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Introduction

This chapter is meant to introduce the reader with a set of topics that
are central to the research developed in the following chapters. Chapter
2, 3, 4 of this dissertation focus on inference in high-dimensional time
series models and especially on testing for Granger causality. Chapter 5
also deals with high-dimensional time series models, combining the two
main schools of thoughts with what pertains dimensionality reduction,
namely sparse and dense modeling.

Section [I.1] presents high-dimensional models and defines one of the
central topics of this dissertation, namely post-selection inference. Sec-
tion first introduces sparsity-inducing techniques, specifically the
penalized regression framework and how variable selection is attained
using specific ,-norm penalties. Selection consistency and oracle prop-
erties are also presented. Furthermore, it also introduces the dense
framework of factor models, underlines the differences with the sparse
counterpart and sketches how factors are estimated via principal com-
ponents. Section[I.I.2]addresses the main challenges to face when doing
post-model selection inference, from an asymptotic perspective. How to
obtain “honest inference” is discussed and one of the main approaches
is outlined, namely the post-double selection. A formal treatment of
the Granger causality concept is presented in Section where some



Chapter 1. Introduction

history of the concept is provided along with its formalization and a
discussion of its problems. Section [1.3|outlines the contributions of this
dissertation chapter-by-chapter.

1.1 High-Dimensional Models and Post-Selection
Inference

1.1.1 High-Dimensional Models: Sparse and Dense

Historically statistics has dealt with low-dimensional settings where the
number of observations in a data set, the sample size, is much greater
than the number of variables, the featuresﬂ However, the technical
advancements of the last twenty years have brought forward unprece-
dented possibilities in terms of data availability. Therefore, dealing
with increasingly large data sets has become common practice both
in academia and industry. Those data sets containing more features
than observations are referred to as “high-dimensional”. The aim of
the present thesis is to develop statistical techniques for time series
data, able to deal with such data sets. In fact, while data abundance
offers great opportunities to describe and predict a variety of processes,
from a statistical perspective it introduces several complications to deal
with. Classical approaches in statistics such as linear regression, logistic
regression etc., they are not suited for high-dimensional settings. For
instance, when the amount of variables is as large as, or exceeds, the
number of observations, then ordinary least squares (OLS) will return
a set of coefficient estimates which perfectly fit the data, regardless
of whether a true relationship exists between the features and the re-
sponse. This is referred to as “overfitting”: the perfectly fitted linear
model does not prove any useful as the same model applied to an in-
dependent test set will yield very poor results. As a consequence, the
variance of the (trained) model, namely its ability to generalize to other

I The terms features, covariates, regressors, predictors will be used interchangeably
in the text.



test sets, will be large and lager than the bias counterparlﬂ Therefore,
even though the OLS estimator is an unbiased estimator, the excessive
variance will render its mean square error large, thus making the model
perform very poorly in practice. Intuition would suggest that as the
number of features used to fit a model increases, the quality of the fit-
ted model will increase as well. This is not quite true as this depends
on whether the additional features are truly relevant or just noise with
respect to the response. Even in the unlikely case that only relevant
features gets added to the model, the bias reduction derived from these
additional features could be outweighted by the large variance incurred
in estimating their coefficients. The issue lies in the fact that, while
the parameter space grows at fast speed, its elements to estimate soon
start to be too many for the sample information available to reliably
estimate them, what is referred to as the “curse of dimensionality”.
If no additional structure is imposed on the model, specifically to the
unknown regression vector, then there is no hope of obtaining consis-
tent estimators when the ratio between the number of features and the
sample size, stays bounded away from zero. To tackle this challenge,
statisticians and econometricians have developed strategies which can
be divided into two broad categories imposing a substantially different
type of structure to the regression vector: sparse and dense modeling.
Before introducing some of the details of the two philosophies, a math-
ematical formulation of the problem is presented.

Define 8 € R? the unknown regression vector and suppose to observe a
vector y € RT and a matrix X € RT*?, For instance, think of y as a
time series of sample size T" and X as a matrix containing d other time
series of same length T'. A linear model to link these variables is

y=XB+e, (1.1)

2Recall the mean squared error (MSE) of an estimator B i.e., the measure of how
well the estimator B is closed to the vector of parameters (3, can be decomposed
as MSE(B) = E( — B8)* = Var(p) + [Bias(B)]>.
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where € € RT is a vector of noise variables. For time series, the linear
regression framework in also encompasses seemingly unrelated re-
gression models (SUR) such as vector autoregressive models (VARs) if
for instance X contains the lags of y as well as lags of other covari-
ates. Model can also be written in a scalar form: for each index
t =1,2,...,T, one has y; = (x;,3) + &, where ] € R? is the t-th
row of X, and y; and ¢, are, respectively, the t-th entries of the vec-
tors y and €. The quantity (z;,3) := Z;l:l x4 denotes the usual
Euclidean inner product between the vector z; € R? of covariates and
the regression vector B8 € R%. Thus, each response y; is a noisy version
of a linear combination of d covariates. In order to obtain a meaningful
estimate of the regression vector (3, the model should have a low(er)
dimensional structure. Assuming (strong) sparsity accomplishes this.
In fact, by assuming the support set Sg := {j € 1,...,d|B; # 0} of
the regression vector 3; to have cardinality s < d and the model being
exactly supported on those s coefﬁcientsEL there then exist techniques
able to shrink the dimensions to only those relevant s coefficients. This
variable selection is what penalized regression is set to accomplish. In
the OLS framework, penalized regression techniques minimize the sum
of squares residuals with an /,-norm penalty term added to the objec-
tive function. The f;-norm penalty term represents the constraint in
the least squares minimization problem, avoiding the norm of the coef-
ficient vector to become too large. This penalty term can be visualized
by considering for a parameter g € [0, 1] and radius 74 > 0, the set

d
By (rg) =4 BERYD [B|T<rq ¢,

=1

which is the set of /,-balls of radius r,. According to the choice of ¢,
these balls allow the estimates to be either shrunk towards zero but not
exactly zero (¢ > 1) or shrunk towards zero and performing variable

3Note that assuming strong sparsity i.e., that the model is exactly supported on s
coefficients may be overly restrictive. The notion of weak sparsity relaxes this:
the vector 3 is weakly sparse if it can be closely approximated by a sparse vector.



selection by actually setting some coefficients equals to zero (¢ < 1).
Figure reports three instances for d = 3: (a) for ¢ = 1, (b) for
q=0.75, (c) for ¢ = 0.5E|

(@) (b)

Figure 1.1: {,-Balls in d = 3: (a) = {4, (b) = lo.75, (¢) = {05

The penalized least square estimator is then obtained as

B=arggninlly—XBHng)\HﬁHZ, (1.2)

where A controls the strength of the penalty: if large, then a strong
shrinkage/variable selection is performed. If small, then in the limit
the penalized least squares estimator approaches the OLS estimator.
Note further, as clear from Figure [I.I that only if ¢ > 1 then the
objective function is convex. The solution that minimizes the objective
function is located at the point where the (ellipsoid) contours of
the sum of squared residuals cross the boundary of the constraint £,-ball
as displayed in Figure for the case of the £;-norm}

“The figure is taken from Wainwright (2019)), Ch.7
5Figure is taken from Stucky and Van De Geer (2017)
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(a) £1-norm

Figure 1.2: Minimization solution with ¢;-norm

It follows that, as long as the shape of the {4-balls are sharp-cornered
the solution is likely to lie at a corner point with one of the coeffi-
cients set equal to zero. A popular choice of ¢ is indeed ¢ = 1 which
is referred to as the “lasso” which stands for “Least Absolute Shrink-
age and Selection Operator” (Tibshirani, . The lasso is able to
combine shrinkage and variable selection with the convenience of a con-
vex objective functiorﬁ In addition to the usual consistency argument

8- f)’HQ = 0p(1)), all fitting procedure
that combine simultaneous estimation and variable selection such as

the lasso need that the set of relevant variables is correctly identified
asymptotically with high probabilityﬂ This is referred to as selection

for statistical estimators (i.e.,

5Every local minimum will be a global minimum and hence only first order deriva-
tives are needed. However, lasso is not differentiable and hence no analytical
solution exists but one has to consider the subdifferential.

TA stronger consistency result than selection is sign consistency, (see Zhao and Yu,



consistency:
P({i:B#0} =18 #0}) > 1, (1.3)

as T — oo. In addition, if under appropriate assumptions selection
consistency holds for the lasso, then it follows that the variance of the
estimated regression vector B evaluated on the complement of the true
support i.e., 55‘;, is zero with high probability as T — oo. Therefore,
the only relevant object for efficiency across different models will be
the variance of the estimated regression vector on the true support i.e.,
Bs,- The so-called “oracle properties” have been introduced by Fan
and Li (2001) to rank optimal fitting procedure that simultaneously
attain variable selection and estimation. Intuitively, an oracle procedure
will select the true set of relevant variables with probability one while
estimating their coefficients as efficiently as if these relevant variables
were known beforehand. Formally, B is an oracle procedure if:

() P(Bs;=0) 1,

1.4

(b) ﬁ (BSg - ﬂSﬁ) i} N (Oa ES@) ) ( )
as T' — oo, where Xg, is the asymptotic covariance matrix of the OLS
estimator on the variables constituting the true support. Lasso and its
many refinements such as adaptive lasso (Zou, 2006)), group lasso (Yuan
and Lin, 2006), elastic net (Zou and Hastie, 2005) etc. have taken a
substantial portion of the field’s literature in the last 20 years. In all
chapters of this thesis, the lasso is indeed the main character when it
comes to dimensionality reduction.

Sparse dimensionality reduction techniques introduced thus far, im-
pose a lower-dimensional structure to the regression vector by assuming
some, or several, of its component to be irrelevant. As mentioned, this
is not the only possible structure one can assume on 8. Factor mod-
els constitute an alternative way to attain dimensionality reduction.
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They assume that the behavior of a certain variable can be decom-
posed into a component driven by few (r) unobservable (latent) factors
(F = (Fy,...,Fr)"), which are common to the variables within a given
data set but load differently (A = (\1,...,\q)") on each of them, and a
variable specific idiosyncratic component (v = (v, ...,vr)"). More for-
mally, given model , assume the following decomposition holds:

X =FA" +v, (1.5)

where F' is the T' X r matrix of common factors, A is the d X r matrix
of factor loadings and v the T' x d matrix of idiosyncratic components.
Factors can be used for making predictions in place of X, in fact by
substituting X = FA" + v in equation ({I.1): y = (FAT +v)B8+¢ =
FA'B+vB+e=FBr+¢€for Br := A3, € := vB+e. If the number
of factors r is small and the factors approximate well the process X, the
dimensionality is greatly reduced with respect to the original column
dimension of X. Nevertheless, in general F is latent hence needs to
be estimated from X. The classical method employed to estimate the
factors is principal components analysis (PCA). However, F is only
identified up to rotation. In fact, taking an arbitrary r x r invertible
matrix H such that HH ! = I, for I, the identity matrix of order 7,
then it is immediate to observe how any model like X = FAT + v =
FHH'A"+v could equivalently hold true. Hence, some identification
restrictions are needed in order to have a unique F: (i) T-*FFT = I,
(ii) AT A is diagonal. Under (i), (ii) the factor rotation is fixed and
one can estimate factors and loadings using PCA. PCA minimizes the
part of variance of X not explained by the factors. Formally, calling the
columns of X as X, similarly the columns of v as v; and the transposed
rows of A as A; for j =1,...,d, then the PCA minimization problem
can be written as:

d
(F, A) = argmin (Td)"' > " [|X; — FA;|3. (1.6)
F.A -
I ]:1

The dimensionality reduction obtained via PCA estimation of the fac-



tors is such that the explained variability of the original set of variables
is maximised given the number of factors, hence they are defined “dense
models”. Derivations of the PCA reveal how F equals to the matrix of
eigenvectors of X X ' corresponding to the largest r eigenvalues. Fur-
thermore, factor models can be categorized as exact and approximate
whether respectively the idiosyncratic components are assumed inde-
pendent across the d variables i.e., E ('vm,'vt/’j/) =0, Vt,t',5 # j, or
they are allowed to be weakly dependent i.e.,

d! Z;l:l Z?,:l E(v,j, vy jr) < 00 as d — oo. Furthermore, dynamic is
allowed to enter the factor model in terms of ¢ lags of F' in equation
, thus distinguishing between static and dynamic factor models.
However a dynamic factor model with ¢ lags can also be written as
a static factor model with r(q + 1) factors and hence estimated with
PCA.

Both factor models and sparsity-inducing regression techniques are widely
employed in practice and both have merits and shortcomings. The lit-
erature tends to polarize on either sparse or dense modeling. Chapter 5
reconciles the two factions retaining the best features of both by using a
combination of a dynamic factor model where PCA is used in estimat-
ing the factors and a sparse VAR is used in estimating the idiosyncratic
components.

1.1.2 High-Dimensional Models: the Problem of Inference

Let yi, x1¢,...,2a4¢ be a set of covariance—stationaryﬁ time series of
interest for a sample size 1" and dimension d, potentially larger than T'.
Consider the following linear regression model

d
yt:Z/Bjxj,t+6t:w;r:B+6ta tzl,...,T, (17)
J=1

8In Chapter 2 we work under this assumption, in Chapter 3 and 4 we relax it to
consider unit root non-stationary time series as well.
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where the intercept is omitted for simplicity, ¢ is a realization of a zero-
mean stationary stochastic process and 3 is a d-dimensional vector of
coefficients to estimate. Let

Yyt = bizg + ml,tﬁﬂ + €, (1.8)

where x1; is a T' x 1 series of interest for testing a certain null hy-
pothesis e.g., Hy : 1 = 0; and &_14 is the T' x (d — 1) matrix of
potential confounders. As the high-dimensional setting is the focus, d
is potentially larger than T, therefore one could use penalized regres-
sion techniques introduced in the earlier Section to shrink the
dimensionality of @ _1 ;. Ideally, one would think that by shrinking the
dimension of x_1; and re-fitting the selected model with least squares
would allow for a valid test of the relevant hypothesis on 3;. Inference
on a model that has been selected from the data is called “post-model
selection inference”. However, the problem with it is that the model,
being itself selected from the data, is random. The Oracle property in
ensures consistent model selection but this is not sufficient to have
uniform convergence as the oracle property for post-selection estimators
is a point-wise result, in other words, the estimator does not converge
uniformly in the parameter space to a Gaussian distribution, but only
point-wise. Point-wise limits can give very misleading results about
approximations in finite samples. In order to illustrate this, consider
the column dimension of ®_1; to be just 1. Furthermore, consider for
simplicity € ~ N(0,02), E(x1:@—1) # 0 and that the oracle property
in holds for 8y = (81,3-1)"; then VO, |6 ||, < C for C a positive

constant,
pra(ps-pos) oo
where B,l is the confounders vector B3_1 estimated using a penalized

regression method such as the lasso and gﬁ is the corresponding support.
A famous negative result due to Leeb and Potscher (2005) implies that

10



36 > 0:

Tlim sup Pg, "Uglﬁ(B?LS — B1) — N(0, 1)” >0 | 40, (1.10)
6ol <C L

=D

where B?LS is the least squares estimator of 3; after selection of B_1,

lglly = sup,z, 9(”‘2—:&(7’) for g : [0,1] = R, og is the standard error of B;.
The low dimensional setting well exemplifies this impossibility result.
In fact, as the column dimension of _;; is 1, there are actually only

two model possibilities:

ar: argmin T_1||yt — ,6’1:1:t||§;
1

) (1.11)

arr: 81%;HH17’lHyt—'51It—'$T1¢ﬂ—1Hj
1

The result in is still true if one looks at a neighborhood of radius

VT of the true parameter vector i.e., if the supremum is taken over

1605 < C/\T, for C a positive constant. Hence, fix e.g., /1 = 0 and

take a sequence for B_1 17 =/ VT for ~ a positive constant. Then the

following lower bound is attained:

lim sup Pg,(D)> lim  sup P(O %> (D),
VT

T=%g)|,<C/VT Ty, <c/vT
> lim P (Haﬂ_lﬁ(d?LS) — NY(0, 1)HL >0) - P (03) (8% #0) .

(1.12)
However, the right hand side in the limit converges to P (g ¢ B?If% # 0)
&

as 'y/ﬁ — 0 as T — oo, which by the Oracle property in (1.9)) is equal
to zero. Hence, what remains is

lim P (Haglﬁ(a?“) — NY(0, 1)HL >4).

T—o00

11
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Now, the least squares estimator of model a; (49%5) can easily be
computed from (1.11)):
TN\ "1 ,.T
~OLS _ Ly Lt Ly Yt 1.13
293 ( T > T ) ( )
hence

( el \ T
VT < : t> L lea+mb+al, Bar | -6,
e (1.14)

N IEEA
T

r/) € elo\ T w1y v
T +51+< T > T ﬁ_ﬁl

) (I1)

The term (I) is Gaussian by assumption on €; and [1’s cancel out.
However, as E(xix_1;) # 0 by assumption, the term (/) produces a
non-vanishing bias in expectation:

-1 -1
JT (xz—xt) z) e N (a::mt) TT-1p Y

AN (E(x;rwt)_lE(xtw_Lt)% 02) .

This bias hinders the coverage of any post-selection confidence interval.
Therefore special techniques are needed to obtain uniform convergence
to limit distributions. These techniques are referred to as “honest infer-
ence” and include: simultaneous inference across models (Berk et al.,
2013), inference conditional on selected models (Lee et al., 2016)), debi-
asing (or desparsifying) the lasso estimates (Van de Geer et al., [2014}
Zhang and Zhang, 2014)) and post-double-selection (PDS) techniques

12



(Belloni, Chernozhukov, and Hansen, 2014b)).

1.1.2.1 The Post-Double Selection

Central to this thesis is the PDS method coined by Belloni, Cher-
nozhukov, and Hansen (2014b)). The method and the intuition of why
this solves the pointwise convergence issue of post-selection estimators
is now presented. Consider again as reference model and again
assume for simplicity &_;; has only one column. Consider 1, the
treatment variable i.e., the variable of interest for the inference. Then
the following three steps, similarly to the famous Frisch-Waugh-Lovell
theorem, are in order:

i) Step 1: Lasso of y; on @_q:

2 .
B-1= ar% min ’yt - iU——r17t:3—1H2 +X|B-1]l4; obtain Sél) (N).
-1

—1

ii) Step 2: Lasso of x1; on x_q4:

o 2 ~
B, = ar% min”xl,t — wil’tﬁq”Q—MHﬁ—lHﬁ obtain ngl)()\).
—1

iii) Step 3: Least Squares of y; on x1; and @ A0 &I
—14,(550, usg))

2

.
Yy — birig —x

= arg min N .
Pr = arg 1, (850 D

B

Y

2

)5—1

where Sél_)l (N, gél_ll)()\) are the estimated supports at Step 1 and 2 and

-1 -1

(5’ (D 5”;;”) indicates the union of the selected coefficients at Step
1 and 2. The intuition of this method is as follows. For simplicity

13
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assume the error term ¢; is homoskedastic and uncorrelated. Consider
the covariance matrix

T 2
Tq,T14  T14T—1¢ o Oz O
E Lt ’ ’ :| = |: L1t Tt Ltp (116)

T 2 )
L1160 L g L1 Ox1,40x_1,:P Oz 1

where p is the correlation between x1; and _;; and assume p # 0.
Now consider the regression of y; on only x1¢ i.e., yy = f121,+ + € where
€& = a:jl B—1+ €, then 5?LS will not be a consistent estimator for 31
since

3 = (1) ® (P11 + €) =

B = (2] yw10) " el (B + &)
=6+ (mlT,txl,t)_lxlT,tgt =6+ (mlT,txl,t)_lxlT,t(af'Il,t:B—l + €t)
= b1+ (] 1) w18 + (] 1) ] e

g
5B+ ﬁ—1—p Tt

T 1

where & indicates convergence in probability. Analogously, when con-

sidering the least squares of y; on only x_; will yields ,39%5 2 B_1+

POx_q 4 . .

f1——=. Finally, taking the least squares of z;; on &_;; returns
LS

T 1T p POz 0x_1,
(T 1 @o1) @@ =

T_1,t

Ife_1+ 51% is large, then the lasso at Step 1 will select x_1 ;. If
PTrt s also large, lasso will also select ©_1; at Step 2. Conversely,
T_1¢
PIz1e 1.t

can only be small if p is small; hence B_1 + Blpzm—_ can only
Tt

Ox_q ¢ ,
be small when B_; is small. Therefore, only when p and B_; are both

small then lasso will not select ©_1; in either Step 1 or Step 2 thus
leaving Step 3 with no _1;. The key point is that if both p and B_;
are small, then

POz 4

T—1,t

BB B+ By ~ B, (1.17)
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. . PO
since the compounding factor 81 Lt
T_1,t

is negligible and hence consis-

tency is re-estabilished. In other WOI“dS, considering equation (|1.15]), an
-1 T

unbiased result is obtained if /T (wt xt) e Tt By, Therefore, one

T
(Gx_14) = 0and EC? = 1—p?,

and obtain

(T_larz—_r1 tm,l’t> T—1/2 (
’ Oz_1,

o -1
— ﬁpﬂ —|— (Tﬁlw—jl’ta:_l’t) 1/2 1 tCt?

—x_ 1t+C> T_1t=

093—1,t
Oy 2 U%u

— VT T (1 )T N (0, 1) + 0, (1).
Ox_1, 1t

Define 67 — 0 as T' — oo such that dpvT — oo but 6774 — 0. Then,
increasingly small parameters in " can be defined as p = ¢4, y&_, ,07 and
Br = cx_, 07 for ¢z x4 Ca_,, SOMe positive constants, such that

-1 o
-1, T —1/2 1.t
Br (T 51371,155”—1,15) T/ <p—w_17t + Ct) 1=
Ox_y,

;2 (1.18)
— g,
= T(s%cﬂfl,tw—l,zcw—l t = — + Cx_y t6 (1 - P2) ;Lt N(O? 1)’

T—1,t T_1t

and since VT 62 — 0 and 67 — 0 both terms vanish asymptotically, thus
letting ﬁOLS p = B1. The double selection step via the lasso, guarantees
that omitted variable bias is substantially diminished and the errors of
the final model are close enough to be orthogonal with respect to the
treatment variable. This rather straightforward result allows for uni-
form asymptotic validity for a test of hypothesis in a high-dimensional
regression model.
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1.2 Granger Causality

An important task investigated in this thesis is: trying to learn cause
and effect relationships among time series in a high-dimensional mod-
eling framework. Causality had been considered in the field starting
around 1950 (see e.g. Weiner, |1956). However, it was Clive Granger’eﬂ
contributions to the the study of causality and causal relationships in
economics to pave the way to modern empirical causality analysis and
testing. Granger (1969) Econometrica paper is the cornerstone of these
fields as the simple definitions it contains have formed the basis for al-
most all the research in the area in the last 50 years and will likely do
so for many more years to come. Granger employs spectral methods
as well as simple bivariate time series models to formalize and illus-
trate the notion of causality. In his own words: “[...] Y; causes X if
we are able to better predict X; using all available information than if
the information apart from Y; had been used” (Granger, 1969, p.428).
Several research directions stemmed from this contribution to the liter-
ature: many forecasting works have used Granger causality tests as a
basic tool for model specification and many economic theories like e.g.,
the relationship between money and income (see Sims, 1972) have been
evaluated using Granger causality tests.

Later, Granger (1980]) publishes “Testing for causality: a personal view-
point” in the Journal of Economic Dynamics and Control. An elucidat-
ing discussion of the philosophical notion of causality and the roots of its
initial interest is provided along with a probabilistic (axiomatic) formal-
ization of the causality concept. The formal probabilistic interpretation
of causality is derived in terms of distribution functions conditioned to
an information set, thus leading to causality tests based on conditional
expectation and variance.

Granger Causality captures predictability given a particular infor-

9Granger was awarded, together with Robert Engle, the Nobel Memorial Prize in
Economic Sciences in 2003, in recognition of his contributions to cointegration
analysis.
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mation set {; at time t. If the addition of the variable X; to €); alters
the conditional distribution of another variable Y; and both X; and
are observed prior to Y;, then X; improves predictability of Y;. Hence,
we say X; Granger causes (or is Granger causal for) Y;.

Granger (1980) envisioned this information set €, as “all the knowledge
in the universe available at that time” (Granger, [1980 p.330). This is
of course difficult to operationalize and poses some troubles. In fact,
as observed in Eichler (2013), this probabilistic concept of causality
exploits temporal precedence, namely the fact that causes must pre-
cede their effects in time. However, temporal precedence alone is not a
sufficient condition for establishing cause—effect relationships, and the
omission of relevant variables (cf. omitted variables bias), can lead to
so-called spurious causalities. In other words, conditioning on an infor-
mation set containing (all) the relevant variables is paramount to avoid
confusing causal discoveries with mere predictability results i.e., causal
results that do not hold anymore as an additional variable is added to
Q4. Thus, the definition must be modified to become operational. To
do so, one needs to substitute to the information set {2, the set of all
the information up until time t for the available data. For this opera-
tionalized version of causality Granger himself used the term “Xj is a
prima facie cause of Y}’ to underline the fact that a cause in the sense
of Granger causality must be considered only as a potential cause.

