed work.  
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Chapter 2-Literature Review 

2.1 Introduction 

This chapter reviews related works focusing on the use of DL for weed control and application of 

DL on embedded systems. It starts by describing the unmanned aerial vehicle with an emphasis on 

the quadcopter. The concepts of deep learning and computer vision have been expounded together 

with an elucidation of the types of embedded systems and sprayer module.  

2.2 The Unmanned Aerial Vehicle (UAV) 

According to Yanushevsky (2011) as well as Chao, Cao, and Chen (2010), an unmanned aerial 

vehicle can be defined as a power-driven and reusable vehicle that flies without a human pilot on-

board and could be navigated using a remote control or flown autonomously with the aid of an 

autopilot. The use of the UAV dates back to the 1950s when the Q-2 was built by Ryan 

Aeronautical and flown for military reconnaissance (Sullivan, 2006). The UAV ranges from nano, 

micro, or small to large scale aerial vehicles, and since it was developed for military purposes, 

developing or maintaining one was quite cost-prohibitive. However, the advent of high power 

density batteries and miniaturized equipment has made the UAV reasonably priced and in high 

demand, as it finds applications in areas of surveillance, photography, rescue mission, weather 

monitoring, precision agriculture, payload deliveries, etc. Also, it has important advantages of 

minimized operational cost, reduced human error as well as its ability to be operated under 

hazardous conditions (Vogeltanz, 2016). Based on its wing types (as shown in Fig. 2.1), the UAV 

can be classified into three categories: 

1. Fixed-wing configuration 

2. Rotary wing configuration 

3. Flapping wing configuration 
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Fig. 2.1: Classification of a UAV 

2.2.1 Fixed Wing Configuration 

The fixed-wing configuration, as shown in Fig. 2.2, are UAVs with stationary wings made up of 

airfoils that create lift when a certain speed is attained (Marinello et al., 2016). Similar to an 

airplane, they have six degrees of freedom and four main control surfaces which according to Zhao 

et al. (2018), are ; 

i. Two ailerons- control the roll angle 

ii. Elevator- controls the pitch angle 

iii. Rudder- controls the yaw angle 

iv. Throttle- controls the motor speed 

They have a longer time of flight and can cover large distances however, they cannot hover over 

a place and are difficult to pilot (Probst, Pedersen and Dakkak-Arnoux, 2017; Hafsal, 2016). 

 

Fig. 2.2: A Typical Fixed Wing UAV (adapted from Rioku, 2018) 

      UAV 

FIXED WING ROTARY WING FLAPPING WINGS 

HELICOPTER QUADCOPTER HEXACOPTER OCTOCOPTER 
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2.2.2 Flapping Wing Configuration 

Flapping wing UAVs try to mimic the mode of flight for insects and birds as could be seen in Fig. 

2.3. They have low power consumption, are cost-effective, and can carry out vertical take-off and 

landing however they have a particularly low payload and endurance capabilities (Zhang, Liu, and 

Han, 2015; Guerrero et al., no date). 

 

Fig. 2.3: A Typical Flapping Wing UAV (adapted from Mackenzie, 2012). 

2.2.3 Rotary Wing Configuration 

Rotary wing UAVs, also known as vertical take-off and landing (VTOL) rotorcrafts and are usually 

used on operations requiring hovering flight. They are more advantageous than their fixed-wing 

counterpart in terms of being less susceptible to turbulence, possessing higher degrees of freedom, 

lower flying speeds, and suitability for indoor usage (Shraim, Awada, and Youness, 2018). They 

are further categorized as helicopter, quadcopter, hexacopter, and octocopter. The helicopter has a 

single set of rotor blades attached to the central mast to produce thrust and an anti-torque tail rotor 

for change in direction (Ghazbi, 2016). It is quite difficult to control because according to Hoang 

and Poon (2013), it suffers from torque issues due to its main rotor. The quadcopter, hexacopter, 

and octocopter are UAVs with four, six, and eight rotors respectively. They are easy to pilot and 

can hover over a place however, a quadcopter is widely used due to its higher power-to-weight 

ratio, maneuverability, and cyclic design(Patel et al., 2013; Garratt et al., 2020). A typical rotary 

wing configuration is shown in Fig. 2.4. 
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Fig. 2.4: A Typical Rotary Wing UAV (adapted from Cannon, 2018) 

2.3 Quadcopter 

Hoang and Poon (2013) defined a quadcopter as an aerial vehicle controlled by the rotational speed 

of four rotors for lift, steering, and stability with VTOL. The first quadcopter, a manned vehicle 

though, was built in 1907 and as research progressed, there came the advent of the unmanned 

quadcopter by the Breguet brothers in the late 20th century (Garratt et al., 2020). The quadcopter 

is structured such that a brushless motor, which drives each rotor, is connected to an ESC which 

in turn receives signals from the flight controller powered by a battery. Based on its rotor 

arrangement relative to its body co-ordinate system, a quadcopter has two main configurations: 

The cross and the plus configurations (shown in Fig. 2.5) with the former considered to be more 

stable than the latter (Zhang et al., 2014).  

 

Fig. 2.5: Configurations of a Quadcopter (adapted from Maurya, Behera and Verma, 2019) 
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The four rotors are arranged in such a way that the two opposite rotors rotate clockwise while the 

other two rotate in the anticlockwise direction. Each rotor produces a torque about the quadcopter's 

center and hence stability is achieved by two pairs of counter-rotating motors which give rise to a 

net moment/torque of zero at its center (Patel et al., 2013). Thus its principle of operation is such 

that by varying the angular velocity of one or more rotors relative to the others, the quadcopter 

carries out the roll, pitch, or yaw movements (Gupte and Conrad, 2012; Gopalakrishnan, 2017).  

2.3.1 Quadcopter Movement 

Pitch up: The quadcopter carries out forward motion when the speed of the front rotor is increased 

while decreasing that of the rear rotor simultaneously with the other two rotors at equal speeds. 

Pitch down: The quadcopter carries backward motion when the speed of the rear rotor is increased 

while decreasing that of the front rotor simultaneously with the other two rotors at equal speeds. 

Roll left: The quadcopter rolls to the left when the left rotor’s thrust is lower than that of the right 

rotor with the front and rear rotors at equals speeds 

Roll right: The quadcopter rolls to the right when the right rotor's thrust is less than that of the left 

with the front and rear rotors at the same speed/thrust. 

Yaw left: A quadcopter yaws to the left when the two rotors which move counter-clockwise are at 

reduced speeds when compared with the rotors rotating clockwise 

 Yaw right: A quadcopter yaws to the right when the two rotors which rotate clockwise are at a 

reduced speed when compared with the other two rotors rotating counter-clockwise. 

Thrust: When all four rotors attain a high speed and are equal, the quadcopter increases in altitude. 

Hover; When all four rotors attain a low speed and are equal, the quadcopter hover or decreases 

in altitude depending on the particular speed. 

Fig. 2.6 illustrates the typical movement of a quadcopter about different axis. 
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Fig. 2.6: Movement of a Quadcopter in Different Axis (adapted from Harsha, Balaji, and 

Kamath, 2014; Reséndiz and Rivas-Araiza, 2016) 

2.3.2 Parts of the Quadcopter 

As shown in Fig. 2.7, a typical quadcopter has the following parts according to Dryden and 

Barbaccia, (2014); Gopalakrishnan, (2017); Rehman et al. (2016); Abbe and Smith (2016); Gao 

2015 and Shivaji et al. (2017): 

i. Frame: It provides a physical structure, houses the electric motors and other components. 

ii. Electric motors: They are two types of motors- brushed and brushless motors. For a 

quadcopter, a brushless motor is preferred due to its high thrust-to-weight ratio. The 

brushless motor spins the propeller which results in lift  

iii. Propellers: They come in different sizes and materials and are measured by diameter and 

pitch in the format, diameter × pitch. Pitch is a measure of how many “travels” the propeller 

undertakes in one revolution while the diameter is the length of the propeller from tip to 

tip. 

iv. Electronic speed controller: These are electric devices that collect PWM (Pulsating Width 

Modulation) signals from the flight controller and sends them to the electric motors thus 

regulating their signals appropriately. 

v. Batteries: The battery supplies direct current (DC) power to the electric motor and all other 

components of the quadcopter. They come in different shapes and sizes, some of which are 
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alkaline, lead-acid, nickel-cadmium, lithium sulphur (Li-S), etc. Lithium polymer batteries 

(especially Li-S) are extensively used due to their high energy density 

 

Fig. 2.7: Selected Parts of a Quadcopter (adapted from Nixon, 2017) 

2.4 Deep Learning 

The application of DL in solving real-life problems has stirred a great deal of recognition with 

significant impacts made in areas such as cancer prognosis (Murtaza et al., 2019), image analysis 

(Aradi, 2020), self-driving cars (Noda et al., 2015), speech recognition (He et al., 2016), natural 

language processing (Hassan and Mahmood, 2018) and prediction of natural disasters (Nevo, 

2019), etc. These advancements were believed to have been initiated by Hinton, Osindero, and 

Tey (Hinton, Osindero, and Teh, 2006) who introduced the concepts of layer-wise greedy-learning 

and deep belief networks. DL's ability to analyze big data, automatically extract features and its 

short testing times have made it an undoubted preference to other conventional machine learning 

methods (Liu et al., 2017). However, it is computationally intensive requiring long training times 

but thanks to the high processing speed and parallelism of DL hardware accelerators which has 

greatly ameliorated this drawback (Ma et al., 2019). 

Deep learning is a subset of machine learning, comprising of multiple processing layers, that 

transforms and learns a representation of data with various features in a hierarchical way 

(Kamilaris and Prenafeta-Boldú, 2018). It is made up of the input, several hidden and the output 

layers with nodes in each layer connected to nodes in the corresponding layer thus mimicking the 
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neuron structure of the human brain (Marcus, 2018). A weighted sum of the input is transformed 

by an activation function which generates non-linear outputs fed as input to the adjacent units of 

the succeeding layer until it reaches the output layer (Saleem and Chishti, 2019). The forward and 

backpropagation procedures are iterated until the weights and biases are optimized and then the 

result of the output layer becomes the solution to the problem. The activation functions mostly 

used are the sigmoid, hyperbolic tangent (tanh), Rectified Leaky Unit (ReLU), and Identity 

functions because they make it easier to compute the loss function required for weight optimization 

(Pillai, 2018; Zhang, Wang and Liu, 2018). The architecture of an artificial neuron, deep learning 

architecture, mathematical equations for the loss function, gradient descent, activation functions 

are shown in Fig. 2.8, Fig. 2.9, and equations 2.1-2.7. 

