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Abstract: In 5G systems, enhancing the energy efficiency (EE) and spectrum efficiency (SE) is a
significant task that is capable of fulfilling the demand of future wireless networks and providing
Quality of Service (QoS) provisioning, such as high throughput with low power consumption. In the
present work, a look-up table enabled a fuzzy-based approach to investigate the SE and EE issues in
5G networks and obtained an efficient symmetrical trade-off between them to enhance the system’s
overall performance. We completed simulations in NS-2.31 software version 2.31, and MATLAB
is used to visualize the results. The proposed model achieved maximum values of EE and SE of
0.92 bit/J/Hz with a sensing time τs(LUT) = 20 ms. Furthermore, optimizing the sensing time and the
secondary user (SU) transmission power, yielded a maximum EE and provided a QoS provisioned
cognitive radio-enabled 5G network.

Keywords: cognitive radios (CR); co-operative spectrum sensing (CSS); quality of service provision-
ing; look-up table (LUT); energy harvesting (EH); energy efficiency; spectrum efficiency; symmetrical
trade-off; 5G-CRN

1. Introduction

Since the inception of mobile communication networks over recent decades and with
the advancement of mobile communication, the focus for research has been on achiev-
ing better connectivity, anytime anywhere, seamless connectivity, less complexity and
minimum latency, while providing high-speed network services. The optimization of
critical design parameters, namely spectrum efficiency (SE); energy efficiency (EE); and
energy harvesting (EH) are in massive demand for future prospective wireless networks,
specifically the 5G cognitive radio networks (5G-CRN) by 2021 [1–5]. Although in most
regions, different countries face the severe problem of spectrum scarcity, there are still
many regions where spectrum inefficiency is also a vital issue in the case of spectrum
utilization. Thus, a tremendous amount of work is required to achieve the enhancement of
spectrum efficiency techniques. Energy efficiency is another potential design parameter
for the next-generation wireless networks, because of limited battery power availability in
mobile devices and its inefficient utilization, as well as global environment concerns [6–9].
Practically speaking, methods that enhance the spectral efficiency, lead to a decrease in en-
ergy efficiency and vice versa. The main challenge in 5G systems is to obtain high spectral
efficiency while utilizing minimal amount of energy for mobile devices. This problem is
rectified by introducing an optimal trade-off between SE and EE while providing quality
of service (QoS) provisioning in a 5G-CRN. Another challenge is to reduce the outage
probability and provide secure, guaranteed communication. The deployment of mobile
communication technologies also overcomes these challenges and meet the targets [1–10].
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Cognitive radio is a concept that guarantees effective utilization of the radio spectrum
through dynamic spectrum access and provides a solution to SE issues [4]. The secondary
user (SU) practically does not perform sensing and accessing operations simultaneously.
The SU first senses the spectrum, and only if the channel is vacant, does the SU then trans-
mit the data. Therefore, additional sensing energy is used before the actual start of every
transmission frame of data. Therefore, energy efficiency is a key issue in cognitive radio
enabled networks [3–5]. To overcome this issue, co-operative sensing using a look-up table
(LUT) performs a vital role in spectrum sensing, which is explained in subsequent sections.
Researchers have paid more and more attention towards the co-operative spectrum sensing
(CSS) method over the last 5–8 years because it gives good spectrum efficiency capabili-
ties [4–6]. Moreover, the sensing capability of a single user is reduced by the presence of
multipath fading and shadowing [5–28].

Detection of the primary user (PU) with consistent spectrum detection and data
transmission is currently required and hence, a vital topic of research nowadays in cognitive
radio networks [7–13]. Gao, Y. et al. proposed the sensing-power trade-off problem in a
multi-input/multi-output cognitive radio system [7]. In [8], Stotas et al. designed a novel
receiver architecture; they also developed a frame structure to overcome the issues of the
sensing-throughput trade-off in CRNs and were able to achieve spectrum sensing and
transmission simultaneously [9]. Tang et al. investigated the effect of PU data transmission
on the sensing–transmission trade-off in the co-operative cognitive radio model [10]. They
also optimized the sensing and transmission power allocation while achieving maximum
throughput. Jhao et al. explained maximum throughput by minimizing sensing time with
the low probability of detection [11]. Liang et al. demonstrated the effect of the secondary
user’s power that is utilized for data transmission on energy efficiency [12]. In contrast, the
EE design of advanced channel sensing in a cognitive radios (CR)-network was proposed
by [13].