The high-dimensional setting under which this whole thesis is based
on, allows to approach the original universal concept of causality as en-
visioned by Granger, thus rendering the operationalized version more
robust. With high-dimensional models one is able to condition a rela-
tion between X; and Y; to a very large information set €);. The curse
of dimensionality as defined in Section will constrain at giving
up variables within the information set, unsuited for explaining the
relationship among X; and Y;. However, the post-double selection algo-
rithm outlined in Section [1.1.2] guarantees, within the possibilities of the
data set available, that the information set selected is free of omitted
variable bias.
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1.3 High-Dimensional Time Series Models: Contribution
of this Thesis

The present thesis is organized as follows.

Chapter [2| extends the post-double selection method as discussed in
Section to high-dimensional stationary time series models, specif-
ically vector autoregressions (VARs). A Lagrange-Multiplier (LM) test
is developed to test for (blocks) Granger causality in high-dimensional
VARs. Through an extensive simulation study the test is proved to work
very well in terms of both size and statistical power in finite samples.
Many different ways of carefully tuning the penalty parameter )\ are
compared: information criteria, time series cross-validation and plug-in
choices. The test is not confined to bivariate relations but accomodates
blocks-Granger causality, meaning that a subset of variables can be
tested to be Granger-causal for another set. Under a series of assump-
tions, the post-double selection estimator is proved to be asymptoti-
cally Gaussian and the relative LM test standard y? distributed. The
novel testing procedure is employed within the framework of a high-
dimensional heterogeneous VAR (see Corsi, 2009) to build a contagion
network of volatility spillovers for 30 large capital stocks. The pro-
posed method is compared with standard bivariate Granger-causality
and full system VAR Granger-causality tests and clusters of volatility
contagion are derived via the edge betweenness algorithm. Compar-
isons are provided with both a large sample in which the full-system
VAR provides a useful benchmark and a smaller sample. By increasing
the information set through considering a high-dimensional VAR model
in the estimation, one is able to obtain more realistic effects than in the
low-dimensional models. Furthermore, even when the sample size is not
large enough to use standard full-system VAR techniques, the proposed
method remains reliable and delivers accurate results.

Chapter [3] builds on the post-double selection LM test for Granger
causality in high-dimensional VARs developed in Chapter[2} The setting
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is extended to unit-root non-stationary time series. As usual asymptotic
theory is not applicable to hypothesis testing in levels VARs if the vari-
ables are integrated or cointegrated, a lag-augmentation is employed
similarly to Toda and Yamamoto (1995). While the original idea of
Toda and Yamamoto (1995) was conceived for low-dimensional settings,
in Chapter [2] this is extended to the high-dimensional case. Algebra is
derived to show that augmenting the lag-length only to the variable
of interest for the Granger causality test i.e., the Granger-causing and
Granger-causal, as opposed to all the variables in the system, is suffi-
cient to obtain asymptotic normality of the post-selection least squares
estimator. Simulations show how this result is able to bypass the loss of
statistical power produced by the lag-length over-specification as long
as causality is tested on sufficiently small blocks. The set of assump-
tions needed for the post-double selection procedure to hold in the non-
stationary framework is adapted and the LM test is again proved to
be standard x? distributed. Furthermore, a data-driven upper bound
to select the lag-length in a high-dimensional VAR is proposed and its
finite sample performances assessed. The test is used on the popular
macroeconomics data set FRED-MD (see McCracken and Ng, 2016) to
investigate the main macroeconomic drivers of inflation. The proposed
method is able to uncover important macroeconomic connections which
would be lost if differences would be taken to transform the time series
to stationary.

Chapter [4] uses the designed post-double-selection LM test for unit
root non-stationary time series developed in Chapter [3| to investigate
causality in high-dimensional climate systems. The new method helps
in disentangling and interpreting the complex causal chains linking
greenhouse gas radiative forcings and global temperatures. Allowing
for large-dimensionality opens up to opportunities of conditioning the
causal relationship between greenhouse gases and temperature to sev-
eral natural and anthropogenic variables. The use of a VAR in levels is
particularly adapted for climate time series which are known to contain
stochastic trends and yielding long memory. Climate change is discussed
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and in order to contribute to its attribution, Granger causality net-
works are built among the climate series considered via the post-double-
selection LM test. Yearly data are collected from 1850 until 2019 on
climate variables such as solar activity, stratospheric and tropospheric
aerosols and surface albedo, ocean heat content, El Nino—Southern Os-
cillation index, global temperature anomalies and greenhouse gas con-
centration. GDP is also added as extra conditioned variable within the
information set. We carry out the analysis both with greenhouse gas
considered as a single aggregated series and also dividing it into the
three main gases, namely CO2, CHy, N2O. Direct and indirect causal
paths are discussed as well as cycles, clusters and feedbacks effects.
A sensitivity analysis on unit roots and lag-length show how avoiding
taking differences of the original series is beneficial for the causal find-
ings and considering larger lag-lengths is helpful for climate systems to
uncover causal relations otherwise masked.

Chapter [f| reconciles sparse and dense techniques within the framework
of a dynamic factor model. A two steps procedure is outlined in order
to estimate the model and produce forecasts. The first step estimates
the factor via standard principal components argument while the sec-
ond step uses the estimated idiosyncratic components within a sparse
VAR which is estimated by penalized regression techniques such as the
adaptive lasso. Intuitively, this approach is beneficial since it allows to
disentangle in the system covariance matrix, the dependence among its
diverging eigenvalues, namely the factors, with the dependence among
the bounded ones i.e., the idiosyncratic components. Cross-sectional
and time dependence in the idiosyncratic term are allowed and this
is assumed to follow a high-dimensional VAR model. Consistent esti-
mation of both idiosyncratic components and the factors is shown as
both the cross-sectional and time dimensions grow large. The work is
complemented with a novel joint information criteria which combines
the Bai and Ng (2002) approach to select the number of factors with
an extra penalty which allows for simultaneous lag-length estimation.
The forecasting performances of the proposed procedure as well as the
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proposed information criteria are assessed via simulations.

Concluding remarks are drawn in Chapter [6]
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Granger Causality Testing in
High-Dimensional VARs: a
Post-Double-Selection Procedurd]]

!This chapter is based on a joint work with Alain Hecq and Stephan Smeekes

from Maastricht University and it is forthcoming in the Journal of Financial
Econometrics.
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Chapter 2. Granger Causality Testing in High-Dimensional VARs: a
Post-Double-Selection Procedure

Abstract

In this chapter we develop an LM test for Granger causality in high-
dimensional VAR models based on penalized least squares estimations.
To obtain a test retaining the appropriate size after the variable selec-
tion done by the lasso, we propose a post-double-selection procedure
to partial out effects of nuisance variables and establish its uniform
asymptotic validity. We conduct an extensive set of Monte-Carlo simu-
lations that show our tests perform well under different data generating
processes, even without sparsity. We apply our testing procedure to
find networks of volatility spillovers and we find evidence that causal
relationships become clearer in high-dimensional compared to standard
low-dimensional VARs.
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2.1 Introduction

Economics, statistics and finance have seen a rapid increase of appli-
cations involving time series in high-dimensional systems. Central to
many of these applications is the vector autoregressive (VAR) model
that allows for a flexible modelling of dynamic interactions between
multiple time series. In this chapter we develop a simple method to
test for Granger causality in high-dimensional VARs (HD-VARs) with
potentially many variables.

Many financial applications consider Granger causality analysis, espe-
cially for constructing high-dimensional networks. Networks of financial
firms’ intedependencies are investigated in Basu, Shojaie, et al. (2015),
Gao et al. (2017), Demirer et al. (2018)) and Barigozzi and Brownlees
(2019). Similarly, spillovers and contagion among stock returns are
investigated in networks using Granger causality analysis in Lin and
Michailidis (2017)), Vyrost et al. (2015 and Corsi et al. (2018).

Most of the econometric literature has traditionally been focused on al-
lowing for high dimensionality in VARs through the use of factor models
(see e.g. Bernanke et al., 2005, Chudik and Pesaran, [2016) or Bayesian
methods (Banbura et al., |2010). For instance Billio, Getmansky, et
al. (2012) develops measures of connectedness to assess systemic risk
propagation among institutions in the financial system using principal
component analysis and Granger causality networks. Recent years have
seen an increase in reqularized, or penalized, estimation of sparse VARs
based on popular methods from statistics such as the lasso (Tibshirani,
1996)) and elastic net (Zou and Hastie, 2005), which impose sparsity by
setting a (data-driven) selection of the coefficients to zero.

Compared to factor models, such sparsity-seeking methods have often
an advantage of interpretability, as in many economic applications, it
appears natural to believe that the most important dynamic interactions
among a large set of variables can be adequately captured by a relatively
small — but unknown — number of ‘key’ variables. As such, the use
of these methods for estimating HD-VAR models has also increased
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significantly in recent years, see e.g. Nicholson, Matteson, et al. (2017)),
Basu, Li, et al. (2019), Billio, Casarin, et al. (2019), Wilms and Croux
(2018)), Korobilis and Pettenuzzo (2019)).

Regularized estimation theory for high-dimensional time series and VAR
models is now well established, see among others Song and Bickel (2011]),
Basu and Michailidis (2015a), Kock and Callot (2015), Davis et al.
(2016), Medeiros and Mendes (2016a)), Audrino and Camponovo (2018])
and Masini et al. (2019) and Wong et al. (2020)); Kock, Medeiros, et al.
(2020) provide a recent review. However, performing inference on HD-
VARs, such as testing for Granger causality, still remains a non-trivial
matter. As is well known, performing inference after model selection
(post-selection inference) is complicated as the selection step invalidates
‘standard’ inference where the uncertainty regarding the selection is ig-
nored (see Leeb and Pétscher, 2005). Complexities introduced by the
temporal and cross-sectional dependencies in the VAR mean that most
recently developed post-selection inference methods are not automati-
cally applicable.

Most existing literature on Granger causality testing in HD-VARs there-
fore has so far not considered post-selection inferential procedures.

Wilms, Gelper, et al. (2016) propose a bootstrap Granger causality
test in HD-VARs, but do not account for post-selection issues. Sim-
ilarly, Skripnikov and Michailidis (2019) investigate the problem of
jointly estimating multiple network Granger causal models in VARs
with sparse transition matrices using lasso-type methods, but focus
mostly on estimation rather than testing. Song and Taamouti (2019))
focus on statistical procedures for testing indirect/spurious causality
in high-dimensional scenarios, but consider factor models rather than
regularized regression techniques. Lin and Michailidis (2017)) consider
high-dimensional multi-block VARs derived from a two-blocks recursive
linear dynamical system and use a maximum likelihood (ML) estima-
tor for Gaussian data. In order to obtain the ML estimates for the
system transition matrices and the precision matrix, respectively the
lasso and graphical lasso on the residuals are iterated until convergence.
Krampe, Kreiss, et al. (2018]) develops bootstrap techniques for sparse

26



VAR models combining a model-based bootstrap procedure and the
de-sparsified lasso (see Van de Geer et al. (2014))) to perform inference
on the autoregressive parameters. Chaudhry et al. (2017)) look at de-
biased estimators as in Javanmard and Montanari (2014)), for Gaussian
and sub-Gaussian VAR processes with a focus on Granger-causality and
control of the false discovery rate.

In this chapter we build on the post-double-selection approach pro-
posed by Belloni, Chernozhukov, and Hansen (2014b), to develop a
valid post-selection test of Granger causality in HD-VARs. The finite-
sample performance depends heavily on the exact implementation of
the method. In particular, the tuning parameter selection in the penal-
ized estimation is crucial. We therefore perform an extensive simulation
study to investigate the finite-sample performance of the different ways
to set up the test in order to be able to give some practical recom-
mendations. In addition, we investigate the construction of networks of
realized volatilities using a sample of 30 financial stocks modeled as a
vector heterogeneous VAR (Corsi, [2009). We are able to demonstrate
how our approach allows for obtaining much sharper conclusions than
standard low-dimensional VAR techniques.

The remainder of the chapter is as follows: Section introduces the
high-dimensional VAR model and Granger causality tests. In Section
2.3 we propose our estimation and inferential framework. Section [2.4
establishes the asymptotic properties of our method and discusses the
assumptions required for the theory to hold. Section [2.5| reports the
results of the Monte Carlo simulations. We apply our method in Section
to construct volatility spillover networks. Section concludes.
Proofs and supplemental results can be found in the appendix.

A few words on notation. For any n-dimensional vector z, we let [ z||, =

O |2;P)"/? denote the {,-norm. For any index set S C {1,...,n},
let &g denote the sub-vector of x; containing only those elements z;
such that i € S. |S| denotes the cardinality of the set S. We use %> and

9 to denote convergence in probability and distribution, respectively.
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2.2 High-dimensional Granger causality tests

Loosely speaking, the notion of Granger causality captures predictabil-
ity given a particular information set (Granger, 1969; Granger, |1980).
If the addition of variable X to the given information set (2 alters the
conditional distribution of another variable Y, and both X and € are
observed prior to Y, then X improves predictability of Y, and is said
to Granger cause Y with respect to 2. Granger (1969) originally en-
visioned the information set {2 “be all the information in the universe”
(p. 428), which is of course not a workable concept. Yet clearly the
choice of information set has a major effect on the interpretation of
the finding of (non-)Granger causality, as discussed in Granger (1980)).
In particular, spurious Granger causality from X to Y may be found
when both X and Y are Granger caused by Z, but Z is omitted from
Q. As such, one might want to include as many potentially relevant
variables in the information set as possible in order to avoid finding
spurious causality due to omitted variables, thereby moving as much as
possible towards the universal information set envisioned by Granger.
However, conditioning on so many variables leads to obvious problems
of high-dimensionality rendering many standard statistical techniques
invalid.

In this chapter we focus on testing Granger causality in mean using
linear models, in which setup the VAR model is the natural tool to
investigate this problem. However, to enlarge the information set means
estimating a VAR with an increasing number of variables. The number
of parameters in a VAR increases quadratically with the number of
time series included; an unrestricted VAR(p) has K?p coefficients to be
estimated, where K is the number of series and p is the lag-length. As
the time series dimension 7" is typically fairly small for many economic
applications, the data do not contain sufficient information to estimate
the parameters and consequently standard least squares and maximum
likelihood methods suffer from the curse of dimensionality, resulting in
estimators with high variance that overfit the data.
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2.2.1 Granger causality testing in VAR models

Let y1,...,yr be a K-dimensional multiple time series process, where
Yy = (Y1, .- ,yKyt)' is generated by a VAR(p) process

yt:Alyt—1+"'+Apyt—p+ut7 t:p+177T7 (21)

where for notational simplicity we assume the variables have zero mean;
if not they can be demeaned prior to the analysis, or equivalently a
vector of intercepts is added. A1,..., A, are K x K parameter matrices
and u; is a martingale difference sequence (mds) of error terms. We
consider weakly stationary VAR models, as formalized in Assumption
[ below.

Assumption 1. The VAR model in (2.1)) satisfies:

(a) {u:}]_; is a weakly stationary mds with respect to
Fi = 0(Yt, Yt—1,Yi—2, . . .) ug such that E(uy|F;—1) = 0 for all ¢ and
Y. = E(upuy}) is positive definite.

(b) Allroots of det(Ix —> 7, A;27) lie outside the unit disc, such that
the lag polynomial is invertible.

In the VAR model we are interested in testing whether variables
in the set J Granger cause variables in the set I in mean, conditional
on all the other variables, where J,I C {1,...,K} and J NI = 0.
Let Ny = |I| and Ny = |Ny| denote the number of variables in I
and J respectively. We describe our procedure here in general form
for testing blocks of variables. For any sets 51,52 C {1,...,K} of

variables define the best linear predictor in Lo-norm of yg, ; given
wg;),t 1= (ySQ,t 10 "ygg,t—p) as P(ys, t‘mSQt )= F*“’Esi)t 1> Where
I' = minr E [Hysht - 1"':1352715,1”2}. Then we say that y;: does not

Granger cause yr; conditionally on x je ; if

Plyre),) = Plyrdlz™)) (2.2)
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for any value of @ jc ;. In other words, conditional on e ;, addition of
the lags of ¢ to the information set does not improve predictability of
yr+. Note that Granger (non-)causality as defined in is a property
of the population. In the VAR this means that testing for Granger
causality can be done via testing the joint significance of the blocks of
coefficients in the matrices Aq,..., A, corresponding to the impact of
variables J on I.

To illustrate, consider (2.1) with p =1 lag, and assume without loss of
generality that the variables in y; are ordered such that

/
Yy = (y’”, Y y/—(IUJ) t) , where —(I U J)) refers to all variables not

in J or I. Then we can write
Yt Arg Argg A _(1ur) Yri-1
Y A Ay Aj_u YJi—1 + uy,
Y_(10J),t Ar_aqun A_aqun A_gur),—uun] [Y-une—1
where A is partitioned conformably with the blocks in y;. In this case,
the best linear predictors in (2.2)) are given by

P(yrilyi-1) = Ar1yri—1 + A15Ysi—1+ Ar_(unY—(107),t—15
P(y17t|yjc’t,1) = A?yjc7t,1, where A? = HAIDE [H’!/I,t — AIch,tfl”g .
I

For any arbitrary value of y;_i, these can only coincide if A; ; = 0.
Hence, the null hypothesis of no Granger causality from J to I in the
VAR(1) model can be formulated in terms of A; ; = 0. This is easily
extended to p > 1 by simply testing if the (I,.J)-block of all p lag
matrices is equal to zero.

In the remainder of the chapter, we will be working with a stacked
representation of for the variables in I. Specifically, let Y =
(Yp+1, - ,yr)" and let y; = vec(Y7) denote the N; x 1 stacked vec-
tor containing all observations corresponding to the variables in I.
Similarly, let u; = vec(U;), where U = (upi1,...,ur). Let X =

/
<331(,p), . ,m%’ll) and X® = Iy, ® X, while defining the stacked pa-
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rameter vector 3 = vec((Ai,...,Ap)"). Then we can write

yr = X%B+u; = XZBac + X%.oB-ce + ur, (2.4)
/
where XE‘?C = In, ® Xgc, and Xge = (xffl)), e ,wgp%_l) contains

those columns of X corresponding to the potentially Granger causing
variables in J; X_gc and X®,. . are then defined similarly but con-
taining the remaining variables)’| Testing for no Granger causality is
then equivalent to testing Hy : Bac = 0 against H; : Bgc # 0.

Define Ny = |J| and N; = |I|. Note that B_gc has (K — Nj) x Ny X p
elements, which we assume large through having a large number of
variables K. On the other hand, throughout the chapter we assume
that Ny, Ny and p are small, or more precisely, fixed when sample size
increases to infinity. As Bgc has Ngo = Njx Ny X p elements, these are
also implied to be fixed. While theoretically it is possible to consider
an increasing number of elements in Bgc (see Remark for details),
it would not be required for typical applications. J and I are under the
researcher’s control and in most applications it is natural to consider
a small number of variables of interest; often both J and I will only
consist of a single variable, as in our application.

For p it may appear more restrictive to assume it small. However, large
p in univariate regressions or small systems often arise from neglected
dynamics with omitted variables (Hecq et al., |2016). As our HD-VAR
attempts to include many more variables than typical small systems,
we hope to alleviate the omitted variable issue, and thereby also di-
rectly making smaller p much more realistic. Of course, p is generally
unknown in practice. However, in many applications it is possible to
give a reasonable (and small) upper bound on p, which is sufficient for
our algorithm. If not, p has to be estimated. We discuss two ways in
the next section.

?Note that if I = {4} for one particular value of interest, then (2.4) simply corre-
sponds to a single equation from the VAR in (2.1).
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Remark 2.1. Our operational version of Granger causality only con-
siders causality in mean. Additionally, one might argue that considering
only linear models is a further restriction on the generality of the con-
cept of Granger causality. However, in our high-dimensional approach
linear models are less restrictive as would appear. First, the VAR does
not have to be formulated for levels of variables of interest. In fact, in
our application we formulate a VAR for (realized) variances, such that
we are implicitly testing Granger causality in second moments rather
than first moments. Second. the linear VAR model in many cases pro-
vides a good approximation to a general nonlinear process via a Wold-
type representation argument, see e.g. Meyer and Kreiss (2015). Finally,
non-linear transformations (such as powers) of the original variables can
be added to , by which general functional forms can be approxi-
mated (even if one then strictly loses the VAR equivalence). While in
small systems this is infeasible as it increases the dimensionality dis-
proportionally, our high-dimensional approach can handle this without
any conceptual issues. In fact, Belloni, Chernozhukov, and Hansen
(2014al) explicitly motivate their high-dimensional linear approach as
an approximation to a general function; their arguments apply here as
well.

2.3 Inference after selection by the lasso

In this section we introduce our inferential procedure to the Granger
causality tests in high-dimensional VARs. We first discuss the lasso,
which we use in the initial stage to select relevant variables. Next we
discuss how naive use of the lasso introduces post-selection problems
for inference, and we propose our algorithm to remedy this.

2.3.1 The lasso estimator

As 3 is high-dimensional when Kp is large relative to T', least squares
estimation is not appropriate, and a structure must be imposed on 3 to
be able to estimate it consistently. We assume sparsity of 3; that is, we
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assume that B can accurately be approximated by a coefficient vector
with a (significant) portion of the coefficients equal to zero.

The sparsity assumption validates the use of variable selection methods,
thereby reducing the dimensionality of the system without having to
sacrifice predictability. For a general n-dimensional vector of responses
y and n x M-dimensional matrix of covariates X, the (weighted) lasso
simultaneously performs variable selection and estimation of the param-
eters by solving

m=1

. 1 M
B(/\) - argﬁrnin (TH?J - XBH% + A Z ’wmﬁm‘) ) (2'5)

where A is a non-negative tuning parameter determining the strength of
the penalty, and {w,}}_, are non-negative weights corresponding to
the parameters in 3. For the standard lasso the weights are either equal
to one, or equal to zero (if this parameter should not be penalized). The
notation [3‘()\) highlights that the solution to the minimization problem
depends on A, which has te be selected as yvell (see Section. When

no confusion can arise, we simply write 3.

One may also consider the adaptive lasso (Zou, 2006) with parameter-
specific weights w; in based on an initial estimation of 3, which is
able to delete more irrelevant variables. However, for our purpose such
oracle properties are not very relevant; we wish to eliminate the effects
of the other “nuisance” variables on the relation between the variables
tested for Granger causality, but we do not need to identify which of
these nuisance variables matter.

Theoretical properties of lasso estimation in stable VAR models have
now been studied extensively. We here non-exhaustively mention some
of the key results for our setting; see Kock, Medeiros, et al. (2020) for
a thorough review. Kock and Callot (2015) derive oracle properties of
the adaptive lasso for VAR models. Basu and Michailidis (2015a) es-
tablish restricted eigenvalue conditions for VAR models and show their
sufficiency for estimation consistency. Medeiros and Mendes (2016a))
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relax the Gaussianity assumptions of these papers by considering con-
ditionally heteroskedastic errors, and demonstrate that the adaptive
lasso retains oracle properties in time series settings. Finally, Masini
et al. (2019)) derive bounds on estimation errors in approximately sparse
VAR models under very general conditions, allowing for heavy tails and
dependence in the error terms. In particular, they show that several
commonly used volatility processes in financial research satisfy these
assumptions, thereby formally establishing the suitability of the lasso
for many financial applications of VAR models.

2.3.2 Post-Double-Selection Granger causality test

2.3.2.1 The need for post selection inference

One might be tempted to simply perform the (adaptive) lasso as in
on , setting wge = 0, and then testing whether Bgc = 0,
potentially after re-estimating the model by OLS on only the selected
variables. However, this ignores the fact that the final, selected, model
is random and a function of the data. The randomness contained in
the selection step means the post-selection estimators do not converge
uniformly to a normal distribution, as the potential omitted variable
bias from omitting (weakly) relevant variables in the selection step is
too large to maintain uniformly valid inference.

In a sequence of papers (see e.g. Leeb and Pétscher, 2005), Leeb and
Po6tscher address these issues, showing that distributions of post-selection
estimators only converge point-wise but not uniformly in the parameter
space to normal distributions. Therefore, “standard” asymptotics fail
to deliver a proper approximation of finite-sample behavior due to the
presence of small, hard to detect parameters, whose omitted variable
bias is too large to ignore asymptotically. As such, post-selection based
on oracle properties is only appropriate if one a priori rules out small pa-
rameters conditions (via beta-min conditions, see e.g. Geer, Bithlmann,
et al., 2011) thus obtaining a sharp separation of non-zero from zero
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coefficients. This is typically far too strong to be reasonable in applica-
tions, and methods explicitly accounting for selection are required.

Several approaches to valid post-selection inference, also referred to as
honest inference, have been developed in recent years based on various
philosophies, such as simultaneous inference across models (Berk et al.,
2013)), inference conditional on selected models (Lee et al., 2016), or
debiasing (desparsifying) the lasso estimates (Van de Geer et al., 2014}
Zhang and Zhang, |2014)). We focus on the double selection approach
developed by Belloni, Chernozhukov and co-authors; see e.g. (Belloni,
Chernozhukov, and Hansen, 2014a) for an overview. This approach
is tailored for the lasso, easy to implement, and can be extended to
dependent data.

