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1
Introduction

State space models are a category of econometric models designed to analyse
time series data. The term “state space” originates from engineering and is
therefore not helpful, for economists and econometricians, to intuitively un-
derstand what these models can be used for. This chapter will provide such
understanding.

Compared to (many) other time series econometric models, state space mod-
els are particularly suited to estimate latent variables and/or parameters that
vary over time. Latent variables can play the role of the seasonality and time
trends that are often latently present in observed time series data, and are gen-
erally treated as time-varying in state space models. Parameters of interest
can be means, variances or the coefficients that establish relationships among
time series. Like latent variables, parameters are also unobserved and, as
such, need to be estimated from the data. By allowing parameters to be time-
varying, we can model sudden events such as periods of economic distress,
legislative changes regarding data collection, or the implementation of new
economic/environmental policies.

Latent variables and time-changing parameters constitute the so-called state
variables. In order to model state variables as time-varying, it is necessary
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Chapter 1. Introduction

to pre-specify what type of evolution they follow over time: do they behave
wildly or do they fluctuate calmly around a certain mean? State space models
are therefore composed of two equations: the observation/measurement equa-
tion, which defines the relationship between the observed data and the state
variables; the transition/state equation, which determines the (time) dynamics
that are followed by the state variables. Both equations are accompanied by
their own error terms.

Once the state space model is so set up, the state variables are (computation-
ally) efficiently estimated with a technique called the “Kalman filter”, after
electrical engineer Rudolf Emil Kálmán. The Kalman filter is then used in or-
der to evaluate the log-likelihood, whose maximisation yields the maximum
likelihood estimates of all other parameters that are treated as time-constant1,
i.e., the values of such parameters for which the observed data would have
most likely occurred. This efficient estimation of state space models, based
on a combination of Kalman filtering and maximum likelihood, is feasible
provided the state space model is Gaussian and linear. That is, if the error
terms are assumed to be Gaussian/Normally-distributed, and if time-varying
(co)variances and other parameters that if treated as state variables can in-
duce nonlinearities in the state space model, are actually not part of the state
variables. In case of nonlinear or non-Gaussian state space models, other tech-
niques, than Kalman filtering (and sometimes maximum likelihood), need to
be used.

Chapters 2-5 of this thesis propose either a new type of state space model or
a new type of econometric technique that deals with a specific case of non-
linear state space models. All of these chapters are accompanied by Monte
Carlo simulation studies, which illustrate the finite-sample performance of
existing econometric methods in estimating the proposed new models, or of
the proposed new methods in estimating existing models. The thesis therefore
brings a methodological contribution to the econometric literature. However,
the motivation behind the novel econometric models and techniques is always
empirical, and the application on real data plays a paramount role in all of

1It has to be noted that the Kalman filter can also estimate state variables as static if their
transition equations imply a time-constant evolution.
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these chapters. So let us now explore the chapters further, starting right from
their empirical motivation.

National statistical offices are becoming ever more interested in using differ-
ent data sources in order to provide more timely and accurate official statistics.
The Dutch level of unemployment is an example of an official statistics and
it plays a central role in this thesis. Statistics Netherlands, in particular, is
already making use of state space models in order to estimate the Dutch un-
employment, by treating the latter as a latent variable (or time-varying mean)
of survey-based time series data. However, surveys do not represent the only
data source that is informative about unemployment. Claimant counts, which
are the number of people claiming unemployment benefits, and are registered,
in the Netherlands, by the Ministry of Social Affairs and Employment, also
constitute a good time series indicator about unemployment. Combining both
data sources can already result in more accurate estimates of unemployment.
Although surveys have the advantage of providing accurate information about
unemployment, they are a rather expensive and slow way of collecting data.
The latter applies also to claimant counts. Indeed, both types of data are col-
lected on a monthly basis but are published with a delay of one month. This
means we have to wait until next month before we can get a good estimate for
the current monthly level of unemployment, based on these two data sources;
we can only try to predict its current value (in other words, “nowcast” it). And
here is where the famous Big Data come into play, since they are generally
available in real time and at high frequency, and can so be useful in achieving
more timely estimates of variables of interest. Contrary to the types of data
discussed so far, Big Data are a rather unstructured type of data source: they
are “Big” and therefore rich in information, but they also contain lots of noise
that needs to be filtered out. Google Trends, which are time series of Google
searches, are an example of Big Data. They can be informative of the unem-
ployment if one thinks of searches that can be made by unemployed people, as
“job search” or “I am looking for a job”. Clearly, there are many such Google
search queries and the resulting data set could be categorized as “Big” in-
deed. However, there are some terms, like “cv”, which in the Dutch stands for
“curriculum vitae” but also “central heating”, and which can after all be unre-
lated to the Dutch unemployment; hence the noise affecting the same data. In
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Chapter 1. Introduction