 

 

 

 

 

Fig. 2.8: Structure of an Artificial Neuron 

Where x1 ,x2, x3 = Input data  

w1, w2, w3 = Weights 

b = Bias 

y = Weighted sum 

z = Output 

 

Fig. 2.9: Deep learning architecture (adapted from Lane et al. 2017) 
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L =  
1

2m
  Ti − Zi 

2

m

i=1

 

Where, Ti = True output of the ith sample, 

 Zi = Estimated output of the ith sample, 

 m = Number of outputs generated. 

Equation 1: Loss Function of a Neural Network 

  

       Equation 2.1 

wi → wi −  γ
dL

dwi
 

bi → bi −  γ
dL

dbi
 

 

         Equation 2.2        

 

        Equation 2.3      

Where  wi = Weight of the ith sample  

     γ = Learning rate 

    bi = Bias of the ith sample 

 

        Equation 2.4  

Sigmoid y =  
1

1 + e−y
 

 

         Equation 2.5 

Tanh y =  
1 − e−2y

1 + e−2y
 

 

         Equation 2.6 

ReLU y =  {0, y} 

 

         Equation 2.7 

Identity y = y          Equation 2.8 

DNN architectures have three classes of learning models and they are: 

 Supervised learning model 

 Unsupervised learning model 

 Semi-supervised learning model 

In supervised learning, the data used during the training procedure of the architecture is fully 

labeled in contrast to unsupervised learning where the architecture extracts relevant information 

from the data which are unlabeled. The semi-supervised learning model combines the 
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functionalities of both the supervised and unsupervised learning models whereby the input is a 

mixture of labeled and unlabeled data. Furthermore, deep learning architectures are of two 

categories: Discriminative architecture which generally supports the supervised learning models, 

and Generative architecture which supports the unsupervised learning models (Mohammadi et al., 

2018). 

2.4.1 Generative Deep Learning Architectures 

a) Autoencoder (AE): This is a neural network that consists of the input, hidden, and output 

layers. In this architecture, input data is transformed using unsupervised learning to an 

abstract form in a lower dimension and then reconstructed to produce output by fine-tuning 

with backpropagation (Shrestha and Mahmood, 2019). Dimension reduction and input 

reconstruction are carried out by encoder and decoder blocks to generate outputs that are 

as similar as possible to the input. AE is advantageous because it facilitates the extraction 

of relevant features and since the learning efficiency is improved as the input data is 

converted to a representation in a lower dimension (Zamini and Montazer, 2018). Denoised 

and Sparsed Autoencoders are variants with improved feature extraction capabilities. 

Denoised AE introduces noise deliberately in its training data while in sparse AE, some 

hidden units are made inactive. Fig. 2.10 below shows the AE architecture adapted from 

Zamini and Montazer (2018).             

                                                                                                                    

Fig. 2.10: Autoencoder architecture 

b) Restricted Boltzmann Machines (RBM): This is a type of artificial neural network 

(ANN) that consists of the visible and hidden layers with each neuron connected to all units 

in the adjacent layer but there is no connectivity within the same layer. This architecture 

uses unsupervised learning to build an RBM structure that probabilistically reconstructs 

the input (Shrestha and Mahmood, 2019). Also, variants of the RBM were proposed to 
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boost dimensionality reduction, collaborative filtering, and feature extraction functions. 

They are the discriminative RBM, conditional RBM, and FE-RBM introduced by 

Larochellle & Bengio (2008), Mnih et al (2012), and Elfwing (2015) respectively. Fig. 2.11 

below shows the RBM architecture adapted from Mu and Zeng (2019). 

 

 Fig. 2.11: Restricted Boltzmann Machines Architecture 

 W represents the weight between the layers 

c) Deep Belief Networks (DBN): This is a kind of ANN (proposed by Geoffrey Hinton) 

designed by stacking several RBMs, consists of the visible layer which accepts the input 

and the hidden layers responsible for extracting features (Mu and Zeng, 2019). With the 

output of a preceding RBM used to train the next RBM layer, the training phases of a DBN 

is carried out in 2 stages: pre-training and fine-tuning stages (Liu, 2017; Pandey and 

Janghel, 2019). In the pre-training stage, the DBN applies an unsupervised learning process 

to extract features from the input data while in the fine-tuning stage, supervised learning 

using the backpropagation algorithm is used to modify the network parameters. Fig. 2.12 

below shows the DBN architecture adapted from Pandey and Janghel (2019). 

 

Fig. 2.12: Deep Belief Network Architecture 
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Where, 

h, x represents the hidden and visible layer 

d) Generative Adversarial Network (GAN): This is a deep neural network (DNN) structure 

with 2 networks: The Generator and Discriminator. The generator produces synthesized 

data derived from a data distribution while the discriminator functions to discriminate 

between the true data distribution and the data from the generator. To attain optimization, 

the GAN is trained so that the generator produces data which is identical to the true 

distribution so much that the discriminator has difficulty in differentiating between the true 

distribution and synthesized data (Amanullah, 2020). Fig. 2.13 shows the structure of 

GAN. 

 

 

 

 

Fig. 2.13: Generative Adversarial Network Structure 

2.4.2 Discriminative Deep Learning Architectures 

Recurrent Neural Network(RNN): This is a kind of DNN consisting of the input, hidden and 

output layers applied in language modeling, machine translation, speech recognition, etc (Mu 

and Zeng,2019; Young et al., 2018).]. It is used to model sequential information and possesses 

an internal memory that captures information about previous computations as shown in Fig 

2.14. It takes in two inputs (the present and recent past inputs) and applies the backpropagation 

through time(BPTT) algorithm in training the network such that the output at time step 't' is 

dependent on the output at time step 't-1'(Tang et al., 2018; Pandey and Janghel, 2019) 
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 Where, 

𝑊ℎ, 𝑊𝑦 , 𝑊𝑥 represents the hidden weight, output weight, and input weight 

 𝑥, ℎ, 𝑦 represents the input, hidden, and output values.  

a) Long Short-Term Memory (LSTM): This is a special variant of the RNN which was 

proposed to make up for the drawback in RNN such as sensitivity to change in parameters, 

vanishing, and exploding gradient. It consists of the input, hidden as well as output layers 

and used for applications involving long dependencies in time such as handwriting 

generation, video descriptor, etc. The hidden layer of the LSTM comprises the memory 

cell (which captures information for a certain time-frame) and gates (input, forget, and 

output gates). The input gate determines the new information to be stored in the LSTM 

cell, the forget gate decides on which information should be forgotten and the output gate 

controls the flow of information to the network (Sengupta, S. et al. 2020). Fig. 2.15  shows 

the hidden layer of the LSTM adapted from Mu and Zeng (2019). 

 

     Fig. 2.15: The Long-Short Memory Hidden Layer 

      Where, 

x represents the input value 

C represents the cell value 

H represents the output value of the hidden layer 

𝜎 represents the sigmoid function 

 



Page | 20 
 

b) Convolutional Neural Network (CNN): This is a class of DNN inspired by the human 

visual mechanism and capable of extracting hierarchical features from a 2-dimensional 

input (image, text, or audio signal) using a sequence of layers. It consists of the input, 

convolutional, pooling, fully connected, and output layers. The convolutional layer consists 

of a set of kernels (arrays of weights) that extract features (edges, contours, strokes, 

textures, orientation, color, etc.) from input data. These kernels are convoluted on the 

image by computing the sum of their dot products to generate feature maps. An activation 

function (most commonly the ReLU) is applied to introduce non-linearity and prevent 

network saturation (Pouyanfar, Chen, and Shyu, 2017). The pooling layer, which is either 

a max or average pooling function, reduces the spatial dimensions of the feature map and 

computation load in the network while retaining relevant information (Huang et al., 2018). 

Thereafter, the fully connected layer performs the classification tasks to produce a list of 

probable outputs and then passed through a softmax function that selects the output with 

the highest probability as the prediction for a given input. Similar to a conventional neural 

network, the goal of a CNN is to optimize the loss function in a network and it achieves 

this by applying a backpropagation algorithm via gradient descent to train the kernels and 

modify the weights. Fig. 2.16 shows the architecture of the CNN while Fig. 2.17 illustrates 

the convolution and max-pooling processes adapted from Park et al. (2019)  

 

 

Fig. 2.16: CNN Architecture (adapted from Sengupta et al., 2020) 
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 Fig. 2.17: Illustration of the convolution and max-pooling processes in CNN 

2.5 Transfer Learning 

The CNN is widely used for precision agriculture and computer vision applications involving 

image recognition, classification, and detection due to its sparse interaction, equivalent 

representation as well as weight capabilities (Pouyanfar, Chen and Shyu, 2017). It has been proven 

to yield better results than other DNN classes especially when transfer learning is applied 

(Pouyanfar et al., 2018; Kamilaris and Prenafeta-Boldú, 2018).  
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According to Pan and Yang (2010), transfer learning can be defined as ‘the ability of a system to 

recognize and apply knowledge and skills learned in previous tasks to new domains which share 

some commonalities'. It involves training deep neural networks by utilizing weights of pre-trained 

models in a situation where there is a deficit in training data to improve model performance and 

avoid over-fitting.  There are two transfer learning approaches and they include deep feature 

extraction and fine-tuning (Coulibaly et al., 2019). In deep feature extraction, features of a pre-

trained network are used to train input data of a new dataset while in fine-tuning, the top layers of 

the pre-trained model are fixed but the final layer is modified to learn the properties of the new 

datasets. Examples of pre-trained CNN models are ResNet (He et al., 2016), VGGNet (Simonyan 

and Zisserman, 2014), AlexNet (Krizhevsky, Sutskever, and Hinton, 2012), MobileNet (Howard 

et al., 2017), GoogleNet (Szegedy et al., 2015), etc. Also, deep learning architectures are 

implemented on frameworks such as Tensorflow (Allaire et al., 2016), Theano (Al-Rfou et al., 

2016), Keras (Chollet et al., 2015), Caffe (Jia et al.,2014), Pytorch (Paszke et al., 2017), Microsoft 

Cognitive Toolkit (Yu et al., 2014), etc. 