Belloni, Chernozhukov, and Kato (2014) develop a post-double-selection
approach to construct uniform inference for treatment effects in par-
tially linear models with high-dimensional controls using the lasso. Two
initial lasso estimations of both the outcome and the treatment variable
on all the controls are performed, and a final post-selection least squares
estimation is conducted of the outcome variable on the treatment vari-
able and all the controls selected in at least one of the two steps. The
double variable selection step substantially diminishes the omitted vari-
able bias and ensures the errors of the final model are (close enough to)
orthogonal with respect to the treatment. The authors proved uniform
validity of the procedure under a wide range of DGPs, including het-
eroskedastic and non-Gaussian errors.

Chernozhukov, Héardle, et al. (2020)) extend the analysis of estimation
and inference for highly-dimensional systems in regressions, allowing
for (weak) temporal and cross-sectional dependency. Regularization
techniques for dimensionality reduction are applied iteratively in the
system and the overall penalty is jointly chosen by a block multiplier
bootstrap procedure. Oracle properties and bootstrap consistency of
the test procedure are derived. Furthermore, simultaneous valid infer-
ence is obtained via algorithms employing least square or least absolute
deviation after (double) lasso selection step(s). Although our approach
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is closely related to that of Chernozhukov, Hérdle, et al. (2020), it differs
in a number of ways. Our method is simpler and faster to implement
as it does not rely on bootstrap methods. Also, Chernozhukov, Hardle,
et al. (2020) focus on general systems of equations and general ways
of performing inference, which is different from our specific focus on
Granger causality and VAR models. Third, we consider a different set
of assumptions to establish the validity of our method, where we specif-
ically focus on the relevance of these assumptions for applications in
financial econometrics.

2.3.2.2 High-dimensional Granger causality test

We here describe how to implement the post-double-selection procedure
in a VAR context. Let xgcj, j = 1,..., Nx, where Nx = pN;, denote
the j-th column of Xgc and consider the partial regressions:

yr = XE.0 + eo, (2.6)
bideloX | :X_GC’Y]‘-FB]‘, 7=1,...,Nx, (2.7)

where v;, j =0,..., Nx, are the best linear prediction coefﬁcien‘cﬂ
. 2 —1
Yo = argmlnE”y[,t - X?é:c,tq'YHQ = (EX?GC,t—IXi@/GC,t—l) EX?GC,t—lyi,h
vy

v; = arg minEHch,j,t - wicc,#ﬂ’“i = (Em—GC,t71$/—GC,t—1)71 Ex_cot-1760,4.1,
vy

for j = 1,..., Nx, where X?Gc’t_l = In, ®®x_gcoi—1- As the errors
eo, ..., eny are orthogonal to X_gc, partialling out the effects of these
variables would allow for a valid test of Granger causality. Of course,
and are still high-dimensional and cannot be estimated by
least squares. However, we can select the relevant variables from lasso
estimation of and and collect all these for the final estimation
of yr on X g’c plus only those relevant variables.

3Note that Assumption @) implies that (Ew*GC,tflw—Gc,tfl)_l and hence
(EX§>Gc,t,1Xi®éC7t,1)_ exists.
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Intuitively, this works because to cause omitted variable bias on the co-
efficients of X ¢, a particular variable in X_ g must have a nonzero
coefficient in both and one of the regressions in . If its co-
efficient is zero in , it has no effect on y; and is therefore not
wrongfully omitted. If it has a zero coefficient in all regressions in ,
it is not correlated with any variables of interest, and omitting it will
not result in a bias. By including all variables that are selected in
at least a single of these regressions, we essentially allow for “one free
mistake” by the lasso in failing to select a relevant variable. That is,
omitted variable bias will only occur if the lasso fails to select a rele-
vant variable in both regressions simultaneously. As the probability of
this occurring decreases quadratically, this is sufficient to be negligible
asymptotically and allow for uniformly valid inference. We provide a
formal justification in Section

We now state the details of our algorithm which executes the post-
double-section along the lines described above, and conclude this section
with some remarks.

Remark 2.2. We perform the initial regressions in terms of Xgc amd
X _gc instead of XE‘?C and XQ_K)GC. The two are equivalent, as the
Kronecker product essentially just copies the columns of X both in the
dependent and explanatory variables. Running the initial regressions
in terms of X ® therefore essentially means running the same regression
Ny times, which is pointless as the selected variables remain the same
in terms of the columns of X _gc. We therefore perform the regressions
just once for each column in Xz¢. The construction of Sg? ensures that
for any selected column x_gc,m, we select every column of X?GC in
which _gc,m appears.

Remark 2.3. The feasible generalized least squares (FGLS) estimation
in Step [2] is needed when Ny > 1 to account for the correlation between
equations of the VAR, and the fact we do not have the same selected
regressors in each equation, as those coming from differ. Note
that if Ny = 1, FGLS estimation collapses to the familiar form of the
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Algorithm 1 Post-double-selection Granger causality LM test (PDS-

LM)

[1]

[3]

[4a]

[4b]

Estimate the initial partial regressions in and (| . by an
appropriate sparsity-inducing estimator such as the (adaptive)
lasso, and let 4, ..., 4Ny denote the resulting estimators. Let
So={m : [fmo|l >0, m =1,...,N} and S; = {m : |9 ;| >
0, m=1,...,Nx} for j =1,...,p, denote the selected variables
in each regression.

Let Sy = U;vle Sj denote all variables selected in the regressions

for the columns of Xgc, and let 5’% map Sy back to XE@GC be
such that X §® = In,®Xg, . Collect all variables kept by the lasso
X

in Step [1] in 5% = 5, US’??. Obtain the residuals € = y; —X?®ﬁT
by OLS estimation. Let £ denote the T"x Ny-matrix formed from
€ and construct X, ; = ;5 /T and X%, = 3, ;@ Ir.

. —1/2 . —-1/2
Let vk, = (¥2)  wv, and X*° = (29,) 7 X9, Ob-
tain the residuals é* =y — X*®ﬁFGLS, and regress 5* onto the
variables retained by the previous regularization steps plus the

Granger Causality variables, retaining the residuals * = é*
5 GCBFGLS Then obtain the statistic LM = (€¥€* — 0¥ D*).
Reject Ho if LM > gq,»  (1—a), where g2 (1—a)isthel—«

Ngco Nac

quantile of the x? distribution with Ngc degrees of freedom.

. o [ TN;—5—Ngco LM
Reject Hy if < Noo > <TNGCLM) 2 GFNGp Ny T—5-Nae (1—

«), where § = )S®‘ and qry_ . vyros ng (1 — @) is the 1 —a
quantile of the F' distribution with Ngc and N;T — § — Ngco
degrees of freedom.
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LM statistic. In that case one regresses é by OLS onto the variables
retained by the previous regularization steps plus the Granger causality
variables, and retain the residuals © = E X obtaining R? =

~v'D/€E.

SUGC”B

Remark 2.4. Our lasso estimation of an HD-VAR can be interpreted
as a general, data-driven, approach to Granger causality testing which
encompasses the theory-driven ‘standard’ approach in low-dimensional
VARs. In particular, the lasso can be interpreted as imposing (approxi-
mate) sparsity over a high-dimensional information set, with the extent
and location of the sparsity, or irrelevance, determined in a data-driven
way. Conversely, testing Granger causality in a low-dimensional set-
ting can then be interpreted as a priori assuming an extreme degree of
sparsity over the same information set; in other words, it amounts to
assuming that none of the additional series are relevant.

Remark 2.5. Given that we essentially have Ngc = Ny x Ny X p
steps of selection, it would be more appropriate to refer to our method

“post-Ngc-selection” approach. For expositional simplicity however
we stick to the post-double-selection name, as this is the common name
for such a procedure, and conveys the essence of our method equally
well.

Remark 2.6. Although the lasso regressions can handle increasing N,
Ny or p with any issues, inference becomes more complicated when Ng¢
increases with the sample size as the proposed LM statistic (or similarly
a Wald test) will not have a limit distribution anymore. In such a case
one could use recently developed Gaussian approximations of maxima
of high-dimensional vectors (Chernozhukov, Chetverikov, et al., [2013}

Zhang and Wu, 2017) to base a test statistic on max,,—1,... nNge

where ,BPDS are the coefficients of ch in a regression of y; on Xqgo
and X§® as in ([2.8]). However, the critical values of this test statistic
have to be simulated, which complicates the testing. As we argued
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in Section that a fixed Ng¢ is a reasonable assumption for typical
Granger causality applications, we do not pursue this route.

Remark 2.7. In Step [1] we propose not to consider the GC variables
in the first regularization and insert them back at Step [2]. Alterna-
tively, the GC variable(s) can be left in the regression, such that, we
regress on the full X® matrix. In this case there are then two further
possibilities by either penalizing these variables or not. Simulations for
these two alternatives have been carried out and in practice we do not
find significant differences among the three in terms of size and power.
The approach proposed in Step 1 delivers the best results in terms of
size.

Remark 2.8. When the time series length is of same magnitude as
the number of covariates, information criteria and time series cross-
validation tend to break down and select too many covariates in order
to perform a post-selection by OLS. To overcome this issue we propose
to place a lower bound on the penalty to ensure that in each selection
regression at most ¢ T N variables are selected, for some 0 < ¢ < 1. In
our simulation and empirical studies we set ¢ = 0.5. Note that, as we
have Ng¢ selection steps, the possibility remains that different variables
are selected in each steps, making the number of variables in the union §
still too large to perform the post-selection OLS, although this problem
is likely to occur far less often. This can be addressed by ensuring that
fewer than N;T/Ngc = T/Nx variables are selected in each selection
step. We do not impose this stricter bound in general, as it will often
be much too strict. Instead, we recommend to only address this issue
if it arises in practice by an ad-hoc increase of the lower bound on the

penalty[]

4Although it happens less often, the theoretical plug-in method for the tuning
parameter occasionally also selects too many variables to make the post-OLS
estimation infeasible. However, for this method no easy solution is available for
bounding the penalty. One could increase the constant in the plug-in expression,
thus strengthening the penalty, but this would be a rather ad-hoc adjustment. In
particular, imposing the lower bound for the other methods only limits the allowed
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Remark 2.9. Although our Granger causality test has a x? distribution
under the null hypothesis asymptotically, in smaller samples the test
might still suffer from the usual small-sample approximation error. As
such we propose a finite-sample correction to the test in Step [3b], which
in our simulation studies improved the size of our test.

Remark 2.10. Instead of the (adaptive) lasso, other estimators can
be used in Step [1] as long as they deliver a sparse coefficient vector.
For instance, the elastic net of Zou and Hastie (2005) that adds an
lo-penalty in addition to the #i-penalty of the lasso can be used. The
additional penalty ensures that the elastic net is strictly convex, and
as a consequence tends to select highly correlated variables as a group
together, whereas the lasso would tend to select only one of these vari-
ables (Zou and Hastie, 2005|). Given the typically strong correlations
between many economic variables, this appears particularly useful for
our context. However, we used the elastic net for both the simulations
and the empirical application, and in both cases we found that the re-
sults are widely comparable to those of lasso. Therefore we chose to
omit them from the chapter.

Remark 2.11. One can also perform a standard Wald test of Granger
causality instead of the LM test, by regressing the variables of interest
on ch and X?(X), and testing for the significance of the coefficients
of X gc. While asymptotically the LM and Wald tests behave equally,
differences might arise in small samples. We investigated the Wald
version of the test in simulations as well, with results reported in Ap-
pendix [B] Table 2.3] In general, differences between the two methods
are negligible. However, for the Wald test, occasionally we run into the

problem described in Remark 2.8 where even with the imposed lower

range of the tuning parameter, forcing the minimization to choose another (local)
minimum that can still be far away from the boundary and justified graphically.
For the plug-in method it is however difficult to justify the right amount of the
increase, as the tuning parameter will be fixed to that value, and thus the chosen
increase is rather arbitrary.
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bound on the penalty, too many variables are selected for performing a
post-selection OLS. For this reason we prefer the LM version.

2.3.3 Tuning parameter selection

Appropriate selection of the lasso tuning parameter A in is crucial
to achieve good performance. Many different data-driven methods ex-
ist giving wildly varying results. We provide a systematic comparison
of several popular methods discussed in the literature in a simulation
study. To the best of our knowledge, this is the first such comparison in
the context of post-selection inference. We now introduce the methods
considered in our study.

One option is to minimize an information criterion (IC) to determine an
appropriate data-driven . Let 5’()\) = {m e{l,...,Kp}: ’Bm(/\)’ > 0}
denote the set of active variables in the lasso solution for a given A. For
a generic response vector y and predictor matrix X, the value A¢ is
found as

AC — arg;ninln (%Hy — XBO‘)HE) + % ,SA’()\)’,

where Cr is the penalty specific to each criterion. We consider the
Akaike information criterion (AIC) by Akaike (1974) with Cp = 2, the
Bayesian information criterion (BIC) by Schwarz (1978) with Cp =
In(T"), and the Extended Bayesian information criterion (EBIC) by
Chen and Chen (2008) with Cr = In(T) + 2vIn(Kp) with v = 0.5
proposed by Chen and Chen (2012) who argue that BIC fails to select
the correct variables when the number of parameters is larger than the
sample size.

An alternative approach is to plug in estimates of theoretically optimal
values (see e.g. Bickel, Ritov, et al., 2009; Belloni and Chernozhukov,
2013; Belloni, Chernozhukov, and Wang, |2011)). The lasso requires that
A > ¢|| X ul| /T for some constant ¢ > 0 with “high probability”. The
central limit theorem motivates a Gaussian approximation where one
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chooses A\ = 3%@*1 (1—%) for a small a = o(1), where ®~1(-) is the

inverse of standard Gaussian cumulative distribution function and & is
an estimate the variance of w. In this chapter we set o = 0.05/ In(7") and
¢ = 0.5, while we follow Belloni, Chen, et al. (2012) in the estimation
of o. Specifically, we obtain an initial (conservative) estimate by least
squares estimation of y on the five most correlated regressors. This
estimate is then updated iteratively, for details see Belloni, Chen, et al.
(2012).

Perhaps the most popular way to choose the tuning parameter is cross-
validation (CV), although CV is not always appropriate in the time
series setup without modifications (Bergmeir et al., [2018). To estimate
the tuning parameter with CV in a time series setup (TSCV) we use an
expanding window out-of-sample forecasting scheme and minimize its
squared forecasting error. The rolling window is set up with 80% of the
sample for training and 20% for testing. Cross-validation is appealing
since it does not require any plug-in estimates, however, as observed in
Chetverikov et al. (2020) it typically yields small values of A thus still
gaining fast convergence rate but at the price of less variable selection.

Remark 2.12. Although we assume p fixed, in practice it may still need
to be estimated if no reasonable value (or upper bound) can be given.
As p determines the number of selection regressions to be conducted,
it has to be determined a priori and cannot be integrated in the lasso
estimation. It can still be determined though by a (separate) lasso-type
algorithm. For example, one may estimate with a large initial lag
length p*, and let p be determined as the largest lag for which variables
are selected, possibly also varying the lag length over variables. For this
approach the hierarchical penalties of Nicholson, Wilms, et al. (2020)
provide a better option than the regular lasso, as the regular lasso tends
to select occasional “spurious” high lags, which would have a significant
impact on the testing procedure. Alternatively one may marginalize the
VAR to a collection of univariate AR(p) processes, and select the lag
length by minimizing an information criterion on the residual covariance
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matrix. As marginalization increases the lag length, such an approach
would yield a simple to compute upper bound on p.

2.4 Asymptotic Properties

In this section we derive the asymptotic properties of our method. We
first present and discuss our general high-level assumption under which
the properties are derived, and then state our main results.

Assumption 2. Let 7 and Ap denote sequences such dp, Ap — 0 as
T — oco. Then assume that the following conditions are satisfied:

(a) Population Eigenvalues: Let e; = (e14,...,eny 1),
E = (e1,...,er) and E® = Iy, ® E. Define

5 Yaccee  Yao,-ao ] _ { E (mcc,tm'gc,t) E (wcc,tw’_gqt)
Y _cccac Y _co-cc E (w—GC,th/Gc,t> E (m—GC,twLGC’t)

Then there exists a constant c¢;, > 0 not depending on T and
k such that Apin(X) > ¢, where Apin(X) denotes the minimum
eigenvalue of X.

(b) Limit Behavior: Let

T
S veelews,) S N0, £2),
t=p+1

1

E®’u1/ﬁ:vec(E’U1)/\/_=\/T

T
1
E/E/T = T Z 6,56;/ E) ZGCFGC =
t=p+1

—1
= Yao,eo — 2ao,-co X _Go._qod-Go,GC;
/ p
UU TS 3,

where 2 = plimg_, . (E®'u;u;E®) /T.
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(c)

(h)

Empirical Process: We have with probability at least 1 —Ap that
HX/—GC”"/‘/THOO < 4 for all i € T and HX'_GCej/ﬁHoo < yr
for all j = 1,...,Nx, with e; the j-th column of E, for some
deterministic sequence vyr subject to the restrictions in .

Boundedness: The (Granger causality) parameters of interest are
bounded, that is, there exists a fixed constant C' > 0 such that

1Bacll, < C.

Consistency: The initial estimators 7; are consistent in the pre-
diction sense; specifically, with probability at least 1 — Ap we have
that

| XE0c (30 — ’YO)HQ/\/T < opT V4

- max || X_qco(d; —‘7j)||2/\/T < §pT 4,
Jj=1,..,Nx

Sparsity: Let S; = {m : v ; # 0} denote the sets of active
variables in and and let s = |Sp| + Zjvle |S;]. Let s
be as defined in Algorithm 1. Then both the DGP and the initial
estimators are sufficiently sparse; in particular, we have that with
probability at least 1 — Ap, max(s,§) < §p for a deterministic
sequence Sp subject to the restrictions in (fh)).

Sparse Eigenvalues: for any v € R(K—N)

have with probability at least 1 — Ap that

2
~]3 < HX—GC’Y/\/TH2/¢%,mm7 where ¢7 min > 0 is subject to the
restrictions in .

P with ||y, < 57, we

Rate Conditions: The deterministic sequences 57,y and @7 min
introduced above satisfy the restriction 57y /@7 min < 5TT1/ 4,

Assumption [2]is a high-level assumption that allows for much flexibility
on the underlying DGP and the used estimators in the first step. We
now discuss each part in turn. Part (a) assumes that the minimum
eigenvalue of X' is bounded. This is required for application of lasso

45



Chapter 2. Granger Causality Testing in High-Dimensional VARs: a
Post-Double-Selection Procedure

methods, as well as for the inverse covariance matrix X1 and the pro-
jection coefficients in and to exist. Part (]E[) assumes that
a central limit theorem and weak law of large numbers hold. Essen-
tially this require that the process is sufficiently well-behaved in terms
of moments and dependence allowed. Although for convenience we as-
sume martingale difference errors in Assumption (]ED holds under
much weaker conditions such as mixing errors; see e.g. Davidson (1994
Chapter 14).

Part is closely related to (b]), but additionally controls the tail be-
havior of the empirical process. Results of this kind are standard in
the lasso literature and can be derived using a variety of tail bounds
depending on the properties of the random variables of interest, see e.g.
Kock and Callot (2015)) and Medeiros and Mendes (2016a) for results
relevant to VAR and time series models. Of particular interest for fi-
nancial applications, Masini et al. (2019, Proposition 2) show that this
condition is satisfied for VAR models with general weakly dependent
errors that include many popular multivariate volatility models. The
boundedness assumption in @ is not very restrictive, and with Ng¢
fixed follows directly if the parameter space of B is a compact set.

Part @ imposes an appropriate consistency rate on the predictions
coming from the first-stage estimator. Such prediction consistency is a
standard result for lasso estimators; in particular, Wong et al. (2020)
obtain it for a very general class of VAR models allowing for conditional
heteroskedasticity and dependence in the error terms. Adamek et al.
(2020) derive consistency of the lasso under misspecified time series
models, and show that their setting covers (among others) the first-step
regressions of the relevant predictors in X ¢ on the other regressions,
which are inherently misspecified in a VAR setup due to the missing
lags; see their Remark 3 for further details.

Next to consistency, we also require sparsity of the DGP and the esti-

mator, as controlled by part @ The assumption of exact sparsity in the
DGP for the initial regressions can be relaxed to approximate sparsity
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as in Belloni, Chernozhukov, and Hansen (2014b)). For the sake of expo-
sitional clarity we do not work under that assumption here but stick to
the simpler exact sparsity. Sparsity of the first-stage estimator is needed
in our framework as we perform OLS on the selected variables from the
first-stage regressions. If the selected variables are not sparse enough,
too many variables will be selected for OLS to be feasible. Sparsity of
lasso estimators is analysed in Belloni and Chernozhukov (2013)), while
Kock and Callot (2015 and Medeiros and Mendes (2016a) provide re-
sults for adaptive lasso for time series. Importantly, we do not require
consistent model selection; the selection method used is allowed to make
“persistent” mistakes, allowing for both variables to be incorrectly in-
cluded and relevant variables to be missed, as long as the estimator re-
mains sufficiently sparse and consistency is guaranteed. Unlike Belloni,
Chernozhukov, and Hansen (2014b|), we allow for the order of sparsity
of the estimator to differ from the true sparsity thereby opening the
way for conservative selection procedures.

Given the assumptions above, the eigenvalue assumption in becomes
almost superfluous, as it is generally needed to establish @ and @ for
lasso-type estimators; see e.g. Belloni and Chernozhukov (2013) and
Medeiros and Mendes (2016a) for details. It requires that for suffi-
ciently sparse vectors, the eigenvalues of the subset of the Gram matrix
corresponding to their non-zero support do not decrease to zero too fast.
Such assumptions are standard in the lasso literature in various guises
as restricted eigenvalue conditions, and can typically be derived by mak-
ing similar conditions on the population covariance matrix X_gc —cc
coupled with a convergence result of the Gram matrix X’ acXaco to
Y _cc,—ge. Basu, Shojaie, et al. (2015), Masini et al. (2019) and Wong
et al. (2020)) establish the plausibility of such restricted eigenvalue con-
ditions for various VAR models. We state the condition here explicitly
as it is needed directly in the proofs.

Finally, note that the restrictions on tail behavior (via 7r), sparsity
(via 57) and minimum eigenvalues (via ¢7 min) are meaningless if no
rates on these sequences are imposed. Part therefore is the key
part which connects all assumptions with explicit rates needed for the
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validity of the PDS method. The restrictions here represents a trade-
off between sparsity, thickness of tails and minimum eigenvalues. For
example, if, as often assumed ¢7 min is fixed and u; is Gaussian, tails are
sufficiently thin that vz can be chosen as roughly the order of /In(K?2p)
(cf. Kock and Callot, 2015, Lemma 4), leaving room for either almost
exponentially large K relative to T, or a fairly non-sparse model. On
the other hand, if only m moments of u; exist, 7; should be taken
roughly of the order (K?p)?/™ (Masini et al., 2019, Lemma 2), requiring
polynomial growth of K compared to T and sparser models.

The most restrictive and crucial assumption needed on the underly-
ing DGP for satisfying Assumption [2] is the sparsity of the underly-
ing DGP formulated in part @ The plausibility of this assumption
highly depends on the specific application. In many financial appli-
cations sparsity (or its approximate version) is natural, for example in
portfolio selection when the number of assets is large and the estimation
of high-dimensional volatility matrices in financial risk assessment (see
Fan, Lv, et al. (2011) for an overview), as well as in our investigation
of Granger causality in networks of realized volatilities in Section [2.6
The volatility of one particular stock is likely to have specific channels
of contagion rather than affecting the whole stock market at the same
time. Shocks to one asset therefore likely propagate through the sys-
tem via specific channels, which corresponds to sparse lag polynomials.
One might worry about systemic shocks affecting many assets; however,
the dense covariance matrix 3, can accommodate simultaneous com-
mon shocks. Moreover, the dynamic of such shocks can generally well
be captured through a sparse combination of the most important and
most affected assets. Similarly, in macroeconomic applications it has
been found that a few important variables can capture the effects of
unobserved common factors, leading sparse models to perform as well
as common factors (De Mol et al., [2008; Smeekes and Wijler, 2018)).

We are now ready to state our main asymptotic result of this section
in Theorem which establishes the asymptotic normality of the post-
lasso (generalized) least squares estimator. Here we slightly deviate
from the LM test in Algorithm [1} after the double selection procedure
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carried out in Step [1], we regress the transformed outcome variables
¥t = (G7 ® Ir)yr on both the Granger causing X5, = (Gr® It) X5,
and selected variables XE?@ =(Gr® IT)X§®

Ur = XGoBae + X g, B + ur. (2.8)
The transformation by the matrix G allows for the GLS esitmation
needed in the LM procedure by taking Gr = ﬁ‘; }/ 2, while OLS is per-
formed with Gt = Iy,. In the latter case the theorem provides the
foundation for the Wald test discussed in Remark (minus the re-
quired variance estimation for that test). We state this result separately
as it is interesting in its own right, and can be used to establish validity
of other tests such as the Wald test.