Chapter 2 we extend the above-mentioned state space model used at Statistics
Netherlands, by employing the three types of data sources just discussed, and
we investigate to which extent we can so improve the estimation and now-
cast accuracy of the Dutch unemployment, over only using survey-based data.
The noise of Google Trends is filtered out by means of high-dimensional (i.e.,
designed to deal with Big Data) econometric techniques: penalised regres-
sions and factor models. The methodological way to integrate and exploit
high-dimensional times series in state space models is new and preserves the
linearity of the model. Hence, we inspect how the Kalman filter performs in
nowcasting the state variables of our proposed high-dimensional state space
model.

Combining several time series from different data sources into a single model
requires linking them by means of parameters. We do so via correlation pa-
rameters that enter the covariance matrix of the transition equation’s error
terms. Correlations are large in magnitude if the series are strongly related and
hence all informative about the unemployment. In the framework of Chapter
2 we implicitly assumed that these correlation parameters are time-constant,
meaning that the relationships among time series are not changing over time.
Nonetheless, this assumption is rather strong and unlikely to hold in practice,
especially if the considered time span is long. For instance, the economic cri-
sis of 2008 is often found, in the econometric literature, to trigger variations in
time series’ parameters. Likewise, data collection can be subject to legislative
changes that can induce modifications in the relations among time series that
aim at measuring the same variable, but are based on different data sources.
In Chapter 3 we therefore let the correlation parameter linking survey-based
and claimant count data vary over time. We investigate two methods to model
such time changing relationship. The first one is based on cubic splines, which
is an interpolation method, and which eases the estimation of the state space
model by retaining the linearity of the latter. However, the method requires
the unrealistic assumption that the correlation is varying smoothly over time.
The second technique treats the time-varying correlation as an additional state
variable, which therefore has its own source of error and triggers the non-
linearity of the state space model. We have already learnt that in this case
we cannot use Kalman filtering and maximum likelihood to estimate the state
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space model. We therefore propose an estimation method that replaces the
latter by particle filtering and indirect inference, respectively. The particle
filter, as its name suggests, is another filtering method to estimate the state
variables. The indirect inference approach makes use of an easy-to-estimate
linear state space model, which approximates the nonlinear one, in order to
estimate the static parameters of the latter. In our case the model that makes
use of cubic splines is the approximate model, and this represents a novelty
in the literature about indirect inference. Our proposed methodology is more
complex and computationally expensive than the one purely based on cubic
splines, but it requires much less restrictive assumptions on the evolution of
the correlation over time, and subsequent more realistic estimates of the latter.
The chapter therefore contributes to the methodological literature on the esti-
mation of nonlinear state space models. We compare the performance of the
two methods in estimating the time-varying correlation. We also investigate
whether modelling the correlation as time-varying, instead of time constant,
allows us to achieve even more accurate and realistic estimates of Dutch un-
employment.