2.6 Computer Vision 

Several works of literature (Krizhevsky, Sutskever, and Hinton, 2012; Szegedy et al., 2015) have 

shown the competence of DL in solving computer vision problems as it outperforms other machine 

learning classifiers. Tremendous advances in image recognition, classification, and detection have 

been brought about by combining DL and computer vision with driverless cars and autonomous 

aerial vehicles as vivid examples (Ding et al., 2020). The agricultural domain is not left out as 

several vision-based systems enabled with deep learning are used for identification and 

classification of pests (Cheng et al., 2017), diseases (Ferentinos, 2018), and weed (Dos Santos 

Ferreira, 2017). 

Computer vision can be defined as the branch of automation which enables computer systems to 

identify, see, and understand the physical world similar to the human vision. It also develops 

methods for the task of getting information from images. Computer vision technology can be 

classified into three stages: Low-level processing, intermediate-level processing, and high-level 

processing  (Smith et al., 1979; Baratella and Gomes De Melo, 2017; Bhargava and Bansal, 2018; 

Taheri-garavand et al., 2019). 

https://openreview.net/profile?email=adam.paszke%40gmail.com
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i. Low-level processing: Image recognition and pre-processing take place in this 

stage. Images are captured using devices such as video cameras, scanners, color 

spectrum analysis, thermal sensors, etc., and then pre-processed by resizing, noise 

removal using filters as well as correcting geometrical distortion. 

ii. Intermediate-level processing: In this level, segmentation and feature extraction 

operations are carried out. Segmentation separates an image into distinct 

components. The two commonly used segmentation techniques are thresholding 

(segmentation by region) and clustering (segmentation by contours). Thresholding 

involves segmenting an image by partitioning its grayscale format into several 

regions. The pixel of the image is then classified into interest and background area 

each having a distinct gray level. The Otsu method is an example of the 

thresholding technique and it generates a gray level histogram that optimizes 

threshold from a grayscale image. The thresholding technique is disadvantageous 

as it requires more computation time and this makes the clustering technique a 

better option. In the clustering technique, however, pixels with similar 

characteristics form a cluster and are classified into a hierarchical and partition-

based method. Clustering is of two types: soft clustering and hard clustering. 

Feature extraction involves extracting color, textural, and morphological features 

from an image with aim of enhancing the rate of recognizing the input. 

iii. High-level processing: In this stage, information extracted from the acquired 

images are used to make decisions. These decisions are made based on features 

noticed or by applying machine learning techniques such as SVM, K-Nearest 

Neighbour (KNN), ANN, DNN, etc. for a more effective interpretation. 

2.6.1 Types of Sensors in Computer Vision (McCarthy, Hancock and Raine, 2010) 

i. Monocolor Vision: This is the simplest form of sensing whereby a scene visible to 

the human eye is captured with an RGB (Red Green Blue) camera. Here, objects 

extracted are easily identifiable by humans. 

ii. Stereo Vision & 3D Structure: This type of sensor is used to monitor plant 

parameters such as height, leaf shape, leaf area, etc., and also differentiate between 

plant species. 
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iii. Multi-spectral Imaging: This type of sensor simplifies imaging analysis by 

imaging a part of the electromagnetic spectrum which shows relevant features in 

contrast to the broad visible band produced by an ordinary RGB camera. When 

using the electromagnetic spectrum, plant materials can be differentiated based on 

color (visible), cellular structure (near-infrared), thermal (mid-infrared), or 

hardness (X-ray) properties. It provides information invisible to humans. 

iv. Hyperspectral Imaging: This is a combination of spectroscopy and imaging 

techniques used to generate spectral information for each pixel of a spatial image. 

v. Range sensing: These are sensors that require variations in ambient lighting to 

function. It provides information about the canopy of plants. 

2.7 Embedded Systems 

The application of deep learning on embedded systems is a step in the ongoing technological 

revolution and this could be evident in the development of autonomous cars, drones, smart homes, 

cities, intelligent transportation, healthcare, video surveillance, etc. These embedded systems are 

hardware-software interfaces and they can be used to inference deep learning models. Example of 

embedded systems are: 

i. Raspberry Pi 

ii. Nvidia Jetson Series 

iii. Intel Edison 

iv. Intel UP 

v. Ordroid U3+, etc. 

2.7.1 Raspberry Pi 

This is a credit-card-like single-board computer that makes use of the open-source Linux operating 

system and is used to provide access to the internet and connect automation systems (Suriansyah, 

Sukoco, and Solahudin, 2016). It was initially developed by the raspberry pi foundation in the 

United Kingdom to assist students in learning basic programming skills. It has evolved through 

several models since its first release in 2012 with significant improvements being noticed in each 

model released. The available models are model A, model B, model B+, model 2B, model zero, 

model zero W, model 3B, model 3B+, model 4B(2GB), and model 4B(4GB) with a typical 
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example shown in Fig. 2.18 (Leroux et al., 2017). Table 2.1 below shows some selected parameters 

for the raspberry pi. 

Table 2.1: Selected Parameters for the Raspberry Pi (Hattersley, 2018) 

Category Model Dimension CPU GPU Memory 

Size 

Ethernet Onboard 

WIFI & 

Bluetooth 

 

 

 

Raspberry 

Pi 1  

 

B 85.5 × 

56.5mm 

700MHz 

ARM 11 

Processor 

250MHz 

Broadcom 

VideoCore 

4 

512MB Present Absent 

A 85.5 × 

56.5mm 

700MHz 

ARM 11 

Processor 

250MHz 

Broadcom 

VideoCore 

4 

512MB Absent Absent 

B+ 85.5 × 

56.5mm 

700MHz 

ARM 11 

Processor 

250MHz 

Broadcom 

VideoCore 

4 

512MB Present Absent 

A+ 65 × 

56.5mm 

700MHz 

ARM 11 

Processor 

250MHz 

Broadcom 

Video core 

4 

512MB Absent Absent 

Raspberry 

Pi 2 

B 85 

×56.5mm 

900MHz 

quad-

core 

ARM 

Cortex-

A7 

250MHz 

Broadcom 

Video core 

4 

1GB Present Absent 

Raspberry 

Pi Zero 

Zero 65 × 30mm 1 GHz 

ARM 11 

250MHz 

Broadcom 

512MB Absent Present 
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VideoCore 

4 

W 65 × 30mm 1 GHz 

ARM 11 

Absent 512MB Absent Present 

 

 

 

 

Raspberry 

Pi 3 

B 85 × 56mm 1.2GHz 

64 bit 

Quad-

Core  

ARM 

Cortex-

A53 

400MHz 

Broadcom 

VideoCore 

4 

1GB Present Present 

A+ 67 × 56mm 1.4GHz 

64 bit 

Quad-

Core 

ARM 

Cortex-

A53 

400MHz 

Broadcom 

VideoCore 

4 

512MB Absent Present 

B 82 × 56mm 1.4GHz 

64 bit 

Quad-

Core 

ARM 

Cortex-

A53  

400MHz 

Broadcom 

VideoCore 

4 

1GB Present Present 

Raspberry 

Pi 4 

B 88 × 58mm 1.5GHz 

64 bit 

Quadcore 

ARM 

Cortex-

A72 

400MHz 

Broadcom 

Video core 

4 

2GB Present Present 
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B 85 × 56mm 1.5GHz 

64 bit 

Quadcore 

ARM 

Cortex-

A72 

400MHz 

Broadcom 

Video core 

4 

4GB Present Present 

 

The raspberry pi according to Gondchawar and Kawitkar (2016) generally consists of: 

 Universal Serial Bus (USB) Ports-Used for attaching peripherals such as the keyboard, 

mouse, webcam, etc. 

 Secure Digital (SD) Card Slot- It houses the SD card where the operating system and data 

is stored. 

 General Purpose Input Output (GPIO) Pins- Used to control external devices 

 High Definition Multimedia Interface (HDMI) port- Used to connect to a monitor or 

television 

 Audio Jack Port- Used to connect to speakers 

 Micro USB Power Port- Used to connect to the power source 

 Ethernet Port: Used to establish an internet connection from an external source.  

 Camera Serial Interface (CSI) - This is the interface where the PiCamera is attached. 

 Display Serial Interface (DSI) - This is used to connect a liquid crystal display (LCD) 

panel. 
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Fig. 2.18: Typical Parts of a Raspberry Pi 3B Model (adapted from Sam, 2016) 

2.7.2 Nvidia Jetson Series 

The Nvidia Jetson (shown in Figs. 2.19, 2.20, 2.21) is a powerful board computer and has similar 

applications as the raspberry pi but has unique features that make it the fastest in terms of speed 

among other embedded systems. A few of such features according to Mittal, (2019) are: 

 Its low weight and power consumption. 

 Its high performance per watt 

 It’s Compute Unified Device Architecture (CUDA)-programmability which facilitates 

efficient DNN inferencing. 

Table 2.2 below gives an overview of the existing Nvidia Jetson series and some selected 

parameters 

Table 2.2: Selected Parameters for the Nvidia Jetson Series (Leroux et al., 2017; Kim et al., 

2018) 

Nvidia 

Jetson 

Model 

Size CPU GPU Memory Storage Power 

Under 

Load 

TK1 28nm ‘4 plus-1’ 

2.32GHz 

192-Core 

Kepler 

2GB 16GB 10W 
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ARM 

Quad-Core 

Cortex- 

A15  

TX1 20nm 1.73GHz 

ARM 

Quadcore 

Cortex-

A57  

256-Core 

Maxwell @ 

998MHz 

4GB 16GB 1-15W 

TX2 16nm 2GHz 

ARM 

Quadcore 

Cortex- 

A57 + 

Nvidia 

Denver2 

Dual-Core 

@ 2GHz 

256-Core 

Pascal @ 

1300MHz 

8GB 32GB 7.5-15W 

 

 

 

Fig. 2.19: A typical Nvidia Jetson TK1 (adapted from Howard, 2014) 
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Fig. 2.20: A Typical Nvidia Jetson TX1 (adapted from Franklin, 2015) 

 

 

 

Fig. 2.21: A Typical Nvidia Jetson TX2 (adapted from Franklin, 2017) 

Some Selected parameters of other embedded systems are shown in table 2.3 below while Fig. 