Theorem 2.1. Let BEDCS: denote the OLS estimator of B¢ in . Let

G be any matriz satisfying with probability at least 1—Ap that 0 < ¢; <

Ain(GTGT) < |GHG1l|,,,, < €2 < 00, where c1,ca are constants not

depending on T. Then, uniformly in all DGPs that satisfy Assumption
we have as T — oo,

VT(BEE - Bao) 5 N (0,(G'G® Xao)—ae) ' 26¢(G'G @ Tgei—ae) ),

where ¢ = plimy_, o (GG @ E')uu}(GGr ® E)] /T.

Theorem [2.1] establishes the asymptotic normality of the post-double-
selection OLS estimators. The statement ‘uniformly in all DGPs that
satisfy Assumption 2] should be interpreted as the theorem holding uni-
formly over a parameter space that is defined such that Assumption
holds for all parameters in that parameter space. Importantly, no beta-
min conditions on the smallest magnitude of parameters are required,
thus alleviating the post-selection inference problem. We refer to Com-
ments 3.4 and 3.5 in Belloni, Chernozhukov, and Hansen (2014b)) for
further details regarding the uniformity. The limit distribution of the
LM test now follows straightforwardly from Theorem and is stated
in the corollary below.
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Theorem 2.2. Let Bgc = 0. Then, uniformly in all DGPs that satisfy
Assumption@ and for which £2 = 3, 1 ® Xqc|—gco, we have that

LMi)X?VGC as T — oo.

Theorem establishes the limiting distribution of the PDS-LM test
under an additional condition on the (co)variances of the partial re-
gression errors, which is satisfied if the errors are iid. To allow for
heteroskedaticity the LM test has to be modified, which would only
lead to more cumbersome proofs without adding any novelty specific
to the high-dimensional case. Therefore we focus on the homoskedastic
case here, although we do consider a heteroskedasticity-robust version
of the test in the volatility application in Section

2.5 Monte-Carlo Simulations

We now evaluate the finite-sample performance of our proposed Granger
causality test. We consider three Data Generating Processes (DGPs)
inspired by Kock and Callot (2015):

[05 ... 0
DGPL: ye= | . 1| y—1+ €,
0 ... 05
[(—1)li=ilgli=il+t o (—1)li=ilgli=il+1
DGP2: y; = : : Yi—1 + €,
(—1)li=algli=al+1 - (—1)li=dlgli-il+1
(A ... 0 0.15 --- 0.15
DGP3: yi=|: -, ‘|y-1+e€& with A =] : o
0 ... A 5%5 0.15 --- 0.15

®Note that this is no different for the Wald test, for which the variance estimation
has to be adjusted as well.
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where a = 0.4 in DGP2. The diagonal VAR in DGP1 respects the
sparsity assumption while in DGP2 the entries are set to decrease ex-
ponentially fast in the distance from the main diagonal and hence the
sparsity assumption is not met. DGP2 could be empirically motivated
by looking e.g. at financial interconnectedness. Financial institution,
such as banks, lend to and borrow from one another becoming inter-
connected through interbank credit exposures. The financial distress
experienced by one bank is likely to be most heavily transmitted the
closer the connections are as well as less transmitted, the weaker the
connections. DGP3 is a block-diagonal system. Such a structure is
motivated by e.g., typical quarterly macroeconomic models capturing
business cycle dynamic and monetary and fiscal policy effects. One such
example is DSGE models, where the dynamic of the economy through
time is monitored on quarterly frequency. Note that as written above,
DGP1 satisfies the null of no Granger causality from unit 2 to 1, while
DGP2 and DGP3 do not. Therefore, we adapt DGP 1 for the power
analysis by setting the coefficient in position (2,1) equal to 0.2. Con-
versely, we set the same coefficient equal to zero for DGP2 and DGP3
for the size analysis.

We choose our series of interest as I = {2} and J = {1}, thereby
focusing on the case where we have single variables of interest for both
elements of the test. Here we consider for simplicity p = 1 lag, namely
the same lag-length as in the DGPs, so j = 1. The equation of interest
can then be written as

K

Y2t = Bacyri—1 + Z BjYji—1 + €24
j=2

Hence, for each DGP we test Hy : Sgc = 0 against H; : Bgc # 0 using
our proposed PDS-LM test.

Table reports the size and power of the test for 1000 replications by
using different combinations of time series length 7" = (50, 100, 200, 500)
and number of variables in the system K = (10, 20,50, 100) and a fixed
lag-length p = 1. All the rejection frequencies are reported using a
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burn-in period of fifty observations. For each scenario, AIC, BIC and
EBIC are compared with the theoretical choice of the tuning parameter
A" and time series cross validation AT5¢V as described in Subsection

2.3.3

Simulations are also reported for different types of covariance matrices
of the error terms. We employ a Toepliz-version for calculating the
covariance matrix as X;; = pl"=Il by using two scenarios of correla-
tion: p = (0,0.7). The first case corresponds to no correlation, and is
equivalent to set X' = Ig.

In the Appendix we provide some additional simulation results. First,
Table @ reports the simulation results for all three DGPs using ¥; ; =
0.71"=1. Second, we investigate the Wald version of our test in Table
Third, in Table we investigate the effects of miss-specification
of the lag length by estimating the over-specified VAR(p 4 1) instead
of the true-order VAR(p)ﬁ Fourth, in Table we report the results
for the size of a bivariate Granger causality test for a non-sparse DGP
when using a standard Wald (F') test. This test is obviously sensitive to
omitted variable bias, and our goal is to demonstrate its effect. Finally,
although all results reported here use the finite sample correction in
Step 3b of the algorithm, we also investigated the differences with Step
3a. We comment on these results in the next subsection.

Our proposed approach shows a good performance in terms of size and
(unadjusted) power for all DGPs considered. Both for the setting of no
correlation and high correlation of errors, sizes are in the vicinity of 5%
and power is increasing with the sample size T'.

Only moderate size distortion is visible in large systems for small sam-
ples (e.g. K > 50, T = 50). As expected, the test procedure works
remarkably well for the sparse DGP1 in high dimensions. However,
size properties under the non-sparse DGP2 do not deviate much from

5For both the Wald test and the over-specified VAR(p+1) we report the simulations
for ¥; ; = 0.7'"=9! and DGP1 only. Results for the other DGPs are available upon
request.
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its sparse counterpart, although for both DGP2 and DGP3 we do ob-
serve a slight deterioration of size when the dimension of the system
increases.

Interestingly, the three different information criteria show substantially
different behavior. EBIC, due to its very stringent nature, tends to per-
form well only in very large systems, while it is essentially equal to a bi-
variate Granger causality test in small systems. We have to add though
that the good performance of AIC in particular is somewhat inflated
by the imposed lower bound on the penalty; unreported simulations
show that without the lower bound AIC performs significantly worse,
often selecting too many variables rendering the post-OLS estimation
infeasible. The one advantage of using EBIC as information criterion
to tune A in the K >> T settings when 7" is small (e.g. 7" = 50, 100)
is the possibility to avoid the lower bound on the penalty. However,
since this comes at a price of more size distortion, we recommend the
use of BIC instead, along with the lower bound on the penalty. When
comparing the different choices of the tuning parameter we can narrow
down the best performing ones (in terms of size and power) to BIC and
A" However, in terms of computational time, estimating the tuning
parameter using information criteria is considerably faster.

Comparing our test to the bivariate VAR in Table it is clear that
our proposed PDS-LM is very robust to omitted variable bias, unlike
the bivariate test, whose size distortions increase with both the sample
size and the number of variables, with sizes of 45% observed for the
sample sizes we consider in our application in Section There we will
also further elaborate on this difference between our method and the
bivariate test. Table shows that for sample sizes smaller than T =
500, rarely the power exceeds 90%. However, one must keep in mind
that the powers are not size-adjusted, and thus the high reported power
of the low-dimensional test is an artefact of the huge size distortions
rather than genuine power. It also seems unreasonable to expect that
PDS-LM test has vey high power if T' is small; we are still considering
large systems with many parameters to estimate, and there seems to
be no way around this if one desires to test Granger causality in large
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systems with many (control) variables. In that sense we may fully
expect the bivariate test to also have higher size-corrected power; yet
with all its disadvantages and sensitivity to omitted variables this is not
a good comparison. All in all, we believe our test still has sufficiently
adequate power properties to be useful in practice.

The results of robustness to misspecification of the lag length order
with p = 2 instead of p = 1 are reported in Table in Appendix
Bl As the size distortions across the range of considered DGPs are
only marginally higher for large K and T comparatively small, the test
appears to be quite robust to this misspecification. Again, BIC seems
to be the best choice for tuning the penalty for all DGPs. Unreported
simulations (available upon request) further show that the finite sample
adjustment for the test performed in Step 3b of the algorithm is able to
substantially reduce size distortions in small samples compared to the
asymptotic version of Step 3a.

2.6 Networks in Realized Volatilities
2.6.1 Realized Variances

We first investigate the volatility transmission in stock return prices
using the daily realized variances of 30 US assetsm Both the computa-
tional simplicity and the theoretical foundations make realized volatility
measures (realized variance, bi-power variation, median realized vari-
ance, etc.) very attractive among practitioners and academics for mod-
elling time varying volatilities and monitoring financial risk. We have
considered 10-minute realized variances

M
RV10, =) r},  rjp=mPy—InPy,, (2.9)
j=1

"We would like to thank Marcelo C. Medeiros for providing us with the high fre-
quency data on stock prices that we have used to construct the realized variances.
See Table for the stocks considered. The R package HDGCvar is available on
the GitHub page of the corresponding author (https://github.com/Marga8).
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using j = 1,..., M intraday 10 minutes stock prices P;;. We consider 10
minute returns as this is the frequency that minimizes for our sample the
microstructure noise (McAleer and Medeiros (2008))E| We investigate
the period from March 2008 until February 2017 (2236 trading days).

Given the time series of realized volatilities as defined in , we em-
ploy a multivariate version of the heterogeneous autoregressive model
(VHAR) of Corsi (2009) to model their joint behavior (see also Cubadda
et al. (2019)). To formally define the VHAR model, we log-transform
the series and we stack the logarithmic RV into a vector 3. The VHAR
specification is given by the following model:

(week:) (m(mth)

yr=c+ BWy,_ 1—{—B(2) —|—B() + €,

where ylgw%k =g Z] o Yi—; and y; = 35 ZJ o Yi—; are the vec-
tors containing the average volatility over the last 5 (week) and 22
(month) days. Granger causality in this context represents contagion,
or spillover, of volatility from one asset to another. To test for the null
hypothesis of no Granger causality / no volatility spillovers from yy, + to
yi+ against the alternative of spillovers, we test

(month)

Ho: 80 =0 =80 =0 vs.  Hi:8.85.8% +#0,

where B & is the (i, k)-th element of BW. We perform this test for
every (i, k) -pair to obtain the full 29 x 29 network of spillover effects.
As heteroskedasticity is likely present in these data, we robustify the
PDS-LM procedure by implementing the heteroskedasticity-robust LM
test such as for example described in Wooldridge (2015, Ch. 8). The

8To determine the optimal frequency, we computed realized variances using different
frequencies of 1, 5, 10, 15, 30, 65 and 130 minutes, in addition to the estimation
using daily returns. The latter estimation has the advantage of being unbiased
but the drawback of being very noisy (Pooter et al. (2008))). To find an optimal
trade-off between bias and variance (Martens, 2004, see e.g)), mean, variances
and mean squared errors (MSE) were computed for each estimation frequency in
a similar way as Pooter et al. (2008]), and it was found that the frequency of 10
minutes minimizes the MSE.
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(a) PDS-LM HVAR (b) BiHVAR (¢) FullHVAR

Figure 2.1: Spillover networks for the full sample period

full algorithm for the heteroskedasticity-robust PDS-LM test is given in

Appendix

We now report the results of our spillover tests for the volatility network.
We use BIC to select the tuning parameter of the lasso, and perform
the Granger causality tests with a 1% significance levelm Figure
reports the transmission networks of volatilities estimated with the high-
dimensional HVAR (PDS-LM HVAR), bivariate Granger causality tests
(BiHVAR) for each pair of stocks, Granger causality tests from a full-
system VAR (FullHVAR). The latter is feasible because of our large
time series dimension with T = 2236. For all methods we consider
heteroskedasticity-robust variants.

While our PDS-LM method identifies a volatility transmission network
which consists of 54 connections and the FullHVAR test picks up 44

91n the presence of heteroskedasticity, one might prefer the Wald version of the test,
as this can be corrected in the standard way by using heteroskedasticty-robust
standard errors. Empirically we found hardly any differences between the LM
and Wald versions.

10We do not perform a correction for multiple testing, as this would only qualitatively
affect our results. Moreover, our goal is not to identify exactly the set of spillovers,
but to get a feeling of the relations between two variables at a time. As such,
we believe a multiple testing correction is not needed, though it can be easily
implemented.
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(a) PDS-LM HVAR (b) BiHVAR (¢) FullHVAR

Figure 2.2: Spillover networks for the 2016-2017 sample period

connections, the BIHVAR tests detect a network consisting of 803 con-
nections. These differences between our PDS-LM HVAR and the Bi-
HVAR results are in line with our simulation results, confirming that
bivariate Granger causality testing in VAR models is seriously affected
by omitted variable bias in high-dimensional systems. Given the huge
sample size (T' = 2236) relative to the number of stocks, the FullH-
VAR is a feasible option, and it is reassuring how similar our PDS-LM
HVAR performs compared to the FullHVAR. The similarity is visual-
ized in Figures|2.1{(a)| and [2.1f(c)|, where the connections picked by both
methods are highlighted in red. Of the 54 spillovers identified by the
PDS-LM HVAR, 43 are also identified by the FullHVAR, while only 1
of the identified spillovers by the FullHVAR is not picked up by the
PDS-LM HVAR.

We also consider a shorter time span, namely the period 2016-2017.
Considering a shorter time period makes it more likely that relations
remain stable over time. In particular, the chosen period avoids two ma-
jor events that occurred previously and caused substantial instability
on financial markets, namely the global financial crisis of 2008 and the
U.S. debt-ceiling crisis of 2011 (Baker et al., 2019). It also allows us to
study the performance differences among the three methods in a smaller
sample of T' = 284 trading days, where the FullHVAR suffers from the
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(a) PDS-LM HVAR (b) BiHVAR (¢) FullHVAR

Figure 2.3: Volatility clusters for the full sample period

curse of dimensionality. We present the results for the PDS-LM HVAR,
BiHVAR and FullHVAR in Figure The number of significant trans-
missions is 91 for the PDS-LM HVAR, 85 for the BIHVAR and only 5
for the FullHVAR. Hence, the FullHVAR breaks down in this setting
due to the small sample size and curse of dimensionality. On the other
hand, while superficially the PDS-LM HVAR and the BiHVAR appear
to perform similarly, they identify mostly different spillovers. The red
lines in Figures 2.%(a)] and 2.9(b)| show the common connections, which
are only 14 out of 91 for the PDS-LM HVAR (85 for the BIHVAR).

As a next step, we use our identified networks to find clusters of closely
connected stocks, or communities as they are called in graph theory.
Communities are groups of densely connected nodes with fewer connec-
tions across groups. In order to represent volatility spillover commu-
nities in the graph we use the Newman and Girvan (2004) algorithm
based on edge-betweenness. The edge betweenness for edge e is defined
as y. sitte U‘;ts(te), where o is total number of shortest paths from node
s to node t and o (e) is the number of shortest paths passing through
e. The edge with the highest betweenness is sequentially removed and
the betweenness is recalculated at each step until the best partitioning
of the network is found.

Figure[2.3reports the graphs of the clustered network for the full sample
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(a) PDS-LM HVAR (b) BiHVAR (c) FullHVAR

Figure 2.4: Volatility clusters for the 2016-2017 sample period

analysis for the PDS-LM VAR, BiHVAR and FullHVAR respectively.
The results for the PDS-LM VAR and FullHVAR show similar spillover
clustering behavior, as expected. One large big-industry cluster, con-
taining — among others — assets such as Johnson & Johnson (J&J), IBM,
Nike (NKE) and Intel (INTC) dominates the picture being surrounded
by small clusters containing 1 to 4 stocks. The PDS-LM VAR and Full-
HVAR resepctively identify 4 and 6 isolated stocks, which do not have
any connections to others. Instead, the BIHVAR finds one single cluster
containing all stocks. This reinforces our finding that bivariate Granger
causality testing is not informative in high-dimensional systems.

The clusters for the analysis done on the smaller 2016-2017 sample are
reported in Figures[2.4a], [2.45 and 2.4c. The patterns highlighted in the
spillover network graphs re-occur in the clusters. PDS-LM HVAR in
Figure picks up two main clusters of volatility spillovers containing
12 and 6 assets. In addition, four medium size clusters and three single-
stock clusters are found. The difference between PDS-LM HVAR and
BiHVAR is also reflected in the identified clusters. BIHVAR in Figure
shows only one big conglomerate cluster of stocks linked to three
two-stock clusters and 6 single-stock clusters. Finally, the breakdown
of FullHVAR shows clearly in the non-informative, mostly unconnected
single-stock clusters in Figure [2.4¢
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2.6.2 Realized Variances & Covariances

In this subsection we extend our investigation to allow for spillovers from
realized correlations to variances. While our application in Section|2.6.1
was only high-dimensional when we considered the shorter subsample,
including correlations, which are of the order K2, put a significantly
larger strain on estimation, making the standard full VAR no option.
As elaborated later, it appears quite reasonable to expect changing
correlations to also have an affect on the volatilities. By ignoring these
in Section [2.6.1] we are exposing ourselves again to a potential omitted
variable bias. However, our method can directly incorporate these, as
we demonstrate here.

While we remain mostly interested in contagion between the 30 real-
ized volatilities, we add the %ﬂ = 435 realized correlations between all
these assets as control variables. By maintaining our focus on the rela-
tions between the variances, our results are directly comparable to Sec-
tion [2.6.1] and can be interpreted by assessing how the network changes
when the correlations are added as controls in the VAR. Moreover, it
also avoids the difficulties of trying to visualize the results from all
(30 x 435)% possible connections in the large VAR considered here. In
the same way that the realized variances employ high frequency data to
estimate the integrated variance, the realized covariance (RC hereafter)
estimates the integrated covariance of a multivariate diffusion process.
Working with the full RC time-varying matrix is important for portfolio
allocation and risk management. For a set of n intra-day asset returns
at day t observed at j = 1,..., M stacked in a column vector r;;, the
realized covariance is obtained such as RC}; = Zj\il 7jt75 . Note that
the realized variances are obviously on the diagonal of RC and that the
RC matrix is positive definite when M > n, namely when the number
of high frequency observations per day is larger than the number of se-
ries. We investigate the same period as before and construct 10-minute
realized covariances. Several studies have also proposed a Lasso frame-
work on RC, see for instance Callot et al. (2017)) and Brito et al. (2018),
although their focus is more on portfolio allocation and forecasting.
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There are two main ways to work with the RC matrix. The first ap-
proach stacks realized variances and covariances in a single vector. For
instance, Bauer and Vorkink (2011) consider the matrix log transforma-
tion of RCYy series, a matrix that they call the log-space volatility. The
drawback of that log transform is that the interpretation of the original
series, in our case the volatilities, is lost as the combinations involve
nonlinear transforms of both realized variances and covariances. This
is not compatible with the aim of this chapter.

The second approach uses the log realized volatilities and the correla-
tions separately, as done by for instance Oh and Patton (2016). The
underlying idea, following the DCC model of Engle (2002)), is to de-
compose RC’fd) = Dt(d)REd)DEd) with ng) a diagonal matrix with the
square root of the individual realized variance and Rid) the realized
correlation matrix. Oh and Patton (2016) use the HVAR model struc-
ture for each realized volatilities, they consequently assume no Granger

causality across volatilities.

We propose something which is, to some extent, in between these two
approaches. We look at two separate objects as in the DCC model, but

stack the log of the realized variances ygf)/ and z-transforms yé?) =

arc tanh (Vech(Rgd))> of the realized correlations in a larger vector

y,gd) = ( g?)l,yéf)/)’, where yﬁl) is 1 x 30 and yé?) is 1 x 435, on which
we estimate a HVAR of dimension 465. In this HVAR each of the 465
equations depends on 1395 dynamic parameters plus the constant. We
focus on the 30 equations corresponding to yg?
quently the bivariate causalities between these realized volatilities as in
the previous section. Figure reports a total of 113 connections,

which is about twice the connections in Figure

volatilities and conse-
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(a) PDS-LM HVAR (b) PDS-LM HVAR

Figure 2.5: Spillover network and volatility clusters

In red we highlighted the 31 common connections with Figure In-
terestingly, adding more variables therefore allows us to uncover more
relations. It seems that this allows us to uncover partial effects that
were previously obscured by counteracting effects of the correlations.
Importantly, the number of connections is still far less than compared
to the BIHVAR in Figure and the PDS-LM HVAR is still able to
deliver a clear picture of the causal connections when the system con-
sidered is high-dimensional. While the different connections found here
obviously also lead to a different clustering, Figure shows that the
clustering is quite similar, certainly regarding qualitative conclusions.
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2.7 Conclusion

We propose an LM test in order to test for Granger causality in high-
dimensional VAR models. We employ a post-double selection procedure
using the lasso to select the set of relevant covariates in the system.
The double selection step allows to substantially reduce the omitted
variable bias and thereby allowing for valid post-selection inference on
the parameters.

We provide an extensive simulation study to evaluate the performance of
our method in finite samples, paying particular attention to the tuning
of the penalty parameter. We compare different information criteria,
time series cross-validation and a plug-in method based on theoretical
arguments, and find that generally BIC and the theoretically tuned
penalty perform best. However, to use information criteria in systems
with a significantly larger number of variables than observations, a lower
bound on the penalty parameter is needed to prevent too many variables
being selected. The simulations also show that, when properly tuned,
our proposed PDS-LM test attains good results both for size and power
under different DGPs. Especially, it is shown to be robust both to
non-sparse settings as well as to lag-length overspecification.

We also empirically investigate the usefulness of our method in a study
where we apply our PDS-LM method to a high-dimensional VHAR
process in order to construct a contagion network of volatility spillovers
for 30 large capital stocks, also accounting for effects from changing
correlations. We find that by increasing the information set through
considering a high-dimensional VAR model instead of bivariate models,
we are able to obtain more realistic effects than in low-dimensional
models. Furthermore, even when the sample size is not large enough to
use standard full-system VAR techniques, our method remains reliable
and delivers accurate results.

Note that unlike Belloni, Chernozhukov, and Hansen (2014a)), we do not
give a “truly” causal interpretation to the established Granger causal-
ities. In how far Granger causality is a useful concept to study true
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causality is (and has long been) open to debate, see for example (Eich-
ler, |2013)) and the references therein. Moreover, though it appears de-
sirable and in line with Granger’s (1969) original intentions to make the
information set as large as possible, it is well known in the literature
on graphical models (see Eichler, 2013) for causality that considering
only the full model is not sufficient for establishing true causal relations
from Granger causal ones. For instance, one-period Granger causality
in systems with more than two variables cannot capture indirect causal
chains spanning over multiple periods. However, the analysis of the full
model is a necessary ingredient for any study of causality in a graphi-
cal framework. It would therefore be an interesting avenue for further
research to study how the method proposed here could fit into such a
graphical framework.

Appendix A Proofs

Lemma 2.1. Let X ¢ satisfy Assumption @@ Then with probability
at least 1 — Ap, we have that

—~ 2
2 _
1813 < 57| X200/ V|6 i

for any 6 = (8},...,08y,)" such that |Ss| < 57, where S5 = UZ]-V:II{m :
dim # 0}.