But why did we not employ already existing econometric methods designed
to estimate nonlinear state space models, such as importance sampling or the
Extended Kalman filter? Because we did not manage to make them work.
The type of nonlinearity we dealt with in Chapter 3, is particularly nasty since
it is present in the covariance matrix of the transition equation’s error terms.
Also the Extended Kalman filter and importance sampling use approximate
linear state space models in order to estimate the nonlinear one, but they are
more suited to deal with nonlinearities that are either located in the observa-
tion equation of the state space model, or that do not involve the error terms
of the transition equation. We therefore did try to shift the nonlinear part of
our model to a location that would facilitate the implementation of the two
above-mentioned existing methods, but without any success. These attempts
are anyway documented in Chapter 4. Moreover, cubic splines do not rep-
resent the only existing method to model parameters as time-varying, while
preserving the linearity of the state space models. The score-driven approach
can alternatively be employed to do so. The idea behind this method is to let
the time-varying correlation depend only on its past values and past values of
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Chapter 1. Introduction

the score of the log-likelihood. The latter measures the sensitivity of the likeli-
hood with respect to changes in the correlation, and is therefore informative to
predict future values of the correlation parameter. In Chapter 4 we also show
how to implement the score-driven technique, in order to estimate the time-
varying correlation. Although the implementation of this approach is feasible,
the results are not satisfactory: the method is indeed barely capable of detect-
ing time-changes in the correlation parameter and therefore does not represent
a good candidate to model time-varying state correlations in state space mod-
els. Hence, rather than a publishable paper, Chapter 4 collects some notes
that have been taken by the author while exploring unsuccessful approaches
to answer the research questions of Chapter 3. As such, it is an illustration of
the research process in taking several dead ends before ending up in the right
track.

Chapters 2-4 are all focused on shaping new econometric models and meth-
ods that can be mainly (but not only) employed for the production of more
accurate (and timely) official statistics. Chapter 5 instead takes off from this
subject and lands on another topical and growing field: environmental studies.
Climate change is indeed increasingly catching the attention of some econo-
metricians, who are employing econometric techniques in order to understand
and model it, and eventually contribute to the implementation and evaluation
of policies aimed at combating it. Along these lines, in Chapter 5 we use a
state space approach in order to model and forecast time series of Dutch re-
gional concentrations of nitrogen dioxide (NO2), which is an air pollutant. It
is primarily emitted during anthropogenic combustion processes, of which on
road vehicles represent the main source. NO2 is responsible for the creation
of secondary aerosols and pollutants and hence indirectly affects the climate.
Additionally, it is directly detrimental for ecosystems and human health, mak-
ing it an important pollutant to analyse. Environmental variables are generally
characterised by spatial dependence. That is, regional air pollution can depend
on and affect the pollution of neighbouring regions, because of its transporta-
tion by the wind. Our proposed state space model has therefore the novel fea-
ture of taking such spatial interactions into account. In building this model,
we also control for meteorological factors that may affect the concentrations
of the pollutant under study. Moreover, we let the effect of traffic intensity
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on such concentrations vary over time, in order to capture potential changes
on the efficiency of vehicles that might in turn reduce the contribution of the
latter to the quantity of air pollution, over time. The state space structure of
the model further allows us to innovatively capture time-varying border ef-
fects, which represent differences between peripheral and inland regions, via
state variables. Finally, we use this model to forecast NO2 concentrations
for different scenarios of traffic intensity, showing its potential in evaluating
pollution-reduction policies. Our proposed spatial state space model is linear
and Gaussian, hence we evaluate the performance of the usual Kalman fil-
ter and maximum likelihood methods in estimating its state variables (which
include time-varying parameters) and static parameters, respectively.

Since state space models are designed to fit time series data, the number of
time observations plays a crucial role. Throughout the thesis, we refer to this
number as the “sample size”. It has to be large enough in order to allow us
to estimate state space models (and establish the properties of the estimation
methods employed), and of course the larger it is, the better we can do so.