2.22 and Fig. 2.23 shows their typical appearance: 

 

Fig. 2.22: A Typical Intel Edison (adapted from Tameni, 2015) 
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Fig. 2.23: A Typical Intel UP Core (adapted from Allan, 2017) 

Table 2.3: Selected Parameters for other Embedded Systems (Leroux et al., 2017; Mittal, 

2019) 

2.8 Sprayer Module 

The use of agricultural drones in spraying chemicals across farms is widespread due to its speed 

and effectiveness of the spraying process. The Sprayer module is a system that functions to spray 

agricultural inputs such as fertilizers, pesticides, and herbicides on plants. It may consist of the 

following: 

 Nozzle- for spraying the agricultural input;  

 Tank- to store the liquid for spraying;  

Embedded 

System 

Dimension  CPU GPU RAM Storage 

Intel Edison 35.5 × 25mm  Dual-Core, 

dual 

threaded 

Intel Atom 

CPU @ 

500MHz 

Absent 1GB 4GB  

Intel UP   Intel Atom 

X5-Z8350 

Quad-Core 

, 64 bits @ 

1.92GHz 

Intel HD 

400 

Graphics 

@500MHz 

4GB 16/32/64GB 
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 Pump- to pump the liquid from the tank to the nozzle;  

 Pressure gauge- to prevent the agricultural input from dripping;  

 Controller- controls the speed of the pump. 

The rate at which fertilizers/pesticides are dispensed by the nozzle could be controlled either 

through variable-rate spraying or PWM spraying (Escola 2013; Dryden and Barbaccia, 2014). 

Other types of sprayers are the electrostatic sprayer and knapsack-type electric sprayer (Zhang et 

al., 2017; Qin et al., 2018). The variable rate sprayer employs the use of an electromagnetic high-

frequency solenoid valve which varies the flow rate through the nozzle based on the amount of 

signal the controller supplies. The pulse width modulation is regulated by a PWM controller which 

generates pulse width signals to control the speed of the pump based on control signals from a data 

acquisition device. 

2.9 Related Works 

Most research works in literature as regards weed control were concerned only with detection/ 

classification using traditional machine learning and deep learning algorithms. The traditional 

machine learning methods include SVM (Akbarzadeh et al., 2018), ANN (Bakhshipour et al., 

2017), RF (Lottes et al., 2016), naïve Bayesian (De Rainville, et al., 2014), Bayesian classifier 

(Garci and Pajares, 2017), Adaboost(Ahmad et al., 2018), KNN (Kazmi et al., 2015), threshold-

based methods (Liu, Lee, and Saunders, 2014), etc. As deep learning methods outperform other 

machine learning algorithms, a few works which applied deep learning for detection/classification 

tasks would be reviewed. 

Potena et al. (2017) presented an approach for detecting weeds in real-time with an unmanned 

ground vehicle which involved applying input RGB+ near-infrared (NIR) images to two CNN 

models. The first model was a SNet lightweight CNN which was used to extract the relevant pixels 

that represent the vegetation. The second CNN model selected a subset of original images that 

contained the most relevant features to boost the manual labeling process without the classification 

performance being compromised. Andrea et al. (2017) also developed an algorithm for classifying 

weeds from maize plants. The datasets obtained were trained on four CNN architectures (LeNet, 

AlexNet, CNet, and SNet) and the CNet proffered the best training accuracy of about 94%. The 

authors also proved that reducing the number of CNN filter layers and training the datasets on a 
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Graphical Processing Unit (GPU) would reduce the classification time. Furthermore, Milioto, 

Lottes, and Slachnoir, (2017) developed a system for identifying weeds from sugar beet plants. 

The authors trained the datasets with a custom CNN model consisting of three convolutional layers 

on a low-cost Nvidia GeForce GTX 940MX. They achieved a testing accuracy of about 97% for 

datasets of plants in an early growth stage and 89% for datasets of plants in a more advanced 

growth stage. Dos Santos Ferreira et al. (2017) trained a CNN model pretrained on an AlexNet 

architecture using the CaffeNet framework to detect two classes of weeds (broadleaf and grass) in 

a soybean field. Their results were compared with and were seen to outperform the SVM, 

AdaBoost as well as Random forest methods with an accuracy of 98%.  

Computer vision techniques could also be deployed on embedded systems but for a more precise 

detection task, Alsalam et al. (2017) recommended the use of deep learning techniques in their 

work. He developed a quadcopter controlled using computer vision to detect weed on-board and 

approach the detected weed to perform a specific action such as the application of herbicides. An 

embedded system, Ordroid U3+ was used to process the images obtained from the on-board 

camera to check if weed was detected and also send information about the weed position to the 

pixhawk autopilot for navigation. The pixhawk autopilot guides the UAV to the new location of 

the weed, descends to a lower height, sprays herbicides, and then continues to the next waypoint 

thereafter. Also, Vikhram (2018) developed a smartweed detector and herbicide sprayer robot for 

an E. Ragi plant which carried out weed detection using computer vision techniques 

(morphological thresholding, erosion, and dilation). The robot was designed in such a way that 

weed images captured by a picamera were processed with computer vision algorithms written in 

python and deployed on a raspberry pi 3. A motor driver (L293D integrated circuit) was used as a 

bridge between the robot wheel and the spray pump motor with the raspberry pi. Such that when 

weed was detected, the spray pump was actuated to spray herbicides for four seconds, and if 

otherwise, the robot wheel moves for four seconds. Some weed misclassifications were observed 

by the author hence recommended the need for better classification methods. 

The proliferation of embedding intelligence on embedded devices has given rise to diverse 

applications involving deep learning. Also, real-time execution operations of deep learning models 

on embedded systems have received a lot of attention in recent years. However, while executing 

deep learning models on embedded systems, constraints such as memory, energy/power 
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consumption, and computation must be taken into account (Alippi et al., 2018). Deep learning 

models generally require a large number of computational resources to run and thus expends more 

power, occupies more memory with increased inference times. Furthermore, the embedded 

systems are usually capacity constrained in terms of memory and computation speed to handle 

most computational workloads (Dey et al., 2019). Several techniques have been put forward to 

reduce computational load, memory size, and power consumption of deep learning models. A well-

known approach for accelerating DNN inference called Pruning/model compression involves 

compressing the deep learning model with the assumption that some structures and representation 

in the model are redundant (Bhattacharya et al., 2017;  Han et al., 2016; Howard et al., 2017). 

However, this technique comes with a repercussion in terms of accuracy loss. Some pieces of 

literature proposed cloud computing such that some computations should be offloaded to a cloud 

server but this is seen to have a downside due to privacy constraints and unreliability of network 

connection (Kang et al., 2017; Teerapittayanon, Mcdanel, and Kung, 2017) (Taylor et al., 2018). 

Hinton, Vinyals, and Dean (2015) proposed the knowledge distillation approach whereby a 

'student' (small) network is trained to replicate the output of a larger network known as the 'teacher' 

network hence knowledge is transferred from the teacher to the student network. This method 

however has issues of accuracy loss. Down-sampling of input images which involves reducing the 

image size was investigated by Lammie et al. (2019) and this boosted the real-time performance 

of DNN although with a slight decrease in validation accuracy which is a reasonable trade-off. 

While the search for an ideal approach to boost embedded system performance continues, GPUs, 

FPGAs (Field Programmable Gate Array) and Application Specific integrated circuits (ASICs) 

proffer good results while the other aforementioned approaches would also produce good results 

if their drawbacks are effectively managed. 

Graphical processing units are specialized flexible electronic chips comprising multi-core 

processors that carry out parallel processing of data and perform mathematical operations at high 

speed. Its high processing speed and easy programmability makes it the most commonly used 

accelerator for training/inferencing deep learning models. Generally, GPUs are capable of 

performing millions of computations in the shortest possible time but have the disadvantage of not 

being energy efficient. However, the embedded GPUs by Nvidia such as the Jetson TX series are 

more power-efficient(requiring low power) but with a lower processing capacity than conventional 
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GPUs (Nikam, 2018). Examples of GPUs are the Nvidia-DGX series, Nvidia-AI GPU series, 

Nvidia-HGX server framework, Nvidia-Drive, Nvidia Jetson series.  

Field programmable gate arrays are reconfigurable integrated circuits that can be reprogrammed 

an infinite number of times to accelerate computationally intensive tasks (Véstias, 2020). They are 

known for their good processing capabilities and are more energy-efficient than GPUs. They are 

however not widely used for accelerating computations because programming an FPGA requires 

expertise. Also, apart from being not easily programmable, FPGAs have a long synthesis time for 

complex designs. Examples of FPGAs are Spartan-6, Microsoft's project brain wave, Stratix-10, 

Stratix-IV, Zynq-7000, VirtexII-600, Virtex-7, Cyclone-IV, etc.   

Application-specific integrated circuits are specialized integrated circuits designed to carry out 

specific algorithms such as the multiply and accumulate (MAC) operations for convolutional 

neural networks. They offer high efficiency, high processing speed, with easily programmable 

logic, and are more cost-effective than FPGAs (Misra, 2019). However, because they are design-

specific algorithms, a slight change in the deep learning model would render the ASIC redundant 

(Nikam, 2018). Common examples of the ASICs are the Intel Movidius Neural Compute 

Stick(NCS), Google's Tensor Processing Unit(TPU), Snapdragon series 6, Krin 900 series, Ascend 

910, etc. 

GPUs, FPGAs, and ASICs are well suited for DNN computational tasks due to their high speed of 

processing and parallelism however, their presence in embedded systems are quite limited. A few 

instances of literature concerned with accelerating DNN models on GPUs, FPGAs, and ASICs 

would be reviewed below. Ukaegbu, Tartibu, and Okwu (2020) carried out an investigation on the 

impact of model optimization techniques with an emphasis on DL hardware accelerators being 

used in the agricultural domain and reviewed research works of literature published between 2017 

and 2020. From the study conducted, it was evident that GPUs were the most prominent for 

acceleration DL models. Also, it was discovered that the application of energy-efficient hardware 

accelerators ( such as FPGAs, ASICs, embedded GPUs) especially for real-time agricultural 

applications is still in its nascent stages as only a handful of research works have proposed such 

ideas. Furthermore, real-time practicability of DL models in areas of monitoring, pest and disease 

control, and weed control would be a formidable avenue for improving food production. It was 

observed that reduced training and inference runtimes were achieved through hardware 
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acceleration but recommended that combining hardware acceleration with other optimization 

techniques such as pruning, quantization, etc., would further reduce training/inference time. Sa et 

al. (2018) presented a technique for classifying weeds using multispectral images over a field with 

varying herbicide levels obtained by a micro aerial vehicle (MAV). Only crop, only weeds, both 

crops and weeds were the three kinds of image dataset obtained and these were sent to the ground 

station through the MAV at a frequency of 1Hz for processing. Semantic segmentation was carried 

out by a SegNet model on a modified Caffe framework using Nvidia's Titan X GPU module on a 

desktop computer for about 40 000 iterations which lasted for 12 hours. Dryman et al. (2017) 

developed a model pretrained on the DetectNet (a combination of a modified GoogleNet 

architecture and a clustering function) with 18 541 weed annotations on an Nvidia Titan X GPU. 

