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1

Introduction

This chapter is meant to introduce the reader with a set of topics that
are central to the research developed in the following chapters. Chapter
2, 3, 4 of this dissertation focus on inference in high-dimensional time
series models and especially on testing for Granger causality. Chapter 5
also deals with high-dimensional time series models, combining the two
main schools of thoughts with what pertains dimensionality reduction,
namely sparse and dense modeling.

Section 1.1 presents high-dimensional models and defines one of the
central topics of this dissertation, namely post-selection inference. Sec-
tion 1.1.1 first introduces sparsity-inducing techniques, specifically the
penalized regression framework and how variable selection is attained
using specific `q-norm penalties. Selection consistency and oracle prop-
erties are also presented. Furthermore, it also introduces the dense
framework of factor models, underlines the differences with the sparse
counterpart and sketches how factors are estimated via principal com-
ponents. Section 1.1.2 addresses the main challenges to face when doing
post-model selection inference, from an asymptotic perspective. How to
obtain “honest inference” is discussed and one of the main approaches
is outlined, namely the post-double selection. A formal treatment of
the Granger causality concept is presented in Section 1.2 where some

1



Chapter 1. Introduction

history of the concept is provided along with its formalization and a
discussion of its problems. Section 1.3 outlines the contributions of this
dissertation chapter-by-chapter.

1.1 High-Dimensional Models and Post-Selection
Inference

1.1.1 High-Dimensional Models: Sparse and Dense

Historically statistics has dealt with low-dimensional settings where the
number of observations in a data set, the sample size, is much greater
than the number of variables, the features1. However, the technical
advancements of the last twenty years have brought forward unprece-
dented possibilities in terms of data availability. Therefore, dealing
with increasingly large data sets has become common practice both
in academia and industry. Those data sets containing more features
than observations are referred to as “high-dimensional”. The aim of
the present thesis is to develop statistical techniques for time series
data, able to deal with such data sets. In fact, while data abundance
offers great opportunities to describe and predict a variety of processes,
from a statistical perspective it introduces several complications to deal
with. Classical approaches in statistics such as linear regression, logistic
regression etc., they are not suited for high-dimensional settings. For
instance, when the amount of variables is as large as, or exceeds, the
number of observations, then ordinary least squares (OLS) will return
a set of coefficient estimates which perfectly fit the data, regardless
of whether a true relationship exists between the features and the re-
sponse. This is referred to as “overfitting”: the perfectly fitted linear
model does not prove any useful as the same model applied to an in-
dependent test set will yield very poor results. As a consequence, the
variance of the (trained) model, namely its ability to generalize to other

1The terms features, covariates, regressors, predictors will be used interchangeably
in the text.
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test sets, will be large and lager than the bias counterpart2. Therefore,
even though the OLS estimator is an unbiased estimator, the excessive
variance will render its mean square error large, thus making the model
perform very poorly in practice. Intuition would suggest that as the
number of features used to fit a model increases, the quality of the fit-
ted model will increase as well. This is not quite true as this depends
on whether the additional features are truly relevant or just noise with
respect to the response. Even in the unlikely case that only relevant
features gets added to the model, the bias reduction derived from these
additional features could be outweighted by the large variance incurred
in estimating their coefficients. The issue lies in the fact that, while
the parameter space grows at fast speed, its elements to estimate soon
start to be too many for the sample information available to reliably
estimate them, what is referred to as the “curse of dimensionality”.
If no additional structure is imposed on the model, specifically to the
unknown regression vector, then there is no hope of obtaining consis-
tent estimators when the ratio between the number of features and the
sample size, stays bounded away from zero. To tackle this challenge,
statisticians and econometricians have developed strategies which can
be divided into two broad categories imposing a substantially different
type of structure to the regression vector: sparse and dense modeling.
Before introducing some of the details of the two philosophies, a math-
ematical formulation of the problem is presented.

Define β ∈ Rd the unknown regression vector and suppose to observe a
vector y ∈ RT and a matrix X ∈ RT×d. For instance, think of y as a
time series of sample size T and X as a matrix containing d other time
series of same length T . A linear model to link these variables is

y = Xβ + ε, (1.1)

2Recall the mean squared error (MSE) of an estimator β̂ i.e., the measure of how
well the estimator β̂ is closed to the vector of parameters β, can be decomposed
as MSE(β̂) = E(β̂ − β)2 = V ar(β̂) + [Bias(β̂)]2.
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Chapter 1. Introduction

where ε ∈ RT is a vector of noise variables. For time series, the linear
regression framework in (1.1) also encompasses seemingly unrelated re-
gression models (SUR) such as vector autoregressive models (VARs) if
for instance X contains the lags of y as well as lags of other covari-
ates. Model (1.1) can also be written in a scalar form: for each index
t = 1, 2, . . . , T , one has yt = 〈xt,β〉 + εt, where x

>
t ∈ Rd is the t-th

row of X, and yt and εt are, respectively, the t-th entries of the vec-
tors y and ε. The quantity 〈xt,β〉 :=

∑d
j=1 xtjβj denotes the usual

Euclidean inner product between the vector xt ∈ Rd of covariates and
the regression vector β ∈ Rd. Thus, each response yt is a noisy version
of a linear combination of d covariates. In order to obtain a meaningful
estimate of the regression vector β, the model should have a low(er)
dimensional structure. Assuming (strong) sparsity accomplishes this.
In fact, by assuming the support set Sβ := {j ∈ 1, . . . , d|βj 6= 0} of
the regression vector βj to have cardinality s� d and the model being
exactly supported on those s coefficients3, there then exist techniques
able to shrink the dimensions to only those relevant s coefficients. This
variable selection is what penalized regression is set to accomplish. In
the OLS framework, penalized regression techniques minimize the sum
of squares residuals with an `q-norm penalty term added to the objec-
tive function. The `q-norm penalty term represents the constraint in
the least squares minimization problem, avoiding the norm of the coef-
ficient vector to become too large. This penalty term can be visualized
by considering for a parameter q ∈ [0, 1] and radius rq > 0, the set

Bq (rq) =

β ∈ Rd
∣∣∣∣∣

d∑
j=1

|βj |q ≤ rq

 ,

which is the set of `q-balls of radius rq. According to the choice of q,
these balls allow the estimates to be either shrunk towards zero but not
exactly zero (q > 1) or shrunk towards zero and performing variable

3Note that assuming strong sparsity i.e., that the model is exactly supported on s
coefficients may be overly restrictive. The notion of weak sparsity relaxes this:
the vector β is weakly sparse if it can be closely approximated by a sparse vector.
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selection by actually setting some coefficients equals to zero (q ≤ 1).
Figure 1.1 reports three instances for d = 3: (a) for q = 1, (b) for
q = 0.75, (c) for q = 0.5.4

Figure 1.1: `q-Balls in d = 3: (a) = `1, (b) = `0.75, (c) = `0.5

The penalized least square estimator is then obtained as

β̂ = argmin
β

‖y −Xβ‖22 + λ‖β‖qq, (1.2)

where λ controls the strength of the penalty: if large, then a strong
shrinkage/variable selection is performed. If small, then in the limit
the penalized least squares estimator approaches the OLS estimator.
Note further, as clear from Figure 1.1, that only if q ≥ 1 then the
objective function is convex. The solution that minimizes the objective
function (1.2) is located at the point where the (ellipsoid) contours of
the sum of squared residuals cross the boundary of the constraint `q-ball
as displayed in Figure 1.2, for the case of the `1-norm

5.

4The figure is taken from Wainwright (2019), Ch.7
5Figure 1.2 is taken from Stucky and Van De Geer (2017)
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Chapter 1. Introduction

Figure 1.2: Minimization solution with `1-norm

It follows that, as long as the shape of the `q-balls are sharp-cornered
the solution is likely to lie at a corner point with one of the coeffi-
cients set equal to zero. A popular choice of q is indeed q = 1 which
is referred to as the “lasso” which stands for “Least Absolute Shrink-
age and Selection Operator” (Tibshirani, 1996). The lasso is able to
combine shrinkage and variable selection with the convenience of a con-
vex objective function6. In addition to the usual consistency argument

for statistical estimators (i.e.,
∥∥∥β̂ − β

∥∥∥
2
= op(1)), all fitting procedure

that combine simultaneous estimation and variable selection such as
the lasso need that the set of relevant variables is correctly identified
asymptotically with high probability7. This is referred to as selection

6Every local minimum will be a global minimum and hence only first order deriva-
tives are needed. However, lasso is not differentiable and hence no analytical
solution exists but one has to consider the subdifferential.

7A stronger consistency result than selection is sign consistency, (see Zhao and Yu,
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consistency:

P
({
j : β̂j 6= 0

}
= {j : βj 6= 0}

)
→ 1, (1.3)

as T → ∞. In addition, if under appropriate assumptions selection
consistency holds for the lasso, then it follows that the variance of the
estimated regression vector β̂ evaluated on the complement of the true
support i.e., βSc

β
, is zero with high probability as T → ∞. Therefore,

the only relevant object for efficiency across different models will be
the variance of the estimated regression vector on the true support i.e.,
βSβ

. The so-called “oracle properties” have been introduced by Fan
and Li (2001) to rank optimal fitting procedure that simultaneously
attain variable selection and estimation. Intuitively, an oracle procedure
will select the true set of relevant variables with probability one while
estimating their coefficients as efficiently as if these relevant variables
were known beforehand. Formally, β̂ is an oracle procedure if:

(a) P
(
β̂Sc

β
= 0

)
→ 1,

(b)
√
T
(
β̂Sβ

− βSβ

)
d→ N

(
0,ΣSβ

)
,

(1.4)

as T → ∞, where ΣSβ
is the asymptotic covariance matrix of the OLS

estimator on the variables constituting the true support. Lasso and its
many refinements such as adaptive lasso (Zou, 2006), group lasso (Yuan
and Lin, 2006), elastic net (Zou and Hastie, 2005) etc. have taken a
substantial portion of the field’s literature in the last 20 years. In all
chapters of this thesis, the lasso is indeed the main character when it
comes to dimensionality reduction.

Sparse dimensionality reduction techniques introduced thus far, im-
pose a lower-dimensional structure to the regression vector by assuming
some, or several, of its component to be irrelevant. As mentioned, this
is not the only possible structure one can assume on β. Factor mod-
els constitute an alternative way to attain dimensionality reduction.

2006)
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Chapter 1. Introduction

They assume that the behavior of a certain variable can be decom-
posed into a component driven by few (r) unobservable (latent) factors
(F = (F1, . . . , FT )

>), which are common to the variables within a given
data set but load differently (Λ = (λ1, . . . , λd)

>) on each of them, and a
variable specific idiosyncratic component (v = (v1, . . . , vT )

>). More for-
mally, given model (1.1), assume the following decomposition holds:

X = FΛ> + v, (1.5)

where F is the T × r matrix of common factors, Λ is the d× r matrix
of factor loadings and v the T × d matrix of idiosyncratic components.
Factors can be used for making predictions in place of X, in fact by
substituting X = FΛ> + v in equation (1.1): y = (FΛ> + v)β + ε =
FΛ>β+vβ+ε = FβF + ε̃ for βF := Λ>β, ε̃ := vβ+ε. If the number
of factors r is small and the factors approximate well the process X, the
dimensionality is greatly reduced with respect to the original column
dimension of X. Nevertheless, in general F is latent hence needs to
be estimated from X. The classical method employed to estimate the
factors is principal components analysis (PCA). However, F is only
identified up to rotation. In fact, taking an arbitrary r × r invertible
matrix H such that HH−1 = Ir for Ir the identity matrix of order r,
then it is immediate to observe how any model like X = FΛ> + v =
FHH−1Λ>+v could equivalently hold true. Hence, some identification
restrictions are needed in order to have a unique F : (i) T−1F̂ F̂> = Ir,
(ii) Λ̂>Λ̂ is diagonal. Under (i), (ii) the factor rotation is fixed and
one can estimate factors and loadings using PCA. PCA minimizes the
part of variance of X not explained by the factors. Formally, calling the
columns ofX asXj , similarly the columns of v as vj and the transposed
rows of Λ as Λj for j = 1, . . . , d, then the PCA minimization problem
can be written as:

(F̂ , Λ̂) = argmin
F ,Λ

(Td)−1
d∑
j=1

‖Xj − FΛj‖22. (1.6)

The dimensionality reduction obtained via PCA estimation of the fac-
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tors is such that the explained variability of the original set of variables
is maximised given the number of factors, hence they are defined “dense
models”. Derivations of the PCA reveal how F̂ equals to the matrix of
eigenvectors of XX> corresponding to the largest r eigenvalues. Fur-
thermore, factor models can be categorized as exact and approximate
whether respectively the idiosyncratic components are assumed inde-
pendent across the d variables i.e., E

(
vt,j ,vt′,j′

)
= 0, ∀t, t′, j 6= j′, or

they are allowed to be weakly dependent i.e.,
d−1

∑d
j=1

∑d
j′=1 E(vt,j ,vt′,j′) <∞ as d→ ∞. Furthermore, dynamic is

allowed to enter the factor model in terms of q lags of F in equation
(1.5), thus distinguishing between static and dynamic factor models.
However a dynamic factor model with q lags can also be written as
a static factor model with r(q + 1) factors and hence estimated with
PCA.

Both factor models and sparsity-inducing regression techniques are widely
employed in practice and both have merits and shortcomings. The lit-
erature tends to polarize on either sparse or dense modeling. Chapter 5
reconciles the two factions retaining the best features of both by using a
combination of a dynamic factor model where PCA is used in estimat-
ing the factors and a sparse VAR is used in estimating the idiosyncratic
components.

1.1.2 High-Dimensional Models: the Problem of Inference

Let yt, x1,t, . . . , xd,t be a set of covariance-stationary8 time series of
interest for a sample size T and dimension d, potentially larger than T .
Consider the following linear regression model

yt =

d∑
j=1

βjxj,t + εt = x>
t β + εt, t = 1, . . . , T, (1.7)

8In Chapter 2 we work under this assumption, in Chapter 3 and 4 we relax it to
consider unit root non-stationary time series as well.
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Chapter 1. Introduction

where the intercept is omitted for simplicity, εt is a realization of a zero-
mean stationary stochastic process and β is a d-dimensional vector of
coefficients to estimate. Let

yt = β1x1,t + x>
−1,tβ−1 + εt, (1.8)

where x1,t is a T × 1 series of interest for testing a certain null hy-
pothesis e.g., H0 : β1 = 0; and x−1,t is the T × (d − 1) matrix of
potential confounders. As the high-dimensional setting is the focus, d
is potentially larger than T , therefore one could use penalized regres-
sion techniques introduced in the earlier Section 1.1.1 to shrink the
dimensionality of x−1,t. Ideally, one would think that by shrinking the
dimension of x−1,t and re-fitting the selected model with least squares
would allow for a valid test of the relevant hypothesis on β1. Inference
on a model that has been selected from the data is called “post-model
selection inference”. However, the problem with it is that the model,
being itself selected from the data, is random. The Oracle property in
(1.9) ensures consistent model selection but this is not sufficient to have
uniform convergence as the oracle property for post-selection estimators
is a point-wise result, in other words, the estimator does not converge
uniformly in the parameter space to a Gaussian distribution, but only
point-wise. Point-wise limits can give very misleading results about
approximations in finite samples. In order to illustrate this, consider
the column dimension of x−1,t to be just 1. Furthermore, consider for
simplicity εt ∼ N (0, σ2), E(x1,tx−1,t) 6= 0 and that the oracle property
in (1.9) holds for θ0 = (β1,β−1)

>; then ∀θ0, ‖θ0‖2 ≤ C for C a positive
constant,

lim
T→∞

Pθ0

(
β̂−1,Ŝβ

= β−1,Sβ

)
→ 1, (1.9)

where β̂−1 is the confounders vector β−1 estimated using a penalized
regression method such as the lasso and Ŝβ is the corresponding support.
A famous negative result due to Leeb and Pötscher (2005) implies that
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∃δ > 0:

lim
T→∞

sup
‖θ0‖2≤C

Pθ0

∥∥∥σ−1
β

√
T (β̂OLS

1 − β1)−N (0, 1)
∥∥∥
L
> δ︸ ︷︷ ︸

:=D

 6→ 0, (1.10)

where β̂OLS
1 is the least squares estimator of β1 after selection of β̂−1,

‖g‖L = supx 6=y
g(x)−g(y)

|x−y| for g : [0, 1] → R, σβ is the standard error of β1.
The low dimensional setting well exemplifies this impossibility result.
In fact, as the column dimension of x−1,t is 1, there are actually only
two model possibilities:

αI : argmin
β1

T−1‖yt − β1xt‖22;

αII : argmin
β1

T−1
∥∥∥yt − β1xt − x>

−1,tβ−1

∥∥∥2
2
.

(1.11)

The result in (1.10) is still true if one looks at a neighborhood of radius√
T of the true parameter vector i.e., if the supremum is taken over

‖θ0‖2 ≤ C/
√
T , for C a positive constant. Hence, fix e.g., β1 = 0 and

take a sequence for β−1,T = γ/
√
T for γ a positive constant. Then the

following lower bound is attained:

lim
T→∞

sup
‖θ‖2≤C/

√
T

Pθ0(D) ≥ lim
T→∞

sup
‖θ‖2≤C/

√
T

P(
0, γ√

T

)(D),

≥ lim
T→∞

P
(∥∥∥σ−1

β

√
T (α̂OLS

I )−N (0, 1)
∥∥∥
L
> δ
)
− P(

0, γ√
T

) (β̂OLS
−1,T 6= 0

)
.

(1.12)

However, the right hand side in the limit converges to P(0,0)

(
β̂OLS
−1,T 6= 0

)
as γ/

√
T → 0 as T → ∞, which by the Oracle property in (1.9) is equal

to zero. Hence, what remains is

lim
T→∞

P
(∥∥∥σ−1

β

√
T (α̂OLS

I )−N (0, 1)
∥∥∥
L
> δ
)
.
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Chapter 1. Introduction

Now, the least squares estimator of model αI (α̂OLS
I ) can easily be

computed from (1.11):

α̂OLS
I =

(
x>t xt
T

)−1
x>t yt
T

, (1.13)

hence

√
T

{(
x>t xt
T

)−1
x>t yt
T

− β1

}
=

√
T


(
x>t xt
T

)−1
x>t
T

εt + xtβ1 + x>
−1,t β−1,T︸ ︷︷ ︸

:=γ/
√
T

− β1

 ,

√
T


(
x>t xt
T

)−1
x>t εt
T︸ ︷︷ ︸

(I)

+β1 +

(
x>t xt
T

)−1
xtx−1,t

T

γ√
T︸ ︷︷ ︸

(II)

−β1

 .

(1.14)

The term (I) is Gaussian by assumption on εt and β1’s cancel out.
However, as E(xtx−1,t) 6= 0 by assumption, the term (II) produces a
non-vanishing bias in expectation:

√
T

{(
x>t xt
T

)−1
x>t εt
T

+

(
x>t xt
T

)−1
xtx−1,t

T

γ√
T

}
d→ N

(
E(x>t xt)

−1E(xtx−1,t)γ, σ
2
)
.

(1.15)

This bias hinders the coverage of any post-selection confidence interval.
Therefore special techniques are needed to obtain uniform convergence
to limit distributions. These techniques are referred to as “honest infer-
ence” and include: simultaneous inference across models (Berk et al.,
2013), inference conditional on selected models (Lee et al., 2016), debi-
asing (or desparsifying) the lasso estimates (Van de Geer et al., 2014;
Zhang and Zhang, 2014) and post-double-selection (PDS) techniques
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(Belloni, Chernozhukov, and Hansen, 2014b).

1.1.2.1 The Post-Double Selection

Central to this thesis is the PDS method coined by Belloni, Cher-
nozhukov, and Hansen (2014b). The method and the intuition of why
this solves the pointwise convergence issue of post-selection estimators
is now presented. Consider again as reference model (1.8) and again
assume for simplicity x−1,t has only one column. Consider x1,t the
treatment variable i.e., the variable of interest for the inference. Then
the following three steps, similarly to the famous Frisch-Waugh-Lovell
theorem, are in order:

i) Step 1: Lasso of yt on x−1,t:

β̂−1 = argmin
β−1

∥∥∥yt − x>
−1,tβ−1

∥∥∥2
2
+λ‖β−1‖1; obtain Ŝ

(I)
β−1

(λ).

ii) Step 2: Lasso of x1,t on x−1,t:

β̂−1 = argmin
β−1

∥∥∥x1,t − x>
−1,tβ−1

∥∥∥2
2
+λ‖β−1‖1; obtain Ŝ

(II)
β−1

(λ).

iii) Step 3: Least Squares of yt on x1,t and x−1,t,
(
Ŝ
(I)
β−1

∪Ŝ(II)
β−1

):

β̂1 = argmin
β1

∥∥∥∥∥yt − β1x1,t − x>
−1,t,

(
Ŝ
(I)
β−1

∪Ŝ(II)
β−1

)β−1

∥∥∥∥∥
2

2

,

where Ŝ
(I)
β−1

(λ), Ŝ
(II)
β−1

(λ) are the estimated supports at Step 1 and 2 and(
Ŝ
(I)
β−1

∪ Ŝ(II)
β−1

)
indicates the union of the selected coefficients at Step

1 and 2. The intuition of this method is as follows. For simplicity
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Chapter 1. Introduction

assume the error term εt is homoskedastic and uncorrelated. Consider
the covariance matrix

E

[
x>1,tx1,t x1,tx−1,t

x1,tx−1,t x>
−1,tx−1,t

]
=

[
σ2x1,t σx1,tσx−1,tρ

σx1,tσx−1,tρ σ2x−1,t

]
, (1.16)

where ρ is the correlation between x1,t and x−1,t and assume ρ 6= 0.
Now consider the regression of yt on only x1,t i.e., yt = β1x1,t+ ε̃t where

ε̃t ≡ x>
−1,tβ−1 + εt, then β̂

OLS
1 will not be a consistent estimator for β1

since

β̂OLS = (x>1,tx1,t)
−1x>1,t(β1x1,t + ε̃t) =

= β1 + (x>1,tx1,t)
−1x>1,tε̃t = β1 + (x>1,tx1,t)

−1x>1,t(x
>
−1,tβ−1 + εt)

= β1 + (x>1,tx1,t)
−1x1,tx−1β−1 + (x>1,tx1,t)

−1x>1,tεt
p→ β1 + β−1

ρσx1,t
σx−1,t

.

where
p→ indicates convergence in probability. Analogously, when con-

sidering the least squares of yt on only x−1,t will yields β̂
OLS
−1

p→ β−1 +

β1
ρσx−1,t

σx1,t
. Finally, taking the least squares of x1,t on x−1,t returns

(x>
−1,tx−1,t)

−1x>
−1,tx1,t

p→
ρσx1,tσx−1,t

σ2x−1,t

.

If β−1 + β1
ρσx−1,t

σx1,t
is large, then the lasso at Step 1 will select x−1,t. If

ρσx1,t
σx−1,t

is also large, lasso will also select x−1,t at Step 2. Conversely,
ρσx1,t
σx−1,t

can only be small if ρ is small; hence β−1 + β1
ρσx−1,t

σx1,t
can only

be small when β−1 is small. Therefore, only when ρ and β−1 are both
small then lasso will not select x−1,t in either Step 1 or Step 2 thus
leaving Step 3 with no x−1,t. The key point is that if both ρ and β−1

are small, then

β̂OLS
p→ β1 + β−1

ρσx1,t
σx−1,t

≈ β1, (1.17)
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since the compounding factor β−1
ρσx1,t
σx−1,t

is negligible and hence consis-

tency is re-estabilished. In other words, considering equation (1.15), an

unbiased result is obtained if
√
T
(
x>t xt
T

)−1 x>t x−1,t

T

p→ 0. Therefore, one

can rewrite x1,t = ρ
σx1,t
σx−1,t

x−1,t+ζt with E(ζtx−1,t) = 0 and Eζ2 = 1−ρ2,
and obtain(

T−1x>
−1,tx−1,t

)−1
T−1/2

(
ρ
σx1,t
σx−1,t

x−1,t + ζ

)
x−1,t =

=
√
Tρ

σx1,t
σx−1,t

+
(
T−1x>

−1,tx−1,t

)−1
T−1/2x>

−1,tζt,

=
√
Tρ

σxt,1
σx−1,t

+ (1− ρ2)
σ2x1,t
σ2x−1,t

N (0, 1) + op(1).

Define δT → 0 as T → ∞ such that δT
√
T → ∞ but δTT

1/4 → 0. Then,
increasingly small parameters in T can be defined as ρ = cx1,tx−1,tδT and
βT = cx−1,tδT for cx1,tx−1,t , cx−1,t some positive constants, such that

βT

(
T−1x>

−1,tx−1,t

)−1
T−1/2

(
ρ
σx1,t
σx−1,t

x−1,t + ζt

)
x−1,t =

=
√
Tδ2T cx1,tx−1,tcx−1,t

σx1,t
σx−1,t

+ cx−1,tδT (1− ρ2)
σ2x1,t
σ2x−1,t

N (0, 1),

(1.18)

and since
√
Tδ2T → 0 and δT → 0 both terms vanish asymptotically, thus

letting β̂OLS
1

p→ β1. The double selection step via the lasso, guarantees
that omitted variable bias is substantially diminished and the errors of
the final model are close enough to be orthogonal with respect to the
treatment variable. This rather straightforward result allows for uni-
form asymptotic validity for a test of hypothesis in a high-dimensional
regression model.
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Chapter 1. Introduction

1.2 Granger Causality

An important task investigated in this thesis is: trying to learn cause
and effect relationships among time series in a high-dimensional mod-
eling framework. Causality had been considered in the field starting
around 1950 (see e.g. Weiner, 1956). However, it was Clive Granger’s9

contributions to the the study of causality and causal relationships in
economics to pave the way to modern empirical causality analysis and
testing. Granger (1969) Econometrica paper is the cornerstone of these
fields as the simple definitions it contains have formed the basis for al-
most all the research in the area in the last 50 years and will likely do
so for many more years to come. Granger employs spectral methods
as well as simple bivariate time series models to formalize and illus-
trate the notion of causality. In his own words: “[...] Yt causes Xt if
we are able to better predict Xt using all available information than if
the information apart from Yt had been used”(Granger, 1969, p.428).
Several research directions stemmed from this contribution to the liter-
ature: many forecasting works have used Granger causality tests as a
basic tool for model specification and many economic theories like e.g.,
the relationship between money and income (see Sims, 1972) have been
evaluated using Granger causality tests.

Later, Granger (1980) publishes “Testing for causality: a personal view-
point” in the Journal of Economic Dynamics and Control. An elucidat-
ing discussion of the philosophical notion of causality and the roots of its
initial interest is provided along with a probabilistic (axiomatic) formal-
ization of the causality concept. The formal probabilistic interpretation
of causality is derived in terms of distribution functions conditioned to
an information set, thus leading to causality tests based on conditional
expectation and variance.

Granger Causality captures predictability given a particular infor-

9Granger was awarded, together with Robert Engle, the Nobel Memorial Prize in
Economic Sciences in 2003, in recognition of his contributions to cointegration
analysis.
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mation set Ωt at time t. If the addition of the variable Xt to Ωt alters
the conditional distribution of another variable Yt and both Xt and Ωt
are observed prior to Yt, then Xt improves predictability of Yt. Hence,
we say Xt Granger causes (or is Granger causal for) Yt.

Granger (1980) envisioned this information set Ωt as “all the knowledge
in the universe available at that time” (Granger, 1980, p.330). This is
of course difficult to operationalize and poses some troubles. In fact,
as observed in Eichler (2013), this probabilistic concept of causality
exploits temporal precedence, namely the fact that causes must pre-
cede their effects in time. However, temporal precedence alone is not a
sufficient condition for establishing cause–effect relationships, and the
omission of relevant variables (cf. omitted variables bias), can lead to
so-called spurious causalities. In other words, conditioning on an infor-
mation set containing (all) the relevant variables is paramount to avoid
confusing causal discoveries with mere predictability results i.e., causal
results that do not hold anymore as an additional variable is added to
Ωt. Thus, the definition must be modified to become operational. To
do so, one needs to substitute to the information set Ωt, the set of all
the information up until time t for the available data. For this opera-
tionalized version of causality Granger himself used the term “Xt is a
prima facie cause of Yt’ to underline the fact that a cause in the sense
of Granger causality must be considered only as a potential cause.

The high-dimensional setting under which this whole thesis is based
on, allows to approach the original universal concept of causality as en-
visioned by Granger, thus rendering the operationalized version more
robust. With high-dimensional models one is able to condition a rela-
tion between Xt and Yt to a very large information set Ωt. The curse
of dimensionality as defined in Section 1.1.1 will constrain at giving
up variables within the information set, unsuited for explaining the
relationship among Xt and Yt. However, the post-double selection algo-
rithm outlined in Section 1.1.2 guarantees, within the possibilities of the
data set available, that the information set selected is free of omitted
variable bias.
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1.3 High-Dimensional Time Series Models: Contribution
of this Thesis

The present thesis is organized as follows.

Chapter 2 extends the post-double selection method as discussed in
Section 1.1.2 to high-dimensional stationary time series models, specif-
ically vector autoregressions (VARs). A Lagrange-Multiplier (LM) test
is developed to test for (blocks) Granger causality in high-dimensional
VARs. Through an extensive simulation study the test is proved to work
very well in terms of both size and statistical power in finite samples.
Many different ways of carefully tuning the penalty parameter λ are
compared: information criteria, time series cross-validation and plug-in
choices. The test is not confined to bivariate relations but accomodates
blocks-Granger causality, meaning that a subset of variables can be
tested to be Granger-causal for another set. Under a series of assump-
tions, the post-double selection estimator is proved to be asymptoti-
cally Gaussian and the relative LM test standard χ2 distributed. The
novel testing procedure is employed within the framework of a high-
dimensional heterogeneous VAR (see Corsi, 2009) to build a contagion
network of volatility spillovers for 30 large capital stocks. The pro-
posed method is compared with standard bivariate Granger-causality
and full system VAR Granger-causality tests and clusters of volatility
contagion are derived via the edge betweenness algorithm. Compar-
isons are provided with both a large sample in which the full-system
VAR provides a useful benchmark and a smaller sample. By increasing
the information set through considering a high-dimensional VAR model
in the estimation, one is able to obtain more realistic effects than in the
low-dimensional models. Furthermore, even when the sample size is not
large enough to use standard full-system VAR techniques, the proposed
method remains reliable and delivers accurate results.

Chapter 3 builds on the post-double selection LM test for Granger
causality in high-dimensional VARs developed in Chapter 2. The setting
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is extended to unit-root non-stationary time series. As usual asymptotic
theory is not applicable to hypothesis testing in levels VARs if the vari-
ables are integrated or cointegrated, a lag-augmentation is employed
similarly to Toda and Yamamoto (1995). While the original idea of
Toda and Yamamoto (1995) was conceived for low-dimensional settings,
in Chapter 2 this is extended to the high-dimensional case. Algebra is
derived to show that augmenting the lag-length only to the variable
of interest for the Granger causality test i.e., the Granger-causing and
Granger-causal, as opposed to all the variables in the system, is suffi-
cient to obtain asymptotic normality of the post-selection least squares
estimator. Simulations show how this result is able to bypass the loss of
statistical power produced by the lag-length over-specification as long
as causality is tested on sufficiently small blocks. The set of assump-
tions needed for the post-double selection procedure to hold in the non-
stationary framework is adapted and the LM test is again proved to
be standard χ2 distributed. Furthermore, a data-driven upper bound
to select the lag-length in a high-dimensional VAR is proposed and its
finite sample performances assessed. The test is used on the popular
macroeconomics data set FRED-MD (see McCracken and Ng, 2016) to
investigate the main macroeconomic drivers of inflation. The proposed
method is able to uncover important macroeconomic connections which
would be lost if differences would be taken to transform the time series
to stationary.

Chapter 4 uses the designed post-double-selection LM test for unit
root non-stationary time series developed in Chapter 3 to investigate
causality in high-dimensional climate systems. The new method helps
in disentangling and interpreting the complex causal chains linking
greenhouse gas radiative forcings and global temperatures. Allowing
for large-dimensionality opens up to opportunities of conditioning the
causal relationship between greenhouse gases and temperature to sev-
eral natural and anthropogenic variables. The use of a VAR in levels is
particularly adapted for climate time series which are known to contain
stochastic trends and yielding long memory. Climate change is discussed
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and in order to contribute to its attribution, Granger causality net-
works are built among the climate series considered via the post-double-
selection LM test. Yearly data are collected from 1850 until 2019 on
climate variables such as solar activity, stratospheric and tropospheric
aerosols and surface albedo, ocean heat content, El Niño–Southern Os-
cillation index, global temperature anomalies and greenhouse gas con-
centration. GDP is also added as extra conditioned variable within the
information set. We carry out the analysis both with greenhouse gas
considered as a single aggregated series and also dividing it into the
three main gases, namely CO2, CH4, N2O. Direct and indirect causal
paths are discussed as well as cycles, clusters and feedbacks effects.
A sensitivity analysis on unit roots and lag-length show how avoiding
taking differences of the original series is beneficial for the causal find-
ings and considering larger lag-lengths is helpful for climate systems to
uncover causal relations otherwise masked.

Chapter 5 reconciles sparse and dense techniques within the framework
of a dynamic factor model. A two steps procedure is outlined in order
to estimate the model and produce forecasts. The first step estimates
the factor via standard principal components argument while the sec-
ond step uses the estimated idiosyncratic components within a sparse
VAR which is estimated by penalized regression techniques such as the
adaptive lasso. Intuitively, this approach is beneficial since it allows to
disentangle in the system covariance matrix, the dependence among its
diverging eigenvalues, namely the factors, with the dependence among
the bounded ones i.e., the idiosyncratic components. Cross-sectional
and time dependence in the idiosyncratic term are allowed and this
is assumed to follow a high-dimensional VAR model. Consistent esti-
mation of both idiosyncratic components and the factors is shown as
both the cross-sectional and time dimensions grow large. The work is
complemented with a novel joint information criteria which combines
the Bai and Ng (2002) approach to select the number of factors with
an extra penalty which allows for simultaneous lag-length estimation.
The forecasting performances of the proposed procedure as well as the
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proposed information criteria are assessed via simulations.

Concluding remarks are drawn in Chapter 6.
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2

Granger Causality Testing in
High-Dimensional VARs: a

Post-Double-Selection Procedure1

1This chapter is based on a joint work with Alain Hecq and Stephan Smeekes
from Maastricht University and it is forthcoming in the Journal of Financial
Econometrics.

23



Chapter 2. Granger Causality Testing in High-Dimensional VARs: a
Post-Double-Selection Procedure

Abstract

In this chapter we develop an LM test for Granger causality in high-
dimensional VAR models based on penalized least squares estimations.
To obtain a test retaining the appropriate size after the variable selec-
tion done by the lasso, we propose a post-double-selection procedure
to partial out effects of nuisance variables and establish its uniform
asymptotic validity. We conduct an extensive set of Monte-Carlo simu-
lations that show our tests perform well under different data generating
processes, even without sparsity. We apply our testing procedure to
find networks of volatility spillovers and we find evidence that causal
relationships become clearer in high-dimensional compared to standard
low-dimensional VARs.
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2.1 Introduction

Economics, statistics and finance have seen a rapid increase of appli-
cations involving time series in high-dimensional systems. Central to
many of these applications is the vector autoregressive (VAR) model
that allows for a flexible modelling of dynamic interactions between
multiple time series. In this chapter we develop a simple method to
test for Granger causality in high-dimensional VARs (HD-VARs) with
potentially many variables.

Many financial applications consider Granger causality analysis, espe-
cially for constructing high-dimensional networks. Networks of financial
firms’ intedependencies are investigated in Basu, Shojaie, et al. (2015),
Gao et al. (2017), Demirer et al. (2018) and Barigozzi and Brownlees
(2019). Similarly, spillovers and contagion among stock returns are
investigated in networks using Granger causality analysis in Lin and
Michailidis (2017), Vyrost et al. (2015) and Corsi et al. (2018).

Most of the econometric literature has traditionally been focused on al-
lowing for high dimensionality in VARs through the use of factor models
(see e.g. Bernanke et al., 2005; Chudik and Pesaran, 2016) or Bayesian
methods (Bańbura et al., 2010). For instance Billio, Getmansky, et
al. (2012) develops measures of connectedness to assess systemic risk
propagation among institutions in the financial system using principal
component analysis and Granger causality networks. Recent years have
seen an increase in regularized, or penalized, estimation of sparse VARs
based on popular methods from statistics such as the lasso (Tibshirani,
1996) and elastic net (Zou and Hastie, 2005), which impose sparsity by
setting a (data-driven) selection of the coefficients to zero.

Compared to factor models, such sparsity-seeking methods have often
an advantage of interpretability, as in many economic applications, it
appears natural to believe that the most important dynamic interactions
among a large set of variables can be adequately captured by a relatively
small – but unknown – number of ‘key’ variables. As such, the use
of these methods for estimating HD-VAR models has also increased
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significantly in recent years, see e.g. Nicholson, Matteson, et al. (2017),
Basu, Li, et al. (2019), Billio, Casarin, et al. (2019), Wilms and Croux
(2018), Korobilis and Pettenuzzo (2019)).

Regularized estimation theory for high-dimensional time series and VAR
models is now well established, see among others Song and Bickel (2011),
Basu and Michailidis (2015a), Kock and Callot (2015), Davis et al.
(2016), Medeiros and Mendes (2016a), Audrino and Camponovo (2018)
and Masini et al. (2019) and Wong et al. (2020); Kock, Medeiros, et al.
(2020) provide a recent review. However, performing inference on HD-
VARs, such as testing for Granger causality, still remains a non-trivial
matter. As is well known, performing inference after model selection
(post-selection inference) is complicated as the selection step invalidates
‘standard’ inference where the uncertainty regarding the selection is ig-
nored (see Leeb and Pötscher, 2005). Complexities introduced by the
temporal and cross-sectional dependencies in the VAR mean that most
recently developed post-selection inference methods are not automati-
cally applicable.

Most existing literature on Granger causality testing in HD-VARs there-
fore has so far not considered post-selection inferential procedures.
Wilms, Gelper, et al. (2016) propose a bootstrap Granger causality
test in HD-VARs, but do not account for post-selection issues. Sim-
ilarly, Skripnikov and Michailidis (2019) investigate the problem of
jointly estimating multiple network Granger causal models in VARs
with sparse transition matrices using lasso-type methods, but focus
mostly on estimation rather than testing. Song and Taamouti (2019)
focus on statistical procedures for testing indirect/spurious causality
in high-dimensional scenarios, but consider factor models rather than
regularized regression techniques. Lin and Michailidis (2017) consider
high-dimensional multi-block VARs derived from a two-blocks recursive
linear dynamical system and use a maximum likelihood (ML) estima-
tor for Gaussian data. In order to obtain the ML estimates for the
system transition matrices and the precision matrix, respectively the
lasso and graphical lasso on the residuals are iterated until convergence.
Krampe, Kreiss, et al. (2018) develops bootstrap techniques for sparse
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VAR models combining a model-based bootstrap procedure and the
de-sparsified lasso (see Van de Geer et al. (2014)) to perform inference
on the autoregressive parameters. Chaudhry et al. (2017) look at de-
biased estimators as in Javanmard and Montanari (2014), for Gaussian
and sub-Gaussian VAR processes with a focus on Granger-causality and
control of the false discovery rate.

In this chapter we build on the post-double-selection approach pro-
posed by Belloni, Chernozhukov, and Hansen (2014b), to develop a
valid post-selection test of Granger causality in HD-VARs. The finite-
sample performance depends heavily on the exact implementation of
the method. In particular, the tuning parameter selection in the penal-
ized estimation is crucial. We therefore perform an extensive simulation
study to investigate the finite-sample performance of the different ways
to set up the test in order to be able to give some practical recom-
mendations. In addition, we investigate the construction of networks of
realized volatilities using a sample of 30 financial stocks modeled as a
vector heterogeneous VAR (Corsi, 2009). We are able to demonstrate
how our approach allows for obtaining much sharper conclusions than
standard low-dimensional VAR techniques.

The remainder of the chapter is as follows: Section 2.2 introduces the
high-dimensional VAR model and Granger causality tests. In Section
2.3 we propose our estimation and inferential framework. Section 2.4
establishes the asymptotic properties of our method and discusses the
assumptions required for the theory to hold. Section 2.5 reports the
results of the Monte Carlo simulations. We apply our method in Section
2.6 to construct volatility spillover networks. Section 2.7 concludes.
Proofs and supplemental results can be found in the appendix.

A few words on notation. For any n-dimensional vector x, we let ‖x‖p =
(
∑n

i=1 |xi|
p)1/p denote the `p-norm. For any index set S ⊆ {1, . . . , n},

let xS denote the sub-vector of xt containing only those elements xi
such that i ∈ S. |S| denotes the cardinality of the set S. We use

p−→ and
d−→ to denote convergence in probability and distribution, respectively.
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2.2 High-dimensional Granger causality tests

Loosely speaking, the notion of Granger causality captures predictabil-
ity given a particular information set (Granger, 1969; Granger, 1980).
If the addition of variable X to the given information set Ω alters the
conditional distribution of another variable Y , and both X and Ω are
observed prior to Y , then X improves predictability of Y , and is said
to Granger cause Y with respect to Ω. Granger (1969) originally en-
visioned the information set Ω “be all the information in the universe”
(p. 428), which is of course not a workable concept. Yet clearly the
choice of information set has a major effect on the interpretation of
the finding of (non-)Granger causality, as discussed in Granger (1980).
In particular, spurious Granger causality from X to Y may be found
when both X and Y are Granger caused by Z, but Z is omitted from
Ω. As such, one might want to include as many potentially relevant
variables in the information set as possible in order to avoid finding
spurious causality due to omitted variables, thereby moving as much as
possible towards the universal information set envisioned by Granger.
However, conditioning on so many variables leads to obvious problems
of high-dimensionality rendering many standard statistical techniques
invalid.

In this chapter we focus on testing Granger causality in mean using
linear models, in which setup the VAR model is the natural tool to
investigate this problem. However, to enlarge the information set means
estimating a VAR with an increasing number of variables. The number
of parameters in a VAR increases quadratically with the number of
time series included; an unrestricted VAR(p) has K2p coefficients to be
estimated, where K is the number of series and p is the lag-length. As
the time series dimension T is typically fairly small for many economic
applications, the data do not contain sufficient information to estimate
the parameters and consequently standard least squares and maximum
likelihood methods suffer from the curse of dimensionality, resulting in
estimators with high variance that overfit the data.
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2.2.1 Granger causality testing in VAR models

Let y1, . . . ,yT be a K-dimensional multiple time series process, where
yt = (y1,t, . . . , yK,t)

′
is generated by a VAR(p) process

yt = A1yt−1 + · · ·+Apyt−p + ut, t = p+ 1, . . . , T , (2.1)

where for notational simplicity we assume the variables have zero mean;
if not they can be demeaned prior to the analysis, or equivalently a
vector of intercepts is added. A1, . . . ,Ap are K×K parameter matrices
and ut is a martingale difference sequence (mds) of error terms. We
consider weakly stationary VAR models, as formalized in Assumption
1 below.

Assumption 1. The VAR model in (2.1) satisfies:

(a) {ut}Tt=1 is a weakly stationary mds with respect to
Ft = σ(yt,yt−1,yt−2, . . .) ut such that E(ut|Ft−1) = 0 for all t and
Σu = E(utu′

t) is positive definite.

(b) All roots of det(IK−
∑p

j=1Ajz
j) lie outside the unit disc, such that

the lag polynomial is invertible.

In the VAR model (2.1) we are interested in testing whether variables
in the set J Granger cause variables in the set I in mean, conditional
on all the other variables, where J, I ⊂ {1, . . . ,K} and J ∩ I = ∅.
Let NI = |I| and NJ = |NJ | denote the number of variables in I
and J respectively. We describe our procedure here in general form
for testing blocks of variables. For any sets S1, S2 ⊆ {1, . . . ,K} of
variables define the best linear predictor in L2-norm of yS1,t given

x
(p)
S2,t−1 = (y′

S2,t−1, . . . ,y
′
S2,t−p)

′ as P(yS1,t|x
(p)
S2,t−1) = Γ ∗x

(p)
S2,t−1, where

Γ ∗ = minΓ E
[
‖yS1,t − ΓxS2,t−1‖22

]
. Then we say that yJ,t does not

Granger cause yI,t conditionally on xJc,t if

P(yI,t|x(p)
Jc,t) = P(yI,t|x(p)

t−1) (2.2)
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for any value of xJc,t. In other words, conditional on xJc,t, addition of
the lags of yJ,t to the information set does not improve predictability of
yI,t. Note that Granger (non-)causality as defined in (2.2) is a property
of the population. In the VAR (2.1) this means that testing for Granger
causality can be done via testing the joint significance of the blocks of
coefficients in the matrices A1, . . . ,Ap corresponding to the impact of
variables J on I.

To illustrate, consider (2.1) with p = 1 lag, and assume without loss of
generality that the variables in yt are ordered such that

yt =
(
y′
I,t,y

′
J,t,y

′
−(I∪J),t

)′
, where −(I ∪ J)) refers to all variables not

in J or I. Then we can write yI,t
yJ,t

y−(I∪J),t

 =

 AI,I AI,J AI,−(I∪J)
AJ,I AJ,J AJ,−(I∪J)

AI,−(I∪J) A−(I∪J) A−(I∪J),−(I∪J)

 yI,t−1

yJ,t−1

y−(J∪I),t−1

+ ut,

(2.3)

where A is partitioned conformably with the blocks in yt. In this case,
the best linear predictors in (2.2) are given by

P(yI,t|yt−1) = AI,IyI,t−1 +AI,JyJ,t−1 +AI,−(I∪J)y−(I∪J),t−1,

P(yI,t|yJc,t−1) = A∗
IyJc,t−1, where A∗

I = min
AI

E
[
‖yI,t −AIyJc,t−1‖22

]
.

For any arbitrary value of yt−1, these can only coincide if AI,J = 0.
Hence, the null hypothesis of no Granger causality from J to I in the
VAR(1) model can be formulated in terms of AI,J = 0. This is easily
extended to p > 1 by simply testing if the (I, J)-block of all p lag
matrices is equal to zero.

In the remainder of the chapter, we will be working with a stacked
representation of (2.1) for the variables in I. Specifically, let Y =
(yp+1, . . . ,yT )

′ and let yI = vec (YI) denote the NI × 1 stacked vec-
tor containing all observations corresponding to the variables in I.
Similarly, let uI = vec(UI), where U = (up+1, . . . ,uT )

′. Let X =(
x
(p)
p , . . . ,x

(p)
T−1

)′
and X⊗ = INI

⊗ X, while defining the stacked pa-
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rameter vector β = vec((A1, . . . ,Ap)
′). Then we can write

yI = X⊗β + uI = X⊗
GCβGC +X⊗

−GCβ−GC + uI , (2.4)

where X⊗
GC = INI

⊗ XGC , and XGC =
(
x
(p)
J,p, . . . ,x

(p)
J,T−1

)′
contains

those columns of X corresponding to the potentially Granger causing
variables in J ; X−GC and X⊗

−GC are then defined similarly but con-
taining the remaining variables.2 Testing for no Granger causality is
then equivalent to testing H0 : βGC = 0 against H1 : βGC 6= 0.

Define NJ = |J | and NI = |I|. Note that β−GC has (K −NJ)×NI × p
elements, which we assume large through having a large number of
variables K. On the other hand, throughout the chapter we assume
that NJ , NI and p are small, or more precisely, fixed when sample size
increases to infinity. As βGC has NGC = NJ×NI×p elements, these are
also implied to be fixed. While theoretically it is possible to consider
an increasing number of elements in βGC (see Remark 2.6 for details),
it would not be required for typical applications. J and I are under the
researcher’s control and in most applications it is natural to consider
a small number of variables of interest; often both J and I will only
consist of a single variable, as in our application.

For p it may appear more restrictive to assume it small. However, large
p in univariate regressions or small systems often arise from neglected
dynamics with omitted variables (Hecq et al., 2016). As our HD-VAR
attempts to include many more variables than typical small systems,
we hope to alleviate the omitted variable issue, and thereby also di-
rectly making smaller p much more realistic. Of course, p is generally
unknown in practice. However, in many applications it is possible to
give a reasonable (and small) upper bound on p, which is sufficient for
our algorithm. If not, p has to be estimated. We discuss two ways in
the next section.

2Note that if I = {i} for one particular value of interest, then (2.4) simply corre-
sponds to a single equation from the VAR in (2.1).
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Remark 2.1. Our operational version of Granger causality only con-
siders causality in mean. Additionally, one might argue that considering
only linear models is a further restriction on the generality of the con-
cept of Granger causality. However, in our high-dimensional approach
linear models are less restrictive as would appear. First, the VAR does
not have to be formulated for levels of variables of interest. In fact, in
our application we formulate a VAR for (realized) variances, such that
we are implicitly testing Granger causality in second moments rather
than first moments. Second. the linear VAR model in many cases pro-
vides a good approximation to a general nonlinear process via a Wold-
type representation argument, see e.g. Meyer and Kreiss (2015). Finally,
non-linear transformations (such as powers) of the original variables can
be added to (2.4), by which general functional forms can be approxi-
mated (even if one then strictly loses the VAR equivalence). While in
small systems this is infeasible as it increases the dimensionality dis-
proportionally, our high-dimensional approach can handle this without
any conceptual issues. In fact, Belloni, Chernozhukov, and Hansen
(2014a) explicitly motivate their high-dimensional linear approach as
an approximation to a general function; their arguments apply here as
well.

2.3 Inference after selection by the lasso

In this section we introduce our inferential procedure to the Granger
causality tests in high-dimensional VARs. We first discuss the lasso,
which we use in the initial stage to select relevant variables. Next we
discuss how naive use of the lasso introduces post-selection problems
for inference, and we propose our algorithm to remedy this.

2.3.1 The lasso estimator

As β is high-dimensional when Kp is large relative to T , least squares
estimation is not appropriate, and a structure must be imposed on β to
be able to estimate it consistently. We assume sparsity of β; that is, we
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assume that β can accurately be approximated by a coefficient vector
with a (significant) portion of the coefficients equal to zero.

The sparsity assumption validates the use of variable selection methods,
thereby reducing the dimensionality of the system without having to
sacrifice predictability. For a general n-dimensional vector of responses
y and n×M -dimensional matrix of covariates X, the (weighted) lasso
simultaneously performs variable selection and estimation of the param-
eters by solving

β̂(λ) = argmin
β

(
1

T
‖y −Xβ‖22 + λ

M∑
m=1

|wmβm|

)
, (2.5)

where λ is a non-negative tuning parameter determining the strength of
the penalty, and {wm}Mm=1 are non-negative weights corresponding to
the parameters in β. For the standard lasso the weights are either equal
to one, or equal to zero (if this parameter should not be penalized). The
notation β̂(λ) highlights that the solution to the minimization problem
depends on λ, which has te be selected as well (see Section 2.3.3). When
no confusion can arise, we simply write β̂.

One may also consider the adaptive lasso (Zou, 2006) with parameter-
specific weights wj in (2.5) based on an initial estimation of β, which is
able to delete more irrelevant variables. However, for our purpose such
oracle properties are not very relevant; we wish to eliminate the effects
of the other “nuisance” variables on the relation between the variables
tested for Granger causality, but we do not need to identify which of
these nuisance variables matter.

Theoretical properties of lasso estimation in stable VAR models have
now been studied extensively. We here non-exhaustively mention some
of the key results for our setting; see Kock, Medeiros, et al. (2020) for
a thorough review. Kock and Callot (2015) derive oracle properties of
the adaptive lasso for VAR models. Basu and Michailidis (2015a) es-
tablish restricted eigenvalue conditions for VAR models and show their
sufficiency for estimation consistency. Medeiros and Mendes (2016a)

33



Chapter 2. Granger Causality Testing in High-Dimensional VARs: a
Post-Double-Selection Procedure

relax the Gaussianity assumptions of these papers by considering con-
ditionally heteroskedastic errors, and demonstrate that the adaptive
lasso retains oracle properties in time series settings. Finally, Masini
et al. (2019) derive bounds on estimation errors in approximately sparse
VAR models under very general conditions, allowing for heavy tails and
dependence in the error terms. In particular, they show that several
commonly used volatility processes in financial research satisfy these
assumptions, thereby formally establishing the suitability of the lasso
for many financial applications of VAR models.

2.3.2 Post-Double-Selection Granger causality test

2.3.2.1 The need for post selection inference

One might be tempted to simply perform the (adaptive) lasso as in
(2.5) on (2.4), setting wGC = 0, and then testing whether βGC = 0,
potentially after re-estimating the model by OLS on only the selected
variables. However, this ignores the fact that the final, selected, model
is random and a function of the data. The randomness contained in
the selection step means the post-selection estimators do not converge
uniformly to a normal distribution, as the potential omitted variable
bias from omitting (weakly) relevant variables in the selection step is
too large to maintain uniformly valid inference.

In a sequence of papers (see e.g. Leeb and Pötscher, 2005), Leeb and
Pötscher address these issues, showing that distributions of post-selection
estimators only converge point-wise but not uniformly in the parameter
space to normal distributions. Therefore, “standard” asymptotics fail
to deliver a proper approximation of finite-sample behavior due to the
presence of small, hard to detect parameters, whose omitted variable
bias is too large to ignore asymptotically. As such, post-selection based
on oracle properties is only appropriate if one a priori rules out small pa-
rameters conditions (via beta-min conditions, see e.g. Geer, Bühlmann,
et al., 2011) thus obtaining a sharp separation of non-zero from zero
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coefficients. This is typically far too strong to be reasonable in applica-
tions, and methods explicitly accounting for selection are required.

Several approaches to valid post-selection inference, also referred to as
honest inference, have been developed in recent years based on various
philosophies, such as simultaneous inference across models (Berk et al.,
2013), inference conditional on selected models (Lee et al., 2016), or
debiasing (desparsifying) the lasso estimates (Van de Geer et al., 2014;
Zhang and Zhang, 2014). We focus on the double selection approach
developed by Belloni, Chernozhukov and co-authors; see e.g. (Belloni,
Chernozhukov, and Hansen, 2014a) for an overview. This approach
is tailored for the lasso, easy to implement, and can be extended to
dependent data.

Belloni, Chernozhukov, and Kato (2014) develop a post-double-selection
approach to construct uniform inference for treatment effects in par-
tially linear models with high-dimensional controls using the lasso. Two
initial lasso estimations of both the outcome and the treatment variable
on all the controls are performed, and a final post-selection least squares
estimation is conducted of the outcome variable on the treatment vari-
able and all the controls selected in at least one of the two steps. The
double variable selection step substantially diminishes the omitted vari-
able bias and ensures the errors of the final model are (close enough to)
orthogonal with respect to the treatment. The authors proved uniform
validity of the procedure under a wide range of DGPs, including het-
eroskedastic and non-Gaussian errors.

Chernozhukov, Härdle, et al. (2020) extend the analysis of estimation
and inference for highly-dimensional systems in regressions, allowing
for (weak) temporal and cross-sectional dependency. Regularization
techniques for dimensionality reduction are applied iteratively in the
system and the overall penalty is jointly chosen by a block multiplier
bootstrap procedure. Oracle properties and bootstrap consistency of
the test procedure are derived. Furthermore, simultaneous valid infer-
ence is obtained via algorithms employing least square or least absolute
deviation after (double) lasso selection step(s). Although our approach
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is closely related to that of Chernozhukov, Härdle, et al. (2020), it differs
in a number of ways. Our method is simpler and faster to implement
as it does not rely on bootstrap methods. Also, Chernozhukov, Härdle,
et al. (2020) focus on general systems of equations and general ways
of performing inference, which is different from our specific focus on
Granger causality and VAR models. Third, we consider a different set
of assumptions to establish the validity of our method, where we specif-
ically focus on the relevance of these assumptions for applications in
financial econometrics.

2.3.2.2 High-dimensional Granger causality test

We here describe how to implement the post-double-selection procedure
in a VAR context. Let xGC,j , j = 1, . . . , NX , where NX = pNJ , denote
the j-th column of XGC and consider the partial regressions:

yI = X⊗
−GCγ0 + e0, (2.6)

xGC,j = X−GCγj + ej , j = 1, . . . , NX , (2.7)

where γj , j = 0, . . . , NX , are the best linear prediction coefficients3

γ0 = argmin
γ

E
∥∥yI,t −X⊗′

−GC,t−1γ
∥∥2
2
=
(
EX⊗

−GC,t−1X
⊗′
−GC,t−1

)−1
EX⊗

−GC,t−1yi,t,

γj = argmin
γ

E
∥∥xGC,j,t − x′

−GC,t−1γ
∥∥2
2
=
(
Ex−GC,t−1x

′
−GC,t−1

)−1
Ex−GC,t−1xGC,j,t,

for j = 1, . . . , NX , where X⊗
−GC,t−1 = INI

⊗ x−GC,t−1. As the errors
e0, . . . , eNX

are orthogonal to X−GC , partialling out the effects of these
variables would allow for a valid test of Granger causality. Of course,
(2.6) and (2.7) are still high-dimensional and cannot be estimated by
least squares. However, we can select the relevant variables from lasso
estimation of (2.6) and (2.7) and collect all these for the final estimation
of yI on X⊗

GC plus only those relevant variables.

3Note that Assumption 2(a) implies that (Ex−GC,t−1x−GC,t−1)
−1 and hence(

EX⊗
−GC,t−1X

⊗′
−GC,t−1

)−1
exists.
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Intuitively, this works because to cause omitted variable bias on the co-
efficients of XGC , a particular variable in X−GC must have a nonzero
coefficient in both (2.6) and one of the regressions in (2.7). If its co-
efficient is zero in (2.6), it has no effect on yI and is therefore not
wrongfully omitted. If it has a zero coefficient in all regressions in (2.7),
it is not correlated with any variables of interest, and omitting it will
not result in a bias. By including all variables that are selected in
at least a single of these regressions, we essentially allow for “one free
mistake” by the lasso in failing to select a relevant variable. That is,
omitted variable bias will only occur if the lasso fails to select a rele-
vant variable in both regressions simultaneously. As the probability of
this occurring decreases quadratically, this is sufficient to be negligible
asymptotically and allow for uniformly valid inference. We provide a
formal justification in Section 2.4.

We now state the details of our algorithm which executes the post-
double-section along the lines described above, and conclude this section
with some remarks.

Remark 2.2. We perform the initial regressions in terms of XGC amd
X−GC instead of X⊗

GC and X⊗
−GC . The two are equivalent, as the

Kronecker product essentially just copies the columns of X both in the
dependent and explanatory variables. Running the initial regressions
in terms of X⊗ therefore essentially means running the same regression
NI times, which is pointless as the selected variables remain the same
in terms of the columns of X−GC . We therefore perform the regressions
just once for each column in XGC . The construction of Ŝ⊗

X ensures that
for any selected column x−GC,m, we select every column of X⊗

−GC in
which x−GC,m appears.

Remark 2.3. The feasible generalized least squares (FGLS) estimation
in Step [2] is needed when NI > 1 to account for the correlation between
equations of the VAR, and the fact we do not have the same selected
regressors in each equation, as those coming from (2.6) differ. Note
that if NI = 1, FGLS estimation collapses to the familiar form of the
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Algorithm 1 Post-double-selection Granger causality LM test (PDS-
LM)

[1] Estimate the initial partial regressions in (2.6) and (2.7) by an
appropriate sparsity-inducing estimator such as the (adaptive)
lasso, and let γ̂0, . . . , γ̂NX

denote the resulting estimators. Let
Ŝ0 = {m : |γ̂m,0| > 0, m = 1, . . . , N} and Ŝj = {m : |γ̂m,j | >
0, m = 1, . . . , NX} for j = 1, . . . , p, denote the selected variables
in each regression.

[2] Let ŜX =
⋃NX
j=1 Ŝj denote all variables selected in the regressions

for the columns of XGC , and let Ŝ⊗
X map ŜX back to X⊗

−GC be

such thatX⊗
Ŝ⊗
X

= INI
⊗XŜX

. Collect all variables kept by the lasso

in Step [1] in Ŝ⊗ = Ŝ0∪ Ŝ⊗
X . Obtain the residuals ξ̂ = yI−X⊗

Ŝ⊗β̂
†

by OLS estimation. Let Ξ̂I denote the T×NI -matrix formed from
ξ̂ and construct Σ̂u,I = Ξ̂ ′

IΞ̂I/T and Σ̂⊗
u,I = Σ̂u,I ⊗ IT .

[3] Let y∗
NI

=
(
Σ̂⊗
u,I

)−1/2
yNI

and X∗⊗ =
(
Σ̂⊗
u,I

)−1/2
X⊗. Ob-

tain the residuals ξ̂∗ = y∗
I −X∗⊗

Ŝ⊗β̂
†
FGLS , and regress ξ̂∗ onto the

variables retained by the previous regularization steps plus the
Granger causality variables, retaining the residuals ν̂∗ = ξ̂∗ −
X∗⊗
Ŝ ∪ GC

β̂∗
FGLS . Then obtain the statistic LM = (ξ̂∗′ξ̂∗ − ν̂∗′ν̂∗).