Although extensive work has been carried out on the sensing–throughput trade-off
in [14–28]. Ref. [15] considered the SE–EE simultaneously. In other words, the proposed
work listed in the literature did not consider energy-efficient models as well; most of
the researchers did not even address energy constraints while considering other research
objectives. As most sensing devices (energy detector, cyclostationary and matched filter)
work with minimum energy requirements, this leads to a critical issue for researchers in
an attempt to minimize energy consumption [16–19]. The detailed survey clearly shows
an enormous scope of development of an efficient technique that jointly considers spec-
trum sensing, transmission, and spectrum handoff for energy-efficient 5G-CRN (problem
P1). Second, EE-CRNs provide a greater spectrum for wireless portable devices while
consuming less energy [20]. EE policies are becoming more critical to achieving green com-
munication because of traditional grid-powered or replaceable battery-powered devices
which emit 2% of the total CO2. Ref. [21] developed an efficient sensing time optimization
algorithm, which we have modified using the concept of a look-up table and then used
it throughout the study. Due to this severe issue, recently researchers have focused on
developing energy harvesting wireless communication systems (LUT). On the other hand,
an LUT-incorporated EH system with spectrum and energy efficiencies is yet to be explored
(problem P2) [22–34].

Highlights of this Investigation

The highlights of this investigation are summarized as follows:

• In a traditional CSS, a large amount of time is consumed while reporting, which
contributes little to the sensing performance and hence makes the system inefficient.
Therefore, we have designed a novel super frame with a look-up table for reporting
and hence, the ability to further reduced the sensing time. The LUT updates reg-
ularly and thus acts as a sensing database for other SUs connected in co-operative
communication.
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• To enhance the EE using CSS the sensing time and transmission power were jointly
considered when optimizing EE under PU transmission constraints. We derived an
optimized co-operative sensing model by maximizing the EE under QoS provisioning
while optimizing the sensing time using an LUT. Another problem of CR with QoS
provisioning is formulated, i.e., satisfying the SE requirements under the constraint
of maximizing EE. For this issue, we analyzed the effect of the spectrum efficiency
on the energy efficiency. The literature shows that for different SEs, different values
of the sensing time are required. To overcome this problem, we optimized the LUT
incorporated EH systems to obtain a trade-off between the sensing time and power
utilized during transmission under EE Constraints with QoS provisioning.

• We further implemented a fuzzy-based selection switch in the proposed system to
optimize sensing time to provide a symmetrical trade-off between the EE and the SE
for 5G-CRN networks

2. Materials and Methods
2.1. Network Models

A look-up table based co-operative spectrum sensing technique was proposed to
obtain the optimal time to achieve reasonable spectral and the energy efficiencies of a
cognitive-enabled 5G network. The look-up table played a vital role in minimizing the
sensing time and improving the time for data transmission and hence enhanced the sys-
tem’s overall spectral efficiency. As we know, a CR does not have the facility to sense and
transmit data simultaneously, giving a wide scope for co-operative spectrum sensing.

2.2. Primary Network Model

Consider a primary network that has the rights to access the spectrum allocated by
the Federal Communications Commission (FCC) with bandwidth W.

The PU makes use of a slotted communication protocol with sensing time τs within
time frame T, which is a function of Chi with Chi = 0 (for the channel in idle state) and
Chi = 1 (for an occupied channel). The state diagram of the primary spectrum utilization
is shown in Figure 1. In this model, the spectrum in state ”0” corresponds to idle with
probability P0, and it transits from state ”0” to ”1” with probability (1 − P0). Conversely, if
the spectrum is in state ”1” with probability P1 is moving towards state ”0”, with probability
(1 − P1). Therefore the steady-state probability in two cases is Φ0(P0,P1) =

1−P1
2−(P1+P0)

and

Φ1(P0,P1) =
1−P0

2−(P1+P0)
respectively.
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Figure 1. State diagram of the primary network spectrum utilization.