Proof of Lemma 2.1l As before, let Xg denote the submatrix con-
taining those columns of X_g¢ corresponding to the elements in S. It
follows from Assumption @ that for any = satisfying |Sy| < 57, we
have that Apin(X iquSW /T) > ¢2T7min. Then, with probability 1 — Ap
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we have that
min
5:Ss5|<5r

=, lgn}g_ o' (G/TGT ® X/_GCX—GC/T) 5/”5”3
H S|ISST

= ‘§?<i1§1T majn:c’ (GTGr ® X5Xg/T) w/kug

— 2
XE68/VT| /1611

= min Amin(G,TGT ®XéXS/T)
|S|<3sr

= )\min(G/TGT) |Sn\’l<1r’l Amln(XgXS/T) > C¢T,min7
SSsT

as Amin(G/-G1) > C > 0 by assumption. Without loss of generality

we may then absorb the constant C' into ¢ min- O

Proof of Theorem 2.1l Our proof follows along the lines of the proof
of Theorem 1 and 2 of Belloni, Chernozhukov, and Hansen (2014b)), with
the main distinction that we consider multiple variables of interest,
and multiple “treatments” instead of a single one for each. For this
purpose we first define some notation. Let I' = (7v1,...,7vny) and
I' = (31,...,4Ny), and let v® = Iy, ® I'. Furthermore, let P(A) =
A(A’A)"'A’ denote the projection on the space spanned by A and
let M(A) = I —P(A) denote the corresponding residual-maker. By
standard partitioned regression algebra we get

. — — - -1
VT (BEE — Boo) = (XEeM(XE,) X0/ T)

~~
—1
BT

o oE (2.10)
X XGoM(X ge) [X?Gcﬁfcc + 171] INT

ar

where X® = G7X® = Gr ® X. We will now show that ar =
E®ur/VT and Br = E¥E®/T + 0,(1). Given these results, the
limit distribution then follows directly from Assumption (]ED
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We first consider ar. Note that from (2.7) we have that fgo =Gr®
[(X_gcT + E] = X%,,I'® + E®, and therefore we can write

ar;

+ T X MXE, i VT + B M(XE,) X080 /VT

~~

ar,2 ar 3
- E¥'P(X3, )ur/VT
ar4
We will now show that the terms ar,...,ary4 vanish. For ar 1, note

that

laral, < VT | MXE)X eI VT [MXE)XEgeBce/VT)

)
2

[z, laz1z]l,

where for any matrix M, the norm [-[|, represents the induced /,,-matrix

norm || M|, = supg [|Mz||,/||lz[l,. As S; € Sx forall j=1,..., Nx

and S}% C 5%, the space spanned by G%XS@ = Gr®xg is asubspace
X X

of the space spanned by G?X‘g9 and therefore H/\/l (G?Xig@) yH2 <

§e’
m(65x5, )y

using that

for any compatible matrix G? and vector y. Then,
2

M <G?X§§> =M (GT ®X5'X> YQ—KJGCF(X)

— M (GT ® X§X> (Gr® X_cel) = Gr & M (XSX) X _cor,
(2.11)
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we find that
e (35

suGTHQHM gX>X,Gcr/f H2

< HGTugf [ mxg )X -com VT

<IIGrlly Z [mxs)X cem V|
Then,
HM X GC’YJ/\/_H ﬁ,%rznoif;ggj HX_GC% N XgﬂHQ/ﬁ

< X—ce(y = A)ly/VT, j=0,....Nx,

(2.12)

as S’j = {m : Ym,; # 0} and therefore the constraint in the minimization
is satisfied. Tt then follows from Assumption (¢ that [|A7 1], <
NeodrT—Y* with probability 1 — Ay

For ar 2, from the definition of the best linear predictor it directly
follows that

—1
Yo = (EXELoX%0) EX' qo(XEcBac + XEqoB-co + ur)
=TI"*Bace + B-cc,

such that we can substitute 8_gc =0 — I'®Bge in ar 12 to find

larzll, < HM (Xv?@) XV?GC’Yo/ﬁ‘L + Azl l1Bac s,

where the negligibility of the second term follows directly from the result
above plus Assumption @) As Sy C 5%, the first term can be bounded

68



o (32 R, ot (R5) Ko,
<[|G7[ly|| X E g (0 = A0) HQ/\/_ < /NporT14,

where we use that, for BGT = M(GrX)Gry,

IM(GrX)Gryll, = HGT (y - XB%) ‘2 = HGT (y - XB’) H2

<1Grlly|y - X8| -

It then follows directly that ||ar,1]l, = Op(67) = 0p(1).

For ar 3, let 7; denote the j-th column of I'® and define the noiseless
generalized least squares estimator

»’)/J??S: arg min HXE@GC')/?—X@) 7=1,...,Ngc,
Y Ym=0,m¢S ( )
2.13
for any compatible index set S, and let 1:‘? = (’y?s, . ,’V%X S), such

that M ( ) X(X)GCI'1® Xviggc (I'® — I'Y). Then, with probability

o0

(423)

< Vs Z HX_GC ('S’ ® 7?) /TH2/¢T,min
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< iz Z [%2ae (3 =) /7] om,mn

® \/ST’YT Ak
HGTHQNIZ 1X_cc (¥ =) /T,

7 ‘7 1
(<) N2y VST e 14 52.
T, min
Here inequality (i) uses that
m m
lAz], = lajzi| < |zl Y llagl, (2.14)
i=1 j=1

from the dual norm inequality, where A is a generic m x n matrix A

with j-th row denoted as a;., and a n x 1 vector x. Letting || A .. =

max; j |a;j|, Step (ii) follows from the fact that Hf@ C'EI/\/_H

(616G @ XL o) /VT|| < 161Gl | Xcus VT < 2
by Assumption |2 I. while (zm) follows from bounding the /i-norm by
the lp-norm and applying Lemma (1v) follows from the definition
of /¢ as minimizer of the sum of squares and (v) from the properties of
the Kronecker product. Finally (vi) follows from Assumption @

max

— — 2
For ar3, define 49 5 = arg min,mmzomgés HX?GC’YQ — XE@GC'yH2 anal-
ogously to (2.13)). Then we have with probability 1 — Arp

© ! YO \yv® ! YO \y® ®
larall, < |[E¥MXE)XEqero/VT||, + | B MXE) X2 T Boo VT
(u)

= [59X6c (s =) VI, + | B (15 = 1°) e VI

(112)
< Jos =], ZHX® SO N
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® A
3,5® %H1

Ncc . Ngc
+ 18l D | X0t V|| S |7
j=1 <=1
() Ngc

2y
j=1

(v) Negc =~
<Y |[Xeeem v
j=1

S
%y V] [Jsus =], + ontm s

[@HGTHQHX (Yo — %0 /\/_H +CN2Ny VT 5TT1/4]

¢T,min T, min
(vi) VFrVN; V5T
< Ngcq/T[ o Lsp T4 + CNY2 Ny TST‘ 6TT_1/4}

< CNxN¥/ Q—V;TW 57T~ Y4 < 62,

T, min

Inequality (i) follows from the fact that B_gc = v0 — I'®Bge, while
(i) follows from the definition of 4 s and (2.13). For the first term in
(iii) we use (2.14)) whereas for the second term we apply it twice to get

[BAz; < [zl ZHb Al < 2] leb oo Z\I%Hl (2.15)

=1 7=1
for any p x n matrix B. Step (iv) follows from Assumption @ and
the results for ar 2, while Step (v) applies the same arguments as used
therein to H’yo &= 70H1. Finally, Step (vi) follows analogoulsy to Step
(7) for ar 2 by noting that
|Xece VT, < 161G,
the bound from Assumpt1on I.

_Goej/\/TH < 47, plus using
(e.)

Finally, we consider ar4. We get

(4) — e N —
laral, < ||Xg VT H s (X Xe)

1

71



Chapter 2. Granger Causality Testing in High-Dimensional VARs: a
Post-Double-Selection Procedure

(i) Ngc

<VT\/§Z

— —_ -1
2 xX® (x® x©
€; $® ( $® §®)

2

(xexem) ZHX@’“@/ﬁHm/ﬁ

S®J

(i)
< 7St

(i)

< Nacv4srT Y2 /o7 min < 67,

where step (i) follows from . For (ii) we bound the /;-norm with
the lo-norm, using that X3 ® contains a subset of the variables in X ®GC

and therefore HX?éuI HOO < HXE%CUI Hoo and apply Assumptlonle.
Step (i77) follows from the Cauchy-Schwarz inequality, bounding the [o-
norm by the lo-norm and reasoning as for Step (i) that HX®’ A®H

HX ®Gce H . Finally (iv) follows from Assumption I and Lemma

We next consider Br. Using that XV%C = XVEZ’GCI@ + E@, we write

By = E¥E® /T + I X°[, M(XE,) X%, T®/T

B?,l
+ T X M(XE,)E® T+ E¥ M(XE,) X%, T®/T

/
Br,2 B,

~ E¥'P(XE,)E®/T.

Br3

These terms can be handled as the terms for ap. In particular, with
probability 1-Ag, | Brll, < [[Ar1]5 < 03772, || Bryll, < 6371/
using the same steps as for a7, and ||Brgll, < ST —1/2

to ar4.

analogously
This shows that ar = E‘®’ﬂ1/ﬁ and By = E®’E‘®/T+op(1). It then
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follows directly from Assumption that
VT (B2 — Bac) = (GrGr © E'B) "' B®(GyGr @ Ir)us +0,(1)
LN (0,(G'G ® Xgo—ce) ' N26(G'G @ Xao—ce) ™) -

O

Proof of Theorem [2.2l By partitioned regression algebra, we find
that

*/ *
a¥! B! ar

Note that a. and BT are special cases of their counterparts in the proof
of Theorem with G = f];l/ 2. We now show that this choice of
G7 satisfies the conditions of Theorem We do this by proving that
G7 converges to G = 2; }/ 2, and this satisfies the conditions in the

theorem.

Consider one particular element (i, j) of 2u, 1,88y 0y 5. Let 5‘0, 1; denote
the variables selected in Sy corresponding to the equation for variable
yr1,, where I = {I1,...,In,}, and let S; = (Ujvle Sj) U ,SA'OJ' denote all
variables selected that are relevant for y7,. We can then write

Guij = €1,61,/T = Y, M(X 5 )M(Xg )y,
=upur /T + ﬁLGC,iXLGCM(XSi)M(ng)X—GC,B—GC,j/T

-~

dr,ij,1

—up M(X g )M(Xg )X _ccB-ce/T

dr.,ij,2
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—up M(X g JM(Xg )X _ceB-cei/T

J

N~

dr ji 2

+ul, | I — M(X g )M(Xg )| ur, /T,

drij,3

where (under Hy) we write y;, = X_qcB-_cci + ur,.

We can use the same reasoning as used in the proof of Theorem to
prove that the terms dr;;x, k = 1,2,3 are negligible. Let 79, denote
the sub-vector of 7y corresponding to unit ¢, and note that under the
null hypothesis vo; = B-cci-

Define 4, s = argmin,., —o m¢s | X_ccyoi — X—GC’)’”%- Then, as SO,%’ C
S;, we get that

drial < [M(X)X coBcod| [M(Xs)X coBacy|| /7
= || ae s, — w0V || X -actins, — w0V,

< | X-ceios = W)V || X-coos = v0)/VT | < 3712

Similarly,

|dr,ij2| = ‘u}iM(Xgiugj)X—Gcﬁ—Gc,j/T‘ = ‘u}iX—GC(%,giugj - 70,j)/T’
< HUIX—GC/\/TH H%,giug. - ’Yo,jH /NT

5 NE _
\¢/TT7T X _cc(H0j — 0. /\/_H INT < TTWT(S T-3/4

Finally,

|d7,i5,3] = ‘UZP(X&US].)“Q/ T‘

I

/= /

u'IiX_GC (X.%iUéjXS'iUSj) /T

2
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-1
< e V]|t o T (3 s,

< 5T OT min,

where all bounds hold with probability at least 1 — Ap. Similarly, by
Assumption (]ED we know that there exist a sequence dp — 0, such that
with probability 1 — Ar, we have that ‘u’liufj — Uu,ij} <dp. As Xu,I
only contains a finite number (N?) elements, we may then conclude
that with probability at least 1 — Ap, it holds that Hf)u[ — 2”2 < 7.

We have that 0 < ¢, < Amin(Zu,1) < Amax(Xu,1) < ¢y < 00, where the
lower bound follows from Assumption @) and the upper bound from
the fact that 3, ; has a finite number of elements. As

a:'f]u,]a: < :B'Z'u’[:c + ‘m' (f]uja: — m'Eu,[) m)

~ 2
< N3N max(Z) + 2l | Zur = S|

)

a:'EuJa: > {B/Z'UJ:B — ‘ac’ <Eu71x - w'Z‘uJ) ac’
2
K
2

the established the consistency of f)u 7 then directly yields that C —

or < )\min(SA%[) < Amin(zml) < (9 + o1 with probability 1 — Ar. It
then also follows that with probability 1 — A7 we can find a 0 < Cq <

Cy < oo such that ¢; < I/Amax(ffuJ) = )\min(ﬁ‘;}> < /\max(ﬁqz})

1/ )\min(ﬁu, 1) < ¢, such that the conditions of Theorem [2.1|are satisfied
for Gp = 2;}/2.

< @3 Amin( B + @l s = Zus

With this choice of Gr and £2 = X, | ® Y gc|_gc, we have that £2g =
In, ® Xgoj-ge- Letting Zyg ~ N (0, Ing), it then follows that

" 1 % d 1/2
LM = &} By 'a} % Ziv, (Ing © Zac-ce)”

X (INX ® Xy ® EGC\—GC)i1 (INX & 2GC|—GC) 1/2 ZNoe
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Appendix B Additional Simulation Results

Table 2.5: Simulation results for the bivariate

Granger causality test

DGP Size/Power p K\T 50 100 200 500
10 5.9 6.6 7.8 11.8
2 Size 0 20 5.6 5.9 7.8 11.8
50 4.3 7.0 9.7 14.5
100 5.5 6.7 8.9 13.9

Notes: Size is reported for DGP 2, as described in Sec-
tion for 1000 replications. T' = (50, 100, 200, 500)
is the time series length, K = (10, 20, 50, 100) the num-
ber of variables in the system, the lag length is fixed to
p = 1. pindicates the correlation employed to simulate
the time series with the Toeplitz covariance matrix.
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onal VARs

Table 2.2: Simulation results for the PDS-LM Granger causality test (p = 0.7)

111 eI11S1

Granger Causality Testing in High-D

Chapter 2.
Post-Double-Selection Procedure

DGP  Size/Power  p T 50 100 200 500
K AIC BIC EBIC Ath ATSCV  A1c BIC EBIC Ath ATSCV  aAlc BIC EBIC Ath ATSCV Alc BIC EBIC Ath A\TSCV
10 58 5.1 54 6.1 57 5.2 5.2 5.8 5.1 46 46 5.0 4.5 43 40 42 40 4.2
1 Size 07 20 73 64 6.1 6.0 6.1 6.2 6.3 6.5 5.1 5.5 5.5 5.8 5.9 50 4.9 49 44 5.0
50 7.6 55 60 7.5 7.3 58 7.3 6.7 65 49 42 6.2 5.5 57 48 48 52 5.3
100 64 81 6.6  NA 64 6.2 7.1 6.8 6.9 58 44 53 4.6 56 3.6 36 4.2 3.8
10 19.0 182 18.8 20.3 342 343 352 334  56.6 57.1 56.8 57.8  55.6  93.7 942 942 943  93.3
1 Power 07 20 153 183 191 185 30.7 31.6 307 298 544 56.8 56.6 56.3 548  92.8 941 941 938 934
50 10.3 141 19.3  15.2 30.4 327 311 303  50.1 571 588 567 517  90.7 920 925 921 914
100 9.0 140 192 NA 29.2  33.6 254 241 341 53.6 557 494 489 881 940 945 924 911
10 64 58 5.5 5.8 6.8 50 5.1 53 5.0 5.5 52 4.9 4.5 5.1 47 50 49 45 5.1
2 Size 07 20 75 65 56 5.9 5.5 48 5.5 53 5.8 5.2 5.1 5.0 5.0 5.8 48 45 49 44 6.3
50 68 59 68 6.0 6.2 74 53 6.1 5.2 6.3 58 5.9 5.2 6.2 56 5.5 56 5.9 6.5
100 8.1 65 6.8 6.9 6.5 8.1 58 6.2 7.0 5.9 6.7 6.1 5.5 5.9 53 44 40 45 5.0
10 15.4 15.1 16.0 14.3 26.0 28.1 28.8 26.6 26.5 47.4 49.7 49.2 51.0 83.2 84.6 85.3 84.6 86.2
2 Power 0.7 20 12.6 15.8 19.3 15.5 26.5 27.9 30.0 26.7 26.9 48.4 51.6 51.1 51.8 83.1 85.3 86.7 85.4 85.9
50 9.6 154 184 122 191 285 315 261 263 403 50.5 47.0 489 839 874 888 87.2  87.2
100 103 169 21.3 1.5 12,6 29.3 327 210 214 325 530 45.4  49.8 787 88.6 89.1 854 854
10 4.8 4.8 4.7 4.3 5.5 5.3 4.6 4.8 4.6 5.1 5.5 5.5 5.6 5.6 5.4 4.8 4.8 5.0 4.8 5.1
3 Size 07 20 56 54 52 5.1 5.6 54 5.8 56 5.2 5.2 44 40 40 41 45 45 40 42 42 4.4
50 83 6.0 53 55 7.0 6.1 5.9 5.2 5.9 6.4 56 4.8 46 52 5.1 62 68 67 6.9 6.7
100 7.6 63 63 5.6 6.8 72 5.2 5.2 6.1 6.4 56 5.8 58 6.2 4.7 3.6 4.1 3.7 44 4.6
10 99 98 103 103 107 162 166 164 168 169 315 31.3 314 31.6 315 684 689 689 689 688
3 Power 0.7 20 81 88 8.2 9.1 9.5 15.7 164 162 164  16.8  29.2 29.0 29.0 287 283  66.5 685 69.4 688  67.9
50 9.7 9.4 10.1 9.7 10.2 15.7 16.1 17.4 16.2 16.6 31.3 31.2 31.7 31.8 29.9 65.1 66.6 67.4 66.9 65.0
100 84 94 93 97 9.9 120 153 177 146 156 264 309 319 302 293  66.2 67.8 683 683  66.5

Notes: Size and Power for the different DGPs described in Section 4.1 are reported for 1000 replications. T" = (50, 100, 200, 500) is the time series length, K = (10, 20, 50, 100)
the number of variables in the system, the lag-length is fixed to p = 1. p indicates the correlation employed to simulate the time series with the Toeplitz covariance matrix. The
different choices of the tuning parameter A are reported as: AIC, BIC, EBIC for information criteria, A" for the theoretical plug-in and TSCV for time series cross-validation
as explained in Section
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Table 2.4: Simulation results for the PDS-LM Granger causality test (Overspecified lag-length)

jonal VARs
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Granger Causality Testing in High-D

Post-Double-Selection Procedure

Chapter 2.

DGP Size/Power P T 50 100 200 500

K AIC BIC EBIC Ath A\TSCV . a1c BIC EBIC Ath ATSCV arc Ath \TSCV. A1Cc BIC EBIC

1 Size 0 10 7.0 6.4 6.3 6.7 7.2 5.9 6.3 6.7 5.7 5.6 5.2 5.4 5.3 5.4 5.4
20 8.4 7.5 6.7 8.3 7.3 6.3 6.0 4.9 6.0 5.8 5.7 5.7 5.0 3.7 3.7
50 NA 5.4 4.6 NA NA 8.7 5.0 6.7 5.9 7.4 6.6 6.1 5.7 4.7 5.0
100 NA NA 5.2 NA NA NA 5.0 NA NA 7.0 5.9 5.5 5.9 5.1 5.3
1 Power 0 10 20.2 23.3 24.7 22.5 21.0 45.4 48.7 47.2 44.8 82.3

20 13.8 174 226  16.5 15.1 33.0  44.3
50 NA NA 23.8 NA NA 16.6 43.0
100 NA NA 23.9 NA NA NA 37.2

38.2 38.1 72.9
29.9 29.6 55.9

NA NA 200 53.7  53.1  96.0 99.8 99.8

2 Size 0 10 54 50 43 52 6.0 68 6.9 6.8 5.9 58 53 6.0 54 5.8 5.1 5.1 50 5.1 4.8
20 73 56 57 7.2 6.6 51 45 5.0 5.5 49 50 52 56 5.2 44 44 47 42 4.1

50 NA 5.4 5.3 NA NA 6.4 5.3 4.7 4.9 8.3 5.2 5.8 5.2 6.1 6.3 5.2 4.8 4.2 4.5

100 NA NA 57 NA NA NA 46 NA 4.6 76 50 59 50 6.5 6.1 51 49 45 5.4

2 Power 0 10 131 147 148 145  13.6 290  29.9 29.1 287 527 525 550 53.5  53.9 941 943 94.5  93.8
20 108 157 187 154  13.7 240 280 26.8 262 525 549 582 543 517  92.6 92.7 928  91.9

50 NA NA 149 NA NA 9.2 265 235  20.5 384 53.0 610 50.0 46.5  88.7 92.1 91.6  90.3

100 NA NA 203 NA NA NA 269 NA 5.7 13.4  54.8 627 423  13.6  83.9  93.6 914 89.2

3 Size 0 10 59 7.9 4.8 60 64 9.1 6.0 6.1 47 5.1 82 4.9 1.9 5.1 5.3 5.1 5.0
20 55 7.7 5.8 53 57 82 38 1.6 58 53 9.0 5.1 5.6 42 35 3.5 3.7

50 68 7.7 NA 79 68 118 59 5.0 62 62 131 52 5.6 48 45 4.6 5.1

100 NA 7.7 NA NA 69 114 NA 6.3 72 63 122 54 5.4 3.7 5.0 4.3 3.2

3 Power 0 10 100 122 165 9.8 101 221 248 317 220 217 432 440 50.0 438 87.4 874 87.8 873 868
20 85 134 199 9.7 9.4 155 232 37.0 184 184  39.8 43.4  53.6 412 85.3 86.8 87.0 86.3  84.9

50 NA NA 205 NA NA 104 263 40.1 184  17.9 322 458 59.0 383 78.3  81.6 82.6 79.9  79.4

100 NA  NA 208 NA NA NA 264 402 NA NA 141 46,5 638  27.3 73.0 839 856 80.9  7TT.2

1 Size 07 10 76 69 59 6.6 6.5 55 55 57 47 6.2 47 46 51 4.9 5.4 48 48 48 45 4.5
20 69 73 74 77 6.9 63 7.1 58 7.2 6.0 5.1 47 49 5.6 5.6 54 56 53 6.0 5.1

50 NA NA 72 NA NA 86 6.2 55 7.2 6.3 78 46 44 59 5.0 65 53 49 56 5.8

100 NA NA 65 NA NA NA 6.1 58  NA 5.2 63 5.1 45 45 5.3 59 43 46 3. 4.3

1 Power 07 10  13.0 13.6 144 144 142 227 240 253 247 240 421 434 439 434 427  86.0 87.5 87.5 87.6  86.6
20 102 115 125 128 132  19.6 2.1 209 21.1 204  39.4 423 432 420 409 848 86.8 867 86.4  85.0

50 NA NA 150 NA NA 12.6 223 236 21.6 202  30.6 43.6 46.4 41.8 388  80.7 858 86.0 844  82.8

100 NA  NA 132 NA NA NA 199 231 NA NA 14.3 413 442 350 347 723 852 86.1 828  8L5

Notes: Size and Power for the different DGPs described in Section are reported for 1000 replications. T = (50,100, 200, 500) is the time series length, K = (10,20, 50, 100)
the number of variables in the system, the lag-length is fixed to p = 1. p indicates the correlation employed to simulate the time series with the Toeplitz covariance matrix.
NAs are placed whenever the post-OLS estimation was not feasible due to § > T. The different choices of the tu parameter A\ are reported as: AIC, BIC, EBIC for
information criteria, At for the theoretical plug-in and TSCV for time series cross-validation as explained in Section
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Appendix C  Additional Material for the Empirical
Application

Algorithm 2 Heteroskedasticity-robust PDS-LM Granger causality

test

[1] Obtain X*® and £€* as in Algorithm [1} and obtain E*® = X5 —
X;gf”*@ as the residuals from the multivariate OLS regression of

*® *Q

X0 on X§®.
[2] Compute element-wise products 7; = é;f@@é* forj=1,..., Ngc.
Regress a vector of ones on II = (7y,...,7N,,) and compute

TNrR? from this regression.

[8] Reject Ho if TN;R* > q,» (1 — ), where ¢,2 (1 —a) is the
Nec Nac

1 —a quantile of the x? distribution with Ngc degrees of freedom.