He obtained a precision of about 87% and a recall of about 43% despite having an occlusion of the 

cereal crop and weeds. Tang et al. (2017) proposed a method for identifying weeds in a soybean 

field by combining K-means unsupervised learning and CNN. The K-means clustering algorithm 

was used as a pre-training process to learn the weights of the network thus reducing errors. 820 

images were trained on the K-means pre-trained CNN model using a dual-core @ 2.5GHz CPU 

and testing accuracy of about 93% was achieved which is 1.82 % more than that obtained when 

just a CNN weight initialization method is used. Lammie et al. (2019) in a bid to reduce high 

power consumption that is associated with accelerating DNN models on a GPU investigated the 

use of FPGA- accelerated DNN. VGG-16, DenseNet, and Wide Residual Network (WRN) were 

trained using an Intel DE1-Soc FPGA development board on an open-source framework using a 

modified version of Deep Weeds (known as DeepWeedX). The results obtained were compared 

with some models trained on an Nvidia Titan V GPU and AMD Ryzen 2700X@4.10GHz CPU. 

Based on his results, the inference times and power requirements for the three models were much 

lower on the FPGA when compared to its GPU and CPU counterparts. In a bid to develop an 

artificially intelligent recognition system on a low-power embedded system, Li and Yang (2020) 

developed a system that detects cotton pests. A CNN model was used to extract the features trained 

by the triplet loss and then implemented on a PYNQ-Z2 development board which consists of an 

Advanced RISC Machine(ARM) and FPGA. Even though a limited amount of dataset was used, 

a testing accuracy of above 95% was obtained with an inference runtime of 2FPS. The authors 

recommended that parameter quantization and further parallelism could be employed to improve 

inference speed. An Internet-of-things(IoT) device, powered by solar energy, for detecting codling 
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moth in apple orchards was developed by Brunelli et al. (2019). The insect datasets obtained were 

utilized to train through transfer learning, a pre-trained VGG-16 model on the TensorFlow 

framework for 10epochs. The trained model, with a classification accuracy of about 81%, was 

converted to a graph model and deployed on a Movidius compute stick for accelerated inferencing. 

The IoT device functioned to preprocess images of insects on the raspberry pi3, carry out 

prediction using the Movidius compute stick and notify the farmer, using a Long-Range Wide 

Area Network(LoRaWAN) protocol, when a codling moth was detected. A system was proposed 

by Shadrin et al. (2019)  for detecting seed germination. The datasets collected were trained on a 

custom CNN, made up of 2 convolutional and 2 fully connected layers, for 50 epochs and a 

validation accuracy of 97% was recorded. The trained model was deployed on both a raspberry pi 

accelerated with a Movidius neural compute stick and a desktop GPU( Geforce GTX 1050Ti). 

Although the raspberry pi had a slower running speed of 4.5FPS, it is portable and its power 

consumption was significantly lower(2.5watts) than that of the desktop GPU(24.01watts). 

 To the best of the author's knowledge, no literature was found which executed deep learning 

models in real-time on embedded systems incorporated on a UAV applied for (weed control) 

agricultural purposes. The only work which seems forthcoming is that by Chechlinski, 

Siemiatkowska, and Majewski (2019) who proposes to develop a weeding machine to be mounted 

on a tractor with a weeding tool to be controlled by segmentation output from a custom CNN on a 

raspberry pi3B+ to be carried out in 2020. However, outside the agricultural domain, there are 

some examples of literature where deep learning was deployed for several applications. Manderson 

et al. (2018) developed a vision-based controller that guides an aqua robot to swim near coral reefs 

avoiding collisions and coral-free areas. He made use of a ResNet-18 architecture which takes as 

input the image data and makes decisions as regards the relative steering angles of the robot. The 

CNN architecture was deployed on an Nvidia Jetson TX2 which processed the image at 10Hz with 

an accuracy of 41% for classification. Gu et al. (2018) also developed a tennis ball collector that 

detected tennis balls with a DNN technique known as YOLO (You Only Look Once). The tennis 

collector carried out path-planning to collect the ball using the 'pointer network' algorithm thus 

solving the 'traveling salesman problem'. These algorithms were deployed on an Nvidia Jetson 

TX1 and the results obtained were evident that the robot was able to recognize the ball and perform 

path-planning efficiently in getting the ball. Finally, Bechlel et al. (2018) built a low-cost 

autonomous car known as the DeePicar which operates in such a way that input image from a 
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camera is used to generate steering angle value as an output in real-time thus navigating the car. It 

makes use of a CNN architecture with five convolutional networks and four fully connected layers 

(same as that used in Nvidia’s DAVE-2 driverless car). The CNN architecture was used to train 

data on recorded time-stamped videos and control commands with an Nvidia Titan Xp GPU. The 

trained network was then deployed on a raspberry pi 3 and operates such that image frames from 

the web camera are processed by the network to produce steering angle output which is converted 

into PWM values to control the car's steering motor. 

2.10 Conclusion 

Overall, the studies presented in this chapter highlighted the need to implement deep learning 

algorithms on an embedded system for weed control. This chapter discussed the unmanned aerial 

vehicle, deep learning techniques, and computer vision. It also explained the types of embedded 

systems and sprayer module. Finally, a review of literature, concerning weed 

identification/classification using deep learning techniques and execution of deep learning 

algorithms on embedded systems for real-time applications, was carried out. The succeeding 

chapter would discuss the preliminary study conducted to gain insight into this research work 
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Chapter 3 - Application of Deep Learning for potassium deficiency detection 

3.1 Introduction  

This study described the application of artificial intelligence on an embedded system. It involved 

the application of the DL algorithm in detecting potassium deficiency in a red grapevine. A CNN 

model, which was retrained on the ResNet50, was deployed on a raspberry pi3 and a spraying 

action was prompted by the GPIO pin being activated to light up a Light Emitting Diode (LED). 

3.2 Significance of this preliminary study 

This study is significant based on the fact that grapevine contributes to about 40% of South Africa's 

overall export earnings. It is also because the adverse effect of nutrient deficiency could be 

alleviated by prompt detection using deep learning techniques. 

3.3 Objective of this preliminary study 

The objectives of the study were: 

 To train a ResNet-50 model and evaluate its performance using an SVM model 

 To deploy the CNN model on a raspberry pi and test for spraying actuation. 

3.4 Methodology 

3.4.1 Acquisition of dataset and training of the model 

The red grapevine image datasets were provided by Rangel et al. (2016). They consisted of 50 

images made up of healthy and potassium deficient leaves for six varieties of the red grapevine. 

They were divided in a ratio of 6:2:2 into training, validation, and test dataset. Thereafter, the 

training data was used to retrain, through transfer learning, a pre-trained ResNet50 model on the 

Keras framework on top of TensorFlow using a 4GB RAM CPU Intel core B160 processor for 5 

iterations. Furthermore, the image datasets were also divided in a ratio of 7:3 into training and test 

data to train the SVM classifier on features initially extracted using the histogram of oriented 

gradients (HOG). Fig. 3.1 and Fig. 3.2 show an example of the image dataset and the flowchart of 

the methodology respectively adapted from Ukaegbu et al. (2020).  
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Fig. 3.1: Example of Image dataset made up potassium deficient and healthy red grape leaf 

 

Fig. 3.2: Flowchart of the Methodology 

3.4.2 Principle of operation 

This system was structured such that the DL algorithm deployed on the raspberry pi3 analyzed the 

video stream by the pi camera for features of potassium deficiency. When a potassium deficient 

leaf was detected, GPIO pin 7 was activated to light up an LED for 3 seconds otherwise, no GPIO 

pin was be activated. Programming codes written in the python language were used to access the 

deployed CNN model, link the video stream to the deployed model, and regulate the timing of the 

LED. Fig. 3.3 gives an illustration of the working principle adapted from Ukaegbu et al. (2020). 



Page | 41 
 

 

 

Fig. 3.3: Block diagram for detection and actuation 

3.5 Results 

The image datasets with an input shape of 224×224×3 generated 2048 feature maps when retrained 

on the ResNet-50 model. Training, validation, and testing accuracies of 89%, 81%, and 80% 

respectively were obtained. Also, training and validation losses of 0.2205 and 0.4720 were 

obtained respectively which depicted that the model learned the features well. In contrast, an 

accuracy of 66.7% was obtained from the SVM classifier. The CNN model, which was the better 

performing model, was deployed onto the raspberry pi with the aid of the FileZilla Client software. 

An LED was lit when the image of a potassium deficient leaf was brought close to the pi camera. 

Fig. 3.4 and Fig. 3.5 shows the graphs of the training and validation accuracies as well as the 

losses. 

 

Fig. 3.4: Graph of Accuracy versus Epoch 
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Fig. 3.5: Graph of Loss versus Epoch 

In summary, this research study confirmed the fact that DL algorithms surpass other conventional 

machine learning models, especially in image classification tasks. It also acknowledged that the 

limited image dataset was a challenge as it affected the model accuracy. Finally, a prospect of 

incorporating a sprayer module instead of the LED used in this study. Also, mounting the proposed 

smart sprayer module on a ground robot or unmanned aerial vehicle for the real-time detection and 

spraying of fertilizers was envisaged 

3.6 Conclusion 

This preliminary study described and developed a deep learning-based potassium deficiency 

detector and triggered a prompt for spraying actuation. Although it was evident that limited image 

datasets posed a serious challenge as regards the accuracy of the CNN model, this work envisages 

solving the problem of poor harvest due to potassium deficiency in grape vineyards. Potential 

future work could consider the incorporation of a sprayer module in place of the LED and 

mounting the entire system on a land robot or unmanned aerial vehicle for real-time detection and 

spray of fertilizers.  
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Chapter 4 - Methodology 

4.1 Introduction 

This chapter gives a robust elucidation of the materials and methods employed during the course 

of this research work. First of all, it describes how the datasets were acquired, provides information 

on the software used as well as the packages installed, and also further explains the base neural 

network used. It goes further to give an overview and setup procedure of the raspberry pi 3B. 