Let τs be the sensing time used for a fixed sensing frame and (T − τs) be the trans-
mission frame with total frame time duration in T. The modified sensing time τs(LUT) is
the suggested LUT time that is exploited for co-operative sensing, as shown in Figure 2.
Let δmin be the minimum time frame for SUs to sense the spectrum and τR(LUT) be the
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reporting time to the cognitive radios base station τR(LUT) << τs(LUT) :- for example. for T
= 20 ms, the reporting time for the maximum τR(LUT) = 0.1 ms [15,21].

Tsaved = τ− (τs(LUT) + τR(LUT)) (1)
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We review some foundation ideas of Wang et al. [15] that will be utilized throughout
this study.

Let

Ci = 0 : the current state of the ith channel is vacant
Ci = 1 : the current state of the ith channel is occupied

Similarly

Ĉi = 0 : during sensing, the ith channel sensed as vacant
Ĉi = 1 : the ith channel is perceived as occupied during sensing.

PD and PFA is a function of LUT enabled sensing time which are termed as the
detection probability and false alarm respectively. Mathematically

PD = P(Ci = 0|Ci = 0) or P(Ci = 1|Ci = 1) (2)

This means that the probability of sensing a channel is 100%, i.e., the channel is
genuinely sensed in the right spectrum. In contrast

PFA = P(Ĉi = 0
∣∣∣Ci = 1) or P(Ĉi = 1

∣∣∣Ci = 0) (3)

Equation (3) signifies that the channel sensing is not accurate, and the probability of a
false alarm is at a maximum. We can calculate PD and PFA using the following relations:

PD = Q
(

1√
2γ + 1

(
Q−1(PFA)−

√
τs(LUT) fsγ

))
(4)

PFA = Q
(√

2γ + 1
(

Q−1(PD) +
√

τs(LUT) fsγ
))

(5)

where Q(x) is probability Gaussian function, fs is the sampling frequency, and γ denotes
the average power consumed

τs(minimum) =
1

γ2 fs

(
Q−1

(
_

PFA

)
−Q−1

(
_
PD

)√
2γ + 1

)2
(6)
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where τs(minimum) is the minimum value of sensing time to facilitate the condition of
target probability of detection and target probability of false alarm.

2.3. Problem Formulation

From Equations (4) and (5) we can calculate the average SE using [12] as

ηSE1 =
T − τs(LUT) − τR(LUT)

T
R1πi(1− Pf a) (7)

where πi is the probability that the spectrum is vacant R1 = log2(1 +
Pths
σ2

s
), Pt is the power

utilized by the SU during transmission, hs is the CR link gain, and σ2
s denotes the power

due to unwanted signals (noise). During miss detection (i.e., the spectrum falsely detected
as vacant), the probability is calculated as πi(1− Pd) and hence the average SE, in this case,
using [12] is as follows:

ηSE2 =
T − τs(LUT) − τR(LUT)

T
R2πj(1− Pd) (8)

where πi is the probability of vacant spectrum R2 = log2(1+
Pths

PPU hPU+σs2 ), PPU is the power
utilized by the PU during transmission, and hPU denotes PU gain. Hence the average value
of the spectral efficiency is calculated as follows:

ηSE = ηSE1 + ηSE2 (9)

However, the energy efficiency of a 5G-CRN is obtained using

ηEE =
ηSE
γ

(10)

where

γ =
1
T

{
N(Ps + Pc)τs(LUT) + (PR + Pc)τR(LUT) × (T − τs(LUT) − τR(LUT))

[
πi(1− Pf a) + πj(1− Pd)

]}
(11)

where Ps is the sensing power and Pc is the power consumed by the circuit. During
reporting to the LUT stage, the average power consumption is τR(LUT)N(PR + Pc), where
PR is the power consumed during reporting to the cognitive radio-base station(CR-BS).