Recall that in Chapters 2-4 we make use of different data sources to estimate
the same latent variable of interest. Moreover, in Chapter 5 we add a cross-
sectional dimension to the model, represented by the Dutch regions, which
entails the joint modelling of the time series of NO2 concentrations for every
region. Therefore, all state space models employed in this thesis are multi-
variate, as they fit several time series at the same time. However, the number
of these series does not have to be large enough to guarantee a feasible es-
timation of the model, contrary to the “sample size”. This paragraph should
provide the last piece of the puzzle in order to understand the thesis’ title, and
fully prepare us to dive into the chapters in more detail.
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Chapter 2. A dynamic factor model approach to incorporate Big Data in
state space models for official statistics

Abstract
In this chapter we consider estimation of unobserved components in state
space models using a dynamic factor approach to incorporate auxiliary in-
formation from high-dimensional data sources. We apply the methodology to
unemployment estimation as done by Statistics Netherlands, who use a multi-
variate state space model to produce monthly figures for unemployment using
series observed with the labour force survey (LFS). We extend the model by
including auxiliary series of Google Trends about job-search and economic
uncertainty, and claimant counts, partially observed at higher frequencies. Our
factor model allows for nowcasting the variable of interest, providing reliable
unemployment estimates in real-time before LFS data become available.
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2.1 Introduction

There is an increasing interest among national statistical institutes (NSIs) to
use data that are generated as a by-product of processes not directly related
to statistical production purposes in the production of official statistics. Such
data sources are sometimes referred to as “Big Data”; examples are time and
location of network activity available from mobile phone companies, social
media messages from Twitter and Facebook, sensor data, and internet search
behaviour from Google Trends. A common problem with this type of data
sources is that they are likely selective with respect to an intended target popu-
lation. If such data sources are directly used to produce statistical information,
then the potential selection bias of these data sources must be accounted for,
which is often a hard task since Big Data sources are often noisy and (although
they contain lots of information) they generally contain no auxiliary variables,
which are required for bias correction. These problems can be circumvented
by using them as covariates in model-based inference procedures to make pre-
cise detailed and timely survey estimates, since they come at a high frequency
and are therefore very timely. These techniques are known in the literature as
small area estimation and nowcasting (Rao & Molina, 2015).

Official statistics are generally based on repeated samples. Therefore multi-
variate time series models are potentially fruitful to improve the precision and
timeliness of domain estimates with survey data obtained in preceding refer-
ence periods and other domains. The predictive power of these models can
be further improved by incorporating auxiliary series that are related with the
target series observed with a repeated survey.

In this chapter we investigate how auxiliary series derived from big data
sources and registers can be combined with time series observed with
repeated samples in high dimensional multivariate structural time series
(STS) models. We consider Google Trends and claimant counts as auxiliary
series for monthly unemployment estimates observed with a continuously
conducted sample survey. Big Data sources have the problem that they are
noisy and potentially (partly) irrelevant, and, as such, care must be taken
when using them for the production of official statistics. We show that, by
using a dynamic factor model in state space form, relevant information can be
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extracted from such auxiliary high-dimensional data sources, while guarding
against the inclusion of irrelevant data.

Statistical information about a country’s labour force is generally obtained
from labour force surveys, since the required information is not available from
registrations or other administrative data sources. The Dutch labour force
survey (LFS) is based on a rotating panel design, where monthly household
samples are observed five times at quarterly intervals. These figures are, how-
ever, considered too volatile to produce sufficiently reliable monthly estimates
for the employed and unemployed labour force at monthly frequency. For
this reason Statistics Netherlands estimates monthly unemployment figures,
together with its change, as unobserved components in a state space model
where the observed series come from the monthly Dutch LFS, using a model
originally proposed by Pfeffermann (1991). This method improves the pre-
cision of the monthly estimates for unemployment with sample information
from previous periods, and can therefore be seen as a form of small area es-
timation. In addition it accounts for rotation group bias (Bailar, 1975), serial
correlation due to partial sample overlap, and discontinuities due to several
major survey redesigns (van den Brakel & Krieg, 2015).