[4a] Reject H0 if LM > qχ2
NGC

(1−α), where qχ2
NGC

(1−α) is the 1−α
quantile of the χ2 distribution with NGC degrees of freedom.

[4b] Reject H0 if

(
TNI−ŝ−NGC

NGC

)(
LM

TNGC−LM

)
> qFNGC,NIT−ŝ−NGC

(1−

α), where ŝ =
∣∣∣Ŝ⊗

∣∣∣ and qFNGC,NIT−ŝ−NGC
(1 − α) is the 1 − α

quantile of the F distribution with NGC and NIT − ŝ − NGC

degrees of freedom.
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LM statistic. In that case one regresses ξ̂ by OLS onto the variables
retained by the previous regularization steps plus the Granger causality
variables, and retain the residuals ν̂ = ξ̂ −X⊗

Ŝ ∪ GC
β̂∗, obtaining R2 =

1− ν̂ ′ν̂/ξ̂′ξ̂.

Remark 2.4. Our lasso estimation of an HD-VAR can be interpreted
as a general, data-driven, approach to Granger causality testing which
encompasses the theory-driven ‘standard’ approach in low-dimensional
VARs. In particular, the lasso can be interpreted as imposing (approxi-
mate) sparsity over a high-dimensional information set, with the extent
and location of the sparsity, or irrelevance, determined in a data-driven
way. Conversely, testing Granger causality in a low-dimensional set-
ting can then be interpreted as a priori assuming an extreme degree of
sparsity over the same information set; in other words, it amounts to
assuming that none of the additional series are relevant.

Remark 2.5. Given that we essentially have NGC = NJ × NI × p
steps of selection, it would be more appropriate to refer to our method
as “post-NGC-selection” approach. For expositional simplicity however
we stick to the post-double-selection name, as this is the common name
for such a procedure, and conveys the essence of our method equally
well.

Remark 2.6. Although the lasso regressions can handle increasing NJ ,
NI or p with any issues, inference becomes more complicated when NGC

increases with the sample size as the proposed LM statistic (or similarly
a Wald test) will not have a limit distribution anymore. In such a case
one could use recently developed Gaussian approximations of maxima
of high-dimensional vectors (Chernozhukov, Chetverikov, et al., 2013;

Zhang and Wu, 2017) to base a test statistic on maxm=1,...,NGC

∣∣∣β̂pdsGC,m

∣∣∣,
where β̂pds

GC are the coefficients of X⊗
GC in a regression of yI on XGC

and X⊗
Ŝ⊗ as in (2.8). However, the critical values of this test statistic

have to be simulated, which complicates the testing. As we argued
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in Section 2.2 that a fixed NGC is a reasonable assumption for typical
Granger causality applications, we do not pursue this route.

Remark 2.7. In Step [1] we propose not to consider the GC variables
in the first regularization and insert them back at Step [2]. Alterna-
tively, the GC variable(s) can be left in the regression, such that, we
regress on the full X⊗ matrix. In this case there are then two further
possibilities by either penalizing these variables or not. Simulations for
these two alternatives have been carried out and in practice we do not
find significant differences among the three in terms of size and power.
The approach proposed in Step 1 delivers the best results in terms of
size.

Remark 2.8. When the time series length is of same magnitude as
the number of covariates, information criteria and time series cross-
validation tend to break down and select too many covariates in order
to perform a post-selection by OLS. To overcome this issue we propose
to place a lower bound on the penalty to ensure that in each selection
regression at most c TNI variables are selected, for some 0 < c < 1. In
our simulation and empirical studies we set c = 0.5. Note that, as we
have NGC selection steps, the possibility remains that different variables
are selected in each steps, making the number of variables in the union ŝ
still too large to perform the post-selection OLS, although this problem
is likely to occur far less often. This can be addressed by ensuring that
fewer than NIT/NGC = T/NX variables are selected in each selection
step. We do not impose this stricter bound in general, as it will often
be much too strict. Instead, we recommend to only address this issue
if it arises in practice by an ad-hoc increase of the lower bound on the
penalty.4

4Although it happens less often, the theoretical plug-in method for the tuning
parameter occasionally also selects too many variables to make the post-OLS
estimation infeasible. However, for this method no easy solution is available for
bounding the penalty. One could increase the constant in the plug-in expression,
thus strengthening the penalty, but this would be a rather ad-hoc adjustment. In
particular, imposing the lower bound for the other methods only limits the allowed
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Remark 2.9. Although our Granger causality test has a χ2 distribution
under the null hypothesis asymptotically, in smaller samples the test
might still suffer from the usual small-sample approximation error. As
such we propose a finite-sample correction to the test in Step [3b], which
in our simulation studies improved the size of our test.

Remark 2.10. Instead of the (adaptive) lasso, other estimators can
be used in Step [1] as long as they deliver a sparse coefficient vector.
For instance, the elastic net of Zou and Hastie (2005) that adds an
`2-penalty in addition to the `1-penalty of the lasso can be used. The
additional penalty ensures that the elastic net is strictly convex, and
as a consequence tends to select highly correlated variables as a group
together, whereas the lasso would tend to select only one of these vari-
ables (Zou and Hastie, 2005). Given the typically strong correlations
between many economic variables, this appears particularly useful for
our context. However, we used the elastic net for both the simulations
and the empirical application, and in both cases we found that the re-
sults are widely comparable to those of lasso. Therefore we chose to
omit them from the chapter.

Remark 2.11. One can also perform a standard Wald test of Granger
causality instead of the LM test, by regressing the variables of interest
on X⊗

GC and X⊗
Ŝ⊗ , and testing for the significance of the coefficients

of X⊗
GC . While asymptotically the LM and Wald tests behave equally,

differences might arise in small samples. We investigated the Wald
version of the test in simulations as well, with results reported in Ap-
pendix B, Table 2.3. In general, differences between the two methods
are negligible. However, for the Wald test, occasionally we run into the
problem described in Remark 2.8, where even with the imposed lower

range of the tuning parameter, forcing the minimization to choose another (local)
minimum that can still be far away from the boundary and justified graphically.
For the plug-in method it is however difficult to justify the right amount of the
increase, as the tuning parameter will be fixed to that value, and thus the chosen
increase is rather arbitrary.
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bound on the penalty, too many variables are selected for performing a
post-selection OLS. For this reason we prefer the LM version.

2.3.3 Tuning parameter selection

Appropriate selection of the lasso tuning parameter λ in (2.5) is crucial
to achieve good performance. Many different data-driven methods ex-
ist giving wildly varying results. We provide a systematic comparison
of several popular methods discussed in the literature in a simulation
study. To the best of our knowledge, this is the first such comparison in
the context of post-selection inference. We now introduce the methods
considered in our study.

One option is to minimize an information criterion (IC) to determine an

appropriate data-driven λ. Let Ŝ(λ) =
{
m ∈ {1, . . . ,Kp} :

∣∣∣β̂m(λ)∣∣∣ > 0
}

denote the set of active variables in the lasso solution for a given λ. For
a generic response vector y and predictor matrix X, the value λIC is
found as

λIC = argmin
λ

ln

(
1

T

∥∥∥y −Xβ̂(λ)
∥∥∥2
2

)
+
CT
T

∣∣∣Ŝ(λ)∣∣∣,
where CT is the penalty specific to each criterion. We consider the
Akaike information criterion (AIC) by Akaike (1974) with CT = 2, the
Bayesian information criterion (BIC) by Schwarz (1978) with CT =
ln(T ), and the Extended Bayesian information criterion (EBIC) by
Chen and Chen (2008) with CT = ln(T ) + 2γ ln(Kp) with γ = 0.5
proposed by Chen and Chen (2012) who argue that BIC fails to select
the correct variables when the number of parameters is larger than the
sample size.

An alternative approach is to plug in estimates of theoretically optimal
values (see e.g. Bickel, Ritov, et al., 2009; Belloni and Chernozhukov,
2013; Belloni, Chernozhukov, and Wang, 2011). The lasso requires that
λ ≥ c‖X ′u‖∞/T for some constant c > 0 with “high probability”. The
central limit theorem motivates a Gaussian approximation where one
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chooses λth = 2cσ̂√
T
Φ−1

(
1− α

2N

)
for a small α = o(1), where Φ−1(·) is the

inverse of standard Gaussian cumulative distribution function and σ̂ is
an estimate the variance of u. In this chapter we set α = 0.05/ ln(T ) and
c = 0.5, while we follow Belloni, Chen, et al. (2012) in the estimation
of σ. Specifically, we obtain an initial (conservative) estimate by least
squares estimation of y on the five most correlated regressors. This
estimate is then updated iteratively, for details see Belloni, Chen, et al.
(2012).

Perhaps the most popular way to choose the tuning parameter is cross-
validation (CV), although CV is not always appropriate in the time
series setup without modifications (Bergmeir et al., 2018). To estimate
the tuning parameter with CV in a time series setup (TSCV) we use an
expanding window out-of-sample forecasting scheme and minimize its
squared forecasting error. The rolling window is set up with 80% of the
sample for training and 20% for testing. Cross-validation is appealing
since it does not require any plug-in estimates, however, as observed in
Chetverikov et al. (2020) it typically yields small values of λ thus still
gaining fast convergence rate but at the price of less variable selection.

Remark 2.12. Although we assume p fixed, in practice it may still need
to be estimated if no reasonable value (or upper bound) can be given.
As p determines the number of selection regressions to be conducted,
it has to be determined a priori and cannot be integrated in the lasso
estimation. It can still be determined though by a (separate) lasso-type
algorithm. For example, one may estimate (2.4) with a large initial lag
length p∗, and let p be determined as the largest lag for which variables
are selected, possibly also varying the lag length over variables. For this
approach the hierarchical penalties of Nicholson, Wilms, et al. (2020)
provide a better option than the regular lasso, as the regular lasso tends
to select occasional “spurious” high lags, which would have a significant
impact on the testing procedure. Alternatively one may marginalize the
VAR to a collection of univariate AR(p) processes, and select the lag
length by minimizing an information criterion on the residual covariance
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matrix. As marginalization increases the lag length, such an approach
would yield a simple to compute upper bound on p.

2.4 Asymptotic Properties

In this section we derive the asymptotic properties of our method. We
first present and discuss our general high-level assumption under which
the properties are derived, and then state our main results.

Assumption 2. Let δT and ∆T denote sequences such δT ,∆T → 0 as
T → ∞. Then assume that the following conditions are satisfied:

(a) Population Eigenvalues: Let et = (e1,t, . . . , eNX ,t)
′,

E = (e1, . . . , eT )
′ and E⊗ = INI

⊗E. Define

Σ =

[
ΣGC,GC ΣGC,−GC
Σ−GC,GC Σ−GC,−GC

]
=

[
E
(
xGC,tx

′
GC,t

)
E
(
xGC,tx

′
−GC,t

)
E
(
x−GC,tx

′
GC,t

)
E
(
x−GC,tx

′
−GC,t

)]
Then there exists a constant cL > 0 not depending on T and
k such that λmin(Σ) > cL, where λmin(Σ) denotes the minimum
eigenvalue of Σ.

(b) Limit Behavior: Let

E⊗′uI/
√
T = vec(E′UI)/

√
T =

1√
T

T∑
t=p+1

vec(etu
′
I,t)

d−→ N(0,Ω),

E′E/T =
1

T

T∑
t=p+1

ete
′
t
p−→ ΣGC|−GC =

= ΣGC,GC −ΣGC,−GCΣ
−1
−GC,−GCΣ−GC,GC ,

U ′
IUI/T

p−→ Σu,I ,

where Ω = plimT→∞ (E⊗′uIu
′
IE

⊗) /T .
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(c) Empirical Process: We have with probability at least 1−∆T that∥∥∥X ′
−GCui/

√
T
∥∥∥
∞

≤ γT for all i ∈ I and
∥∥∥X ′

−GCej/
√
T
∥∥∥
∞

≤ γT

for all j = 1, . . . , NX , with ej the j-th column of E, for some
deterministic sequence γT subject to the restrictions in (h).

(d) Boundedness: The (Granger causality) parameters of interest are
bounded, that is, there exists a fixed constant C > 0 such that
‖βGC‖1 ≤ C.

(e) Consistency: The initial estimators γ̂j are consistent in the pre-
diction sense; specifically, with probability at least 1−∆T we have
that ∥∥X⊗

−GC(γ̂0 − γ0)
∥∥
2
/
√
T ≤ δTT

−1/4,

max
j=1,...,NX

‖X−GC(γ̂j − γj)‖2/
√
T ≤ δTT

−1/4.

(f) Sparsity: Let Sj = {m : γm,j 6= 0} denote the sets of active

variables in (2.6) and (2.7) and let s = |S0| +
∑NX

j=1 |Sj |. Let ŝ
be as defined in Algorithm 1. Then both the DGP and the initial
estimators are sufficiently sparse; in particular, we have that with
probability at least 1 − ∆T , max(s, ŝ) ≤ s̄T for a deterministic
sequence s̄T subject to the restrictions in (h).

(g) Sparse Eigenvalues: for any γ ∈ R(K−NJ )p with ‖γ‖0 ≤ s̄T , we
have with probability at least 1−∆T that

‖γ‖22 ≤
∥∥∥X−GCγ/

√
T
∥∥∥2
2
/φ2T,min, where φT,min > 0 is subject to the

restrictions in (h).

(h) Rate Conditions: The deterministic sequences s̄T , γT and φT,min

introduced above satisfy the restriction s̄TγT /φT,min ≤ δTT
1/4.

Assumption 2 is a high-level assumption that allows for much flexibility
on the underlying DGP and the used estimators in the first step. We
now discuss each part in turn. Part (a) assumes that the minimum
eigenvalue of Σ is bounded. This is required for application of lasso
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methods, as well as for the inverse covariance matrix Σ−1 and the pro-
jection coefficients in (2.6) and (2.7) to exist. Part (b) assumes that
a central limit theorem and weak law of large numbers hold. Essen-
tially this require that the process is sufficiently well-behaved in terms
of moments and dependence allowed. Although for convenience we as-
sume martingale difference errors in Assumption 1, (b) holds under
much weaker conditions such as mixing errors; see e.g. Davidson (1994,
Chapter 14).

Part (c) is closely related to (b), but additionally controls the tail be-
havior of the empirical process. Results of this kind are standard in
the lasso literature and can be derived using a variety of tail bounds
depending on the properties of the random variables of interest, see e.g.
Kock and Callot (2015) and Medeiros and Mendes (2016a) for results
relevant to VAR and time series models. Of particular interest for fi-
nancial applications, Masini et al. (2019, Proposition 2) show that this
condition is satisfied for VAR models with general weakly dependent
errors that include many popular multivariate volatility models. The
boundedness assumption in (d) is not very restrictive, and with NGC

fixed follows directly if the parameter space of β is a compact set.

Part (e) imposes an appropriate consistency rate on the predictions
coming from the first-stage estimator. Such prediction consistency is a
standard result for lasso estimators; in particular, Wong et al. (2020)
obtain it for a very general class of VAR models allowing for conditional
heteroskedasticity and dependence in the error terms. Adamek et al.
(2020) derive consistency of the lasso under misspecified time series
models, and show that their setting covers (among others) the first-step
regressions of the relevant predictors in XGC on the other regressions,
which are inherently misspecified in a VAR setup due to the missing
lags; see their Remark 3 for further details.

Next to consistency, we also require sparsity of the DGP and the esti-
mator, as controlled by part (f). The assumption of exact sparsity in the
DGP for the initial regressions can be relaxed to approximate sparsity
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as in Belloni, Chernozhukov, and Hansen (2014b). For the sake of expo-
sitional clarity we do not work under that assumption here but stick to
the simpler exact sparsity. Sparsity of the first-stage estimator is needed
in our framework as we perform OLS on the selected variables from the
first-stage regressions. If the selected variables are not sparse enough,
too many variables will be selected for OLS to be feasible. Sparsity of
lasso estimators is analysed in Belloni and Chernozhukov (2013), while
Kock and Callot (2015) and Medeiros and Mendes (2016a) provide re-
sults for adaptive lasso for time series. Importantly, we do not require
consistent model selection; the selection method used is allowed to make
“persistent” mistakes, allowing for both variables to be incorrectly in-
cluded and relevant variables to be missed, as long as the estimator re-
mains sufficiently sparse and consistency is guaranteed. Unlike Belloni,
Chernozhukov, and Hansen (2014b), we allow for the order of sparsity
of the estimator to differ from the true sparsity thereby opening the
way for conservative selection procedures.

Given the assumptions above, the eigenvalue assumption in (g) becomes
almost superfluous, as it is generally needed to establish (e) and (f) for
lasso-type estimators; see e.g. Belloni and Chernozhukov (2013) and
Medeiros and Mendes (2016a) for details. It requires that for suffi-
ciently sparse vectors, the eigenvalues of the subset of the Gram matrix
corresponding to their non-zero support do not decrease to zero too fast.
Such assumptions are standard in the lasso literature in various guises
as restricted eigenvalue conditions, and can typically be derived by mak-
ing similar conditions on the population covariance matrix Σ−GC,−GC
coupled with a convergence result of the Gram matrix X ′

−GCXGC to
Σ−GC,−GC . Basu, Shojaie, et al. (2015), Masini et al. (2019) and Wong
et al. (2020) establish the plausibility of such restricted eigenvalue con-
ditions for various VAR models. We state the condition here explicitly
as it is needed directly in the proofs.

Finally, note that the restrictions on tail behavior (via γT ), sparsity
(via s̄T ) and minimum eigenvalues (via φT,min) are meaningless if no
rates on these sequences are imposed. Part (h) therefore is the key
part which connects all assumptions with explicit rates needed for the
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validity of the PDS method. The restrictions here represents a trade-
off between sparsity, thickness of tails and minimum eigenvalues. For
example, if, as often assumed φT,min is fixed and ut is Gaussian, tails are
sufficiently thin that γT can be chosen as roughly the order of

√
ln(K2p)

(cf. Kock and Callot, 2015, Lemma 4), leaving room for either almost
exponentially large K relative to T , or a fairly non-sparse model. On
the other hand, if only m moments of ut exist, γt should be taken
roughly of the order (K2p)2/m (Masini et al., 2019, Lemma 2), requiring
polynomial growth of K compared to T and sparser models.

The most restrictive and crucial assumption needed on the underly-
ing DGP for satisfying Assumption 2 is the sparsity of the underly-
ing DGP formulated in part (f). The plausibility of this assumption
highly depends on the specific application. In many financial appli-
cations sparsity (or its approximate version) is natural, for example in
portfolio selection when the number of assets is large and the estimation
of high-dimensional volatility matrices in financial risk assessment (see
Fan, Lv, et al. (2011) for an overview), as well as in our investigation
of Granger causality in networks of realized volatilities in Section 2.6.
The volatility of one particular stock is likely to have specific channels
of contagion rather than affecting the whole stock market at the same
time. Shocks to one asset therefore likely propagate through the sys-
tem via specific channels, which corresponds to sparse lag polynomials.
One might worry about systemic shocks affecting many assets; however,
the dense covariance matrix Σu can accommodate simultaneous com-
mon shocks. Moreover, the dynamic of such shocks can generally well
be captured through a sparse combination of the most important and
most affected assets. Similarly, in macroeconomic applications it has
been found that a few important variables can capture the effects of
unobserved common factors, leading sparse models to perform as well
as common factors (De Mol et al., 2008; Smeekes and Wijler, 2018).

We are now ready to state our main asymptotic result of this section
in Theorem 2.1 which establishes the asymptotic normality of the post-
lasso (generalized) least squares estimator. Here we slightly deviate
from the LM test in Algorithm 1; after the double selection procedure
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carried out in Step [1], we regress the transformed outcome variables

ỹt = (GT ⊗IT )yI on both the Granger causing X̃⊗
GC = (GT ⊗IT )X

⊗
GC

and selected variables X̃⊗
Ŝ⊗ = (GT ⊗ IT )X

⊗
Ŝ⊗

ỹI = X̃⊗
GCβ

pds
GC + X̃⊗

Ŝ⊗β
pds
Ŝ⊗ + ũI . (2.8)

The transformation by the matrix GT allows for the GLS esitmation

needed in the LM procedure by taking GT = Σ̂
−1/2
u,I , while OLS is per-

formed with GT = INI
. In the latter case the theorem provides the

foundation for the Wald test discussed in Remark 2.11 (minus the re-
quired variance estimation for that test). We state this result separately
as it is interesting in its own right, and can be used to establish validity
of other tests such as the Wald test.

Theorem 2.1. Let β̂pds
GC denote the OLS estimator of βpds

GC in 2.8. Let
GT be any matrix satisfying with probability at least 1−∆T that 0 < c1 ≤
λmin(G

′
TGT ) ≤ ‖G′

TGT ‖max ≤ c2 < ∞, where c1, c2 are constants not
depending on T . Then, uniformly in all DGPs that satisfy Assumption
2, we have as T → ∞,

√
T (β̂pds

GC − βGC)
d→ N

(
0, (G′G⊗ΣGC|−GC)

−1ΩG(G′G⊗ΣGC|−GC)
−1
)
,

where ΩG = plimT→∞ [(G′
TGT ⊗E′)uIu

′
I(G

′
TGT ⊗E)] /T .

Theorem 2.1 establishes the asymptotic normality of the post-double-
selection OLS estimators. The statement ‘uniformly in all DGPs that
satisfy Assumption 2’ should be interpreted as the theorem holding uni-
formly over a parameter space that is defined such that Assumption 2
holds for all parameters in that parameter space. Importantly, no beta-
min conditions on the smallest magnitude of parameters are required,
thus alleviating the post-selection inference problem. We refer to Com-
ments 3.4 and 3.5 in Belloni, Chernozhukov, and Hansen (2014b) for
further details regarding the uniformity. The limit distribution of the
LM test now follows straightforwardly from Theorem 2.1, and is stated
in the corollary below.
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Theorem 2.2. Let βGC = 0. Then, uniformly in all DGPs that satisfy
Assumption 2 and for which Ω = Σu,I ⊗ΣGC|−GC , we have that

LM
d−→ χ2

NGC
as T → ∞.

Theorem 2.2 establishes the limiting distribution of the PDS-LM test
under an additional condition on the (co)variances of the partial re-
gression errors, which is satisfied if the errors are iid. To allow for
heteroskedaticity the LM test has to be modified, which would only
lead to more cumbersome proofs without adding any novelty specific
to the high-dimensional case. Therefore we focus on the homoskedastic
case here, although we do consider a heteroskedasticity-robust version
of the test in the volatility application in Section 2.6.5

2.5 Monte-Carlo Simulations

We now evaluate the finite-sample performance of our proposed Granger
causality test. We consider three Data Generating Processes (DGPs)
inspired by Kock and Callot (2015):

DGP1: yt =

0.5 . . . 0
...

. . .
...

0 . . . 0.5

yt−1 + εt,

DGP2: yt =

(−1)|i−j|a|i−j|+1 . . . (−1)|i−j|a|i−j|+1

...
. . .

...

(−1)|i−j|a|i−j|+1 . . . (−1)|i−j|a|i−j|+1

yt−1 + εt,

DGP3: yt =

A . . . 0
...

. . .
...

0 . . . A

yt−1 + εt with A︸︷︷︸
5×5

=

0.15 · · · 0.15
...

. . .
...

0.15 · · · 0.15

 ,
5Note that this is no different for the Wald test, for which the variance estimation
has to be adjusted as well.
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where a = 0.4 in DGP2. The diagonal VAR in DGP1 respects the
sparsity assumption while in DGP2 the entries are set to decrease ex-
ponentially fast in the distance from the main diagonal and hence the
sparsity assumption is not met. DGP2 could be empirically motivated
by looking e.g. at financial interconnectedness. Financial institution,
such as banks, lend to and borrow from one another becoming inter-
connected through interbank credit exposures. The financial distress
experienced by one bank is likely to be most heavily transmitted the
closer the connections are as well as less transmitted, the weaker the
connections. DGP3 is a block-diagonal system. Such a structure is
motivated by e.g., typical quarterly macroeconomic models capturing
business cycle dynamic and monetary and fiscal policy effects. One such
example is DSGE models, where the dynamic of the economy through
time is monitored on quarterly frequency. Note that as written above,
DGP1 satisfies the null of no Granger causality from unit 2 to 1, while
DGP2 and DGP3 do not. Therefore, we adapt DGP 1 for the power
analysis by setting the coefficient in position (2, 1) equal to 0.2. Con-
versely, we set the same coefficient equal to zero for DGP2 and DGP3
for the size analysis.

We choose our series of interest as I = {2} and J = {1}, thereby
focusing on the case where we have single variables of interest for both
elements of the test. Here we consider for simplicity p = 1 lag, namely
the same lag-length as in the DGPs, so j = 1. The equation of interest
can then be written as

y2,t = βGCy1,t−1 +

K∑
j=2

βjyj,t−1 + ε2,t.

Hence, for each DGP we test H0 : βGC = 0 against H1 : βGC 6= 0 using
our proposed PDS-LM test.

Table 2.1 reports the size and power of the test for 1000 replications by
using different combinations of time series length T = (50, 100, 200, 500)
and number of variables in the system K = (10, 20, 50, 100) and a fixed
lag-length p = 1. All the rejection frequencies are reported using a
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burn-in period of fifty observations. For each scenario, AIC, BIC and
EBIC are compared with the theoretical choice of the tuning parameter
λth and time series cross validation λTSCV as described in Subsection
2.3.3.

Simulations are also reported for different types of covariance matrices
of the error terms. We employ a Toepliz-version for calculating the
covariance matrix as Σi,j = ρ|i−j| by using two scenarios of correla-
tion: ρ = (0, 0.7). The first case corresponds to no correlation, and is
equivalent to set Σ = IK .

In the Appendix we provide some additional simulation results. First,
Table 2.2 reports the simulation results for all three DGPs using Σi,j =
0.7|i−j|. Second, we investigate the Wald version of our test in Table
2.3. Third, in Table 2.4 we investigate the effects of miss-specification
of the lag length by estimating the over-specified VAR(p + 1) instead
of the true-order VAR(p).6 Fourth, in Table 2.5 we report the results
for the size of a bivariate Granger causality test for a non-sparse DGP
when using a standard Wald (F ) test. This test is obviously sensitive to
omitted variable bias, and our goal is to demonstrate its effect. Finally,
although all results reported here use the finite sample correction in
Step 3b of the algorithm, we also investigated the differences with Step
3a. We comment on these results in the next subsection.

Our proposed approach shows a good performance in terms of size and
(unadjusted) power for all DGPs considered. Both for the setting of no
correlation and high correlation of errors, sizes are in the vicinity of 5%
and power is increasing with the sample size T .

Only moderate size distortion is visible in large systems for small sam-
ples (e.g. K ≥ 50, T = 50). As expected, the test procedure works
remarkably well for the sparse DGP1 in high dimensions. However,
size properties under the non-sparse DGP2 do not deviate much from

6For both the Wald test and the over-specified VAR(p+1) we report the simulations
for Σi,j = 0.7|i−j| and DGP1 only. Results for the other DGPs are available upon
request.
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its sparse counterpart, although for both DGP2 and DGP3 we do ob-
serve a slight deterioration of size when the dimension of the system
increases.

Interestingly, the three different information criteria show substantially
different behavior. EBIC, due to its very stringent nature, tends to per-
form well only in very large systems, while it is essentially equal to a bi-
variate Granger causality test in small systems. We have to add though
that the good performance of AIC in particular is somewhat inflated
by the imposed lower bound on the penalty; unreported simulations
show that without the lower bound AIC performs significantly worse,
often selecting too many variables rendering the post-OLS estimation
infeasible. The one advantage of using EBIC as information criterion
to tune λ in the K >> T settings when T is small (e.g. T = 50, 100)
is the possibility to avoid the lower bound on the penalty. However,
since this comes at a price of more size distortion, we recommend the
use of BIC instead, along with the lower bound on the penalty. When
comparing the different choices of the tuning parameter we can narrow
down the best performing ones (in terms of size and power) to BIC and
λth. However, in terms of computational time, estimating the tuning
parameter using information criteria is considerably faster.

Comparing our test to the bivariate VAR in Table 2.5, it is clear that
our proposed PDS-LM is very robust to omitted variable bias, unlike
the bivariate test, whose size distortions increase with both the sample
size and the number of variables, with sizes of 45% observed for the
sample sizes we consider in our application in Section 2.6. There we will
also further elaborate on this difference between our method and the
bivariate test. Table 2.1 shows that for sample sizes smaller than T =
500, rarely the power exceeds 90%. However, one must keep in mind
that the powers are not size-adjusted, and thus the high reported power
of the low-dimensional test is an artefact of the huge size distortions
rather than genuine power. It also seems unreasonable to expect that
PDS-LM test has vey high power if T is small; we are still considering
large systems with many parameters to estimate, and there seems to
be no way around this if one desires to test Granger causality in large

54



systems with many (control) variables. In that sense we may fully
expect the bivariate test to also have higher size-corrected power; yet
with all its disadvantages and sensitivity to omitted variables this is not
a good comparison. All in all, we believe our test still has sufficiently
adequate power properties to be useful in practice.

The results of robustness to misspecification of the lag length order
with p = 2 instead of p = 1 are reported in Table 2.3 in Appendix
B. As the size distortions across the range of considered DGPs are
only marginally higher for large K and T comparatively small, the test
appears to be quite robust to this misspecification. Again, BIC seems
to be the best choice for tuning the penalty for all DGPs. Unreported
simulations (available upon request) further show that the finite sample
adjustment for the test performed in Step 3b of the algorithm is able to
substantially reduce size distortions in small samples compared to the
asymptotic version of Step 3a.

2.6 Networks in Realized Volatilities

2.6.1 Realized Variances

We first investigate the volatility transmission in stock return prices
using the daily realized variances of 30 US assets.7 Both the computa-
tional simplicity and the theoretical foundations make realized volatility
measures (realized variance, bi-power variation, median realized vari-
ance, etc.) very attractive among practitioners and academics for mod-
elling time varying volatilities and monitoring financial risk. We have
considered 10-minute realized variances

RV 10t ≡
M∑
j=1

r2j,t, rj,t = lnPj,t − lnPj−1,t, (2.9)

7We would like to thank Marcelo C. Medeiros for providing us with the high fre-
quency data on stock prices that we have used to construct the realized variances.
See Table 2.6 for the stocks considered. The R package HDGCvar is available on
the GitHub page of the corresponding author (https://github.com/Marga8).
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using j = 1, . . . ,M intraday 10 minutes stock prices Pj,t. We consider 10
minute returns as this is the frequency that minimizes for our sample the
microstructure noise (McAleer and Medeiros (2008)).8 We investigate
the period from March 2008 until February 2017 (2236 trading days).

Given the time series of realized volatilities as defined in (2.9), we em-
ploy a multivariate version of the heterogeneous autoregressive model
(VHAR) of Corsi (2009) to model their joint behavior (see also Cubadda
et al. (2019)). To formally define the VHAR model, we log-transform
the series and we stack the logarithmic RV into a vector yt. The VHAR
specification is given by the following model:

yt = c+B(1)yt−1 +B(2)y
(week)
t−1 +B(3)y

(month)
t−1 + εt,

where y
(week)
t = 1

5

∑4
j=0 yt−j and y

(month)
t = 1

22

∑21
j=0 yt−j are the vec-

tors containing the average volatility over the last 5 (week) and 22
(month) days. Granger causality in this context represents contagion,
or spillover, of volatility from one asset to another. To test for the null
hypothesis of no Granger causality / no volatility spillovers from yk,t to
yi,t against the alternative of spillovers, we test

H0 : β
(1)
i,k = β

(2)
i,k = β

(3)
i,k = 0 vs. H1 : β

(1)
i,k , β

(2)
i,k , β

(3)
i,k 6= 0,

where β
(1)
i,k is the (i, k)-th element of B(1). We perform this test for

every (i, k)-pair to obtain the full 29 × 29 network of spillover effects.
As heteroskedasticity is likely present in these data, we robustify the
PDS-LM procedure by implementing the heteroskedasticity-robust LM
test such as for example described in Wooldridge (2015, Ch. 8). The

8To determine the optimal frequency, we computed realized variances using different
frequencies of 1, 5, 10, 15, 30, 65 and 130 minutes, in addition to the estimation
using daily returns. The latter estimation has the advantage of being unbiased
but the drawback of being very noisy (Pooter et al. (2008)). To find an optimal
trade-off between bias and variance (Martens, 2004, see e.g)), mean, variances
and mean squared errors (MSE) were computed for each estimation frequency in
a similar way as Pooter et al. (2008), and it was found that the frequency of 10
minutes minimizes the MSE.
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(c) FullHVAR

Figure 2.1: Spillover networks for the full sample period

full algorithm for the heteroskedasticity-robust PDS-LM test is given in
Appendix C.9

We now report the results of our spillover tests for the volatility network.
We use BIC to select the tuning parameter of the lasso, and perform
the Granger causality tests with a 1% significance level.10 Figure 2.1
reports the transmission networks of volatilities estimated with the high-
dimensional HVAR (PDS-LM HVAR), bivariate Granger causality tests
(BiHVAR) for each pair of stocks, Granger causality tests from a full-
system VAR (FullHVAR). The latter is feasible because of our large
time series dimension with T = 2236. For all methods we consider
heteroskedasticity-robust variants.

While our PDS-LM method identifies a volatility transmission network
which consists of 54 connections and the FullHVAR test picks up 44

9In the presence of heteroskedasticity, one might prefer the Wald version of the test,
as this can be corrected in the standard way by using heteroskedasticty-robust
standard errors. Empirically we found hardly any differences between the LM
and Wald versions.

10We do not perform a correction for multiple testing, as this would only qualitatively
affect our results. Moreover, our goal is not to identify exactly the set of spillovers,
but to get a feeling of the relations between two variables at a time. As such,
we believe a multiple testing correction is not needed, though it can be easily
implemented.
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(c) FullHVAR

Figure 2.2: Spillover networks for the 2016-2017 sample period

connections, the BiHVAR tests detect a network consisting of 803 con-
nections. These differences between our PDS-LM HVAR and the Bi-
HVAR results are in line with our simulation results, confirming that
bivariate Granger causality testing in VAR models is seriously affected
by omitted variable bias in high-dimensional systems. Given the huge
sample size (T = 2236) relative to the number of stocks, the FullH-
VAR is a feasible option, and it is reassuring how similar our PDS-LM
HVAR performs compared to the FullHVAR. The similarity is visual-
ized in Figures 2.1(a) and 2.1(c), where the connections picked by both
methods are highlighted in red. Of the 54 spillovers identified by the
PDS-LM HVAR, 43 are also identified by the FullHVAR, while only 1
of the identified spillovers by the FullHVAR is not picked up by the
PDS-LM HVAR.

We also consider a shorter time span, namely the period 2016-2017.
Considering a shorter time period makes it more likely that relations
remain stable over time. In particular, the chosen period avoids two ma-
jor events that occurred previously and caused substantial instability
on financial markets, namely the global financial crisis of 2008 and the
U.S. debt-ceiling crisis of 2011 (Baker et al., 2019). It also allows us to
study the performance differences among the three methods in a smaller
sample of T = 284 trading days, where the FullHVAR suffers from the
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(c) FullHVAR

Figure 2.3: Volatility clusters for the full sample period

curse of dimensionality. We present the results for the PDS-LM HVAR,
BiHVAR and FullHVAR in Figure 2.2. The number of significant trans-
missions is 91 for the PDS-LM HVAR, 85 for the BiHVAR and only 5
for the FullHVAR. Hence, the FullHVAR breaks down in this setting
due to the small sample size and curse of dimensionality. On the other
hand, while superficially the PDS-LM HVAR and the BiHVAR appear
to perform similarly, they identify mostly different spillovers. The red
lines in Figures 2.2(a) and 2.2(b) show the common connections, which
are only 14 out of 91 for the PDS-LM HVAR (85 for the BiHVAR).

As a next step, we use our identified networks to find clusters of closely
connected stocks, or communities as they are called in graph theory.
Communities are groups of densely connected nodes with fewer connec-
tions across groups. In order to represent volatility spillover commu-
nities in the graph we use the Newman and Girvan (2004) algorithm
based on edge-betweenness. The edge betweenness for edge e is defined
as
∑

s,t 6=e
σst(e)
σst

, where σst is total number of shortest paths from node
s to node t and σst(e) is the number of shortest paths passing through
e. The edge with the highest betweenness is sequentially removed and
the betweenness is recalculated at each step until the best partitioning
of the network is found.

Figure 2.3 reports the graphs of the clustered network for the full sample
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(c) FullHVAR

Figure 2.4: Volatility clusters for the 2016-2017 sample period

analysis for the PDS-LM VAR, BiHVAR and FullHVAR respectively.
The results for the PDS-LM VAR and FullHVAR show similar spillover
clustering behavior, as expected. One large big-industry cluster, con-
taining – among others – assets such as Johnson & Johnson (J&J), IBM,
Nike (NKE) and Intel (INTC) dominates the picture being surrounded
by small clusters containing 1 to 4 stocks. The PDS-LM VAR and Full-
HVAR resepctively identify 4 and 6 isolated stocks, which do not have
any connections to others. Instead, the BiHVAR finds one single cluster
containing all stocks. This reinforces our finding that bivariate Granger
causality testing is not informative in high-dimensional systems.

The clusters for the analysis done on the smaller 2016-2017 sample are
reported in Figures 2.4a, 2.4b and 2.4c. The patterns highlighted in the
spillover network graphs re-occur in the clusters. PDS-LM HVAR in
Figure 2.4a picks up two main clusters of volatility spillovers containing
12 and 6 assets. In addition, four medium size clusters and three single-
stock clusters are found. The difference between PDS-LM HVAR and
BiHVAR is also reflected in the identified clusters. BiHVAR in Figure
2.4b shows only one big conglomerate cluster of stocks linked to three
two-stock clusters and 6 single-stock clusters. Finally, the breakdown
of FullHVAR shows clearly in the non-informative, mostly unconnected
single-stock clusters in Figure 2.4c.
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2.6.2 Realized Variances & Covariances

In this subsection we extend our investigation to allow for spillovers from
realized correlations to variances. While our application in Section 2.6.1
was only high-dimensional when we considered the shorter subsample,
including correlations, which are of the order K2, put a significantly
larger strain on estimation, making the standard full VAR no option.
As elaborated later, it appears quite reasonable to expect changing
correlations to also have an affect on the volatilities. By ignoring these
in Section 2.6.1, we are exposing ourselves again to a potential omitted
variable bias. However, our method can directly incorporate these, as
we demonstrate here.

While we remain mostly interested in contagion between the 30 real-
ized volatilities, we add the 30×29

2 = 435 realized correlations between all
these assets as control variables. By maintaining our focus on the rela-
tions between the variances, our results are directly comparable to Sec-
tion 2.6.1 and can be interpreted by assessing how the network changes
when the correlations are added as controls in the VAR. Moreover, it
also avoids the difficulties of trying to visualize the results from all
(30 × 435)2 possible connections in the large VAR considered here. In
the same way that the realized variances employ high frequency data to
estimate the integrated variance, the realized covariance (RC hereafter)
estimates the integrated covariance of a multivariate diffusion process.
Working with the full RC time-varying matrix is important for portfolio
allocation and risk management. For a set of n intra-day asset returns
at day t observed at j = 1, . . . ,M stacked in a column vector rj,t, the

realized covariance is obtained such as RCt =
∑M

j=1 rj,tr
′
j,t. Note that

the realized variances are obviously on the diagonal of RC and that the
RC matrix is positive definite when M > n, namely when the number
of high frequency observations per day is larger than the number of se-
ries. We investigate the same period as before and construct 10-minute
realized covariances. Several studies have also proposed a Lasso frame-
work on RC, see for instance Callot et al. (2017) and Brito et al. (2018),
although their focus is more on portfolio allocation and forecasting.
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There are two main ways to work with the RC matrix. The first ap-
proach stacks realized variances and covariances in a single vector. For
instance, Bauer and Vorkink (2011) consider the matrix log transforma-
tion of RCt series, a matrix that they call the log-space volatility. The
drawback of that log transform is that the interpretation of the original
series, in our case the volatilities, is lost as the combinations involve
nonlinear transforms of both realized variances and covariances. This
is not compatible with the aim of this chapter.

The second approach uses the log realized volatilities and the correla-
tions separately, as done by for instance Oh and Patton (2016). The
underlying idea, following the DCC model of Engle (2002), is to de-

compose RC
(d)
t = D

(d)
t R

(d)
t D

(d)
t with D

(d)
t a diagonal matrix with the

square root of the individual realized variance and R
(d)
t the realized

correlation matrix. Oh and Patton (2016) use the HVAR model struc-
ture for each realized volatilities, they consequently assume no Granger
causality across volatilities.

We propose something which is, to some extent, in between these two
approaches. We look at two separate objects as in the DCC model, but

stack the log of the realized variances y
(d)′

1t and z-transforms y
(d)
2t =

arc tanh
(
vech(R

(d)
t )
)

of the realized correlations in a larger vector

y
(d)
t = (y

(d)′

1t ,y
(d)′

2t )′, where y
(d)
1t is 1 × 30 and y

(d)
2t is 1 × 435, on which

we estimate a HVAR of dimension 465. In this HVAR each of the 465
equations depends on 1395 dynamic parameters plus the constant. We

focus on the 30 equations corresponding to y
(d)
1t volatilities and conse-

quently the bivariate causalities between these realized volatilities as in
the previous section. Figure 2.5a reports a total of 113 connections,
which is about twice the connections in Figure 2.1a.
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Figure 2.5: Spillover network and volatility clusters

In red we highlighted the 31 common connections with Figure 2.1a. In-
terestingly, adding more variables therefore allows us to uncover more
relations. It seems that this allows us to uncover partial effects that
were previously obscured by counteracting effects of the correlations.
Importantly, the number of connections is still far less than compared
to the BiHVAR in Figure 2.1b, and the PDS-LM HVAR is still able to
deliver a clear picture of the causal connections when the system con-
sidered is high-dimensional. While the different connections found here
obviously also lead to a different clustering, Figure 2.5b shows that the
clustering is quite similar, certainly regarding qualitative conclusions.
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2.7 Conclusion

We propose an LM test in order to test for Granger causality in high-
dimensional VAR models. We employ a post-double selection procedure
using the lasso to select the set of relevant covariates in the system.
The double selection step allows to substantially reduce the omitted
variable bias and thereby allowing for valid post-selection inference on
the parameters.

We provide an extensive simulation study to evaluate the performance of
our method in finite samples, paying particular attention to the tuning
of the penalty parameter. We compare different information criteria,
time series cross-validation and a plug-in method based on theoretical
arguments, and find that generally BIC and the theoretically tuned
penalty perform best. However, to use information criteria in systems
with a significantly larger number of variables than observations, a lower
bound on the penalty parameter is needed to prevent too many variables
being selected. The simulations also show that, when properly tuned,
our proposed PDS-LM test attains good results both for size and power
under different DGPs. Especially, it is shown to be robust both to
non-sparse settings as well as to lag-length overspecification.

We also empirically investigate the usefulness of our method in a study
where we apply our PDS-LM method to a high-dimensional VHAR
process in order to construct a contagion network of volatility spillovers
for 30 large capital stocks, also accounting for effects from changing
correlations. We find that by increasing the information set through
considering a high-dimensional VAR model instead of bivariate models,
we are able to obtain more realistic effects than in low-dimensional
models. Furthermore, even when the sample size is not large enough to
use standard full-system VAR techniques, our method remains reliable
and delivers accurate results.

Note that unlike Belloni, Chernozhukov, and Hansen (2014a), we do not
give a “truly” causal interpretation to the established Granger causal-
ities. In how far Granger causality is a useful concept to study true

64



causality is (and has long been) open to debate, see for example (Eich-
ler, 2013) and the references therein. Moreover, though it appears de-
sirable and in line with Granger’s (1969) original intentions to make the
information set as large as possible, it is well known in the literature
on graphical models (see Eichler, 2013) for causality that considering
only the full model is not sufficient for establishing true causal relations
from Granger causal ones. For instance, one-period Granger causality
in systems with more than two variables cannot capture indirect causal
chains spanning over multiple periods. However, the analysis of the full
model is a necessary ingredient for any study of causality in a graphi-
cal framework. It would therefore be an interesting avenue for further
research to study how the method proposed here could fit into such a
graphical framework.

Appendix A Proofs

Lemma 2.1. Let X−GC satisfy Assumption 2(g). Then with probability
at least 1−∆T , we have that

‖δ‖22 ≤ s̄T

∥∥∥X̃⊗
−GCδ/

√
T
∥∥∥2
2
/φ2T,min,

for any δ = (δ′1, . . . , δ
′
NI

)′ such that |Sδ| ≤ s̄T , where Sδ =
⋃NI
i=1{m :

δi,m 6= 0}.

Proof of Lemma 2.1. As before, let XS denote the submatrix con-
taining those columns of X−GC corresponding to the elements in S. It
follows from Assumption 2(a) that for any γ satisfying |Sγ | ≤ s̄T , we
have that λmin(X

′
Sγ
XSγ/T ) ≥ φ2T,min. Then, with probability 1 −∆T
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we have that

min
δ:|Sδ|≤s̄T

∥∥∥X̃⊗
−GCδ/

√
T
∥∥∥2
2
/‖δ‖22

= min
δ:|Sδ|≤s̄T

δ′
(
G′
TGT ⊗X ′

−GCX−GC/T
)
δ/‖δ‖22

= min
|S|≤s̄T

min
x

x′ (G′
TGT ⊗X ′

SXS/T )x/‖x‖22

= min
|S|≤s̄T

λmin(G
′
TGT ⊗X ′

SXS/T )

= λmin(G
′
TGT ) min

|S|≤s̄T
λmin(X

′
SXS/T ) ≥ CφT,min,

as λmin(G
′
TGT ) ≥ C > 0 by assumption. Without loss of generality

we may then absorb the constant C into φT,min.

Proof of Theorem 2.1. Our proof follows along the lines of the proof
of Theorem 1 and 2 of Belloni, Chernozhukov, and Hansen (2014b), with
the main distinction that we consider multiple variables of interest,
and multiple “treatments” instead of a single one for each. For this
purpose we first define some notation. Let Γ = (γ1, . . . ,γNX

) and
Γ̂ = (γ̂1, . . . , γ̂NX

), and let γ⊗ = INI
⊗ Γ . Furthermore, let P(A) =

A(A′A)−1A′ denote the projection on the space spanned by A and
let M(A) = I − P(A) denote the corresponding residual-maker. By
standard partitioned regression algebra we get

√
T (β̂pds

GC − βGC) =
(
X̃⊗
GCM(X̃⊗

Ŝ⊗)X̃
⊗
GC/T

)−1

︸ ︷︷ ︸
B−1

T

× X̃⊗
GCM(X̃Ŝ⊗)

[
X̃⊗

−GCβ−GC + ũI

]
/
√
T︸ ︷︷ ︸

aT

(2.10)

where X̃⊗ = G⊗
TX

⊗ = GT ⊗ X. We will now show that aT =

Ẽ⊗′ũI/
√
T and BT = Ẽ⊗′Ẽ⊗/T + op(1). Given these results, the

limit distribution then follows directly from Assumption 2(b).
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We first consider aT . Note that from (2.7) we have that X̃⊗
GC = GT ⊗

[X−GCΓ +E] = X̃⊗
−GCΓ

⊗ + Ẽ⊗, and therefore we can write

aT = Ẽ⊗′ũI/
√
T + Γ⊗′X̃⊗′

−GCM(X̃⊗
Ŝ⊗)X̃

⊗
−GCβ−GC/

√
T︸ ︷︷ ︸

aT,1

+ Γ⊗′X̃⊗′
−GCM(X̃⊗

Ŝ⊗)ũI/
√
T︸ ︷︷ ︸

aT,2

+ Ẽ⊗′M(X̃⊗
Ŝ⊗)X̃

⊗
−GCβ−GC/

√
T︸ ︷︷ ︸

aT,3

− Ẽ⊗′P(X̃⊗
Ŝ⊗)ũI/

√
T︸ ︷︷ ︸

aT,4

We will now show that the terms aT,1, . . . ,aT,4 vanish. For aT,1, note
that

‖aT,1‖2 ≤
√
T
∥∥∥M(X̃⊗

Ŝ⊗)X̃
⊗
−GCΓ

⊗/
√
T
∥∥∥
2︸ ︷︷ ︸

‖AT,1,1‖2

∥∥∥M(X̃⊗
Ŝ⊗)X̃

⊗
−GCβ−GC/

√
T
∥∥∥
2︸ ︷︷ ︸

‖aT,1,2‖2

,

where for any matrixM , the norm ‖·‖p represents the induced lp-matrix

norm ‖M‖p = supx 6=0 ‖Mx‖p/‖x‖p. As Ŝj ⊆ ŜX for all j = 1, . . . , NX

and Ŝ⊗
X ⊆ Ŝ⊗, the space spanned by G⊗

TXŜ⊗
X
= GT ⊗xŜX

is a subspace

of the space spanned by G⊗
TX

⊗
Ŝ⊗ , and therefore

∥∥∥M(
G⊗
TX

⊗
Ŝ⊗

)
y
∥∥∥
2
≤∥∥∥∥M(

G⊗
TX

⊗
Ŝ⊗
X

)
y

∥∥∥∥
2

for any compatible matrixG⊗
T and vector y. Then,

using that

M
(
G⊗
TX

⊗
Ŝ⊗
X

)
= M

(
GT ⊗XŜX

)
X̃⊗

−GCΓ
⊗

= M
(
GT ⊗XŜX

)
(GT ⊗X−GCΓ ) = GT ⊗M

(
XŜX

)
X−GCΓ ,

(2.11)
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we find that

‖AT,1,1‖2 ≤
∥∥∥∥M(

X̃⊗
Ŝ⊗
X

)
X̃⊗

−GCΓ
⊗/

√
T

∥∥∥∥
2

≤ ‖GT ‖2
∥∥∥M(XŜX

)X−GCΓ /
√
T
∥∥∥
2

≤ ‖GT ‖2
NX∑
j=1

∥∥∥M(XŜX
)X−GCγj/

√
T
∥∥∥
2

≤ ‖GT ‖2
NX∑
j=1

∥∥∥M(XŜj
)X−GCγj/

√
T
∥∥∥
2
.

Then,∥∥∥M(XŜj
)X−GCγj/

√
T
∥∥∥
2
= min

γ:γm=0,m/∈Ŝj

∥∥∥X−GCγj −XŜj
γ
∥∥∥
2
/
√
T

≤ ‖X−GC(γj − γ̂j)‖2/
√
T , j = 0, . . . , NX ,

(2.12)

as Ŝj = {m : γ̂m,j 6= 0} and therefore the constraint in the minimization
is satisfied. It then follows from Assumption 2(e) that ‖AT,1,1‖2 ≤
NGCδTT

−1/4 with probability 1−∆T .

For aT,1,2, from the definition of the best linear predictor it directly
follows that

γ0 =
(
EX⊗′

−GCX
⊗
−GC

)−1
EX ′

−GC(X
⊗
GCβGC +X⊗

−GCβ−GC + uI)

= Γ⊗βGC + β−GC ,

such that we can substitute β−GC = γ0 − Γ⊗βGC in aT,1,2 to find

‖aT,1,2‖2 ≤
∥∥∥M(

X̃⊗
Ŝ⊗

)
X̃⊗

−GCγ0/
√
T
∥∥∥
2
+ ‖AT,1,1‖2‖βGC‖2,

where the negligibility of the second term follows directly from the result
above plus Assumption 2(d). As Ŝ0 ⊆ Ŝ⊗, the first term can be bounded
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by ∥∥∥M(
X̃⊗
Ŝ⊗

)
X̃⊗

−GCγ0/
√
T
∥∥∥
2
≤
∥∥∥M(

X̃⊗
Ŝ0

)
X̃⊗

−GCγ0/
√
T
∥∥∥
2

≤ ‖GT ‖2
∥∥X⊗

−GC(γ0 − γ̂0)
∥∥
2
/
√
T ≤

√
NIδTT

−1/4,

where we use that, for β̂GT
= M(GTX)GTy,

‖M(GTX)GTy‖2 =
∥∥∥GT

(
y −Xβ̂GT

)∥∥∥
2
≤
∥∥∥GT

(
y −Xβ̂I

)∥∥∥
2

≤ ‖GT ‖2
∥∥∥y −Xβ̂I

∥∥∥
2
.

It then follows directly that ‖aT,1‖2 = Op(δ
2
T ) = op(1).

For aT,2, let γj denote the j-th column of Γ⊗ and define the noiseless
generalized least squares estimator

γ̌⊗
j,S = argmin

γ:γm=0,m/∈S

∥∥∥X̃⊗
−GCγ

⊗
j − X̃⊗

−GCγ
∥∥∥2
2
, j = 1, . . . , NGC ,

(2.13)

for any compatible index set S, and let Γ̌⊗
S =

(
γ̌⊗
1,S , . . . , γ̌

⊗
NX ,S

)
, such

that M
(
X̃⊗
S

)
X̃⊗

−GCΓ
⊗ = X̃⊗

−GC
(
Γ⊗ − Γ̌⊗

S

)
. Then, with probability

1−∆T ,

‖aT,2‖1 =
∥∥∥∥(Γ̌⊗

Ŝ⊗ − Γ⊗
)′

X̃⊗′
−GCũI/

√
T

∥∥∥∥
1

(i)

≤
NGC∑
j=1

∥∥∥γ̌⊗
j,Ŝ⊗ − γ⊗

j

∥∥∥
1

∥∥∥X̃⊗′
−GCũI/

√
T
∥∥∥
∞

(ii)

≤ γT

NGC∑
j=1

∥∥∥γ̌⊗
j,Ŝ⊗ − γ⊗

j

∥∥∥
1

(iii)

≤
√
s̄TγT

NGC∑
j=1

∥∥∥X̃⊗
−GC

(
γ̌⊗
j,Ŝ⊗ − γ⊗

j

)
/T
∥∥∥
2
/φT,min
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(iv)

≤
√
s̄TγT

NGC∑
j=1

∥∥∥X̃⊗
−GC

(
γ̂⊗
j − γ⊗

j

)
/T
∥∥∥
2
/φT,min

(v)

≤
√
s̄TγT

φT,min
‖GT ‖2NI

NX∑
j=1

‖X−GC (γ̂j − γj) /T‖2

(vi)

≤ N
3/2
I NX

√
s̄TγT

φT,min
δTT

−1/4 ≤ δ2T .

Here inequality (i) uses that

‖Ax‖1 =
m∑
j=1

|aj·xi| ≤ ‖x‖∞
m∑
j=1

‖aj·‖1 (2.14)

from the dual norm inequality, where A is a generic m × n matrix A
with j-th row denoted as aj·, and a n× 1 vector x. Letting ‖A‖max =

maxi,j |aij |, Step (ii) follows from the fact that
∥∥∥X̃⊗′

−GCũI/
√
T
∥∥∥
∞

=∥∥∥(G′
TGT ⊗X ′

−GC)uI/
√
T
∥∥∥
∞

≤ ‖G′
TGT ‖max

∥∥∥X⊗′
−GCuI/

√
T
∥∥∥
∞

≤ γT

by Assumption 2(c), while (iii) follows from bounding the l1-norm by
the l2-norm and applying Lemma 2.1. (iv) follows from the definition
of γ̌Ŝ as minimizer of the sum of squares and (v) from the properties of
the Kronecker product. Finally (vi) follows from Assumption 2(e).

For aT,3, define γ̌0,S = argminγ:γm=0,m/∈S

∥∥∥X̃⊗
−GCγ0 − X̃⊗

−GCγ
∥∥∥2
2
anal-

ogously to (2.13). Then we have with probability 1−∆T

‖aT,3‖1
(i)

≤
∥∥∥Ẽ⊗′M(X̃⊗

Ŝ⊗)X̃
⊗
−GCγ0/

√
T
∥∥∥
1
+
∥∥∥Ẽ⊗′M(X̃⊗

Ŝ⊗)X̃
⊗
−GCΓ

⊗βGC/
√
T
∥∥∥
1

(ii)

≤
∥∥∥Ẽ⊗′X̃⊗

−GC

(
γ̌0,Ŝ − γ0

)
/
√
T
∥∥∥
1
+
∥∥∥Ẽ⊗′X̃⊗

−GC

(
Γ̌⊗
Ŝ⊗ − Γ⊗

)
βGC/

√
T
∥∥∥
1

(iii)

≤
∥∥∥γ̌0,Ŝ − γ0

∥∥∥
1

NGC∑
j=1

∥∥∥X̃⊗′
−GC ẽ

⊗
j /

√
T
∥∥∥
∞
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+ ‖βGC‖∞
NGC∑
j=1

∥∥∥X̃⊗′
−GC ẽ

⊗
j /

√
T
∥∥∥
∞

NGC∑
j=1

∥∥∥γ̌⊗
j,Ŝ⊗ − γj

∥∥∥
1

(iv)

≤
NGC∑
j=1

∥∥∥X̃⊗′
−GC ẽ

⊗
j /

√
T
∥∥∥
∞

[∥∥∥γ̌0,Ŝ − γ0

∥∥∥
1
+ CN

3/2
I NX

√
s̄T

φT,min
δTT

−1/4

]
(v)

≤
NGC∑
j=1

∥∥∥X̃⊗′
−GC ẽ

⊗
j /

√
T
∥∥∥
∞[√

s̄T ‖GT ‖2
φT,min

∥∥∥X⊗
−GC (γ̌0 − γ0) /

√
T
∥∥∥
2
+ CN

3/2
I NX

√
s̄T

φT,min
δTT

−1/4

]
(vi)

≤ NGCγT

[√
s̄T

√
Ni

φT,min
δTT

−1/4 + CN
3/2
I NX

√
s̄T

φT,min
δTT

−1/4

]
≤ CNXN

3/2
I

√
s̄T γT

φT,min
δTT

−1/4 ≤ δ2T .

Inequality (i) follows from the fact that β−GC = γ0 − Γ⊗βGC , while
(ii) follows from the definition of γ̃0,S and (2.13). For the first term in
(iii) we use (2.14) whereas for the second term we apply it twice to get

‖BAx‖1 ≤ ‖x‖∞
p∑
i=1

‖bi·A‖1 ≤ ‖x‖∞
p∑
i=1

‖bi·‖∞
m∑
j=1

‖a·j‖1 (2.15)

for any p × n matrix B. Step (iv) follows from Assumption 2(d) and
the results for aT,2, while Step (v) applies the same arguments as used

therein to
∥∥∥γ̌0,Ŝ − γ0

∥∥∥
1
. Finally, Step (vi) follows analogoulsy to Step

(ii) for aT,2 by noting that∥∥∥X̃⊗′
−GC ẽ

⊗
j /

√
T
∥∥∥
∞

≤ ‖G′
TGT ‖max

∥∥∥X ′
−GCej/

√
T
∥∥∥
∞

≤ γT , plus using

the bound from Assumption 2(c).

Finally, we consider aT,4. We get

‖aT,4‖1
(i)

≤
∥∥∥X̃⊗′

Ŝ⊗ũI/
√
T
∥∥∥
∞

NGC∑
j=1

∥∥∥∥ẽ⊗′
j X̃⊗

Ŝ⊗

(
X̃⊗′
Ŝ⊗X̃

⊗
Ŝ⊗

)−1
∥∥∥∥
1
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(ii)

≤ γT
√
s̄T

NGC∑
j=1

∥∥∥∥ẽ⊗′
j X̃⊗

Ŝ⊗

(
X̃⊗′
Ŝ⊗X̃

⊗
Ŝ⊗

)−1
∥∥∥∥
2

(iii)

≤ γT s̄T

∥∥∥∥(X̃⊗′
Ŝ⊗X̃

⊗
Ŝ⊗/T

)−1
∥∥∥∥
2

NGC∑
j=1

∥∥∥X̃⊗′
Ŝ⊗ ẽ

⊗
j /

√
T
∥∥∥
∞
/
√
T

(iv)

≤ NGCγ
2
T s̄TT

−1/2/φT,min ≤ δ2T ,

where step (i) follows from (2.14). For (ii) we bound the l1-norm with

the l2-norm, using that X̃⊗
Ŝ⊗ contains a subset of the variables in X̃⊗

−GC

and therefore
∥∥∥X̃⊗′

Ŝ⊗ũ
⊗
I

∥∥∥
∞

≤
∥∥∥X̃⊗′

−GCũ
⊗
I

∥∥∥
∞

and apply Assumption 2(c).

Step (iii) follows from the Cauchy-Schwarz inequality, bounding the l2-

norm by the l∞-norm and reasoning as for Step (ii) that
∥∥∥X̃⊗′

Ŝ⊗ ẽ
⊗
j

∥∥∥
∞

≤∥∥∥X̃⊗′
−GC ẽ

⊗
j

∥∥∥
∞
. Finally (iv) follows from Assumption 2(c) and Lemma

2.1.