The problem was to optimize the sensing time using a look-up table (τs(LUT)) as well
as the SUs power (Pt) use such that the energy efficiency will be maximized under the
constraint that the primary user’s rights are always protected, i.e.,

Opt
[
τs(LUT), Pt

]
= max [ ηEE] (12)

such that the probability of detection (Pd) ≤ threshold detection probability (P̂d = 0.9).

2.4. Solution to the Problem

We have designed a system to monitor the sensing time using the LUT concept. The
proposed method first states the optimization problem (Problem P1). Then an optimal
solution of P1 is provided by achieving a sensing time that provides maximum energy
efficiency for a given transmission power of the SUs (Problem P1). To achieve this, we took
a partial derivative of the energy efficiency w.r.t the sensing time using LUT.

∂ηEE
∂τs(LUT)

=
1

γ2 (γ
∂ηSE

∂τs(LUT)
− ηSE

∂γ

∂τs(LUT)
) (13)

Let
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f1(τs(LUT)) = T2(γ ∂ηSE
∂τs(LUT)

− ηSE
∂γ

∂τs(LUT)
)

= −Nπi(T − NτR(LUT))(Ps + Pc)[R1(1− P f a)− Nπ0τR(LUT)R2(1−
_
Pd)(PR + Pc)

+R2((1−
_
Pd)− NπiτR(LUT)R1

[
1− P f a(T − τs(LUT) − NτR(LUT))

dP f a
dτs(LUT)

]
(PR + Pc)

−πiπ0(T − τs(LUT) − NτR(LUT))
2(1−

_
Pd)(PR + Pt)(R1 − R2)

dP f a
dτs(LUT)

,

(14)

where

dP f a
dτs(LUT)

= N(Pf a)
N−1 dp f a

dτs(LUT)
= −N(Pf a)

N−1 γ
4

√
fs

πτs(LUT)
e
−1
2 θ2

and
θ = Q(Pf a)

(15)

Then

∂ηEE
∂τs(LUT)

= 0→ f1(τs(LUT)) = 0

Obviously limτs(LUT)→0 f1(τs(LUT)) = ∞ and limτs(LUT)→T−τs(LUT)
f1(τs(LUT)) < 0.

The second-order partial derivative of f1(τs(LUT))(14) w.r.t τs(LUT) is equal to

∂ f1(τs(LUT))

∂τs(LUT)
= T2(γ ∂2ηSE

∂τ2
s(LUT)

− ηSE
∂2γ

∂τ2
s(LUT)

)

= NπiR1

{
τR(LUT)(Ps + Pc)[R1(1− P f a + τR(LUT)(PR + Pc)× (1−

_
Pd)(Pt + Pc)(R1 − R2)

}
×
[

2
dP f a

dτs(LUT)
− (T − τs(LUT) − NτR(LUT))

d2P f a
dτ2

s(LUT)

]
,

where
d2P f a

dτ2
s(LUT)

= N(N − 1)p f
N−2

( dP f a
dτs(LUT)

)2
+ (N)p f

N−1 d2P f a
dτ2

s(LUT)

(16)

Thus
∂ f1(τs(LUT))

∂τs(LUT)
< 0, where f1(τs(LUT)) decreases with τs(LUT). For a particular value

of Pt, there must be one unique value of τ′s(LUT) for which f1(τs(LUT)) = 0.

Therefore, ∂ηEE
∂τs(LUT)

≥ 0 f or τs(LUT) ∈ (0, τ′s(LUT)) and ∂ηEE
∂τs(LUT)

≤ 0 for τs(LUT) ∈
(τ′s(LUT), T − NτR(LUT)).

Hence there must be a unique value of the sensing time using the LUT (τs(LUT)) that
maximizes the system’s energy efficiency. Similarly, the effect of the transmission power on
the energy efficiency for a given sensing time should be calculated for a given optimization
problem (Problem P2). Where an optimal solution of P2 is found by taking the second-order
partial derivative of the energy efficiency w.r.t the transmission power.