Finally, it discusses the calculation for the compatibility of selected components, lists out the 

specifications of the smart herbicide sprayer components and procedures for assembling them. 

4.2 Acquisition of datasets 

The dataset used in this study is about one-third of the soybean weed dataset gotten from the public 

dataset source, Kaggle. It consists of soil, soybean, grass weeds, and broadleaf weeds which sums 

up to a total of 5349 images. The image datasets, created by Dos Santos Ferreira et al. (2017), were 

segmented with the aid of the SLIC algorithm on the pynovisao software. A DJI Phantom 3 

professional UAV, equipped with an RGB camera was used to capture the images from a height 

of 4m above the ground. Fig. 4.1 to Fig. 4.4 show examples of the soybean weed datasets. 

 

 

 

 

 

Fig. 4.2: An example of the grass 

weed image dataset 
Fig. 4.1: An example of the 

broadleaf weed image dataset 
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4.3 Model development software and packages installed 

Anaconda individual edition is a data science toolkit/software which consists of about 7500 open-

source packages and libraries used for machine learning tasks. It is a platform that supports Python 

and R programming languages founded by Wang and Oliphant in 2012. Also, it is one of the three 

products of Anaconda Inc. with the anaconda team edition and anaconda enterprise edition being 

the other two. The anaconda individual edition is the particular product employed in this research 

work and it includes the anaconda navigator (as shown in Fig. 4.5) which allows for the launch 

and installation of conda packages and virtual environments. The conda is an open-source package 

manager for python programs used to install, run, and update packages in anaconda. 

 

 

Fig. 4.3: An example of the 

soybean mage dataset 

Fig. 4.4: An example of the soil 

image dataset 
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Fig. 4.5: Home page of the Anaconda navigator 

After downloading the anaconda individual edition, the applications which are present by default 

on the navigator are: 

1. Jupyter notebook 

2. Jupyter lab 

3. Spyder 

4. Glue 

5. Orange 

6. Rstudio 

7. Visual Studio Code, etc 

The Jupyter notebook is a web-based interactive environment, usually with the ipynb extension. It 

consists of an organized sequence of input and output cells where codes, text, plots, etc can be 

written. For this research work, a virtual environment titled ‘testversion’ was created to run on 

python 3.6 and the Jupyter notebook was used in writing the python codes used to train the random 

forest classifier. Also, the Jupyter notebook in google colaboratory was used to write DL 

algorithms for training the CNN model. Fig. 4.6 shows the Jupyter notebook environment. 
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Fig. 4.6: The Jupyter notebook 

4.3.1 Packages/library installed 

The packages /libraries installed during the course of this project are briefly described as follows: 

 Tensorflow: This is an open-source neural network platform developed by Google for 

solving machine learning tasks by processing data in different nodes/neurons. The 

TensorFlow 2.3.0, which is the default version in the google colaboratory, was utilized. 

The TensorFlow 2.3.0 version provides support for the Keras application programming 

interface which was used in this work. 

 Numpy: This is a python library which enables support for arrays and matrices. 

 Pillow: This is a python library that enables support for accessing, editing, and saving 

several image file formats. 

 Scikit-learn: This is an open-source machine learning library that features several machine 

algorithms such as SVM, random forest, K-means, gradient boosting, etc. 

 Matplotlib: This is an open-source python library that enables graph plotting function. 

 Scikit-image: This is a python package used for the pre-processing of images. 

 Open Source Computer Vision  (OpenCV): This is a python library designed for computer 

vision application 
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4.4 Base Neural Network-ResNet50 

ResNet, also known as deep residual network produces a good performance for deep networks as 

it creates a way of passing information from an earlier layer to a much deeper layer in a model.  . 

Generally, the vanishing gradient poses a serious challenge in deep networks and this affects the 

accuracy of the model. This challenge is however curbed in residual networks as it employs skip 

or shortcut connections which assists a network in learning global features. It achieves this by 

skipping irrelevant layers during training. This results in the most appropriate tuning of the layers 

and hence faster training of the network. The ResNet50 is made up of the following layers: 

 7×7 convolution layer consisting of 64 kernels 

 3×3 max-pooling layer with a stride of 2 

 16 residual building blocks 

 7×7 average pooling layer with a stride of 7 

 A fully connected layer with 1000 nodes 

 Output layer 

The CNN model used in this research work was a ResNet50 re-trained through transfer learning. 

This is because the earlier layers of the base neural network were frozen and its output layer 

bearing the softmax activation was modified to a 4-neuron layer to account for the 4 classes of the 

soybean weed dataset. 

4.5 Training the CNN model and random forest classifier 

The soybean weed dataset was divided in a ratio of 7:2:1 into training, validation, and test dataset. 

With an input shape of 224×224×3 and a batch size of 20, the datasets were used to train the 

ResNet50, through transfer learning, for 10 epochs on google colaboratory. The CNN model was 

trained on the TensorFlow framework carried out a 4GB RAM Intel® Celeron® CPU 1007U @ 

1.50GHz. During compilation of the model, the Adam optimizer, categorical crossentropy loss, 

and accuracy metric were employed.  After the training procedure, the CNN model was converted 

to a TensorFlow lite format to be efficiently readable by the raspberry pi interpreter. Also, an 

optimization technique known as quantization was carried out to optimize the CNN model for both 

latency and size hence improving its performance. The random forest classifier was used to 

evaluate the performance of the CNN model and was selected because it is the best machine 
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learning classifier Fernandez-Delgado et al. (2014). The algorithm for training the CNN model as 

well as the random forest classifier, conversion to TensorFlow lite format, and quantization are 

shown in appendix B.   

4.6 Calculation for component compatibility 

4.6.1 ESC calculation 

The amperage rating of the ESC should be 20-50% more than the amperage rating of the electric 

motor. 

min ESC amperage = 1.2 × min amp rating of a motor           Equation 4.1 

maxESC amperage = 1.5 × max amp rating of motor           Equation 4.2 

 

4.6.2 Battery calculation 

Discharge current = battery capacity × C rating                      Equation 4.3 

The higher the rate of current discharge rate, the higher the capacity of the battery to withstand 

overheating. Also, the ESC amperage rating should not exceed the battery discharge current. 

max current drawn by the motors = no.  of motors 

× max current drawn by 1 motor 

                   Equation 4.4 

 

4.6.3 Thrust calculation 

For a quadcopter to be able to lift off the ground, the total thrust to total weight ratio should be 

greater than 1. 

Thrust provided by each motor

=  
2

4
× total weight of quadcopter 

           Equation 4.5 

Thrust prvided by the propellers=   

π × D2 × v × ∆v × p

4
 

           Equation 4.6 

 



Page | 49 
 

Where D = diameter of propeller 

v = velocity of air 

∆= velocity of accelerated air; 

with the assumption that it equals 11.61m s⁄ at 78% ideal efficiency 

𝑝 = density of air 

From the calculations described previously, the electric motors draw a maximum current of 80A 

which is less than the battery discharge current. Also, the ESCs are compatible with the electric 

motor since it has a current rating of 30A which is higher than that of the electric motor (12A). 

Furthermore, the ESC is designed to handle batteries ranging from 2 to 3 cells and the battery 

being used in this work has 3 cells. From the thrust calculations, the thrust of each motor obtained 

is seen to be more than 2/4 of the weight of the quadcopter hence lift is assured. The frame chosen 

is made up of carbon fiber which is known for its lightweight and low inertia. Table 4.1 shows the 

results from the calculations performed. 

Table 4.1: Calculations performed 

Minimum ESC amperage 14.4A 

Maximum ESC amperage 18A 

Discharge current 247.5A 

Maximum current drawn by the motors 80A 

Thrust provided by the propellers 340.47N 

4.7 Raspberry pi 

4.7.1 Overview 

The embedded system being used in this dissertation is the raspberry pi 3B. It consists of the 

quadcore 64-bit ARM cortex @ 1.2GHz, 1GB RAM, 4 USB 2.0 ports, HDMI ports, camera serial 

interface, display serial interface, micro USB power port 40 GPIO pins, and SD card slot. The 

raspbian is the operating system recommended and hence being employed for use on the raspberry 

pi 3B. Fig. 4.7 provides a pictorial representation of the raspberry pi 3B. 



Page | 50 
 

 

Fig. 4.7: Layout of the raspberry pi 3B 

4.7.2 Setup for the raspberry pi 

The components required for the setup are: 

 A 2.5A 5.1V micro USB power supply 

 An SD card ranging from 16 to 32GB 

 Keyboard and mouse 

 HDMI cable 

 A pi camera or USB camera 

 A computer or television screen. 

4.7.3 Setup for the SD card 

The New out of Box (NOOBS) installation manager is the easiest way of installing the raspbian 

operating system on the SD card using a personal computer (PC) and an SD card reader. The 

procedure for installing the operating system image on the SD card is highlighted as follows: 

 Download a zip file of NOOBS from https://www.raspberrypi.org/downloads/ 

 Format the SD card using an SD card formatting software, most preferably the SD card 

formatter. 

 Extract the NOOBS from the zip file already downloaded. 

 Copy the extracted NOOBS files into the SD card using an SD card reader inserted in a 

PC. 

https://www.raspberrypi.org/downloads/
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4.7.4 Booting the raspberry pi 

After connecting all the components according to the setup listed out in 4.7.2 and inserting the SD 

card into the SD card slot on the raspberry pi, the following steps should be carried out to boot the 

raspberry pi. 

 Supply power (2.5A, 5.1V) to the raspberry pi through the micro USB power port. A red 

LED would light up on the raspberry pi and the computer screen would be rainbow-colored. 

 Thereafter, the initial setup which includes time zone setting, setting up the Wi-Fi, user 

profile completion, etc. is required. 

 The raspbian desktop (as shown in Fig. 4.8) would then appear on the screen after the initial 

setup is completed and a reboot request would pop-up to fully complete the setup. 

 

Fig. 4.8:  Typical raspberry pi desktop 

4.7.5 Setting up the raspberry pi for DL application 

Similar packages installed on the PC for training the CNN model are installed on the raspberry pi. 

Also, a virtual environment was created where the required packages (TensorFlow, Keras, 
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OpenCV, etc.) were installed. The trained model from the PC was transferred to the raspberry pi 

using the FileZilla Client software. The procedure for file transfer from a PC to the raspberry pi is 

given as follows: 

 After downloading the FileZilla client software and with an internet connection on the PC, 

click on the FileZilla software to launch it. 