We next consider BT . Using that X̃⊗
GC = X̃⊗

−GCΓ
⊗ + Ẽ⊗, we write

BT = Ẽ⊗′Ẽ⊗/T + Γ⊗′X̃⊗′
−GCM(X⊗

Ŝ⊗)X̃
⊗
−GCΓ

⊗/T︸ ︷︷ ︸
BT,1

+ Γ̃⊗′X̃⊗′
−GCM(X̃⊗

Ŝ⊗)Ẽ
⊗/T︸ ︷︷ ︸

BT,2

+ Ẽ⊗′M(X⊗
Ŝ⊗)X̃

⊗
−GCΓ

⊗/T︸ ︷︷ ︸
B′

T,2

− Ẽ⊗′P(X̃⊗
Ŝ⊗)Ẽ

⊗/T︸ ︷︷ ︸
BT,3

.

These terms can be handled as the terms for aT . In particular, with
probability 1−∆T , ‖BT,1‖2 ≤ ‖AT,1,1‖22 ≤ δ2TT

−1/2, ‖BT,2‖2 ≤ δ2TT
−1/2

using the same steps as for aT,2, and ‖BT,3‖2 ≤ δTT
−1/2 analogously

to aT,4.

This shows that aT = Ẽ⊗′ũI/
√
T and BT = Ẽ⊗′Ẽ⊗/T +op(1). It then
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follows directly from Assumption 2(b) that

√
T
(
β̂pds
GC − βGC

)
= (G′

TGT ⊗E′E)
−1

E⊗(G′
TGT ⊗ IT )uI + op(1)

d−→ N
(
0, (G′G⊗ΣGC|−GC)

−1ΩG(G′G⊗ΣGC|−GC)
−1
)
.

Proof of Theorem 2.2. By partitioned regression algebra, we find
that

LM = ξ̂∗′ξ̂∗ − ν̂∗′ν̂∗

= y∗′
I M(X∗⊗

Ŝ⊗)X
∗⊗
GC︸ ︷︷ ︸

a∗′
T

[
X∗⊗′
GCM(X∗⊗

Ŝ⊗)X
∗⊗
GC

]−1

︸ ︷︷ ︸
B∗−1

T

X∗⊗′
GCM(X∗⊗

Ŝ⊗)y
∗
I︸ ︷︷ ︸

a∗
T

.

Note that a∗
T and B∗

T are special cases of their counterparts in the proof

of Theorem 2.1 with GT = Σ̂
−1/2
T,I . We now show that this choice of

GT satisfies the conditions of Theorem 2.1. We do this by proving that

GT converges to G = Σ
−1/2
u,I , and this satisfies the conditions in the

theorem.

Consider one particular element (i, j) of Σ̂u,I , say σ̂u,ij . Let Ŝ0,Ii denote

the variables selected in Ŝ0 corresponding to the equation for variable

yIi , where I = {I1, . . . , INI
}, and let Ŝi =

(⋃NX
j=1 Ŝj

)
∪ Ŝ0,i denote all

variables selected that are relevant for yIi . We can then write

σ̂u,ij = ξ̂′Ii ξ̂Ij/T = y′
IiM(XŜi

)M(XŜj
)yIj

= u′
IiuIj/T + β′

−GC,iX
′
−GCM(XŜi

)M(XŜj
)X−GCβ−GC,j/T︸ ︷︷ ︸

dT,ij,1

− u′
IiM(XŜi

)M(XŜj
)X−GCβ−GC,j/T︸ ︷︷ ︸

dT,ij,2
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− u′
IjM(XŜj

)M(XŜi
)X−GCβ−GC,i/T︸ ︷︷ ︸

dT,ji,2

+ u′
Ii

[
IT −M(XŜi

)M(XŜj
)
]
uIj/T︸ ︷︷ ︸

dT,ij,3

,

where (under H0) we write yIi = X−GCβ−GC,i + uIi .

We can use the same reasoning as used in the proof of Theorem 2.1 to
prove that the terms dT,ij,k, k = 1, 2, 3 are negligible. Let γ0,i denote
the sub-vector of γ0 corresponding to unit i, and note that under the
null hypothesis γ0,i = β−GC,i.

Define γ̄i,S = argminγ:γm=0,m/∈S ‖X−GCγ0,i −X−GCγ‖22. Then, as Ŝ0,i ⊆
Ŝi, we get that

|dT,ij,1| ≤
∥∥∥M(XŜi

)X−GCβ−GC,i

∥∥∥
2

∥∥∥M(XŜj
)X−GCβ−GC,j

∥∥∥
2
/T

=
∥∥∥X−GC(γ̂0,Ŝi

− γ0,i)/
√
T
∥∥∥
2

∥∥∥X−GC(γ̂0,Ŝi
− γ0,j)/

√
T
∥∥∥
2

≤
∥∥∥X−GC(γ̂0,i − γ0,i)/

√
T
∥∥∥
2

∥∥∥X−GC(γ̂0,j − γ0,j)/
√
T
∥∥∥
2
≤ δ2TT

−1/2.

Similarly,

|dT,ij,2| =
∣∣∣u′

IiM(XŜi∪Ŝj
)X−GCβ−GC,j/T

∣∣∣ = ∣∣∣u′
IiX−GC(γ̂0,Ŝi∪Ŝj

− γ0,j)/T
∣∣∣

≤
∥∥∥uIiX−GC/

√
T
∥∥∥
∞

∥∥∥γ̂0,Ŝi∪Ŝj
− γ0,j

∥∥∥
1
/
√
T

≤
√
s̄TγT

φT,min

∥∥∥X−GC(γ̂0,j − γ0,j)/
√
T
∥∥∥
2
/
√
T ≤

√
s̄TγT

φT,min
δTT

−3/4.

Finally,

|dT,ij,3| =
∣∣∣u′

IiP(XŜi∪Ŝj
)uIj/T

∣∣∣
≤

√
s̄T

∥∥∥X ′
Ŝi∪Ŝj

uIj

∥∥∥
∞

∥∥∥∥u′
IiX−GC

(
X ′
Ŝi∪Ŝj

XŜi∪Ŝj

)−1
∥∥∥∥
2

/T
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≤ s̄T

∥∥∥X ′
−GCuIi/

√
T
∥∥∥
∞

∥∥∥X ′
−GCuIj/

√
T
∥∥∥
∞

∥∥∥∥(X ′
Ŝi∪Ŝj

XŜi∪Ŝj
/T
)−1

∥∥∥∥
2

/T

≤ s̄Tγ
2
TT

−1/φT,min,

where all bounds hold with probability at least 1 − ∆T . Similarly, by
Assumption 2(b) we know that there exist a sequence δT → 0, such that
with probability 1−∆T , we have that

∣∣u′
Ii
uIj − σu,ij

∣∣ ≤ δT . As Σu, I
only contains a finite number (N2

I ) elements, we may then conclude

that with probability at least 1−∆T , it holds that
∥∥∥Σ̂u,I −Σ

∥∥∥
2
≤ δT .

We have that 0 < cL ≤ λmin(Σu,I) ≤ λmax(Σu,I) ≤ cu < ∞, where the
lower bound follows from Assumption 2(a) and the upper bound from
the fact that Σu,I has a finite number of elements. As

x′Σ̂u,Ix ≤ x′Σu,Ix+
∣∣∣x′
(
Σ̂u,Ix− x′Σu,I

)
x
∣∣∣

≤ ‖x‖22λmax(Σu,I) + ‖x‖2
∥∥∥Σ̂u,I −Σu,I

∥∥∥2
2
,

x′Σ̂u,Ix ≥ x′Σu,Ix−
∣∣∣x′
(
Σ̂u,Ix− x′Σu,I

)
x
∣∣∣

≤ ‖x‖22λmin(Σu,I) + ‖x‖2
∥∥∥Σ̂u,I −Σu,I

∥∥∥2
2
,

the established the consistency of Σ̂u,I then directly yields that C1 −
δT ≤ λmin(Σ̂u,I) ≤ λmin(Σ̂u,I) ≤ C2 + δT with probability 1 −∆T . It
then also follows that with probability 1−∆T we can find a 0 < C1 ≤
C2 < ∞ such that c1 ≤ 1/λmax(Σ̂u,I) = λmin(Σ̂

−1
u,I) ≤ λmax(Σ̂

−1
u,I) =

1/λmin(Σ̂u,I) ≤ c2, such that the conditions of Theorem 2.1 are satisfied

for GT = Σ̂
−1/2
u,I .

With this choice of GT and Ω = Σu,I ⊗ΣGC|−GC , we have that ΩG =
INX

⊗ΣGC|−GC . Letting ZNGC
∼ N (0, INGC

), it then follows that

LM = a∗′
TB

∗−1
T a∗

T
d−→ Z ′

NGC

(
INX

⊗ΣGC|−GC
)1/2′

×
(
INX

⊗Σu,I ⊗ΣGC|−GC
)−1 (

INX
⊗ΣGC|−GC

)1/2
ZNGC
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= Z ′
NGC

ZNGC
= χ2

NGC
.
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Appendix B Additional Simulation Results

Table 2.5: Simulation results for the bivariate
Granger causality test

DGP Size/Power ρ K\T 50 100 200 500

10 5.9 6.6 7.8 11.8
2 Size 0 20 5.6 5.9 7.8 11.8

50 4.3 7.0 9.7 14.5
100 5.5 6.7 8.9 13.9

Notes: Size is reported for DGP 2, as described in Sec-
tion 2.5, for 1000 replications. T = (50, 100, 200, 500)
is the time series length, K = (10, 20, 50, 100) the num-
ber of variables in the system, the lag length is fixed to
p = 1. ρ indicates the correlation employed to simulate
the time series with the Toeplitz covariance matrix.
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Appendix C Additional Material for the Empirical
Application

Algorithm 2 Heteroskedasticity-robust PDS-LM Granger causality
test

[1] Obtain X∗⊗ and ξ̂∗ as in Algorithm 1, and obtain Ê∗⊗ = X∗⊗
GC −

X∗⊗
Ŝ⊗Γ̂

∗⊗ as the residuals from the multivariate OLS regression of

X∗⊗
GC on X∗⊗

Ŝ⊗ .

[2] Compute element-wise products π̂j = ê∗⊗j �ξ̂∗ for j = 1, . . . , NGC .

Regress a vector of ones on Π̂ = (π̂1, . . . , π̂NGC
) and compute

TNIR
2 from this regression.

[3] Reject H0 if TNIR
2 > qχ2

NGC

(1 − α), where qχ2
NGC

(1 − α) is the

1−α quantile of the χ2 distribution with NGC degrees of freedom.

Table 2.6: Stocks used in Section 2.6

N. Symbol Issue name N. Symbol Issue name

1 AAPL APPLE INC 16 KO COCA-COLA CO
2 AXP AMERICAN EXPRESS CO 17 MCD MCDONALD’S CORP
3 BA BOEING CO 18 MMM 3M
4 CAT CATERPILLAR 19 MRK MERCK & CO
5 CSCO CISCO SYSTEMS 20 MSFT MICROSOFT CORPORATION
6 CVX CHEVRON CORP 21 NKE NIKE INC
7 DD DOW CHEMICAL COMPANY 22 PFE PFIZER INC
8 DIS WALT DISNEY CO 23 PG PROCTER & GAMBLE CO
9 GE GENERAL ELEC 24 TRV TRAVELERS COMPANIES INC
10 GS GOLDMAN SACHS GROUP INC 25 UNH UNITEDHEALTH GROUP INC
11 HD HOME DEPOT INC 26 UTX UNITED TECHNOLOGIES CORPORATION
12 IBM INTL BUS MACHINE 27 V VISA INC
13 INTC INTEL CORP 28 VZ VERIZON COMMUNICATIONS INC
14 JNJ JOHNSON &JOHNSON 29 WMT WALMART INC
15 JPM JPMORGAN CHASE & CO 30 XOM EXXON MOBIL CORPORATION
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3

Inference in Non-stationary
High-Dimensional VARs1

1This chapter is based on a joint work with Alain Hecq and Stephan Smeekes from
Maastricht University.

83



Chapter 3. Inference in Non-stationary High-Dimensional VARs

Abstract

In this chapter we use the lag-augmentation idea of Toda and Ya-
mamoto (1995) to build an inferential procedure which holds for high-
dimensional unit-root non-stationary VAR models. We prove that we
can restrict the augmentation to only the variables of interest for the
testing, thereby reducing the loss of power coming from the misspeci-
fication of the model. By means of a post-double selection procedure
where we use the lasso to reduce the parameter space, we are able
to partial-out the effect of nuisance parameters and establish uniform
asymptotics. We apply our procedure to the untransformed FRED-MD
dataset to investigate the main macroeconomic drivers of inflation.
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3.1 Introduction

Learning causes and effects in time series models is a well studied prob-
lem in a vast literature going all the way back to the seminal work of
Granger (1969). Statistically assessing the predictability among two
(or blocks of) time series is to these days a fundamental concept in
modern time series analysis. Its applications range over from macroe-
conomics, finance, network theory, climate econometrics and even the
neuroscience. Among others, in the macroeconomic literature, the ques-
tion of causality between money and gross domestic product (GDP),
initiated by Sims et al. (1990) and Stock and Watson (1989a), is still
at debate these days, see e.g. Miao et al. (2020). Financial appli-
cations of linear and non-linear Granger causality see, among others:
Hiemstra and Jones (1994) who find Dow Jones stock returns and per-
centage changes in New York Stock Exchange trading volume to be
bi-directional Granger causing; Billio, Getmansky, et al. (2012) which
in a network framework uses principal component techniques as well
as Granger causality networks to measures the connectedness among
monthly returns of hedge funds, banks, broker/dealers, and insurance
companies. Many applications are also found in climate science, for
instance in trying to understand and disentangle the causes of cli-
mate change. Among others, Stern and Kaufmann (2014) investigate
causality between greenhouse gases transformed into radiative forcing
and temperature, finding that both natural and anthropogenic forc-
ings cause an upward temperature change and that temperature causes
greenhouse gas concentration changes. In neuroscience, Granger causal-
ity is widely employed in understanding principles and mechanisms un-
derlying complex brain function and cognition. Examples lies mostly
in the branch of functional neuroimaging, where brain connectivity is
investigated through neuronal networks from fMRI, EEG, and electro-
corticography data (see e.g. Seth et al. (2015), Friston et al. (2013) for
some reviews).

More recently, with the increased availability of larger datasets, these
causality concepts have been extended to a high-dimensional setting
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where they can benefit from the inclusion of many more series within
the available information set. Granger causality (in mean), as conceived
by Granger himself (Granger, 1969) is in fact well known to capture
predictability among variables (or blocks of variables) of interest, con-
ditionally on a given information set. In other words, to talk about true
direct causal effects, the tested relation must be conditioned upon all
possible variables that can aid in explaining the original variables object
of the test. Otherwise, omitted variable bias would invalidate the causal
interpretation (spurious causality) and the testing procedure would re-
duce to a mere predictability exercise. Granger himself envisioned this
information set as “all the knowledge in the universe available at that
time” (Granger, 1980, p.330). As this concept can be hardly opera-
tionalized, one needs to rely on the available dataset. In this sense, the
high dimensionality of the nowadays increasingly large datasets avail-
able, as well as the regularization techniques developed to circumvent
the curse of dimensionality and simultaneously perform variable selec-
tion and parameter estimation, provide a great opportunity to get-away
from spurious causality and approach the true causal interpretation as
envisioned by Granger. In Chapter 2 we designed a Granger causality
Lagrange-Multipliers (LM) test for high-dimensional vector autoregres-
sive models (VAR) which combines dimensionality reduction techniques
based on penalized regressions such as the lasso of Tibshirani (1996),
with the post-double selection procedure of Belloni, Chernozhukov, and
Hansen (2014b) designed to guarantee uniform asymptotic validity of
the post-selection least squares estimator. Empirical applications of
such testing procedure comprise, among others, networks construction
for volatility spillovers which can be used to predict the flow of volatility
contagion when a financial crisis hits the stock market.

In Chapter 2 we assumed stationarity of all the time series considered.
This is a long standing issue in econometrics: on the one hand, work-
ing with stationary time series alleviates many complications in the
asymptotic analysis, allowing for standard inferential procedures such
as χ2 and F -tests. On the other hand, it assumes prior knowledge
of the integration and cointegration order and possibly of the type of
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non-stationarity for all the time series entering the model. This prior
knowledge is usually acquired via unit root and cointegration tests such
as e.g., the Augmented Dicky-Fuller test (ADF) (see Dickey and Fuller,
1979) and Johansen’s cointegration test (see Johansen, 1991). However,
these tests are particularly keen to biases coming from different sources.
For instance, the inclusion or not of the intercept and the determinis-
tic time trend in the regression equation, the choice of the lag-length
order to include, the seasonality adjustments of the data, the presence
of structural breaks as well as outliers in the series, these are all fac-
tors affecting the outcomes of these tests. Especially unit root tests
are known to suffer from low power (see e.g. the critique of Cochrane,
1991). Given that the practitioner should test for unit roots all the
time series in a high-dimensional VAR, it follows that biases would ac-
cumulate quite dramatically. Furthermore, in practice many observed
time series in e.g., macroeconomics, finance, climate econometrics, they
definitely do not appear to be stationary in their original levels but they
are characterized by stochastic and/or deterministic trends. Taking the
first differences of the series (difference-stationary) stabilises the mean
by removing changes in the levels and thereby eliminating (or reducing)
trend and seasonality. However, this is often not an innocuous transfor-
mation: it can indeed induce a loss of information since the long-term
memory of the series gets wiped out by the differentiation. Also, when
estimating with least squares difference-stationary series that are truly
cointegrated, the model gets misspecified. Vector error-correction mod-
els (VECM) account for the latter issue since they allow for both short
and long memory dynamic in the relationship. However, to be able to
write the VECM one typically again relies on unit root and cointegra-
tion pre-tests (notable exception is the work of Smeekes and Wijler,
2021).

The aim of this chapter is to design a method which allows for test-
ing Granger causality in high-dimensional VAR models, irrespectively
of the integration and cointegration orders of the time series entering
the VAR equations. Namely, we seek to avoid any unit root and coin-
tegration pre-test biases and use the VAR in levels directly to perform
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inference on the parameters of interest. To do so, we borrow the idea of
Toda and Yamamoto (1995) which consider a simple lag-augmentation
of the system in order to reconduct the asymptotics to standard station-
ary arguments. We find that the potential inefficiency of this method,
coming from the overspecification of the model lag-length, is substan-
tially reduced if the augmentation is performed only on the interest
variable(s) for the Granger causality testing. Put it differently, we do
not need to augment lags of all the variables within the information
set but only the lags of those variables that we are interested in test-
ing for causality. Using the same notation introduced in Chapter 2, let
NI = |I| and NJ = |NJ | denote the number of variables in I and J
i.e., respectively the set of Granger caused and Granger causing vari-
ables. Then, the lag augmentation can be confined to only NI + NJ

variables. This applies as long as NI + NJ is sufficiently small. We
argue that the relative small dimension of the causal blocks, is not a
restriction. After all, the value added of the high-dimensionality ap-
proach is that of being able to condition simple relations among series
(i.e., bivariate/trivariate), to a large set of regressors, thus in order to
maximise the information set to obtain a result as much as possible free
of omitted variable bias. To account for the large dimensionality of the
VAR and in order to deal with the complications of the post-selection
inference (see e.g. Leeb and Pötscher, 2005), we follow the framework
outlined in Chapter 2, extending the stationary setting to the unit root
non-stationary one. Hence, we set up a post-double selection proce-
dure which is able to partial-out nuisance variables while safeguarding
from omitted variable bias to return uniform asymptotics. After the
selection has been performed, we build a post-selection, restricted-lag-
augmented Lagrange Multiplier test which allows to perform inference
on the interest parameters. Several technical assumptions are needed
to extend the post-double selection framework to the non-stationary
setting. Especially, in order to bound the empirical process, a novel
Gaussian approximation is proposed which avoids assuming any strong
invariance principles.
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The remainder of the chapter is organized as follows: Section 3.2 in-
troduces the model, the relevant hypotheses and the algebra required
to show how a lag-augmentation, restricted to the sole variables of in-
terest, does not impact the tested hypothesis which can equivalently
be rewritten in terms of the augmented model. Section 3.3 shows
how the post-double selection technique can be coupled with a post-
selection restricted lag-augmentation as advocated in the previous sec-
tion. The main algorithm (PDS-LA-LM) is stated and some remarks
are given. The set of assumptions for the asymptotic normality of the
post-selection least square estimator are extended to the unit root non-
stationary framework in Section 3.4 where the main asymptotic results
are stated, namely in high-dimensions the restricted lag-augmentation
does return asymptotic normality of the OLS after the double-selection
is performed by the lasso and hence standard inference, free of omitted
variable bias, is attained. In Section 3.5 we report the finite sample sim-
ulations for sparse and non-sparse data generating processes and we dis-
cuss the performances of the proposed test. In Section 3.6 we elaborate
on how to obtain an empirical upper-bound for the estimated lag-length
p by means of using information criteria (BIC). The original model is
estimated as a diagonal VAR and an estimate of the log-determinant
of the residuals covariance matrix is used to alleviates singularity issues
affecting the computation of the BIC. Section 3.7 uses the proposed
testing framework to investigate the driving factors of inflation in the
context of the FRED-MD dataset. Finally, Section 3.8 concludes.
The Appendices are organized as follows. In Appendix A are reported
complementary results to the following two appendices. Appendix B re-
ports the proofs of theorems and lemmas needed for the results stated in
Section 3.4. The proofs of the main results on the post-double selection
estimator convergence is reported in Appendix C. Appendix D reports
additional simulation results.

A few words on notation. For any n-dimensional vector x, we let ‖x‖p =
(
∑n

i=1 |xi|p)
1/p denote the `p-norm. For any index set S ⊆ {1, . . . , n},

let xS denote the sub-vector of xt containing only those elements xi
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such that i ∈ S. |S| denotes the cardinality of the set S. We use
p−→ and

d−→ to denote convergence in probability and distribution, respectively.

3.2 The Model

Let y1, . . . ,yT be a K-dimensional multiple time series process, where
yt = (y1,t, . . . , yK,t)

′
is generated by a VAR(p) process

yt = A1yt−1 + · · ·+Apyt−p + ut, t = p+ 1, . . . , T , (3.1)

where A1, . . . ,Ap are K × K parameter matrices and ut is a K × 1
martingale difference sequence (mds) of error terms. Elements of yt
are time series integrated of order d: I(d) (d = 0, 1, 2) and possibly
cointegrated of order d, b: CI(d, b).

Assumption 3. The VAR model in (3.1) satisfies:

(a) {ut}Tt=1 is a mds with respect to
Ft = σ(yt,yt−1,yt−2, . . .) ut such that E(ut|Ft−1) = 0 for all t;
the K×K covariance matrix Σu = E(utu′

t) is positive definite and
E|ut|2+δ ≤ ∞, with δ > 0.

(b) Roots of det(IK −
∑p

j=1Ajz
j) can either lie on the unit disc or

outside, thus allowing for unit roots and cointegration within the
VAR.

Remark 3.1. Assumption 5-8 from Johansen (1992) are also needed to
rule out explosive processes and guaranteeing the series to be maximum
I(2) and in general cointegrated. The statements of these assumptions
are reported in Appendix A.

We are interested in testing the null hypothesis of Granger non-causality
in mean between variables in the set J i.e, the Granger causing variables
and those in the set I i.e., the Granger caused, conditional on all the
other variables, where J, I ⊂ {1, . . . ,K} and J ∩ I = ∅. Let NJ = |J |
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and NI = |I| be the cardinalities of the sets J , I. For the moment we
assume the lag-length p in (3.1) to be fixed, we shall further elaborate
on the choice of p in Section 3.6. Also, in order to ease the notation,
we omit both the intercept and any polynomial time trend from the
model, the results we derive easily extends to those cases as well. As in
Chapter 2, we describe our procedure in general form for testing blocks
of variables. For a formal definition of Granger causality we refer to
equation (2.2) in Chapter 2. A test for Granger causality is built via
testing the joint significance of the blocks of coefficients in the matrices
A1, . . . ,Ap corresponding to the impact of variables J on I. We use
a similar stacked representation to that in (3.1) of Chapter 2 for the
variables in I. Namely, Y = (yp+1, . . . ,yT )

′ and yI = vec (YI) denotes
the NI × 1 stacked vector containing all observations corresponding to
the variables in I. Similarly, uI = vec(UI), where U = (up+1, . . . ,uT )

′.

Let X =
(
x
(p)
p , . . . ,x

(p)
T−1

)′
and X⊗ = INI

⊗ X, while the stacked

parameter vector is β = vec((A1, . . . ,Ap)
′). Then we obtain

yI = X⊗β + uI = X⊗
GCβGC +X⊗

−GCβ−GC + uI , (3.2)

where X⊗
GC = INI

⊗XGC , and XGC =
(
x
(p)
J,p,x

(p)
I,p . . . ,x

(p)
J,T−1,x

(p)
I,T−1

)′
contains those columns of X corresponding to the potentially Granger
causing variables in J and those potentially Granger caused variables
in I;2 X−GC and X⊗

−GC are then defined similarly but containing the
remaining variables.3 β−GC has (K −NJ −NI)×NI × p elements and
βGC has NGC = (NJ +NI) ×NI × p elements. Elements of β−GC are
assumed being large given a large number of variables K is assumed.
Throughout the chapter we assume NJ , NI and p to be fixed when
sample size T increases to infinity. Similarly, elements of βGC are also
implied to be fixed. Similarly to Chapter 2, let also βGC be the subvec-

2Note: the underlined notation is used to distinguish the notation from Chapter 2
where XGC was referring to only the Granger causing instead of both Granger
causing and Granger caused.

3Note that if I = {i} for one particular value of interest, then (3.2) simply corre-
sponds to a single equation from the VAR in (3.1).
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tor of βGC corresponding to the variables in XGC =
(
x
(p)
J,p, . . . ,x

(p)
J,T−1

)′
i.e., pertaining those columns ofX corresponding to only the potentially
Granger causing variables in J , thus containing NJ×NI×p elements.

Testing for no Granger causality is then equivalent to testing the fol-
lowing null hypothesis:

H0 : βGC = 0 against H1 : βGC 6= 0. (3.3)

In order to test the null hypothesis in (3.3) we augment the level of the
system in the following way:

yI = X⊗∗
GCβ

∗
GC +X⊗

−GCβ−GC + uI , (3.4)

where now X⊗∗
GC = INI

⊗X∗
GC , and

X∗
GC =

(
x
(p+d)
J,p ,x

(p+d)
I,p , . . . ,x

(p+d)
J,T−1,x

(p+d)
I,T−1

)′
contains the same elements

of XGC plus additional d lags of both variables in J and I. Similarly
as above, considering β∗

GC being the subvector of β∗
GC only containing

coefficients related to variables in XGC =
(
x
(p)
J,p, . . . ,x

(p)
J,T−1

)′
, then the

null hypothesis under test of Granger causality in this lag-augmented
set up becomes:

H0 : β∗
GC = 0 against H1 : β∗

GC 6= 0. (3.5)

Let us introduce the following NGC(p+d)×NGC(p+d) transformation
matrices Rd for d = 1, 2

R1 =



1 0 1 0 . . . 1 0 1 0
0 1 0 1 . . . 0 1 0 1
0 0 1 0 . . . 1 0 1 0
0 0 0 1 . . . 0 1 0 1
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 0 1 0
0 0 0 0 · · · 0 1 0 1
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1


, R2 =



1 0 1 0 . . . 1 0 0 0
0 1 0 1 . . . 0 1 0 0
0 0 1 0 . . . 1 0 0 0
0 0 0 1 . . . 0 1 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 0 0 0
0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1


.
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Note we can rewrite R1, R2 as block matrices like

R1 =


R11︸︷︷︸

NGCp×NGCp

R12︸︷︷︸
NGCp×NGCd

0︸︷︷︸
NGCd×NGCp

R22︸︷︷︸
NGCd×NGCd

 , R2 =


R11︸︷︷︸

NGCp×NGCp

[ R12︸︷︷︸
NGCp×d

| 0︸︷︷︸
NGCp×d

]

︸ ︷︷ ︸
NGCp×NGCd

0︸︷︷︸
NGCd×NGCp

I︸︷︷︸
NGCd×NGCd

 ,

where R11,R22 are smaller versions of R1 while R12 is everywhere as
the upper triangle of R1.

Then let

P1 = R1; P−1
1 =



1 0 −1 0 . . . 0 0 0 0
0 1 0 −1 . . . 0 0 0 0
0 0 1 0 . . . 0 0 0 0
0 0 0 1 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 0 −1 0
0 0 0 0 · · · 0 1 0 −1
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1


, (3.6)

and

P2 = R1R2 =



1 0 2 0 3 · · · p+ 1 0 1 0
0 1 0 2 0 · · · 0 p+ 1 0 1
0 0 1 0 2 · · · p 0 1 0
0 0 0 1 0 · · · 0 p 0 1
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 · · · 1 0 1 0
0 0 0 0 0 · · · 0 1 0 1
0 0 0 0 0 · · · 0 0 1 0
0 0 0 0 0 · · · 0 0 0 1


, (3.7)
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P−1
2 =



1 0 −2 0 1 · · · 0 0 0 0
0 1 0 −2 0 · · · 0 0 0 0
0 0 1 0 −2 · · · 0 0 0 0
0 0 0 1 0 · · · 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 · · · 1 0 −1 0
0 0 0 0 0 · · · 0 1 0 −1
0 0 0 0 0 · · · 0 0 1 0
0 0 0 0 0 · · · 0 0 0 1


.

For the order of integration d ≤ 2, define4(
β∗
GC,d

β−GC

)
:=

(
Pd 0
0 Ip(K−NGC)

)′(
β∗
GC

β−GC

)
,(

X⊗∗
GC,d

X⊗
−GC

)
:=

(
Pd 0
0 Ip(K−NGC)

)−1(
X⊗∗
GC

X⊗
−GC

)
.

(3.8)

Therefore, we can rewrite (3.4) as

yI = X⊗∗
GCP

−1
d Pdβ

∗
GC +X⊗

−GCβ−GC + uI ,=

= X⊗∗
GC,dβ

∗
GC,d +X⊗

−GCβ−GC + uI

= W ∗
dφ

∗ +X⊗
−GCβ−GC + uI ,

(3.9)

where to lighten the notation we defined W ∗
d := X⊗∗

GC,d = II ⊗X∗
GC,d

and φ∗ = β∗
GC,d. Let further w∗

t be the t-th row of X⊗∗
GC and wt,d be

the t-th row of X∗
GC,d and suppose for simplicity that NJ = NI = 1,

where the interest is in testing Granger causality from y2 to y1, then

4We could allow for more generality than d ≤ 2. However, as it is consensus in
economics, rarely processes exhibit roots of higher order than two. Hence, we
confine our presentation up to the case of I(2) series.
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we have

wt,d = (∆dy1,t−1,∆
dy2,t−1︸ ︷︷ ︸

∆dwt,1

,∆dy1,t−2,∆
dy2,t−2︸ ︷︷ ︸

∆dwt,2

, . . .

. . . ,∆d−1y1,t−p−1,∆
d−1y2,t−p−1︸ ︷︷ ︸

∆d−1wt,p+1

, y1,t−p−2, y2,t−p−2︸ ︷︷ ︸
wt,p+2

)′,

Example 3.1. Let NJ = NI = p = d = 1 and the interest is in testing
Granger causality from y2,t to y1,t then,

R1︸︷︷︸
4×4

=


R11︸︷︷︸
2×2

R12︸︷︷︸
2×2

0︸︷︷︸
2×2

R22︸︷︷︸
2×2

 ; Pd = P1 =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 = R1; P
−1
1 =


1 0 −1 0
0 1 0 −1
0 0 1 0
0 0 0 1

 ;

P−1
1 w∗

t =


1 0 −1 0
0 1 0 −1
0 0 1 0
0 0 0 1



y1,t−1

y2,t−1

y1,t−2

y2,t−2

 =


∆y1,t−1

∆y2,t−1

y1,t−2

y2,t−2

 = wt,1.

Example 3.2. Let NJ = NI = 1, p = d = 2 and the interest is in
testing Granger causality from y2,t to y1,t then, then

R1︸︷︷︸
8×8

=


R11︸︷︷︸
4×4

R12︸︷︷︸
4×4

0︸︷︷︸
4×4

R22︸︷︷︸
4×4

 ; R2︸︷︷︸
8×8

:=


R11︸︷︷︸
4×4

[R12︸︷︷︸
4×2

| 0︸︷︷︸
4×2

]

︸ ︷︷ ︸
4×4

0︸︷︷︸
4×4

I︸︷︷︸
4×4

 ;

P2 = R1 ·R2 =



1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


·



1 0 1 0 1 0 0 0
0 1 0 1 0 1 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


;
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P−1
2 w∗

t =



1 0 −2 0 1 0 0 0
0 1 0 −2 0 1 0 0
0 0 1 0 −2 0 1 0
0 0 0 1 0 −2 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1





y1,t−1

y2,t−1

y1,t−2

y2,t−2

y1,t−3

y2,t−3

y1,t−4

y2,t−4


=



∆2y1,t−1

∆2y2,t−1

∆2y1,t−2

∆2y2,t−2

∆y1,t−3

∆y2,t−3

y1,t−4

y2,t−4


︸ ︷︷ ︸

wt,2

.

Now, let us define the following NGCp×NGC(p+ d) matrix

M :=
(
INGCp×NGCp 0NGCp×NGCd

)
,

such that βGC = Mβ∗
GC=

(
INGCp×NGCp 0NGCp×NGCd

)


β
(1:p)′

GC︸ ︷︷ ︸
NGCp×1

β
(p+1:p+d)′

GC︸ ︷︷ ︸
NGCd×1

 .

Note that for d = 1

MP1 = MR1 = R̃11 := R11,

and for d = 2
MP2 = MR1R2 = MR2

1.

In more detail, for d = 1 we get the reduced-upper-left matrix of R1:

MP1 = R̃11︸︷︷︸
NGCp×NGCp

,

while for d = 2

MP2 =
(
INGCp×NGCp 0NGCp×NGC2

)
R11︸︷︷︸

NGCp×NGCp

R12︸︷︷︸
NGCp×NGC2

0︸︷︷︸
NGC2×NGCp

R22︸︷︷︸
NGC2×NGC2

×
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×


R11︸︷︷︸

NGCp×NGCp

[ R12︸︷︷︸
NGCp×NGC

| 0︸︷︷︸
NGCp×2

]

︸ ︷︷ ︸
NGCp×NGC2

0︸︷︷︸
NGC2×NGCp

I︸︷︷︸
NGC2×NGC2



=

(
INGCp×NGCp 0NGCp×NGC2

0NGC2×NGCp 0NGC2×NGC2

)
R11R11︸ ︷︷ ︸

NGCp×NGCp

R11[R12|0] +R12︸ ︷︷ ︸
NGCp×NGC2

0︸︷︷︸
NGC2×NGCp

R22︸︷︷︸
NGC2×NGC2

 = R̃2
11

≡ MR2
1 =

(
INGCp×NGCp 0NGCp×NGC2

)
R11R11︸ ︷︷ ︸

NGCp×NGCp

R11R12 +R12R22︸ ︷︷ ︸
NGCp×NGC2

0︸︷︷︸
NGC2×NGCp

R22R22︸ ︷︷ ︸
NGC2×NGC2


= R̃2

11.

Then, the following chain of equalities is verified:

φGC := Mφ∗ = MPdβ
∗
GC = MRd

1βGC = R̃d
11βGC . (3.10)

As R11 is invertible, it follows that any hypothesis formulated on βGC
may equivalently be formulated in terms of φGC and vice-versa. Hence,

by defining the function fd(θ) := ((R̃d
11)

−1θ) we just showed that testing
the null hypothesis in (3.3) is equivalent of testing the null

H0 : fd(φGC)SNJ
= 0 against H1 : fd(φGC)SNJ

6= 0,
(3.11)

where SNJ
is a matrix of zeroes and ones, of conformable dimensions

as φGC and which extracts only those coefficients corresponding to the
variables in J . Therefore, e.g. the Lagrange Multiplier (LM) statistic for
testing (3.11) gives the same numerical value as an LM test for testing
(3.5). To show this it is sufficient to prove the numerical equivalence of
the residual sum of squares (SSR1) of the augmented regression (3.9)
expressed in terms of φ̂GC = Mφ̂∗ with the residual sum of squares of
regression (3.4), (SSR2). First, we show that the equivalence chain in
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(3.10) which is expressed in terms of the population parameter, it holds
for the estimated version as well.

Mφ̂ = M
(
W ∗′

d G1W
∗
d

)−1
W ∗′

d G1yI =

= MPd

(
X⊗∗′
GCG1X

⊗∗
GC

)−1
X⊗∗′
GCG1yI

= MPdβ̂
∗
GC = MPd

(
β̂
(1:p)′

GC

β̂
(p+1:p+d)′

GC

)
= R̃d

11β̂GC ,

(3.12)

for G1 :=
[
I −X⊗

−GC(X
⊗′
−GCX

⊗
−GC)

−1X⊗′
−GC

]
.

Then, for the model in (3.9) by using results in (3.8), (3.10):

SSR1 ≡ û′
I ûI = y′

IyI − 2φ̂∗′
W ∗′

d yI − 2β̂′
−GCX

⊗′

−GCyI+

+ 2φ̂∗′
W ∗′

d X⊗
−GC β̂−GC+

+ φ̂∗′
W ∗′

d W ∗
d φ̂

∗ + β̂′
−GCX

⊗′

−GCX
⊗
−GC β̂−GC ,

= y′
IyI − 2β̂GCR

d
11P

−1
d X⊗

GC,dyI − 2β̂′
−GCX

⊗′

−GCyI+

+ β̂GCR
d
11P

−1
d X⊗

GC,dX−GC β̂−GC+

+ β̂GCR
d
11P

−1
d X⊗

GC,dP
−1
d X⊗

GC,dβ̂GCR
d
11 + β̂′

−GCX
⊗′

−GCX
⊗
−GC β̂−GC ,

= y′
IyI − 2β̂∗

GCPdP
−1
d X⊗

GC,dyI − 2β̂′
−GCX

⊗′

−GCyI+

+ 2β̂∗
GCPdP

−1
d X⊗

GC,dX
⊗
−GC β̂−GC+

+ β̂∗
GCPdP

−1
d X⊗

GC,dP
−1
d X⊗

GC,dβ̂
∗
GCPd + β̂⊗′

−GCX
⊗′

−GCX
⊗
−GC β̂

⊗
−GC ,

= y′
IyI − 2β̂∗

GCX
⊗
GC,dyI − 2β̂⊗′

−GCX
⊗′

−GCyI + 2β̂∗
GCX

⊗
GC,dX

⊗
−GC β̂

′

−GC+

+ β̂∗′

GCX
⊗′

GC,dX
⊗
GC,dβ̂

∗
GC + β̂

′

−GCX
⊗′

−GCX
⊗
−GC β̂−GC =

= u′
IuI ≡ SSR2,

where: β̂−GC =
(
X⊗′

−GCG2X
⊗
−GC

)−1

X⊗′

−GCG2yI and

G2 :=
[
I −W ∗

d (W
∗′

d W ∗
d )

−1W ∗′

d

]
and this shows the claim.
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Remark 3.2. With the algebra presented in this section we are able
to re-express the levels VAR in 3.1 by isolating the NGC variables of
interest for the causality testing from the potentially high-dimensional
matrix of nuisance variables X⊗

−GC . Furthermore, we can augment the
lag-length of only the interest variables, incorporate these lag augmen-
tations into the equation as in (3.4), such that we can re-state the
interest variables in their d-differences (∆d) and this without implica-
tions on the null hypothesis. The inefficiency coming from the inten-
tional overfitting of the VAR model by augmenting p + d lags of all
the variables included in the model, as original idea of Toda and Ya-
mamoto (1995), gets greatly reduced even though the space of nuisance
parameters is high-dimensional, as long as the interest is confined in
testing sufficiently small portions of the variables in the system. Fur-
thermore, as the variables of interest for the testing are expressed in
their d-differences, this makes the asymptotic distribution of the test-
ing procedures involving OLS estimators as e.g., Lagrange Multipliers
and Wald test, to be standard χ2. The rationale behind this is straight-
forward: even though we do not take the d differences of all the variables
by means of augmenting d lags of them all, OLS χ2 types tests of any
linear hypothesis involving only the ∆d-variables will converge at the
usual parametric

√
T rate, thus dominating the faster convergence of

the non-stationary variables.

Remark 3.3. One important aspect of the current framework is that
the lag-length p of the VAR is assumed to be larger than, or at most
equal to, the suspected maximum order of integration d. This will be
needed later in Section 3.3 to avoid spurious regression problems in the
post-double selection steps but it is also of interest to observe here.
In fact, one might be worried that having mixed orders of integration
among the Granger caused and Granger causing variables could lead to
over-differencing issues i.e., moving average unit roots being introduced
by differencing stationary time series. This however does not happen
here as the additional lags of the Granger causing and Granger caused
variables are used “at convenience” i.e., if they are not needed because
the variables are already stationary, at most they will marginally de-
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crease the power of the test because of the slight over-specification of the
lag-length but they will not affect the inference as the true coefficients
of the extra lags are by construction always equal to zero.

Remark 3.4. The choice of d = 2 as augmentation in the above deriva-
tions and examples is done with purpose and is supported by simulations
reported later in Section 3.5. It is well known that the distribution of
the least squares estimator, when one or more roots of the character-
istic polynomial are close to unity, becomes skewed yielding estimators
which tend to underestimate the true autoregressive parameters (see
e.g. Fuller, 2009). This skewness is also responsible to cause difficulties
in constructing confidence intervals for the same parameters. Therefore,
to avoid such near unit roots unwanted behaviors, augmenting d = 2
lags of the interest variables is always suggested. This does not cause
overdifferencing issues as explained in Remark 3.3 and the simulations
reported in Section 3.5 show satisfactory final sample behavior, also in
terms of statistical power of the test.

3.3 Inference after selection by the lasso

We have shown in Section 3.2 that the augmentation of only the interest
variables and the provided algebraic formulation allows to equivalently
re-state the null hypothesis on βGC in terms of φGC . Appendix C con-
tains the formal asymptotic justification for which the augmentation is
needed to avoid non-standard limiting distributions of the test statis-
tics in finite dimensions, when K < T . This is connected to the present
context of a high-dimensional VAR model as in the proof of the main
Theorem 3.1 in Section 3.4 we show with high probability that the set of
retained variables within the double selection is close to the true, fixed
dimensional support. We are now going to employ the post-double se-
lection (PDS) LM test developed in Chapter 2 and adapt its theory and
algorithm to the unit root non-stationary framework.

Consider again model (3.2). Let xGC,j , j = 1, . . . , NX , where NX =
pNJ , denote the j-th column of XGC . Also, call X−GCj the matrix X
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from which only the column corresponding to the j-th lag of xJ has
been removed. Then, consider the “Frisch-Waugh” partial regressions
of the variables of interest yI , xGC,j on all other variables:

yI = X⊗η(0) + e(0), (3.13)

xGC,j = X−GCjη
(j) + e(j), j = 1, . . . , NX , (3.14)

where η(j), j = 0, . . . , NX are the best linear prediction coefficients

for the prediction of respectively yI and xGC,j on X⊗ and X
(j)
−GCj .

Consider the following scaling matrix

DT :=

√
TIA 0 0
0 TIB 0
0 0 T 2IC

 ,

and assume without loss of generality that the variables in X⊗ and
X−GCj are organized by order of integration in increasing fashion, where
A is the column dimension of the I(0) variables, B is the same for I(1)
variables and C for I(2) variables. Furthermore, define the limiting
scaled expectation as Ē(·) := limT→∞DTE(·). Then, for j = 1, . . . , NX

the best linear predictions respectively for (3.13) and (3.14) are

η(0) = argmin
η

Ē
∥∥∥yI,t −X⊗′

t−1η
∥∥∥2
2
=
(
ĒX⊗

t−1X
⊗′

t−1

)−1
ĒX⊗

t−1yI,t,

(3.15)

η(j) = argmin
η

Ē
∥∥xGC,j,t −X ′

−GCj,t−1η
∥∥2
2
=

=
(
ĒX−GCj,t−1X

′
−GCj,t−1

)−1
ĒX−GCj,t−1xGC,j,t,

(3.16)

where X⊗
t−1 = INI

⊗ xt−1. As η(0) and η(j) respectively obey the first

order conditions: Ē(yI,t −X⊗′

t−1η)X
⊗
t−1 = 0,

Ē(xGC,j,t −X ′
−GCj,t−1η)X−GCj,t−1 = 0, it follows that the errors

e(0), . . . , e(NX) are orthogonal to our variables of interest yI and xGC,j .
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Therefore, by partialling out the effects of all other variables guarantees
a valid test of Granger causality. However, the sample versions of (3.13)
and (3.14) are high-dimensional and cannot be directly estimated by
least squares as X⊗′

X⊗ and X ′
−GCjX−GCj are not full rank. One

needs to first select the relevant variables from regularized estimation
of (3.13) and (3.14) and collect all these for the final estimation of
yI on xGC,j plus only those relevant variables. By using the lasso
(see Tibshirani, 1996) we can simultaneously perform variable selection
and estimation of the parameters by solving respectively for (3.15) and
(3.16) the following in-sample minimization problems

η̂(0) = argmin
η

(
T−1||yI −X⊗η(0)||22 + λ||η(0)||1

)
,

η̂(j) = argmin
η

(
T−1||xGC,j −X−GCjη

(j)||22 + λ||η(j)||1
)
,

(3.17)

for j = 1, . . . , NX , where λ is a non-negative tuning parameter deter-
mining the strength of the penalty.

Remark 3.5. Kock (2016) showed that the (adaptive) lasso is oracle
efficient in stationary as well as non-stationary autoregressions. One
however needs to choose the tuning parameter λ appropriately as it
needs to shrink the estimates of the truly-zero coefficients in η(0), η(j)

to zero while at the same time it cannot grow too fast to avoid also
the true non-zero parameters to be shrunk to zero. Here we follow
the framework of Chapter 2 and use the Bayesian information criterion
(BIC) in selecting the tuning parameter coupled with a penalty lower
bound ensuring a maximum of selected variables per estimated equation
(see Remark 3.8 for details). Minimizing an information criterion (IC)
in order to determine an appropriate data-driven λ is one way to deal
with dependent data (see Chapter 2 for an overview of other methods
and their finite sample behaviors).

Let Ŝ(λ) = {m ∈ {1, . . . ,Kp} : |η̂m(λ)| > 0} denote the set of active
variables in the lasso solution for a given λ. For a generic response

102



vector y and predictor matrix X, the value λIC is found as

λIC = argmin
λ

ln

(
1

T
‖y −Xη̂(λ)‖22

)
+

lnT

T

∣∣∣Ŝ(λ)∣∣∣, (3.18)

where
∣∣∣Ŝ(λ)∣∣∣ are the lasso degrees of freedom after the penalization

procedure is applied i.e., the number of non-zero coefficients selected.
The BIC-chosen λ within the adaptive lasso is well known to be able
to identify the true model consistently as long as the model dimen-
sion is fixed (see e.g. Wang, Li, and Tsai 2007, Wang and Leng 2007).
In fact, whenever the number of candidate models is fixed, BIC can
consistently differentiate the true model from an arbitrary candidate
model. However, if the model dimensions diverge, the number of can-
didate models increases at a too fast pace for the BIC to be able
to distinguish the true model. Wang, Li, and Leng (2009) proposed
a modified BIC and develop a set of probabilistic inequalities able
to bound the overfitting coming from the diverging dimensions. The
only difference with the standard BIC in (3.18) is that the penalty
lnT/Tdf gets multiplied by a positive constant CT . This constant
is set to diverge to infinity but its rate can be arbitrarily slow, for
instance Wang, Li, and Leng (2009) uses CT = log(log(K)). Fur-
thermore, a set of technical assumptions are needed in order to show
that such modified BIC is consistent in model selection even with a
diverging number of parameters. Specifically, (i) componentwise fi-
nite fourth-order moments for X are assumed, (ii) the minimal eigen-
value of the covariance matrix of X should be bounded away from
zero (see also our Assumption 4,(g)), (iii) the divergence speed of the
model dimension satisfy lim sup(K/Tα) < 1 for α < 1, and finally (iv)
a limit requirement on the size of the non-zero coefficients is needed
(
√

[T/CTK log(T )] lim infT→∞(minj∈S |ηj |) → ∞) as well as a con-
straint on the value of the diverging constant CT (CTK log(T )/T → 0).
In our simulations in Section 3.5 we stick to the standard BIC, in fact
simulations there show still a satisfactory performance of BIC without
modifications. The theoretical argument of Wang, Li, and Leng (2009)
is though appealing especially for ultra-high-dimensional settings. We
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compare it with standard BIC within the lag-length selection framework
in Section 3.6.

Below in Algorithm 3 we state the main steps of our post-double se-
lection, lag-augmented, Lagrange multiplier test and some remarks are
included. We call the procedure PDS-LA-LM to stress the difference
with the PDS-LM Algorithm 1 in Chapter 2. Here the post-selection
step contains a lag-augmentation and this is restricted to the sole vari-
ables of interest for the testing.

Remark 3.6. In Algorithm 3, the choice among Step [4a] or [4b] does
not affect the finite sample results of the test whenever the sample size
T is large enough, similarly to Chapter 2. The small sample correction
in [4b] (see Kiviet, 1986) has a wider practical applicability since [4a]
suffers heavily for size distortion in small samples, therefore in Section
3.5 we always use [4b] for the Monte-Carlo simulations of the PDS-LA-
LM test. The final sample results of using Step [4a] are reported for
completeness in Table 3.9 in Appendix D.

Remark 3.7. As for Chapter 2, the feasible generalized least squares
(FGLS) estimation in Step [3] of Algorithm 3 is needed when NI > 1 to
account for the correlation between equations of the VAR, and the fact
the selected regressors are not the same in each equation. If NI = 1,
FGLS estimation boils down to the standard form of the LM statistic
where one regresses ξ̂ by OLS onto the variables retained by the previous
regularization steps plus the Granger causality variables, and retain the
residuals ν̂ = ξ̂ −X⊗

Ŝ ∪ GC
β̂∗, obtaining R2 = 1− ν̂ ′ν̂/ξ̂′ξ̂.
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Algorithm 3 Post-double selection lag augmented Granger causality
LM test (PDS-LA-LM)

[1] Estimate the initial partial regressions in (3.13) and (3.14) by
an appropriate sparsity-inducing estimator such as the (adaptive)
lasso, and let η̂0, . . . , η̂NX

denote the resulting estimators. Let
Ŝ0 = {m : |η̂m,0| > 0, m = 1, . . . , N} and Ŝj = {m : |η̂m,j | >
0, m = 1, . . . , NX} for j = 1, . . . , p, denote the selected variables
in each regression.

[2] Let ŜX =
⋃NX
j=1 Ŝj denote all variables selected in the regressions

for the columns of XGC , and let Ŝ⊗
X map ŜX back to X⊗

−GC be

such that X⊗
Ŝ⊗
X

= INI
⊗ XŜX

. Collect all variables kept by the

lasso in Step [1] in Ŝ⊗ = Ŝ0∪Ŝ⊗
X . AugmentX⊗

Ŝ⊗ to X̃⊗
Ŝ⊗ including

extra d lags of yI and xGC . Obtain the residuals ξ̂ = yI−X̃⊗
Ŝ⊗β̂

†

by OLS estimation. Let Ξ̂I denote the T × NI -matrix formed
from ξ̂ and construct Σ̂u,I = Ξ̂ ′

IΞ̂I/T and Σ̂⊗
u,I = Σ̂u,I ⊗ IT .

[3] Let y∗
NI

=
(
Σ̂⊗
u,I

)−1/2
yNI

and X∗⊗ =
(
Σ̂⊗
u,I

)−1/2
X⊗. Ob-

tain the residuals ξ̂∗ = y∗
I −X∗⊗

Ŝ⊗ η̂
†
FGLS , and regress ξ̂∗ onto the

variables retained by the previous regularization steps plus the
Granger causality variables, retaining the residuals ν̂∗ = ξ̂∗ −
X∗⊗
Ŝ ∪ GC

β̂∗
FGLS . Then obtain the statistic LM = (ξ̂∗′ξ̂∗ − ν̂∗′ν̂∗).

[4a] Reject H0 if LM > qχ2
NGC

(1−α), where qχ2
NGC

(1−α) is the 1−α
quantile of the χ2 distribution with NGC + d(NI +NJ) degrees of
freedom.

[4b] Reject H0 if

(
TNI−ŝ−NGC−d(NI+NJ )

NGC

)(
LM

TNGC−LM

)
>

qFNGC,NIT−ŝ−NGC
−d(NI+NJ )(1 − α), where ŝ = |Ŝ⊗| and

qFNGC,NIT−ŝ−NGC
−d(NI+NJ )(1 − α) is the 1 − α quantile of the F

distribution with NGC and NIT − ŝ−NGC − d(NI +NJ) degrees
of freedom.
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Remark 3.8. The algorithm designed in Chapter 2 employs a lower
bound on the penalty to ensure that in each selection regression at
most cT terms gets selected, for 0 < c < 1. Similarly, we also employ
a c = 0.5 upper-bound on the selected variables in Algorithm 3. This
ensures that, equation-wise, the lasso does not select too many variables
as this would render the union too large and hence infeasible for a post-
least-squares estimator. Note that this is allowed as one of the main
advantages of PDS is that it does not require consistent model selec-
tion but only prediction consistency (see Assumption 4,(e)). Mistakes
are allowed to occur in the selection: variables might be incorrectly in-
cluded and relevant variables might be missed, as long as the estimator
remains sufficiently sparse and consistency is guaranteed. However, it
remains a possibility that the lasso would select at every selection step
an amount of variables correctly lower bounded, but substantially dif-
ferent for each step. The likelihood of this to happens obviously grows
with the number of variables as well as the lags, although the latter we
argue in Section 3.6 being reasonably assumed fixed (i.e., not growing
with T or K) and small, in practice. In those limit cases where the
selected variables are still larger than the sample size, post-OLS would
remain infeasible both in an LM setting and similarly in an alternative,
asymptotically equivalent, Wald test setting. The only work-around to
these unfortunate cases is an ad-hoc increase for the tightness of the
upper bound on the selected variables, namely from c = 0.5 to, say,
c = 0.5 − ε̃ for ε̃ ∈ [0, 1], with the care of avoiding extreme tightness
which would have implications for the testing.

Remark 3.9. Algorithm 3 is expressed in the general block-Granger
causality notation. This shows that with this methodology one can
test a block of variables being Granger causal for another variable or
even for another block. However, differently from Chapter 2, here the
testing must be confined to not-too-large portions of variables. The
reason has to be found in the lag-augmentation framework of Section
3.2 needed to account for unit roots and cointegration. This essentially
trades off power to reduce pre-test bias or bias occurring from taking the
d-differences of the variables. The restricted augmentation developed
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in Section 3.2 essentially allows the lag-augmentation idea to work in
high dimensions without sacrificing much power as it restricts the aug-
mentation to only those variables of interest for the test. However, this
lag augmentation still depends on the amount of variables involved in
the hypothesis at stake. In Section 3.5 we show in simulations what is
the difference in power loss if one augments all variables as opposed to
the restricted augmentation of only the relevant ones for the testing.

3.4 Theoretical Results

This section presents the main theoretical contribution of this chapter.
Throughout the section, in order to lighten the notation, we make the
simplifying assumption that I contains a single element such that NI =
1 i.e., we consider only one Granger caused variable, while we still allow
for blocks among the Granger causing. Let us therefore introduce the
notation Nϕ = NJ +NI = NJ + 1. The model then becomes:

y = Xβ + u = XGCβGC +X−GCβ−GC + u, (3.19)

where XGC contains Nϕp columns corresponding to the p lags of both
Granger causing(s) and Granger caused variables. Similarly can be
written the NX + 1 selection steps in (3.13) and (3.14). Deriving the-
oretical results allowing for blocks in the Granger caused variables as
well is straightforward from the theory presented here.

For the PDS-LA-LM to deliver uniformly valid inference, a set of as-
sumptions are necessary. Especially, the assumptions of sparsity, re-
stricted sparse eigenvalues, empirical process bound and consistency
need to be adapted to the non-stationary framework. Hence, before
showing that the post-double selection algorithm continues to deliver
estimates free of omitted variable bias also in a non-stationary setting,
we now state these assumptions and discuss them.
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Assumption 4. Let δT and ∆T denote sequences such that δT ,∆T → 0
as T → ∞. Also, recall we assumed without loss of generality that
elements in X are partitioned as (XAŝ

,XBŝ
,XCŝ

) where columns of
XAŝ

contains the I(0) variables selected by the lasso (⊆ XŜ) as well as
the Granger causing and dependent variables made stationary through
the augmentation; XBŝ

contains the I(1) and XCŝ
contains the I(2)

series. Conformably, recall the definition of the scaling matrix DT =
diag(

√
TIAŝ

, TIBŝ
, T 2ICŝ

). Then assume the following conditions are
satisfied:

(a) Martingale errors: the error vector e in (3.13) and (3.14) is a
K-dimensional martingale difference sequence with E(ee′) = Σe

where:

(i) For δ > 2, E(||e||δ∞) < Cδ, for some constant Cδ which depends
on δ.

(ii) There exist constants c, C > 0 such that: c ≤ λmin(Σe) <
λmax(Σe) ≤ C

(b) Limit Behavior: given e = e(0), . . . , e(NX) in (3.14), where e(j)

is defined in (a), then D−1
T e′u

d−→ N(0,Ω) and D−1
T e′eD−1

T

p−→
ΣGC|−GC , where

Ω = lim
T→∞

D−1
T E

(
e′uu′e

)
,

ΣGC|−GC = lim
T→∞

D−1
T E

(
e′e
)
D−1
T =

= ΣGC,GC −ΣGC,−GCΣ
−1
−GC,−GCΣ−GC,GC .

(c) Empirical Process: with probability at least 1−∆T

||D−1
T X ′u||∞ ≤ 3γ̄T , ||D−1

T X ′
−GCje||∞ ≤ 3γ̄T ,
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for γ̄T being a bound applying to the three parts of X and X−GCj
and which depends on the sample size T as well as on several terms
described in Theorem 3.4 in Appendix B.

(d) Boundedness: let β in (3.19) be in the interior of a compact pa-
rameter space B ⊂ RK . Then, the (Granger causality) parameters
of interest are bounded, that is, there exists a fixed constant C > 0
such that ‖βGC‖1 ≤ C.5

(e) Consistency: with probability 1 − ∆T , the lasso rate of conver-
gence in prediction norm for j = 0, . . . , p is given by

T−1
∥∥∥X(η̂(j) − η(j))

∥∥∥2
2
≤ δ2T . (3.20)

(f) Sparsity: let S(j) = {ηm ∈ η(j) : ηm 6= 0} be the sets of active

variables in (3.13) and (3.14), and let s =
∣∣∣⋃NX

j=0 S
(j)
∣∣∣ denote the

cardinality of the set of all active variables (support), with s =
{sA, sB, sC} where sA contains the non-zero stationary variables,
sB the I(1) and sC the I(2). The sparsity of the initial estimators
is given by ŝ = {ŝA, ŝB, ŝC} = |Ŝ|, where Ŝ =

⋃p
j=0{η̂m ∈ η̂(j) :

η̂m 6= 0}. Then both the DGP and the estimator η̂(j) are sufficiently
sparse; in particular, we have that with probability at least 1−∆T ,
max(s, ŝ) ≤ s̄T for some deterministic sequence s̄T .

(g) Restricted Sparse Eigenvalues: for any η ∈ R(K−NJ )p with
‖η‖0 ≤ s̄T , we have with probability at least 1−∆T that

‖η‖1 ≤ s̄T ‖Xη‖2/κT,min,

where κT,min > 0.

5βGC is now the subvector of βGC corresponding to only the Granger causing
variables.
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(h) Rate Conditions: the interplay of the rates between the deter-
ministic sequences for sparsity (s̄T ), thickness of empirical process
tails (γ̄T ) and minimal eigenvalue (κT,min) yields:

T 3 s̄T γ̄T
κT,min

≤ δT . (3.21)

Condition (a) is standard. In (i) we require at least two moments of the
martingale difference sequence to exist while in (ii) we require minimum
and maximum eigenvalues of the error covariance matrix to be bounded
away from zero such that the matrix is non-singular. This restriction
only rules out global dependence of the elements in e allowing for a
wide range of contemporaneous dependencies.

Condition (b) assumes that a central limit theorem and weak law of
large numbers hold. See e.g. Davidson (1994) for an overview of the
various conditions under which these apply. Essentially the process
should be sufficiently well-behaved in terms of moments and depen-
dence allowed as we stated in (a). Note that we do not require iid-ness
of the VAR error terms and we only need martingale difference errors.

Condition (c) bounds the empirical process with high probability. This
uniform empirical process bound is obtained by a novel Gaussian ap-
proximation for martingale difference sequences applied to the three
blocks of X ′u corresponding to the different integration orders of the
time series in X. Theorem 3.4 in Appendix B derives a Gaussian ap-
proximation for a general martingale difference sequence error term ε.
This applies to both u and e. The proof is presented in Appendix B
after a sequence of preparatory lemmas.