∂ηEE
∂Pt

=
1

γ2 (γ
∂ηSE
∂Pt
− ηSE

∂γ

∂Pt
) (17)

Let
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f2(Pt) = T2(γ ∂ηSE
∂Pt
− ηSE

∂γ
∂Pt

)

= C1
ln 2 N(T − τs(LUT) − NτR(LUT))

[
τs(LUT)(Ps + Pc) + τR(LUT)(PR + Pc)

]
+(T − τs(LUT) − NτR(LUT))

2
[

πi(1− Pf a) + π0(1−
_
Pd)

][
C1
ln 2 (Pt + Pc)− C2

]
,

where

C1 = πi(1− Pf a)
f2s

σ2s+Pths
+ π0(1−

_
Pd)

f2s
PPU hPU+Pths+σ2s

and

C2 = πi(1− Pf a)log2

(
1 + Pths

σ2s

)
+ π0(1−

_
Pd)log2

(
1 + Pths

PPU hPU+σ2s

)
(18)

Then ∂ηEE
∂Pt

= 0 → f2(Pt) = −∞ Obviously limPt→0 f2(Pt) > 0 and limPt→∞ f2(Pt) =
−∞.

The first partial derivative of f2(Pt)(18) w.r.t Pt to find out the unique value of Pt for
which the energy efficiency is a maximum is equal to:

∂ f2(Pt)
∂Pt

= T2(γ ∂2ηSE
∂Pt2 − ηSE

∂2γ
∂P2t

)

= − C3
ln 2 (T − τs(LUT) − NτR(LUT))

{
NτR(LUT)(Ps + Pc) + τR(LUT)(PR + Pc)

}
− C3

ln 2 (T − τs(LUT) − NτR(LUT))

{[
πi(1− Pf a) + π0(1−

_
Pd)

]
(Pt + Pc)(T − τs(LUT) − NτR(LUT))

}
,

(19)

where C3 = πi(1− Pf a)
(

f2s
σ2s+Pths

)2
+ π0(1−

_
Pd)
(

f2s
PPU hPU+Pths+σ2s

)2
. Hence, ∂ f2(Pt)

∂Pt
< 0,

f2(Pt) decreases with Pt. For a particular value of Pt, there must be one unique value of Pt
†

for which f2(Pt) = 0. Therefore ∂ηEE
∂Pt
≥ 0 for Pt ∈ (0, Pt

†) and ∂ηEE
∂Pt

< 0 f or Pt ∈ (Pt
†, ∞).

Therefore the energy efficiency of the cognitive radio network ηEE has one optimal value of
Pt that maximizes ηEE.

3. Energy Efficiency-Spectrum Efficiency Trade-Off

The quality of service should be guaranteed for secondary users, while practical
applications are considered. We aimed to maximize the EE while satisfying SE constraints.
First, we can find out the effect of ηSE with respect to τs(LUT). From Equation (9), ηSE =
ηSE1 + ηSE2 . The first partial derivative w.r.t τs(LUT) is:

∂ηSE
∂τs(LUT)

= −πiR1

T

[
1− P f a(T − τs(LUT) − NτR(LUT))

dP f a

dτs(LUT)

]
− π0R2(1−

_
Pd) (20)

where
dP f a

dτs(LUT)
can be calculated from Equation (15), although we have the following condi-

tions to be satisfied, i.e., limτs(LUT)→0
∂ηSE

∂τs(LUT)
= ∞ and limτs(LUT)→T−NτR(LUT)

∂ηSE
∂τs(LUT)

< 0.

From limits, it is clear that ηSE increases and is a decreasing function of sensing time
in the case of an immense amount of sensing time. Therefore, there should be one unique
value of sensing time, that satisfies the condition of maximizing SE. It can be calculated by
applying a double partial derivative of ηSE w.r.t the sensing time:

∂2ηSE
∂τ2

s(LUT)
=

πiR1

T

[
2

dP f a

dτs(LUT)
− (T − τs(LUT) − NτR(LUT))

d2P f a

dτ2
s(LUT)

]
(21)

where
d2P f a

dτ2
s(LUT)

can be evaluated from Equation (15). We can obtain that ∂2ηSE
∂τ2

s(LUT)
< 0,

therefore, SE is an intrusive function of the sensing time. By equating ∂ηSE
∂τs(LUT)

= 0, we can

get a unique sensing time value, which will generate maximum SE to satisfy the spectrum
efficiency. We set the sensing efficiency greater than or equal to SE threshold (η̂SE).