 On the File menu, click on 'site manager'. Make sure the protocol is set to SFTP-SSH File 

Transfer Protocol. Also, type in the internet protocol (IP) address and password of the 

raspberry pi. Type in 'pi' as the user and then click on 'connect'. 

 If the above was correctly done, it should show the folders/directories present in the 

raspberry pi on the right-hand side with the directories of the PC on the left-hand side as 

shown in Fig. 4.9. 

 Open the particular raspberry pi folder (on the right-hand side) you intend to send the file 

to. Right-click on the file to be sent( on the left-hand side) and click on 'upload' 

Fig. 4.9: FileZilla software with raspberry pi connected 
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4.8 Assembling the smart herbicide sprayer 

Table 4.2 gives the specifications of some components of the smart herbicide sprayer. 

Table 4.2 Specification of selected smart herbicide sprayer components/accessories 

S/N Name of Component Specification 

1. XXD A2212 brushless outrunner 

electric motor 

KV: 1000 

Current rating: 12A/60s 

No-load Current: 10V: 0.5A 

Number of cells: 2-3 lithium polymer battery 

Dimensions: Ø27.5 × 30mm 

Shaft diameter: Ø3.17mm 

Weight: 47g 

2 Electronic speed controller Continuous current: 30A 

Burst current: 40A 

Input voltage: 2-3 cell lithium polymer battery 

BEC: 2A/5V(linear mode) 

Size: 45mm(L)×24mm(W)×11mm(H) 

Weight: 25g 

3 APM 2.8 flight controller Made up of 3- axis gyro, accelerometer, and 

barometer. 

4-megabyte dataflash chip. 

Optional off-board GPS LEA-6CH module with 

a compass. 

4 Propeller Diameter: 10ʹʹ 

Pitch: 4.5ʹʹ 

5 Flysky FS-I6 CH transmitter/receiver 

set 

Transmitter: 

Channel: 6 

Modulation type: GPSK 

RF range: 2.408-2.475GHz 

Bandwidth: 500KHz 
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Receiver: 

FS-IAS 6-channel 

 

6 BMT mini subm. water pump Working voltage: 12V  DC 

Working current: 400mA 

Max flow: 240L/H 

Pump life: >30000 hours 

Inlet diameter: 8mm 

Outlet diameter: 8mm 

7 ZOP power 11.1V  3S lithium 

polymer battery 

Capacity: 5500MAH 

Continuous discharge rate: 45C 

Size: 40x46.5x138 

8 B6 V3 Smart Balance Charger DC Input voltage:11-18v  

Charge power:80W  

Discharge power:10W  

Charge current range:0.1-6A  

Discharge current range:0.1-2A 

9 Single / 1 channel 5VDC 10A relay 

module development board 

Control Voltage: 5V DC 

Max Control Capacity:10A@250VAC or 

10A@30VDC 

 Size:.41 x 16 x 16mm 

Weight:12g 

 

 

Figs. 4.10 to 4.20 show details of the components and accessories used for the construction of the 

smart herbicide sprayer. 
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Fig. 4.10: Battery Charger 

 

Fig. 4.11: Relay module 

 

Fig. 4.13: Brushless electric motor         Fig. 4.14 Electronic speed controller 

 

 

Fig. 4.12: Spray nozzle 
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Fig. 4.15: Flight controller 

 

Fig. 4.16: Frame                                                                    Fig. 4.17: PiCamera 
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Fig. 4.18: Propeller 

 

Fig. 4.19: Radio receiver                                                   Fig. 4.20: Radio transmitter 

 

 

 

Fig. 4.22: Lithium Polymer 

battery 

Fig. 4.21: Spray pump 
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4.8.1 Tools required 

The following tools were required to aid with assembling the smart herbicide sprayer: 

 Soldering iron and soldering flux 

 Screwdriver 

 Component vice for keeping the components in place while working 

 Wire strippers 

 Screws 

 Heat gun/lighter 

 Scissors 

 Needle-nose plier 

 Multimeter 

4.8.2 Procedures for Assembling 

 Solder the ESCs to the bottom power distribution board. The red wire of the ESC should 

be soldered on the positive (+) contact while the black wire should be soldered on the 

negative (-) contact. Similarly, wires of the battery should be soldered on the power 

distribution board. 

 Fix the four arms of the frame and landing gears to the bottom power distribution board 

with screws. Thereafter, the motors should be mounted on the frame using screws. It should 

be ensured that the screws do not touch the copper wires in the motor. 

 Solder the male bullet plugs on each of the three wires of the brushless motors and female 

bullet plugs on each of the three wires of the ESCs. Then put a heat shrink tube on the 

bullet plugs and shrink the tube using a lighter or heat gun. 

 Mount the top board onto the frame using screws. Then fix the APM 2.8 flight controller, 

already placed in a vibration absorber plate, onto the top board of the frame. The M8N GPS 

should also be mounted on the GPS holder placed alongside the flight controller. 

 Connect the ESC cable set to channels 1 to 4 at the input section of the flight controller. 

Also, connect the 3-wired cable set from channels 1 to 4 on the receiver to channels 1 to 4 

at the output region of the flight controller. Thereafter, connect the GPS to the flight 

controller. 
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 Connect the ESCs to the motors and then calibrate the accelerometer, radio, GPS, and 

transmitter by connecting the flight controller to a PC with the mission planner software 

already installed. 

 Calibrate the ESCs by connecting each ESC to the throttle channel (channel 3) of the 

receiver and also connect it to the battery. Then using the transmitter, take the joystick to 

full throttle and wait till a beep sound is made by the ESC before disconnecting. 

 Reconnect all components of the quadcopter and check if all motors are rotating in the 

desired direction. Ideally, two motors should rotate in the clockwise direction while the 

other two opposite motors should rotate in the anticlockwise direction. If they are not 

moving as expected, swap any of the two wires of the ESC connected to the motors. 

 Fix the propellers on the shaft of the motor using the motor accessories and connect the 

battery fastened onto the frame with the battery straps. 

 Connect the GPIO 17 and 18 of the raspberry pi, each to the signal contacts of the relay by 

soldering. Also, connect pin 2 and pin 4 each to the VCC contacts of the relay. Pin 6 and 

pin 34 should be connected to the ground contact of each relay. Then connect the positive 

wire of the spray pumps to the 'normally open' contacts of each relay and connect the 12V 

DC power source to the common of the relay. The ground or negative end of both the 12V 

power source and spray pump should be connected. 

 Ensure that the picamera is well placed on the CSI port of the raspberry pi. Also, connect 

an 8mm water hose from the spray pump to the tank. 

 Fasten the raspberry pi, relay, spray pumps, and tanks on the assembled quadcopter. A 

setup design of the smart selective herbicide sprayer using Autodesk Inventor is shown in 

Fig. 4.23.  
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Fig. 4.23 Overview of the smart herbicide sprayer 

4.8.3 Pre-flight checks 

Before any flight operation, the following check should be carried out: 

 Inspect the frame for any physical damage or crack 

 Inspect the motors and propellers for damage or presence of debris and ensure that both 

are secured correctly. 

 Inspect all electrical components for correct functioning. 

 Inspect the installation of parts that are removable such as the battery. 

4.9 Principle of operation 

The smartweed detector would operate in such a way that pictures taken by the picamera, 

connected to the raspberry pi which is mounted on the quadcopter, would be analyzed by the 

deployed CNN model. When a broadleaf weed is detected, the GPIO 18 is activated to supply 3.3V 

for 3 seconds. This voltage (from GPIO 18) and the 5V voltage common collector (VCC) would 

be input to a DC relay module.  When the signal voltage from GPIO 18 is supplied to the relay, it 
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clicks on to connect the spray pump1 with 12V DC power. The spray pump in turn draws a 

broadleaf weed herbicide from the tank1 and pumps it through the nozzle. On the other hand, when 

a grass weed is detected, the GPIO 17 is activated to supply 3.3V for 3 seconds. This voltage is 

also combined with 5V from the raspberry pi’s VCC to turn on a relay which in turn connects 

spray pump2 to a 12V DC power.  The spray pump2 then draws grass weed herbicides from tank2 

and pumps it through the nozzle. However, when a soybean plant is detected, no GPIO pin is 

activated and hence no spraying action occurs. Fig. 4.24 shows a block diagram for the principle 

of operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.24: Schematic diagram explaining the working principle of the smart herbicide sprayer 
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4.10 Conclusion 

In this chapter, the materials used and methods were discussed. It described how the datasets were 

obtained. The setting of the software/libraries are discussed and an overview of the setup procedure 

of the raspberry pi 3B are provided. Furthermore, this section gives details about the compatibility 

testing and the calculations undertaken to ensure the assembly model of the smart herbicide sprayer 

was appropriate. Most importantly, details about the assembly model and its mode of operation 

are disclosed. The ensuing chapter would describe the results obtained from training the CNN 

model and test running the smart herbicide sprayer. 
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CHAPTER 5 - RESULTS AND DISCUSSION 

5.1 Introduction 

This chapter presents and discusses the results obtained from this research study. It provides details 

of the metrics used to measure the accuracy of the proposed model. In addition, performance of 

the sprayer module with the raspberry pi is provided. Lastly, evidence of the quadcopter 

performance are included in this section. 

5.2 Outcome of the Model Training Procedure 

The CNN model generated 8196 trainable parameters from training 6109 images of input shape 

224×224×3. After the training procedure, training, and validation accuracies of 99.98% and 98.4% 

respectively were obtained. Also, training and validation losses of 0.0039 and 0.0323 were 

obtained as well. However, a classification accuracy of 95.3% was recorded for the RF classifier. 

Fig. 5.1 and Fig. 5.2 shows the accuracy and loss graphs of the CNN model. 

 

Fig. 5.1: Accuracy vs epoch for the CNN model 
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Fig. 5.2: Loss versus epoch for the CNN model 

According to the accuracy versus epoch and loss versus epoch graphs above, it was noticed that 

the best accuracy was achieved at the 9th epoch. A low variance error, which is the difference 

between the training and validation accuracies, of 1.1% was recorded hence there was no over-

fitting of the training data. Also, the training and validation losses were below 2.5% and 5% 

respectively depicting that the model learned the features perfectly well. Fig. 5.3 and Fig. 5.4 gives 

the confusion matrix for both the CNN model and RF classifier. 