Remark 3.10. In order to use the uniform approach in (c), typically an
invariance principle is invoked such that every component of the vector
X ′u(j) is approximately Gaussian with negligible approximating error
and hence standard sub-Gaussian tail bounds can be applied to show
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the claim. For instance, Condition 2 of Zhang, Robinson, et al. (2019),
gives the following normal approximation result as T → ∞ and for

0 < τ < 1/2, max1≤i≤K max0≤`≤1 E
[∑[T`]

t=1(ui,t − σiiνi,t)
]2

= O(T 2τ )

where i = 1, . . . ,K indicates the elements of u i.e., mds assumed to
be mean-zero6, νi,t is an independent and standard normal sequence,

b1 ≤ σ2ii ≡ limT→∞ Var
(∑T

t=1 ui,t

)
/T ≤ b2 ∀i and b1, b2 positive

constants. Note that the invariance principle of Zhang, Robinson, et al.
(2019) is directly implied if the components of u are independent of
each other and each component is an mds with a bit more than two
finite moments. Given condition (a) and the fact that we can rewrite
the non-stationary parts of X as vector moving averages (see equations
(3.31), (3.32) in Appendix A) this would also hold for our case at least
for the I(0) and I(1) parts. However, as the invariance principle result
in Zhang, Robinson, et al., 2019 should hold separately for the three
parts ofX, then the order of the approximating error would accumulate,
thus aggravating the rates. Our result, as clear from the Theorem 3.5
in Appendix B is tighter, does not use any invariance principle and the
probabilistic bounds we derive do not require explicit restrictions on the
growth rate of K.

Condition (d) is standard and assumes compactedness of the parameter
space of the vector β which in turn implies the boundedness.

Condition (e) is strictly related, and in fact follows, from Condition
(f) and (g). Such inequality gives the rate of convergence of the lasso
estimator in prediction norm. To satisfy the rates in (e), the upper
bound can be shown through standard oracle inequality arguments (see
e.g. Kock and Callot, 2015) to depend on the tuning parameter λ, the
cardinality s of the active set, the restricted (sparse) eigenvalue as in

6This is without loss of generality as when the mean is non-zero the sequence of
partial sums of u is not a mds but it is enough to center the partial sums by
subtracting the mean.
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(g) and some constants. We verify this in Appendix B.

Condition (f) requires sparsity of the DGP and the estimator. Sparsity
of the first-stage estimator is needed in our framework as we perform
OLS on the selected variables from the first-stage regressions. If the
selected variables are not sparse enough, too many variables will be se-
lected for OLS to be feasible. The assumption of exact sparsity in the
DGP for the initial regressions can also be relaxed to approximate spar-
sity as in Belloni, Chernozhukov, and Hansen (2014b). Note that given
the relevant d-augmentations discussed in Section 3.2, ŝA ≥ p, ŝB,C ≥ d.

Condition (g) is a key condition related to the appropriately scaled
Gram matrices Σ̂i = X ′

iX, i = (Aŝ, Bŝ, Cŝ). Whenever K > T , Σ̂i are

degenerate i.e., minx∈RK :x 6=0
(xΣ̂ix)

1/2

|x|2 ≡ minx∈RK :x 6=0
|Xix|2√
T |x|2

= 0, thus

making OLS infeasible. Since directly imposing positive definiteness
of Σ̂i i.e., minx∈RK :x 6=0

|Xix|2√
T |x|2

> 0 would be a too strong assumption,

Bickel, Ritov, et al. (2009) simply observed that for the lasso the mini-
mum of the Rayleigh-Ritz quotient can instead be taken over a smaller
set than the whole RK i.e., any (non-zero) T × 1 vector x such that
||xS ||1 ≤ 3||xSc ||1 for S the true support and Sc its complement. The
following quantity κ called the restricted minimal eigenvalue is there-
fore defined:

κΣ̂i
(s, c) := min

S⊆{1,...,K}
|S|≤s

min
x∈RK\{0}

||xSc ||1≤c||xS ||1

x′Σ̂ix

‖xS‖2
. (3.22)

The cone condition allows to obtain rates of the model estimation error
in `1-norm and hence those of the prediction loss using lasso. Any full-
rank Gram matrix satisfies (3.22), therefore the population covariance
matrix of the stationary variables in X i.e., ΣAŝ

= E(XAŝ
X ′
Aŝ
), as-

sumed being full-rank, automatically satisfies the condition. In Lemma
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3.4 in Appendix B we show how a high probability bound on the maxi-
mal entrywise closeness between ΣAŝ

and the Gram matrix counterpart
can be easily obtained. For the non-stationary case, since the covari-
ance matrix is not a workable object, we rely on the results in Smeekes
and Wijler (2021) who show that by allowing for a factor s to inflate
the Gram matrix, it follows for i = (Bŝ, Cŝ), κΣ̂i

(s, c) > 0 on a set with
probability converging to one. Then one has that uniformly over all
subsets S of cardinality at most s, with probability at least 1−∆T as
T,K → ∞, there exists a positive constant δT 6= 0 such that

(I) κΣ̂Aŝ
(s, c) ≥ δT , (II) κΣ̂Bŝ

(s, c) ≥ δT , (III) κΣ̂Cŝ
(s, c) ≥ δT , (3.23)

where: Σ̂Aŝ
= T−1X ′

Aŝ
XAŝ

, Σ̂Bŝ
= T−2s2 log2K(X ′

Bŝ
XBŝ

),

Σ̂Cŝ
= T−4s2 log2K(X ′

Cŝ
XCŝ

) are the scaled Gram matrices where for

the unit root cases they have been scaled up by a factor of s2 log2K
assumed to converge to zero as s,K, T → ∞. It follows, κΣ̂(s, c) > 0 is
assumed with probability 1−∆T . κT,min is therefore a positive constant
satisfying (I-III) and which depends on the sample size T , the sparsity
s and some constant c.

Finally, condition (h) is what links the sparsity s̄T , the tails thickness
of the empirical process γ̄T and the minimal eigenvalue κT,min. Since in
Theorem 3.4 we proved a Gaussian approximation over the innovations
ui,t, it follows, as in Kock and Callot (2015), that γ̄T could be taken of
the order

√
ln(K2p) thus allowing for either fairly non-sparse models

or almost exponentially large K with respect to T .

Remark 3.11. The current rate reported in (h) for the interplay be-
tween sparsity, tails thickness of the empirical process and minimal
eigenvalue is suboptimal as it requires a factor T 3 to multiply the ratio
in order for it to be bounded by an asymptotically vanishing sequence.
This is an artifact of the current proof technique in Appendix C, where
having elements of different orders in DT leads to complications when
taking norms, and means the norm of DT and its inverse do not cancel
out. We postulate that a different proof technique can prevent this issue

113



Chapter 3. Inference in Non-stationary High-Dimensional VARs

and thus improve the rates. This is however outside the scope of this
thesis.

Consider now the post selection lag-augmented equation as in Step [2]
of Algorithm 3. We slightly deviate from Algorithm 3 as we directly
include the p lags of the Granger causing variable(s) in the post-selection
equation:

y = X∗
GCβ

∗
GC +XŜβŜ + u, (3.24)

where recalling Nϕ = NJ + 1 then X∗
GC is now the the T ×Nϕ(p + d)

submatrix of X containing the original p lags of both the Granger
causing and the Granger caused variables, as well as their additional
augmented d lags, where the presence of the augmented elements is
denoted with a ∗. Instead, XŜ denotes the the T × ŝp submatrix of
X corresponding to the p lags of the selected variables at Step [1] of
Algorithm 3. The lags of the Granger caused contained in X∗

GC , i.e.,
the p+d lags of y, are needed from the theory developed in Section 3.2
for the definition of Granger causality. In what follows we will refer to
β∗
GC as the subvector of β∗

GC only containing the coefficients relative to
the NJ variables.

Remark 3.12. In (3.24) we are assuming without loss of generality
that immediately after the double selection in Step [1] of Algorithm 3,
one would directly plug back the p lags of the Granger causing vari-
able and use a Wald test on those coefficients, where the notation PDS
denotes that the coefficients refer to the variables selected by the lasso
at Step [1]. On the one hand, the choice of deriving the asymptotic
normality for the PDS estimator β̂∗

GC from a Wald test setting has the
advantage of avoiding extra complications in the proof which would not
add anything more insightful to the claim. On the other hand, the
choice of stating Algorithm 3 in terms of the LM test in place of the
Wald or the Likelihood Ratio (LR), has some practical advantages. It
is well known that Wald and LM tests are asymptotically equivalent7

7Wald, LM and LR are asymptotically equivalent (see e.g. Engle, 1984, for a full
treatment).
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(we show this in Appendix A) and only slightly differ in finite samples
(see e.g. Engle, 1984). In fact, they can even be written in equivalent
form (See Appendix A, equation 3.35) with the only difference being
the error covariance matrix which is calculated from the restricted least
squares for the LM test, as opposed to the unrestricted least squares
for the Wald test. It is also well established (see e.g. Savin, 1976) how
under linear models, the Wald test will be numerically larger than, or
at most equal to the LM one. In other words, whenever LM rejects the
null, so does the Wald and whenever the Wald fails to reject so does
the LM. As this is true under the null, the size of LM will necessarily
be smaller or at most equal to that of Wald. Hence, in finite samples,
the use of LM opens up to a more conservative testing procedure as
opposed to a more liberal one in the case of the Wald. Even though
this is relevant only for small samples and size corrections exists in the
literature (see e.g. Rothenberg, 1982), still there are cases where the
sample might be substantially small and smaller than the number of
covariates. There, the use of LM could improve control of type I error.
However, as observed later in our Monte Carlo study in Section 3.5,
the d lags augmentation confined to only Granger causing and Granger
caused has the important effect that the power of the testing procedure
is not overly affected by the overspecification. However, power will be
slightly affected even if one tests bivariate Granger causality. This is
indeed the trade-off proposed by our method: giving up a little power in
order to avoid biases from high-dimensional unit root and cointegration
pre-testing. If the practitioner is more concerned with the power of the
testing procedure, then employing a more liberal procedure as the Wald
might result in slightly narrower confidence intervals. Note though that
using the Wald test is not by any mean a way of enhancing the power of
the test, this is in fact only a consequence of the more liberal nature in
finite samples. Both in Chapter 2 and in some unreported finite sam-
ple exercises we do not find if minimal differences in the power of our
Granger causality test, whether Wald or LM is used.

We are now going to state the main asymptotic result of this sec-
tion, namely that the estimated post-double selection d-augmented least
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squares estimator for the coefficient vector β∗
GC is asymptotically Gaus-

sian at the usual parametric rate.

Theorem 3.1. Uniformly over a parameter space S for which Assump-
tions 4 (a)-(h) hold for all elements in S,

√
T (β̂∗

GC − βGC)
d→ N (0,Σ−1

GC|−GCΩΣ−1
GC|−GC), as T → ∞.

The limiting distribution of the LM test is derived in the following
Theorem 3.2.

Theorem 3.2. Let βGC = 0. Then, uniformly over a parameter space
S for which Assumption 4 (a)-(h) holds for all elements in S and for
which Ω = σ2ΣGC|−GC , where σ

2 = limT→∞D−1
T E(u′u)D−1

T , we have
that

TR2 d−→ χ2
p, as T → ∞.

Heteroskedaticity-robust versions of the LM test could also be obtained
at the price of some minor modifications of the test (see Wooldridge,
1987). We refer to Chapter 2, Algorithm 2 for a full treatment8. Proofs
of Theorem 3.1 and 3.2 are reported in Appendix C.

3.5 Monte-Carlo Simulations

We now evaluate the finite-sample performance of our proposed PDS-
LA-LM Granger causality test. Recall yt = (y1,t, . . . , yK,t)

′ and ut =

8Note that this is no different for the Wald test, for which the variance estimation
has to be adjusted as well.
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(u1,t, . . . , uK,t)
′, then we consider the following Data Generating Pro-

cesses (DGPs) in first differences inspired by Kock and Callot (2015):

DGP1: ∆yt =


0.5 0 . . . 0
0 0.5 . . . 0
...

...
. . .

...
0 0 . . . 0.5

∆yt−1 + ut,

DGP2: ∆yt =


(−1)|i−j|a|i−j|+1 . . . (−1)|i−j|a|i−j|+1

(−1)|i−j|a|i−j|+1 . . . (−1)|i−j|a|i−j|+1

...
. . .

...
(−1)|i−j|a|i−j|+1 . . . (−1)|i−j|a|i−j|+1

∆yt−1 + ut,

with a = 0.4. The diagonal VAR(1) for DGP1 allows the sparsity as-
sumption to be met. Instead, for DGP2 the coefficients decrease with
exponential pace departing from the main diagonal and hence although
the farthest coefficients are small, the sparsity assumption is not met.
Note that we report simulations only for the bivariate Granger causality
case where for simplicity we consider the first variable (y1,t) in yt being
the Granger causing and the second (y2,t) the Granger caused. There-
fore, DGP1 automatically satisfies the null of no Granger causality from
unit 2 to 1, however DGP2 does not. Therefore, we adapt DGP1 for
the power analysis by setting the coefficient in position (2, 1) equal to
0.2. Conversely, we set the same coefficient equal to zero for DGP2 for
the size analysis. We pick our time series of interest y1,t and y2,t. For
each DGP we are interested in the hypothesis that y2,t does not Granger
cause y1,t i.e., for the VAR model as in 3.1 for t = p+ 1, . . . , T


y1,t
y2,t
y3,t
...

yK,t

 =

p∑
j=1


a
(j)
11 a

(j)
12 a

(j)
13 · · · a

(j)
1K

a
(j)
21 a

(j)
22 a

(j)
23 · · · a

(j)
2K

a
(j)
31 a

(j)
32 a

(j)
33 · · · a

(j)
3K

...
...

...
...

...

a
(j)
K1 a

(j)
K2 a

(j)
K3 · · · a

(j)
KK




y1,t−j
y2,t−j
y3,t−j

...
zK,t−j

+


u1,t
u2,t
u3,t
...

uK,t

 ,

then the tested null hypothesis is

H0 : a
(1)
21 = a

(2)
21 = 0 against H1 : a

(j)
21 6= 0, for some j = 1, 2.
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Under the null and the alternative in turn, we integrate-out both DGP1
and DGP2 obtaining two VAR(2) in levels as

DGP1:yt =


1.5 0 . . . 0
0 1.5 . . . 0
...

...
. . .

...
0 0 . . . 1.5

yt−1 +


−0.5 0 . . . 0
0 −0.5 . . . 0
...

...
. . .

...
0 0 . . . −0.5

yt−2 + ut,

DGP2:yt =


1 + (−1)|i−j|a|i−j|+1 . . . 1 + (−1)|i−j|a|i−j|+1

1 + (−1)|i−j|a|i−j|+1 . . . 1 + (−1)|i−j|a|i−j|+1

...
. . .

...
1 + (−1)|i−j|a|i−j|+1 . . . 1 + (−1)|i−j|a|i−j|+1

yt−1+

+


−(−1)|i−j|a|i−j|+1 . . . −(−1)|i−j|a|i−j|+1

−(−1)|i−j|a|i−j|+1 . . . −(−1)|i−j|a|i−j|+1

...
. . .

...
−(−1)|i−j|a|i−j|+1 . . . −(−1)|i−j|a|i−j|+1

yt−2 + ut.

The lag-length is fixed to p = 2, namely the true lag-length for the non-
stationary DGPs. For each non-stationary DGP we test with PDS-LA-
LM the hypothesis that y2,t does not Granger cause y1,t. Specifically,
after the selection we employ a double (d = 2) augmentation of the
dependent and the Granger causing variable as illustrated in Section
3.2. Following the recommendation in Chapter 2, we choose the BIC in
selecting the tuning parameter λ for the lasso.

Table 3.1 reports the size and power of the PDS-LA-LM test out of
1000 replications. We use different combinations of time series length
T = (50, 100, 200, 500, 1000) and number of variables in the system
K = (10, 20, 50, 100) and a fixed lag-length p = 2. All the rejection
frequencies are reported using a burn-in period of fifty observations.
Simulations are also reported for different types of covariance matrices
of the error terms. We employ a Toepliz-version for calculating the co-
variance matrix as Σi,j = ρ|i−j|, where (i, j) refer to row i, column j
of the matrix Σu. We cover two scenarios of correlation: ρ = (0, 0.7).
The first no-correlation is equivalent to set Σi,j = Ii,j , where I is the
identity matrix.
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Table 3.1: Simulation results for the PDS-LA-LM Granger causality
test

DGP Size/Power ρ K\T 50 100 200 500 1000

10 8.3 8.2 5.3 3.9 3.9
1 Size 0 20 9.0 9.1 6.7 4.3 5.4

50 8.8 7.2 8.4 5.0 4.5
100 6.8 7.8 6.1 5.5 4.6

10 19.8 40.6 78.1 99.8 100
1 Power 0 20 13.3 34.8 70.3 99.6 100

50 14.3 31.1 64.1 98.7 100
100 12.1 29.7 65.1 99.0 100

10 7.6 7.7 4.9 5.6 5.1
2 Size 0 20 6.9 8.3 7.9 4.9 7.3

50 7.1 6.4 5.7 7.0 6.3
100 6.9 6.4 6.7 5.9 5.4

10 15.5 27.4 50.2 94.8 99.9
2 Power 0 20 12.9 24.5 50.6 92.5 99.9

50 11.2 24.1 44.7 90.3 99.9
100 9.4 20.7 48.5 90.4 99.8

10 10.2 7.1 5.3 5.5 4.9
1 Size 0.7 20 8.1 8.9 7.3 5.2 4.9

50 8.1 7.2 9.2 7.4 5.4
100 9.2 10.6 5.7 7.5 5.5

10 15.6 21.9 39.8 85.1 99.4
1 Power 0.7 20 9.7 20.4 37.4 83.4 99.7

50 11.1 19.0 33.5 79.8 98.5
100 9.3 18.7 33.5 73.8 98.4

10 9.5 7.6 5.2 6.4 7.8
2 Size 0.7 20 6.4 8.1 7.8 6.6 7.8

50 7.4 8.2 8.1 7.6 7.1
100 7.2 9.4 9.1 8.4 9.0

10 10.9 19.7 34.1 78.1 98.3
2 Power 0.7 20 7.6 19.3 34.2 74.7 98.4

50 9.6 21.7 32.8 71.2 97.9
100 12.6 20.7 39.0 73.5 97.9

Notes: Size and Power for the different DGPs are reported for 1000 replica-
tions. T = (50, 100, 200, 500) is the time series length, K = (10, 20, 50, 100)
the number of variables in the system, the lag-length is fixed to p = 2 and BIC
is used to select the tuninig parameter for the lasso. ρ indicates the correlation
employed to simulate the time series with the Toeplitz covariance matrix.

Our PDS-LA-LM test shows good performances in terms of size and
(unadjusted) power for both DGPs considered. The setting of no corre-
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lation is handled remarkably well by both DGPs and only moderate size
distortion is visible in large systems for small samples. Whenever high
correlation of errors is present, sizes are still in the vicinity of 5% for
DGP1 where the sparsity assumption is met. However, we notice how
for DGP2, for which the sparsity assumption is not met, some resid-
ual size distortion remains visible even in large systems. However, the
power of the test is always increasing with the sample size T for all the
considered cases.

Remark 3.13. As mentioned in Remark 3.8, in order to obtain the
results for the size and power when T ≤ Kp we need to impose a lower
bound on the lasso penalty λ which guarantees to select at most c T
variables in each relevant equation of the VAR, for some 0 < c < 1.
The bound should be set as strict as the system requires and often
there is not a universal constant c that works in all settings, therefore
this choice needs to be adaptive. For instance, if the lag-length is p = 2,
this implies 3 selection steps (Step [1] of Algorithm 3). At the union of
the selected variables, the d augmentated-lags of Granger caused and
Granger causing variables are added (Step [2] of Algorithm 3) for a
total of extra 4 more variables. The restrictiveness of the method used
to tune the penalty in the lasso selection steps might in some cases not
be sufficient to obtain K < T before least squares. Only for these cases
we tighten the bound using either c = 0.33 or c = 0.25.

Let us now elaborate on the main flow that the testing procedure de-
signed in Toda and Yamamoto (1995) presents, namely the loss of power
due to the inefficiency introduced by purposely overspecifying the VAR
model with extra lags. We already mentioned in Section 3.2 how the
fact that our proposed methodology involves only the augmentation
of the variables of interest for testing causality, sensibly reduces the
potential inefficiency. The original procedure suggested in Toda and
Yamamoto (1995) augments d lags of all the regressors and was clearly
envisioned for settings where the cross-sectional dimension was small. In
high-dimensional systems, their procedure could be —if even feasible—
potentially very inefficient. In fact, we could not possibly augment even
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one single extra lag of a full high-dimensional parameter vector, without
making the system potentially intractable.

To show the difference in statistical power of our test, let us inves-
tigate the case of bivariate Granger causality for DGP2 with T =
(250, 500, 1000) and K = (10, 20, 50, 100), namely the low-dimensional
cases. We augment the system both as in Toda and Yamamoto (1995)
with the third lag of all the variables and as we suggest (HMS) by
augmenting two lags of only the Granger caused and the Granger caus-
ing variables. We compare the power of the test by also exploiting
both a “pure” I(1) case and a near-I(2) case (see Remark 3.4). For

the I(1) case we modify the DGP diagonal elements (β
(1)
ii , β

(2)
ii ) to

(β
(1)
ii , β

(2)
ii ) = (1, 0) which returns the second highest eigenvalue of the

companion matrix being equal to 0.533. Instead, for the near I(2) case

we use (β
(1)
ii , β

(2)
ii ) = (1.4,−0.4) which gives the second highest eigen-

value of the companion matrix being equal to 0.933.

Table 3.2: Power results

T = 250 T = 500 T = 1000

K HMS TY HMS TY HMS TY

10 57.5 54.1 90.1 88.8 99.6 99.2
20 54.4 47.9 86.4 82.8 99.9 99.7
50 50.6 31.2 85.2 77.3 99.7 99.3
100 52.5 NA 85.4 62.9 99.8 98.8

Notes: (β
(1)
ii , β

(2)
ii ) = (1, 0). HMS refers to our PDS-

LA-LM test where we augment two lags of only depen-
dent and Granger causing while TY refers to the LM
test carried by augmenting all the regressors.

Table 3.3: Power results

T = 250 T = 500 T = 1000

K HMS TY HMS TY HMS TY

10 65.6 62.5 94.8 94.4 99.9 99.9
20 60.6 54.8 92.5 90.3 99.9 100
50 57.2 35.7 90.3 82.9 99.9 99.7
100 52.8 NA 90.4 68.3 99.8 99.1

Notes: (β
(1)
ii , β

(2)
ii ) = (1.4,−0.4). HMS refers to our

PDS-LA-LM test where we augment two lags of only
dependent and Granger causing while TY refers to the
LM test carried by augmenting all the regressors.

Results in Table 3.2, 3.3 show that using our PDS-LA-LM test, the
gain in statistical power is up to 30% for medium-to-small sample sizes
if one augments only the dependent and the Granger causing variable,
as opposed to augmenting all the regressors. NA’s are reported when
the after-selection lag augmentation made the system not feasible to
be estimated with OLS. Results holds both in cases of “pure” I(1) and
near-I(2) variables, showing that the d = 2 augmentation has practical
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advantages in the presence of near-unit roots and it does not dramati-
cally decrease the power in those “pure” I(1) settings.

3.6 Choice of the lag-length p

Up until this point, we considered the lag-length p as given. In reality,
this is of course not the case. In this section we elaborate on how we
propose a reliable estimate of p. Note first that standard techniques
for tuning the lag-length p as information criteria or sequential testing
fail when applied directly to the full high-dimensional VAR. In fact,
both techniques compare sequential estimates of VAR(pi) models for a
grid of lags, e.g., i = {1 : 10}. They then select the model either in a
forward fashion by minimizing a chosen criteria like AIC, BIC, HQ or
by backward testing the significance of the largest lag(s). This cannot
simply be done in case of K being large and potentially larger than T .
The addition of only one lag when K is large, quadratically inflates the
parameter to estimates (K2p) and can quickly lead to situations where
K > T and hence no OLS estimation is feasible. Shrinkage types of
techniques could be considered to estimate p but they usually suffer
from possible erratic behaviors due to high-correlations and depend on
several ad-hoc choices as e.g., which estimation method to choose.

On another standpoint, there are theoretical reasons in favor of a small
p, say from 1 to 2 in large VARs. As observed in Chapter 2, univariate
ARMA models derived from a VAR(p) with for instance p = 2 lags and
K = 100 series are already of maximal orders: ARMA(Kp, (K − 1)p).
Furthermore, also partial systems derived from the original VAR(p) will
be VARMA of large order. Hence, given the usual estimated lag-length
for macroeconomics application being p = 4, 8 for quarterly data with
a small K, it is plausible to assume that the data generating process of
the high-dimensional VAR has a small p.
Carrying forward this reasoning, we can calculate an empirical upper-
bound on p by considering the K × K covariance matrix Ω̂ obtained
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using the residuals of a fitted diagonal VAR(p) as

p∑
j=1


y1,t
y2,t
y3,t
...

yK,t

 =


a
(j)
11 0 0 · · · 0

0 a
(j)
22 0 · · · 0

0 0 a
(j)
33 · · · 0

...
...

...
...

...

0 0 0 · · · a
(j)
KK




y1,t−j
y2,t−j
y3,t−j

...
yK,t−j

+


u1,t
u2,t
u3,t
...

uK,t

 ,
(3.25)

for t = p+1, . . . , T . Calling û the T ×K matrix of estimated residuals,
then Ω̂ := T−1(û′û). Therefore, by using a grid of possible values for
p = {1, . . . , 10} we can select the model which minimise an information
criterion (AIC,BIC) and hence get the upper bound lag-length p. Since
the original lag-length should be small, this obtained value will not be
far from the truth, if not exactly estimating the right p.
Let us consider the following information criteria9:

AIC: log(det(Ω̂)) +
2pK

T
,

BIC: log(det(Ω̂)) +
log(T )

T
pK.

Note that essentially this route allows to bypass the dimensionality is-
sue in the equation-wise estimation, by considering the VAR coefficient
matrix to be diagonal and hence estimating an AR(j) for each row of
the VAR. This however solves half of the problem. In fact, when we
build the covariance matrix Ω̂, if the original set of variables K is larger
than the sample size T available, Ω̂ will be singular and hence we could
not calculate any information criteria since these depends on the deter-
minant of the covariance matrix which is equal to zero. In those cases
where K ≥ T , we can adopt an easy approximation for the determinant
of Ω̂, namely using the product of its diagonal elements; we further
elaborate on this choice later in this section.

9Note that because we are estimating a diagonal VAR, AIC and BIC do not have
K2 but just K.
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We build a simulation exercise to see how well this method performs
and to compare the information criteria considered. First, we simu-
late using DGP1, DGP2 and different covariance specifications as in
Section 3.5, a VAR(1) in first differences for various combinations of
K = (10, 20, 50, 100) and T = (50, 100, 200, 500, 1000). We then inte-
grate the series, thus obtaining a non-stationary VAR(2). Knowing the
true value of p = 2, we apply the model selection procedure on a grid of
10 values for p. We report in Table 3.4, 3.5, 3.6 the percentage out of
100 replications of AIC and BIC selecting the right p. In the Appendix,
Table 3.10, 3.11, 3.12 report the frequencies of the wrongly selected
lag-lengths, namely the percentage out of 100 replications of AIC and
BIC selecting models respectively with p = 1, p = 3 and p > 3 instead
of p = 2.

Table 3.4: Selection of p, DGP1, ρ = 0

T = 50 T = 100 T = 200 T = 500 T = 1000

K AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

10 71 100 92 100 96 100 97 100 96 100
20 83 99 97 100 98 100 99 100 100 100
50 99 100 98 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100

Notes: the values reported are percentage of correctly finding the true lag-length
p = 2 out of 100 replications.

Table 3.5: Selection of p, DGP2, ρ = 0

T = 50 T = 100 T = 200 T = 500 T = 1000

K AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

10 58 96 65 100 34 98 0 82 0 22
20 68 73 74 100 12 100 0 57 0 0
50 85 100 80 100 13 100 0 45 0 0
100 93 100 36 100 36 100 0 63 0 0

Notes: the values reported are percentage of correctly finding the true lag-length
p = 2 out of 100 replications.
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Table 3.6: Selection of p, DGP2, ρ = 0.7

T = 50 T = 100 T = 200 T = 500 T = 1000

K AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

10 81 67 84 100 65 99 11 89 0 49
20 76 31 95 100 63 100 1 92 0 24
50 91 70 99 90 95 100 1 100 0 6
100 99 80 100 100 100 100 1 100 0 1

Notes: the values reported are percentage of correctly finding the true lag-length
p = 2 out of 100 replications.

As expected, the empirical upper bound method works remarkably well
with the diagonal, sparse DGP1. However, for DGP2 with an identity
covariance matrix (ρ = 0), only BIC works satisfactorily and its good
performance decreases with increasing T . Similarly, using DGP2 with a
higher correlation structure (ρ = 0.7), the BIC is still preferable, how-
ever remarkably decreases its performance with higher T . Nevertheless,
looking at the frequencies of the selected p in Table 3.10, 3.11, 3.12 we
observe that when the system is large, BIC overestimates (mostly only
one lag) the true lag-length. This is reassuring as it is much preferable
to slightly overspecify the lag-length rather than underestimate it. We
can take into account the overspecification (if not too large) without
loosing too much efficiency in the testing. It turns out from Table 3.6
that the only occasion where AIC outperforms BIC is when the corre-
lation is high and the system is small with still T > K. This is not
surprising as the BIC in small finite samples suffers from being overly
strict.

As earlier stated, we used the product of the diagonal element of Ω̂
as an estimate for the determinant whenever K ≥ T . This approach
works quite well for both our considered DGPs. Therefore, we extend
this particular estimation of the determinant to the whole simulation
for DGP2 in Table 3.7 and 3.13.
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Table 3.7: Selection of p, DGP2, ρ = 0

T = 50 T = 100 T = 200 T = 500 T = 1000

K AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

10 66 99 59 98 30 97 0 75 0 9
20 70 100 50 100 5 98 0 22 0 0
50 85 100 41 100 0 100 0 3 0 0
100 93 100 36 100 0 99 0 0 0 0

Notes: the values reported are percentage of correctly finding the true lag-length
p = 2 out of 100 replications.

Again we observe a remarkable performance for BIC in small systems
and especially whenever K ≥ T . This good behavior of BIC however
dissipates again and even earlier with increasing T . Nevertheless, ob-
serving the wrongly selected frequencies in Table 3.13 we notice, as
before, a tendency of BIC to overestimate p and never to underestimate
it. Furthermore, our simulation is a well-behaved scenario in terms of
variable scales. In practice, when facing large datasets, the potentially
huge scale differences, which cannot be mitigated by standardizations
in the non-stationary context, might cause problems of near-singularity
of Ω̂. We find the determinant approximation to be able to circumvent
this problem in large systems while the standard use of the determinant
underestimates p. For these reasons we suggest the following version of
BIC:

BIC∗ : log

max(dim(Ω̂))∏
i=1

(Ω̂ii)

+
log(T )

T
pK

≡ tr
(
log(Ω̂)

)
+

log(T )

T
pK.

(3.26)

for dim(Ω̂) being the row/column dimension of Ω̂ and tr(log(Ω̂)) being
the trace of the log-transformed covariance matrix Ω̂.
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In light of Remark 3.5, it is sensible to analyze whether the BIC modifi-
cation advocated by Wang, Li, and Leng (2009) in order to obtain BIC
consistency even for diverging dimensions, outperforms (3.26) in finite
samples. We then let CK = ln(ln(K)) and define

BIC∗∗ : tr
(
log(Ω̂)

)
+

log(T )

T
pKCK . (3.27)

In Table 3.8 we run again the same setting as in Table 3.7 where now
BIC∗∗ is used to select the lag-length

Table 3.8: Selection of p, DGP2, ρ = 0

T = 50 T = 100 T = 200 T = 500 T = 1000

K BIC∗∗ BIC∗∗ BIC∗∗ BIC∗∗ BIC∗∗

10 100 97 91 48 1
20 100 100 100 38 0
50 100 100 100 57 0
100 100 100 100 72 0

Notes: the values reported are percentage of correctly finding the
true lag-length p = 2 out of 100 replications.

BIC∗∗ performs better than BIC∗ for larger systems in terms of both
T and K. Specifically, the main increased performance is observed for
T = 500, otherwise the two are equivalent. For T = 1000 the lag-length
is regularly overestimated for all K specifications. This is actually in
line with Wang, Li, and Leng (2009): they in fact require the speed at
which the dimension is allowed to diverge to be: lim sup(K/T κ

∗
) < 1

for κ∗ < 1. Under conditions reported in Remark 3.5, by Theorem 1,2
in Wang, Li, and Leng (2009) BIC∗ is then consistent even for diverging
dimensions.

127



Chapter 3. Inference in Non-stationary High-Dimensional VARs

3.7 Empirical Application: Driving factors of Inflation

In this section we put into practice our developed framework in or-
der to analyse the main driving factors of inflation in the US. We do
this by means of creating Granger causality networks which can graph-
ically represent the direction of the predicting connections from a set
of macroeconomic variables to inflation. The interest in such an appli-
cation is twofold. First, we show our procedure can be used in levels
without needing to care about testing integration or cointegration for
the series available in the dataset. Second, our procedure can be used
as a preliminary step to identify instruments that can aid the inflation
forecast. Forecasting inflation is clearly a very crucial task in rational
economic decision-making. For instance, central banks rely on inflation
forecasts to issue monetary policy as well as to fix inflation expecta-
tions to enhance policy efficacy. Inflation forecasts are also relevant
for policymakers, businesses and households as contracts are normally
issued in nominal terms. Here we use the FRED-MD dataset from Mc-
Cracken and Ng (2016). Macroeconomics and econometrics literature
have used this database intensively in the last five years, since it pro-
vides an excellent, up to date and structured source of “big data”. We
use the 12/2019 FRED-MD monthly release comprising a total of 128
variables, divided in eight macro topic-groups10, sampled at monthly
frequency from 01/01/1959 until 11/01/2019. We remove first the two
initial rows corresponding to 01/01/1959 and 01/02/1959 in order to
retain more series and facilitate later comparisons. We then remove
those variables containing missing values. Thus the final dataset con-
tains 107 macroeconomic variables for 729 datapoints. The lag-length
estimated using the procedure outlined in Section 3.6 returns p = 4. We
use “Consumer Price Index : All Items” (CPIAUCSL) as a proxy of in-
flation and we test all bivariate relations with the other 106 variables,
each time conditioning on the remaining 105.

10“Output and income”, “Labor market”, “Housing”, “Consumption, orders, and
inventories”, “Money and credit”, “Interest and exchange rates”, “Prices”, “Stock
market”
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The FRED-MD database comes with a detailed appendix and Mat-
lab/R routines which allow not only to clean the data from missings
and outliers but also to take the appropriate transformations to render
all the time series stationary. Although these tools facilitate the user
and safeguard him from criticism over the variables handling, this is
clearly rather an exception. Our developed tools (PDS-LA-LM) can
be used directly on the raw data provided, without needing to take
any difference directly and allowing the practitioner to pay no atten-
tion to the integration and cointegration properties of the time series
at stake11. Also, by not taking differences we avoid the wiping off of
the long memory features that some variables might exhibit. This is a
particularly relevant aspect for macroeconomics and finance variables
where the Box & Jenkins ARMA modeling approach of assuming the
differentiated variables to be well behaved i.e., having fast decaying
autocorrelations and trend-free, often fails (see e.g. Zivot and Wang,
2003).

To exploit this comparison, we run the same analysis on the stationary
FRED-MD dataset where the time series have been transformed ac-
cording to McCracken and Ng (2016). To test for Granger causality we
use the same PDS algorithm designed in Chapter 2 for stationary time
series (PDS-LM). The same algorithm to select the lag-length p as in
Section 3.6 estimates this time p = 1. This is already interesting on its
own right given that for the level case p was estimated equal to 4. By
differentiating the variables the dynamic gets greatly reduced to only
one lag, signifying already the consistent loss in memory of the series.
We report the analysis both at significance level α = 0.05 and α = 0.01
for both cases.

11To run these analyses we used the authors R package “HDGCvar” available at
https://github.com/Marga8/HDGCvar
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Figure 3.1: PDS-LA-LM, α = 0.05
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Figure 3.2: PDS-LA-LM, α = 0.01
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Figure 3.3: PDS-LM, α = 0.05
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Figure 3.4: PDS-LM, α = 0.01

Results in Figure 3.1, 3.2 refer to our PDS-LA-LM test performed on
levels while those in Figure 3.3, 3.4 refer to the PDS-LM test in Chapter
2 on the stationary-transformed data according to McCracken and Ng
(2016). First, we note how quantitatively the number of connections
among macroeconomics variables and inflation is substantially higher
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when we consider the levels while several connections disappear when
considering the differences. Specifically, at α = 0.05 Figure 3.1 counts
50 connections. By tightening the significance to α = 0.01, Figure 3.2
shows 33 connections. Correspondingly in the differences case in Fig-
ure 3.3, 3.4 are only 20 and 11. When considering the PDS-LA-LM
test at α = 0.01 the several connections shown belongs to the macro-
variable groups: Money and credit: INVEST, AMBSL, BUSLOANS,
TOTRESNS, NONBORRES, Output and Income: RPI, W875RX1, IP-
BUSEQ, IPMAT, IPNMAT, IPFUELS, IPB51222S, Prices:
DSERRG3M086SBEA, CUSR0000SAS, WPSID62, OILPRICEx,
CPITRNSL, CPIMEDSL, CUSR0000SAD, CUSR0000SAC,
CUSR0000SA0L2, DNDGRG3M086SBEA, PPICMM, Interest and Ex-
change Rates: (FEDFUNDS, TB3MS, COMPAPFFx, Stock Market:
S&P 500, S&P: indust, Labor Market: UEMP15OV, CES3000000008,
CLF16OV, Consumption Orders and Inventories: AMDMUOx. All the
found connections are sensible and economically justifiable: inflation
and output are related as postulated in the Phillips curve (see e.g. con-
nections with Real Personal Income and the industrial production inde-
ces); inflation has also impact on financial institution, the markets (see
e.g. the connections with S&P 500, S&P: indust) and has implications
for investment policy. In accordance with the macroeconomic literature,
oil price (OILPRICEx) is found as leading indicator of inflation, thus
validating the pass-through theory (see e.g. Blanchard and Gali, 2007),
which is a particularly important matter for monetary policy imple-
mentation. Of similar interest is the connection between both 3-Month
Treasury Bill (TB3MS), Effective Federal Funds Rate (FEDFUNDS)
with inflation. Treasury Bills are medium/short-term obligations is-
sued by the U.S. Treasury Department, holding -in this specific case-
a maturity of 3 months. Hence, they are short term, zero default risk
investments, meant to increase in volume whenever the economy faces
periods of uncertainty or stagnation. In these times investors prefer
to buy more secure obligations rather than long term more productive
ones, although they obtain less return from them. Treasuries are strictly
connected with (expected) inflation; investors tend not to buy treasuries
in periods when inflation rate is higher than the return of the obliga-
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tion. Furthermore, treasury bill rates are often considered as proxy of
expected inflation (see Fama and Schwert (1977)). When inflation in-
creases, the price of treasuries usually decreases and our analysis also
shows how these short term securities are able to be leading indicators
of inflation.

If compared to Figure 3.4, the common connections are: RPI, FED-
FUNDS, WPSID61, OILPRICEx, TOTRESNS, PPICMM. Five con-
nections found in Figure 3.3, 3.4 are not common to either Figure 3.1 or
3.2, namely: EXSZUSx, DPCERA3M086SBEA, M2REAL, USCONS,
CES2000000008. These connections might therefore be considered as
spurious discoveries induced by the differencing.

3.8 Conclusion

We build an inferential procedure for Granger causality testing in high-
dimensional non-stationary VAR models which avoids any integration
or cointegration biased pre-test. To do so we adapt the Toda and Ya-
mamoto (1995) idea of augmenting the lag-length of the system and we
show that by reducing this augmentation to only the variables of interest
for the testing we are able to sensibly diminish the efficiency loss coming
from the model overspecification. To handle the high-dimensionality of
the VAR we develop a post-double selection LM test which is based
on penalized least square estimators. Using the lasso we are able to
partial-out those variables having no influence in the tested relation
while safeguarding from omitted variable bias using a double-selection
mechanism. We present the algebra needed to prove that the aug-
mentation of the interest variables has no effect on the null-hypothesis
tested, thus letting the OLS estimator having standard asymptotic re-
sults, free of nuisance terms. Also, we extend the relevant assumptions
needed for the post-double selection estimator to work in the context
of potentially unit root non-stationarities. We derive the asymptotics
of the post-selection augmented estimator, showing it attains standard
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asymptotic normality hence allowing for a valid LM test with standard
χ2 limiting distribution.

Our proposed test shows good finite sample properties over different
DGPs, namely both sparse and non-sparse and with different covari-
ance structures. We also give practical recommendations on both the
optimal augmentation d and on how to estimate the lag-length p. We
argue that d = 2 lags is the optimal augmentation in order to take into
account possible I(2) as well as near I(2) variables that could compro-
mise the right convergence of the test. We show that this has a minimal
impact on the efficiency of the test since we are only required to aug-
ment the variables of interest for the causality test. In order to estimate
the lag-length p, in the spirit of the observed fact that larger systems
tend to be described by fewer lags, we propose to reduce the original
VAR to a diagonal VAR. This takes care of the equation-wise potential
dimensionality problem (whenever K > T ) and reduces the system to a
sequential feasible estimation of AR(j) equations for a grid of lags j. For
each j we can then build the covariance matrix from the AR residuals,
thereby obtaining a square covariance matrix to be used in the specifi-
cation of information criteria which we minimize in order to select the
correct lag-length. To avoid issues of singularity or near-singularity of
the covariance matrix, we propose to estimate its log-determinant by
means of the trace of the log-covariance matrix, thus re-defining the
information criteria to use in the model selection.

Finally, we investigate how our test performs in practice by analysing
the main driving factors of inflation in the US. Using the FRED-MD
data set directly, without needing to apply their suggested transforma-
tions, we are able to derive causality networks connecting macroeco-
nomic variables which lead inflation thus proving the usefulness of our
method in finding valid instruments for inflation forecasting.
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Appendix A Preparatory Lemmas

In this section we report some lemmas that will be used later in Ap-
pendix B, C to show the main results.

Consider the conditions developed in Johansen (1992) which guarantee
the process to be I(1) or maximum I(2) and, in general, cointegrated.
Consider rewriting the levels VAR equation (3.1) as

yt =

p∑
j=1

Ajyt−j + ut, (3.28)

where Aj are the coefficient matrices for each lag j.
First, explosive processes are ruled out:

Assumption 5.

|A(z)| = 0 implies |z| > 1 or z = 1,

where A(z) = IT −A1z − · · · −Apz
p.

Then we can re-express (3.28) in the VECM format

∆yt =

p−1∑
j=1

Ãj∆yt−j +Πpyt−p + ut, (3.29)

where Ãi =
∑i

h=1Ah − IT (i = 1, . . . , p− 1) and Πp = −A(1).12

Assumption 6.
Πp = AB′,

for some A and B, where A and B are K × r matrices of rank r.

12Out of simplicity we omitted the intercept as well as the linear trend term in the
cointegrating relationship, the analysis goes trough in a similar way if they are
included.
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We also need:

Assumption 7.
A′

⊥Π1B⊥,

is nonsingular, where Π1 = −Ã(1), with Ã(z) = IT − Ã1z − . . . −
Ãp−1z

p−1 and A⊥ and B⊥ are K× (K−r) matrices of rank K−r such
that A′A⊥ = B′B⊥ = 0.

Under assumption 5-7, the process is I(1) and cointegrated if r > 0.

We can further re-write (3.29) as VECM

∆2yt =

p−2∑
j=1

A∗
j∆

2yt−j +Πp−1∆yt−p+1 +Πpyt−p + ut, (3.30)

where A∗
i =

∑i
h=1 Jh−IK(i = 1, . . . , p−2), hence we have the following

assumption.

Assumption 8.
Ā′

⊥Πp−1B̄⊥ = FG′,

for some F , G, where Ā⊥ = A⊥ (A′
⊥A⊥)

−1
, B̄⊥ = B⊥ (B′

⊥B⊥)
−1

and F and G are (K − r)× s matrices of rank s (0 < s < K − r).

Under assumption 5, 6, 8 and (2.8) of Johansen (1992) which prevents
it from being I(3), the process is I(2) and it is cointegrated unless
r = s = 0. Also, given assumption 5-8, the VECMs in (3.29), (3.30)
can be rewritten according to the Granger representation theorem in
their VMA format respectively as

yt = C
t∑
i=1

ui +C(L)ut, (3.31)
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yt = C2

t∑
i=1

i∑
j=1

uj +C1

t∑
i=1

ui + zt, (3.32)

where C = B⊥(A′
⊥Π1B⊥)

−1A′
⊥, C1,C2 are functions of the model

parameters and zt is I(0).

The following proposition is needed for the asymptotic analysis is Ap-
pendix B, C. The results contained are well known13 and they have been
derived in Phillips and Durlauf (1986), Park and Phillips (1988), Sims
et al. (1990), Phillips and Solo (1992), therefore we state only those
necessary to our analysis. As later in Appendix C, write the true model
as

y = X∗
GCβ

∗
GC +X−GCβ−GC + u

= X∗
GCPdP

−1
d β∗

GC +X−GCβ−GC + u

= W ∗
dφ

∗ +X−GCβ−GC + u,

for W ∗
d := X∗

GCPd,φ
∗ := P−1

d β∗
GC .

Proposition 3.1. Assume without loss of generality that X−GC can be
partitioned as (X−GC,A,X−GC,B,X−GC,C) and also that
(W ∗

d,A,W
∗
d,B,W

∗
d,C), (X−GC,A,X−GC,B,X−GC,C) are given initial (joint)

distribution such that
(
W ∗

d,A,∆W ∗
d,B,∆

2W ∗
d,C

)
,(

X−GC,A,∆X−GC,B,∆
2X−GC,C

)
are stationary. Then let,14

ωt :=
(
ut, τt,A,∆τt,B,∆

2τt,C
)
,

where τt,i :=

(
W ∗

d,i

X−GC,i

)
for i = (A,B,C). Then define for all t:

Σ = Eω′
tωt,

13For a full treatment of these results we refer to Hamilton (1994).
14Note that W ∗

d and X−GC are partitioned conformably but have different dimen-
sions.

136



Λ =

∞∑
j=1

Eω′
tωt+j ,

Ω = Σ+Λ+Λ′.

Then, partition Σ,Λ,Ω conformably with ωt such that

Σ :=


Σu ΣuA ΣuB ΣuC

ΣAu ΣA ΣAB ΣAC

ΣBu ΣBA ΣB ΣBC

ΣCu ΣCA ΣCB ΣC

 ,

and same for Λ,Ω. Also, we adopt the following notation: Σj for j =
(ww,wx,xx) to denote whether the relevant covariance is generated
by a cross product or a square product of Wd,i and X−GC,i.
Given these, the following two Lemmas are in order

Lemma 3.1.

T−1
T∑
t=1

τ ∗′
t,Aτ

∗
t,A

p→ ΣA > 0, (3.33)

and (
T−1/2

∑bT sc
t=1 ut

T−1/2
∑T

t=1

(
τ ∗
t,A ⊗ ut

)) d→
(
Bu(s)
ζ1

)
, (3.34)

where Bu(s) is a vector Brownian motion on [0, 1] having covariance
matrix Ωu = Σu and ζ = (ζ1, ζ2, ζ3), partitioned conformably with w∗

t,d,
is a normal zero mean random vector with covariance matrix ΣA ⊗Σu

and Bu(s), ζ are independent.

Lemma 3.2. The following convergence results of sample moment ma-
trices hold

(a) T−1/2
∑T

t=1 ut
d→ Bu(1)

(b) T−1/2
∑T

t=1 τ
∗
t,A

d→ BA(1)
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(c) T−3/2
∑T

t=1 τ
∗
t,B

d→
∫ 1
0 BB(s)ds

(d) T−5/2
∑T

t=1 τ
∗
t,C

d→
∫ 1
0 B̄C(s)ds

(e) T−1
∑T

t=1 τ
∗′
t,But

d→
∫ 1
0 BB(s)

′dBu(s)

(f) T−1
∑T

t=1 τ
∗′
t,Bτ

∗
t,A

d→
∫ 1
0 BB(s)

′dBA(s) +ΣBA +ΛBA

(g) T−2
∑T

t=1 τ
∗′
t,Bτ

∗
t,B

d→
∫ 1
0 BB(s)

′BB(s)ds

(h) T−2
∑T

t=1 τ
∗′
t,Cut

d→
∫ 1
0 B̄C(s)

′dBu(s)

(i) T−2
∑T

t=1 τ
∗′
t,Cτ

∗
t,A

d→
∫ 1
0 B̄C(s)

′dBA(s)

(l) T−3
∑T

t=1 τ
∗′
t,Cτ

∗
t,B

d→
∫ 1
0 B̄C(s)

′BB(s)ds

(m) T−4
∑T

t=1 τ
∗′
t,Cτ

∗
t,C

d→
∫ 1
0 B̄C(s)

′B̄C(s)ds,

where B̄C(s) =
∫ s
0 BC(u)du.

Proofs of Lemma 3.3 and Lemma 3.2 are not reported here, we refer to
Phillips and Durlauf (1986) and references therein for a full treatment
of these results.

Lemma 3.3. Given below in (3.35) is the usual form of the LM test

LM = λ̃′
d

[
Fd(φ̂

∗)S

{
Σ̃Ẽ

(
W ∗′

d M(X−GC)W
∗
d

)−1
}
Fd(φ̂

∗)S′

]
λ̃d,

(3.35)
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where S is as defined in Section 3.2. This can be rewritten as

fd(φ̂
∗)S′

[
Fd(φ̂

∗)S

{
Σ̃Ẽ

(
W ∗′

d M(X−GC)W
∗
d

)−1
}
Fd(φ̂

∗)S′

]
fd(φ̂

∗)S,

(3.36)
where

Fd(φ̂
∗) :=

∂fd(φ̂
∗)

∂φ̂∗
,

Restricted LS:

φ̃ = φ̂∗ +

(
W ∗′

d M(X−GC)W
∗
d

)−1

Fd(φ̂
∗)S

′×

×

[
Fd(φ̂

∗)S

(
W ∗′

d M(X−GC)W
∗
d

)−1

Fd(φ̂
∗)S

]−1

×
[
−fd(φ̂∗)S

]
,

Ẽ =

(
y −W ∗′

d φ̃

)
,

Σ̃Ẽ = (T −K + p)−1Ẽ ′Ẽ ,

λ̃d :=

[
Fd(φ̂

∗)S

{
Σ̃Ẽ

(
W ∗′

d M(X−GC)W
∗
d

)−1
}
Fd(φ̂

∗)S
′
)

]−1

fd(φ̂
∗)S .

By pre and post-multiplying by DT and if we confine our attention to
linear Granger (non)-causal hypotheses, we can further rewrite equation
(3.36) as

LM = (DT fd(φ̂
∗ − φ∗)S)′

{
Σ̃ẼSDT

(
W ∗′

d M(X−GC)W
∗
d

)−1

DTS
′

}
×

×(DT fd(φ̂
∗ − φ∗)S),

(3.37)
while if we also want to allow for non-linear Granger (non)-causal hy-
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potheses

LM = (DT fd(φ̂
∗ − φ∗)S)′

{
(DTFd(φ̂

∗ − φ∗)S)

(
Σ̃ẼW

∗′
d M(X−GC)W

∗
d

)−1

×

× (DTFd(φ̂
∗ − φ∗)S)′

}
(DT fd(φ̂

∗ − φ∗)S).

(3.38)

Appendix B Proof of Lemmas and Theorems in Section
3.4

It suffices for a Gramian matrix to be close in maximum entrywise dis-
tance to a matrix which does satisfy the restricted eigenvalue condition,
in order to satisfy it as well. The following Lemma 3.4 is the same as
Lemma 6 in Kock and Callot (2015) which is in turn directly derived
from Lemma 10.1 of Bühlmann and Van De Geer (2011).

Lemma 3.4. Let A and B denote two non-negative definite, r-dimensional
square matrices and assume A satisfies the RE condition for some κA.
If δ = max1≤i,j≤r |Aij −Bij | , then κ2

B ≥ κ2
A − 16sδ.

Proof. Letx ∈ Rr\{0} and ∀ r × 1 vectors x such that ‖xSc‖1 ≤
3 ‖xS‖1, then

x′Ax− x′Bx ≤
∣∣x′(A−B)x

∣∣ ≤ ||x||1||(A−B)x||∞
≤ ||x||21δ ≤ δ16||xS ||21 ≤ δ16s||xS ||2.

The second and third inequalities follows trivially from application of
Holder inequality while the fourth follows by observing that ||x||21δ =
||xS + xSc ||21δ ≤ ||xS + 3xS ||21δ = 16||xS ||21δ where we used the cone
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condition. Therefore, rearranging

x′Bx ≥ x′Ax− 16sδ||xS ||2 ⇐⇒
x′Bx

x′
SxS

≥ x′Ax

x′
SxS

− 16sδ ≥ κ2
A − 16sδ.

Hence, by taking the minimum over {x ∈ RK\{0}, ||xS ||1 ≤ 3||xSc ||1}
proves the statement.

Before proving the empirical process bound in (c) and Theorem 3.4, a
series of preparatory Lemmas is needed:

Lemma 3.5. Given i = 1, . . . ,K, let εi,t ⊂ ε a zero-mean mds, νi,t i.i.d.

standard normal sequence, b1 ≤ σ2ii ≡ limT→∞ Var
(∑T

t=1 εi,t

)
/T ≤ b2

∀i and b1, b2 positive constants, C ≡ ιb > 0, ι = 1 + o(Vk/b), Vk =∑[T`]
k=1ΨL(νk)

2, 0 < ` < 1, ΨL(m) := exp
[√

1+2Lm−1
L

]2
− 1 ,m ≥

0, L > 0, with νk a non-negative sequence.

For finite K, repeated applications of Lemma 2.2.2 of Van Der Vaart
and Wellner (1996) yields∥∥∥∥∥∥ max

1≤i≤K
max
0≤`≤1

∣∣∣∣∣∣
[T`]∑
t=1

(εi,t − σiiνi,t)

∣∣∣∣∣∣
∥∥∥∥∥∥

Ψ

≤

≤ G1G2Ψ
−1(K)Ψ−1(T ) max

1≤i≤K
max
0≤`≤1

∥∥∥∥∥∥
∣∣∣∣∣∣

[T`]∑
t=1

(εi,t − σiiνi,t)

∣∣∣∣∣∣
∥∥∥∥∥∥

Ψ

,

where G1, G2 are constants that depends respectively only on
Ψ−1(K), Ψ−1(T ). Given the growth of Ψ−1 is slowest for rapidly in-
creasing Ψ, then we want to show that the double maximum of the Orlicz
norm is bounded. To do so, following Geer and Lederer (2013), we can
choose the Bernstein-Orlicz norm entailing functions ΨL such that for
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each L > 0, m ≥ 0

ΨL(m) := exp

[√
1 + 2Lm− 1

L

]2
− 1,

ΨL(m)−1 =
√

log(1 +m) +
L

2
log(1 +m),

(3.39)

then for all c >
∥∥∥(∣∣∣∑[T`]

t=1(εi,t − σiiνi,t)
∣∣∣)∥∥∥

ΨL

≡ ||Z||ΨL
=: τ and by

Chebyshev’s inequality

P

(
|Z|/c ≥

√
m+

Lm

2

)
= P

(
|Z|/c ≥ Ψ−1

L (em − 1)
)
=

= P (ΨL(|Z|/c) ≥ em − 1) ≤ (EΨL(|Z|/c) + 1) e−m.

Hence, a probability inequality for Z follows as

P

(
|Z|/τ ≥

√
m+

Lm

2

)
= lim

c↓τ
P

(
|Z|/c ≥

√
m+

Lm

2

)
≤ lim

c↓τ
(EΨL(|Z|/c) + 1) e−m ≤ 2e−m.

(3.40)

The tail bound in Lemma 3.5 can be sharpened by looking at the prop-

erties of Z =
(∑[T`]

t=1(εi,t − σiiνi,t)
)
. Note that

∑[T`]
t=1 εi,t is already by

definition of εt in Section 3.2 a partial sum of zero-mean mds adapted to
the filtration F ε = σ

(
εi,1, . . . , εi,[T`]

)
hence it is a martingale by defini-

tion. On the other hand, σii
∑[T`]

t=1 νi,t is a martingale sequence w.r.t. its
own filtration Fν = σ

(
νi,1, . . . , νi,[T`]

)
since it is a partial sum of i.i.d.

N(0, 1) random variables (cf. zero-mean random walk), hence defining

S[T`] :=
∑[T`]

k=1 νi,k, then

E[S[T`]+1|Fν ] = E[νi,[T`]+1 + S[T`]|Fν ] = E[νi,[T`]+1] + S[T`] = S[T`],

which shows that {Sk}∞k=1 is a martingale sequence. Thus, by telescop-
ing decomposition, S[T`] can be rewritten as sum of mds as S[T`]−S0 =
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∑[T`]
k=1Dk for Dk = Sk − Sk−1, k ≥ 1.

Let now S∗
k :=

∑[T`]
k=1 (εi,k − σiiνi,k) be a sequence on FΓ

[T`] for FΓ =
Fν ∪ F ε. As εi,t and νi,t are independent and mean-zero, then we can
show S∗

k is a martingale:

E
[
S∗
[T`]+1|F

Γ
[T`]

]
=

E
[(
εi,[T`]+1 + σiiνi,[T`]+1

)
+ S∗

[T`]|F
Γ
[T`]

]
=

E
[(
εi,[T`]+1 + σiiνi,[T`]+1

)]
+ S∗

[T`] =

E
[
εi,[T`]+1

]
+ σiiE

[
ν[T`]+1

]
+ S∗

[T`] = S∗
[T`],

by independence of S∗
[T`]+1 from FΓ

[T`] and the fact that S∗
[T`] is measur-

able on FΓ
[T`]. Then again, by telescoping decomposition we can write

S∗
k as partial sum of mds: S∗

[T`] − S∗
0 =

∑[T`]
k=1 Zk for Zk := S∗

k − S∗
k−1,

k ≥ 1 and {Zk}
[T`]
k=1 is a mds.

Eq (3.40) implies15, by equivalent characterization of sub-exponential
variables (see e.g. Th.2.13 of Wainwright (2019)), that for {(Zk,FΓ

k )}∞k=1

there exists non-negative sequences of numbers (νk, αk) such that

E[eλZk |Fk−1] ≤ e
λ2ν2k

2 for any |λ| < 1/αk. Then the following lemma is
in order:

Lemma 3.6. For any [T`], τ =
∣∣∣∣∣∣(∑[T`]

k=1 Zk

)∣∣∣∣∣∣
Ψ

≤ C for a constant

C > 0 and Dk,C a positive constant depending only on k and C, a
(non-asymptotic) general Bernstein’s bound for mds applies such that

15When in (3.40) we use S∗
k in place of Z, then |S∗

k | by standard Jensen’s inequality
argument is a sub-martingale. Therefore, usual Doob’s martingale inequality
applies in an analogous way:

P

(
sup

0≤k≤[T`]

|S∗
k |/τ ≥

√
m+

Lm

2

)
≤ lim

c↓τ
(EΨL(|S∗

k |/c) + 1)e−m ≤ 2e−m.
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for α∗ := maxk=1,...,[T`] αk

P

∣∣∣∣∣∣
[T`]∑
k=1

Zk

∣∣∣∣∣∣ ≥ τ

[√
m+

Lm

2

] ≤


2e

− (em−1)2

2Dk,C if 0 ≤ m <
Dk,C

α∗

2e−
(em−1)

α∗
+ m

2α∗ if m ≥ Dk,C

α∗
.

(3.41)

Proof Lemma 3.6. Observe that by conditioning on F[T`]−1 and by
repeating iterated expectation and sub-exponential definition we have
the bound

E

[
e
λΨL

(∑[T`]
k=1 Zk

)]
≤ E

[
e
λΨL

(∑[T`]−1
k=1 Zk

)
E
[
eλΨL(Z[T`])|F[T`]−1

]]
≤ E

[
e
λΨL

(∑[T`]−1
k=1 Zk

)]
eλ

2ΨL(ν[T`])
2/2

...

≤ e
λ2

(∑[T`]
k=1 ΨL(νk)

2
)
/2
,

which shows that ΨL(
∑[T`]

k=1 Zk) is sub-exponential with parameters

(

√∑[T`]
k=1ΨL(νk)2, α∗). Then, to obtain the tail bound in (3.41), by

Chernoff-like approach, sub-exponential definition and assuming τ < C
for some positive constant C and given a constant Dk,C depending only
on k, C, then

P

∣∣∣∣∣∣
[T`]∑
k=1

Zk

∣∣∣∣∣∣ /C ≥
√
m+

Lm

2

 = P

ΨL

∣∣∣∣∣∣
[T`]∑
k=1

Zk

∣∣∣∣∣∣ /C
 ≥ em − 1


≤
(
e−λ(e

m−1)E

[
e
λΨL

(∣∣∣∑[T`]
k=1 Zk

∣∣∣/C)])
≤
(
e−λ(e

m−1)e
λ2

(∑[T`]
k=1 ΨL(νk)

2
)
/C2
)
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= e−λ(e
m−1)+λ2Dk,C/2 = eg(λ,m).