Symmetry 2021, 13, 47 8 of 14

4. LUT Enabled Energy Harvested Optimization in 5G-CRN

The energy-harvesting 5G-secondary system merged with the look-up table is as
shown in Figure 3. The method comprises a primary transceiver and cognitive-based
multiple transceivers. The presence of PUs is accomplished with the help of spectrum
sensing. The LUT regularly updates the status of every channel. The energy harvesting
concept is used, which acts as a cushion by storing the energy in the cognitive radio’s
battery. To overcome a flooding situation, the capacity of these batteries is assumed to be
infinite. Furthermore, energy leakage from this stored energy tank is zero.
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primary user network.

EH represents the energy stored in the buffer, if the energy utilized when sensing is
(PSτs(LUT))PT(T − τs(LUT)). M is the number of available channels, and N is the number
of SUs. The Algorithm 1 for the sensing energy minimization is shown below.

Algorithm 1: Look-up-table-based minimization of the sensing energy (LUT-MSE)

Pre-requisites: PD, M, N, Signal to noise ratio of primary users (SNRPUs), T, SUs sensing frame
(δmin)
Step 1: Remaining transmission time [n] = T − τs(LUT) ∀n
Step 2: for Chi = 1 to M do
Step 3: Sorting of all SUs sensing channels data in terms of decreasing SNRPUs.
Step 4: Start sensing for M channels by N SUs, for SNR = 0, k = 1
Step 5: while sensing < δmin do
Step 6: update LUT = index [k]
Step 7: For each SU monitor τs(LUT) calculate PD by applying step 3
Step 8: if τs(LUT) < total time remained[n] then
Step 9: if total time remained[n] = total time remained[n]− τs(LUT) then
Step 10: Increment the LUT [index] = LUT [index + 1]
Step 11: end if
Step 12: k = k + 1
Step 13: end while
Step 14 end for

Conventionally, the radio is off at the initial level, i.e., the radio is not active (An = 0),
thereby saving energy. Sensing of the channel starts immediately when the radio comes
into “on” mode (An = 1) as shown in Figure 4a. While sensing if the channel is found to be
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busy and another channel near it is found to be idle, handoff occurs immediately to that
idle channel, leading to the system’s good throughput.
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The transmitter of the cognitive radio utilizes accessing through the greedy spectrum,
and the remaining energy is used for the consecutive frame.

An ∈ 0 (radios remain inactive due to insufficient residual energy)

1 (sensing + transmission takes place)
(22)

such that
An = 1, Er ≥ PSτs(LUT) + PT(T − τs(LUT))

0, Er < PSτs(LUT) + PT(T − τs(LUT)),
(23)

where the total residual energy is equal to the Harvested energy

Er = EH (24)

By using the LUT-based model, less energy is utilized during the sensing period and
hence saves energy (ESaved). Furthermore, the LUT incorporated EH model also saves E.H.
energy also, as shown in Figure 4b. Therefore, the total energy saved (residual energy) in a
fixed frame (T), depending upon the amount of residual energy Er = EH +Esaved is left in
the battery unit of the SUs. Psτs helps in the calculation of the energy and the power used
in sensing. Therefore minimizing τs will lead to overcoming two problems, namely less
energy consumption while sensing and maximizing the transmission time, which improves
the throughput of the system.