Table 2.6: Stocks used in S(:(ttiou

N.  Symbol Issue name N.  Symbol Issue name

1 AAPL APPLE INC 16 KO COCA-COLA CO

2 AXP AMERICAN EXPRESS CO 17 MCD MCDONALD’S CORP

3 BA BOEING CO 18 MMM 3M

4 CAT CATERPILLAR 19 MRK MERCK & CO

5 CSCoO CISCO SYSTEMS 20  MSFT MICROSOFT CORPORATION

6 CVX CHEVRON CORP 21 NKE NIKE INC

7 DD DOW CHEMICAL COMPANY 22 PFE PFIZER INC

8 DIS WALT DISNEY CO 23 PG PROCTER & GAMBLE CO

9 GE GENERAL ELEC 24 TRV TRAVELERS COMPANIES INC
10 GS GOLDMAN SACHS GROUP INC 25 UNH UNITEDHEALTH GROUP INC

11 HD HOME DEPOT INC 26 UTX UNITED TECHNOLOGIES CORPORATION
12 IBM INTL BUS MACHINE 27 \ VISA INC

13 INTC INTEL CORP 28 V7 VERIZON COMMUNICATIONS INC
14 JNJ JOHNSON &JOHNSON 29 WMT WALMART INC

15 JPM JPMORGAN CHASE & CO 30 XOM EXXON MOBIL CORPORATION
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3

Inference in Non-stationary

High-Dimensional VAR

!This chapter is based on a joint work with Alain Hecq and Stephan Smeekes from
Maastricht University.
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Chapter 3. Inference in Non-stationary High-Dimensional VARs

Abstract

In this chapter we use the lag-augmentation idea of Toda and Ya-
mamoto (1995) to build an inferential procedure which holds for high-
dimensional unit-root non-stationary VAR models. We prove that we
can restrict the augmentation to only the variables of interest for the
testing, thereby reducing the loss of power coming from the misspeci-
fication of the model. By means of a post-double selection procedure
where we use the lasso to reduce the parameter space, we are able
to partial-out the effect of nuisance parameters and establish uniform
asymptotics. We apply our procedure to the untransformed FRED-MD
dataset to investigate the main macroeconomic drivers of inflation.
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3.1 Introduction

Learning causes and effects in time series models is a well studied prob-
lem in a vast literature going all the way back to the seminal work of
Granger ((1969). Statistically assessing the predictability among two
(or blocks of) time series is to these days a fundamental concept in
modern time series analysis. Its applications range over from macroe-
conomics, finance, network theory, climate econometrics and even the
neuroscience. Among others, in the macroeconomic literature, the ques-
tion of causality between money and gross domestic product (GDP),
initiated by Sims et al. (1990) and Stock and Watson (1989al), is still
at debate these days, see e.g. Miao et al. (2020). Financial appli-
cations of linear and non-linear Granger causality see, among others:
Hiemstra and Jones (1994) who find Dow Jones stock returns and per-
centage changes in New York Stock Exchange trading volume to be
bi-directional Granger causing; Billio, Getmansky, et al. (2012) which
in a network framework uses principal component techniques as well
as Granger causality networks to measures the connectedness among
monthly returns of hedge funds, banks, broker/dealers, and insurance
companies. Many applications are also found in climate science, for
instance in trying to understand and disentangle the causes of cli-
mate change. Among others, Stern and Kaufmann (2014) investigate
causality between greenhouse gases transformed into radiative forcing
and temperature, finding that both natural and anthropogenic forc-
ings cause an upward temperature change and that temperature causes
greenhouse gas concentration changes. In neuroscience, Granger causal-
ity is widely employed in understanding principles and mechanisms un-
derlying complex brain function and cognition. Examples lies mostly
in the branch of functional neuroimaging, where brain connectivity is
investigated through neuronal networks from fMRI, EEG, and electro-
corticography data (see e.g. Seth et al. (2015)), Friston et al. (2013)) for
some reviews).

More recently, with the increased availability of larger datasets, these
causality concepts have been extended to a high-dimensional setting
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where they can benefit from the inclusion of many more series within
the available information set. Granger causality (in mean), as conceived
by Granger himself (Granger, 1969)) is in fact well known to capture
predictability among variables (or blocks of variables) of interest, con-
ditionally on a given information set. In other words, to talk about true
direct causal effects, the tested relation must be conditioned upon all
possible variables that can aid in explaining the original variables object
of the test. Otherwise, omitted variable bias would invalidate the causal
interpretation (spurious causality) and the testing procedure would re-
duce to a mere predictability exercise. Granger himself envisioned this
information set as “all the knowledge in the universe available at that
time” (Granger, (1980, p.330). As this concept can be hardly opera-
tionalized, one needs to rely on the available dataset. In this sense, the
high dimensionality of the nowadays increasingly large datasets avail-
able, as well as the regularization techniques developed to circumvent
the curse of dimensionality and simultaneously perform variable selec-
tion and parameter estimation, provide a great opportunity to get-away
from spurious causality and approach the true causal interpretation as
envisioned by Granger. In Chapter [2| we designed a Granger causality
Lagrange-Multipliers (LM) test for high-dimensional vector autoregres-
sive models (VAR) which combines dimensionality reduction techniques
based on penalized regressions such as the lasso of Tibshirani (1996)),
with the post-double selection procedure of Belloni, Chernozhukov, and
Hansen (2014b)) designed to guarantee uniform asymptotic validity of
the post-selection least squares estimator. Empirical applications of
such testing procedure comprise, among others, networks construction
for volatility spillovers which can be used to predict the flow of volatility
contagion when a financial crisis hits the stock market.

In Chapter [2] we assumed stationarity of all the time series considered.
This is a long standing issue in econometrics: on the one hand, work-
ing with stationary time series alleviates many complications in the
asymptotic analysis, allowing for standard inferential procedures such
as x? and F-tests. On the other hand, it assumes prior knowledge
of the integration and cointegration order and possibly of the type of
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non-stationarity for all the time series entering the model. This prior
knowledge is usually acquired via unit root and cointegration tests such
as e.g., the Augmented Dicky-Fuller test (ADF) (see Dickey and Fuller,
1979) and Johansen’s cointegration test (see Johansen, 1991)). However,
these tests are particularly keen to biases coming from different sources.
For instance, the inclusion or not of the intercept and the determinis-
tic time trend in the regression equation, the choice of the lag-length
order to include, the seasonality adjustments of the data, the presence
of structural breaks as well as outliers in the series, these are all fac-
tors affecting the outcomes of these tests. Especially unit root tests
are known to suffer from low power (see e.g. the critique of Cochrane,
1991). Given that the practitioner should test for unit roots all the
time series in a high-dimensional VAR, it follows that biases would ac-
cumulate quite dramatically. Furthermore, in practice many observed
time series in e.g., macroeconomics, finance, climate econometrics, they
definitely do not appear to be stationary in their original levels but they
are characterized by stochastic and/or deterministic trends. Taking the
first differences of the series (difference-stationary) stabilises the mean
by removing changes in the levels and thereby eliminating (or reducing)
trend and seasonality. However, this is often not an innocuous transfor-
mation: it can indeed induce a loss of information since the long-term
memory of the series gets wiped out by the differentiation. Also, when
estimating with least squares difference-stationary series that are truly
cointegrated, the model gets misspecified. Vector error-correction mod-
els (VECM) account for the latter issue since they allow for both short
and long memory dynamic in the relationship. However, to be able to
write the VECM one typically again relies on unit root and cointegra-
tion pre-tests (notable exception is the work of Smeekes and Wijler,
2021).

The aim of this chapter is to design a method which allows for test-
ing Granger causality in high-dimensional VAR models, irrespectively
of the integration and cointegration orders of the time series entering
the VAR equations. Namely, we seek to avoid any unit root and coin-
tegration pre-test biases and use the VAR in levels directly to perform
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inference on the parameters of interest. To do so, we borrow the idea of
Toda and Yamamoto (1995) which consider a simple lag-augmentation
of the system in order to reconduct the asymptotics to standard station-
ary arguments. We find that the potential inefficiency of this method,
coming from the overspecification of the model lag-length, is substan-
tially reduced if the augmentation is performed only on the interest
variable(s) for the Granger causality testing. Put it differently, we do
not need to augment lags of all the variables within the information
set but only the lags of those variables that we are interested in test-
ing for causality. Using the same notation introduced in Chapter [2] let
Ny = |I| and N; = |Ny| denote the number of variables in I and J
i.e., respectively the set of Granger caused and Granger causing vari-
ables. Then, the lag augmentation can be confined to only Ny 4+ Ny
variables. This applies as long as Ny + N is sufficiently small. We
argue that the relative small dimension of the causal blocks, is not a
restriction. After all, the value added of the high-dimensionality ap-
proach is that of being able to condition simple relations among series
(i.e., bivariate/trivariate), to a large set of regressors, thus in order to
maximise the information set to obtain a result as much as possible free
of omitted variable bias. To account for the large dimensionality of the
VAR and in order to deal with the complications of the post-selection
inference (see e.g. Leeb and Potscher, [2005), we follow the framework
outlined in Chapter [2| extending the stationary setting to the unit root
non-stationary one. Hence, we set up a post-double selection proce-
dure which is able to partial-out nuisance variables while safeguarding
from omitted variable bias to return uniform asymptotics. After the
selection has been performed, we build a post-selection, restricted-lag-
augmented Lagrange Multiplier test which allows to perform inference
on the interest parameters. Several technical assumptions are needed
to extend the post-double selection framework to the non-stationary
setting. Especially, in order to bound the empirical process, a novel
Gaussian approximation is proposed which avoids assuming any strong
invariance principles.
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The remainder of the chapter is organized as follows: Section [3.2] in-
troduces the model, the relevant hypotheses and the algebra required
to show how a lag-augmentation, restricted to the sole variables of in-
terest, does not impact the tested hypothesis which can equivalently
be rewritten in terms of the augmented model. Section [3.3] shows
how the post-double selection technique can be coupled with a post-
selection restricted lag-augmentation as advocated in the previous sec-
tion. The main algorithm (PDS-LA-LM) is stated and some remarks
are given. The set of assumptions for the asymptotic normality of the
post-selection least square estimator are extended to the unit root non-
stationary framework in Section [3.4 where the main asymptotic results
are stated, namely in high-dimensions the restricted lag-augmentation
does return asymptotic normality of the OLS after the double-selection
is performed by the lasso and hence standard inference, free of omitted
variable bias, is attained. In Section[3.5| we report the finite sample sim-
ulations for sparse and non-sparse data generating processes and we dis-
cuss the performances of the proposed test. In Section [3.6| we elaborate
on how to obtain an empirical upper-bound for the estimated lag-length
p by means of using information criteria (BIC). The original model is
estimated as a diagonal VAR and an estimate of the log-determinant
of the residuals covariance matrix is used to alleviates singularity issues
affecting the computation of the BIC. Section [3.7] uses the proposed
testing framework to investigate the driving factors of inflation in the
context of the FRED-MD dataset. Finally, Section [3.8| concludes.

The Appendices are organized as follows. In Appendix [A] are reported
complementary results to the following two appendices. Appendix [B]re-
ports the proofs of theorems and lemmas needed for the results stated in
Section The proofs of the main results on the post-double selection
estimator convergence is reported in Appendix [C}] Appendix [D] reports
additional simulation results.

A few words on notation. For any n-dimensional vector x, we let ||z||,, =

>y |xi|p)1/p denote the ¢,-norm. For any index set S C {1,...,n},
let xg denote the sub-vector of x; containing only those elements x;
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such that i € S. |S| denotes the cardinality of the set S. We use % and

9 to denote convergence in probability and distribution, respectively.

3.2 The Model

Let y1,...,yr be a K-dimensional multiple time series process, where
Y = (Y14,---,YKs) is generated by a VAR(p) process

Y= A1yr—1 + -+ Apyrp + uy, t=p+1,....7T, (3.1)

where Aq,..., A, are K x K parameter matrices and u; is a K x 1
martingale difference sequence (mds) of error terms. Elements of y;
are time series integrated of order d: I(d) (d = 0,1,2) and possibly
cointegrated of order d,b: CI(d,b).

Assumption 3. The VAR model in (3.1]) satisfies:

(a) {u;}L is a mds with respect to
Fi = 0(Yt,Yt—1,Yt—2,.-.) us such that E(us|F;—1) = 0 for all ¢;
the K x K covariance matrix X, = E(usu}) is positive definite and
E|lu¢|>* < oo, with § > 0.

(b) Roots of det(Ix — E§:1 A;27) can either lie on the unit disc or
outside, thus allowing for unit roots and cointegration within the
VAR.

Remark 3.1. Assumption from Johansen (1992)) are also needed to
rule out explosive processes and guaranteeing the series to be maximum
I(2) and in general cointegrated. The statements of these assumptions
are reported in Appendix [A]

We are interested in testing the null hypothesis of Granger non-causality
in mean between variables in the set J i.e, the Granger causing variables
and those in the set I i.e., the Granger caused, conditional on all the
other variables, where J, I C {1,...,K} and JNI ={. Let N; = |J|
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and N; = |I| be the cardinalities of the sets J, I. For the moment we
assume the lag-length p in to be fixed, we shall further elaborate
on the choice of p in Section 3.6 Also, in order to ease the notation,
we omit both the intercept and any polynomial time trend from the
model, the results we derive easily extends to those cases as well. As in
Chapter [2| we describe our procedure in general form for testing blocks
of variables. For a formal definition of Granger causality we refer to
equation in Chapter A test for Granger causality is built via
testing the joint significance of the blocks of coefficients in the matrices
Ay, ..., A, corresponding to the impact of variables J on I. We use
a similar stacked representation to that in of Chapter [2| for the
variables in I. Namely, Y = (yp+1,...,yr) and y; = vec (Y7) denotes
the N; x 1 stacked vector containing all observations corresponding to

the variables in I. Similarly, u; = vec(U;), where U = (upi1, ..., ur).
/
Let X = (mép),...,:cg?il) and X® = Iy, ® X, while the stacked
parameter vector is 8 = vec((Aq, ..., A,)’). Then we obtain
Yr :X®,3+’LL[ ZXg_C,B@-i-X?GC,B—GC‘FUJ, (3.2)

where Xg_c = Iy, ® Xgc¢, and Xgo = (:cff;,x%; . ,:CS{J)T_l,x%:),,_I),
contains those columns of X corresponding to the potentially Granger
causing variables in J and those potentially Granger caused variables
in [ ;E| X_¢gc and X i®GC are then defined similarly but containing the
remaining Variablesﬂ B-cc has (K — Ny — N;) x Ny x p elements and
Bac has Ngo = (Nj+ Ny) x Ny x p elements. Elements of B_gc are
assumed being large given a large number of variables K is assumed.
Throughout the chapter we assume Nj, N; and p to be fixed when
sample size T' increases to infinity. Similarly, elements of Bgc are also
implied to be fixed. Similarly to Chapter [2] let also Bgc be the subvec-

2Note: the underlined notation is used to distinguish the notation from Chapter
where Xgc was referring to only the Granger causing instead of both Granger
causing and Granger caused.

3Note that if I = {4} for one particular value of interest, then simply corre-
sponds to a single equation from the VAR in .
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!/
tor of B¢ corresponding to the variables in Xgo = (wgp;, een :cf,p)T_1>

i.e., pertaining those columns of X corresponding to only the potentially
Granger causing variables in J, thus containing Ny x Nt X p elements.

Testing for no Granger causality is then equivalent to testing the fol-
lowing null hypothesis:

Hy: Baec =0 against Hi: Bgo # 0. (3.3)

In order to test the null hypothesis in (3.3) we augment the level of the
system in the following way:

y1 = XGoBoe + XEaoB-co +wr, (3.4)

where now Xg_é = In, ® X0, and

d d d 4 .
Xie = <mff; ), wgp;r ), e ,:rf]p;ff)l, wgp;7)1> contains the same elements

of Xgc plus additional d lags of both variables in J and I. Similarly
as above, considering B¢, being the subvector of 8¢, only containing

!/
coefficients related to variables in X oo = (mSp I)J, . ,mgp %_1) , then the

null hypothesis under test of Granger causality in this lag-augmented
set up becomes:

Hy: PBic=0 against Hy: B&o #0. (3.5)

Let us introduce the following Ngc(p+ d) X Ngo(p+ d) transformation
matrices Ry for d =1,2

lnm o0 1 0 1 0 1 0] 1 0 1 0 1 0 0 0]
01 0 1 01 0 1 0 1 0 1 0 1 0 O
0 01 0 1 0 1 0 0 01 0 1 0 0 O
0 0 0 1 01 0 1 0 0 0 1 01 0 O
Ri = z L Re= | -
0 0 0 O 1 0 1 0 0 0 0 O 1 0 0 O
0 0 0 O 01 0 1 0 0 0 O 01 0 O
0 0 0 O 0 0 1 0 0 0 0 O 0 01 0
10 0 0 O 0 0 0 1] 0 0 0 O 0 0 0 1]
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Note we can rewrite Ry, Ry as block matrices like

Ry
Ry Ry ~—~
~~ ~~ NgecpXNgep
R, = NgepxXxNgep NgopXNged R, =
1 — 0 R ) 2 —
22
~ ~~~ 0
NgcdxNgep NgcdXxXNgcd ~~~
NgcdXNgcp

[ Ri»

0]
~—

~—~
NgepXxd Ngcepxd

NgopXNgcd

I

~—~
Nc;chNccd

where Rq1, Roo are smaller versions of Ry while Rjs is everywhere as

the upper triangle of R;.

Then let

1 0 -1 0 0 0

0 1 0o -1 0 0

0 0 1 0 0 0

0 0 0 0 0

P =R;; Pl'= S Lo
0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

00 0 0 00

and

10 2 0 3 p+1 0

01020 0 p+1

0010 2 » 0

0O 0 01O 0 P

P, =R R; = P :
0O 0 0 0 O 1 0

0O 0 0 0 0 0 1

0O 0 00O 0 0

00 0 0O 0 0

o O o O

S = O =

O = O

e S S SN

(3.6)

(3.7)

93



Chapter 3. Inference in Non-stationary High-Dimensional VARs

1 0 -2 0 1 00 0 0]
0 1 0 -2 0 00 0 O
00 1 0 -2 00 0 0
00 O 1 0 00 0 O
Pyt = SN L :
00 O 0 O 1 0 — 0
00 0 0 O 01 -1
00 O 0 O 00 1 0
00 0 0 o0 0 0 1]

For the order of integration d < 2, deﬁneﬂ
()= (3 0,0 (35)
B_ac 0 I, kx-Ngo)) \B-cc)’

* -1 *
GE) = (0 ) ()
XZao 0 Ip(Kchc) X oo

Therefore, we can rewrite (3.4)) as

yr = XELP PaBte + XZ60B-co +ur, =
= X&,dﬁg_ad + X®.cB-cc +ur (3.9)
=W;o*+ X%,0B-cc +ur,

where to lighten the notation we defined W := Xgad =1 ® X¢o 4
and ¢* = ,BECd. Let further w; be the t-th row of Xg(*} and w; 4 be
the t-th row of X7, ; and suppose for simplicity that N; = N; = 1,
where the interest is in testing Granger causality from ys to yj, then

“We could allow for more generality than d < 2. However, as it is consensus in
economics, rarely processes exhibit roots of higher order than two. Hence, we
confine our presentation up to the case of I(2) series.
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we have

d d d d
we g = (A%1—1, A% 1—1, A%14—2, A% 2, ...

Adwt,l

d—1 d—1
AT Yy 1, AT Y21, YL t—p—25 Y2,t—p—2)

Adwt,z

d—1
At wy ppa

Wt,p+2

/
Y

Example 3.1. Let N;j = Ny =p =d =1 and the interest is in testing
Granger causality from y2; to y1 then,

R;1  Rio

2x2  2x2
R, = ~ x ; Py
~~ 0 R
4x4 ~~

2Xx2 2x2

=~
-
g
%
I
o O O

O = O =

Example 3.2. Let Ny = Nj
testing Granger causality from yo; to y1 then, then

Ry
ot
R, = 0
8x8 ~~
4x4
1 0
0 1
0 0
0 0
P,=R, -R;= 0 0
0 0
0 0
10 0

[=NeloeloNel =R

Ry
~~
4x4

22

4x4

OO OO, OO

OO OO

o O O
oo = O
O = O =
= o = O

O |y1,e—1
Y2,t—1
Yi,t—2

1] ly2,e—2]

=Ry P['=

Ayl,t—l
Ay2,t—1
Y1,t—2
Y2,t—2

(= elNel
oo = O

= Wt,1.

=1, p = d = 2 and the interest is in

By (R3]0
4x4 4x2 4X2
Ry = 4x4 )
8x8 0 I
~~ ~~
4x4 4x4
01 0] [t o1 0 1 0
1 0 1 0 1 0 1 0 1
0 1 0 0 0 1 0 1 0
1 0 1 0 0 0 1 0 1
0 1 0 0O 0 0 0 1 0
1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 O
0 0 1} 00 0 0 0 O

O OO OO oo

— O O O0OOoO o oo
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1 0 =2 0 1 0 0 0] [yiea] [A%101]

01 0 -2 0 1 0 0| |y2ea APy q

00 1 0 —2 0 1 0f |yt A%y o
Prlwr=|0 0 0 1 0 =20 1y APyoss
0 0 0 0 1 0 -1 0] [y1,e-3 Ayr,i—3

00 0 0 0 1 0 —1| |yais Aysi_3

00 0 0 0 0 1 0| |yiia Y1,
0 0 0 0 0 0 0 1] ly2,t—a] | Y2,6—4
\—,—/

wt 2

Now, let us define the following Ngop x Ngo(p + d) matrix
M := (INGCPXNGCP ONGCPXNGCd)7

,6 117),
H/—/

_ * Ngcopx1
such that Bgc = Mﬁ@— (INchxNch ONchxNch) l@(erl :p+d)’

Nc;chl
Note that for d =1

MP, = MR, = Ry; := Ry1,

and for d = 2
MP, = MR, R, = MR?.

In more detail, for d = 1 we get the reduced-upper-left matrix of R;:

MP, = R ,
~—
NgepXNgep

while for d = 2

Ry R
~—
NgecpXNgep NeepXNge?2

0 Royo
~~ ~—~
Ncc2XNgep  Nge2xNge?2

MP; = (INGCPXNGCP ONGCPXNGCQ) X
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Ry [ R | 0 ]
~—
NecpxNgep  NgepxNge Neopx2

NgcpXNgc?2
0 I
~~ ~~
Ngc2XNgep Ngc2XNgc?2

R 1Ri1  Ri1[R12]0] + Ry
I 0
_ NgepxNgep NgcpxNgc?2 NgepXNgop NgepxNge?2 _ RQ
ONGCQXNGCP 01\7c:02><1\7c:c2 0 Ry H
~~ ~—~
Ngc2XNgep Nec2xNgo?2

R 1Ry R 1Ri2 + Ri2Ry
—_——

_ 2 NgecpxNgep NgcocpXNgc?2
=MR; = (INchxNch ONccprGCQ) 0 Ro-R
221122
~—~
Nagc2XNagcp Nagc2XNgc2

Then, the following chain of equalities is verified:

bcc = Mo* = MPB5 = MR{Bac = R, Bec. (3.10)

As Ry is invertible, it follows that any hypothesis formulated on Bgc
may equivalently be formulated in terms of ¢gc and vice-versa. Hence,
by defining the function f4(6) := ((R%)~'0) we just showed that testing
the null hypothesis in is equivalent of testing the null

Hy: fa(lpgc)Sn, =0 against Hi:  fa(pcc)Sn, # 0,

(3.11)
where Sy, is a matrix of zeroes and ones, of conformable dimensions
as ¢gc and which extracts only those coefficients corresponding to the
variables in J. Therefore, e.g. the Lagrange Multiplier (LM) statistic for
testing gives the same numerical value as an LM test for testing
. To show this it is sufficient to prove the numerical equivalence of
the residual sum of squares (SSR;) of the augmented regression
expressed in terms of QSGC =M (13* with the residual sum of squares of

regression (3.4), (SSRy). First, we show that the equivalence chain in
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(3.10) which is expressed in terms of the population parameter, it holds
for the estimated version as well.

- ’ -1 /
M¢p=M (W; G1Wj) W, Giyr =

-1
=MFq <X$G1X§—g) XeoGryr (3.12)
| B\ o
= MPdIB*G_C = MPd B(pm-i_d)/ = Rllﬁ@:
(ele}

for Gy := [I — X% (XE60X%00) ' X %]

Then, for the model in by using results in , :
SSRy = @iy = ypyr — 20" Wiy — 28 6o XSgourt
+ 206" Wi X%, co+
+ é*,W;/W;é* + BI—GCXE§,C¥CX§GCB—GC’
= yjyr — 280 RGPy XS0 y1 — 26 ce XEgoyr+
+BecRL P XE (X _coB-ce+t
+ Bac R P XS0 P XS aBac R + B 6 X 2ue X aeBce,
= ylyr — 2850 PaPT XS0 gyt — 28 ae X gyt
+ 2850 PaP XG0 1 X P ooBocot
+ B PaPT X0 /P X8 aBicPi + B26c X 260 X 2 6cB e
= y1y1 — 285 XG0 ay1 — 28% 60 X Eacyn + 285 X0 s X EaoB-co+
+ ,ég_cXg;é7dX§_C7dBZ‘;_c + B X200 X heBoce =

=uju; = SSR,,

~ ’ -1 ’
where: B_gc = (X?GCGQXEZ’GC) X®,-Gayr and
Gy = [I — W;(WJIW;)*W;']and this shows the claim.
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Remark 3.2. With the algebra presented in this section we are able
to re-express the levels VAR in by isolating the Ng¢ variables of
interest for the causality testing from the potentially high-dimensional
matrix of nuisance variables X ?GC. Furthermore, we can augment the
lag-length of only the interest variables, incorporate these lag augmen-
tations into the equation as in , such that we can re-state the
interest variables in their d-differences (A¢) and this without implica-
tions on the null hypothesis. The inefficiency coming from the inten-
tional overfitting of the VAR model by augmenting p + d lags of all
the variables included in the model, as original idea of Toda and Ya-
mamoto (1995), gets greatly reduced even though the space of nuisance
parameters is high-dimensional, as long as the interest is confined in
testing sufficiently small portions of the variables in the system. Fur-
thermore, as the variables of interest for the testing are expressed in
their d-differences, this makes the asymptotic distribution of the test-
ing procedures involving OLS estimators as e.g., Lagrange Multipliers
and Wald test, to be standard x2. The rationale behind this is straight-
forward: even though we do not take the d differences of all the variables
by means of augmenting d lags of them all, OLS x? types tests of any
linear hypothesis involving only the A%variables will converge at the
usual parametric /T rate, thus dominating the faster convergence of
the non-stationary variables.