By minimizing the exponent function g(λ,m) for λ unconstrained yields
λ∗ = em−1

Dk,C
.

If 0 ≤ m <
Dk,C

α∗
then the unconstrained minimum coincides with the

constrained one and
g∗(m) = − (em−1)2

2Dk,C
. For m ≥ Dk,C

α∗
, since g(·,m) is monotonically de-

creasing on [0, λ∗) then the constrained minimum is achieved at the

boundary λ† = α−1
∗ such that g∗(m) = g(λ†,m) = − em+1

α∗
+

Dk,C

2α∗
≤

− (em−1)
α∗

+ m
2α∗

which proves the claim.

Remark 3.14. Lemma 3.6 requires existence of the moment generat-
ing function for the sequence

ΨL

(∣∣∣∑[T`]
k=1 Zk

∣∣∣ /C) in a neighborhood of zero in order to be able to

apply Chernoff’s bound. Given ΨL a convex, monotone transformation
and Zk a mds composed of a standard Gaussian random variable νi,t and
a mds εi,t, the only conceived restriction would be on the latter if the
true distribution would be e.g., Cauchy or Student-t. In other words,
this double-exponentially fast bound is per se invalid for heavy-tailed
distribution as the infiniteness of their moment generating functions
impede the use of Chernoff’s bound. However, if we reduce to the ex-
istence of first two moments for εi,t, then the case of Student-t is easily
handled: one can in fact rewrite a Student-t as a mixture of zero-mean
Gaussian distributions and hence obtain the even moments. As a con-
sequence, one can directly use Chebyshev’s inequality as in Geer and
Lederer (2013) (see equation (3.40)) to have a (simpler) subexponen-

tial bound as P
(
ΨL

(∣∣∣∑[T`]
k=1 Zk

∣∣∣ /C) ≥ em − 1
)
≤ 2e−m. Similarly, for

the pathological case of the Cauchy distribution, one can consider the
truncated version on a certain large interval in order to obtain finite
moments and hence again apply Chebyshev’s.

Now we show that the converse result of Lemma 3.5 holds. Namely,
given the tail bound in Lemma 3.6 one can obtain a direct bound on
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the Orlicz norm.

Lemma 3.7. Given the sub-exponential tail bound in (3.41) and some
constants ι = 1 + o(Vk/b), b, such that ιb ≡ C of Lemma 3.6 and

Dk,C =
(∑[T`]

k=1ΨL(νk)
2
)
/2C := Vk/2ιb, then

τ =

∣∣∣∣∣∣
∣∣∣∣∣∣
 [T`]∑
k=1

Zk

∣∣∣∣∣∣
∣∣∣∣∣∣
ΨιL

≤ ιb. (3.42)

Proof Lemma 3.7.

EΨιL

∣∣∣∣∣∣
[T`]∑
k=1

Zk

∣∣∣∣∣∣ /ιb
 =

∫ ∞

0

P

∣∣∣∣∣∣
[T`]∑
k=1

Zk

∣∣∣∣∣∣ ≥ ιbΨ−1
ιL (m)

 dm

=

∫ ∞

0

P

∣∣∣∣∣∣
[T`]∑
k=1

Zk

∣∣∣∣∣∣ ≥ ιb

[√
log(1 +m) +

ιL

2
log(1 +m)

] dm

=

∫ ∞

0

P

∣∣∣∣∣∣
[T`]∑
k=1

Zk

∣∣∣∣∣∣ ≥ b

[√
log(1 +m)ι2 +

ιL

2
log(1 +m)ι

2

] dm

≤ 2

∫ ∞

0

exp

−
(
elog(1+m)ι

2

− 1
)2
ιb

2Vk

 dm
= 2

∫ ∞

0

exp

−
(
(1 +m)ι

2 − 1
)2
ιb

2Vk

 dm
u=1+m,du=dm

= 2

∫ ∞

1

exp

−
(
uι

2 − 1
)2
ιb

2Vk

 du
v=uι

2−1, du= 1
ι2
v
1−ι2

ι2 dv
= 2

∫ ∞

0

exp

[
−v

2ιb

2Vk

]
1

ι2
v

1−ι2

ι2 dv
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w=
√

ιb
2Vk

v, dw=
√

ιb
2Vk

dv

= 2

∫ ∞

0

exp(−w2)
1

ι2

(√
2Vk
ιb
w

) 1−ι2

ι2

dw

=
2

ι2

√
2Vk
ιb

1−ι2

ι2
∫ ∞

0

exp(−w2)w
1
ι2

−1dw

z=w2 dw= 1

2z1/2
dz

=
2

ι2

√
2Vk
ιb

1
ι2

−1 ∫ ∞

0

exp(−z)z
1−ι2

2ι2
1

2z1/2
dz =

=
1

ι2

√
2Vk
ιb

1
ι2

−1 ∫ ∞

0

exp(−z)z
1

2ι2
−1dz

=
1

ι2

√
2Vk
ιb

1
ι2

−1

Γ

(
1

2ι2

)
,

and we want the value of the constant ι such that it makes it ≤ 1, for
simplicity take the right end of the inequality, such that

Γ

(
1

2ι2

)
= ι2

(√
ιb

2Vk

) 1
ι2

−1

.

Because the Γ function has a closed form expression for positive integers,

let us assume w.l.o.g. n := 1
2ι2

∈ Z+ ⇐⇒ i =
√

1
2n , then by definition:

Γ(n) = (n− 1)! =

(
1

2n

)√√ 1

2n

b

2Vk

2n−1

⇐⇒

n! =
1

2

1

(2n)n/2−1/4

(
b

2Vk

)n−1/2

,

and with some straightforward manipulations we can obtain a closed
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form for the ratio of constants b
Vk
, namely:

b

Vk
= 2

3/2+ 1
n−1/2

√
n(n!)

1
n−1/2 .

For instance, take ι = 1√
2
, then given n = 1, b

Vk
= 27/8. Instead, take

ι = 1
2 , then n = 2, b

Vk
= 22/3. More generally, take ι = 1+x, for x→ 0,

a ≤ 1, Vk/b→ ∞ then

1

ι2

√
2Vk
ιb

1
ι2

−1

Γ

(
1

2ι2

)
= a ≤ 1(√

2Vk
b

) 1
(1+x)2

−1

Γ

(
1

2

)
= a ≤ 1(√

2Vk
b

)−2x

= a
1

Γ (1/2)

− 2x log

(√
2Vk
b

)
= log

(
a

Γ (1/2)

)

x =
log
(

a
Γ(1/2)

)
log
(

b
2Vk

) → 0+.

Hence, again take for simplicity a = 1, then

ι = 1 +
log(Γ(1/2))

log
(
2Vk
b

) + o

(
Vk
b

)
,

which shows the constant ι converges to 1 and this concludes the proof.

We want to allow K → ∞ but the bound in Lemma 3.5 cannot be
directly applied to an infinite set. So the problem becomes bounding the
expected value of the maximum of an infinite set of random variables.
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To handle this and get a bound we need to use a chaining method
(cf. Dudley (1978)) as in Theorem 2.2.4 of Van Der Vaart and Wellner
(1996). Alternatively, Theorem 8.3 of Cesa-Bianchi and Lugosi (2006)
gives a similar bound but under assumption of sub-Gaussian random
variables.

Let (T , d) be an arbitrary semimetric space, for our purpose take the
Orlicz space equipped with the semimetric d(s, t) = ‖Zs − Zt‖ψ. Let
N(ε, d) be the covering number i.e., the minimal number of balls of
radius ε needed to cover T . Furthermore, a collection of points is said
to be ε -separated if the distance between each pair of points is strictly
larger than ε. As a consequence, let D(ε, d) be the packing number i.e.,
the maximum number of ε -separated points in T . T is totally bounded
if and only if N(ε, d), D(ε, d) < ∞, ∀ε > 0 and we assume this is the
case. The following proposition is due to Doob (see e.g. Itō and It̊ao
(2006) Ch. 2.8 for an overview),

Proposition 3.2. Every real-valued stochastic process defined on a
complete probability space has a separable version. Namely, there is
a real random process defined on the same probability space which is
separable and stocastically equivalent16.

Therefore we can assume Z ≡
∑[T`]

k=1 Zk to be an almost sure separable
stochastic process on the Orlicz space T i.e., supd(s,t)<δ |Zs−Zt| remains
constant if T gets replaced by a suitable subset. Orlicz spaces are
Banach space and for our purpose we can assume T having the strong
diameter 2 property17, namely every finite convex combination of slices

16To be precise, the equivalence is in the weak sense of Itō and It̊ao (2006), Ch.2.8:
two stochastic processes xt, t ∈ T, and yt, t ∈ T, are equivalent in the weak sense
if

P {ω/xt(ω) = yt(ω)} = 1 for every t ∈ T

17Note that this assumption is reasonable: Orlicz spaces with Luxembourg norm(
||Z||Ψ = inf

{
c > 0 : EΨ

(
|Z|
c

≤ 1
)})

can satisfy the diameter 2 property under

some conditions on Ψ, see Kamińska et al. (2020) for a recent overview.
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of its unit ball BT has diameter 2. Then, the following Theorem (cf.
Van Der Vaart and Wellner (1996), Th. 2.2.4) holds:

Theorem 3.3. Given Ψ as in (3.39) and given Proposition 3.2 for

Z ≡
∑[T`]

k=1 Zk such that

||Zs − Zt‖ψ ≤ Cd(s, t), for every s, t,

for some semimetric d on T and a constant C, then for any η, δ > 0∥∥∥∥∥ sup
d(s,t)≤δ

|Zs − Zt|

∥∥∥∥∥
ψ

≤ G

[∫ η

0
ψ−1(D(ε, d))dε+ δψ−1

(
D2(η, d)

)]
,

(3.43)
for a constant G depending on ψ and C only.

Proof of Theorem 3.3. The proof follows in the same way as The-
orem 2.2.4 in Van Der Vaart and Wellner (1996). First, one con-
structs nested sets of T i.e., T0 ⊂ T1 ⊂ T2, . . . ,⊂ T such that for
every s, t ∈ Tj , d(s, t) > η2−j . As by definition of packing number
we have D(2ε, d) ≤ N(ε, d) ≤ D(ε, d), it follows that the number of
points in Tj will be: Card(Tj) ≤ D(η2−j , d). By means of linking
every point tj+1 ∈ Tj+1 to a unique point tj ∈ Tj we will have that
d(tj , tj+1) ≤ η2−j . We can therefore create a chain of points from
any tk+1 ∈ Tk+1 all the way to t0 ∈ T0. Now, for arbitrary points
sk+1, tk+1 ∈ Tk+1, their increments differences along the chains can be
bounded as

∣∣(Zsk+1
− Zs0

)
−
(
Ztk+1

− Zt0
)∣∣ =

∣∣∣∣∣∣
k∑
j=0

(
Zsj+1 − Zsj

)
−

k∑
j=0

(
Ztj+1 − Ztj

)∣∣∣∣∣∣
≤ 2

k∑
j=0

max |Zu − Zv| ,

where if j is fixed, say j = 2, the maximum is taken over all links (u, v)
from T3 to T2. It follows that the j-th maximum is taken over at most

150



Card(Tj+1) links i.e., Card(T2) continuing the example. Each of such
links has bounded Orlicz norm as ||Zu − Zv||Ψ ≤ Cd(s, t) ≤ η2−j .

Then we get∥∥∥∥ max
s,t∈Tk+1

|(Zs − Zs0)− (Zt − Zt0)|
∥∥∥∥
ψ

(i)

≤ G

k∑
j=0

ψ−1
(
D
(
η2−j−1, d

))
η2−j

(ii)

≤ 4G

∫ η

0
ψ−1(D(ε, d))dε,

(3.44)
where (i) follows directly from Lemma 2.2.2 of Van Der Vaart and Well-
ner (1996), from the fact that Card(Tj) ≤ D(η2−j , d) hence Card(Tj+1) ≤
D(η2−j−1, d) and that max

s,t
|| |(Zs − Zs0)− (Zt − Zt0)| ||ψ is bounded by

η2−j . (ii) follows by extrapolating the extra 2−1 from the sum and ob-
serving that the map η2−j = ε → ψ−1(D(ε, d)) is non-increasing hence
the sum is bounded by the integral.

To conclude the proof, observe that the pointwise increments i.e.,∣∣Xsk+1
−Xtk+1

∣∣ can be bounded by the left hand side of (3.44) plus the
maximum of the discrepancies at the end of the chains: max |Xs0 −
Xt0 |. To analyze the latter, for every chain’s endpoint s0, t0 starting at
two points in Tk+1 within δ distance of each other, choose two points
sk+1, tk+1 ∈ Tk+1 with d(sk+1, tk+1) < δ and whose chains end in s0, t0.
By definition of T0, this gives at most D2(η, ε) pairs and by triangle
inequality

|Xs0 −Xt0 | ≤
∣∣(Xs0 −Xsk+1

)
−
(
Xt0 −Xtk+1

)∣∣+ ∣∣Xsk+1
−Xtk+1

∣∣ .
By taking the maximum and combining previous results we get

‖ max
s,t∈Tk+1

d(s,t)<δ

|Xs −Xt| ‖ψ ≤ 8G

∫ η

0

ψ−1(D(ε, d))dε+
∥∥max

∣∣Xsk+1
−Xtk+1

∣∣∥∥
ψ
.

Here the maximum on the right is taken over the pairs sk+1, tk+1 in
Tk+1 uniquely attached to the pairs s0, t0 as above. Thus the maximum
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is over at most D2(η, d) terms, each of whose ψ -norm is bounded by δ.
Its ψ-norm is bounded by Kψ−1

(
D2(η, d)

)
δ. Finally by letting k → ∞

gives the claim.

Corollary 3.1. Note that given Theorem 3.3 one can obtain a bound
on the maximum of the process, such that for any chain endpoint t0∥∥∥∥sup

t
|Zt|
∥∥∥∥
ψ

≤ ‖Zt0‖ψ +G

∫ diam T ≈2

0
ψ−1(D(ε, d))dε, (3.45)

for diamT := sups,t∈T d(s, t) being the diameter of T under d, hence
a bound on ‖Zt0‖ψ follows directly from Lemma 3.7. As D(2ε, d) ≤
N(ε, d) ≤ D(ε, d), then we have∫ 2

0

√
log(1 +D(ε, d)) +

L

2
log(1 +D(ε, d))dε

≤
∫ 2

0

√
log(1 +N(ε/2, d)) +

L

2
log(1 +N(ε/2, d))dε

/
∫ 2

0

√
log(2N(ε/2, d)) +

L

2
log(2N(ε/2, d))dε

(i)

≤
∫ 2

0

√
log(2) +

√
K log

(
1 +

4

ε

)
+
L log(2)

2
+
L

2

(
K log

(
1 +

4

ε

))
dε

=

∫ 2

0

(L+ 2)
√
K ln

(
ε+4
ε

)
+ ln (2)L+ 2

√
ln (2)

2
dε <∞,

(3.46)
where (i) follows from bounding the metric entropy using the volume of
the metric unit ball (see e.g. Lemma 5.7 of Wainwright (2019)).

Remark 3.15. Theorem 3.3 bounds the increment of the process Zt.
Every random variable in the supremum is written as sum of small links
and the bound depends on the number (D2(η, d)) and size (δ) of such
links. Zt is continuous in ψ-Orlicz norm whenever the covering integral
converges, which is the case as shown in (3.46). Therefore, the right
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hand side of (3.43) can be made arbitrarily small by choosing η and δ
accordingly.

Theorem 3.4. Given i = 1, . . . ,K, let εi,t ⊂ ε a zero-mean mds, νi,t

i.i.d. standard normal sequence, b1 ≤ σ2ii ≡ limT→∞ Var
(∑T

t=1 εi,t

)
/T ≤

b2 ∀i and b1, b2 positive constants, C ≡ ιb > 0, ι = 1 + o(Vk/b),

Vk =
∑[T`]

k=1ΨL(νk)
2, 0 < ` < 1, ΨL(m) := exp

[√
1+2Lm−1

L

]2
− 1 ,m ≥

0, L > 0, with νk a non-negative sequence. Let also, G a constant
depending only on ΨL, D(ε, d) be the packing number, in the arbitrary
space T equipped with the semi-metric d(s, t) = ‖Zs − Zt‖ΨL

for some
separable real-valued stochastic process Z, then the following Gaussian
approximation holds:

max
1≤i≤K

max
0≤`≤1

E

∣∣∣∣∣∣
[T`]∑
t=1

(εi,t − σiiνi,t)

∣∣∣∣∣∣
 =

= O

(
C +G

∫ diamT

0

√
log(1 +D(ε, d)) +

L

2
log(1 +D(ε, d))dε

)
=: γ̄T .

(3.47)

Remark 3.16. The provided uniform bound to the empirical process
implies that the choice of the tuning parameter λ reduces to majorate
the quantity on the right hand side i.e., for ν > 1, λ > ν3γ̄T , (see
e.g. Lederer and Vogt, 2020). The role of the tuning parameter λ is
in fact to introduce more bias towards zero to reduce the noise. The
constant ν appears in the lasso consistency rate as shown later in the
verification of Assumption 4, (e). It is worth noting that we are not
assuming Gaussian errors nor approximating the distribution of only u
to be Gaussian as typically done in the literature. In fact, assuming
Gaussian errors one can easily find that a crude but working choice for
the tuning parameter would be λ ≥

√
logK/T . Our approach is more

general as it requires ε only to be martingale difference and as such the
whole empirical process is approximately Gaussian.
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From Lemma 3.1 and results (e),(h) of Lemma 3.2 in Appendix A, the
following standard convergence results for the three separate blocks of
X ′u follows:

D−1
T

[
X ′
Au

(j),X ′
Bu

(j),X ′
Cu

(j)
]′ d→

[
ζ1,

∫ 1

0

B(s)dBu(s)
′,

∫ 1

0

B̄(s)dBu(s)
′
]′
,

where B(s) represents a vector Brownian motion. The following theo-
rem uses the bound in Theorem 3.4 to obtain a Gaussian approximation
for each sub-parts of X ′u, corresponding to I(0), I(1), I(2) variables
in X.

Proof of Theorem 3.4. By Jensen’s inequality

max
1≤i≤K

max
0≤`≤1

E

∣∣∣∣∣∣
[T`]∑
t=1

(εi,t − σiiνi,t)

∣∣∣∣∣∣
 ≤ E max

1≤i≤K
max
0≤`≤1

∣∣∣∣∣∣
[T`]∑
t=1

(εi,t − σiiνi,t)

∣∣∣∣∣∣
 ,

now let us consider the Orlicz norm: ||Z||Ψ := inf{c > 0 : EΨ
(
|Z|
c

)
≤

1} of the right hand side, consider a non-decreasing, convex function
Ψ : [0,∞) → [0,∞) such that Ψ(0) = 0 and a constant C > 0 such that

inf

C > 0 : EΨ

∣∣∣∣∣∣E max
1≤i≤K

max
0≤`≤1

∣∣∣∣∣∣
[T`]∑
t=1

(εi,t − σiiνi,t)

∣∣∣∣∣∣
∣∣∣∣∣∣ /C

 ≤ 1

 ,

(3.48)
note that using |E(X)| ≤ E(|X|) and again Jensen’s inequality

EΨ

∣∣∣∣∣∣E max
1≤i≤K

max
0≤`≤1

∣∣∣∣∣∣
[T`]∑
t=1

(εi,t − σiiνi,t)

∣∣∣∣∣∣
∣∣∣∣∣∣ /C

 ≤

≤ E

E

Ψ

∣∣∣∣∣∣ max
1≤i≤K

max
0≤`≤1

∣∣∣∣∣∣
[T`]∑
t=1

(εi,t − σiiνi,t)

∣∣∣∣∣∣
∣∣∣∣∣∣ /C

 ,
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so we can drop an expectation and (3.48) assumes the usual Orlicz form:∥∥∥∥∥∥ max
1≤i≤K

max
0≤`≤1

∣∣∣∣∣∣
[T`]∑
t=1

(εi,t − σiiνi,t)

∣∣∣∣∣∣
∥∥∥∥∥∥

Ψ

.

For finite K, repeted applications of Lemma 2.2.2 of Van Der Vaart and
Wellner (1996) yields∥∥∥∥∥∥ max

1≤i≤K
max
0≤`≤1

∣∣∣∣∣∣
[T`]∑
t=1

(εi,t − σiiνi,t)

∣∣∣∣∣∣
∥∥∥∥∥∥

Ψ

≤

≤ G1G2Ψ
−1(K)Ψ−1(T ) max

1≤i≤K
max
0≤`≤1

∥∥∥∥∥∥
∣∣∣∣∣∣

[T`]∑
t=1

(εi,t − σiiνi,t)

∣∣∣∣∣∣
∥∥∥∥∥∥

Ψ

.

(3.49)
Given results in Corollary 3.1, (3.49) is extended to allow K → ∞.
Then, equation (3.45) for ΨL defined as in Lemma 3.5 coupled with
results of Corollary 3.1, Lemma 3.5, 3.6, 3.7 give the final expression of
the bound and conclude the proof.

Theorem 3.5. Given results in Theorem 3.4, the empirical process
bound in Assumption 4, (c) is formalized as

D−1
T

[
X ′
Au

(j),X ′
Bu

(j),X ′
Cu

(j)
]′
−
[
ζ1,

∫ 1

0

B(s)dBu(s)
′,

∫ 1

0

B̄(s)dBu(s)
′
]′

=

=
[
O(T−1/2),O(A ∧B), 2O(A)

]
(3.50)

where O(A) = O
(
C +G

∫ diamT
0

√
log(1 +D(ε, d)) + L

2 log(1 +D(ε, d))dε
)
as

in Theorem 3.4, O(B) = O
(√

log(T )
T

)
.

Proof of Theorem 3.5. The first term, corresponding to the station-
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ary part of X, follows straightforwardly from standard CLT results:

|T−1/2X ′
Au(j) − ζ1| = O

(
1√
T

)
.

The second block of X corresponds to I(1) variables, hence we have

T−1X ′
Bu(j) −

∫ 1

0

B(s)dBu(s)
′

≡T−1
T∑
t=1

XB
i,tui,t −

∫ 1

0

Bi(s)dB
u
i (s)

′

=

T∑
t=1

(
T−1/2XB

i,t

(
T−1/2ui,t −

∫ t
T

t−1
T

dBu
i (s)

)
+

+

∫ t
T

t−1
T

[
T−1/2XB

i,t −Bi(s)
]
dBu

i (s)

)
(3.51)

=

T∑
t=1

(
T−1/2XB

i,t

(
T−1/2ui,t −Bi(T

−1)
)

︸ ︷︷ ︸
:=wt

+

+

∫ t
T

t−1
T

[
T−1/2XB

i,t −Bi(s)
]
dBu

i (s)

)
.

In order to take care of the left hand side of (3.51), givenWt :=
∑t

s=1wt:

T∑
t=1

T−1/2XB
i,twt =

T∑
t=1

(
T−1/2XB

i,t

(
T−1/2ui,t −Bu

i (T
−1)
))

= T−1/2XB
i,tWT − T−1/2

T−1∑
t=1

ui,tWt,

and by Theorem 3.4, the terms Wt =
∑T

t=1 T
−1/2ui,t−Bi(T

−1) can be
bounded as by Markov’s inequality P(Wt > γ) ≤ EWt

γ and upon taking
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the maxima:

max
1≤i≤K

max
0≤`≤1

γ−1E

∣∣∣∣∣∣
[T`]∑
t=1

(ui,t −B(`))

∣∣∣∣∣∣
 =

= O
(
C +G

∫ diamT

0

√
log(1 +D(ε, d)) +

L

2
log(1 +D(ε, d))dε

)
.

The right hand side of (3.51) can be handled by deriving an upper
bound for its integrand, namely:

sup
t≤T, t−1

T
≤s≤ t

T

∣∣∣T−1/2XB
i,t −Bi(s)

∣∣∣
≤ sup

t≤T

∣∣∣∣T−1/2XB
i,t −Bi

(
t− 1

T

)∣∣∣∣︸ ︷︷ ︸
(a)

+ sup
t−1
T

≤s≤ t
T

∣∣∣∣Bi(s)−Bi

(
t− 1

T

)∣∣∣∣︸ ︷︷ ︸
(b)

.

(3.52)

To bound (a) we can use again our Theorem 3.4. In fact, XB
i,t can be

rewritten as partial sum process of i.i.d. sequence {ut} thus as above
by Markov’s inequality we have

sup
t≤T

∣∣∣∣T−1/2XB
i,t −Bi

(
t− 1

T

)∣∣∣∣ ≤ max
1≤i≤K

max
0≤`≤1

γ−1E

∣∣∣∣∣∣
[T`]∑
t=1

(ui,t −Bi(`))

∣∣∣∣∣∣


= O
(
C +G

∫ diamT

0

√
log(1 +D(ε, d)) +

L

2
log(1 +D(ε, d))dε

)
.

Bounding (b) follows from Levy’s modulus of continuity theorem, namely,
let h = s− t−1

T

lim
h↓0

sup
t−1
T

≤s−h≤ t
T

∣∣B( t−1
T + h)−B( t−1

T )
∣∣√

h log
(
1
h

) = 1,
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hence

(b) ≤

√
h log

(
1

h

)
= O

(√
log(T )

T

)
.

The third and last block of X corresponds to I(2) variables, hence we
have

T−2X ′
Cu(j) −

∫ 1

0
B̄(s)dBu(s)

′

≡T−2
T∑
t=1

XC
i,tui,t −

∫ 1

0

(∫ s

0
Bi(u)du

)
dBu

i (s)
′

=

T∑
t=1

(
T−1XC

i,t

(
T−1ui,t −

∫ t
T

t−1
T

dBu
i (s)

)
+ (3.53)

+

∫ t
T

t−1
T

[
T−1XC

i,t −
(∫ s

0
Bi(u)du

)]
dBu

i (s)

)

=

T∑
t=1

(
T−1XC

i,t

(
T−1ui,t −Bi(T

−1)
)︸ ︷︷ ︸

:=wt

+

+

∫ t
T

t−1
T

[
T−1XC

i,t −
(∫ s

0
Bi(u)du

)]
dBu

i (s)

)
.

The left hand side in (3.53) follows in the same exact way as in (3.51).
The right hand side, by rewriting the I(2) process as double sum of
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innovations:∫ t
T

t−1
T

[
T−1XC

i,t −
(∫ s

0
Bi(u)du

)]
dBu

i (s)

∫ t
T

t−1
T

T−1
t∑

k=1

k∑
j=1

ui,j −
t∑

k=1

∫ k
t
s

(k−1)s
t

Bi(u)du︸ ︷︷ ︸
(a)

 dBu
i (s).

From Theorem 3.4 it follows immediately that by taking the supremum
over the outer integral limits of the integrand that

sup
t≤T, t−1

T
≤u≤ t

T

|(a)| ≤ max
1≤i≤K

max
0≤`≤1

γ−1E

∣∣∣∣∣∣
[t`]∑
k=1

 k∑
j=1

ui,j −Bi(`)

∣∣∣∣∣∣


= Op

(
C +G

∫ diamT

0

√
log(1 +D(ε, d)) +

L

2
log(1 +D(ε, d))dε

)
.

which concludes the proof.

Verification of Assumption 4, (e). Let X† = XD−1
T , β̂† = DT β̂

and likewise for β†(0). Recall from (f) that S0 is the true support and
Sc0 is its complement

(2T )−1
∥∥∥y −X†β̂

∥∥∥2
2
+ λ

∥∥∥β̂†
∥∥∥
1
≤ (2T )−1

∥∥∥y −X†β†(0)
∥∥∥2
2
+ λ

∥∥∥β†(0)
∥∥∥
1
,

(2T )−1
∥∥∥X†(β̂† − β†(0))

∥∥∥2
2
− T−1

∥∥∥u′X†(β̂† − β†(0))
∥∥∥2
2
+ λ

∥∥∥β̂†
∥∥∥
1
≤ λ

∥∥∥β†(0)
∥∥∥
1
,

(2T )−1
∥∥∥X†(β̂† − β†(0))

∥∥∥2
2
− T−1

∥∥∥X†′u
∥∥∥
∞

∥∥∥(β̂† − β†(0))
∥∥∥
1
≤ λ

∥∥∥β†(0)
∥∥∥
1
− λ

∥∥∥β̂†
∥∥∥
1
,

(2T )−1
∥∥∥X†(β̂† − β†(0))

∥∥∥2
2
− λ

ν

∥∥∥(β̂† − β†(0))
∥∥∥
1
≤ λ

∥∥∥(β̂†
S0

− β†(0))
∥∥∥
1
− λ

∥∥∥β̂†
Sc

0

∥∥∥
1
,

(2T )−1
∥∥∥X†(β̂† − β†(0))

∥∥∥2
2
− λ

ν

∥∥∥(β̂†
S0

− β†(0))
∥∥∥
1
− λ

ν

∥∥∥β̂†
Sc

0

∥∥∥
1
≤
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≤ λ
∥∥∥(β̂†

S0
− β†(0))

∥∥∥
1
− λ

∥∥∥β̂†
Sc

0

∥∥∥
1
,

(2T )−1
∥∥∥X†(β̂† − β†(0))

∥∥∥2
2
+ λ

(
1− 1

ν

)∥∥∥β̂†
Sc

0

∥∥∥
1
≤ λ

(
1 +

1

ν

)∥∥∥(β̂†
S0

− β†(0))
∥∥∥
1
,

(2T )−1
∥∥∥X†(β̂† − β†(0))

∥∥∥2
2
≤ λ

(
1 +

1

ν

)√
s̄T

∥∥∥(β̂†
S0

− β†(0))
∥∥∥
2

≤ λ

(
1 +

1

ν

)√
s̄Tκ

−1
T,min

∥∥∥X†(β̂† − β†(0))
∥∥∥
2
,

T−1
∥∥∥X†(β̂† − β†(0))

∥∥∥
2
≤ 2

(
1 +

1

ν

)
λ
√
s̄T

κT,min
,

T−1
∥∥∥XD−1

T (DT (β̂ − β(0))
∥∥∥
2
≤ 2

(
1 +

1

ν

)
λ
√
s̄T

κT,min
,

T−1
∥∥∥X(β̂ − β(0))

∥∥∥
2
≤ 2

(
1 +

1

ν

)
λ
√
s̄T

κT,min
,

and taking the square of both sides gives the claim.

Verification of Assumption 4, (g). (I) entails stationary variables
and as such it is well known to hold (see e.g. Kock and Callot (2015)
and Medeiros and Mendes (2016a) for, respectively, Gaussian and non-
Gaussian innovations) whenever the minimum eigenvalue of the corre-
sponding covariance matrix is bounded away from zero. To see this,
consider writing the specific (positive-definite) covariance (sub)-matrix
as ΣAŝ

= E(XAŝ
X ′
Aŝ
) and let 0 < κΣ̂ < 1 be a constant, then it is

possible to bound the maximal absolute difference between the Gram
matrix and the covariance as:

P

(
max

1≤i,j≤sAŝ

[
|Σ̂Aŝ

−ΣAŝ
|
]
i,j

≥
κΣ̂

sA

)
≤ sAŝ

2 max
1≤i,j≤sA

P

([
|Σ̂Aŝ

−ΣAŝ
|
]
i,j

≥
TκΣ̂

sAŝ

)
≤ 2c1s

2T γ1/2 exp

[
−c2 (φmin/s)

2 T 1−γ1−γ2

288

]
+ c3

s3

φmin
Dk,T +

s3

φmin
ET ,

where the first step follows from the union bound and the second from
the Triplex inequality of Jiang (2009) with c1,2,3, γ1,2 > 0. The depen-
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dence term is Dk,T = T−1E
∣∣∣E(X ′

Aŝ
XAŝ

|Ft−m
)
− EX ′

Aŝ
XAŝ

∣∣∣ where
{Ft}∞t=−∞ is an increasing sequence of σ-fields and m a positive integer
defining the dependence window. The tail term is

ET = T−1E
∣∣∣X ′

Aŝ
XAŝ

∣∣∣ I (∣∣∣X ′
Aŝ
XAŝ

∣∣∣ > C
)
. Since XAŝ

is I(0), it can

be written as a VMA(∞) process as
XAŝ

= (x1,A,x2,A . . . ,xsA,A)
′ =

∑∞
j=0 θjut−j with {ut,Fu,t−1}∞−∞ be-

ing a martingale difference sequence with respect to an increasing se-
quence of σ-fields Fu,t−1 = σ {ut−1,ut−2, . . . } such that E [ut|Fu,t−1] =
0, E [utu

′
t|Fu,t−1] = Σu then it is not restrictive to assume the mo-

ment boundedness of the marginals E |xi,A|p < ci,p ∀i = 1, . . . , sA, for
cp > 0, p > 1 as long as |θ|1 < ∞ i.e., the absolute summability of the
coefficients and E |ur|p <∞, ∀r finite moments are also assumed.

Then, ∀i = 1, . . . , sA it follows by (1) Holder and (2) Markov’s inequal-
ities

E [|xi,A| I (|xi,A| > C)]
(1)

≤ E (|xi,A|p)
1
p P (|xi,A| > C)

(p−1)
p

(2)

≤ E (|xi,A|p)
1
p E (|xi,A|p)

(p−1)
p

C
p(p−1)

p

= E (|xi,A|p)C−(p−1)

Hence, for E|u|2p < ci,2p, then the “tail” term ET by Cauchy-Schwarz
is bounded as:

ET ≤

√√√√ sA∏
i=1

ci,2pC
−(p−1).

The “dependence” term Dk,T can be bounded using mixingales argu-
ments (see Davidson (1994) Ch.16). The linear VMA process XAŝ

=∑∞
j=0 θjut−j , where ut is an Lp-bounded martingale difference (p ≥ 1)

and given the absolute summability of the coefficients, it is in fact a
mixingale process i.e., ‖E (XAŝ

|Ft−m)‖p ≤ ctζm where by Minkowski
inequality ct = supr ‖us‖ is a non-negative constant and coefficients
ζm =

∑∞
j=m |θi,j | → 0 as m → ∞ by the absolute summability of the

coefficients. Hence, by mixingales definition the “dependence” term is
bounded as Dk,T ≤ ctζm. Finally, by application of Lemma 3.4 (from
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Lemma 6.17 in Bühlmann and Van De Geer (2011)) we obtain
infx′x=1 x

′Σ̂Aŝ
x > infx′x=1 x

′ΣAŝ
x − s

κΣ̂
s > κΣ̂ which concludes the

proof.

For the terms (II), (III) i.e., for I(1) and I(2) variables the verification
of the restricted eigenvalue condition is more complex as their scaled
Gram matrices do not converge in probability to a full-rank matrix but
instead they converge weakly to matrix stochastic integrals (see Lemma
3.2). Smeekes and Wijler (2021) showed how by allowing for a factor s2

to multiply the Gram matrix, then κ2
Σ(s) > 0 on a set with probability

converging to one in the unit root non stationary case. To the best
of our knowledge this is the first result in the literature extending the
restricted eigenvalue condition to unit root non-stationary data.

Appendix C Main results on PDS-LA-LM Test

Proof of Theorem 3.1. This proof uses some of the results developed
in the proof of Theorem 1 of Chapter 2. Let us first define some nota-
tion. Let H = (η(1), . . . ,η(p)), Ĥ = (η̂(1), . . . , η̂(p)). Furthermore, Let
P(A) = A(A′A)−1A′ denote the projection on the space spanned by
A and let M(A) = I−P(A) denote the corresponding residual-maker.
For any matrix A, let the norm ‖·‖p represent the induced lp-matrix
norm ‖A‖p = supx 6=0 ‖Ax‖p/‖x‖p.

Consider the true, unobserved, DGP equation in (3.19) restated here:

y = XGCβGC +X−GCβ−GC + ε. (3.54)

As done in (3.24) in Section 3.2, we rewrite equation (3.54) by augment-
ing d extra lags of the Granger causing and Granger caused variables
to get the T × Nϕ(p + d) matrix X∗

GC where recall Nϕ = NJ + 1. As
this is the true DGP, the corresponding Nϕ(p + d) × 1 augmented co-
efficient vector β∗

GC will correspond to the Nϕp × 1 vector βGC with
zeroes in place of the coefficient of the extra d lags. Thus, by using the
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Nϕ(p+ d)×Nϕ(p+ d) transformation matrices Pd as in Section 3.2 we
obtain

y = X∗
GCβ

∗
GC +X−GCβ−GC + u

= X∗
GCPdP

−1
d β∗

GC +X−GCβ−GC + u

= W ∗
dφ

∗ +X−GCβ−GC + u,

(3.55)

where now W ∗
d := X∗

GCPd,φ := P−1
d β∗

GC . It then follows that our

PDS estimator in (3.24) is equivalently recast in terms of W ∗
d and φ∗

thus to obtain

φ̂∗ =
(
W ∗′

d M(XŜ)W
∗
d

)−1 (
W ∗′

d M(XŜ) [W
∗
dφ

∗ +X−GCβ−GC + u]
)
,

DT (φ̂
∗ − φ∗) =

=
(
D−1
T (W ∗′

d M(XŜ)W
∗
d )D

−1
T

)−1︸ ︷︷ ︸
A

D−1
T

(
W ∗′

d M(XŜ) [X−GCβ−GC + u]
)︸ ︷︷ ︸

B

.

(3.56)

Now let {S0} be the active set i.e., the set of the truly non-zero variables
in X. In other words, XS0 ≡ X−GC in the true DGP equations (3.54),
(3.55). We assume the cardinality of {S0} to be fixed and not growing
with the sample size. We are now going to show in turn that

A−
(
D−1
T (W ∗′

d M(XS0)W
∗
d )D

−1
T

)−1
= op(1) (3.57)

B −D−1
T

(
W ∗′

d M(XS0) [X−GCβ−GC + u]
)
= op(1). (3.58)

Before turning to the proofs, recall X
(j)
GC is the T × 1 vector for the jth

lag of only the Granger causing variable and similarly X−GCj is the the
T×(Nϕp−1) submatrix ofXGC where the jth lag of the Granger causing
has been taken out. Consider taking the following linear projection of

X
(j)
GC onto the space spanned by the columns of X−GCj and X−GC :

X
(j)
GC = X−GCjη−GCj +X−GCη

(j)
−GC +X

(j)
GC0+ e(j), (3.59)

for j = 1, . . . , (Nϕ− 1)p, where η−GCj is (Nϕp− 1)× 1, η−GC is p(K −
Nϕ) × 1 and 0 is 1 × 1. Now let the T × (Nϕ − 1)p matrix XGC =
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(X
(1)
GC , . . . ,X

(p)
GC), and the T ×pK matrix X =

[
X−GCj ,X

(j)
GC ,X−GC

]
,

define the pK×1 vector η(j) =
(
η−GCj ′,0′,η′

−GC
)′

and its pK× (Nϕ−
1)p stacked formH =

(
η(1), . . . ,η(p(Nϕ−1))

)
and finally the T×(Nϕ−1)p

stacked matrix e =
(
e(1) . . . , e(p(Nϕ−1))

)
such that we have the stacked

projections
XGC = XH + e. (3.60)

Using this projection allow us to obtain an expression for the T×Nϕ(p+
d) matrix X∗

GC , namely

X∗
GC = [X,X+

GC ]

[
H IpNI

0
0 0 INϕd

]
+ [e,0,0]

=
[
XH + e,XpNI ,GC(+)

]
,

(3.61)

where we use X+
GC to indicate the T × Nϕd submatrix of X∗

GC only
containing the extra d lags of the Granger causing and Granger caused
variables; INI

is a pK × p matrix made of 0 and I which extracts
from X the columns corresponding to the p lags of the Granger caused
variable(s)18 i.e., XIpNI

= XpNI
; XpNI ,GC(+) indicates the joint T ×

(p + Nϕd) containing both XIpNI
and X+

GCINϕd. Also, consider the
interaction among X∗

GC and the Nϕ(p+ d)×Nϕ(p+ d) matrix Pd:

X∗
GCPd =

[
XH + e,XpNI ,GC(+)

] [P (1)
d

P
(2)
d

]
= (XH + e)P

(1)
d +XpNI ,GC(+)P

(2)
d ,

(3.62)

for P
(1)
d a p × Nϕ(p + d) matrix and P

(2)
d a (p + Nϕd) × Nϕ(p + d).

When occasionally needed in the proof we will refer to P
(1)
d,1 ,P

(2)
d,1 as the

1×Nϕ(p+ d) subparts of these matrices. Likewise for D−1
T,pK , D

−1
T,S0

.

18We are using this more general notation pNI even though we are working under
the assumption that NI = 1 just to highlight how the procedure can also be
shown for a block of Granger caused variables.
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As the interaction between D−1
T and Pd occurs often in the proof, we

report here an example of their 3× 3 matrix product as a reference:

P1D
−1
T =

1 0 1
0 1 0
0 0 1

1/√T 0 0
0 1/T 0
0 0 1/T 2

 =

1/√T 0 1/T 2

0 1/T 0
0 0 1/T 2

 ,

P2D
−1
T =

1 0 2
0 1 0
0 0 1

1/√T 0 0
0 1/T 0
0 0 1/T 2

 =

1/√T 0 2/T 2

0 1/T 0
0 0 1/T 2

 .
We now prove (3.57). By rearranging, we have

D−1
T W ∗′

d

(
M(XŜ)−M(XS0)

)
W ∗

dD
−1
T .

Using that W ∗
d = X∗

GCPd and using the expression in (3.62) for X∗
GC

we obtain the following expression:

D−1
T

(
(XH + e)P

(1)
d +XpNI ,GC(+)P

(2)
d

)′
(
M(XŜ)−M(XS0)

) (
(XH + e)P

(1)
d +XpNI ,GC(+)P

(2)
d

)
D−1
T .

By multiplying out the expression we obtain three terms:

D−1
T

(
(XH + e)P

(1)
d

)′
(M(XŜ)−M(XS0))

(
(XH + e)P

(1)
d

)
D−1

T︸ ︷︷ ︸
A1

+

+D−1
T

(
XpNI ,GC(+)P

(2)
d

)′
(M(XŜ)−M(XS0))

(
XpNI ,GC(+)P

(2)
d

)
D−1

T︸ ︷︷ ︸
A2

+

+ 2D−1
T

(
(XH + e)P

(1)
d

)′
(M(XŜ)−M(XS0))

(
XpNI ,GC(+)P

(2)
d

)
D−1

T︸ ︷︷ ︸
A3

.

Let us deal with A1 first. Multiplying out the terms and using triangle
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inequality within an `2-norm we get:

‖A1‖2 ≤
∥∥∥D−1

T (XHP
(1)
d )′

(
M(XŜ)−M(XS0)

)
XHP

(1)
d D−1

T

∥∥∥
2︸ ︷︷ ︸

A1,1

+

+
∥∥∥D−1

T (eP
(1)
d )′

(
M(XŜ)−M(XS0)

)
(eP

(1)
d )D−1

T

∥∥∥
2︸ ︷︷ ︸

A1,2

+

+ 2
∥∥∥D−1

T (XHP
(1)
d )′

(
M(XŜ)−M(XS0)

)
(eP

(1)
d )D−1

T

∥∥∥
2︸ ︷︷ ︸

A1,3

.

For A1,1, observe how X is only active on the active set {S0}, such that
M(XS0)XH = XS0HS0 − P(XS0)XS0HS0 = 0. Hence, A1,1 reduces
to

A1,1 =
∥∥∥M(XŜ)XHP

(1)
d D−1

T

∥∥∥2
2

(I)

≤
∥∥∥P (1)

d D−1
T

∥∥∥2
2

∥∥M(XŜ)XH
∥∥2
2

(II)

≤
∥∥∥P (1)

d D−1
T

∥∥∥2
2

(Nϕ−1)p∑
j=1

∥∥∥M(XŜ)Xη(j)
∥∥∥2
2

(III)

≤
∥∥∥P (1)

d D−1
T

∥∥∥2
2

(Nϕ−1)p∑
j=1

∥∥∥M(XŜj
)Xη(j)

∥∥∥2
2
,

where (I) follows from submultiplicativity of the induced norm, (II)
follows by applying triangle inequality and (III) from observing that
{Ŝj} ⊆ {Ŝ} for all j = 1, . . . , p. Furthermore,∥∥∥P (1)

d D−1
T

∥∥∥2
2

∥∥∥M(XŜj
)Xη(j)

∥∥∥2
2
=

=
∥∥∥P (1)

d D−1
T

∥∥∥2
2

min
η:η

m
=0,m/∈Ŝj

∥∥∥Xη(j) −XŜj
η
∥∥∥2
2

≤
∥∥∥P (1)

d D−1
T

∥∥∥2
2

√
T
∥∥∥X(η(j) − η̂(j))

∥∥∥2
2
≤ δ2T ,
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as the constraint in the minimization is satisfied given Ŝj = {m : η̂(j)
i

=
0} and where the last inequality follows for the first part given the
maximum eigenvalue of the induced matrix norm squared is T−1 thus
majorated by T−1/2; the second part follows with probability 1 − ∆T

from Assumption 4(e).

For A1,2, by rewriting the residual makers as the difference between
the identity and the corresponding projection matrices, we simplify the
expression to

A1,2 =
∥∥∥D−1

T (eP
(1)
d )′

(
P(XS0)− P(XŜ)

)
(eP

(1)
d )D−1

T

∥∥∥
2

≤
∥∥∥D−1

T (eP
(1)
d )′P(XS0)(eP

(1)
d )D−1

T

∥∥∥
2︸ ︷︷ ︸

A1,2,1

+

+
∥∥∥D−1

T (eP
(1)
d )′P(XŜ)(eP

(1)
d )D−1

T

∥∥∥
2︸ ︷︷ ︸

A1,2,2

,

where

A1,2,1

(I)

≤
∥∥∥D−1

T (eP
(1)
d )′XS0D

−1
T,S0

(D−1
T,S0

X ′
S0

XS0D
−1
T,S0

)−1D−1
T,S0

X ′
S0

(eP
(1)
d )D−1

T

∥∥∥
1

(II)

≤
∥∥∥D−1

T,pKX ′(eP
(1)
d )D−1

T

∥∥∥
∞

p(Nϕ−1)∑
j=1

√
s̄T

∥∥∥(D−1
T,S0

X ′
S0

XS0D
−1
T,S0

)−1D−1
T,S0

X ′
S0

(e(j)P
(1)
d,1 )D

−1
T

∥∥∥
2

(III)

≤
∥∥∥D−1

T,pKX ′(eP
(1)
d )D−1

T

∥∥∥
∞

∥∥(D−1
T,S0

X ′
S0

XS0D
−1
T,S0

)−1
∥∥
2

p(Nϕ−1)∑
j=1

s̄T

∥∥∥D−1
T,S0

X ′
S0

(e(j)P
(1)
d,1 )D

−1
T

∥∥∥
∞

(IV )

≤
∥∥D−1

T,pKX ′e
∥∥
∞

∥∥∥P (1)
d D−1

T

∥∥∥
∞

∥∥(D−1
T,S0

X ′
S0

XS0D
−1
T,S0

)−1
∥∥
2

p(Nϕ−1)∑
j=1

s̄T

∥∥∥D−1
T,S0

X ′
S0

(e(j)P
(1)
d,1 )D

−1
T

∥∥∥
∞
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(V )

≤ p(Nϕ − 1)s̄Tκ
−1
T,min

∥∥∥P (1)
d D−1

T

∥∥∥2
∞

∥∥D−1
T,pKX ′e

∥∥
∞

∥∥D−1
T,S0

X ′
S0

e
∥∥
∞

(V I)

≤ p(Nϕ − 1)γ̄2
T s̄Tκ

−1
T,minT

−1 ≤ δ2T ,

where (I) follows by bounding `2 with `1 norm; (II) follows from the
dual norm inequality: for any m × n matrix A with i-th row denoted
as ai·, and n × 1 vector x, we have that ‖Ax‖1 =

∑m
i=1 |ai·x| ≤

‖x‖∞
∑m

i=1 ‖ai‖1. The first term majorate XS0D
−1
T,S0

into D−1
T,pKX

′.
Furthermore, we use triangle inequality on the e’s and bound l1 by l2
norms which let the

√
s̄T appear; (III) follows from Cauchy-Schwarz

and bounding the second term in `2 norm by `∞ norm; (IV) follows
by submultiplicativity of the induced norm. In (V) the central term
in `2 norm at previous step is bounded according to Assumption 4,(g).
Union bound is applied on the last term yielding the p(Nϕ − 1) term

while similar terms in P
(1)
d D−1

T are aggregated. Finally in (VI) the em-
pirical process bound in Assumption 4,(c) is used on the last two terms
yielding the γ̄2T and the T−1 comes from the absolute maximal row sum
of the remaining squared matrix norm. In the same way as for A1,1,1,
we get that A1,2,2 ≤ δ2T .

Finally for A1,3. By the same argument as in A1,1 we get that A1,3

reduces to

A1,3 = 2
∥∥∥D−1

T (XHP
(1)
d )′M(XŜ)(eP

(1)
d )D−1

T

∥∥∥
2
.

Let us define the noiseless least squares estimator

η̃
(j)

Ŝ
= argmin

η:η
m
=0,m/∈Ŝ

∥∥∥Xη(j) −Xη
∥∥∥2
2
, j = 0, 1, . . . , p, (3.63)

and let H̃Ŝ =
(
η̃
(j)

Ŝ
, . . . , η̃

(j)

Ŝ

)
, such that D−1

T

(
M(XŜ)XHP

(1)
d

)′
=

D−1
T

(
X
(
H − H̃Ŝ

)
P

(1)
d

)′
. Then, with probability 1−∆T ,

A1,3

(I)

≤
∥∥∥∥D−1

T

(
X
(
H̃Ŝ −H

)′
P

(1)
d

)′
eP

(1)
d D−1

T

∥∥∥∥
1

168



(II)

≤
p(Nϕ−1)∑

j=1

∥∥∥D−1
T

((
η̃
(j)

Ŝ
− η(j)

)
P

(1)
d,1

)′∥∥∥
1

∥∥∥DT,pKD−1
T,pKX ′eP

(1)
d D−1

T

∥∥∥
∞

(III)

≤
p(Nϕ−1)∑

j=1

∥∥∥D−1
T

((
η̃
(j)

Ŝ
− η(j)

)
P

(1)
d,1

)′∥∥∥
1
‖DT,pK‖∞

∥∥D−1
T,pKX ′e

∥∥
∞

∥∥∥P (1)
d D−1

T

∥∥∥
∞

(IV )

≤ T 3/2γ̄T

p(Nϕ−1)∑
j=1

∥∥∥D−1
T

((
η̃
(j)

Ŝ
− η(j)

)
P

(1)
d,1

)′∥∥∥
1

(V )

≤ T 3/2

√
s̄T γ̄T

κT,min

p(Nϕ−1)∑
j=1

∥∥∥D−1
T

(
D−1

T,pKX
(
η̃
(j)

Ŝ
− η(j)

)
P

(1)
d,1

)′∥∥∥
2

(V I)

≤ T 3/2

√
s̄T γ̄T

κT,min

p(Nϕ−1)∑
j=1

∥∥∥D−1
T

(
D−1

T,pKX
(
η̂(j) − η(j)

)
P

(1)
d,1

)′∥∥∥
2

(V II)

≤ T 3/2

√
s̄T γ̄T

κT,min

p(Nϕ−1)∑
j=1

∥∥∥D−1
T,pKX

(
η̂(j) − η(j)

)∥∥∥
2

∥∥∥D−1
T P

(1)′
d,1

∥∥∥
2

(V III)

≤
√
TδT

√
s̄T γ̄Tκ

−1
T,min ≤ δ2T .

Inequality (I) bounds `2 with `1 norm. Inequality (II) follows from the
dual norm inequality and by triangle inequality on η̃(j)’s. Also in the

second term DT,pKD
−1
T,pK is added. (III) follows from submultiplicativ-

ity on the second term. (IV) follows from the empirical process bound
in Assumption 4(c) for the second term in `∞ norm in the previous step.
The factor T 3/2 comes from the maximum column sum of the first term
in `∞ norm i.e., T 2 times the maximum column sum of the last term in
`∞ norm i.e., T−1/2. Step (V) follows from combining Assumption 4(f)
and 1(g), namely sparsity and the restricted eigenvalue condition. (VI)
follows from the definition of η̃

Ŝ
as minimizer of the sum of squares;

(VII) follows from the submultiplicativity of the induced norm and fi-
nally (VIII) follows from the consistency in Assumption 4(e). Therefore,
it follows from combining the previous results that ‖A1‖2 = op(1).

We now prove A2 = op(1). To do so we follow a similar strategy as for
A1,2. By rewriting the residual makers as the difference between the
identity and the corresponding projection matrices, the expression can
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be simplified to

A2 =
∥∥∥D−1

T (XpNI ,GC(+)P
(2)
d )′

(
P(XS0)− P(XŜ)

)
(XpNI ,GC(+)P

(2)
d )D−1

T

∥∥∥
2

≤
∥∥∥D−1

T (XpNI ,GC(+)P
(2)
d )′P(XS0

)(XpNI ,GC(+)P
(2)
d )D−1

T

∥∥∥
2︸ ︷︷ ︸

A2,1

+

+
∥∥∥D−1

T (XpNI ,GC(+)P
(2)
d )′P(XŜ)(XpNI ,GC(+)P

(2)
d )D−1

T

∥∥∥
2︸ ︷︷ ︸

A2,2

.

Let us assume that an empirical process bound, similar to Assumption
4, (c) holds such that∥∥∥D−1

T,pKX
′XpNI ,GC(+)D−1

T,(p+Nϕd))

∥∥∥
∞

≤ 3¯̄γT . (3.64)

Then, similarly to A1,2,1 we have

A2,1

(I)

≤
∥∥∥∥D−1

T (XpNI ,GC(+)P
(2)
d )′XS0D

−1
T,S0

(D−1
T,S0

X ′
S0

XS0D
−1
T,S0

)−1D−1
T,S0

X ′
S0

(XpNI ,GC(+)P
(2)
d )

∥∥∥∥
1

(II)

≤
∥∥∥D−1

T,pKX ′(XpNI ,GC(+)P
(2)
d )D−1

T

∥∥∥
∞

p+Nϕd∑
j=1

√
s̄T

∥∥∥(D−1
T,S0

X ′
S0

XS0D
−1
T,S0

)−1D−1
T,S0

X ′
S0

(X
(j)

pNI ,GC(+)P
(2)
d,1 )D

−1
T

∥∥∥
2

(III)

≤
∥∥∥D−1

T,pKX ′(XpNI ,GC(+)P
(2)
d )D−1

T

∥∥∥
∞

∥∥(D−1
T,S0

X ′
S0

XS0D
−1
T,S0

)−1
∥∥
2

p+Nϕd∑
j=1

s̄T

∥∥∥D−1
T,S0

X ′
S0

(X
(j)

pNI ,GC(+)P
(2)
d,1 )D

−1
T

∥∥∥
∞

(IV )

≤
∥∥∥D−1

T,pKX ′XpNI ,GC(+)

∥∥∥
∞

∥∥∥P (1)
d D−1

T

∥∥∥
∞

∥∥(D−1
T,S0

X ′
S0

XS0D
−1
T,S0

)−1
∥∥
2

p+Nϕd)∑
j=1

s̄T

∥∥∥D−1
T,S0

X ′
S0

(X
(j)

pNI ,GC(+)P
(2)
d,1 )D

−1
T

∥∥∥
∞

(V )

≤ (p+Nϕd)s̄Tκ
−1
T,min

∥∥∥P (1)
d D−1

T

∥∥∥2
∞

∥∥∥D−1
T,pKX ′XpNI ,GC(+)D

−1
T,(p+Nϕd))

∥∥∥
∞
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∥∥∥D−1
T,S0

X ′
S0

XpNI ,GC(+)D
−1
T,(p+Nϕd))

∥∥∥
∞

(V I)

≤ (p+Nϕd)¯̄γ
2
T s̄Tκ

−1
T,minT

3 ≤ δ2T .

Likewise, it follows A2,2 ≤ δ2T .

Now for A3.

‖A3‖2 ≤
∥∥∥D−1

T

(
XHP

(1)
d

)′
(M(XŜ)−M(XS0))

(
XpNI ,GC(+)P

(2)
d

)
D−1

T

∥∥∥
2︸ ︷︷ ︸

A3,1

+

+
∥∥∥D−1

T

(
eP

(1)
d

)′
(M(XŜ)−M(XS0))

(
XpNI ,GC(+)P

(2)
d

)
D−1

T

∥∥∥
2︸ ︷︷ ︸

A3,2

,

A3,1 follows as in A1,3. A3,2 follows as A1,2,1.

Let us now prove (3.58). By re-arranging terms we have

D−1
T W ∗′

d

(
M(XŜ)−M(XS0)

)
X−GCβ−GC︸ ︷︷ ︸

B1

+

+D−1
T W ∗′

d

(
M(XŜ)−M(XS0)

)
u︸ ︷︷ ︸

B2

.

We first deal with B1. Given X−GC is only active on {S0}, then
M(XS0)X−GCβ−GC = 0 and B1 reduces to

B1 = D−1
T W ∗′

d M(XŜ)X−GCβ−GC .

As above for (3.57), using that W ∗
d = X∗

GCPd and using the expression
in (3.62) for X∗

GC we obtain the following expression:(
(XH + e)P

(1)
d D−1

T

)′
M(XŜ)X−GCβ−GC︸ ︷︷ ︸

B1,1

+

+
(
XpNI ,GC(+)P

(2)
d D−1

T

)′
M(XŜ)X−GCβ−GC︸ ︷︷ ︸

B1,2

.
(3.65)
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By multiplying out the terms in B1,1 we have

D−1
T (XHP

(1)
d )′M(XŜ)X−GCβ−GC︸ ︷︷ ︸

B1,1,1

+D−1
T (eP

(1)
d )′M(XŜ)X−GCβ−GC︸ ︷︷ ︸

B1,1,2

.

First for B1,1,1. Consider the norm

‖B1,1,1‖2 ≤
p(Nϕ−1)∑
j=1

∥∥∥∥D−1
T

(
Xη(j)P

(1)
d,1

)′
M(XŜ)

∥∥∥∥
2︸ ︷︷ ︸

B1,1,1,a

∥∥M(XŜ)X−GCβ−GC
∥∥
2︸ ︷︷ ︸

B1,1,1,b

,

(3.66)

then, B1,1,1,a follows analogously to A1,1 such that ‖B1,1,a‖ ≤ T−1/2δ2T .
For B1,1,1,b: note first that we can rewrite X−GCβ−GC = Xβ∗∗ where
β∗∗ contains zeroes in the corresponding places of the GC variables.
Then, using the definition of the best linear predictor we have

β(0) =
(
ĒX ′X

)−1
ĒX ′(XGCβGC +Xβ∗∗ + ε),

=
(
ĒX ′X

)−1
ĒX ′XGCβGC + β∗∗ = HβGC + β∗,

such that

B1,1,1,b ≤
∥∥∥M(XŜ)Xβ(0)

∥∥∥
2
+
∥∥M(XŜ)XH

∥∥
2
‖βGC‖2,

where both terms follow similarly and the second can be bouded as

∥∥M (
XŜ

)
XH

∥∥
2
‖βGC‖2 ≤ C

p(Nϕ−1)∑
j=1

∥∥∥X (
η(j) − η̂(j)

)∥∥∥
2
≤ CpδTT

−1/4.

Now for B1,1,2. From the same definition of the best linear predictor as
above, it follows that with probability 1−∆T

‖B1,1,2‖1
(I)

≤
∥∥∥D−1

T (eP
(1)
d )′M(XŜ)Xβ(0)

∥∥∥
1
+
∥∥∥D−1

T (eP
(1)
d )′M(XŜ)XHβGC

∥∥∥
1

(II)

≤
∥∥∥D−1

T (eP
(1)
d )′X

(
β̃

(0)

Ŝ
− β(0)

)∥∥∥
1
+
∥∥∥D−1

T (eP
(1)
d )′X

(
H̃Ŝ −H

)
βGC

∥∥∥
1
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(III)

≤
p(Nϕ−1)∑

j=1

∥∥∥D−1
T (e(j)P

(1)
d,1 )

′X
∥∥∥
∞∥∥∥β̃(0)

Ŝ
− β(0)

∥∥∥
1
+ ‖βGC‖∞

p(Nϕ−1)∑
j=1

∥∥∥η̃(j)

Ŝ
− η(j)

∥∥∥
1


(IV )

≤ T−1/2

√
s̄T γ̄T

κT,min
p(Nϕ − 1)

(
1 + ‖βGC‖∞

) p(Nϕ−1)∑
j=0

∥∥∥X (
η̃
(j)

Ŝ
− η(j)

)∥∥∥
2

(V )

≤ δTT
−1√s̄T γ̄T (C + 1)p(Nϕ − 1)(p(Nϕ − 1) + 1)κ−1

T,min ≤ Cδ2T .