From the confusion matrix of the CNN model, there was just one case of misclassification where 

a few broadleafs were misclassified for grass weed (Fig. 5.3). This is unlike the situation in the 

confusion matrix of the RF classifier where there were about five cases of misclassification (Fig. 

5.4). In essence, the CNN model outperformed the random forest classifier.  
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Fig. 5.3 Confusion matrix for the CNN model 

 

Fig. 5.4: Confusion matrix for the random forest classifier 
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5.3 Outcome of incorporating the sprayer module with the raspberry pi 

The raspberry pi 3 with the CNN model already deployed was linked with the sprayer module and 

tested for spraying as shown in Fig. 5.5. The positive end of the spray pump was connected to 

'normally open' and a 12V DC power source connected to the common of the relay. Also, when 

broadleaf weed was detected, GPIO 18 was activated to supply 3.3V together with the VCC from 

the raspberry pi which served as inputs to the relay to turn on spray pump1. Similarly, when grass 

weed was detected, GPIO17 was activated to supply 3.3 V together with the VCC from the 

raspberry pi which served as inputs to the relay to turn on spray pump2. 

 

Fig. 5.5: Testing the sprayer module 

5.4 Assembling the Quadcopter kit 

The procedures for assembling a quadcopter kit as explained in chapter 4 was strictly followed 

during the quadcopter building. Fig. 5.6, Fig. 5.7, and Fig. 5.8 show some steps followed during 

the course of building the quadcopter. The quadcopter was first tested and was found to be in good 
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condition with a time of flight of about 15 minutes. Fig. 5.9 shows the quadcopter during its first 

test-run. 

 

Fig. 5.6: Calibrating the ESC 

 

Fig. 5.7: Calibrating the flight controller 
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Fig. 5.8: Assembled quadcopter 

 

Fig. 5.9: First test-run of the quadcopter 
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5.5 Test-running the smartweed detector and selective herbicide sprayer 

The sprayer module together with the raspberry pi was incorporated on the assembled quadcopter 

to form the smartweed detector and selective herbicide sprayer as shown in Fig. 5.10. A final test-

run was carried out on the smart herbicide sprayer and it was observed that it could detect broadleaf 

weed or grass weed accurately in less than a second at a height of 50cm above the ground and 

spray herbicides accordingly. However, spraying of herbicides occurs after two weed detection 

attempts. This means that the sprayer has to detect a weed twice consecutively before spraying the 

appropriate herbicide. Although the smart sprayer commences spraying operation immediately 

after a broadleaf or grass weed is detected, it sprays for 10 seconds instead of the envisaged 

3seconds. Fig. 5.12 displays the smart selective herbicide sprayer during the test-running 

operation. 

 

 

 

 

 

 

 

Fig. 5.10: Quadcopter with the sprayer module incorporated 
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Fig. 5.11: Test-running the smartweed detector and selective herbicide sprayer 
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CHAPTER 6- CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

This research work provides details about the development of a smartweed detector and selective 

herbicide sprayer which detects and sprays on weeds accordingly. This was achieved by deploying 

deep learning algorithms on an embedded system mounted on a quadcopter. As a step in the right 

direction in the domain of precision agriculture, it envisages solving the problem of poor harvest 

due to competition for nutrients by weeds and effective elimination of weeds through its selective 

spraying ability. This chapter gives a detailed report on the achievements of this research work 

and also proffer noteworthy recommendations for prospects. The achievements recorded in this 

research work are given as follows: 

 Results from preliminary study conducted: From the preliminary study conducted, a 

system was developed to detect potassium deficiency in red grape vine and prompt a 

spraying actuation. Training and validation accuracies of 89% and 81% respectively was 

obtained. Also, training and validation losses of 0.2205 and 0.4720 were obtained 

respectively. Thereafter, an LED lit up when a potassium deficient leaf was brought close 

to the picamera which served as the spraying actuation. 

 Training a CNN model and deploying it on a raspberry pi 3: For the main research 

work, the CNN model was trained through transfer learning on the soybean dataset. The 

CNN model was evaluated with the RF classifier, converted to TensorFlow lite format, and 

deployed on the raspberry pi 3. Training and validation accuracies of 99.98% and 98.4% 

were obtained respectively with an insignificant variance error which also surpassed the 

accuracy gotten from the RF classifier. Also, training and validation losses of 0.0039 and 

0.0323 respectively reveals that the proposed model was appropriate. 

 Building a sprayer module: A sprayer module which consists of a relay, raspberry pi 3, 

spray pump, 12V DC source, water hose, and the tank was built. It operated in such a way 

that when a weed is detected based on the deep learning algorithms deployed on the 

raspberry pi, GPIO 17 or GPIO 18 were activated to supply 3.3V which turned on a DC 

relay to spray herbicides accordingly .  

 Building the quadcopter: The quadcopter components were assembled with light-weight 

and strong materials being used to improve its efficiency. It consisted of the electric motor, 
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ESC, propellers, frame, li-po battery, flight controller, GPS, receiver. In this research work, 

a quadcopter was built and was able to perform as pre-planned. 

 Incorporating the sprayer module on the quadcopter and test-running the smart 

herbicide sprayer: The sprayer module was mounted on the quadcopter and from the test-

running operation carried out, broadleaf and grass weed were accurately detected and 

spraying of herbicides according to the weed type occurred in less than a second.  

Although the aim of the research was achieved, there were a few highlighted variations from what 

was anticipated. This has to do with the time interval for spraying the herbicides and spraying of 

the appropriate herbicide at the second attempt when there is an immediate change in weed type 

detected. The latter is due to a 'clean-up' issue on the raspberry pi as it correctly detects the right 

weed but fails to accurately activate the appropriate GPIO pin at the first attempt. Nevertheless, 

the results obtained from this work create the opportunity for more research to be carried out in 

this field of precision agriculture for further improvements. 

6.2 Recommendations 

 In a bid to establish a basis on which improvements could be made in this research work, the 

following recommendations were made: 

 The use of an RGB camera with a higher resolution quality would enable a better picture 

capture from a higher height above the ground and hence a more accurate detection at 

higher heights. 

 Employing the use of DL hardware accelerators such as the Intel Movidius compute stick 

would lead to a reduced inference time which is an important criterion for real-time 

detection. 

 Implementing DL algorithms on better and more efficient embedded systems such as the 

Nvidia Jetson TX2, FPGA, etc would improve the spraying actuation challenge 

experienced with the raspberry pi in this work. 

 The field of DL is broad and evolving with swift advancement in technology hence 

extensive research on the use of better DL detection algorithms, such as YOLO, is 

imperative. 
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 Powering the smart herbicide sprayer with a renewable energy source such as solar would 

increase the flight time as the estimated time of flight with batteries is about 15-20 minutes. 

 Making the smart herbicide sprayer autonomous by planning its flight path using a grand 

control station. 
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Appendix A: Engineering drawing of selected components of the smart herbicide sprayer 

A.1. Engineering drawings of the Frame and Propeller  

 

 

 

 

Fig A.1: Engineering drawings of the frame propeller 
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A.2. Engineering drawings of the electric motor and electronic speed controller 

 

 

 

 

 

Fig A.2: Engineering drawings of the electric motor and electronic speed controller 
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A.3. Engineering drawings of the spray pump and nozzle 

 

 

 

 

 

Fig A.3: Engineering drawings of the spray pump and nozzle 
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A.4. Engineering drawings of the raspberry pi and relay module 

 

 

 

 

 

Fig A.4: Engineering drawings of the raspberry pi and relay module 
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A.5. Engineering drawings of the transmitter and receiver 

 

 

 

 

 

Fig A.5: Engineering drawings of the transmitter and receiver 
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A.6. Engineering drawings of the landing gear and prototype 

 

 

 

 

 

 

Fig A.6: Engineering drawings of the landing gear and prototype 
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A.7. Engineering drawing of the flight controller and Exploded view/part list of the 

prototype 

 

 

 

Fig A.7: Engineering drawing of the flight controller and Exploded view/part list of the 

prototype. 
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Appendix B: Python programming codes 

B.1. Algorithms for training the RF classifier (Page1) 

 

 

 

Fig B.1: Algorithms for training the RF classifier (Page1) 
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B.2. Algorithms for training the RF classifier (Page2) 

 

 

 

 

 

Fig B.2: Algorithms for training the RF classifier (Page2) 
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B.3. Algorithms for training the RF classifier (Page3) 

 

 

 

 

Fig B.3: Algorithms for training the RF classifier (Page3) 
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B.4. Algorithms for training the RF classifier (Page4) 

 

 

 

Fig B.4: Algorithms for training the RF classifier (Page4) 
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B.5. Algorithms for training the CNN model (Page1) 

 

 

Fig B.5:  Algorithms for training the CNN model (Page1) 
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B.6. Algorithms for training the CNN model (Page2) 

 

Fig B.6: Algorithms for training the CNN model (Page2) 
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B.7. Algorithms for conversion to tensorflow lite format 

 

 

 

 

Fig B.7: Algorithms for conversion to tensorflow lite format 
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B.8. Algorithms for weed detection and spraying actuation (page1) 

 

 

Fig B.8: Algorithms for weed detection and spraying actuation (page1) 
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B.9.Algorithms for weed detection and spraying actuation (page2) 

 

 

 

 

Fig B.9: Algorithms for weed detection and spraying actuation (page2) 
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Appendix C: Cost analysis 

C.1. Cost analysis 

S/N COMPONENTS PURCHASED COST(IN RANDS) 

1 Quadcopter Kit 3120 

2 ZOP power 5500MAH 11.1V li-poly battery 2250 

3 Balance smart battery charger 675 

4 Raspberry pi 3B kit 1400 

5 Raspberry pi camera V2 582 

6 CMU Flysky FS-I6 6 channel 

transmitter/receiver set 

1451 

7 Single / 1 channel 5VDC 10A relay module 

development board 

61 

8 BMT mini subm. water pump 153 

9 Anker PowerCore 13000MAH power bank 805 

10 Universal tail landing gear skid for DJI F450 236 

11 Pressure washer spray nozzle 311 

12 Pixnor APM 2.6 MWC GPS compass antenna 

folding fixed mount bracket 

214 

13 Mirthhobby RC anti-vibration plate 328 

14 Battery holder 8×AA with leads black 21 

15 Battery connector male plug 19 

16 AA size batter 1.5V alkaline 24pieces/pack 120 

 Total 11 746 

Table C.1: Cost analysis 

 

 

 

 