Remark 3.3. One important aspect of the current framework is that
the lag-length p of the VAR is assumed to be larger than, or at most
equal to, the suspected maximum order of integration d. This will be
needed later in Section [3.3] to avoid spurious regression problems in the
post-double selection steps but it is also of interest to observe here.
In fact, one might be worried that having mixed orders of integration
among the Granger caused and Granger causing variables could lead to
over-differencing issues i.e., moving average unit roots being introduced
by differencing stationary time series. This however does not happen
here as the additional lags of the Granger causing and Granger caused
variables are used “at convenience” i.e., if they are not needed because
the variables are already stationary, at most they will marginally de-
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crease the power of the test because of the slight over-specification of the
lag-length but they will not affect the inference as the true coefficients
of the extra lags are by construction always equal to zero.

Remark 3.4. The choice of d = 2 as augmentation in the above deriva-
tions and examples is done with purpose and is supported by simulations
reported later in Section It is well known that the distribution of
the least squares estimator, when one or more roots of the character-
istic polynomial are close to unity, becomes skewed yielding estimators
which tend to underestimate the true autoregressive parameters (see
e.g. Fuller, 2009). This skewness is also responsible to cause difficulties
in constructing confidence intervals for the same parameters. Therefore,
to avoid such near unit roots unwanted behaviors, augmenting d = 2
lags of the interest variables is always suggested. This does not cause
overdifferencing issues as explained in Remark and the simulations
reported in Section show satisfactory final sample behavior, also in
terms of statistical power of the test.

3.3 Inference after selection by the lasso

We have shown in Section [3.2] that the augmentation of only the interest
variables and the provided algebraic formulation allows to equivalently
re-state the null hypothesis on Bgc in terms of ¢pgc. Appendix @ con-
tains the formal asymptotic justification for which the augmentation is
needed to avoid non-standard limiting distributions of the test statis-
tics in finite dimensions, when K < T'. This is connected to the present
context of a high-dimensional VAR model as in the proof of the main
Theorem [3.1]in Section [3.4 we show with high probability that the set of
retained variables within the double selection is close to the true, fixed
dimensional support. We are now going to employ the post-double se-
lection (PDS) LM test developed in Chapter [2{and adapt its theory and
algorithm to the unit root non-stationary framework.

Consider again model (3.2). Let zgc;, j = 1,..., Nx, where Nx =
pNj, denote the j-th column of Xgc. Also, call X_gc; the matrix X
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from which only the column corresponding to the j-th lag of x; has
been removed. Then, consider the “Frisch-Waugh” partial regressions
of the variables of interest y;, £gc,;j on all other variables:

yr = X®n(0) + e, (3.13)
TaGe,j :X_chn(j)+e(j), j: 1,...,NX, (3.14)
where nU), j = 0,...,Nx are the best linear prediction coefficients

for the prediction of respectively y; and zgc; on X® and X(_j();cj.

Consider the following scaling matrix

VTI4 0 0
0o TIg 0 |,
0 0 T2

Dy =

and assume without loss of generality that the variables in X® and
X_qcj are organized by order of integration in increasing fashion, where
A is the column dimension of the 7(0) variables, B is the same for (1)
variables and C for I(2) variables. Furthermore, define the limiting
scaled expectation as E(-) := limp_,o, D7E(+). Then, for j =1,..., Nx
the best linear predictions respectively for and are

_ , 2 _ A
77(0) = arg min EHyu — Xfa_lnH2 = <EX£811X§11> EXfa_lth,
n
(3.15)

TI(J) = arg min EHmGC,j,t — Xl_GCj,t—l””i =
! (3.16)

_ ’ -1 =
= (EX_ccji1X goji) EX_goji1Taci

where X?_ 1=1In, ®®Ti_1. As 1n® and ¥ respectively obey the first
order conditions: E(yr: — X,?Z1U)X§1 =0,

E(xee i — X’_ch —1MX_ccji—1 = 0, it follows that the errors
e, .. eVx) are orthogonal to our variables of interest y; and TG,
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Therefore, by partialling out the effects of all other variables guarantees
a valid test of Granger causality. However, the sample versions of
and are high-dimensional and cannot be directly estimated by
least squares as X® X® and X' ccjX-coj are not full rank. One
needs to first select the relevant variables from regularized estimation
of and and collect all these for the final estimation of
yr on xgc,; plus only those relevant variables. By using the lasso
(see Tibshirani, [1996)) we can simultaneously perform variable selection
and estimation of the parameters by solving respectively for and
the following in-sample minimization problems

70 — argmm<T—1||w _ XEnO| 4 A||n<0>||1),
n

(3.17)
7Y = arg min <T1H$G0,j ~ X_cemV|; + /\Iln(”||1>,
n
for j = 1,..., Nx, where \ is a non-negative tuning parameter deter-

mining the strength of the penalty.

Remark 3.5. Kock (2016]) showed that the (adaptive) lasso is oracle
efficient in stationary as well as non-stationary autoregressions. One
however needs to choose the tuning parameter \ appropriately as it
needs to shrink the estimates of the truly-zero coefficients in n©), 5@
to zero while at the same time it cannot grow too fast to avoid also
the true non-zero parameters to be shrunk to zero. Here we follow
the framework of Chapter [2] and use the Bayesian information criterion
(BIC) in selecting the tuning parameter coupled with a penalty lower
bound ensuring a maximum of selected variables per estimated equation
(see Remark for details). Minimizing an information criterion (IC)
in order to determine an appropriate data-driven A is one way to deal
with dependent data (see Chapter [2| for an overview of other methods
and their finite sample behaviors).

Let S(\) = {me{1,...,Kp}: |[Ain())| >0} denote the set of active
variables in the lasso solution for a given A. For a generic response
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vector y and predictor matrix X, the value M€ is found as

1 InT| »
MC¢ = argminIn (THI’J - Xﬁ(/\)Hg) + HT SN, (3.18)
A

where ’S’ ()\)‘ are the lasso degrees of freedom after the penalization

procedure is applied i.e., the number of non-zero coefficients selected.
The BIC-chosen A within the adaptive lasso is well known to be able
to identify the true model consistently as long as the model dimen-
sion is fixed (see e.g. Wang, Li, and Tsai 2007, Wang and Leng [2007)).
In fact, whenever the number of candidate models is fixed, BIC can
consistently differentiate the true model from an arbitrary candidate
model. However, if the model dimensions diverge, the number of can-
didate models increases at a too fast pace for the BIC to be able
to distinguish the true model. Wang, Li, and Leng (2009)) proposed
a modified BIC and develop a set of probabilistic inequalities able
to bound the overfitting coming from the diverging dimensions. The
only difference with the standard BIC in is that the penalty
InT/Tdf gets multiplied by a positive constant Cp. This constant
is set to diverge to infinity but its rate can be arbitrarily slow, for
instance Wang, Li, and Leng (2009) uses Cr = log(log(K)). Fur-
thermore, a set of technical assumptions are needed in order to show
that such modified BIC is consistent in model selection even with a
diverging number of parameters. Specifically, (i) componentwise fi-
nite fourth-order moments for X are assumed, (ii) the minimal eigen-
value of the covariance matrix of X should be bounded away from
zero (see also our Assumption [4(g)), (iii) the divergence speed of the
model dimension satisfy lim sup(K/T) < 1 for a < 1, and finally (iv)
a limit requirement on the size of the non-zero coefficients is needed
(V/[T/Cr K log(T)] lim inf7_, 0o (minjes [1j]) — o) as well as a con-
straint on the value of the diverging constant Cr (Cr K log(T")/T — 0).
In our simulations in Section we stick to the standard BIC, in fact
simulations there show still a satisfactory performance of BIC without
modifications. The theoretical argument of Wang, Li, and Leng (2009))
is though appealing especially for ultra-high-dimensional settings. We
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compare it with standard BIC within the lag-length selection framework
in Section

Below in Algorithm [3| we state the main steps of our post-double se-
lection, lag-augmented, Lagrange multiplier test and some remarks are
included. We call the procedure PDS-LA-LM to stress the difference
with the PDS-LM Algorithm 1 in Chapter 2] Here the post-selection
step contains a lag-augmentation and this is restricted to the sole vari-
ables of interest for the testing.

Remark 3.6. In Algorithm 3| the choice among Step [4a] or [4b] does
not affect the finite sample results of the test whenever the sample size
T is large enough, similarly to Chapter |2l The small sample correction
in [4b] (see Kiviet, [1986)) has a wider practical applicability since [4a]
suffers heavily for size distortion in small samples, therefore in Section
we always use [4b] for the Monte-Carlo simulations of the PDS-LA-
LM test. The final sample results of using Step [4a] are reported for
completeness in Table in Appendix

Remark 3.7. As for Chapter 2] the feasible generalized least squares
(FGLS) estimation in Step [3] of Algorithm [3|is needed when N; > 1 to
account for the correlation between equations of the VAR, and the fact
the selected regressors are not the same in each equation. If Ny = 1,
FGLS estimation boils down to the standard form of the LM statistic
where one regresses é by OLS onto the variables retained by the previous
regularization steps plus the Granger causality variables, and retain the

: N Y ® Qs sk 2 1 ElE
residuals » = £ XguGCB,obtalmngR =1-0'v/¢E.
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Algorithm 3 Post-double selection lag augmented Granger causality
LM test (PDS-LA-LM)

[1]

[2]

[3]

[4a]

[4b]

Estimate the initial partial regressions in and by
an appropriate sparsity-inducing estimator such as the (adaptive)
liisso, and let 71, ..., Ny, denote the resultiAng estimators. Let
So = {m : [mol >0, m =1,...,N} and S; = {m : |9y ;| >
0, m=1,...,Nx} for j =1,...,p, denote the selected variables
in each regression.

Let Sx = U S denote all variables selected in the regressions

for the columns of Xqac, and let SX map Sy back to X_GC be
such that X:% = 1IN, ®X Gy Collect all variables kept by the

lasso in Step [1] in $€ = SHUSY. Augment Xéz)@ to )72?@ incﬁlyding
extra d lags of y; and xgc. Obtain the residuals & = y; — X® 5T

by OLS estimation. Let = 1 denote the T° x Nj-matrix formed
from E and construct Zu = ._I._,I/T and X% wl = Zu[ & Ir.

. —-1/2 . —-1/2
Let yf, = (59,)  ww and X2 = (52,) 7 X% Ob-
tain the residuals é* =y — X;gﬁ}G 15> and regress é* onto the
variables retained by the previous regularization steps plus the

Granger causality variables, retaining the residuals e

X:“ffJ GC:BFGLS Then obtain the statistic LM = (£€¥€* — 0*'D*).

Reject Ho if LM > gq,» (1—a), where g (1—a)isthel—a
Ngc Nac

quantile of the x? distribution with Ngc +d(N; + Nj) degrees of
freedom.

Reject Hy if (TN’_é_NGC_d(N’+NJ)> (TNGLCMLM> >

J\ele]

QFNGO,NIT—é—NGC_d(NI"FNJ)(l - Oé), where  § = |‘§®| and
QPN Ny T3 NGC*d(NI+NJ)(1 — «) is the 1 — « quantile of the F’
distribution with Ngc and N;T — § — Ngo — d(Ny + Nj) degrees
of freedom.
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Remark 3.8. The algorithm designed in Chapter [2] employs a lower
bound on the penalty to ensure that in each selection regression at
most I’ terms gets selected, for 0 < ¢ < 1. Similarly, we also employ
a ¢ = 0.5 upper-bound on the selected variables in Algorithm This
ensures that, equation-wise, the lasso does not select too many variables
as this would render the union too large and hence infeasible for a post-
least-squares estimator. Note that this is allowed as one of the main
advantages of PDS is that it does not require consistent model selec-
tion but only prediction consistency (see Assumption [4](e)). Mistakes
are allowed to occur in the selection: variables might be incorrectly in-
cluded and relevant variables might be missed, as long as the estimator
remains sufficiently sparse and consistency is guaranteed. However, it
remains a possibility that the lasso would select at every selection step
an amount of variables correctly lower bounded, but substantially dif-
ferent for each step. The likelihood of this to happens obviously grows
with the number of variables as well as the lags, although the latter we
argue in Section being reasonably assumed fixed (i.e., not growing
with 7" or K) and small, in practice. In those limit cases where the
selected variables are still larger than the sample size, post-OLS would
remain infeasible both in an LM setting and similarly in an alternative,
asymptotically equivalent, Wald test setting. The only work-around to
these unfortunate cases is an ad-hoc increase for the tightness of the
upper bound on the selected variables, namely from ¢ = 0.5 to, say,
¢ = 0.5 —¢€for € € [0,1], with the care of avoiding extreme tightness
which would have implications for the testing.

Remark 3.9. Algorithm [3] is expressed in the general block-Granger
causality notation. This shows that with this methodology one can
test a block of variables being Granger causal for another variable or
even for another block. However, differently from Chapter [2| here the
testing must be confined to not-too-large portions of variables. The
reason has to be found in the lag-augmentation framework of Section
needed to account for unit roots and cointegration. This essentially
trades off power to reduce pre-test bias or bias occurring from taking the
d-differences of the variables. The restricted augmentation developed
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in Section essentially allows the lag-augmentation idea to work in
high dimensions without sacrificing much power as it restricts the aug-
mentation to only those variables of interest for the test. However, this
lag augmentation still depends on the amount of variables involved in
the hypothesis at stake. In Section we show in simulations what is
the difference in power loss if one augments all variables as opposed to
the restricted augmentation of only the relevant ones for the testing.

3.4 Theoretical Results

This section presents the main theoretical contribution of this chapter.
Throughout the section, in order to lighten the notation, we make the
simplifying assumption that I contains a single element such that N; =
1 i.e., we consider only one Granger caused variable, while we still allow
for blocks among the Granger causing. Let us therefore introduce the
notation N, = Nj + Ny = N; + 1. The model then becomes:

y=XB+u=XgcBac+X_acB-gc +u, (3.19)

where Xgc contains Ny,p columns corresponding to the p lags of both
Granger causing(s) and Granger caused variables. Similarly can be
written the Nx + 1 selection steps in (3.13) and (3.14]). Deriving the-
oretical results allowing for blocks in the Granger caused variables as
well is straightforward from the theory presented here.

For the PDS-LA-LM to deliver uniformly valid inference, a set of as-
sumptions are necessary. Especially, the assumptions of sparsity, re-
stricted sparse eigenvalues, empirical process bound and consistency
need to be adapted to the non-stationary framework. Hence, before
showing that the post-double selection algorithm continues to deliver
estimates free of omitted variable bias also in a non-stationary setting,
we now state these assumptions and discuss them.
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Assumption 4. Let 67 and A7 denote sequences such that o7, A — 0
as T — oo. Also, recall we assumed without loss of generality that
elements in X are partitioned as (X 4,, Xp,, Xc,) where columns of
X 4, contains the I(0) variables selected by the lasso (C X g) as well as
the Granger causing and dependent variables made stationary through
the augmentation; Xp, contains the I(1) and X, contains the I(2)
series. Conformably, recall the definition of the scaling matrix Dy =
diag(v/T1I 4., TIp,, T?*Ic.). Then assume the following conditions are
satisfied:

(a) Martingale errors: the error vector e in (3.13) and (3.14)) is a
K-dimensional martingale difference sequence with E(ee’) = X,

where:

(i) Ford > 2, E(||e]|%,) < Cj, for some constant Cs which depends
on 0.

(ii) There exist constants ¢,C' > 0 such that: ¢ < Apin(Xe) <
)\ma)((Ee) < C

(b) Limit Behavior: given e = e .. eNx) in (3.14), where el
is defined in (a), then D, 'e'u LN N(0,8) and D;'e'eD;' %
2GC|—GC’ where

1 —1 ! /
Q_TIE};ODT E(euue),
Secl-ce = Jim D;'E(ee) D;' =

—r00

—1
= Ygoae — 2ao,—cod o _god-coae-

(c) Empirical Process: with probability at least 1 — Ap

HD%IXIUHOO < 37, HDEIX/—GCjeHoo < 3,
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for 47 being a bound applying to the three parts of X and X_q¢;
and which depends on the sample size T" as well as on several terms
described in Theorem [3.4] in Appendix

Boundedness: let 3 in (3.19) be in the interior of a compact pa-
rameter space B C R, Then, the (Granger causality) parameters

of interest are bounded, that is, there exists a fixed constant C' > 0
such that ||Bacll; < C’E|

Consistency: with probability 1 — Ap, the lasso rate of conver-
gence in prediction norm for j =0,...,p is given by

| x @9 )| <63 (3.20)

Sparsity: let SU) = {n,, € 1) : n,, # 0} be the sets of active
variables in (3.13) and (3.14)), and let s = ‘U;V:)% S (j)‘ denote the

cardinality of the set of all active variables (support), with s =
{s4,$B,sc} where s4 contains the non-zero stationary variables,
sp the I(1) and s¢ the I(2). The sparsity of the initial estimators
is given by § = {44,585, 3¢} = |S|, where S = Ufzg{ﬁm € nl .
Nm 7 0}. Then both the DGP and the estimator 1) are sufficiently
sparse; in particular, we have that with probability at least 1 — A,
max(s, §) < sp for some deterministic sequence Sr.

Restricted Sparse Eigenvalues: for any n € RE=NIP with
Inlly < 57, we have with probability at least 1 — A that

Inlly < 571X/ &7 min,

where K7 min > 0.

5Bgc is now the subvector of Bgc corresponding to only the Granger causing

variables.
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(h) Rate Conditions: the interplay of the rates between the deter-
ministic sequences for sparsity (S7), thickness of empirical process
tails (y7) and minimal eigenvalue (K7 min) yields:

3T < (3.21)

KT min

Condition (a) is standard. In (i) we require at least two moments of the
martingale difference sequence to exist while in (ii) we require minimum
and maximum eigenvalues of the error covariance matrix to be bounded
away from zero such that the matrix is non-singular. This restriction
only rules out global dependence of the elements in e allowing for a
wide range of contemporaneous dependencies.

Condition (b) assumes that a central limit theorem and weak law of
large numbers hold. See e.g. Davidson (1994) for an overview of the
various conditions under which these apply. Essentially the process
should be sufficiently well-behaved in terms of moments and depen-
dence allowed as we stated in (a). Note that we do not require iid-ness
of the VAR error terms and we only need martingale difference errors.

Condition (c) bounds the empirical process with high probability. This
uniform empirical process bound is obtained by a novel Gaussian ap-
proximation for martingale difference sequences applied to the three
blocks of X'u corresponding to the different integration orders of the
time series in X. Theorem in Appendix [B] derives a Gaussian ap-
proximation for a general martingale difference sequence error term e.
This applies to both w and e. The proof is presented in Appendix
after a sequence of preparatory lemmas.

Remark 3.10. In order to use the uniform approach in (c), typically an
invariance principle is invoked such that every component of the vector
X'ul) is approximately Gaussian with negligible approximating error
and hence standard sub-Gaussian tail bounds can be applied to show
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the claim. For instance, Condition 2 of Zhang, Robinson, et al. (2019),
gives the following normal approximation result as 7' — oo and for

0< 1< 1/2, maxj]<;< g Maxp<s<i E [ZLZEI](UZJ — UiiVi,t):|2 = O(TQT)
where ¢ = 1,..., K indicates the elements of u i.e., mds assumed to
be mean—zer(ﬂ v; ¢ is an independent and standard normal sequence,
by < U?i = limy_, Var (Zthl ui’t) /T < by Vi and by, by positive
constants. Note that the invariance principle of Zhang, Robinson, et al.
(2019)) is directly implied if the components of u are independent of
each other and each component is an mds with a bit more than two
finite moments. Given condition (a) and the fact that we can rewrite
the non-stationary parts of X as vector moving averages (see equations
, in Appendix this would also hold for our case at least
for the I(0) and I(1) parts. However, as the invariance principle result
in Zhang, Robinson, et al., |2019 should hold separately for the three
parts of X, then the order of the approximating error would accumulate,
thus aggravating the rates. Our result, as clear from the Theorem [3.5]
in Appendix [B|is tighter, does not use any invariance principle and the
probabilistic bounds we derive do not require explicit restrictions on the
growth rate of K.

Condition (d) is standard and assumes compactedness of the parameter
space of the vector 3 which in turn implies the boundedness.

Condition (e) is strictly related, and in fact follows, from Condition
(f) and (g). Such inequality gives the rate of convergence of the lasso
estimator in prediction norm. To satisfy the rates in (e), the upper
bound can be shown through standard oracle inequality arguments (see
e.g. Kock and Callot, 2015)) to depend on the tuning parameter A, the
cardinality s of the active set, the restricted (sparse) eigenvalue as in

5This is without loss of generality as when the mean is non-zero the sequence of
partial sums of w is not a mds but it is enough to center the partial sums by
subtracting the mean.
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(g) and some constants. We verify this in Appendix

Condition (f) requires sparsity of the DGP and the estimator. Sparsity
of the first-stage estimator is needed in our framework as we perform
OLS on the selected variables from the first-stage regressions. If the
selected variables are not sparse enough, too many variables will be se-
lected for OLS to be feasible. The assumption of exact sparsity in the
DGP for the initial regressions can also be relaxed to approximate spar-
sity as in Belloni, Chernozhukov, and Hansen (2014b)). Note that given
the relevant d-augmentations discussed in Section@, 54 >Dp,5pc >d.

Condition (g) is a key condition related to the appropriately scaled
Gram matrices 3; = X!X, 1= (A B;,C;). Whenever K > T, 3, are
(mf]im)l/ 2
|2
malfing OLS infeasible. Since directly imposing positive definiteness

of 3J; i.e., Mingerx 420 5%“2‘22 > 0 would be a too strong assumption,

Bickel, Ritov, et al. (2009) simply observed that for the lasso the mini-
mum of the Rayleigh-Ritz quotient can instead be taken over a smaller
set than the whole R¥ i.e., any (non-zero) T' x 1 vector x such that
[lzs]l1 < 3||xse||1 for S the true support and S¢ its complement. The
following quantity k called the restricted minimal eigenvalue is there-
fore defined:

: : = mi |Xiwls _
degenerate i.e., mingerr 420 = MiNgeRK 240 \/Tllwh = 0, thus

Tz
Kg (s,¢) = min min — 2" (3.22)
i SC{1,..K} zeRK\{0} |lxs]|
[S|<s  |jzge|l1<c||zs]|1

The cone condition allows to obtain rates of the model estimation error
in /1-norm and hence those of the prediction loss using lasso. Any full-
rank Gram matrix satisfies , therefore the population covariance
matrix of the stationary variables in X ie., ¥4, = E(X4, X f4§), as-
sumed being full-rank, automatically satisfies the condition. In Lemma
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in Appendix [B] we show how a high probability bound on the maxi-
mal entrywise closeness between X4, and the Gram matrix counterpart
can be easily obtained. For the non-stationary case, since the covari-
ance matrix is not a workable object, we rely on the results in Smeekes
and Wijler (2021) who show that by allowing for a factor s to inflate
the Gram matrix, it follows for ¢ = (Bj;, Cs), kg (s,¢) > 0 on a set with

probability converging to one. Then one has that uniformly over all
subsets S of cardinality at most s, with probability at least 1 — Ar as
T, K — oo, there exists a positive constant d7 % 0 such that

() K$ia (s,c) > o, (II) K$p, (s,c) > dp, (III) K5, (s,c) > dp, (3.23)
where: 34, = T71X) X,,, Xp, =T 25’ log> K(X}; Xp,),

Yo, =T *?log? K(X ¢, Xc;) are the scaled Gram matrices where for
the unit root cases they have been scaled up by a factor of s2log? K
assumed to converge to zero as s, K, T — oo. It follows, ky(s,c) > 0 is
assumed with probability 1 —Ap. K7 min is therefore a positive constant
satisfying (I-IIT) and which depends on the sample size T, the sparsity
s and some constant c.

Finally, condition (h) is what links the sparsity 57, the tails thickness
of the empirical process 47 and the minimal eigenvalue K7 mi,. Since in
Theorem we proved a Gaussian approximation over the innovations
u; ¢, it follows, as in Kock and Callot (2015), that 47 could be taken of
the order y/In(K?p) thus allowing for either fairly non-sparse models
or almost exponentially large K with respect to T

Remark 3.11. The current rate reported in (h) for the interplay be-
tween sparsity, tails thickness of the empirical process and minimal
eigenvalue is suboptimal as it requires a factor 7% to multiply the ratio
in order for it to be bounded by an asymptotically vanishing sequence.
This is an artifact of the current proof technique in Appendix [C], where
having elements of different orders in Dr leads to complications when
taking norms, and means the norm of Dy and its inverse do not cancel
out. We postulate that a different proof technique can prevent this issue
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and thus improve the rates. This is however outside the scope of this
thesis.