Inequality (I) follows from the definition of the best linear predictor
β(0), while (II) follows analogously to the steps taken for A1,3. (III)
follow again from repeated application of the dual norm inequality;
take a p× n matrix A, a n×m matrix B and an m× 1 vector c, then
‖ABc‖1 ≤ ‖c‖∞

∑p
i=1 ‖ai·B‖1 ≤ ‖c‖∞

∑p
i=1 ‖ai·‖∞

∑m
j=1 ‖b·j‖1. Steps

(IV) and (V) then follow from Assumption 4(f-d) and the results for A.

To prove B1,2 = op(1) we can use the same empirical process bound in
3.64. Then B1,2 follows analogously to B1,1,2.

We have proved that post-selected parts A and B in (3.56) are close
with high-probability to the same expressions evaluated on the true,
fixed dimensional active set S0. It follows that as XS0 ≡ X−GC then
the expression for the deviation of the OLS estimator of φ∗ from the
true counterpart in (3.56) now becomes:

DT (φ̂
∗−φ∗) =

(
D−1
T (W ∗′

d M(XS0)W
∗
d )D

−1
T

)−1
D−1
T

(
W ∗′

d M(XS0)u
)
.

(3.67)
Thus, it remains to show how the lag-augmentation provides asymptotic
normality of (3.67). To do so, consider the Nϕ(p+d)×Nϕ(p+d) matrix(

W ∗′
d W ∗

d

)
=
(
(Wd,A,Wd,B,Wd,C)

′(Wd,A,Wd,B,Wd,C)
)

=

W ′
d,AWd,A W ′

d,AWd,B W ′
d,AWd,C

W ′
d,BWd,A W ′

d,BWd,B W ′
d,BWd,C

W ′
d,CWd,A W ′

d,CWd,B W ′
d,CWd,C

 ,
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where Wd,A is T × Nϕp and Wd,B∪C is T × Nϕd. In fact, W ∗
d con-

tains the variables interested in the hypothesis at test i.e., the Granger
causing and Granger caused transformed in their d-differences plus the
augmented lags which either get d−1 one or no differences (see Section
3.2). Recall DT is a Nϕ(p+d)×Nϕ(p+d) diagonal matrix and similarly
let the ŝ× ŝ matrix

D̃T :=

√
TIA 0 0
0 TIB 0
0 0 T 2IC

 ,

where A + B + C = ŝ i.e., the scaling depends on the amount of I(0)
variables (A), I(1) variables (B) and I(2) variables (C) in the true
support S0. Then, the following results applies.

D−1
T (W ∗′

d Wd)D
−1
T

d→

d→

Σww
A 0 0

0
∫ 1

0
Bww
B (s)′Bww

B (s)ds
∫ 1

0
B̄ww
C (s)′Bww

B (s)ds

0
∫ 1

0
B̄ww
C (s)′Bww

B (s)ds
∫ 1

0
B̄ww
C (s)′B̄ww

C (s)ds

 =: Q,
(3.68)

by Lemma 3.1 and (g), (m), (f), (i), (l) of Lemma 3.2 and where the
notation uses the same superscripts of Σj also for the vector Brownian
motions B. To see (3.68) is sufficient to observe that

D−1
T (W ∗′

d W ∗
d )D

−1
T =

=

 T−1W
′

d,AWd,A T−3/2W
′

d,AWd,B T−5/2W
′

d,AWd,C

T−3/2W
′

d,BWd,A T−2W
′

d,BWd,B T−3W
′

d,BWd,C

T−5/2W
′

d,CWd,A T−3W
′

d,CWd,B T−4W
′

d,CWd,C

 .

The diagonal elements converge respectively to Σww
A by Lemma 3.1,∫ 1

0 Bww
B (s)′Bww

B (s)ds by result (g) of Lemma 3.2 and
∫ 1
0 B̄ww

C (s)′dBww
ξ (s)

by result (m) of Lemma 3.2.
The elements (2,3) and (3,2) follow from result (l) of Lemma 3.2. All the
remaining outer-diagonal elements refers to result (f),(i),(l) of Lemma
3.2 but since their rate exceeds those of Lemma 3.2, they all converge
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to 0.(
u′W ∗

d

)
D−1
T

d→
(
ζw1

∫ 1
0 Bw

B (s)′dBw
u (s)

∫ 1
0 B̄w

C (s)′dBw
u (s)

)
=: H.

(3.69)
To see (3.69), similarly to (3.68) we get(

u′W ∗
d

)
D−1
T =

(
T−1/2u′W ∗

d,A T−1u′W ∗
d,B T−2u′W ∗

d,C

)
.

Elements converge respectively to ζw1 for the first column,∫ 1
0 Bw

B (s)′dBw
ξ (s) for the second and finally to

∫ 1
0 B̄w

C (s)′dBw
ξ (s) for

the third column, respectively by Lemma 3.1 and results (e), (h) of
Lemma 3.2.

For the cross-products between XS0 and W ∗
d we get

D̃−1
T

(
X ′

S0
W ∗

d

)
D−1
T

d→

d→

Σwx
A 0 0

0
∫ 1
0 Bwx

B (s)′BB(s)ds
∫ 1
0 B̄wx

C (s)′Bwx
B (s)ds

0
∫ 1
0 B̄wx

C (s)′Bwx
B (s)ds

∫ 1
0 B̄wx

C (s)′B̄wx
C (s)ds

 =: K.

(3.70)
(3.70) follows in the exact same way of (3.68) i.e., by result (l), (m) of
Lemma 3.2.

D̃−1
T

(
X ′

S0
XS0

)
D̃−1
T

d→

d→

Σxx
A 0 0

0
∫ 1
0 Bxx

B (s)′Bxx
B (s)ds

∫ 1
0 B̄xx

C (s)′Bxx
B (s)ds

0
∫ 1
0 B̄xx

C (s)′Bxx
B (s)ds

∫ 1
0 B̄xx

C (s)′B̄xx
C (s)ds

 =: J ,

(3.71)

175



Chapter 3. Inference in Non-stationary High-Dimensional VARs

and(
u′XS0

)
D̃−1
T

d→
(
ζx1

∫ 1
0 Bx

B(s)
′dBx

u (s)
∫ 1
0 B̄x

C(s)
′dBx

u (s)
)
=: R,

(3.72)
follow from (m), (h) of Lemma 3.2.

It follows from these results that

D−1
T

(
W ∗′

d M(XS0)W
∗
d

)
D−1
T =

= D−1
T

(
W ∗′

d IW ∗
d

)
D−1
T︸ ︷︷ ︸

(i)

−D−1
T

[
W ∗′

d

(
XS0

(
X ′

S0
XS0

)−1
X ′

S0

)
W ∗

d

]
D−1
T︸ ︷︷ ︸

(ii)

,

where: (i)
d→ Q, (ii)

d→ K ′J−1K.
Also:

D−1
T

(
W ∗′

d M(XS0)u
)
=

= D−1
T W ∗′

d Iu︸ ︷︷ ︸
(iii)

−D−1
T

[
W ∗′

d

(
XS0

(
X ′

S0
XS0

)−1
X ′

S0

)
u
]

︸ ︷︷ ︸
(iv)

,

where: (iii)
d→ H ′, (iv)

p→ K ′J−1R′.

Therefore, we can conclude

DT

(
φ̂∗ − φ∗

)
=
(
D−1
T

(
W ∗′

d M(XS0)W
∗
d

)
D−1
T

)−1
D−1
T

(
W ∗′

d M(SS0)u
)

d→
(
Q−K ′J−1K

)−1 (
H ′ −K ′J−1R′)

≡ N (0,Σu ⊗ΣAΣJ),
(3.73)

where ΣJ = Σww
A −Σww

A Σwx−1
A Σxx

A −Σwx
A Σxx−1

A Σwx
A +Σwx

A .
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To see (3.73) first observe that

D−1
T

(
W ∗′

d M(XS0)W
∗
d

)
D−1
T =

D−1
T

(
W ∗′

d IW ∗
d

)
D−1
T︸ ︷︷ ︸

(i)

−

−D−1
T

[
W ∗′

d

(
XS0D̃

−1
T D̃T

(
X ′

S0
XS0

)−1
D̃T D̃

−1
T X ′

S0

)
W ∗

2

]
D−1
T︸ ︷︷ ︸

(ii)

.

Then (ii) = (ii.A)(ii.B)(ii.C) =(
D−1
T W ∗′

d XS0D̃
−1
T

)(
D̃T (X

′
S0
XS0)

−1D̃T

)(
D̃−1
T X ′

S0
W ∗

dD
−1
T

)
where

by results in (3.70), (3.71) we get (ii) = K ′J−1K.

Similarly for

D−1
T

(
W ∗′

d M(XS0)u
)
=

= D−1
T W ∗′

d Iu︸ ︷︷ ︸
(iii)

−

−D−1
T

[
W ∗′

d

(
XS0D̃

−1
T D̃T

(
X ′

S0
XS0

)−1
D̃T D̃

−1
T XS0

)
u
]

︸ ︷︷ ︸
(iv)

.

Then (iv) = (iv.A)(iv.B)(iv.C) =(
D−1
T W ∗′

d XS0D̃
−1
T

)(
D̃T (X

′
S0
XS0)

−1D̃T

)(
D̃−1
T X ′

S0
u
)
where by re-

sults in (3.70), (3.71), (3.72) we get (iv) = K ′J−1R′.
Now, putting the pieces together, let us rewrite Q,K,J as 2× 2 block
matrices like (

Σi
A 0
0 Gi

)

where Gi :=

(∫ 1
0 Bi

B(s)
′Bi

B(s)ds
∫ 1
0 B̄i

C(s)
′Bi

B(s)ds∫ 1
0 B̄i

C(s)
′Bi

B(s)ds
∫ 1
0 B̄i

C(s)
′B̄i

C(s)ds

)
and i = (ww,wx,xx).
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Also, consider the 1× 2 matrix H,R =
(
ζk1 Qk

)
where

Qk :=
(∫ 1

0 Bk
B(s)

′dBk
u(s)

∫ 1
0 B̄k

C(s)
′dBk

u(s)
)
for k = (w,x).

Therefore,(
Q−

(
K ′J−1K

))−1
=

=

((
Σww
A 0
0 Gww

)
−

((
Σwx
A 0
0 Gwx

)(
Σxx
A 0
0 Gxx

)−1(
Σwx
A 0
0 Gwx

)))−1

=

(
Σww
A −Σwx

A Σxx−1
A Σwx

A 0
0 Gww −GwxGxx−1Gwx

)−1

.

(
H ′ −K ′J−1R′) = (ζw

1

Qw

)
−
(
Σwx
A 0
0 Gwx

)(
Σxx
A 0
0 Gxx

)−1(
ζx
1

Qx

)
=

(
ζw
1 −Σwx

A Σxx−1
A ζx

1

Qw −GwxGxx−1Qx

)
.

Hence,(
Σww

A −Σwx
A Σxx−1

A Σwx
A 0

0 Gww −GwxGxx−1Gwx

)−1 (
ζw
1 −Σwx

A Σxx−1
A ζx

1

Qw −GwxGxx−1Qx

)
=( (

Σww
A −Σwx

A Σxx−1
A Σwx

A

)−1
(ζw

1 −Σwx
A Σxx−1

A ζx
1 )

(Gww −GwxGxx−1Gwx)−1(Qw −GwxGxx−1Qx)

)
.

Since the null hypothesis (3.11) tests only the first Nϕp terms, only the
first row of the matrices involved here are considered, namely

Σww−1
A ζw1 −Σww−1

A Σwx
A Σxx−1

A ζx1 −Σwx−1
A Σxx

A Σwx−1
A ζw1 +

+Σwx−1
A Σxx

A Σwx−1
A Σwx

A Σxx−1
A ζx1 =

= Σww−1
A ζw1 −Σww−1

A Σwx
A Σxx−1

A ζx1 −Σwx−1
A Σxx

A Σwx−1
A ζw1 +

+Σwx−1
A ζx1 .

Now, since ζk1 ∼ N (0,ΣA ⊗Σu) then,
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(
Q−K ′J−1K

)−1 (
H −K ′J−1R′) d→ N (0,Σu ⊗ΣAΣJ),

where ΣJ = Σww
A −Σww

A Σwx−1
A Σxx

A −Σwx
A Σxx−1

A Σwx
A +Σwx

A and this
concludes the proof.

The results stated in (3.73) guarantees that our null hypothesis in (3.11),
which involves only differentiated variables, can be tested in the usual
way using χ2-tests as Wald or Lagrange Multipliers. For the purpose
of this chapter we focus on the LM test, note however that the two
can be written in the same form with the only difference being that the
variance-covariance matrix of the error term for the LM test refers to the
restricted least squares instead of the unrestricted ones (see Appendix
A).

Proof of Theorem 3.2. Using the same definitions as in Theorem
3.1,

R2 ≡ ξ̂′ξ̂ − ν̂ ′ν̂ =

= y′M(XŜ ∪X+
GC)XGC

[
X ′
GCM(XŜ ∪X+

GC)XGC

]−1

X ′
GCM(XŜ ∪X+

GC)y

= A′
TB

−1
T AT = (D−1

T e′u)′(D−1
T e′eD−1

T )−1(D−1
T e′u),

Furthermore,

D−1
T ξ̂′ξ̂D−1

T =

= D−1
T y′M(XŜ ∪X+

GC)yD
−1
T =

= D−1
T u′uD−1

T +D−1
T β′

GCX
′
GCM(XŜ ∪X+

GC)XGCβGCD
−1
T︸ ︷︷ ︸

DT,1

+D−1
T β′

−GCX
′
−GCM(XŜ ∪X+

GC)X−GCβ−GCD
−1
T︸ ︷︷ ︸

DT,2

+

+ 2D−1
T β′

GCX
′
GCM(XŜ ∪X+

GC)X−GCβ−GCD
−1
T︸ ︷︷ ︸

DT,3

+ 2D−1
T u′M(XŜ ∪X+

GC)XGCβGCD
−1
T︸ ︷︷ ︸

DT,4

+
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+ 2D−1
T u′M(XŜ ∪X+

GC)X−GCβ−GCD
−1
T︸ ︷︷ ︸

DT,5

−D−1
T u′P(XŜ ∪X+

GC)uD
−1
T︸ ︷︷ ︸

DT,6

.

Each termDT,1−DT,6 can be proved with a similar strategy to the proof
of Theorem 3.1 to be close with high-probability to the true |S0| sparse
model. Then, letting Zp ∼ N(0, Ip), it follows from Assumption 4(b)
and the fact that Ω = σ2ΣGC|−GC for σ2 = limT→∞D−1

T E(u′u)D−1
T

that

TR2 d−→
Z ′
pΩ

1/2′Σ−1
GC|−GCΩ

1/2Zp

σ2
= Z ′

pZp = χ2
p, as T → ∞.
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Appendix D Additional material

Table 3.9: Simulation results for the PDS-LA-LM Granger causality
test using χ2 distribution

DGP Size/Power ρ K\T 50 100 200 500 1000

10 25.9 13.8 7.0 4.9 4.2
1 Size 0 20 52.5 16.6 8.4 4.9 5.7

50 39.5 14.5 12.0 6.0 5.0
100 41.6 18.8 8.6 6.5 5.1

10 41.6 52.1 81.0 99.8 100
1 Power 0 20 58.2 49.4 75.1 99.6 100

50 45.7 46.0 70.4 98.9 100
100 49.3 45.5 71.2 99.3 100

10 23.8 12.3 6.8 6.4 5.3
2 Size 0 20 46.6 15.7 10.3 6.0 7.6

50 34.2 15.6 8.9 7.5 6.7
100 36.9 17.7 9.3 7.2 6.1

10 33.2 37.0 56.4 95.5 99.9
2 Power 0 20 48.1 36.4 56.0 93.2 99.9

50 38.2 34.6 52.4 91.2 99.9
100 40.9 32.5 54.2 91.9 99.8

10 31.4 14.1 7.3 5.9 5.1
1 Size 0.7 20 52.6 20.5 10.3 6.3 5.1

50 37.6 14.9 18.0 8.8 6.2
100 41.0 20.6 9.3 10.0 5.8

10 36.4 33.9 46.0 86.3 99.4
1 Power 0.7 20 52.1 36.4 46.0 85.0 99.7

50 41.7 29.8 47.6 83.0 98.8
100 41.0 31.1 40.4 78.9 98.4

10 28.9 14.8 7.9 7.1 8.2
2 Size 0.7 20 51.9 21.0 13.1 7.5 8.1

50 32.8 17.3 15.8 10.2 8.1
100 39.5 19.4 12.1 12.3 9.9

10 33.5 28.2 40.7 79.8 98.3
2 Power 0.7 20 56.0 33.9 41.1 76.6 98.6

50 42.4 33.4 44.7 75.0 98.4
100 47.1 36.2 46.3 78.5 98.0

Notes: Size and Power for the different DGPs are reported for 1000 replica-
tions. T = (50, 100, 200, 500) is the time series length, K = (10, 20, 50, 100)
the number of variables in the system, the lag-length is fixed to p = 2 and BIC
is used to select the tuning parameter for the lasso. ρ indicates the correlation
employed to simulate the time series with the Toeplitz covariance matrix.
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4

High-Dimensional Granger Causality for
Climatic Attribution1

1This chapter is based on a joint work with Marina Friedrich from Vrije Universiteit
Amsterdam and Stephan Smeekes from Maastricht University.
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Abstract

In this chapter we test for Granger causality in high-dimensional vector
autoregressive models (VARs) to disentangle and interpret the complex
causal chains linking radiative forcings and global temperatures. By
allowing for high dimensionality in the model we can enrich the infor-
mation set with all relevant natural and anthropogenic forcing variables
to obtain reliable causal relations. These variables have mostly been in-
vestigated in an aggregated form or in separate models in the previous
literature. Additionally, our framework allows to ignore the order of
integration of the variables and to directly estimate the VAR in levels,
thus avoiding accumulating biases coming from unit-root and cointegra-
tion tests. This is of particular appeal for climate time series which are
well known to contain stochastic trends as well as yielding long mem-
ory. We are thus able to display the causal networks linking radiative
forcings to global temperatures but also to causally connect radiative
forcings among themselves, therefore allowing for a careful reconstruc-
tion of a timeline of causal effects among forcings. The robustness of
our proposed procedure makes it an important tool for policy evaluation
in tackling global climate change.
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4.1 Introduction

Investigating the climate, its evolution and the factors responsible for
its change is a complicated but fundamental task. The 2018 Intergov-
ernmental Panel on Climate Change (IPCC) special report2 estimates
human activity has caused an increase in global warming3 of approxi-
mately 1.0°C above pre-industrial levels (1850–1900). The outlook for
the next 10 to 20 years is that the said increase will reach 1.5°C if the
current growth rate persists. The alteration of the global temperature
has profound impact on human and natural systems. It is therefore
clear that in the effort of policymakers in tackling climate change, the
assessment of the factors most responsible for igniting the upward global
temperature trend is of great relevance. The chemistry and physics
describing the interactions between the atmosphere, the oceans, the
land surface and the biosphere are nowadays well understood thanks to
decades of climate science research. However, building climate models,
broadly categorized by increasing complexity as Energy Balance Models
(EBMs), General Circulation Models (GCMs) and Earth System Mod-
els (ESMs), is still a very complex process. It requires several steps:
first, identification and quantification of the Earth processes; second,
a coherent systemic mathematical formulation comprising sensible ini-
tial conditions and data-driven evolution of the climate forcings and
third, the computing power to solve them. In broad terms, EBMs de-
scribe temperature variation as a functional response to incoming and
outgoing radiation, declined in both natural and athropogenic sources.
GCMs subdivide the Earth sphere into a three dimensional grid of pre-
defined cell size (s) where model results pertaining each cell are passed
to neighboring cells in order to model the exchange of energy among
regions of the Earth in time (t). Smaller (s, t) attains a higher degree
of accuracy while rendering the system complexity substantially more

2“Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warm-
ing of 1.5°C above pre-industrial levels and related global greenhouse gas emission
pathways, in the context of strengthening the global response to the threat of cli-
mate change, sustainable development, and efforts to eradicate poverty”

3Henceforth defined as: increase in combined surface air and sea surface tempera-
tures averaged over the globe and over a 30-year period.
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challenging. ESMs are extensions of GCMs including interactive rep-
resentations of many biogeochemical cycles (Carbon, Sulfur, Ozone).
Upon validation (cf. hindcasting4), EBMs, GCMs and ESMs are then
employed in projecting current climate into the future.

With the aim of helping to refine forecast accuracy of state of the art
climate models and enhancing the understanding of the climate vari-
ables interplay in time, we propose a discrete time causal identification
framework which hinges on high-dimensional time series techniques in
order to discover causal links among global temperature and a set of
climate variables. Through the modeling lens of a vector autoregressive
model (VAR), causality in mean in the sense of Granger (1969) is con-
sidered, conditional on an information set composed of various climate
variables. Allowing for a large conditional set helps to become more ro-
bust against spurious results. Furthermore, in the proposed procedure
little to no care is needed towards the time series properties of the vari-
ables considered. The data can enter the model in levels and testing for
unit roots and cointegration within the VAR is generally not necessary.
This avoids the extra uncertainty that usually comes with pre-testing.
Our methodology for high-dimensional non-stationary Granger causal-
ity testing is based on Chapter 3.

Given the pressing nature of the topics at stake, both the climate sci-
ence and the climate econometrics literature greatly expanded in recent
years. In the remainder of this section, we first present an overview
of some recent advances in the climate econometric literature. Second,
we briefly review the related literature on Granger causality for climatic
attribution and third, we put this chapter in the context of these related
papers.

Pretis (2020) established an important equivalence among two-component
EBMs and cointegrated VARs, thus justifying their estimation in dis-
crete time through VAR techniques. Such link is important within
the framework of measuring the economic impact of climate change

4GCMs are tested by running the models in reverse time, backward into the past
to check their in-sample accurateness.
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(and vice versa) taking into account non-stationarities affecting estima-
tion and inference on EBMs as well as uncertainties about values of
physical parameters, which are often assumed constant over time and
with covariance structures imposed without statistical or physical basis.
Bennedsen et al. (2020) proposes a statistical state-space global carbon
budget model entailing atmospheric CO2 concentrations, anthropogenic
emissions, CO2 uptake by the terrestrial biosphere and CO2 uptake by
the ocean and marine biosphere.

Estrada et al. (2021) investigate the attribution of anthropogenic in-
fluences on the observed warming in regional annual temperatures by
means of co-trending tests between sets of variables which include ra-
diative forcing of well-mixed greenhouse gases, sum of all natural and
anthropogenic radiative forcing as well as the regional temperatures
of interest. The existence of a common nonlinear trend in observed
regional air surface temperatures is established where anthropogenic
forcings play a major role. Results corroborate the fact that the mean
temperatures experienced nowadays, even at a regional level, are ex-
treme when compared to the mid 20th century. Coulombe and Göbel
(2021) generate long-run forecasts of Arctic’s sea ice cover by using a
Bayesian de-seasonalized VAR in levels that can flexibly consider in-
teractions among many variables. This allows them to disentangle the
effects of feedback loops and external forcings. Impulse response func-
tions are used to show how the Arctic responds to exogenous anomalies.
Diebold et al. (2020) propose a dynamic factor model for estimating
four leading Arctic sea ice extent indicators. The Kalman smoother is
employed to combine estimations of the indicators while averaging out
their respective errors. They find the Sea Ice Index to be statistically
optimal alone while no gain is achieved by combining this with other
indicators, thus confirming the validity of the NASA algorithm based
on it.

On the causal investigation between temperature and forcings, sev-
eral contribution have already been proposed in the literature. Kauf-
mann and Stern (1997) employ a bivariate Granger causality framework
between temperature anomalies from the Southern (S) and Northern
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Hemisphere (N), between 1865 and 1994. The test is conditioned step
by step to exogenous variables to observe if the Granger causality from
South to North vanishes in the presence of natural and/or anthropogenic
forcings. To account for possible unit roots, simulated critical values
from the test applied to the bivariate VAR with imposed unit roots
are used. They detect Granger causality from Southern to Northern
temperatures which remains when natural forcings are added. The link
vanishes with the inclusion of anthropogenic forcings. The authors con-
clude that the results are in line with the hypothesis that the South-
to-North causal order is generated by the spatio-temporal pattern of
anthropogenic emissions of trace gases and sulphate aerosols. A series
of papers follows which stay within in the Granger causality framework
(Triacca, 2001; Triacca, 2005; Attanasio and Triacca, 2011; Attanasio,
Pasini, et al., 2012; Pasini et al., 2012; Triacca et al., 2013). The au-
thors investigate different systems consisting of temperature anomalies
or global surface temperature as well as a set of forcings from CO2,
CH4, N2O concentrations, total solar irradiance, stratospheric aerosols,
cosmic ray intensity, southern-Pacific, decadal-Atlantic or multidecadal
oscillation indeces.

In a bivariate Granger causality model, no causality is detected from
CO2 radiative forcings to global surface temperature in Triacca (2005).
The authors use an augmented VAR as proposed by Toda and Ya-
mamoto (1995) to account for non-stationarities. Similarly, Triacca et
al. (2013) run the same test in a trivariate system, additionally con-
taining different oscillation indices. The authors find Granger causality
from greenhouse gas forcings to temperature only under certain system
specifications. Non-linear Granger causality is tested via multi-layer
feed-forward neural networks in Attanasio and Triacca (2011) finding
CO2 to unidirectionally Granger cause global temperature. Granger
causality is found from anthropogenic forcings to temperature anoma-
lies in Attanasio, Pasini, et al. (2012) while evidence of causal decou-
pling between total solar irradiance and global temperature is found
in Pasini et al. (2012). In 2014, Stern and Kaufmann (2014) review
their previous 1997 work. Granger causality tests using a Toda and
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Yamamoto (1995) augmented VAR is considered. Three different mod-
els with three levels of aggregation are employed. Model I aggregates
all forcings into one variable (total forcings). Model II uses aggregate
variables for anthropogenic and natural radiative forcing while Model
III is the most disaggregated letting forcings (GHG, sulfate aerosols,
black carbon, volcanic aerosols, solar irradiance) enter the model sepa-
rately. The total effect of anthropogenic and natural forcing is tested
by imposing joint restrictions that exclude all of the anthropogenic or
all of the natural forcings. Their findings for Model I show radiative
forcing causes temperature but not vice versa. In Model II, natural
forcings cause temperature in all scenarios, but anthropogenic forcings
cause temperature only when the black carbon forcing is assumed to be
zero and the sulfur forcing is assumed to be weak, thus highlighting the
uncertainty about the strength of forcings. There is therefore little evi-
dence that temperature causes anthropogenic forcings. Model III results
show that GHG and anthropogenic sulfate aerosol cause temperature in
all but one of the samples. The authors cannot find a causal effect for
black carbon. Volcanic aerosols cause temperature, while solar irradi-
ance does not in most samples. Model III also shows that temperature
causes greenhouse gases. Results indicate that temperature causes car-
bon dioxide and methane, but temperature has no causal effect on the
other non-temperature sensitive greenhouse gases.

Causal discoveries are a delicate matter. In fact, in many cases the
above mentioned literature on causality might simply reflect a pre-
dictability exercise which surely is of practical interest but it lacks
robustness to spurious discoveries. As the climate is a complex sys-
tem governed by countless sources, it is likely impossible to condition
the causal relation on all existing sources. Also, as the number of vari-
ables increases, we face two main challenges. On the one hand, the
VAR system becomes hugely parametrized and on the other hand, in-
terpretability becomes increasingly challenging. Our approach cannot
solve the issue of conditioning the causal relation on all the variables in
the climate system as this would not be feasible in general. However,
it manages to get closer to this idealized setting. In fact, the active
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dimensionality reduction through sparsity inducing techniques in the
proposed Granger causality test is able to resolve the parametrization
issue of the VAR and hence facilitating interpretation of the results.
This allows for considering increasingly larger models, possibly very
complex and articulated and still attain interpretable results. Such re-
sults are fundamental for climate change attribution i.e., attributing the
detected significant climate change to specific causes.

The remainder of the chapter is organized as follows. Section 4.2 intro-
duces the topic of climate change, its challenges and poses the problem
of its attribution. Section 4.3 discusses the methodology of Granger
causality testing in high-dimensional levels VARs. Section 4.4 begins
the empirical analysis. This is subdivided in three sub-sections: Section
4.4.1 uses aggregated greenhouse gases, similarly Section 4.4.2 where
additional crucial variables are added; Section 4.4.3 disaggregates the
greenhouse gas series into its three main gas components. Section 4.5
performs a sensitivity analysis first on unit root testing and further on
the lag-length specification. Finally, Section 4.6 concludes.

4.2 Climate Change and its Attribution

Given an area of the world, or the entire world itself, its observed av-
erage weather over a long span of time is what we commonly refer
to as climate. In order to describe it, information on many variables
of geophysical kind is needed e.g., its average temperature throughout
the seasons, the observed pressure, amount of sunshine, rainfall, winds
and extreme events like hurricanes and eruptions and many more. It
is indeed a large, complex, time varying system of inter-playing vari-
ables. Long term systematic changes in the statistics of such variables
is what is referred to as climate change. If this change would only be
naturally induced i.e., caused by changes in exogenous forcings5 like

5A climate forcing is an imposed change in Earth’s energy balance, measured in
Wm−2. For example, Earth absorbs about 240 Wm−2 of solar energy, so if the
Sun’s brightness increases 1% it is a forcing of +2.4 Wm−2.

190



e.g., terrestrial orbit, solar emission, aerosols and many other natural
internal processes of the climate system, then its study would just be
prerogative of geophysicists and scientists in general, trying to explain
and forecast consequences, but would less be a matter of public and
political debate. The reality of the matter is that surely the climate
variation is partly naturally induced but is the human (anthropogenic)
“fingerprint” that moves the balance needle. Thanks to climate models
simulations, it has been widely assessed the extreme unlikeliness that
natural variability and natural forcings of the Earth’s climate could
produce the unprecedented temperature records as observed since mid
nineteenth century (see e.g. the IPCC 2007, Solomon et al., 2007). In-
stead, the sharp upward temperature change observed in the last few
decades has to be explained by the anthropogenic emissions. The “good
news” is that anthropogenic emissions are an endogenous element in the
system and not something we suffer without any remedy possible: we,
as humans, emit these gases as a result of many different industrial and
every day life processes. Thus, by knowing the source, we should be
more in control of our “climate destiny”. On paper is all trivial, but
the real, practical challenges are of course multiple. First, identifica-
tion of the sources: many compose the human climate footprint, some
are well known like the burning of fossil fuels which with the Industrial
Era became the dominant source of anthropogenic emissions; some oth-
ers are proportionally less media-covered, like deforestation and other
land-use changes. Not only is important to identify which emissions are
anthropogenic but also crucially which ones, and to what degree, they
are responsible for sistematically changing the climate. The “which
ones” question is the attribution of climate change and this is what
we pursue in this work from a statistical perspective. The “to what
degree” question requires a proper assessment i.e., a quantification of
anthropogenic greenhouse gases emissions in the atmosphere and CO2

especially: the so-called global carbon budget (see Friedlingstein et al.,
2020; Bennedsen et al., 2020). Greenhouse gases do not just enter the
atmosphere to stay but they gets redistributed among the atmosphere,
ocean, and terrestrial biosphere: this is referred to as the global carbon
cycle. The assessment of ongoing and paleo-temperature change is also
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an important matter in order to define limits of anthropogenic effects on
climate. Especially paleoclimate is useful for characterizing long-term
ice sheet and sea level response to temperature change (see Hansen,
Sato, Kharecha, et al., 2017). Therefore, climate change attribution
coupled with a statistical understanding of the global carbon budget
and of current and past temperatures is crucial to better understand
the global carbon cycle as well as project future climate change and sup-
port the development of climate policies. The latter point is indeed the
next challenge: policymakers need to be supported from science and act
accordingly. Scientists should seek clarity as any apparent inconsistency
gets wildly amplified by politics and media. One issue lies of course in
the fact that despite the evidence of the anthropogenic climate impact,
lots of uncertainties remain in precisely quantifying its influence. As
observed in Schneider and Kuntz-Duriseti (2002), the atmosphere of
the Earth is missing a suitable control. In other words, we do not know
an “undisturbed Earth” that could provide us a reference to compare
the current anthropogenic contribution to climate change. Therefore
we need to use and rely on models and their climate simulations to esti-
mate how the climate on Earth might have evolved without the human
footprint. Models and simulations carry uncertainties that cannot be
avoided. Skepticism is however not justifiable, as long as trust in science
is put. The concentration of carbon dioxide (CO2) in the atmosphere at
the beginning of the Industrial Era in 1750 was approximately 277 parts
per million (ppm) (Joos and Spahni, 2008). This concentration became
roughly 409.85 ppm in 2019 (Dlugokencky and Tans, 2018). Hansen,
Sato, Kharecha, et al. (2017) showed how global temperature has risen
out of the Holocene range leaving Earth these days to be as warm as
it was during the prior interglacial period6. Earth energy imbalance
is evident, thus implying more warming is yet to come. However the
growth rate of greenhouse gas climate forcing has not decreased but ac-

6Hansen, Sato, Kharecha, et al. (2017) observes how the Holocene, which lasts now
for over 11 700 years, had relatively stable climate up until the unprecedented
warming in the past half century. The Eemian, which lasted from about 130 000
to 115 000 years ago, was instead slightly warmer than the Holocene and this was
sufficient to have sea level rise to 6–9 meters greater than today.
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celerated in the past decade. Nowadays the global warming rate, based
on a linear fit for 1970–2017 (see Hansen, Sato, Kharecha, et al. (2017)
Fig. 2b) is +0.18 degree Celsius per decade. The period starting with
1970 sees the highest growth rate of greenhouse gas climate forcing,
which has been maintained ever since at approximately +0.4 Wm−2

per decade. Is precisely this rate of added climate forcing that needs to
be tackled down by policymakers to avoid the already observed adverse
climate impacts such as extreme events.

This chapter contributes to the outlined vast global picture of climate
change research focusing on climate change attribution. In the follow-
ing sections we are going to define the statistical modeling framework
proposed here and put it into practice with global annual data.

4.3 Methodology: Granger Causality

Let y1, . . . ,yT be a K -dimensional multiple time series process, where
yt = (y1,t, . . . , yK,t)

′ is generated by a VAR(p) process

yt = A1yt−1 + · · ·+Apyt−p + ut, t = p+ 1, . . . , T (4.1)

where for notational simplicity we assume the variables have zero mean;
if not they can be demeaned prior to the analysis, or equivalently a
vector of intercepts is added. A1, . . . ,Ap are K ×K parameter matri-
ces and ut is a martingale difference sequence of error terms. yt is a
K-dimensional vector containing climate time series of length T . We
allow K to be large and potentially larger than T . VARs are especially
keen to such high-dimensionality since the parameters to estimate grow
quadratically with the number of series included. If on the one hand the
model dimensionality needs to be handled in order to be able to esti-
mate the parameters, on the other hand one would usually need to take
good care of the properties of the time series entering the model before
putting the latter to work. In fact, as observed in Chapter 3, standard
asymptotic theory is in general not applicable to hypothesis testing in
levels VARs if the variables are integrated I(d) or cointegrated CI(b, d)
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(Park and Phillips, 1988; Sims et al., 1990) given the non-standard
limiting distributions of the estimators. One then usually needs to per-
form statistical unit root tests to check the order of integration of every
time series as well as a cointegration rank test to assess the long run
relationships among them. When the dimension of a VAR starts to
be substantial, testing for unit root all K variables in yt might induce
biases. Integration and cointegration tests in fact suffer from lack of
power and they heaviliy depend on the exact specification of the model.
Even when one has tested for unit root all those series and corrected
for multiple testing and lack of power, the usual next step is taking the
differences of the time series in object, where the difference order corre-
sponds to the tested order of integration d. Although this is the praxis
and it is a convenient transformation for asymptotic reasons, often is
not an innocuous one. Most climate time series definitely do not appear
to be stationary in their original levels but they are characterized by
stochastic trends (see e.g. Figure 4.1). Taking the d-th difference of the
series allows to stabilise the mean by removing changes in the levels and
thereby eliminating (or reducing) trends and/or seasonality. However,
this induces a loss of information since the long-term memory of the
series gets wiped out by the differentiation. Climate time series, among
others, are well known to exhibit long memory and hence avoidance of
such transformations can be beneficial for the robustness of the final
result (see the sensitivity analysis in Section 4.5).

To avoid pre-test biases from unit root and cointegration we follow the
procedure outlined in Chapter 3. There, a lag-length augmentation,
restricted to the sole variables of interest for testing Granger causality,
is employed in a similar vein to Toda and Yamamoto (1995). The adap-
tive augmentation, as opposed to the lag-augmentation of the full set of
K variables, makes it an important extension for the high-dimensional
setting. As discussed in Chapter 2 and 3, refitting the selected model
with ordinary least squares and hence perform standard Wald-like in-
ference on the coefficient vector of the Granger causing variables is not
optimal for performing inference (see the critique of Leeb and Pötscher,
2005). Post selection estimators are not able to converge uniformly in
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the parameter space to the normal distribution, but only point-wise.
Thus a regularization bias will occur in post-selection estimators that
will compromise the coverage of any confidence interval. To overcome
such issues we focus on the framework developed in Chapter 2 and 3,
namely the post-double-selection (PDS) technique. The double vari-
able selection step of both the outcome and the treatment variable on
all the controls in the PDS substantially diminishes the omitted vari-
able bias and ensures the errors of the final model are (close enough
to) orthogonal with respect to the treatment. Chapter 2 extended the
PDS to dependent processes, specifically stationary time series, using
p + 1 steps where the response variable becomes the Granger caused,
the treatment variable becomes the p lags of the Granger causing and
finally the controls are all the other variables in the information set.
Successively, Chapter 3 extended the PDS Algorithm in Chapter 2 to
unit-root non-stationary VARs. The fundamental extra step is employ-
ing a lag-augmentation for the post-selection least-square estimator as
described in Chapter 3, thus assuring the Granger causing and Granger
caused variables to be stationary. We refer to Chapter 3 for a complete
treatment of the post-double selection, lag augmented, Lagrange multi-
plier test (PDS-LA-LM). We are now going to give a series of remarks
on its Algorithm 3. The full algorithm is reported in Chapter 3.

Remark 4.1. Algorithm 3 estimates Granger causality directly in lev-
els, disregarding the integration and cointegration properties of the time
series in the model. In the analysis in Section 4.4 we compare the same
procedure for testing Granger causality with and without lag augmen-
tation. In the case without the augmentation, we first test for unit roots
all the variables in the system and we take the appropriate differences
of all the series. We show how this is not an innocuous transformation
and the results differ, finding less causal discoveries than in the lev-
els analysis as these have been masked by taking the differences of the
series.

Remark 4.2. The causal identification in Algorithm 3 still remains
anchored to the information set at hand and, as such, truly causal
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discoveries need to be argued with care. However, the benefit of the
methodology developed in Chapter 3 and outlined here is that it allows
for high-dimensional information sets. Conditioning is crucial for causal
discoveries, to avoid finding spurious causal connections that only reflect
predictability.

Remark 4.3. To obtain a data-driven estimate of the lag-length p,
we use the modified BIC criterion developed in Chapter 3. Simula-
tions in Chapter 3 show how this procedure to estimate the lag-length
works well in practice: being an upper bound, at most it overestimates
the lag-length but it does not under-estimate it. The diagonal AR(p)
structure estimation is able to circumvent the dimensionality issue: one
would otherwise have to estimate larger systems the larger the lag-
length and this would blow up tremendously the dimensions even if one
would rely on sparsity inducing techniques as the lasso. In fact, even
though the lasso should shrink and eventually set to zero the coefficients
of those irrelevant parameters, as selection consistency relies on how
one tunes the penalty parameter, embracing the high-dimensionality
for the purpose of estimating the lag-length only shifts the model se-
lection problem from a BIC applied over estimated AR(p) residuals as
in Chapter 3 to the choice of the tuning parameter in the regulariza-
tion technique. Therefore, lasso might end up erratically estimating
a (much) high(er) lag-length than necessary, thus rendering the whole
analysis hugely parametrized. One interesting exception is the hier-
archical penalties of Nicholson, Wilms, et al. (2020), these include the
notion of lag selection into a convex regularizer and they can be used on
a set of values for p, possibly varying the lag-length over different vari-
ables. However, we do not report a comparison of their performances
in this work.

While the proposed lag-length estimation works well in high-dimensional
systems, it cannot take into account the type of variables the practi-
tioner is dealing with. Specifically, the procedure cannot a priori recog-
nize if the variables have truly a slow dynamic response. As this could
be the case for climate time series, in Section 4.5 we manually augment
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the estimated lag-length, thus using the latter as lower bound reference.
Especially for the identification of causal relations between temperature
and greenhouse gases we find it is beneficial to account for quite a larger
lag-length.

Remark 4.4. As mentioned in Section 4.3, for the choice of the tuning
parameter we rely on the results of Chapter 2, namely BIC is minimized
to select the penalty parameter for all the lasso regressions in Algorithm
3. Minimizing information criteria is fast and delivers robust results in
practice as evident from several simulation exercises in the literature. A
comparison of other methods to tune the penalty parameter is reported
in Chapter 2.
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4.4 Analysis

4.4.1 Aggregated Greenhouse Gases Analysis (a)

We make use of annual time series data spanning the period from 1850
to 2019. The variables considered, their measurement unit and the
source are reported below:

I. S: Solar Activity Fe(W/m2), (Fe: effective forcings). Source:
Hansen, Sato, Kharecha, et al. (2017).

II. V: Stratospheric Aerosols from Volcanic Activity Fe(W/m2). Source:
Hansen, Sato, Kharecha, et al. (2017).

III. Y: GDP (log 2010 US$). Source: Maddison Project Database
2020 (Bolt and Zanden (2013)) for 1850− 1959, World Bank data
for 1960− 2019.

IV. G: Greenhouse gas concentration Fe(W/m2). Source: Hansen,
Sato, Kharecha, et al. (2017).

V. A: Tropospheric Aerosols and Surface Albedo Fe(W/m2). Source:
Hansen, Sato, Kharecha, et al. (2017).

VI. T: Temperature Anomaly (°C). Source: Morice et al. (2020).

Figure 4.1 displays the plots of the time series in object.
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Figure 4.1: Climate Time Series

Remark 4.5. This set of variables considers key factors of the climate
evolution. Effective forcings of S, V,G,A are considered according to
Hansen, Sato, Kharecha, et al. (2017), thus removing the effect of rapid
adjustments occurring in the atmosphere which do not relate with longer
term surface temperature response. First, we consider temperature
anomalies, which is the natural target to be explained in climate change
models. From its displayed time series in Figure 4.1 a pronounced in-
crease after 1900 is clearly visible. Second, greenhouse gases. They
are partly naturally occurring in the atmosphere and partly are ampli-
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fied by human activities. As the light energy from the sun penetrates
the atmosphere, the Earth absorbs it, thus warming its surface and re-
emitting some of this energy back as infrared-radiation. The latter is in
turn mostly absorbed by the greenhouse gases in the atmosphere which
radiate this heat in several directions: partly into the space and partly
back to the Earth again, thus contributing in increasing its warming.
The natural greenhouse gas effect is what allows the Earth’s surface
temperature to raise up to 33 degree Celsius and hence allows the life
on Earth. Anthropogenic emissions due to human activities add to the
atmospheric concentrations of the natural greenhouse gases as well as
introduce several others that in nature do not occur. This has the effect
of increasing the greenhouse gas effect which in turn is responsible of
increasing the temperature. Third, aerosols: both in the troposphere
and in the stratosphere, they are tiny droplets which have a cooling
effect on temperature as they scatter sunlight back to space impeding
it to arrive to the Earth surface and warm it. Aerosols can also be dis-
tinguished by being of natural and of anthropogenic source. The former
comes from e.g., volcanic eruptions, evaporation of seawater, hydrocar-
bon emissions from forested areas. The latter comes mostly from fuel
combustion (diesel and biomass burning produce black aerosols absorb-
ing sun’s energy) and burning of high-sulfur coal. Fourth, solar activity
has an important, purely natural, influence on the climate system. In
fact, long term solar variations from both variability in the sun and from
the Earth’s orbit do affect the climate in thousands of years time. Fi-
nally, we also include world GDP. This is of course an objective measure
of the amount of value produced and is directly linked to the human
activity employed, and hence its emissions.

Remark 4.6. Climate change caused by alterations, or shocks, in
forcing can have significant effects on many different processes: at-
mospheric, geological, biological, oceanographic, chemical, economic.
However, these effects can in turn further change the climate, thus cre-
ating a feedback effect. These can either amplify the initial cause if
the direction of the two is concordant (positive feedback) or reduce it
if their direction is opposite (negative feedback). Examples of positive
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feedbacks are: decrease of the planet’s albedo as a consequence of melt-
ing of mountain glaciers due to rising temperature. As the melting of
ice exposes the less reflective surface land, the albedo i.e., the planet
reflectance of solar radiation, will in turn decrease giving way to more
solar energy absorption which itself causes additional warming. Simi-
larly, as rising temperature increases evaporation of waters from oceans
and lakes, such vapor is itself a greenhouse gas, hence in turn it am-
plifies warming creating a positive feedback. On the other hand, as
the vapor increases its concentration in the atmosphere, this can cause
more cloudiness. In turn the clouds raise the Earth’s albedo given the
increased reflection of the solar radiation. Less reflection implies less
energy gets absorbed by the Earth thus decreasing its temperature.
These are only few examples of the various feedback effects in climate
systems. In Section 4.4.2 and 4.4.3 we highlight these estimated causal
feedbacks and cycles among the considered variables.

Let us stack the variables S, V , Y , G, A, T in a VAR model as in (4.1)
and we use Algorithm 3 recursively on each of such series in order to
obtain the causal network displayed7 in Figure 4.2.

Figure 4.3 reports a heat-map for the strength of the p-values of the
PDS-TY-LM test for the different combinations among the considered
series. The darker the color, the smaller the p-value. All white boxes
are p-values larger than 15%. Similarly, Figure 4.4 reports a heat-map
for the magnitude of the estimated coefficients of the Granger causing
variable at the post-selection step, thus accounting for the variables
selected via the lasso double-selection. More precisely, we report the
sum of the p estimated lag-coefficients of the Granger causing variable
where the values are rounded to the fourth decimal and the colours
reflect the magnitude in absolute value of such coefficients, where the
more red the higher the magnitude.

7All the analyses reported in the following sections have been carried out using R
(R Core Team, 2020). R scripts are available within the package HDGCvar which
can be downloaded from the Github page of the author: https://github.com/

Marga8/HDGCvar.
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Figure 4.3: P-values heat-map
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Figure 4.4: Magnitude of Coefficients

We observe a total of 5 direct connections at 10% significance level,
namely: greenhouse gas is found to lead temperature (magnitude 0.05)
and similarly does stratospheric aerosols (magnitude 0.07). Both con-
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nections are in line with the climate literature. As explained in Remark
4.5, among the climate forcings alterations caused by anthropogenic
emissions, it is well established how greenhouse gases warm the planet,
while at the same time aerosols have a cooling effect (see among oth-
ers: Mitchell et al., 1995). Tropospheric aerosols & surface albedo (A)
are found to lead their Stratospheric counterpart (V ), which is sen-
sible given that the Troposphere is the first, lowest layer of the at-
mosphere (≈ 0 − 10 Km), immediately followed by the Stratosphere
(≈ 11 − 50 Km). Among them an exchange of mass and chemical
species is well known to occur (see e.g. Holton et al., 1995). It imme-
diately follows from the said connections that an indirect causal effect
occurs between tropospheric aerosols & surface albedo and tempera-
ture, passing through stratospheric aerosols. Finally, a feedback causal
effect is found between stratospheric aerosols and solar activity (S).
This can also be explained: aerosols tend to scatter the sunlight such
that some of it gets lost in space without heating the Earth. This pro-
cess, however, increases the albedo of the planet thus cooling it down.
This also explains the indirect connection found among solar activity
and temperature (T ).

4.4.2 Aggregated Greenhouse Gases Analysis (b)

The dataset I-VI considered in Section 4.4.1 does not consider two
important climate variables: the El Niño–Southern Oscillation index
(ENSO) and the Ocean heat content (OHC). The former is a standard-
ized index based on the observed sea level pressure differences between
Tahiti and Darwin, Australia. It measures the large-scale fluctuations
in air pressure occurring between the western and eastern tropical Pa-
cific during El Niño and La Niña episodes.8 Oscillations of annual CO2

growth are correlated with global temperature and with the El Niño/La

8For the calculation of ENSO we refer to https://www.ncdc.noaa.gov/

teleconnections/enso/indicators/soi/
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Niña cycle (see Hansen, Sato, Kharecha, et al., 2017). Thompson et al.
(2008) shows that El Niño is a natural source of variability responsible
for the global warmth of 1939–1945 and strong El Niño events have also
occurred in 1997–1998 and 2015–2016 that might have boosted the tem-
perature. On the other hand, OHC also needs to be accounted for in the
analysis. In fact, the ocean has lots of thermal inertia and it might take
up to centuries before the Earth surface temperature reaches most of its
fast-feedback response to a change in climate forcing (Hansen, Russell,
et al., 1985). These two series are therefore added to the dataset and
the analysis is replicated:

VII. N: El Niño–Southern Oscillation index (ENSO) (°C). Source: Cli-
mate Research Unit (CRU) at the University of East Anglia9

VIII. O: Ocean Heat Content (1021J, full depth). Source: Zanna et al.
(2019)10.

As N is available from 1866 to 2019 and O is available from 1871 to
2018, we trim the full sample from 1871 to 2018, Figure 4.5 displays a
plot of the two new variables.
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Figure 4.5: Climate Time Series

Figure 4.6 plots the Granger causal network including the variables de-
scribed above where, as in Section 4.4.1, the arrows represent a (direc-

9https://crudata.uea.ac.uk/cru/data/soi/ SOI calculations are based on the
method given by Ropelewski and Jones (1987).

10https://laurezanna.github.io/post/ohc_pnas_dataset/
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tional) causal link that was found at a significance level of 10%. Figure
4.7 presents the corresponding heat map of p-values and Figure 4.8 the
heat-map for the coefficient magnitude. The results of this extended
causal network give us some key insights. Conditional on all other vari-
ables, we find evidence that greenhouse gas forcings (G) Granger causes
temperature anomalies (T ) (magnitude 1.47). This means that given
our included natural forcing as well as production variables, anthro-
pogenic forcings from Greenhouse gases Granger cause temperature.
However, temperature does not Granger cause anthropogenic forcings
in the same system. This supports the findings of Stern and Kaufmann
(2014) who also find a unidirectional link from anthropogenic forcings
to temperature in the presence of natural forcings. We additionally find
a strong link to temperature from the following variables: GDP (Y ),
stratospheric aerosols (V ), ENSO (N) and ocean heat content (O). The
link between stratospheric aerosols and temperature has also been found
in Stern and Kaufmann (2014), while ocean heat content is taken as a
purely exogenous variable in this chapter. Our results indicate that
part of the effect of Greenhouse gas forcings on temperature might run
through the ocean which takes up part of the increase in heat. A causal
link between ENSO and temperature has not been tested before in the
literature. However, Stern and Kaufmann (2014) discuss the option of
removing the effect of ENSO on the temperature and modelling the
adjusted series. The authors, however, argue that these oscillations are
an endogenous part of the climate system and therefore should not be
removed. We therefore explicitly consider ENSO in our model and we
find a causal link to temperature which runs in both directions. This is
not surprising given the previous discussion. In addition, we find that
production has a strong effect on Ocean Heat Content and that Solar
activity causes Stratospheric aerosols.

From Figure 4.6 we observe two feedback relations: stratospheric aerosols
with solar activity (also observed in the earlier analysis in Section 4.4.1)
and temperature with ENSO. The latter is of particular interest as ob-
served in Houghton et al. (2001). An El Niño event is characterized by
positive temperature anomalies in the eastern equatorial Pacific. This
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reduces the sea surface temperature difference across the tropical Pa-
cific. As a consequence to this, the trade winds from east to west near
the equator are weakened and the Southern Oscillation Index becomes
anomalously negative, letting sea level to fall in the west and rise in
the east by almost 25 cm. At the same time, these weakened winds
reduce the rise of cold water in the eastern equatorial Pacific, thereby
strengthening the initial positive temperature anomaly. Thus, ENSO
influences tropical climate but also possess a global influence: during
and following El Niño, the global mean surface temperature increases
as the ocean transfers heat to the atmosphere (see Sun and Trenberth,
1998).

From Figure 4.6 we can also identify cycles. Greenhouse gases lead
OHC which in turn leads stratospheric aerosols which is itself found to
feedback to greenhouse gases. There is also an outsource on solar activ-
ity which is caused by stratospheric aerosols and it feedbacks to it. The
connection between G and O is easily understood: as greenhouse gases
act as a blocking layer trapping more energy from the sun, the oceans
are absorbing more heat as a consequence and this results in an increase
in sea surface temperatures and rise of sea level. The connection be-
tween O and V is also justified. Even though we do not find a direct
feedback of V on O, there is a cyclic relation among the two outsourced
by G. Church et al. (2005) observed how large volcanic eruptions, emit-
ting aerosols in large quantity, result in rapid reductions in ocean heat
content and global mean sea level. They bring the example of the erup-
tion of Mount Pinatubo, a stratovolcano in the Philippines, estimating
as a consequence of the eruption a reduction in ocean heat content of
about 3∗1022J and a global sea-level fall of about 5 mm. Over the three
years (coinciding with our lag-length) following such an eruption, the
estimated decrease in evaporation is of up to 0.1 mm day−1.

Focusing on the two arguably most interesting connections – Green-
house gases to temperature and production to temperature – we also
plot all possible causal paths for these two relationships in Figures 4.9
and 4.10. These show that there is not only a directional link but the
effect can also be indirect by going through (multiple) other variables.
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For greenhouse gases we identify four simple11 causal paths: one direct
and three indirect, running through the nodes of: ocean heat content,
ENSO and stratospheric aerosols. Interestingly, we do not observe a
causal path from greenhouse gas passing through GDP. For GDP in-
stead we observe a total of five causal paths among which one direct and
four indirect passing through the same nodes as for greenhouse gases
but, interestingly, also passing through greenhouse gas itself. The fact
that we find a stream of causality from GDP to greenhouse gas but not
vice-versa is probably not entirely surprising as production is surely a
source of a variety of emissions. More surprisingly, we do not observe
an indirect causal stream from greenhouse gases through GDP.
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Figure 4.7: P-values heat-map

11In graph theory a path is simple if the vertices it visits are not visited more than
once.
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Figure 4.8: Magnitude of Coefficients
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Figure 4.10: Y to T paths (5)

4.4.3 Disaggregated Greenhouse Gases Analysis

In the previous setting we considered an aggregated measure of Green-
house gas (G) which is meant to represent the combined forcings of all
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the different anthropogenic emissions. Greenhouse gases (GHGs) in-
crease global Earth warming by absorbing energy and slowing the rate
at which the energy escapes to space acting like a barrier-layer around
the globe. Therefore, they are divided by their ability to absorb en-
ergy (radiative efficiency, Wm−2 per ppb) and how long they stay in
the atmosphere (lifetime in years). The three main GHGs for global
warming potential are carbon dioxide (CO2), methane (CH4), Nitrous
Oxide (N2O). Many others are categorized into: Hydrofluorocarbons,
Chlorofluorocarbons, Bromocarbons, Hydrobromocarbons and Halons,
Hydrochlorofluorocarbons. We use the historical reconstruction of CO2,
CH4 and N2O computed in Meinshausen et al. (2017)12 to better dis-
entangle the single effects of the main GHGs on temperature. As the
data are given in concentration as parts-per-billion (ppb), we transform
them into radiative forcings by using the transformations from Hansen,
Sato, Lacis, et al. (1998) as grouped in Table 4.1.

Table 4.1: Radiative Forcings Conversions Formulae

Variable Radiative forcing Pre-ind. concentration

CO2
F = f(c)− f(c0) c0 ≈ 280ppm
where f(c) = 5.04 ln

[
c+ 0.0005c2

]
CH4

F = 0.04
(√
m−√

m0

)
− [g(m,n0)− g(m0, n0)] m0 ≈ 700ppb

where g(m,n) = 0.5 ln
[
1 + 0.00002(mn)0.75

]
N2O F = 0.14(

√
n−√

n0)− [g(m0, n)− g(m0, n0)] n0 ≈ 275ppb

We integrate the three time series in place of G in the previous model
set up, obtaining a total of 10 series spanning the timeframe from 1871
to 2014. Figure 4.11 displays the time series of the three main GHGs.

12Data available at https://www.climatecollege.unimelb.edu.au/cmip6
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Figure 4.11: Climate Time Series

From Figure 4.12 we do not observe direct causal relations between the
three main GHGs and temperature anomalies. However, many indirect
relations are observed. In Figure 4.15-4.17 we highlight the amount of
possible causal paths between, in turn, CO2, CH4, N2O and tempera-
ture anomalies.
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Figure 4.12: Climate Network, α = 0.1,
p = 3
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Figure 4.13: P-values heat-map
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Figure 4.14: Magnitude of Coefficients

We observe a total of 11 paths from CO2 to T and 17 from N2O to
T. Surprisingly, we do not find paths from CH4, which in fact results
as an end node in the network. One possible explanation would be
the masking (cooling) effect of the aerosols. As observed in Hansen,
Sato, Kharecha, et al. (2017) “the elevated GHG concentrations induce
a radiative forcing that in turn would cause more than the observed
recent global warming if it were not for the cooling effect by aerosols”.
In fact, Figure 4.12 shows how tropospheric aerosols & surface albedo
leads both methane and stratospheric aerosols. Finally, Figure 4.18
displays the causal paths from GDP to temperature. We observe a
total of 15 paths passing through all the variables except for CH4. This
gives clear evidence of how GDP has a broad, outsourcing interplay
through time with several climate variable in the span of 3 years. In
general, we observe temperature being caused directly from O, V, Y, N
as in the analysis in Section 4.4.2.
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Figure 4.15: CO2 to
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Figure 4.16: CH4 to
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Figure 4.19: Modularity-
based Clusters

From Figure 4.12 we observe few feedback relations: as observed in
Section 4.4.2 a bijective relationship is established between ENSO and
temperature. We also observe a feedback between CO2 and N2O, one
between CO2 and ocean heat content, one between CO2 and solar ac-
tivity, one between N2O and solar activity and finally one between solar
activity and stratospheric aerosols.

Many more loops are now observed compared to Section 4.4.2, well
demonstrating the complex, broad interplay among variables in climate
systems. Even though no Eulerian cycle13 is observed, almost all the
variables in the system, except Y and CH4, have paths starting and

13in Graph Theory an Eulerian cycle is a paths that starts and ends at the same
vertex, visiting all other vertices in its route.
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ending in their own vertex. We only mention here those cyclic-paths
involving temperature and greenhouse gases. For cycles starting respec-
tively from CO2 and N2O we find the following cyclic (simple) paths as
reported in Figure 4.20, 4.21:
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Figure 4.20: Cyclical paths from/to CO2 via T

What stands out from these cycles effects is that ENSO (N) is a crucial
variable to account for in analyzing a climate system. In fact, ENSO
appears in all the circular causal chains in Figures 4.20, 4.21 starting
from greenhouse gases and passing through temperature. Stratospheric
aerosols (V ) follow closely as they appear in 8/10 of the reported cycles.
Tropospheric aerosols (A) instead only appears in one cycle. Both solar
activity (S) and ocean heat content (O) appear in 5/10 of the reported
cycles and finally GDP never appears within any cycle.
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Figure 4.21: Cyclical paths from/to N2O via T

In order to detect communities in the causal network, in Figure 4.19
we employ the hierarchical agglomeration algorithm of Clauset et al.
(2004). This employs a greedy optimization strategy in which each ver-
tex of the (undirected) graph is initially considered as unique member
of a community of one and repeatedly two communities whose amalga-
mation produces the largest increase in modularity are joined together.
Let Avw be the element of the adjacency matrix which constitutes our
estimated network i.e., Avw = 1 if vertices v and w are connected and
zero otherwise. m = 1/2

∑
vw Avw represents the number of edges in the
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graph and kv =
∑

w Avw the degree of a vertex v, namely the number of
edges incident upon such vertex. For a randomized network, kvkw/2m
would then be the expected fraction of within-community edges. Letting
vertices being divided into communities where v belongs to community
cv and w belongs to community cw, then modularity (M) is defined
as M = 1

2m

∑
vw

[
Avw − kvkw

2m

]
δ (cv, cw) , where δ (cv, cw) = 1 if i = j

and δ (cv, cw) = 0 otherwise. In other words, if the fraction of within-
community edges in the estimated network equals, or it is close to, the
expected one from a randomized network, then modularity will be zero
or close to it. Vice-versa modularity will be positive. In Figure 4.19 we
find a modularity of M = 0.208 and two distinct clusters of community
size 6 and 4 respectively are identified. The larger cluster contains both
tropospheric and stratospheric aerosols as well as temperature, ocean
heat content and, interestingly, GDP and CH4. The smaller cluster
contains CO2, N2O, solar activity and El Niño. The connections that
go over their community cluster are: solar activity with stratospheric
aerosols, CO2 with ocean heat content and El Niño with both temper-
ature, ocean heat content and stratospheric aerosols. The result of the
clustering is in line with the cyclical effects described earlier in Figures
4.20,4.21. In fact, CO2, N2O are clustered together with ENSO (N)
and solar activity (S) which are crucial variables concerning cyclical
effects from greenhouse gases to themselves through temperature.