In the conventional approach, if Er < Es + ET, then the whole Er was left unutilized.
Here we have proposed a novel fuzzy-based approach that will decide whether the residual
energy is utilized for next slot sensing, transmission, or both. The fuzzy switch regularly
checks whether the consumption of energy in sensing and transmitting is always less than
the residual energy

Er ≥ (Es + ET) (25)

As per Equation (25), if the amount of energy needed for sensing and transmitting is
less than the residual energy, the Sus’ node power will not be used, and it will be saved for
sensing the consecutive slot. Else if

Er ≤ (Es + ET) (26)

the fuzzy switch evaluates Er ≥ Es, and if it is satisfied, the energy will be used in sensing,
and energy will be saved in this way the main power is used for transmitting till the last
transmission of data is complete.

5. Results

Investigations of the energy efficiency enhancement were carried out using a NS-2.31
simulator under a cognitive radio cognitive network (CRCN) environment. The effect
of the sensing time on the SE and EE using different fusion rules can be observed in
Figure 5. The EE and SE maximization can never co-exist, therefore, after the diligent
trade-off, the optimal value of the EE and the SE is reported as 0.92 bit/J/Hz at sensing
time τs(LUT) = 20 ms.

Figure 6 depicts the variation in energy efficiency w.r.t. the transmission power of SUs
at different sensing time. By optimizing the sensing time, the energy efficiency of 63% was
observed at a transmission power of 2 W.

To enhance the energy efficiency of the system τs(LUT) should be optimized using a
neuro-fuzzy energy-aware unequal clustering scheme (NFEAUCS) algorithm for CSS in
the near future.
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Figure 7 shows the EE relation concerning sensing time using a LUT under different SU
transmission power levels. We considered different solutions to provide EE i.e., Pt = 25%,
50%, 75% of Pt(max) and optimal transmission power. Figure 7 shows that the optimal
value for the transmission power at τs(LUT)= 3 ms yielded a maximum energy efficiency
of 58–60%.

Figure 8 shows the effect of the SU transmission power, signal to noise ratio of SUs,
and sensing time on the energy efficiency. We considered six different sensing time cases
as follows: 10%, 50%, and optimal sensing time. We also considered transmission powers
as follows: 10%, 50%, and 100% of Pt(max) and optimal power. Solutions 1, 2, and 4 gave
the worst EE since the time and power were fixed whereas, for solutions 3 and 5, the EE
increased with an increase in the signal-to-noise ratio (SNR), but was almost constant for
higher SNR (SNR > 4 dB) values. In solution 6, joint optimization (optimal τs(LUT) and
optimal Pt) gave better results for low and high SNR, and reached a mark of 88% at the
optimal sensing time and transmission power.
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6. Conclusions

A 5G-CRN network’s effectiveness depends upon its lifetime, energy consumption,
and the achieved throughput of information transmitted. As far as we know, no one has
yet proposed an algorithm using LUT incorporated energy harvesting CRN to optimize
SE and EE, and to provide an improved throughput system. The proposed method used
in this study can take advantage of a look-up table and the energy harvesting concepts.
Simulations were performed, and the results showed that adopting the new technique
reduced the energy consumption and improved the spectrum efficiency resulting in an
improved normalized achievable throughput. From the results of the simulations, we
found that the proposed method outperformed existing methods. Energy-saving, energy
consumption, the EE/SE trade-off, and achievable throughput regarding the sensing time
of the proposed method were calculated using the energy efficiency and spectrum efficiency
w.r.t. decision threshold(M). The proposed model achieved a maximum EE and SE, which
was 0.92 bit/J/Hz at τs(LUT) = 20 ms. A further, optimal value of sensing time (typically
3 ms) was achieved, which yielded 58–60% EE.

On the other hand, 2 W for the transmission power of the SUs was the optimal power
to achieve an EE of approximately 66%. Finally, we achieved a maximum energy efficiency
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(88%) by jointly optimizing the sensing time and optimizing the SU transmission power.
This system can be used in the various real-time applications for the acquisition of data
from pervasive networks. The proposed method is also helpful in telemedicine systems.
The main drawback of the system is that we assumed the battery capacity to be infinite,
which is an impractical scenario. This work can be further extended by taking finite batter
capacity and using higher-level optimization techniques and soft computing techniques,
such as NFEAUCS algorithm in the near future.
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