Consider now the post selection lag-augmented equation as in Step [2]
of Algorithm We slightly deviate from Algorithm (3| as we directly
include the p lags of the Granger causing variable(s) in the post-selection
equation:

Yy = XGoBac + XgBg +u, (3.24)

where recalling N, = Nj + 1 then X} is now the the T' x Ny(p + d)
submatrix of X containing the original p lags of both the Granger
causing and the Granger caused variables, as well as their additional
augmented d lags, where the presence of the augmented elements is
denoted with a *. Instead, Xg denotes the the T' x sp submatrix of
X corresponding to the p lags of the selected variables at Step [1] of
Algorithm The lags of the Granger caused contained in XE“;_C, ie.,
the p+d lags of y, are needed from the theory developed in Section
for the definition of Granger causality. In what follows we will refer to
B¢ as the subvector of B¢~ only containing the coefficients relative to
the N variables. o

Remark 3.12. In we are assuming without loss of generality
that immediately after the double selection in Step [1] of Algorithm
one would directly plug back the p lags of the Granger causing vari-
able and use a Wald test on those coefficients, where the notation PDS
denotes that the coefficients refer to the variables selected by the lasso
at Step [1]. On the one hand, the choice of deriving the asymptotic
normality for the PDS estimator BEC from a Wald test setting has the
advantage of avoiding extra complications in the proof which would not
add anything more insightful to the claim. On the other hand, the
choice of stating Algorithm [3] in terms of the LM test in place of the
Wald or the Likelihood Ratio (LR), has some practical advantages. It
is well known that Wald and LM tests are asymptotically equivalentﬂ

"Wald, LM and LR are asymptotically equivalent (see e.g. Engle, 1984} for a full
treatment).
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(we show this in Appendix and only slightly differ in finite samples
(see e.g. Engle, [1984). In fact, they can even be written in equivalent
form (See Appendix equation with the only difference being
the error covariance matrix which is calculated from the restricted least
squares for the LM test, as opposed to the unrestricted least squares
for the Wald test. It is also well established (see e.g. Savin, [1976]) how
under linear models, the Wald test will be numerically larger than, or
at most equal to the LM one. In other words, whenever LM rejects the
null, so does the Wald and whenever the Wald fails to reject so does
the LM. As this is true under the null, the size of LM will necessarily
be smaller or at most equal to that of Wald. Hence, in finite samples,
the use of LM opens up to a more conservative testing procedure as
opposed to a more liberal one in the case of the Wald. Even though
this is relevant only for small samples and size corrections exists in the
literature (see e.g. Rothenberg, 1982), still there are cases where the
sample might be substantially small and smaller than the number of
covariates. There, the use of LM could improve control of type I error.
However, as observed later in our Monte Carlo study in Section [3.5]
the d lags augmentation confined to only Granger causing and Granger
caused has the important effect that the power of the testing procedure
is not overly affected by the overspecification. However, power will be
slightly affected even if one tests bivariate Granger causality. This is
indeed the trade-off proposed by our method: giving up a little power in
order to avoid biases from high-dimensional unit root and cointegration
pre-testing. If the practitioner is more concerned with the power of the
testing procedure, then employing a more liberal procedure as the Wald
might result in slightly narrower confidence intervals. Note though that
using the Wald test is not by any mean a way of enhancing the power of
the test, this is in fact only a consequence of the more liberal nature in
finite samples. Both in Chapter 2] and in some unreported finite sam-
ple exercises we do not find if minimal differences in the power of our
Granger causality test, whether Wald or LM is used.

We are now going to state the main asymptotic result of this sec-
tion, namely that the estimated post-double selection d-augmented least
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squares estimator for the coefficient vector 3¢, is asymptotically Gaus-
sian at the usual parametric rate.

Theorem 3.1. Uniformly over a parameter space S for which Assump-
tions[4] (a)-(h) hold for all elements in S,

% d — —
VT(Bec — Bac) = N0, Z‘Gé‘_GCQZGa_Gc), as T — 0.

The limiting distribution of the LM test is derived in the following
Theorem 3.2

Theorem 3.2. Let Bgc = 0. Then, uniformly over a parameter space
S for which Assumption || (a)-(h) holds for all elements in S and for
which £2 = O'QEGC‘_GC, where 0% = limr_,oo D7 E(u/u) D', we have
that

2 d 2
TR™ = X, as T — oo.
Heteroskedaticity-robust versions of the LM test could also be obtained
at the price of some minor modifications of the test (see Wooldridge,

1987). We refer to Chapter [2) Algorithm 2 for a full treatmentﬂ Proofs
of Theorem [3.1] and [3.2] are reported in Appendix [C]

3.5 Monte-Carlo Simulations

We now evaluate the finite-sample performance of our proposed PDS-
LA-LM Granger causality test. Recall y¢ = (y1,4,...,Yx+) and u; =

8Note that this is no different for the Wald test, for which the variance estimation
has to be adjusted as well.
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(Ui, -..,uk,), then we consider the following Data Generating Pro-
cesses (DGPs) in first differences inspired by Kock and Callot (2015]):

(05 0 ... 0
0 05 ... 0
DGP]. Ayt = . . . . Aytfl + U,
|0 0 ... 05
[(—1)li—dlgli—il+t o (—1)li-dlgli—il+t
(=1)li=dlgli=al+1 o (—1)li=dlgli—il+1
DGP2: Ayt = . . . Ayt—l + U,
(—1)lidlglimilHt | (op)lidlgli-ilL

with @ = 0.4. The diagonal VAR(1) for DGP1 allows the sparsity as-
sumption to be met. Instead, for DGP2 the coefficients decrease with
exponential pace departing from the main diagonal and hence although
the farthest coefficients are small, the sparsity assumption is not met.
Note that we report simulations only for the bivariate Granger causality
case where for simplicity we consider the first variable (y1+) in y; being
the Granger causing and the second (y2¢) the Granger caused. There-
fore, DGP1 automatically satisfies the null of no Granger causality from
unit 2 to 1, however DGP2 does not. Therefore, we adapt DGP1 for
the power analysis by setting the coefficient in position (2,1) equal to
0.2. Conversely, we set the same coefficient equal to zero for DGP2 for
the size analysis. We pick our time series of interest y;; and y2;. For
each DGP we are interested in the hypothesis that y» ; does not Granger
cause yy 4 i.e., for the VAR model as in fort=p+1,...,T

@ 6 G G)

Y1t “%1) “%2) “%3) ' “%1)< Y1,t—j Uy
J J J J
Y2,t » a%l) a%% a%% e a%])( Y2,t—j U2,t
Ysit | = E asy ash agy - agd | | Yst—i| 4 | Ust |,
N j:1 . . . . N N
YKt (4) (4) ) (4) ZKt—j UKt
g1 G2 K3 97978 J

then the tested null hypothesis is

Hy : agll) = aézl) =0 against Hy: a%) # 0, for some j =1,2.

117



Chapter 3. Inference in Non-stationary High-Dimensional VARs

Under the null and the alternative in turn, we integrate-out both DGP1
and DGP2 obtaining two VAR(2) in levels as

(15 0 ... 0 -05 0 ... O
0 15 ... 0 0 —-05 ... 0
DGP1l:y, = : . . | Y-t . _ c | Y2 T U,
|0 0 ... 15 0 0 ... =05
[1+ (—1)li=dlgli—il+1 1+ (—1)l=dlgli—il+t
1+ (=1)l=dlgli=il+t 1+ (=1)l=dlgli—gl+t
DGP2:y; = . Yt—1+
14+ (_1)Ii.—jlali—j|+1 1+ (_1)Ii.—jla|i—j|+1
[ (—1)li=dlgli=il+1 (= 1)li=dlgli=il+1
—(=1)li=dlgli—il+1 —(=1)li—dlgli—il+1
+ . _ Yi—2 + Uy
| (1)limdlgli-il+ (= 1)li-dlgli-dl+1

The lag-length is fixed to p = 2, namely the true lag-length for the non-
stationary DGPs. For each non-stationary DGP we test with PDS-LA-
LM the hypothesis that y2; does not Granger cause yi,. Specifically,
after the selection we employ a double (d = 2) augmentation of the
dependent and the Granger causing variable as illustrated in Section
Following the recommendation in Chapter [2, we choose the BIC in
selecting the tuning parameter A for the lasso.

Table reports the size and power of the PDS-LA-LM test out of
1000 replications. We use different combinations of time series length
T = (50,100, 200,500,1000) and number of variables in the system
K = (10,20,50,100) and a fixed lag-length p = 2. All the rejection
frequencies are reported using a burn-in period of fifty observations.
Simulations are also reported for different types of covariance matrices
of the error terms. We employ a Toepliz-version for calculating the co-
variance matrix as X; ; = pli=il where (i,7) refer to row i, column j
of the matrix 3,. We cover two scenarios of correlation: p = (0,0.7).
The first no-correlation is equivalent to set ¥;; = I; j, where [ is the
identity matrix.
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Table 3.1: Simulation results for the PDS-LA-LM Granger causality

test
DGP  Size/Power P K\T 50 100 200 500 1000
10 8.3 8.2 5.3 3.9 3.9
1 Size 0 20 9.0 9.1 6.7 4.3 5.4
50 8.8 7.2 8.4 5.0 4.5
100 6.8 7.8 6.1 5.5 4.6
10 19.8 40.6 78.1 99.8 100
1 Power 0 20 13.3 348 703 99.6 100
50 14.3 31.1 64.1 98.7 100
100 12.1 29.7 65.1 99.0 100
10 7.6 7.7 4.9 5.6 5.1
2 Size 0 20 6.9 8.3 7.9 4.9 7.3
50 7.1 6.4 5.7 7.0 6.3
100 6.9 6.4 6.7 5.9 5.4
10 155 274 50.2 948 99.9
2 Power 0 20 129 245 506 925 999
50 11.2  24.1 44.7 90.3 999
100 9.4 20.7 485 904 99.8
10 10.2 7.1 5.3 5.5 4.9
1 Size 0.7 20 8.1 8.9 7.3 5.2 4.9
50 8.1 7.2 9.2 7.4 5.4
100 9.2 10.6 5.7 7.5 5.5
10 156 21.9 39.8 85.1 994
1 Power 0.7 20 9.7 204 374 834 99.7
50 11.1 19.0 33.5 79.8 98.5
100 9.3 18.7 335 73.8 984
10 9.5 7.6 5.2 6.4 7.8
2 Size 0.7 20 6.4 8.1 7.8 6.6 7.8
50 74 8.2 8.1 7.6 7.1
100 7.2 9.4 9.1 8.4 9.0
10 109 19.7 34.1 781 98.3
2 Power 0.7 20 76 193 342 747 984
50 9.6 21.7 32.8 71.2 979
100 126 20.7 39.0 73,5 97.9

Notes: Size and Power for the different DGPs are reported for 1000 replica-
tions. T = (50,100,200, 500) is the time series length, K = (10,20, 50, 100)
the number of variables in the system, the lag-length is fixed to p = 2 and BIC
is used to select the tuninig parameter for the lasso. p indicates the correlation

employed to simulate the time series with the Toeplitz covariance matrix.

Our PDS-LA-LM test shows good performances in terms of size and
(unadjusted) power for both DGPs considered. The setting of no corre-
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lation is handled remarkably well by both DGPs and only moderate size
distortion is visible in large systems for small samples. Whenever high
correlation of errors is present, sizes are still in the vicinity of 5% for
DGP1 where the sparsity assumption is met. However, we notice how
for DGP2, for which the sparsity assumption is not met, some resid-
ual size distortion remains visible even in large systems. However, the
power of the test is always increasing with the sample size T for all the
considered cases.

Remark 3.13. As mentioned in Remark in order to obtain the
results for the size and power when T' < Kp we need to impose a lower
bound on the lasso penalty A which guarantees to select at most ¢T
variables in each relevant equation of the VAR, for some 0 < ¢ < 1.
The bound should be set as strict as the system requires and often
there is not a universal constant ¢ that works in all settings, therefore
this choice needs to be adaptive. For instance, if the lag-length is p = 2,
this implies 3 selection steps (Step [1] of Algorithm [3)). At the union of
the selected variables, the d augmentated-lags of Granger caused and
Granger causing variables are added (Step [2] of Algorithm [3|) for a
total of extra 4 more variables. The restrictiveness of the method used
to tune the penalty in the lasso selection steps might in some cases not
be sufficient to obtain K < T before least squares. Only for these cases
we tighten the bound using either ¢ = 0.33 or ¢ = 0.25.

Let us now elaborate on the main flow that the testing procedure de-
signed in Toda and Yamamoto (1995) presents, namely the loss of power
due to the inefficiency introduced by purposely overspecifying the VAR
model with extra lags. We already mentioned in Section how the
fact that our proposed methodology involves only the augmentation
of the variables of interest for testing causality, sensibly reduces the
potential inefficiency. The original procedure suggested in Toda and
Yamamoto (1995]) augments d lags of all the regressors and was clearly
envisioned for settings where the cross-sectional dimension was small. In
high-dimensional systems, their procedure could be —if even feasible—
potentially very inefficient. In fact, we could not possibly augment even
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one single extra lag of a full high-dimensional parameter vector, without
making the system potentially intractable.

To show the difference in statistical power of our test, let us inves-
tigate the case of bivariate Granger causality for DGP2 with T =
(250, 500,1000) and K = (10,20, 50,100), namely the low-dimensional
cases. We augment the system both as in Toda and Yamamoto (1995
with the third lag of all the variables and as we suggest (HMS) by
augmenting two lags of only the Granger caused and the Granger caus-
ing variables. We compare the power of the test by also exploiting
both a “pure” I(1) case and a near-I(2) case (see Remark [3.4). For

the I(1) case we modify the DGP diagonal elements (ﬂ,fil),,é’i(iz)) to
(BZ-(Z-D, Bi(?)) = (1,0) which returns the second highest eigenvalue of the
companion matrix being equal to 0.533. Instead, for the near I(2) case
we use (BZ-(Z-I), 1(12)) = (1.4,—0.4) which gives the second highest eigen-

value of the companion matrix being equal to 0.933.

Table 3.2: Power results Table 3.3: Power results
T =250 T = 500 T = 1000 T =250 T = 500 T = 1000
K HMS TY HMS TY HMS TY K HMS TY HMS TY HMS TY

10 57.5 541 90.1 888 99.6 99.2 10 65.6 625 948 944 999 999
20 544 479 864 828 99.9 99.7 20 60.6 54.8 925 90.3 999 100
50 50.6 31.2 852 773 99.7 993 50 57.2 35,7 90.3 829 99.9 99.7
100 52,5 NA 854 629 998 9838 100 528 NA 904 683 998 99.1

Notes: (3511),@3)) = (1,0). HMS refers to our PDS- Notes: (ﬁf})ﬁf?)) = (1.4,—0.4). HMS refers to our
LA-LM test where we augment two lags of only depen- PDS-LA-LM test where we augment two lags of only
dent and Granger causing while TY refers to the LM dependent and Granger causing while TY refers to the
test carried by augmenting all the regressors. LM test carried by augmenting all the regressors.

Results in Table [3.2] [B-3] show that using our PDS-LA-LM test, the
gain in statistical power is up to 30% for medium-to-small sample sizes
if one augments only the dependent and the Granger causing variable,
as opposed to augmenting all the regressors. NA’s are reported when
the after-selection lag augmentation made the system not feasible to
be estimated with OLS. Results holds both in cases of “pure” I(1) and
near-I1(2) variables, showing that the d = 2 augmentation has practical
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advantages in the presence of near-unit roots and it does not dramati-
cally decrease the power in those “pure” I(1) settings.

3.6 Choice of the lag-length p

Up until this point, we considered the lag-length p as given. In reality,
this is of course not the case. In this section we elaborate on how we
propose a reliable estimate of p. Note first that standard techniques
for tuning the lag-length p as information criteria or sequential testing
fail when applied directly to the full high-dimensional VAR. In fact,
both techniques compare sequential estimates of VAR(p;) models for a
grid of lags, e.g., i = {1 : 10}. They then select the model either in a
forward fashion by minimizing a chosen criteria like AIC, BIC, HQ or
by backward testing the significance of the largest lag(s). This cannot
simply be done in case of K being large and potentially larger than T'.
The addition of only one lag when K is large, quadratically inflates the
parameter to estimates (K2p) and can quickly lead to situations where
K > T and hence no OLS estimation is feasible. Shrinkage types of
techniques could be considered to estimate p but they usually suffer
from possible erratic behaviors due to high-correlations and depend on
several ad-hoc choices as e.g., which estimation method to choose.

On another standpoint, there are theoretical reasons in favor of a small
p, say from 1 to 2 in large VARs. As observed in Chapter [2], univariate
ARMA models derived from a VAR(p) with for instance p = 2 lags and
K = 100 series are already of maximal orders: ARMA (Kp, (K — 1)p).
Furthermore, also partial systems derived from the original VAR(p) will
be VARMA of large order. Hence, given the usual estimated lag-length
for macroeconomics application being p = 4,8 for quarterly data with
a small K, it is plausible to assume that the data generating process of
the high-dimensional VAR has a small p.

Carrying forward this reasoning, we can calculate an empirical upper-
bound on p by considering the K x K covariance matrix Q obtained
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using the residuals of a fitted diagonal VAR(p) as

[y1.e ] agjl) 04 0o .- 0 [ y1,6—j ] [ug |
Y2t 0 agJQ) 0o --- 0 Y2.t—j U2 ¢
yse| =10 0 af) - 0 | |Use—i| 4 |use],
| YKt ] L0 0 0 .- a%)K_ LYK t—j ] | UKt
(3.25)

fort =p+1,...,T. Calling & the T'x K matrix of estimated residuals,
then € := T~ (@'@). Therefore, by using a grid of possible values for
p={1,...,10} we can select the model which minimise an information
criterion (AIC,BIC) and hence get the upper bound lag-length p. Since
the original lag-length should be small, this obtained value will not be
far from the truth, if not exactly estimating the right p.

Let us consider the following information criteri

. WK
AIC:  Tlog(det(€)) + pT,
BIC: log(det($2)) + %M .

Note that essentially this route allows to bypass the dimensionality is-
sue in the equation-wise estimation, by considering the VAR coefficient
matrix to be diagonal and hence estimating an AR(j) for each row of
the VAR. This however solves half of the problem. In fact, when we
build the covariance matrix €, if the original set of variables K is larger
than the sample size T available, £ will be singular and hence we could
not calculate any information criteria since these depends on the deter-
minant of the covariance matrix which is equal to zero. In those cases
where K > T, we can adopt an easy approximation for the determinant
of €, namely using the product of its diagonal elements; we further
elaborate on this choice later in this section.

9Note that because we are estimating a diagonal VAR, AIC and BIC do not have
K? but just K.
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We build a simulation exercise to see how well this method performs
and to compare the information criteria considered. First, we simu-
late using DGP1, DGP2 and different covariance specifications as in
Section a VAR(1) in first differences for various combinations of
K = (10,20,50,100) and T' = (50,100, 200,500, 1000). We then inte-
grate the series, thus obtaining a non-stationary VAR(2). Knowing the
true value of p = 2, we apply the model selection procedure on a grid of
10 values for p. We report in Table [3.4] [3.6] the percentage out of
100 replications of AIC and BIC selecting the right p. In the Appendix,
Table [3.170], [3.17], [3.12] report the frequencies of the wrongly selected
lag-lengths, namely the percentage out of 100 replications of AIC and
BIC selecting models respectively with p = 1, p = 3 and p > 3 instead
of p=2.

Table 3.4: Selection of p, DGP1, p =0

T =50 T =100 T =200 T = 500 T = 1000
K AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC
10 71 100 92 100 96 100 97 100 96 100
20 83 99 97 100 98 100 99 100 100 100
50 99 100 98 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100

Notes: the values reported are percentage of correctly finding the true lag-length
p = 2 out of 100 replications.

Table 3.5: Selection of p, DGP2, p =0

T =150 T =100 T =200 T =500 T = 1000
K AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC
10 58 96 65 100 34 98 0 82 0 22
20 68 73 74 100 12 100 0 57 0 0
50 85 100 80 100 13 100 0 45 0 0
100 93 100 36 100 36 100 0 63 0 0

Notes: the values reported are percentage of correctly finding the true lag-length

p = 2 out of 100 replications.

124



Table 3.6: Selection of p, DGP2, p = 0.7
T =50 T =100 T =200 T = 500 T = 1000
K AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

10 81 67 84 100 65 99 11 89 0 49
20 76 31 95 100 63 100 1 92 0 24
50 91 70 99 90 95 100 1 100 0 6
100 99 80 100 100 100 100 1 100 0 1

Notes: the values reported are percentage of correctly finding the true lag-length
p = 2 out of 100 replications.

As expected, the empirical upper bound method works remarkably well
with the diagonal, sparse DGP1. However, for DGP2 with an identity
covariance matrix (p = 0), only BIC works satisfactorily and its good
performance decreases with increasing T'. Similarly, using DGP2 with a
higher correlation structure (p = 0.7), the BIC is still preferable, how-
ever remarkably decreases its performance with higher T'. Nevertheless,
looking at the frequencies of the selected p in Table [3.10} [3.11} [3.12] we
observe that when the system is large, BIC overestimates (mostly only
one lag) the true lag-length. This is reassuring as it is much preferable
to slightly overspecify the lag-length rather than underestimate it. We
can take into account the overspecification (if not too large) without
loosing too much efficiency in the testing. It turns out from Table
that the only occasion where AIC outperforms BIC is when the corre-
lation is high and the system is small with still 7 > K. This is not
surprising as the BIC in small finite samples suffers from being overly
strict.

As earlier stated, we used the product of the diagonal element of Q
as an estimate for the determinant whenever K > T. This approach
works quite well for both our considered DGPs. Therefore, we extend
this particular estimation of the determinant to the whole simulation

for DGP2 in Table 3.7 and B.13
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Table 3.7: Selection of p, DGP2, p =0
T =50 T =100 T =200 T =500 T = 1000
K AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

10 66 99 99 98 30 97 0 75 0 9
20 70 100 50 100 ) 98 0 22 0 0
50 85 100 41 100 0 100 0 3 0 0
100 93 100 36 100 0 99 0 0 0 0

Notes: the values reported are percentage of correctly finding the true lag-length
p = 2 out of 100 replications.

Again we observe a remarkable performance for BIC in small systems
and especially whenever K > T. This good behavior of BIC however
dissipates again and even earlier with increasing T'. Nevertheless, ob-
serving the wrongly selected frequencies in Table we notice, as
before, a tendency of BIC to overestimate p and never to underestimate
it. Furthermore, our simulation is a well-behaved scenario in terms of
variable scales. In practice, when facing large datasets, the potentially
huge scale differences, which cannot be mitigated by standardizations
in the non-stationary context, might cause problems of near-singularity
of . We find the determinant approximation to be able to circumvent
this problem in large systems while the standard use of the determinant
underestimates p. For these reasons we suggest the following version of
BIC:

maz(dim(£2)) A o (T)
BIC*: log H Q) | + ngK
i=1 (3.26)
_ A log(T)
=tr (log(ﬂ)) + TpK.

for dim(£2) being the row/column dimension of € and tr(log(€2)) being
the trace of the log-transformed covariance matrix €2.
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In light of Remark it is sensible to analyze whether the BIC modifi-
cation advocated by Wang, Li, and Leng (2009) in order to obtain BIC

consistency even for diverging dimensions, outperforms (3.26)) in finite
samples. We then let Cx = In(In(K')) and define

80 e (3.27)

BIC*™ : tr (log(ﬁ)) +

In Table we run again the same setting as in Table where now
BIC* is used to select the lag-length

Table 3.8: Selection of p, DGP2, p =0
T=50 T=100 T =200 T =500 1T =1000
K BIC** BIC** BIC** BIC** BIC**

10 100 97 91 48 1
20 100 100 100 38 0
a0 100 100 100 o7 0
100 100 100 100 72 0

Notes: the values reported are percentage of correctly finding the
true lag-length p = 2 out of 100 replications.

BIC** performs better than BIC* for larger systems in terms of both
T and K. Specifically, the main increased performance is observed for
T = 500, otherwise the two are equivalent. For 7' = 1000 the lag-length
is regularly overestimated for all K specifications. This is actually in
line with Wang, Li, and Leng (2009): they in fact require the speed at
which the dimension is allowed to diverge to be: limsup(K/T"") < 1
for k* < 1. Under conditions reported in Remark by Theorem 1,2
in Wang, Li, and Leng (2009) BIC* is then consistent even for diverging
dimensions.
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3.7 Empirical Application: Driving factors of Inflation

In this section we put into practice our developed framework in or-
der to analyse the main driving factors of inflation in the US. We do
this by means of creating Granger causality networks which can graph-
ically represent the direction of the predicting connections from a set
of macroeconomic variables to inflation. The interest in such an appli-
cation is twofold. First, we show our procedure can be used in levels
without needing to care about testing integration or cointegration for
the series available in the dataset. Second, our procedure can be used
as a preliminary step to identify instruments that can aid the inflation
forecast. Forecasting inflation is clearly a very crucial task in rational
economic decision-making. For instance, central banks rely on inflation
forecasts to issue monetary policy as well as to fix inflation expecta-
tions to enhance policy efficacy. I