The outlined methodology in Chapter 3 also allows for testing causality
among blocks as explicit in Algorithm 3, rather than just conditional bi-
variate tests. This implies the possibility of verifying whether a block of
variables is Granger causal for another block or alternatively whether a
block is Granger causal for a single variable. In our context, we could be
interested in testing whether the disaggregated greenhouse gases block-
Granger causes temperature directly as we observed in Section 4.4.2.
Should be noted that the aggregated series of greenhouse gases in Sec-
tion 4.4.2 contains also chlorofluorocarbons while in our disaggregated
analysis we had to exclude them because of data limitations.
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Figure 4.22: Block GHGs connections, α = 0.1, p = 3

In Figure 4.22 we report only the connections between the block of
greenhouse gases i.e., GHGs = (CO2, N2O,CH4) and we observe a
total of three connections with ocean heat content, ENSO and solar ac-
tivity but no direct block-causality with temperature as well as aerosols
or production. We also observed the direct connection with ocean heat
content in Section 4.4.2 and similarly the connections with solar activity
and ENSO, although indirect.

In the following Section 4.5 we are going to perform sensitivity analysis
on the lag-length p. One reason why we do not observe direct connec-
tions between greenhouse gases and temperature is the slow response
that temperature has to changing in greenhouse gases. It might there-
fore be beneficial to manually enlarge the lag-length considered to verify
these relations.

4.5 Sensitivity Analyses

4.5.1 Unit Root Testing

As clearly visible from the various time series plots in Figure 4.1, 4.5,4.11
climate variables are affected by stochastic and/or deterministic trends.
Hereby in Table 4.2 we report the p-values for the autoregressive wild
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bootstrap ADF test14 (see Friedrich et al., 2020) calculated on 1999
replications using a significance level of 5%, based on the union of re-
jections of four tests with different number of deterministic components
and different types of detrending (intercept only, intercept plus trend,
OLS detrending, quasi-differenced detrending), as in Smeekes and Tay-
lor (2012). We also report the amount of differences δ needed to make
the series stationary according to the same test.

Table 4.2: Unit Root Tests

Variable S V Y G A T N O CO2 CH4 N2O

p-value 0.45 0.006 0.43 0.57 0.75 0.97 0.001 0.93 0.65 0.68 0.97

∆δ 1 0 1 2 2 1 0 2 2 2 2

Controlling for false discovery rate at level 0.05 within the same set of
tests returns the same conclusions as Table 4.2. A Johansen trace test
for cointegration (with linear trend) returns 5 cointegrating relations
among the series in Table 4.2 excluding G. We observe, as mentioned
earlier in Section 4.1, a certain degree of persistence in the series, es-
pecially greenhouse gas, both in the aggregated and disaggregated for-
mats, tropospheric aerosols & surface albedo and ocean heat content
which require two differences to become stationary. What is remark-
able of the methodology outlined in Section 4.3 is that this unit root
analysis is completely unnecessary. We do not need to know the in-
tegration orders and we do not need to apply transformations to the
series. We only need to apply a lag-augmentation d which we believe
being sufficient to render the series stationary. As argued earlier, and
as verified empirically in Table 4.2, d = 2 is always the recommended
augmentation.

14R code for the autoregressive wild bootstrap ADF union test is available within
the package bootUR.
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Figure 4.23: Climate Network, α = 0.1,
p = 6
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Figure 4.24: P-values heat-map

To investigate the difference with our method, we transform the series
to stationary taking the appropriate differences according to Table 4.2.
Then we reproduce the disaggregated analysis of Section 4.4.3. To do
so, we employ the PDS-LM algorithm of Chapter 2 designed for test-
ing Granger causality in high dimensional stationary VARs. In other
words, we employ an entirely analogous algorithm to what we specified
in Section 4.3 with the only difference that no lag-augmentation is ap-
plied to the system. Figure 4.23, 4.24 display the same network and
p-values heat map as for Figure 4.12,4.13 but now with the stationary-
transformed series. First, we observe an overall smaller amount of con-
nections (22) in the stationary analysis compared to the non-stationary
one (24). In red are highlighted the common connections (10) between
network Figure 4.12 and network Figure 4.23. Notably, the estimated
lag-length is double than in the non-stationary analysis reflecting the
need of a longer lag-length to account for the long run relations. Over-
all, we observe how several connections present in levels are wiped out
when considering the differences, thus avoiding biased unit roots test-
ing is beneficial as to obtaining a richer and more robust picture of the
connections in a climate system.
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4.5.2 Lag-Length Increases

So far we employed a data-driven selection of the lag-length p. Its
estimation is crucial in a VAR context and even more so in this lag-
augmented one as the additional lag-augmentation d depends on p
(see Section 4.3). Even though the employed methodology is an up-
per bound, still we could be interested in observing what is the be-
havior of the disaggragated greenhouse gas network as in Figure 4.12,
when the lag-length is manually augmented. This is interesting as on
the one hand it shows how our modeling framework is able to handle
larger dimensionalities than strictly speaking those we considered here.
On the other hand, it is interesting as it is known in the climate sci-
ence literature how temperature exhibits a slow response to changes in
many climate variables, including greenhouse gases. As such, consider-
ing larger lag-lengths can open up to new connections masked by the
too strict lag-length previously considered. So far we estimated p = 3,
so the coefficients we reported in Section 4.4.3 were expressing a com-
pound effect of the relevant Granger causing variable to the Granger
caused in the span of 3 past years. We now consider the same analysis
for a sequence of lag-lengths p = (10, 15, 30). This means that we have
up to 302 variables to estimate per equation for a given sample size of
144 data points, thus really exploiting the high-dimensional capabilities
of our method.
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Figure 4.25: α = 0.1,
p = 10
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Figure 4.26: α = 0.1,
p = 15
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Figure 4.27: α = 0.1,
p = 30
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Figure 4.28:
P-values heat-map
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Figure 4.29:
P-values heat-map
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Figure 4.30:
P-values heat-map
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Figure 4.31:
Coeff. heat-map
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Figure 4.32:
Coeff. heat-map
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Figure 4.33:
Coeff. heat-map

Figure 4.25, 4.26, 4.27 report the networks estimated respectively with
p = 10, 15, 30 lags. Similarly, Figure 4.28, 4.29, 4.30 display the re-
spective p-value heat maps and Figure 4.31, 4.32, 4.33 the respective
compounded coefficients heat maps. From an overall perspective and
comparing the results with Figure 4.12 where we had p = 3, we find
a comparable total amount of connections in the systems: for p = 3
is 24 for p = 10 is 21 for p = 15 is 24 and for p = 30 is 30 connec-
tions. Focusing on those connections involving temperature we find
that at all lag-lengths considered ENSO and ocean heat content are
found to strongly Granger cause temperature. Production is also found
to Granger cause temperature but only when p = 3 and p = 15. As
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expected, accounting for many more years within the lags is partic-
ularly beneficial to uncover direct connections between disaggregated
greenhouse gases and temperature. We find at p = 15 that CO2 is
Granger causal for temperature and at p = 30 that both CO2 and CH4

are Granger causal for temperature. We also uncover a direct connec-
tion between tropospheric aerosols & surface albedo and temperature
at p = 30. The dynamic among the greenhouse gases seem to also be
enhanced by the larger lag-length. At p = 30 we find CO2 and N2O
having a feedback causal relation and CH4 to be Granger causal both
for CO2 and N2O. Especially for CH4 which in the analysis of Section
4.4.3 resulted as being an end-node, the larger lag-length has uncovered
many connections previously not visible. For GDP the result seems
more mixed: while at 15 lags it shows an interesting bijective relation
with temperature at 30 lags such relation completely disappears leaving
GDP unconnected with the rest of the system.
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Figure 4.34: Block GHGs connections, α = 0.1, p = 15

In Figure 4.34 we repeat the block-Granger causality analysis as at the
end of Section 4.4.3 using p = 15 lags. We now find the greenhouse
gases considered i.e., CO2, N2O and CH4, when considered as a block,
they do Granger cause temperature as expected and as already observed
in Section 4.4.2.
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4.6 Discussion and Concluding Remarks

We employ high-dimensional Granger causality tests to investigate the
connections within climate systems. We especially focus on the links
between radiative forcings and global temperature. Predictive causality
in the sense of Granger coupled with a potentially high-dimensional in-
formation set robustify the causal findings. We employ and follow the
Granger causality framework of Chapter 3 in designing a lag-augmented
post-double-selection framework where honest inference in guaranteed
and at the same time no care is needed with respect to the unit-root and
cointegration properties of the time series at hand. This is of particular
appeal with climate data which contains stochastic trends and exhibits
long memory. We build a dataset containing a set of the most rele-
vant climate time series coupled with GDP for a time frame spanning
1850-2019. We consider three scenarios of increasing dimensionality: we
start with a simple system only containing few fundamental variables
usually employed to describe the climate: the solar activity, aerosols
and of course temperature and greenhouse gas concentration. We also
add GDP to account for economic effects on climate variables and vice-
versa. We use the post-double-selection Algorithm 3 on every pair of
variables conditional on the remaining ones, thus to obtain a network
of Granger causal connections. We then increase the dimensionality
accounting for variables not always accounted for in estimating climate
networks, namely the ocean heat content and the El Niño southern os-
cillation index. We find that the inclusion of such variables uncovers
several important causal connections in the estimated network. Finally,
we consider a disaggregated setting where we decompose the greenhouse
gases into their three main components: CO2, CH4 and N2O and we
identify indirect causal paths from each of them to temperature, as
well as from GDP to temperature. We are also able to apply cluster-
ing based on connectedness and as well identify causal feedbacks and
causal cycles between greenhouse gases and temperature. As the pro-
posed Algorithm 3 works for conditional blocks-Granger causality and
not necessarily only for conditional bivariate tests, we are also able to
test whether blocks of variables, as the re-aggregated greenhouse gases,
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Granger cause temperature. We conclude with a sensitivity analysis
in Section 4.5. First, we compare our disaggregated analysis in levels
with the same analysis in differences. Namely, we first test the variables
for unit root and cointegration and apply the appropriate differencing
order to each of them to make them stationary. By replicating the
analysis, we find that many connections gets lost when differencing is
directly applied to the series. As we argue, unit root and cointegration
pre-tests are inducing biases and are preferably avoided. Also, taking
differences of the series wipes out their memory and introduce further
bias if cointegration is present. Second, even though we use a data-
driven method to select the lag-length via information criteria, we also
manually enlarge the lag-length using our previous estimated lag-length
as lower bound. We find that for climate time series and especially to
uncover causal connections among disaggregated greenhouse gases and
temperature is often preferable to consider larger lag-lengths.

Directions for further future research are in order. Conditional on the
other variables, impulse response functions of temperature to a shock
in greenhouse gases, whether significant, are also a causal discovery
although not in the same sense as Granger. Considering the same aug-
mented post-double-selection algorithm within the recent local projec-
tions framework (see e.g. Jordà, 2005; Plagborg-Møller and Wolf, 2019)
would roubustify the causal discoveries and further shed light on the
behavior in future time of global temperature to an increase/decrease
of greenhouse gases.

We used temperature anomalies as a metric for global warming. Also
other metrics have been used in the literature as e.g., the classical global
mean surface temperature or Earth’s energy imbalance. As it is this
imbalance that drives continued warming, the latter metric, which in-
tegrates over all climate forcings, gives an indication about where the
climate is heading. If availability of the data allows for it, replicat-
ing the analyses with other global warming metrics could robustify the
findings.
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Granger causality is also investigated in Eichler (2013), where he pro-
poses a two steps algorithm. First, one needs to identify all potential
direct causal links among the components of a time series where a po-
tential cause is a variable that Granger & Sims causes another variable.
Second, one needs to identify the exact nature of a potential causal link,
whether it is a true or a spurious causal link. Depending on whether a
certain mediating variable C needs to be included or omitted to make
variable A non-causal for variable B, we can label the potential cause
C as either true or spurious. We did not follow exactly this route here
although our analysis in Section 4.4 somewhat followed the same idea:
testing (only) Granger causality in a growing system of variables and
observe which relations are spurious and which not. Using the idea
of impulse responses with local projections, coupled with our Granger
causality test would make it for a valid combined procedure that can
robustify the causal findings further.
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5

Dynamic Factor Models with Sparse
VAR Idiosyncratic Components1

1This chapter is based on a joint work with Jonas Krampe from University of
Mannheim.
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Abstract

In this chapter we reconcile high-dimensional sparse and dense tech-
niques within the framework of a Dynamic Factor Model and assume the
idiosyncratic term follows a sparse vector autoregressive model (VAR).
The different diverging behavior of the eigenvalues of the covariance
matrix allows to disentangle the two different sources of dependence.
The estimation is articulated in two steps: first, the factors and their
loadings are estimated via principal component analysis and second,
the sparse VAR is estimated by regularized regression on the estimated
idiosyncratic components. We prove consistency of the proposed es-
timation approach as the time and cross-sectional dimension diverge.
We complement our procedure with a joint information criteria for the
VAR lag-length and the number of factors. The finite sample perfor-
mance of our procedure is illustrated by means of a thorough simulation
exercise.
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5.1 Introduction

With the increased availability of large dimensional datasets and the
need of techniques able to handle them, the econometrics literature has
adapted and rapidly grown in the last years. Datasets containing large
amounts of variables (N) with respect to the sample size (T ) are loaded
with information and although this represents a great potential to be
exploited (the blessings), it also carries not few troubles for the statisti-
cian to deal with (the curses). As the parameter space expands at fast
speed, its elements to estimate soon start to be too many for the sample
information available to reliably estimate them. Overfitting and surging
variance indeed cause failure of standard methods designed for settings
where N is small relative to T . In one way or another, the core idea
to get away from the curses is: dimensionality reduction. The econo-
metric literature mostly polarizes on either factor models or penalized
regression techniques. The former assumes the behavior of an economic
variable is sensibly decomposed into a component driven by few un-
observable (latent) factors, which are common to many other economic
variables but load differently on each of them, and a variable specific id-
iosyncratic component. The dimensionality reduction obtained via the
estimation of the factors is such that the explained variability of the
original set of variables is mostly preserved, hence the dense label. On
the other hand, penalized regression techniques yields dimensionality
reduction working with a sparsity assumption over the underlying true
model. Namely: sparsity limits the number of direct channels to affect
other variables. Both factor models and sparse-regression techniques
are widely employed in practice. However, usually of the two, one ex-
cludes the other. The reason being the radically different approach,
namely dense versus sparse. Neither of the two school of thoughts
are free of criticisms: regularization techniques because of the sparsity
assumption, often seen as a too strong assumption especially in macroe-
conomics; factor models because they need some consistent criterion to
select a certain -not too large- amount of factors. Many papers have
compared empirically the performances of either of the approaches, es-
pecially in terms of macroeconomic forecasting, among others: Smeekes
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and Wijler (2018), Coulombe, Leroux, et al. (2020), and Medeiros, Vas-
concelos, et al. (2021) or criticized each other approaches (Giannone,
Lenza, et al., 2017; Fava and Lopes, 2020).

In this Chapter we reconcile the two worlds of dense and sparse mod-
eling by means of focusing on exploiting the positive aspects of both.
We work within the framework of a Dynamic Factor Model where we
employ principal component analysis (PCA) to estimate the factors and
high-dimensional penalized vector autoregressive model (VAR) through
the adaptive lasso in order to estimate the idiosyncratic components.
This approach is beneficial since it allows to disentangle in the system
covariance matrix, the dependence among its diverging eigenvalues (i.e.,
the factors) with the dependence among the bounded ones (i.e., the id-
iosyncratic components). Coincidentally, we allow for cross-sectional
and time dependence in the idiosyncratic term and we assume this
follows a high-dimensional VAR model. We work under the physical
(functional) dependence framework of Wu (2005) and we show consis-
tent estimation of both idiosyncratic components and the factors as
both the cross-sectional and time dimensions grow large. We also pro-
pose a joint information criteria which combines the Bai and Ng (2002),
Alessi et al. (2010) approaches with an extra penalty allowing for simul-
taneous lag-length estimation.

The economic interpretation of factor models is a crucial reason of their
wide use. For instance, the literature on Dynamic Stochastic Gen-
eral Equilibrium (DSGE) models and real business cycle (see e.g. Sar-
gent and Sims, 1977) assumes few common forces to drive the whole
economy. Factor models were originally envisioned for cross-sectional
data and their time-series extension, broadly referred to as Dynamic
Factor Models (DFM), was first proposed by Geweke (1977). DFMs
are nowadays ubiquitous in economics, their applications range over
from: macroeconomics forecasting (see among others: Stock and Wat-
son, 1999; Stock and Watson, 2002a; Stock and Watson, 2002b; Forni,
Hallin, Lippi, and Reichlin, 2003; Boivin and Ng, 2005; Koopman and
Wel, 2013; Marcellino et al., 2016; Forni, Giovannelli, et al., 2018), real-
time monitoring (nowcasting) (see among others: Giannone, Reichlin,
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et al., 2008; Aruoba, Diebold, et al., 2010; Aruoba and Diebold, 2010;
Schiavoni et al., 2021), international business cycle (see among others:
Kim and Nelson, 1998; Lee, 2012; Lee, 2013; Doz et al., 2020), construc-
tion of leading indicators (see among others: Stock and Watson, 1989b;
Altissimo et al., 2001; Forni, Hallin, Lippi, and Reichlin, 2001; Baner-
jee et al., 2005), to monetary policy applications (see among others:
Bernanke et al., 2005; Forni and Gambetti, 2010; Korobilis, 2013).

Variable selection procedures aimed at selecting and estimating only
the subset of truly relevant variables have been introduced via different
`q-norm penalizations of the least-square minimization problem. Ridge
regression (Hoerl and Kennard, 1970), the lasso (Tibshirani, 1996), elas-
tic net (Zou and Hastie, 2005), adaptive lasso (Zou, 2006), scad (Fan
and Li, 2001) are only few among the plethora of techniques developed
to tradeoff variance with bias and thus get away from the curse of di-
mensionality. Many more refinements of such procedures have acquired
a great deal of space and interest in the statistics and econometrics
literatures. Econometrics applications of these procedures see among
others: instrumental variables estimation (see among others: Belloni,
Chernozhukov, and Hansen, 2011b; Belloni, Chen, et al., 2012; Belloni,
Chernozhukov, and Wang, 2014; Windmeijer et al., 2019), treatment ef-
fect models (see among others: Belloni, Chernozhukov, Fernández-Val,
et al., 2015; Li and Bell, 2017; Ju et al., 2020), time series models (see
among others: Kock and Callot, 2015; Medeiros and Mendes, 2016b).

There already exists applications in the literature combining dynamic
factor models with sparse vector autoregressive models, see e.g.,Barigozzi
and Hallin (2017) and Barigozzi and Brownlees (2019). However, Barigozzi
and Hallin (2017) and Barigozzi and Brownlees (2019) do not present
any theoretical results about the combined approach. Also Kneip and
Sarda (2011) and Fan, Ke, et al. (2020) combine factors with regular-
ized models. Since regularized methods as the lasso have difficulties
with strongly correlated regressors, especially in the context of model
selection, their aim is to decorrelate the regressors by adjusting for the
factors. Fan, Ke, et al. (2020) extend and generalize the results of Kneip
and Sarda (2011) arguing that the combined approach is flexible in the
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sense that it performs well regarding both prediction and model selec-
tion and in both uncorrelated and highly correlated cases. Furthermore,
Fan, Masini, et al. (2021) provide hypothesis tests to test whether after
removing factors (as well as trends in a first step) the regressors pos-
sesses some pre-defined weakly correlated structure or not. Fan, Ke,
et al. (2020) and Fan, Masini, et al. (2021) allow for time-dependent
regressors, however they do not consider that the idiosyncratic part fol-
lows a sparse vector autoregressive model. Moreover, their assumption
about the dependency of the idiosyncratic part excludes sparse vector
autoregressive models where the cross-sectional sparsity can grow with
the sample size. In the context of vector autoregressive processes for
network modeling of high-dimensional time series data, a similar ap-
proach is to combine the estimation of a low-rank matrix and a sparse
matrix as it is done in Basu, Li, et al. (2019). The low-rank part takes
here a similar role as the common component of DFMs while sparsity is
assumed over the autoregressive polynomial matrix of the idiosyncratic
term. The combination of low-rank plus sparse has been also explored
in the context of an approximate factor model by Lin and Michailidis
(2019). However, the approaches in Basu, Li, et al. (2019) and Lin and
Michailidis (2019) differ from ours of combining DFM and sparse VARs.
First note that these two approaches do not describe the same model.
Furthermore, the sparsity in Basu, Li, et al. (2019) and Lin and Michai-
lidis (2019) is far more restrictive than the sparsity considered here for
the idiosyncratic component and their results are useful in quantifying
the overall estimation and prediction error whereas in this Chapter also
the prediction error for a single time series can be quantified. A more
detailed discussion can be found in Section 5.3.2.

The remainder of the Chapter is organized as follows: Section 5.2 intro-
duces the dynamic factor model with sparse VAR idiosyncratic com-
ponents and report few standard assumptions defining its behavior.
Section 5.3 is devoted to describe the two-step procedure used to es-
timate the DFM with sparse VAR idiosyncratic components and prove
its consistency. Theorem 1 derives a representation of the idiosyncratic
components estimation error while Theorem 2 is the main result es-
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tablishing bounds for the estimation error for the second step of the
estimation procedure, i.e., for the lasso on the sample estimates of the
idiosyncratic component. Section 5.4 considers the problems of: esti-
mating the number of factors, determining the lag-length in the VAR
and tune the penalty parameter for the lasso. Section 5.5 report simu-
lation results for our proposed method under different VAR data gen-
erating processes in terms of design and sparsity. Finally Section 5.6
concludes.

A few words on notation. Throughout the Chapter we use boldface
characters to indicate vectors and boldface capital characters for ma-
trices. For any n-dimensional vector x, we let ‖x‖p = (

∑n
i=1 |xi|p)

1/p

denote the `p-norm and ej = (0, . . . , 0, 1, 0, . . . , 0)> denotes a unit vec-
tor of appropriate dimension with the one appearing in the jth posi-
tion. Furthermore, for a r × s matrix A = (ai,j)i=1,...,r,j=1,...,s, ‖A‖1 =
max1≤j≤s

∑r
i=1 |ai,j | = maxj ‖Aej‖1, ‖A‖∞ = max1≤i≤r

∑s
j=1 |ai,j | =

maxi ‖e>i A‖1 and ‖A‖max = maxi,j |e>i Aej |. Denote the largest abso-
lute eigenvalue of a square matrix A by ρ(A) and let ‖A‖22 = ρ(AA>).
We denote the smallest eigenvalue of a matrix A by σmin(A). For any
index set S ⊆ {1, . . . , n}, let xS denote the sub-vector of xt containing
only those elements xi such that i ∈ S. ‖x‖0 denotes the number of
non-zero elements of x.

5.2 The Model and Notation

Let X = (x1,t, . . . , xN,t) for t = 1, . . . T be a N ×T rectangular data ar-
ray representing a finite realization of an underlying real-valued stochas-
tic process {xi,t}. Assume xi,t can be decomposed into the sum of a
common component χi,t and an idiosyncratic component ξi,t, both un-
observable. The common component χi,t is driven by an r-dimensional
vector of common factors ft = (f1,t, . . . , fr,t)

> where r ⊥⊥ N , r � N and
each of which has a certain specific loading `i,t. We consider the number
of factors r to be fixed as both the cross sectional dimension N and the
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time series dimension T grow large. This is a reasonable claim: assum-
ing r to be a strictly increasing function in N or T would be tantamount
to assume that all the eigenvalues of a large dimensional covariance ma-
trix would necessarily diverge as the dimensions increase which would
clearly not be reasonable. Nonetheless, r needs to be estimated from the
data and we consider this issue jointly with the lag-length estimation
later in Section 5.4. We do not assume the common components ft to
be independent and identically distributed but we allow them instead
to be dynamic. However, the dynamic does not directly links with xt,
thus making the relationship between xt and ft still static. This differs
from the framework of Forni, Hallin, Lippi, and Reichlin (2000) which
assumes a pervasive dynamic of the common factors where xt is set to
also depend on ft with lags in time. In other words, in this Chapter
we are working with the Dynamic Factor Model where both factors and
idiosyncratic components are allowed to be stationary stochastic pro-
cesses. Let the common component vector χt = (χ1,t · · ·χN,t)> and
the idiosyncratic component vector ξt = (ξ1,t · · · ξN,t)>, then the factor
model decomposition takes the following usual form

xt = χt + ξt. (5.1)

Now, the common components χi,t can be expressed as the following
linear combination:

χi,t = `i,1f1,t + `i,2f2,t + · · ·+ `i,rfr,t = Λ>
i ft. (5.2)

Note that χi,t is uniquely defined. But since for some rotation matrix
H, χi,t = Λ>

i HH−1ft is a valid linear combination as well, Λ>
i ,ft

are only identified up to some arbitrary rotation. Additionally, assume
the idiosyncratic component ξt to follow a sparse vector autoregressive
(VAR) model of order p, where p is the lag-length, as

ξt =

p∑
j=1

A(j)ξt−j + vt =

∞∑
j=0

B(j)vt−j (5.3)
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for vt being a zero-mean noise process described in Assumption 10 be-
low. By estimating the factors ft through standard Principal Compo-
nents Analysis (PCA) and the sparse VAR models of the idiosyncratic
components ξt via sparse penalized regression techniques we combine re-
spectively a dense modeling approach with a sparse one and we are able
to better capture and disentangle both the dependence among diverg-
ing eigenvalues of E(XX>), i.e., the factors, as well as the dependence
among the non-diverging eigenvalues of E(XX>), i.e., the idiosyncratic
components. To aid the intuition of a VAR modeling of the idiosyncratic
component, one can think for instance, at the asset pricing models, de-
signed to explain asset returns through several factors of risk. The
common components would represent here the systematic, unobserved,
part of information explaining the asset return, in other words: those
risk components which, systemically interconnected, decide the level of
the asset return. The idiosyncratic part instead, is the whole remain-
ing non-systematic or individual part of information pertaining to the
single assets which also contributes in deciding the return of the asset.
It follow that in order to model the linear dependence among the id-
iosyncratic part, the most reasonable choice falls for VARs. To proceed
with our theoretical results, we first state some assumptions. In the fol-
lowing Assumptions 9, 10, and 11, the sparsity and stability conditions,
the factors, moment conditions, and loadings are further specified.

Assumption 9. (Sparsity and stability)
(i) Let A denote the stacked (companion) VAR matrix of (5.3). Let k
denote the row-wise sparsity of A with approximate sparsity parameter
q ∈ [0, 1), i.e.,

max
i

p∑
k=1

N∑
j=1

|A(k)
i,j |

q = max
i

Np∑
j=1

|Ai,j |q ≤ k.

(ii) The VAR processes is considered as stable such that for a con-
stant ρ ∈ (0, 1) we have independently of the sample size T : ‖Aj‖2 =√
λmax(A

j>Aj) ≤ Mρj , where M is some constant. Additionally, we
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have ‖Γξ(0)‖∞ ≤ kξM , where Γξ(0) = Var(ξt) and

σmin(Var((ξ
>
t , . . . , ξ

>
t−p+1)

>)) > α. The sparsity parameter k as well as
kξ can grow with the sample size.

Assumption 10. (Factor dynamic and moments)
The factors are given by a one-sided linear filter with geometrically
decaying coefficients, that is:

ft =

∞∑
j=0

D(j)ut−j ,

and ‖D(j)‖2 ≤ Kρ̃j , where K is some positive constant and ρ̃ ∈ (0, 1).
Furthermore, {(u>

t ,v
>
t )

>, t ∈ Z} is an i.i.d. sequence and Cov(ut,vt) =
0. Let ζ > 8 be the number of finite moments of {(u>

t ,v
>
t )

>, t ∈ Z}, i.e.,
E|ut,j |ζ ≤M and max‖w‖2≤1 E|w>vt|ζ ≤M . We denote Σu =: Var(ut)
and Σv =: Var(vt).

Assumption 11. (Factors and loadings)
Let M be some finite constant, then

1. limT→∞ 1/T
∑T

t=1 ftf
>
t = E[ftf>

t ] = ΣF ∈ Rr×r positive definite
and ‖ΣF ‖2 ≤M .

2. limN→∞ 1/N
∑N

i=1ΛiΛ
>
i = ΣΛ,ΣΛ positive definite,

‖1/N
∑N

i=1ΛiΛ
>
i ‖2 ≤ M for all N , ‖Λ‖max ≤ M and ‖ΣΛ‖2 ≤

M .

3. All eigenvalues of ΣF ,ΣΛ are distinct.

Some comments on the above assumptions are in order. Assumption 9
and 10 imply that {ξt} is stationary and let the autocovariance func-
tion be given by Γξ(s− t) = Cov(ξs, ξt). Furthermore, Assumption 10
implies that also the factors are a stationary processes such that {xt}
itself is indeed stationary. In order to quantify the dependence of the
occurring stochastic processes, we use the concept of functional depen-
dence, see Wu (2005). Since this is only necessary for the proofs, we
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do not introduce the notation here and refer to Remark 5.1 in the ap-
pendix. The assumption of a stable and row-wise sparse VAR model is
a rather standard assumption in the literature of sparse VAR models,
see among others Kock and Callot (2015), Han et al. (2015), and Masini
et al. (2019) and for a discussion of different sparsity concepts for VAR
models see Krampe and Paparoditis (2021). Here, the weaker assump-
tion of approximate sparsity instead of exact sparsity, i.e., q = 0, is
used. Note that we only require row-wise sparsity, i.e., a time series in
xt can be directly influenced only by k other time series including their
lags. We do not require column-wise sparsity, i.e., a single time series in
xt and all its past values can have more than k direct channels to affect
the elements of xt. Furthermore, the moment condition in Assumption
10 refers to the situation in which only a finite number of moments,
here ζ, are finite. Hence, we do not assume sub-Gaussian processes or
similar which is often assumed for sparse VAR processes, see Basu and
Michailidis (2015b), Kock and Callot (2015), and Han et al. (2015). For
sub-Gaussian processes and in the error bounds obtained later on, the
polynomial terms depending on ζ would vanish which results in sharper
error bounds. The reason for only assuming ζ finite moments is to be
more in line with the classical factor literature, see among others Bai
(2003), Stock and Watson (2002a), Forni, Hallin, Lippi, and Reichlin
(2000), and Forni, Hallin, Lippi, and Zaffaroni (2017). E.g., Bai (2003)
derived his inferential results for factor models under 8th finite moments
of the idiosyncratic part and 4th finite moments of the factors. Note
that the filter in Assumption 10 can be the one-sided representation of
a rational filter as in Assumption 2 in Forni, Hallin, Lippi, and Zaffa-
roni (2017), that is b(L) = c(L)/d(L), where d has no roots in the disc
{c ∈ C||c| ≤ φ}, φ > 1. Assumption 11 is a rather standard assumption
in the factor literature, see Stock and Watson (2002a) and Bai (2003).
It implies that each of the factors provides a non-negligible contribu-
tion to the variance of each component of {xt}. We like to point out
here that the time and cross-sectional dependence of the idiosyncratic
component is only limited by assuming that it follows a sparse VAR
model. Furthermore, it is not clear if assuming a sparse VAR model
for the idiosyncratic part is a special case of the assumptions to time
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and cross-section dependence in the factor literature, see among others
Bai, 2003, Assumption C or Forni, Hallin, Lippi, and Zaffaroni, 2017,
Assumption 4. The reason for this is that the sparsity is not fixed but
it can grow with sample size. Nevertheless, the error bounds obtained
later on require that the sparsity cannot grow too fast with increasing
dimension.

5.3 Estimation

In this section we outline a two-step approach to estimate a DFM with
sparse VAR idiosyncratic components and we prove its consistency. For
this, let xt, t = 1, . . . , T be some observations and let X = χ + Ξ
denote the T × N matrix form of (5.1). Furthermore, Λ denotes the
N×r matrix of loadings and F denotes the T ×r matrix of factors such
that χ = FΛ> is the matrix counterpart of (5.2). Then, an estimation
of the factor decomposition can be obtained by using PCA, see among
others Bai (2003) and Bai and Ng (2020). For this, let X/

√
NT =

UNTDNTV
>
NT denote a singular value decomposition of X/

√
NT such

that DNT is a diagonal matrix with the singular values arranged in
descending order on its diagonal. UNT and VNT are the corresponding
left and right singular vectors, respectively. This can further be written
as UNTDNTV

>
NT = UNT,rDNT,rV

>
NT,r + UNT,N−rDNT,N−rV

>
NT,N−r,

where DNT,r is a diagonal matrix with the first r largest singular val-
ues, dNT,1, . . . , dNT,r, arranged in descending order on its diagonal,
DNT,N−r is a diagonal matrix with the remaining N−r largest singular
values, and UNT,r,UNT,N−r,VNT,r,VNT,N−r are the corresponding left
and right singular vectors. The estimators of some rotated version of
F and Λ are then given by F̂ =

√
TUNT,r and Λ̂ =

√
NVNT,rDNT,r

such that χ̂ = F̂ Λ̂> and ξ̂ = xt − χ̂. We use here the normalization
F̂>F̂ /T = Ir and Λ̂>Λ̂ is a diagonal matrix.

We are assuming {ξt} follows a sparse vector autoregressive model which
can be estimated by regularized methods such as the (adaptive) lasso.
This idea leads to the following two-step estimation procedure:
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1. Perform a singular value decomposition of
X/

√
NT = UNT,rDNT,rV

>
NT,r+UNT,N−rDNT,N−rV

>
NT,N−r, where

UNT,rDNT,rV
>
NT,r corresponds to the first r singular values.

Set F̂ =
√
TUNT,r and Λ̂ =

√
NVNT,rDNT,r, and ξ̂ = xt− F̂ Λ̂>.

2. Let ξ̂vt = (ξ̂>t , . . . , ξ̂
>
t−p)

>. Then, an adaptive lasso estimator for

β(j), i.e., the jth row of (A(1), . . . ,A(p)), is given by

β̂(j) = argmin
β∈Rnp

1

T − p

T∑
t=p+1

(ξ̂j,t − β>ξ̂vt−1)
2 + λ

N∑
i=1

|giβi|, (5.4)

for j = 1, . . . , N and where λ is a non-negative tuning parameter
which determines the strength of the penalty, gi, i = 1, . . . , N,
are weights, for instance, gi = 1 leads to the standard lasso. Let
(Â(1), . . . , Â(p)) be matrices corresponding to stacking β̂(j), j =
1, . . . , N .

For a sparse stationary VAR model, deviation bounds and restricted
eigenvalue conditions can be established, see Basu and Michailidis (2015b)
and Kock and Callot (2015). Given these, the consistency of the lasso
can be derived easily. However, as the idiosyncratic component {ξt} is
not observed in our setting and hence needs to be estimated, the re-
gression in Step 2 is performed only with the estimated idiosyncratic
component. Hence, the results of Basu and Michailidis (2015b) and
Kock and Callot (2015) cannot be applied here. Before analyzing the
second step, we in fact need to quantify the estimation errorwt := ξ̂t−ξt
coming from the first step. The aim is to quantify the estimation error
wt in quantities like ‖1/T

∑T
t=1(ξt +wt)(ξt +wt)

>‖max. If we simply
apply the rate derived in the literature for approximate factor models,
see among others Stock and Watson (2002a) and Bai (2003) which de-
rive wt = OP (max(1/

√
T , 1/

√
N)), we would obtain ‖1/T

∑T
t=1(ξt +

wt)(ξt + wt)
>‖max = ‖1/T

∑T
t=1 ξtξ

>
t ‖max + OP (max(1/

√
T , 1/

√
N)).

However, this can be improved if we analyze the estimation error wt

more closely. For this, we follow the idea of the decomposition in eq.
(6) in Bai and Ng (2020). To elaborate, we have 1/(NT )XX>F̂ =
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F̂D2
NT,r. Plugging in (5.1), and using the rotation matrix

H>
NT = (Λ>Λ/N)(F>F̂ /T )D−2

NT,r, (5.5)

we obtain the following representation for the error between the esti-
mated factors and a rotated version of the true factors

f̂t −HNTft =

=
1

NT

[ N∑
i=1

T∑
s=1

f>
t Λiξi,sf̂s +

N∑
i=1

T∑
s=1

ξi,tΛif
>
s f̂s +

N∑
i=1

T∑
s=1

ξi,tξi,sf̂s

]
D−2
NT,r.

(5.6)

Similarly, we obtain by symmetry for the loadings

(H>
NT )

−1Λi − Λ̂i =

=
1

T

[ T∑
s=1

HNTfsξi,s +

T∑
s=1

(f̂s −HNTfs)ξi,s

+

T∑
s=1

HNTfs[f̂s −HNTfs]
>(HT

NT )
−1Λi

T∑
s=1

[f̂s −HNTfs][f̂s −HNTfs]
>(HT

NT )
−1Λi

]
.

These representations can be used to derive the order of the estimation
error for the factors and loadings as it is done with a slightly different
rotation matrix in Bai (2003). However, as our focus is not only on the
factors and loadings but also on wt := ξ̂t − ξt, we use these results to
derive a simpler representation of wt, see the following Theorem 5.1.

Theorem 5.1. Under Assumption 9, 10, and 11, we have for
t = 1, . . . , T, j = 1, . . . , N

f̂t −HNTft =
1

NT

[
N∑
i=1

T∑
s=1

ξi,tΛif
>
s HNTfs +

N∑
i=1

T∑
s=1

ξi,tξi,sHNTfs

]
D−2
NT,r
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+OP

(
log(N)

T
+
kξ
N

+

√
log(N)√
NT

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))
, (5.7)

(H>
NT )

−1Λj − Λ̂j =
1

T

T∑
s=1

HNTfsξj,s + Errorj , (5.8)

and

wj,t := ξ̂i,t − ξi,t =

= Λ>
j H

−1
NT

1

NT

[
N∑
i=1

T∑
s=1

ξi,tΛif
>
s HNTfs +

N∑
i=1

T∑
s=1

ξi,tξi,sHNTfs

]
D−2
NT,r

+ f>
t H>

NT

1

T

[
T∑
s=1

HNTfsξj,s

]
+ Errori, (5.9)

where

max
i

|Errori| =

= OP

(
log(N)

T
+
kξ
N

+

√
log(N)√
NT

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))
.

(5.10)

With the obtained representation for wt, we can analyze the estimation
error of the second step. For this, note first that ‖1/T

∑T
t=1(ξt+wt)(ξt+

wt)
>‖max ≤ ‖1/T

∑T
t=1(ξt)(ξt)

>‖max+2‖1/T
∑T

t=1(wt)(ξt+wt)
>‖max+

‖1/T
∑T

t=1(wt)(wt)
>‖max and the following Corollary 5.1.

Corollary 5.1. Under the conditions of Theorem 5.1, we have the fol-
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lowing:∥∥∥∥∥ 1T
T∑
t=1

wtξ
>
t

∥∥∥∥∥
max

=

= OP

(
kξ
N

+
log(N)

T
+

√
log(N)√
NT

+ (NT )2/ζ−1kξ +
(NT )4/ζ

T 2

)
,∥∥∥∥∥ 1T

T∑
t=1

wtw
>
t

∥∥∥∥∥
max

=

= OP

(
kξ
N

+
log(N)

T
+

√
log(N)√
NT

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))

‖ 1
T

∑T
t=1wtξ

>
t−1‖max = OP (‖ 1

T

∑T
t=1wtξ

>
t ‖max), ‖ 1

T

∑T
t=1wtw

>
t−1‖max =

OP (‖ 1
T

∑T
t=1wtw

>
t ‖max).

As mentioned previously, if we just plug-in the rate for wt we would
obtain the slower rate of OP (max(1/

√
T , 1/

√
N)). With the results

above we can establish bounds for the estimation error of the second
step, see the following Theorem 5.2.

Theorem 5.2. Under Assumption 9, 10, and 11 we have for j =
1, . . . , N

‖β̂(j) − β(j)‖1 = ‖Â−A‖∞ =

= OP

(
k

[√
log(Np)/T + (NpT )2/ζ/T + k

(
kξ
N

+

√
log(Np)√
NT

+ (NpT )2/ζ

(
kξ
NT

+
1√
NT

+
1

T 3/2
+ (NpT )2/ζ

1

T 2

))]1−q)
(5.11)

‖β̂(j) − β(j)‖2 = OP

(
√
k

[√
log(Np)/T + (NpT )2/ζ/T
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+ k

(
kξ
N

+
log(Np)

T
+

√
log(Np)√
NT

+ (NpT )2/ζ
( kξ
NT

+
1√
NT

+
1

T 3/2
+ (NpT )2/ζ

1

T 2

))]1−q/2

+ k3/2

[√
log(Np)/T + (NpT )2/ζ/T

+ k

(
kξ
N

+
log(Np)

T
+

√
log(Np)√
NT

+ (NpT )2/ζ

(
kξ
NT

+
1√
NT

+
1

T 3/2
+ (NpT )2/ζ

1

T 2

))](3−q)/2)
.

(5.12)

Let us have a closer look on the bound ‖β̂(j)−β(j)‖1 and consider N =
T a, p = T b, k = T c, kξ = T d for some a, b, c, d > 0. Furthermore, let ζ ≥
4(1 + a+ b). Then, we can simplify the error bound in O-notation and
obtain ‖β̂(j) − β(j)‖1 = OP (log(T )

(1−q)/2T c−(1−q)/2 + T c+(1−q)(c+d−a)).
That means a consistent estimation is obtained if c < 1/2(1 − q) and
c/(1 − q) + c + d < a. The first condition, i.e., this upper bound on
the sparsity in relation to sample size T , is standard for approximately
sparse models, see among others Corollary 2.4 in Geer (2016). In con-
trast, the second condition is not standard for approximately sparse
models and appears due to the estimation error of the first step. This
condition reflects the error occurring in factor models which are due
to the introduced dependency of the VAR model not exact but only
approximate. Hence, the time and cross-sectional dependency of the
idiosyncratic component is quantified by k and kξ, i.e., c and d, and
this dependency cannot be too strong in relation to the dimension such
that it can be averaged out and a decent estimation of the common and
idiosyncratic component can be obtained.

Note that if a sparsity is considered such that ‖β̂(j) − β(j)‖1 = oP (1),
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then the terms with k3/2 upfront in the error bound ‖β̂(j) − β(j)‖2 are
of higher order and negligible.

As mentioned, a major application of the dynamic factor model (5.1) is

forecasting. For this, let f
(1,pf )
T+1 =

∑pf
j=1Π

(pf )
j fT+1−j be the linear one-

step-ahead prediction based on fT , . . . ,fT−pf , where
∑pf

j=1Π
(pf )
j Γf (i−

j) = Γf (i), i = 1, . . . , pf and Γf (i− j) = Eft+if>
t−j . Furthermore, since

{ξt} follows a VAR(p) model, ξ
(1)
T+1 = A(ξ>T , . . . , ξ

>
T−p)

> is the one-
step-ahead prediction for the idiosyncratic component. That means,

X
(1,pf )
T+1 = Λf

(1,pf )
T+1 + ξ

(1)
T+1 is the joint one-step-ahead prediction for

XT+1 with the prediction error Var(XT+1 −X
(1,pf )
T+1 ) = ΛVar(f

(1,pf )
T+1 −

fT+1)Λ
> + Σv and for a single variable j we have Var(e>j (XT+1 −

X
(1,pf )
T+1 )) = Λ>

j Var(f
(1,pf )
T+1 − fT+1)Λj + e>j Σvej . If {ft} follows a

VAR(pf ) model, this simplifies to Var(XT+1 − X
(1,pf )
T+1 ) = ΛΣuΛ

> +
Σv.

Since the parameters are unknown and the factors and idiosyncratic
component are latent, this approach is unfeasible but the results of
Theorem 5.1 and 5.2 help to obtain a feasible approach. For this
we construct feasible counterparts of the prediction approach above,

let f̂
(1,pf )
T+1 =

∑pf
j=1 Π̂

(pf )
j f̂T+1−j be the linear one-step-ahead predic-

tion based on f̂T , . . . , f̂T−pf , where
∑pf

j=1 Π̂
(pf )
j Γ̂f (i − j) = Γ̂f (i), i =

1, . . . , pf and Γ̂f (i− j) = 1/n
∑T−i

t=1+j f̂t+if̂
>
t−j .

Furthermore, let ξ̂
(1)
T+1 = Â(ξ̂>T , . . . , ξ̂

>
T−p)

> be the one-step-ahead pre-

diction for the idiosyncratic component. Then, X̂
(1,pf )
T+1 = Λ̂f̂

(1,pf )
T+1 +

ξ̂
(1)
T+1 is the joint and feasible one-step-ahead prediction for XT+1. Since

even though a high-dimensional time series system is considered the in-
terest is often in the prediction of some key times series, we quantify
in the following Theorem 5.3 the estimation error between the feasible
and unfeasible approach for a single time series.
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Theorem 5.3. Under Assumption 9, 10, and 11 we have for j =
1, . . . , N

e>j (X̂
1,pf
T+1 −X

(1,pf )
T+1 ) = OP

(
1/
√
N + k

[√
log(Np)/T + (NpT )2/ζ/T

+ k

(
kξ
N

+

√
log(Np)√
NT

+ (NpT )2/ζ

(
kξ
NT

+
1√
NT

+
1

T 3/2

+ (NpT )2/ζ
1

T 2

))]1−q)
.

In relation to the error bound for ‖β̂(j)−β(j)‖1 derived in Theorem 5.2
only an additional 1/

√
N appears.

5.3.1 Estimation with Strong Idiosyncratic Components

In the error bounds in Theorem 5.2 and 5.3, the factor kξ/N plays an
important role. kξ = ‖Var(ξt)‖∞ quantifies the serial dependence of
the idiosyncratic component. If this is large, the estimation in all steps
suffers. Motivated by Generalized Least Squares (GLS) Boivin and Ng
(2006) proposes to weight the data such that the serial dependence of
the idiosyncratic component can be decreased. This approach is also
denoted generalized principal component analysis and it is analyzed in
more detail in Choi (2012). Let W ∈ RN×N be a matrix of weights,
then the factors are estimated using the weighted data XW . Note that
we have Var(XW ) = WΛΣFΛ

>W +WΓξ(0)W
>. Hence, the factors

can be estimated by a PCA of XW whereas the loadings are obtained
by regressing X onto the estimated factors. Since non-diagonal weight-
ing schemes are seldom feasible without sparsity constraints, Boivin and
Ng (2006) suggest different diagonal weighting schemes. With the addi-
tional assumption that the Σv – the variance matrix of the idiosyncratic
innovation vt – is sparse, we suggest to use the VAR structure of the
idiosyncratic component to obtain a more refined weighting scheme.
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To elaborate, we have that Var(ξt) = Γξ(0) =
∑∞

j=0B
(j)Σv(B

(j))>,

where (B(j))r,c = (Aj)r,c, r, c = 1, . . . , N . Hence, Γξ(0) is given by
A(1), . . . ,A(p),Σv and it can be estimated by plugging in estimators,
see among others Theorem 5 in Krampe and Paparoditis (2021). Let
us denote this estimator as Γ̂ξ(0). Depending on whether sparsity con-
straints onΣv orΣ

−1
v are more realistic, estimators are given by thresh-

olding of the empirical covariance matrix (Bickel and Levina, 2008; Cai
and Liu, 2011) or by component-wise regularized regression (Friedman
et al., 2008; Cai, Liu, and Zhou, 2016; Cai, Ren, et al., 2016). The
weighting matrix is then given as W = Γ̂ξ(0)

−1/2. Consequently, the

“new” kξ is given by ‖Γ̂ξ(0)−1/2Γξ(0)Γ̂ξ(0)
−1/2‖∞ which can be consid-

erably smaller if the used estimators give reasonable results. Since the
weighting leads also to a new estimation of the idiosyncratic component,
it might be helpful to apply this approach more than once.

5.3.2 Similarity and Differences to Low-Rank plus Sparse Models

As mentioned the low-rank plus sparse VAR model discussed in Basu,
Li, et al. (2019) as well as the linear dynamical system discussed in Lin
and Michailidis (2019) are related to the model proposed here. We now
stress out the similarities and differences of these models beginning
with the model of Basu, Li, et al. (2019). The low-rank plus sparse
VAR model of order p is given by xt =

∑p
j=1Θ

(j)xt−j + εt, Θ(j) =

L(j) + S(j), rank(L(j)) = r � N, where εt is some white-noise process,
L is a low-rank matrix, and S(j) possesses some sparsity structure. The
low-rank matrix takes here the role of the common component, see also
Bai and Ng (2019). Thus, this approach also combines a dense and a
sparse approach. However, there are two major differences to the ap-
proach presented in this Chapter. First, note that while the low-rank
plus sparse VAR model is some special form of a VAR(p) model, a dy-
namic factor model is instead in general a VAR(∞) process even if the
factors and idiosyncratic components follow finite order VAR processes.
Second and most important, with the approach presented here we can
derive estimation error bounds for a singe time series, see Theorem 5.3.
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This is in contrast to the results derived in Basu, Li, et al. (2019). They
impose sparsity constraints on vec(S(j))2 and they do not estimate the
VAR system row-wise as in (5.4). Instead, all regression equations are
combined using the Frobenius norm, the VAR slope matrices are consid-
ered as a sum of two matrices where the first matrix is regularized using
the nuclear norm – this imposes a low-rank structure – and the second
matrix is regularized using the `1 norm on the vectorized matrix – this
imposes a sparse structure. They derive error bounds only regarding
the Frobenius norm. That means they consider only the overall estima-
tion error. In connection with the sparsity constraints on vec(S(j)) this
is too restrictive or too less detailed for the row-wise estimation error
which is helpful for a single forecast. For a more detailed discussion
of the different sparsity concepts and their implication regarding esti-
mation error bounds we refer to Section 2 in Krampe and Paparoditis
(2021).

For the model discussed in Lin and Michailidis (2019) note first that
a dynamic factor model xt = Λft + ξt whose idiosyncratic component
follows a VAR(p) model ξt =

∑p
j=1A

(j)ξt−j+vt can be written as xt =∑p
j=1A

(j)Λft−j+
∑p

j=1A
(j)xt−j+vt. The component

∑p
j=1A

(j)Λft−j
can be considered as the common component of general dynamic factor
model as in Forni, Hallin, Lippi, and Reichlin (2000) and it is low-
rank. Lin and Michailidis (2019) consider that the matrices A(j), j =
1, . . . , p are sparse and they impose sparsity constraints on vec(S(j)).
Furthermore, they combine all regression equations using the Frobenius
norm and the low-rank part is handled by regularization of its nuclear
norm. Similarity to Basu, Li, et al. (2019), they derive error bounds
only regarding the Frobenius norm. That means for a forecast of a
single time series the same drawbacks described above apply. Let us
note here that it is not clear if the approach of handling the low-rank
part by regularization of its nuclear norm can be also done equation by
equation such that error bounds more helpful for a forecast of a single
time series can be derived.

2Basu, Li, et al. (2019) consider also a group-sparse structure for S(j). For this
sparsity concept the discussion is quite similar.
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5.4 Number of Factors, Lag-length and Penalty Tuning

5.4.1 Number of Factors

The seminal work of Bai and Ng (2002) introduced a focus over the cor-
rect specification of the number of factors, which were up to that point
mostly assumed, rather than data-driven. The idea for how to tackle es-
timation of the number of common factors is induced by the well known
fact that a certain amount of eigenvalues of the covariance matrix of
the data diverges to infinity (i.e.,the common factors), whereas the re-
maining ones stay bounded. As a consequence, if one finds a threshold
able to clearly separate among those finite and infinite eigenvalues, the
problem is solved. Bai and Ng (2002) designed precisely this, namely an
information criteria able to threshold the diverging eigenvalues. Their
key contribution lies in the fact that they allow both the cross-sectional
dimension as well as the time dimension to diverge. The immediate con-
sequence is the exclusion from the pool of candidate techniques aimed
at consistently estimate the number of factors, of any standard infor-
mation criteria like AIC or BIC, only depending on either one of the
dimensions. In fact, their framework calls for the penalty for overfitting
to be a function of both N and T . Their approach in estimating the
common factors is non-parametric through the method of asymptotic
principal components and their asymptotic results yields consistent es-
timation of the number of factors. However, in practice, Bai and Ng
(2002) criterion suffers from a penalty identification issue which can re-
turn non-robust results as the number of factors can be overestimated
or underestimated. As observed in Hallin and Lǐska (2007) and Alessi
et al. (2010) (HLA henceforth), for respectively the cases of dynamic
and static factor models, the consistency of the estimated number of
factors via the Bai and Ng (2002) criterion still holds if the penalty
parameter is multiplied by an arbitrary real, positive constant c. While
this is asymptotically elegant, in finite samples (both N and T ) can
result in arbitrary large or arbitrary small values of the penalty, thus
gravely affecting the results. To bypass this issue, HLA proposed to
pre-multiply the penalty function by a positive real number c. In other
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words, by letting the criterion to be dependent on c and by splitting the
sample size in sub-batches then the number of factors calculated over
the batches becomes a monotonic function of c. The tuning of c then
allows for either no penalization when c = 0, underpenalization when c
is positive but small and overpenalization when c is positive but large.
It follows that c is optimized whenever the value of c let the number of
factors to be a stable function over the batch.

Alternatively to thresholding the eigenvalues, one could compute the
ratio of adjacent eigenvalues as this is also bound to diverge. Among
others, Onatski (2009) followed this route, showing the asymptotic dis-
tribution of their proposed test statistics to be a function of the Tracy-
Widom distribution.

While the above mentioned criteria to choose the number of factors
are standard and often computationally appealing, they do rely on a
set of assumptions over the factors, their loadings and the idiosyncratic
errors. An alternative methodology to estimate the number of factors is
proposed in Trapani (2018) for the case of a static approximate factor
model. There, a sequential, randomized test for the jth eigenvalue
being divergent or bounded is proposed. The estimation of the factors is
then found to be robust to a wide variety of data generating processes,
including those affected by serial and cross-sectional dependence and
also to the presence of weak factors.

5.4.2 Lag-length

Until now we assumed the lag-length p to be given. Clearly, in practice,
p needs to be estimated. Theoretically, one can safely assume the VAR
lag-length p to be reasonably small in a high-dimensional framework (see
e.g., Hecq et al., 2016). The reason is to be found in deriving the VAR(p)
final equation representation (Zellner and Palm, 1974). Consider the
VAR equation (5.3) for the idiosyncratic components in terms of the
lag-operator L, such that for A(L) = (I −A(1)L− . . .−A(p)Lp):

A(L)ξt = vt. (5.13)
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Pre-multiplying both sides of (5.13) by Aadj(L) = det(A(L))A(L)−1

i.e.,the adjoint of the matrix polynomial, one obtains

det(A(L))ξt = Aadj(L)vt. (5.14)

Each cross-sectional equation in (5.14) then follows an ARMA(Np, (N−
1)p) which is of maximal orders already e.g.,for a setting as N = 100
and p = 2.

Practical ways to estimate a (global) lag-length are introduced in Chap-
ter 3 where we marginalize the VAR system into a sequence of uni-
variate AR(p) processes, and select the lag-length by minimizing an
approximated Bayesian Information criterion (BIC) on the residual co-
variance matrix. Such procedure is effectively an empirical upper-bound
since the VAR system is diagonalized to avoid the dimensionality issue.
As a consequence, the lag-length is actually estimated only on the au-
toregressive component of each equation, which will naturally tend to
upper-bound the true lag. However, in practice this approach selects
the right lag-length most of the time with only seldom minor over-
estimations in large systems. Consistency of the BIC up to a slowly
diverging constant CN (as long as CNN log(T )/T → 0) in the penalty
term has been proved in Wang, Li, and Leng (2009). There, they show
under a set of technical assumptions on: the divergence speed of the
model dimension (lim sup(N/Tα) < 1 for α < 1), the size of the non-
zero coefficients (

√
[T/CTN log(T )] lim infT→∞(minj∈S |βj |) → ∞) and

minimum eigenvalue of the covariance matrix to be bounded away from
zero, that this only slightly modified BIC can identify the true model
consistently even when the dimensions diverge.

Alternatively, one can embrace the high-dimensionality and directly ap-
ply regularizations of the lasso type. Note how this only shifts the model
selection problem from a BIC applied over estimated AR(p) residuals
as in Chapter 3, to the choice of the tuning parameter in the regu-
larization technique. The rationale of the latter approach is clear: as
the lasso should shrink and eventually set to zero the coefficients of
those irrelevant parameters, then one should have that the elements
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of the lasso-estimated Â(j) = 0 for all j > p where p is the true lag-
length. Selection consistency of these shrinkage estimators crucially
relies on how one tunes their penalty parameter. Although widely em-
ployed in practice, the generalized cross validation method does not
consistently recover the true model even in fixed dimension settings
(see e.g.,Wang, Li, and Tsai (2007) and Wang and Leng (2007) for ex-
amples with SCAD and Adaptive lasso). Wang, Li, and Leng (2009)
shows again that their slightly modified BIC, when employed to tune
the penalty parameter in SCAD and lasso, renders these shrinkage es-
timators selection-consistent.

In light of the decomposition shown in (5.14), there seems to be not
much gain, both computationally and in terms of possible erratic be-
haviors due to high-correlations, to use these shrinkage estimators for
the purpose of lag-length selection. This is true especially if one is
more concerned with inference than forecasting and, consequently, is
more lenient over the usual assumption of a unique lag-length for the
whole VAR system (cf. short range dependence). One interesting ex-
ception is the hierarchical penalties of Nicholson, Wilms, et al. (2020),
these include the notion of lag selection into a convex regularizer and
they can be used on a set of values for p, possibly varying the lag-length
over different variables. A group lasso with nested groups guarantees
that the sparsity pattern of lag coefficients correctly mimics the VAR
structure.

5.4.3 A Combined Approach for Single Time Series

In light of the previous paragraphs, we seek for a unified procedure
able at the same time to consistently estimate the lag-length as well as
the number of factors. For a given lag-length and number of factors,
the penalty parameter can be chosen with the approaches discussed in
the next paragraph and we take this as granted here. Furthermore, we
would like to put the focus more on the objective of forecasting single
time series of the system. In doing so we would also like to allow that
the lag-length or number of factors may differ across the time series.

249



Chapter 5. Dynamic Factor Models with Sparse VAR Idiosyncratic
Components

The reason for this is that large data sets come as a – in some sense
arbitrary – collection of series and it is most likely that some series are
not driven by factors or a small lag-length is sufficient. Since parameters
can be zero, this is of course all contained in a model which number of
factors and lag-length is given by maximum over the individual series.
However, this can make a difference in finite samples.

For this, we consider that the factors are driven by a VAR model that
is ft =

∑pf
j=1Πjft−j + vt−j . That means we have two lag-lengths to

chose: p and pf . The one-step ahead forecast error of model (5.1) for
the j component is given by

Var
(
xi,t −

pf∑
j=1

Λ>
i Πjft−j −

p∑
j=1

e>i Ajξt−j

)
.

If we do not treat the estimation of the factors and idiosyncratic com-
ponents as additional parameters, we have the parameters
ΛiΠ1, . . . ,ΛiΠpf ∈ Rr, e>i A1, . . . , e

>
i Ap ∈ RN . Note that

e>i A1, . . . , e
>
i Ap are sparse and we treat ΛiΠj as r-dimensional vectors.

That means in total we have rpf +
∑p

j=1 ‖e>i Aj‖0 parameters for the

jth component. Following the approach of Wang, Li, and Leng (2009)
with a modified BIC and CT denotes a diverging series, this motivates
the following information criteria

ICT,N := min
r,p,pf

log
1

T

T∑
t=1+max(p,pf )

xi,t − pf∑
j=1

Λ̂>
i Π̂j f̂t−j −

p∑
j=1

e>i Âiξ̂
(r)
t

2

+ (rpf +

p∑
j=1

‖e>i Âj‖0)
log(T )

T
CT .

(5.15)

In practice the minimum is evaluated over a finite grid. That means one
sets maximal number of factors rmax and maximal lag-lengths pmax, p2,max.
If one sets rmax = 0 or pmax = 0, this criteria can also be used to fit plain
sparse VAR models or plain factor models, respectively. The series CT
can be diverging very slowly and Wang, Li, and Leng (2009) suggest
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for instance, log(log(T )). We would like to consider the diverging di-
mension and follow a similar route as Bai and Ng (2002), Hallin and

Lǐska (2007), and Alessi et al. (2010). So we set CT = c log(NT/(N+T )
log(T )

and c = 1/2.

5.4.4 Penalty Tuning

Another important aspect to consider within the framework of
`1-regularizations is the choice of the tuning parameter λ. The latter
should be set in order to balance between the fit of the model and its
complexity, thus trading off bias with variance. Whenever the tuning
parameter is large in its magnitude, the consequence is strong variable
selection, i.e., many potentially relevant variables might be set to zero
by the regularization technique (e.g lasso), thus implying a larger es-
timation bias. In parallel, when instead λ ≈ 0, no variable selection
is performed and thus regularization techniques such as lasso converge
in the limit to the standard OLS estimator. Among the most popular
techniques to tune λ is cross-validation (CV). While CV have seen a
surge of applications in statistics in the last ten years, it can suffer of
some shortcomings. First, it is often computationally demanding, espe-
cially in high dimensions, given it has to recursively train and validate
on batches of the sample. Second, it needs to be adapted for different
data. For instance, when working with time series, CV needs to be
adapted to avoid temporal dependence disruptions when defining the
folds (see e.g. Bergmeir et al., 2018). In fact, a rolling K-fold cross val-
idation needs to be used in order to gradually train the series avoiding
to lose their dependence. Chetverikov et al. (2020) showed that K-fold
CV applied to the lasso has nearly optimal rates of convergence in `1, `2
prediction norms. However, the technique tends to render small values
of λ which in turn imply less variable selection, thus making it not a
particularly favorable method, especially in very large dimensions where
more shrinkage would be required.

Alternatively, a fast and reliable way of tuning λ is by minimizing an
information criterion (IC). Let ξvt,S be the subvector containing those

251



Chapter 5. Dynamic Factor Models with Sparse VAR Idiosyncratic
Components

columns of ξvt belonging to the set S. Let further Ŝ be the active set
identified by the lasso for a given λ. Then the value λIC chosen by
information criteria is found as

λIC = argmin
λ

(
ln

(
1

T − p+ 1

T∑
t=p+1

(
ξj,t −

p∑
j=1

β>
S(λ)ξ

v
t−j,S(λ)

)2)

+

(
1

T − p+ 1

)
CT df

)
,

where df represents the degrees of freedom after the penalization, i.e.,
the cardinality of the estimated active set. CT is the penalty specific
to each criterion, where the most popular choices are: CT = 2, the
Akaike information criterion (AIC) by Akaike (1974); CT = log(T ), the
Bayesian information criterion (BIC) by Schwarz (1978). As for the case
of the lag-length selection in Remark 5.4.2, the slight modification of
the BIC proposed in Wang, Li, and Leng (2009) also holds for penalized
estimators as the lasso, thus making it consistent asymptotically in both
N and T .

Yet another approach in tuning λ is a theoretical one (see e.g. Bickel,
Ritov, et al., 2009; Belloni and Chernozhukov, 2013; Belloni, Cher-
nozhukov, and Wang, 2011). Namely, the tuning parameter has to be
set to upper bound the gradient of the criterion function (i.e., the score),
thus introducing bias towards zero to reduce the variance. Then, it is
enough to require with high probability that λ ≥ c||ξ′tv||∞/T , where
c is an absolute constant and c||ξ′tv||∞/T is often referred to as the
effective noise. In fact, any high-probability bound on the effective
noise can be used as lower bound for λ. Since v is unknown, sev-
eral Gaussian approximations has been proposed in the literature (see
inter alias: Chernozhukov, Chetverikov, et al., 2013; Chernozhukov,
Chetverikov, et al., 2014; Zhang and Wu, 2017). With normality of the
innovations the choice of the tuning parameter reduces to simple ex-
pressions for λ depending on the Gaussian CDF. Similarly, Belloni and
Chernozhukov (2013), Belloni, Chernozhukov, and Hansen (2011a), and
Chernozhukov, Hansen, et al. (2016) use penalty loadings to first-order
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self-normalize the the lasso problem and hence applying moderate de-
viation theory results (see Jing et al., 2003) to bound deviations of
the maximal element of the score vector. The only disadvantage of
such theoretically sounding alternatives is that the practitioner can only
strengthening or weakening the magnitude of λ through arbitrary in-
creases or decreases of step ε̃ of the universal constant(s) c present in the
derived expressions for λ, i.e., c±ε̃. In other words, they depend on some
free parameters and hence are not entirely data-driven. An overview of
the performances of these different choices of λ can be found in Chap-
ter 2 where we compare these under the setting of Granger causality
testing in high-dimensional stationary VAR models. A notable recent
exception is represented by Lederer and Vogt (2020). They design a
bootstrap-based estimator of the quantiles of the effective noise which
attains optimal finite-sample guarantees and it does not depend on any
free parameters.

5.5 Numerical Results

5.5.1 Simulation Set-up & Data Generating Processes

All results presented in this section are based on implementations in R
(R Core Team, 2020). In the simulation setup, we generate the data gen-
erating processes (DGPs) at random and consider the following model
class: xt = Λft+ξt,ft =

∑pf
j=1Π

(j)ft−j+ut, ξt =
∑p

j=1A
(j)ξt−j+vt.

The innovations {ut}, {vt} are generated as Gaussian processes and
Σu = Var(ut) is generated as a positive definite matrix with eigenvalues
in the range 1 to 10 using the implementation of the package cluster-
Generation (Qiu and Joe., 2020). If not denoted otherwise, sparsity of
a matrix is obtained by setting entries – beginning with the absolute
smallest values – to zero such that the specified amount of sparsity is
obtained. Furthermore, we consider the following specifications:

• The number of factors is given by r ∈ {0, 2, 4, 6}.

• The sample is given by T ∈ {100, 200}.
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• The dimension is given by N ∈ {50, 100, 250}.

• The lag-length of the VAR driving the factors is given by pf ∈
{0, 1, 2}. The slope matrices are generated at random and the
maximal absolute eigenvalue of the stacked VAR matrix is 0.8.

• The lag-length of the VAR driving the idiosyncratic component is
given by p ∈ {0, 1, 3}. The slope matrices are generated at random
with a row-wise and column-wise sparsity of k ∈ {5, 10,min(N, 100)}
and the maximal absolute eigenvalue of the stacked VAR matrix
is 0.8.

• Σv = Var(vt) is generated as a positive definite matrix with eigen-
values in the range 1 to 10 and sparsity of kΣ ∈ {N/10, N}.

• The loadings Λ ∈ RN×r are generated by random sampling from
a Uniform[−1, 1] distribution with a column-wise sparsity of kΛ ∈
{N,N/2, N/2∗}. N/2∗ refers to a setting in which the lower left
and upper right part are zero. For this setting, also the the lower
left and upper right part of Π(j), j = 1, . . . , pf and Σu is set to
zero.

Note that a sparsity of N implies no sparsity. Dropping unneces-
sary combination, e.g., varying the sparsity for p = 0, we end up in
2352 different set ups for the DGP. We run each set up 100 times.
To evaluate the performance, we consider the average one-step ahead
prediction error of the first ten time series based on T observation
of the original processes and evaluated at 1000 time points. That is

MSFEx = 1
10

∑10
i=1

[
1

1000

∑1000
t=1 (x̂

(1)
i,T+t−x

(1)
i,T+t)

2
]
. We consider the fol-

lowing models to predict:

DFMsVAR: The approach presented in this Chapter, i.e., a DFM
with a VAR for the factors and a sparse VAR for the idiosyncratic
component. The number of factors and lag-length are chosen by
the information criteria of Section 5.4.3. The sparse VAR is esti-
mated by a row-wise adaptive lasso and the penalty parameter is
chosen by BIC.
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sVAR: A sparse VAR which is estimated by a row-wise adaptive
lasso and the penalty parameter is chosen by BIC. The lag-length
is chosen by the information criteria of Section 5.4.3 and the max-
imal number of factors is set to zero.

DFMAR: A DFM with a VAR for the factors and univariate
AR for the idiosyncratic component. The number of factors and
lag-length for the VAR is chosen by the information criteria of
Section 5.4.3. The lag-lengths of the univariate ARs are chosen
by AIC.

DFM(ABC)AR: A DFM with a VAR for the factors and univari-
ate AR for the idiosyncratic component. The number of factors
is chosen by information criteria of Alessi et al. (2010), the lag-
length for the VAR is chosen by BIC and The lag-lengths of the
univariate ARs are chosen by AIC.

AR: Univariate ARs which lag-length is chosen by BIC.

Mean: A simple mean forecast.

In the following, we present the MSFE-results in relation to the MSFE of
DFMsVAR meaning values larger than 1 indicate a performance worse
than DFMsVAR and values smaller than 1 vice versa. The overall
performance is summarized in Table 5.1. DFMAR and DFM(ABC)AR
differ only in their factor selection criteria. Their performance not only
overall but also in most set ups is quite similar which is why we do not
present results for DFMAR in the following.

sVAR DFMAR DFM(ABC)AR AR Mean
1.05 1.25 1.26 1.34 1.39

Table 5.1: Overall performance measured in MSFE and in relation to
DFMsVAR.

The relative performance over all 2352 different DGP set ups is dis-
played in Figure 5.1. Each dot represents the relative MSE for one DGP
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set up averaged over the runs. The set ups are sorted by lag-length of
the idiosyncratic part p, lag-length of the factors pf , and sparsity. The
obtained groups are highlighted by vertical bars and the specific param-
eter values are given at the bottom of the figure. This sorting is chosen
since these specification parameters matters the most in the sense that
the results can differ substantially among different specification of the
parameter values.

re
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2.5

p_2: 0 1 2 0 1 2 0 1 2
p: 0 1 3
sparsity: 5 10 100 5 10 100 5 10 100 5 10 100 5 10 100 5 10 100

sVAR
DFM(ABC)AR
AR
Mean

Figure 5.1: The relative performance over all 2352 different DGP set ups. Each
dot represents the relative MSE for one DGP set up. The set ups are sorted
by lag-length of the idiosyncratic part p, lag-length of the factors pf , and
sparsity. The obtained groups are highlighted by vertical bars and the specific
parameter values are given at the bottom of the figure. Note that a sparsity
of 100 implies in principle here no sparsity at all.

In the first big block, i.e., p = 0, the idiosyncratic component possesses
no auto-correlation and DFM(ABC)AR performs non-surprisingly the
best. However, the outperformance is quite moderate and even the
plain lasso approach, sVAR, is only slightly worse. In contrast, if the
idiosyncratic component possesses auto-correlation and is sparse (spar-
sity ∈ {5, 10}), DFM(ABC)AR is considerably worse than the sVAR.
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Here, DFMsVAR outperforms all other approaches. This behavior does
not change if the factors add additional auto-correlation or not. What
matters is the sparsity of the idiosyncratic component. If it is not
sparse anymore (sparsity = 100), all approaches do not perform well as
indicated by the fact that the mean is only slightly outperformed. In
the case when no factors and only a non-sparse component are present
(pf = 0, p = 3, sparsity= 100), all approaches perform as bad as
the mean despite the non-sparse component bringing a strong auto-
correlation. Furthermore, in the presence of factors and a non-sparse
component, DFM(ABC)AR outperforms the lasso and in some cases
also DFMsVAR.

5.6 Conclusion

We blend the dense dimensionality reduction of factor models with the
one of sparsity-inducing high-dimensional VARs. Hence, we propose a
dynamic factor model whose factors and relative loadings are estimated
via standard principal components while its idiosyncratic components
are assumed to follow a high-dimensional sparse VAR model and are
thus estimated via `1−norm regularization techniques such as the lasso.
The estimation is articulated in two steps: first the factors and their
loadings are estimated via standard singular value decomposition and
the estimated idiosyncratic components are obtained as estimated resid-
uals. Second, an adaptive lasso is estimated on the previously obtained
idiosyncratic components. As the second step is performed on the esti-
mated idiosyncratic term from step 1, in order to derive the consistency
of the lasso we first derive a simple representation of the idiosyncratic
estimation error which helps to obtain sharper rates for the deviation
bound in the second step. The simple representation is derived from the
decomposition idea in Bai and Ng (2020) which also allows to obtain
an expression for the error between estimated factors/loadings and a
rotated version of the true factors/loadings and hence derive as well the
order of their estimation errors. Through this blended approach we are
able to disentangle the dependence among the factors, i.e., the diverg-
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ing eigenvalues of the covariance matrix, and the dependence among
the idiosyncratic components, i.e., the bounded ones, while allowing for
both cross-sectional and time dependence in the idiosyncratic term. In
order to choose on the one hand the number of factors and on the other
the lag-length of the VAR, we also propose a unified procedure able
simultaneously to estimate both. We consider the factors being driven
by a VAR(pf ) while idiosyncratic components follow a VAR(p) and we
then set up an information criteria minimizing the one-step ahead fore-
cast error of the model over a grid of both p, pf and the number of
factors. The composite penalty of the criterion allows the joint selec-
tion of lags and number of factors. We corroborate our results with a
thorough simulation exercise in which several data generating processes
are considered both for different sparsity patterns as well as different
specifications of the numbers of factors and lag-lengths. We compare
the performances of our proposed method with several workhorse fore-
casting models in the literature and find that the procedure proposed
here performs well.

Appendix A Proofs and additional Lemmas

In order to quantify the dependence of the stochastic processes, we use
the concept of functional dependence, see Wu (2005), and concentration
inequalities derived under this concept of dependence, see among others
Liu et al. (2013) and Wu and Wu (2016). In the following remark 5.1
we summarize the main notation of this dependence concept.

Remark 5.1 (Functional Dependence Measure). Let
Yt;i = Gi(εt, εt1 , . . . , ), i = 1, . . . , N, t ∈ Z, be some process generated
causally by the i.i.d. processes {εt} for some functionG = (G1, . . . , GN ).
Furthermore, denote by

Y
′(k)
t;i = Gi(εt, εt−1, . . . , εt−k+1, ε

′
t−k, εt−k−1, εt−k−2, . . . ) the process where

εt−k is replaced by an i.i.d. copy ε′t−k. We follow Wu (2005) and Wu
and Wu (2016) and define the physical/functional dependence coeffi-

cients in the following way. Let ‖ξi,t‖E,q := (E |ξi,t|q)1/q < ∞, q ≥
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1. Furthermore, let the functional dependence measure be defined as

δk,q,i = ‖Y0;i − Y
′(k)
0;i ‖E,q, k ≥ 0. In order to account for the dependence

in the process Y;i let ∆m,q;i =
∑∞

k=m δk,q;i such that the dependence
adjusted norm is defined as ‖Y;i‖q,α = supm≥0(m + 1)α∆m,q;i. As we
work in a high-dimensional setting, in order to take this into account we
need a uniform dependence adjusted norm Ψq,α = max1≤i≤N ‖Y·;i‖q,α,
and an overall dependence adjusted norm Υq,α = (

∑N
i=1(supm≥0(m +

1)α∆m,q;i)
q)1/q. Furthermore, define for the N dimensional station-

ary process Yt;i the L∞ functional dependence measure with its cor-

responding dependence adjusted norm: ωk,q = ‖‖Yt;i − Y
′(k)
t;i ‖∞‖E,q,

‖‖Y·‖∞‖q,α = supm≥0(m + 1)αΩk,q for Ωm,q =
∑∞

k=m ωk,q. Finally, let

νq =
∑∞

j=1(j
q/2−1ωk,q)

1/(q+1).

Assumption 9 implies that ‖eiB(j)‖2 ≤Mρj . Hence, it follows by Exam-
ple 3 in Wu and Wu (2016) and the moment condition in Assumption 10
that maxj ‖{ξj,t}‖ζ,α <∞ for all α > 0. Since {ft} is a linear processes
of fixed dimension r, we also have maxj ‖{χj,t}‖ζ,α < ∞ for all α > 0.
Hence, we have by the Minkowski-inequality maxj ‖{xj,t}‖ζ,α < ∞,
see also the Proof of Proposition 5 in Forni, Hallin, Lippi, and Zaffa-
roni (2017). Additionally we have by the Cauchy-Schwarz-inequality for
some q > 2, maxj,i ‖{ξj,tfi,t}‖q,α ≤ C(maxj ‖{ξj,t‖2q,α+maxj ‖{fi,t‖2q,α+
maxj ‖{ξj,t‖2q,αmaxj ‖{fi,t‖2q,α), where C is some constant depending
on q only.

Lemma 5.1. Let C1, C2, C3 be constants depending only on q and α.
Under Assumption 9, 10, 11 we have the following:

A) ‖D2
NT,r‖2 = OP (1) and ‖D−2

NT,r‖2 = OP (1)

B) For i = 1, . . . , N and j = 1, . . . , r, we have for q > 2

P

(∣∣∣∣∣
T∑
s=1

ξi,sfj,s

∣∣∣∣∣ ≥ x

)
≤

≤ C1
T maxj,i ‖{ξj,tfi,t}‖q,α

xq
+ C2 exp

(
− C3x

2

T maxj,i ‖{ξj,tfi,t}‖22,α

)
.
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Furthermore,

P

(
max
i,j

∣∣∣∣∣
T∑
s=1

ξi,sfj,s

∣∣∣∣∣ ≥ x

)
≤

≤ C1
NT maxj,i ‖{ξj,tfi,t}‖q,α

xq
+

+ C2 exp

(
− C3x

2

T maxj,i ‖{ξj,tfi,t}‖22,α
+ log(N)

)
.

This implies
maxi,j |1/T

∑T
s=1 ξi,sfj,s| = OP (

√
(log(N)/T ) +N2/ζT 2/ζ−1).

C) For each j = 1, . . . , r, we have for q > 2

P

(∣∣∣∣∣
T∑
s=1

(|fj,s|2 − ΣF,j,j)

∣∣∣∣∣ ≥ x

)
≤ C1

T maxi ‖{f2i,t}‖q,α
xq

+

+ C2 exp

(
− C3x

2

T maxi ‖{f2i,t}‖22,α

)
.

Since r is fixed, this implies
1/T

∑T
s=1 |fs,j |2 = ΣF,j,j +OP (1/

√
T ) and

maxj |1/T
∑T

s=1 fs,j f̂s,l| ≤ (M +OP (1/
√
T ))1/2.

D) For each j1, j2 = 1, . . . , N , we have for q > 2

P

(∣∣∣∣∣
T∑
s=1

(ξj1,sξj2,s − e>j1Γξej2)

∣∣∣∣∣ ≥ x

)
≤ C1

T maxi ‖{ξ2i,t}‖q,α
xq

+

+ C2 exp

(
− C3x

2

T maxi ‖{ξ2i,t}‖22,α

)
.

Furthermore,

P

(
max
j1,j2

∣∣∣∣∣
T∑
s=1

(ξj1,sξj2,s − e>j1Γξej2)

∣∣∣∣∣ ≥ x

)
≤ C1

NT maxi ‖{ξ2i,t}‖q,α
xq

+
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+ C2 exp

(
− C3x

2

T maxi ‖{ξ2i,t}‖22,α
+ log(N)

)
,

which implies
maxj1,j2 |1/T

∑T
s=1 ξs,j1ξs,j2 | ≤M+OP (

√
(log(N)/T )+N2/ζT 2/ζ−1).

E) For each k = 1, . . . , r we have
e>k Λ

>Γξ(0)Λek/N ≤M4/(1− ρ2) <∞ and

P

 1

T

T∑
s=1

(
1/
√
N

N∑
i=1

`i,kξi,s

)2

≥ x

 ≤ C1

T maxi ‖{ξ2i,t}‖q,α
[(x−M4/(1− ρ2))T ]q

+

+ C2 exp

(
−C3(x−M4/(1− ρ2))2

maxi ‖{ξ2i,t}‖22,α

)
,

which implies 1/T
∑T

s=1(1/
√
N
∑N

i=1 `i,kξi,s)
2 = OP (1).

F) For q > 2, we have

P

(
max
j,k

∣∣∣∣∣ 1T
T∑
s=1

e>j ξtξ
>
t Λ

>ek − e>j Γξ(0)Λ
>ek

∣∣∣∣∣ ≥ x

)
≤ C1

NT maxi ‖{ξ2i,t}‖q,α
xq

+

+ C2 exp

(
− C3x

2

T maxi ‖{ξ2i,t}‖22,α
+ log(N)

)
.

Since ‖Γξ(0)Λ>‖max ≤ ‖Γξ(0)‖∞‖Λ‖max ≤M2kξ, we have

maxj,k |1/T
∑T

s=1 e
>
j ξtξ

>
t Λ

>ek| = OP (kξ+
√

log(N)/T+N2/ζT 2/ζ−1).

G) We have for j = 1, . . . , N, l = 1, . . . , r∣∣∣∣∣ 1

NT 2

N∑
i=1

T∑
s,t=1

ξj,tf
>
t Λiξi,sf̂s,l

∣∣∣∣∣ ≤
≤

 r∑
k=1

(
1

T

T∑
t=1

ξj,tfk,t

)2
1/2(

r∑
k=1

(
1

N2T

T∑
s=1

(e>k Λ
>ξs)

2

)(
1

T

T∑
s=1

f̂2l,s

))1/2
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=
1√
NT

 r∑
k=1

(
1√
T

T∑
t=1

ξj,tfk,t

)2
1/2(

r∑
k=1

(
1

NT

T∑
s=1

(e>k Λ
>ξs)

2

))1/2

= OP

(
1√
NT

)
,

maxj | 1
NT 2

∑N
i=1

∑T
s,t=1 ξj,tf

>
t Λiξi,sf̂s,l| =

= OP (
√
log(N)/

√
NT +N2/ζ−1/2T 2/ζ−3/2),

max
j

∣∣∣∣∣ 1

NT 2

N∑
i=1

T∑
s,t=1

ξj,tξi,tΛifsf̂l,s

∣∣∣∣∣ ≤
≤

 r∑
k=1

max
j

(
1

NT

T∑
t=1

e>j ξtξ
>
t Λ

>ek

)2
1/2

(
r∑

k=1

(
1

T

T∑
s=1

f2k,s

)(
1

T

T∑
s=1

f̂2l,s

))1/2

≤ kξ
N

(
r∑

k=1

max
j

T∑
t=1

(
1

kξT
e>j ξtξ

>
t Λ

>ek

)2
)1/2( r∑

k=1

(
1

T

T∑
s=1

f2k,s

))1/2

= OP

(
kξ
N

+

√
log(N)√
TN

+N2/ζ−1T 2/ζ−1

)
,

max
j

∣∣∣∣∣ 1

NT 2

N∑
i=1

T∑
s,t=1

ξj,tξi,tξi,sfl,s

∣∣∣∣∣ =
= max

j

∣∣∣∣∣ 1N
N∑
i=1

(
1

T
ξj,tξi,t − ejΓξ(0)ei + ejΓξ(0)ei

)(
1

T

T∑
s=1

ξi,sfl,s

)∣∣∣∣∣
=

∥∥∥∥∥ 1T
T∑
t=1

ξtξ
>
t − Γξ(0)

∥∥∥∥∥
max

∥∥∥∥∥ 1T
T∑
s=1

ξsfl,s

∥∥∥∥∥
max

+

+

∥∥∥∥∥ 1T
T∑
s=1

ξsfl,s

∥∥∥∥∥
max

‖Γξ(0)‖∞ /N
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=OP

(
log(N)

T
+ (NT )4/ζ/T 2 +

kξ
N

(√
(log(N)/T ) +N2/ζT 2/ζ−1

))

and

max
j

∣∣∣∣∣ 1

NT 2

N∑
i=1

T∑
s,t=1

ξj,tξi,tξi,sf̂l,s

∣∣∣∣∣ =
= OP

(
log(N)

T
+N4/ζT 4/ζ−2 +

kξ
N

+

√
log(N)√
NT

+N2/ζ−1/2T 2/ζ−1

)
.

This implies

max
j,l

∣∣∣∣∣1/T
T∑
s=1

e>l (f̂s −HNTfs)ξi,s

∣∣∣∣∣ =
= OP

(
log(N)

T
+
kξ
N

+

√
log(N)√
NT

+

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))
.

H) We have for t ∈ Z

∣∣∣ 1

NT

N∑
i=1

T∑
s=1

ξi,tξi,s[f̂s −HNTfs]
∣∣∣ ≤

≤ 1

N

N∑
s=1

|ξi,k|max
j,l

∣∣∣∣∣1/T
T∑
s=1

e>l (f̂s −HNTfs)ξi,s

∣∣∣∣∣
= OP

(
log(N)

T
+
kξ
N

+

√
log(N)√
NT

+

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))
and ∣∣∣∣∣ 1

NT

N∑
i=1

T∑
s=1

e>l f
>
t Λiξi,s[f̂s −HNTfs]

∣∣∣∣∣ =
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= OP

(
log(N)

T
+
kξ
N

+

√
log(N)√
NT

+

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))
.

This implies

f̂t −HNTft =

=
1

NT

[
N∑
i=1

T∑
s=1

ξi,tΛif
>
s HNTfs +

N∑
i=1

T∑
s=1

ξi,tξi,sHNTfs

]
D−2
NT,r

+OP

(
log(N)

T
+
kξ
N

+

√
log(N)√
NT

+

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))
.

I) We have

max
j,l

∣∣∣∣∣ 1T
T∑
s=1

fj,s[f̂s −HNTfs]
>el

∣∣∣∣∣ =
= OP

(
log(N)

T
+
kξ
N

+

√
log(N)√
NT

+

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))
.

J) For each j, l = 1, . . . , r

1

T

T∑
s=1

e>j [f̂s −HNTfs][f̂s −HNTfs]
>el

= OP

(
log(N)

T
+
kξ
N

+

√
log(N)√
NT

+

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))
.
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K) We have

(H>
NT )

−1Λi − Λ̂i =
1

T

T∑
s=1

HNTfsξi,s + Errori,

where

max
i

|Errori| = OP

(
log(N)

T
+
kξ
N

+

√
log(N)√
NT

+

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))
Proof of Lemma 5.1. First note that under Assumption 10 and Re-
mark 5.1 we have for α > 0.5, q ≥ 4 maxj ‖{ξj,t}t‖q,α <∞,maxj ‖{fi,t}t‖q,α <
∞ and maxj,i ‖{ξj,tfi,t}t}‖0.5q,α <∞. Furthermore, since {ft} and {ξt}
are linear processes and ‖B(j)‖2 ≤Mρj , we have
maxw∈Rn,‖w‖2≤1 ‖{w>ξt}t‖q,α <∞, maxj ‖{ξ2j,t}‖q/2,α <∞ and

maxj ‖{f2i,t}‖q/2,α <∞.

For part A, we have
X>X/NT = ΛF>FΛ>/NT+Ξ>Ξ/NT+Ξ>FΛ>/NT+ΛF>Ξ/NT .
Assumption 11, i.e, ΣΛ > 0,ΣF > 0, implies for N,T large enough that
F /

√
T and Λ/

√
N have rank r and that all r eigenvalues are strictly

positive. Furthermore, note that we have by part D and Assumption 9

‖Ξ>Ξ/NT‖2F = (1/N2
N∑
i1,i2

(1/T

T∑
t=1

ξi1,tξi2,t)
2) =

= (1/N2
N∑
i1,i2

(e>i1Γξ(0)ei2 + 1/T
T∑
t=1

ξi1,tξi2,t − e>i1Γξ(0)ei2)
2) =

= OP (kξ/N + log(N)/T + (NT )1/ζ/T 2).

Additionally, by part B we have

‖ΛF>Ξ/NT‖2F = ‖Ξ>FΛ>/NT‖2F =

265



Chapter 5. Dynamic Factor Models with Sparse VAR Idiosyncratic
Components

= 1/N2
N∑
i1,i2

r∑
l=1

(1/T
T∑
t=1

ξi1,tfr,t)
2`i,l =

= OP (log(N)/T + (NT )1/ζ/T 2).

That means for N,T large the eigenvalues of X>X/NT are approxi-
mately those of ΛF>FΛ>/NT . Hence, for N,T large, X>X/NT pos-
sesses r positive eigenvalues which implies that D2

NT,r is invertible and

consequently,D−2
NT,r = OP (1). Since by Assumption 11 limT ‖F /

√
T‖2 ≤

M and limT ‖Λ/
√
N‖2 ≤M , we also have D2

NT,r = OP (1).

For the part B, note first that E 1
T

∑T
s=1 ξi,sfj,s = 0 due to Assumption

10. Furthermore, since

P (max
i,j

|
T∑
s=1

ξi,sfj,s| ≥ x) ≥
∑
i,j

P (|
T∑
s=1

ξi,sfj,s| ≥ x),

the assertion follows by Assumption 10 and Theorem 2 in Wu and Wu
(2016). Since Ef2j,t = Σf,j,j and Eξj1,tξj2t = e>j1Γξej2 , Part C and D
follow by the same arguments. Note also that for some vectors u, v
and some symmetric matrix Γ, we have u>Γu ≤ v>Γv + u>Γu. That
is why for maxj1,j2 |

∑T
s=1(ξj1,sξj2,s − e>j1Γξej2) it is sufficient to look at

maxj |
∑T

s=1(ξj,sξj,s − e>j Γξej).

For the part E, note that Γξ(0) =
∑∞

j=0B
(j)Σv(B

(j))> and

1/
√
N
∑N

i=1 `i,kξi,s = 1/
√
Ne>k Λξs, where 1/

√
Ne>k Λ ∈ RN and

‖1/
√
Ne>k Λ‖2 ≤M . Since ‖B(j)‖2 ≤Mρj and ‖Σv‖2 ≤M by Assump-

tion 9,10, we have ‖Γξ(0)‖2 ≤ M3/(1 − ρ2) and the assertions follows
then by Assumption 11 and part D. Part F follows by similar arguments.

The first four assertions in Part G follow by Cauchy-Schwartz and the
previous parts of this lemma. For the fifth assertions note the following

1

NT 2

N∑
i=1

T∑
s,t=1

ξj,tξi,tξi,sf̂l,s =
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=

r∑
k=1

(
1

NT 2

N∑
i=1

T∑
s,t=1

ξj,tξi,tξi,sfk,s

)(
e>l HNT ek

)
+

1

NT 2

N∑
i=1

T∑
s,t=1

ξj,tξi,tξi,s(f̂l,s − elHNTfs)

= Ij + IIj

maxj |Ij | = OP

(√
log(N)

T +N2/ζT 2/ζ−3/2+
kξ
N

(√
(log(N)/T ) +N2/ζT 2/ζ−1

))
.

Furthermore, we have

max
j

|IIj | = max
j

∣∣∣∣ 1

N2T 3

N∑
k=1

T∑
s,t=1

ξj,sξk,sξk,t

[ N∑
i=1

T∑
s=1

f>
t Λiξi,sf̂s+

N∑
i=1

T∑
s=1

ξi,tΛif
>
s f̂s +

N∑
i=1

T∑
s=1

ξi,tξi,sf̂s

]
D−2

NT,rel

∣∣∣∣
≤ 1√

N
max
j,i

∣∣∣∣∣ 1T
T∑

s=1

ξj,sξi,s

∣∣∣∣∣max
j,l

∣∣∣∣∣ 1T
T∑

t=1

ξj,tfl,t

∣∣∣∣∣
(
max

l

1

NT

T∑
s=1

(e>l Λξs)
2

)1/2

‖D−2
NT ‖maxr

2

+max
j,i

∣∣∣∣∣ 1T
T∑

s=1

ξj,sξi,s

∣∣∣∣∣max
j,l

∣∣∣∣∣ 1

NT

T∑
s=1

ξj,tξ
>
t Λel

∣∣∣∣∣max
k,l

∣∣∣∣∣ 1T
T∑

s=1

f>
k,sf̂l,s

∣∣∣∣∣ ‖D−2
NT ‖maxr

2

+max
j

1

N2

∣∣∣∣e>j
(

1

T

T∑
t=1

ξtξ
>
t

)(
1

T

T∑
t=1

ξtξ
>
t

)(
1

T

T∑
t=1

ξtξ
>
t

)
(

1

T

T∑
t=1

ξtξ
>
t

)(
1

T

T∑
t=1

ξtξ
>
t

)
ej

∣∣∣∣1/2
=OP

(
1 +

(√
log(N)/T +N2/ζT 2/ζ−1

)
/
√
N
(√

log(N)/T +N2/ζT 2/ζ−1
))

+OP

(
1 +

(√
log(N)/T +N2/ζT 2/ζ−1

)(kξ
N

+

√
log(N)√
TN

+N2/ζ−1T 2/ζ−1

))
+ III

=OP

(
log(N)

T
+N4/ζT 4/ζ−2 +

kξ
N

+

√
log(N)√
NT

+N2/ζ−1/2T 2/ζ−1

)

where

III ≤ 1/N2(‖( 1
T

T∑
t=1

ξtξ
>
t )− Γξ(0)‖∞ + ‖Γξ(0)‖∞)2‖ 1

T

T∑
t=1

ξtξ
>
t ‖1/2max ≤
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≤ (‖( 1
T

T∑
t=1

ξtξ
>
t )− Γξ(0)‖2max + kξ/N)2‖ 1

T

T∑
t=1

ξtξ
>
t ‖1/2max =

= OP ((

√
log(N)√
T

+N2/ζT 2/ζ−1 + kξ/N)2(1 + (
√

log(N)/T +N2/ζT 2/ζ−1))).

The sixth assertion is the combination of the previous assertions.

The first assertion in part H follows directly from part G. The second
assertion follows from part B and Assumption 11. The third assertion
follows by the same arguments as in part G. Note that in each assertion
in part G ξj,t is replaced with ‖e>l Λ>‖2/N(e>l Λ

>‖e>l Λ>‖2ξt). Since
‖e>l Λ>‖2/N = O(1/

√
N) the assertion follows by part B,E.

For part I, we have for j, l = 1, . . . , r∣∣∣∣∣ 1T
T∑

s=1

fj,s[f̂s −HNTfs]
>D2

NT,rel

∣∣∣∣∣ =
=

1

NT 2

∣∣∣∣ T∑
t,s=1

N∑
i=1

fj,tξi,tΛif
>
s f̂s,l

T∑
t,s=1

fj,tξ
>
t ξsfs,l

∣∣∣∣
+OP

(
log(N)

T
+

kξ
N

+

√
log(N)√
NT

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))

≤

 r∑
k=1

(
1

TN

T∑
t=1

(e>k Λ
>ξtfj,t)

2

)1/2
 r∑

k=1

(
1

T

T∑
s=1

f2
k,r

)1/2


+

[(
1

T

T∑
t=1

fj,tξ
>
t

)(
1

T

T∑
s=1

ξsξ
>
s

)(
1

T

T∑
z=1

ξzfj,z

)]1/2
1

N

+OP

(
log(N)

T
+

kξ
N

+

√
log(N)√
NT

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))

=OP

(
log(N)

T
+

kξ
N

+

√
log(N)√
NT

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))
.

.

Part J follows by part B,E, and H. For Part K, note that ‖Λ‖max ≤M .
Then, this part follows by G,I, and J.

268



Proof of Theorem 5.1. (5.7) and (5.8) follow by Lemma 5.1. Further-
more, wi,t = Λ>

i ft − Λ̂>
i f̂t = Λ>

i H
−1
NT [HNTft − f̂t] + [(H>

NT )
−1Λi −

Λ̂i]
>HNTft + [(H>

NT )
−1Λi − Λ̂i]

>[HNTft − f̂t] and (5.9) follows by
Lemma 5.1.

Proof of Corollary 5.1. First note that under these assumptions, we
have

wj,t = Λ>
j H

−1
NT

1

NT

[
N∑
i=1

T∑
s=1

ξi,tΛif
>
s HNTfs +

N∑
i=1

T∑
s=1

ξi,tξi,sHNTfs

]
D−2
NT,r+

+ f>
t H>

NT

1

T

[
T∑
s=1

HNTfsξj,s

]
+ Errorj ,

where maxi |Errori| = OP

(
log(N)
T +

+
kξ
N +

√
log(N)√
NT

+ (NT )2/ζ
(

1√
NT

+ 1
T 3/2 + (NT )2/ζ 1

T 2

))
.

For the first assertion, we have by Lemma 5.1

∥∥∥ 1
T

T∑
t=1

wtξ
>
t

∥∥∥
max

≤ ‖Λ‖max‖HNT ‖2max‖D−2
NT,r‖max[∥∥∥ 1

NT

T∑
t=1

Λ>ξtξ
>
t

∥∥∥
max

∥∥∥ 1
T

T∑
t=1

f>
t ft

∥∥∥
max

+

+max
i

|Errori|+
∥∥∥ 1
T

T∑
t=1

f>
s ξs

∥∥∥
max

(∥∥∥ 1
T

T∑
t=1

ξtξ
>
t − Γξ(0)

∥∥∥
max

+ ‖Γξ(0)‖∞/N

)]
+

+
∥∥∥ 1
T

T∑
t=1

f>
t ξt

∥∥∥2
max

= OP

(
kξ
N

+

√
log(N)

N
√
T

+ (NT )2/ζ−1 +
log(N)

T
+ (NT )4/ζ/T 2+

+
kξ
N

(√
(log(N)/T ) +N2/ζT 2/ζ−1

))
+OP

(
log(N)

T
+

kξ
N

+

√
log(N)√
NT

+

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))
.
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For the second assertion, we have by Lemma 5.1

∥∥∥ 1
T

T∑
t=1

wtw
>
t

∥∥∥
max

≤

≤ ‖Λ‖2max‖HNT ‖4max‖D−2
NT,r‖

2
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[∥∥∥ 1
T

T∑
s=1

f>
s fs

∥∥∥2
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∥∥∥ 1

NT

T∑
t=1

Λ>ξtξ
>
t Λ
∥∥∥
max

/N

+
∥∥∥ 1
T

T∑
s=1

f>
s fs

∥∥∥
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∥∥∥ 1
T

T∑
t=1

f>
s ξs

∥∥∥
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(
2
∥∥∥ 1

NT

T∑
t=1

Λ>ξtξt

∥∥∥
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+
∥∥∥ 1

NT

T∑
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∥∥∥
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)

+
∥∥∥ 1
T

T∑
t=1

f>
s ξs

∥∥∥2
max

(∥∥∥ 1
T

T∑
t=1

ξtξ
>
t − Γξ(0)

∥∥∥
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+ ‖Γξ(0)‖∞/N

)
+

+
∥∥∥ 1
T

T∑
t=1

f>
s ξs

∥∥∥3
max

]
+
∥∥∥ 1
T

T∑
t=1

f>
s ξs

∥∥∥2
max

∥∥∥ 1
T

T∑
s=1

f>
s fs

∥∥∥
max

+max
i

|Errori|

=OP

(
1

N
+

(√
log(N)√

T
+ (NT )2/ζ/T

)(
kξ
N

+

√
log(N)√

T
+ (NT )2/ζ/T
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+OP

(
log(N)

T
+

kξ
N

+

√
log(N)√
NT

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2
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=OP

(
kξ
N

+
log(N)
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+

√
log(N)√
NT

+ (NT )2/ζ
(

1√
NT

+
1

T 3/2
+ (NT )2/ζ

1

T 2

))
.

The third and fourth assertion follow by the same arguments.

Lemma 5.2. Under Assumption 9 and if∥∥∥∥∥ 1

T − p

T∑
t=p+1

(ξ̂j,t − β>ξ̂vt−1)ξ̂
v
t−1

∥∥∥∥∥
max

≤ λ̂/4

and

Θ> 1

T − p

T∑
t=p+1

ξ̂vt−1(ξ̂t−1,j)
>Θ ≥ α‖Θ‖22 − τ̂‖Θ‖21 ∀Θ ∈ Rnp

we have

‖β̂(j) − β(j)‖2 ≤ 16max
(√

k(λ̂/α)1−q/2,
√
τ̂ s(λ̂/α

)1−q
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and

‖β̂(j)−β(j)‖1 ≤ max(68k(λ̂/α)1−q, 64
√
τk3/2(λ̂/α)1−3/2q+4k(λ̂/α)1−q).

Proof. This proof follows ideas of the Proof of Proposition 4.1 in Basu
and Michailidis (2015b) as well as the Proof of Corollary 3 in Negah-
ban et al. (2012). Let γ̂ = 1/(T − p)

∑T
t=p+1 ξ̂j,tξ̂

v
t−1 and Γ̂ = 1/(T −

p)
∑T

t=p+1 ξ̂
v
t−1(ξ̂

v
t−1)

>. Let β∗ := βj , β̂ := β̂j and v = β̂ − β∗. Further-
more, let for some threshold η > 0 J = Jη = {j ∈ {1, . . . , np}|e>j β∗‖ >
η} denote the set of indices for which β∗ is absolutely greater than the
threshold η, βnu refers to the hard thresholded vector with threshold
η and for some vector u, uJ , uJC denotes the vector obtained by the
indices in J , JC , respectively.

We have by Assumption 9 ‖β∗η − β∗‖1 ≤ η1−qk. Furthermore, |J | ≤
η−qk.

Since β̂j is the minimum given in (5.4), we have −β̂>γ̂+β̂>Γ̂β̂+λ̂‖β̂‖1 ≤
2β∗γ̂+ (β∗)>Γ̂β ∗+λ̂‖β∗‖1. This gives further v>Γ̂v ≤ 2v>(γ̂− Γ̂β∗) +
λ̂(‖β ∗ ‖1 − ‖β∗ + v‖1) ≤ 2v>(γ̂ − Γ̂β∗) + λ̂(‖β∗η‖1 + 2‖β ∗ −β∗η‖1 −
‖β∗η + v‖1) ≤ 2v>(γ̂− Γ̂β∗)+ λ̂(‖vJ‖1−‖vJC‖1+2η1−qk). This implies

with the condition ‖ 1
T−p

∑T
t=p+1(ξ̂j,t−β>j ξ̂vt−1)ξ̂

v
t−1‖max ≤ λ̂/4 that 0 ≤

v>Γ̂v ≤ 3/2λ̂‖vJ‖1− 1/2‖vJC‖1 ≤ 2λ̂‖v‖1+2λ̂η1−qk. Hence, ‖vJC‖1 ≤
3‖vJ‖1 + 4η1−qk and since |J | ≤ η−qk, ‖v‖1 ≤ 4

√
kη−q/2‖v‖2 + 4sη1−q.

Then, with the condition Θ> 1
T−p

∑T
t=p+1 ξ̂

v
t−1(ξ̂t−1,j)

>Θ ≥ α‖Θ‖22 −
τ̂‖Θ‖21 ∀Θ ∈ Rnp we obtain that α‖v‖22 − τ̂‖v‖1 ≤ 8λ̂‖v‖2

√
kη−q/2 +

10λ̂kη1−q. Set η = λ̂/α. Then, with the bound for ‖v‖1 and dropping
minor terms in the maximum we obtain ‖v‖2 ≤ 16max(

√
k(λ̂/α)1−q/2,√

τ̂ s(λ̂/α)1−q). Furthermore,
‖v‖1 ≤ max(68k(λ̂/α)1−q, 64

√
τk3/2(λ̂/α)1−3/2q + 4k(λ̂/α)1−q).

Proof of Theorem 5.2. The idea is show determine the order of the
quantities λ̂T and τ̂ in Lemma 5.2. For this first note that since (ξj,t −
β>j ξ

v
t−1)ξ

v
t−1 = vj,tξt1 and Evj,tξ

v
t−1 = 0, we have ‖ 1

T−p
∑T

t=p+1(ξj,t −
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β>j ξ
v
t−1)ξ

v
t−1‖max = OP (

√
log(Np)/T +(NpT )2/ζ/T ) by the same argu-

ments as in the proof of Lemma 5.1 E and note that ξvt−1 is of dimension

Np. Additionally, we have maxj ‖βj‖1 ≤M1−qk and

λ̂T =

∥∥∥∥∥ 1

T − p

T∑
t=p+1

(ξ̂j,t − β>ξ̂vt−1)ξ̂
v
t−1

∥∥∥∥∥
max

≤

∥∥∥∥∥ 1

T − p

T∑
t=p+1

(vj,t)ξ
v
t−1

∥∥∥∥∥
max

+

+

∥∥∥∥∥ 1

T − p

T∑
t=p+1

vj,tw
v
t−1

∥∥∥∥∥
max

∥∥∥∥∥ 1

T − p

T∑
t=p+1

wj,tξ
v
t−1 + wj,tw

v
t−1

∥∥∥∥∥
max

+

+ ‖β‖1

∥∥∥∥∥ 1

T − p

T∑
t=p+1

wv
t−1(ξ

v
t−1)

> +wv
t−1(w

v
t−1)

>

∥∥∥∥∥
max

= OP

(√
log(Np)/T + (NpT )2/ζ/T + k

(
kξ
N

+
log(Np)

T
+

√
log(Np)√
NT

+

+ (NpT )2/ζ
(

kξ
NT

+
1√
NT

+
1

T 3/2
+ (NpT )2/ζ

1

T 2

))
.

Let Γ = Var((ξ>t , . . . , ξ
>
t−p+1)

>) and Γ̂ = 1
T−p

∑T−1
t=p ξ̂vt (ξ̂

v
t )

>. We have
for

Θ ∈ RNp, Θ>Γ̂Θ = Θ>ΓΘ +Θ>(Γ̂− Γ)Θ ≥ α‖Θ‖22−

− ‖Θ‖21‖Γ̂− Γ‖max ≥ α‖Θ‖22 − ‖Θ‖21‖
(
‖Γ−

− 1

T − p

T−1∑
t=p

ξvt (ξ
v
t )

>‖max + 2‖ 1

T − p

T−1∑
t=p

ξvt (w
v
t )

>‖max+

+
1

T − p

T−1∑
t=p

ŵv
t (w

v
t )

>‖max

)
=: α‖Θ‖22 + τ̂‖Θ‖21.

With the results of Corollary 5.1 and Lemma 5.1, we have

τ̂ = OP (
√

log(Np)/T + (NpT )2/ζ/T+

+ k

(
kξ
N

+
log(Np)

T
+

√
log(Np)√
NT

+ (NpT )2/ζ
(
kξ
NT

+
1√
NT

+
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+
1

T 3/2
+ (NpT )2/ζ

1

T 2

))
.

That means τ̂ = Op(λ̂T ). Then, Lemma 5.2 give us

‖β̂j − βj‖2 ≤ 16max(
√
k(λ̂T /α)

1−q/2,
√
τ̂ k(λ̂T /α)

1−q =

= OP (
√
k(λ̂T )

1−q/2 + k(λ̂T )
3/2−q/2)

and

‖β̂j − βj‖1 ≤ max(68k(λ̂T /α)
1−q, 64

√
τk3/2(λ̂)1−3/2q+

+ 4k(λ̂T /α)
1−q) = OP (k(λ̂)

1−q + k3/2(λ̂T )
3/2(1−q))

= OP (k(λ̂)
1−q).

Proof of Theorem 5.3. First note that

e>j (X̂
1,p2
T+1 −X

(1,p2)
T+1 ) = β̂j ξ̂

v
T − βjξ

v
T + Λ̂>

j

p2∑
i=1

Π̂
(p2)
i f̂T+1−i−

−Λ>
j H

−1
NTHNT

p2∑
i=1

Π
(p2)
i H−1

NTHNTfT+1−i.

Then, the results derived in Theorem 5.1, 5.2 and Lemma 5.1 can be
plugged in. Note further that due to due to Assumption 10 and 11
we have Λξt/N = ‖Λ‖2/NΛ/‖Λ‖2ξt = OP (1/

√
N) appearing in f̂t −

HNTft and the assertion follows.
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6

Conclusion

This concluding chapter discusses the main contributions of this the-
sis.

Vector autoregressive models (VARs) are the focus of this thesis in terms
of time series modeling framework. These models are the workhorses
for both estimating causes and effects in systems like the macroecon-
omy or the climate and to do forecasting. VARs very quickly become
high-dimensional as the number of parameters to estimate increases
quadratically with the number of time series included: an unrestricted
VAR(p) has K2p coefficients to be estimated, where K is the number
of series and p is the lag-length. As the time series dimension T is
typically fairly small for many economic and climate applications, the
curse of dimensionality quickly affects standard least squares and max-
imum likelihood methods, making them unreliable. Therefore, VAR
models are a natural framework for working with penalized regression
techniques and factor models.

Within this framework, Chapter 2 is a necessary building block in
this thesis as it extends the framework of “honest inference” in high-
dimensional models to the stationary time series setting. Specifically,
the post-double selection technique designed by Belloni, Chernozhukov,
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and Hansen (2014b) for treatment effect models, has been proven to be
a fundamental tool to resolve the critique of Leeb and Pötscher (2005)
and thus obtain uniformly valid inference also when the data are in-
herently time dependent. Chapter 2 is also of practical interest for
what concerns the tuning of the penalty parameter in the lasso prob-
lem. When the aim of the analysis is inference, simulations reported
in Chapter 2 distinguish the selection performances of various tuning
techniques in terms of the size and power of the final test. Especially,
information criteria such as the Bayesian Information Criterion (BIC)
is shown to be a fast and easier solution compared to cross-validation
and to often outperform it in practice.

Chapter 3 takes a step forward with respect to Chapter 2, as it allows for
unit-root and cointegration among the time series in the VAR. “Allow-
ing for unit root and cointegration” does not mean that one needs to test
the integration order of the relevant time series; the true benefit of the
procedure developed in Chapter 3 is in fact that one can entirely disre-
gard whether unit roots and cointegration are present within the VAR.
Classical unit root and cointegration tests depend on the exact model
specification (intercept and/or deterministic time trend, the lag-length
order, seasonality adjustments etc.) and they are therefore keen to bi-
ases and low statistical power. The methodology developed in Chapter
3 allows to skip completely the unit root and cointegration biased pre-
testing, thus also avoiding the practitioner to explicitly transform the
series to stationary by taking their differences. The lag-augmentation
proposed in Chapter 3 has also the great advantage of flexibility: the
additional lags have the purpose of being used to internally take the dif-
ferences of the integrated time series. However, no over-differencing oc-
curs as the extra lags work “when needed”: both time series integrated
of order 0, 1, 2 are allowed as long as the lag-augmentation is at least 2
for all the variables interested in the hypothesis at test. As observed in
the empirical application of Chapter 3 and in the climate econometrics
setting of Chapter 4, the methodology developed in Chapter 3 is greatly
beneficial to avoid bias and uncover causal relations. Concerning Chap-
ter 4, climate time series are often found to be integrated of order 1 or
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2 and having long memory. Avoiding to take first differences of the
series renders the analysis more robust and allows to uncover causal
connections between global temperature and other climate series which
help in attributing climate change. The lag-augmentation idea also has
some shortcomings that needs to be addressed. The whole argument
of augmenting the lag-length essentially trades off statistical power of
the performed test with bias otherwise incurred from pre-testing for
unit-root and cointegration. In other words, it allows slightly less effi-
ciency to gain in accurateness. The methodology developed in Chapter
3, and especially the possibility of only augmenting the lag-length of
the variables of interest for the test, drastically reduces the power loss
if compared to a full system augmentation of the lag-length. However,
the power loss remains linked to the amount of variables involved in the
hypothesis at test. If a full high-dimensional vector of parameters is the
interest of the test, then this lag-augmentation idea fails as additional
lags of all the series in the vector would need to be included letting the
model become extremely high-dimensional and the statistical test ex-
tremely inefficient. However, as far as Granger causality is concerned,
it is argued in Chapter 3 how usually one is interested, if not else for
interpretability reasons, in testing bivariate relations conditional on a
large information set. In such case the methodology of Chapter 3 works
well in practice. Testing causality among blocks is therefore allowed
within the framework of Chapter 3 although up to a certain degree of
block dimensions.

The specific inferential focus of Chapters 2-4 is Granger causality, namely
the interest is in performing hypothesis testing to assess questions of
the type: “will the time series Xt−1, conditional on the information set
Ωt−1 which contains all other available time series up to time t − 1,
be able to better predict Yt than would Yt−1 itself?”. Working with
high-dimensional data sets is a great opportunity from a causal analy-
sis perspective. It allows to enlarge the information set with as many
variables as practically allowed from the available set. The larger the
information set, the less spurious causality is of concern.

Chapter 5 combines the positive aspects of both school of thoughts when
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it comes to dimensionality reduction: sparse versus dense. A dynamic
factor model is shown to be able to be combined with a sparse VAR
estimation of the idiosyncratic components. The benefit of the outlined
two steps procedure in Chapter 5 is that it allows to disentangle in the
system covariance matrix, the dependence among its diverging eigenval-
ues, namely the factors, with the dependence among the bounded ones
i.e., the idiosyncratic components. Chapter 5 operates under the set up
of a dynamic factor model with the aim of improving forecast accuracy.
The common components are not assumed to be independent and iden-
tically distributed but are allowed to be dynamic. The type of dynamic
considered however does not directly link with the original vector of
time series thus making the relationship between them and the factors
still static. Furthermore, the number of factors r is considered fixed
as both the cross sectional dimension N and the time series dimension
T grow large. This is argued to be a reasonable claim as assuming r
to be a strictly increasing function in N or T would be tantamount to
assume that all the eigenvalues of a large dimensional covariance ma-
trix would necessarily diverge as the dimensions increase. Nonetheless,
r needs to be estimated from the data and in Chapter 5 this issue is
jointly considered with the one of lag-length estimation. A joint pro-
cedure to estimate the number of factors and the VAR lag-length is
proposed, combining in an information criteria the approach of Bai and
Ng (2002) to select the number of factor with an extra penalty allowing
for simultaneous lag-length estimation.

In conclusion, this thesis extended honest inference to stationary and
non-stationary high-dimensional time series models via the post-double
selection technique. Sparsity-inducing techniques used to select the
model were also integrated with dense dimensionality reduction tech-
niques to obtain better forecast performances. Applications in both
economics and climate science demonstrate how these methodologies
can contribute to tackling important challenges in different fields.
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Stéphane Surprenant (2020). “How is machine learning useful for
macroeconomic forecasting?” In: arXiv preprint arXiv:2008.12477.

Cubadda, Gianluca, Alain Hecq, and Antonio Riccardo (2019). “Fore-
casting realized volatility measures with multivariate and univari-
ate models”. In: Financial Mathematics, Volatility and Covariance
Modelling. Ed. by Julien Chevallier, Stéphane Goutte, David Guer-
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The following chapter discusses the value of this dissertation for soci-
ety.

As all the reported chapters of this dissertation deal with high-dimensional
time series models, the importance of dealing with such models is now
spelled out in the context of the current societal state.

Today’s world evolves at fast pace. This rapid evolving state was
reached thanks to the technological revolution started with the inven-
tion of the first computing machines, already before the twentieth cen-
tury. Ever since the idea of modern computer coined by Alan Turing
later in 1936, the history of technological advancements has grown be-
yond unimaginable limits. Very many pieces of technology became ev-
eryday objects for almost everyone in the world. Technology is most
essentially a set of tools to facilitate complex tasks while drastically re-
ducing the required time to complete those tasks. To a (very) simplified
extent, one could say that technology equals “seeking (more) efficiency”.
But there is more to it than just speed. From a data perspective, the
world soon started to realize how electronic machines are not only capa-
ble to rapidly compute tasks but also to store outputs. These outputs
carry information and information is fundamental to optimize all kinds
of human processes. Data then became literally an asset, even a cur-
rency, in the present state of the world. Although not explicitly used
throughout this dissertation, the term “big data” is a popular broad ex-
pression to indicate the nowadays possibility of collecting data both at
high-frequency and for very many different variables. The latter aspect
of the large number of variables, often larger than the sample size, is
what has been the focus of this dissertation and what has been labeled
throughout as “high-dimensions”. Many are the examples that can be
given to describe this data abundance offered by technology. Mobile
phones, out of all technological pieces, are probably the most fitting
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example. Close to everyone owns one and, if allowed, these pieces of
hardware are capable to store various information about the owner,
such as: location (through integrated GPS technology), habits, prefer-
ences, health information (see e.g., smartwatches linked to the phone)
and many more. Without entering in the territory of online privacy
which is besides the point to be made here, it is evident that gaining
access to large quantity of very diverse data is nowadays a very easy
task.

Beyond technological machines, the web has also played an important
role in creating a need for high-dimensional techniques. While once
finding data was costly, nowadays is often a couple of mouse clicks away.
This allows for aggregating data sets containing data from multiple
sources making them richer and, as a consequence, larger.

On a general standpoint, what is the value added of all this data? Every-
one grew up thinking about mathematical, statistical, economic models
as a great simplification of the reality but still useful enough to base
some of our decisions on their results. This largely remains the case.
However, the advent of the era of “big data” is one great opportunity to
take a stand from oversimplified models and to approach a step higher
in the ladder towards a better explanation of the complex reality. Being
able to build models containing large amount of variables is tantamount
to allow for richer information sets to condition the relations of interest
upon, thus making the results more robust.

Nevertheless, just having large quantities of variables does not prove any
useful if reliable techniques to handle and statistically analyze them are
not developed. As explained in several parts of this dissertation, bless-
ings and curses accompany the statistical treatment of large dimensional
data sets. Techniques able to circumvent the curses while retaining as
much as possible of the blessings are therefore paramount to navigate
the high-dimensions.

This dissertation has focused on a specific data type to deal with in
high-dimensions, namely time series. With respect to cross-sectional
data, time series introduce an extra layer of complication which is the
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inherent time dependence. More specifically, techniques allowing for
hypothesis testing in high-dimensional stationary and unit root non-
stationary time series models have been developed in Chapter 2 and 3
and applied in Chapter 4. Techniques to enhance the forecast accuracy
in high-dimensional models have been instead developed in Chapter
5.

Central to Chapter 2 and 3 is the question of causality. Establishing
causes and effects among variables is clearly among the most basic yet
most complicated tasks to face. The pioneering works of Clive Granger
on causality have shown how data constraints require the causality con-
cept to be reduced to an operational form. As textbooks state, corre-
lation does not imply causation and unless one is able to condition the
relation of interest on all the available information in the universe, then
no true causality is possibly found. While this remains true, the high-
dimensional framework precisely allows for much broader conditional
sets of variables. This makes causal findings more robust than was ever
possible before.

Causal questions are ubiquitous in probably all the fields of science.
An application to finance is reported in Chapter 1 where stock realized
volatilities are tested for pairwise Granger causality conditioning on all
the other available stocks. The obtained networks of “spillover” effects
are important tools to predict the flow of contagion when a financial
crisis hits the market.

Chapter 4 is instead entirely dedicated to another, very relevant ap-
plication of the high-dimensional Granger causality testing framework
developed in Chapter 2, namely climate change. Climate econometrics
is a sub-field of econometrics which arose in the last few years, in re-
sponse to the urgent and pressing matter of climate change. For long
time climate scientists have warned governments throughout the globe
against the impact of climate change, but such warnings have long been
ignored. Only in recent years some steps forward have been made in
fixing targets to reduce CO2 emission throughout the world. As the cli-
mate is a complex system, climate change research have seen different
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scientific fields joining forces in tackling different aspects of the problem.
The framework of causality developed in Chapter 3 fits the purpose of
climate attribution, namely advancing the understanding of the factors
most responsible for the changing of global temperature. In Chapter 4
the high-dimensional causal framework allows to obtain clearer pictures
of which climate variables are most affected by emissions through time
and which causal relations exist among different anthropogenic emis-
sions and temperature. These high-dimensional causal discoveries are
relevant for policymakers to better understand the most pressing fac-
tors that need to be tackled in order to scale down the effects of the
damage already done on the climate and avoid further damage.

In sum, the research presented in this dissertation is relevant for both
academics and professionals across the fields of economics, finance, cli-
mate science and possibly other fields where investigating causes and
effects, or obtain accurate forecasts, is relevant. In fact, the high-
dimensional nature of the data available nowadays has been exploited
within the presented methodologies and this has contributed in making
findings more robust.

304



Curriculum Vitae

Luca Margaritella was born on April 29, 1993 in Milan, Italy. Between
2012 and 2015 he studied at the University of Milan-Bicocca where he
obtained his bachelor degree (BSc) in Statistics. Between 2016 and
2017 he studied at Maastricht University, The Netherlands, obtaining a
master degree (MSc) in Econometrics and Operation Research. In 2017
Luca started his PhD in Econometrics at Maastricht University under
the supervision of Dr. Stephan Smeekes and Prof. dr. Alain Hecq. The
findings of the research carried out from 2017 to 2021 are presented in
this dissertation.

In September 2021 Luca started as assistant professor at Lund Univer-
sity, Sweden.

305




	Introduction
	High-Dimensional Models and Post-Selection Inference
	Granger Causality
	High-Dimensional Time Series Models: Contribution of this Thesis

	Granger Causality Testing in High-Dimensional VARs: a Post-Double-Selection Procedure
	Introduction
	High-dimensional Granger causality tests
	Inference after selection by the lasso
	Asymptotic Properties
	Monte-Carlo Simulations
	Networks in Realized Volatilities
	Conclusion
	Appendix A Proofs
	Appendix B Additional Simulation Results
	Appendix C Additional Material for the Empirical Application

	Inference in Non-stationary High-Dimensional VARs
	Introduction
	The Model
	Inference after selection by the lasso
	Theoretical Results
	Monte-Carlo Simulations
	Choice of the lag-length p
	Empirical Application: Driving factors of Inflation
	Conclusion
	Appendix A Preparatory Lemmas
	Appendix B Proof of Lemmas and Theorems in Section 3.4
	Appendix C Main results on PDS-LA-LM Test
	Appendix D Additional material

	High-Dimensional Granger Causality for Climatic Attribution
	Introduction
	Climate Change and its Attribution
	Methodology: Granger Causality
	Analysis
	Sensitivity Analyses
	Discussion and Concluding Remarks

	Dynamic Factor Models with Sparse VAR Idiosyncratic Components
	Introduction
	The Model and Notation
	Estimation
	Number of Factors, Lag-length and Penalty Tuning
	Numerical Results
	Conclusion
	Appendix A Proofs and additional Lemmas

	Conclusion
	Bibliography
	Valorisation
	Curriculum Vitae