Time series estimates for the unemployment can be further improved by in-
cluding related auxiliary series. The purpose is twofold. First, auxiliary se-
ries can further improve the precision of the time series predictions. In this
regard, Harvey and Chung (2000) propose a bivariate state space model to
combine a univariate series of the monthly unemployed labour force derived
from the UK LFS, with the univariate auxiliary series of claimant counts. The
latter series represents the number of people claiming unemployment bene-
fits. It is an administrative source, which is not available for every country,
and, as for the Netherlands, it can be affected by the same publication delay
of the labour force series. Second, auxiliary series derived from Big Data
sources like Google Trends are generally available at a higher frequency than
the monthly series of the LFS. Combining both series in a time series model
allows us to make early predictions for the survey outcomes in real-time at the
moment that the outcomes for the auxiliary series are available, but the survey
data not yet, which is in the literature known as nowcasting, in other words,
“forecasting the present”.

12



In this chapter, we extend the state space model used by Statistics Nether-
lands in order to combine the survey data with the claimant counts and the
high-dimensional auxiliary series of Google Trends about job-search and eco-
nomic uncertainty, as they could yield more information than a univariate one,
which is not affected by publication lags and that can be observed at a higher
frequency than the labour force series.

This chapter contributes to the existing literature by proposing a method to
include a high-dimensional auxiliary series in a state space model in order
to improve the (real-time) estimation of unobserved components. The model
accounts for the rotating panel design underlying the sample survey series,
combines series observed at different frequencies, and deals with missing ob-
servations at the end of the sample due to publication delays. It handles the
curse of dimensionality that arises from including a large number of series
related to the unobserved components, by extracting their common factors.

Besides claimant counts, the majority of the information related to unem-
ployment is nowadays available on the internet; from job advertisements to
resumé’s templates and websites of recruitment agencies. We therefore fol-
low the idea originating in Choi and Varian (2009), Askitas and Zimmermann
(2009) and Suhoy (2009) of using terms related to job and economic uncer-
tainty, searched on Google in the Netherlands. Since 2004, these time se-
ries are freely downloadable in real-time from the Google Trends tool, at a
monthly or higher frequency. As from the onset it is unclear which search
terms are relevant, and if so, to what extent, care must be taken not to model
spurious relationships with regards to the labour force series of interest, which
could have a detrimental effect on the estimation of unemployment, such as
happened for the widely publicized case of Google Flu Trends (Lazer et al.,
2014).

Our method allows us to exploit the high-frequency and/or real-time infor-
mation of the auxiliary series, and to use it in order to nowcast the unem-
ployment, before the publication of labour force estimates. As the number of
search terms related to unemployment can easily become large, we employ the
two-step estimator of Doz et al. (2011), which combines factor models with
the Kalman filter, to deal both with the high-dimensionality of the auxiliary
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series, and with the estimation of the state space model. The above-mentioned
estimator is generally used to improve the nowcast of variables that are treated
as observed, such as GDP (see Giannone et al. (2008) and Hindrayanto et al.
(2016) for applications to the US and the euro area). D’Amuri and Marcucci
(2017), Naccarato et al. (2018), and Maas (2019) are all recent studies that use
Google Trends to nowcast and forecast the unemployment, by treating it as a
known dependent variable in time series models where the Google searches
are part of the explanatory variables. Nonetheless, unemployment is not actu-
ally observed, and to the best of our knowledge, this chapter is the first one to
use Google Trends in order to nowcast the unemployment in a model setting
that treats it variable as unobserved.

We evaluate the performance of our proposed method via Monte Carlo simula-
tions and find that our method can yield large improvements in terms of Mean
Squared Forecast Error (MSFE) of the unobserved components’ nowcasts.
We then assess whether the accuracy of the unemployment’s estimation and
nowcast improves with our high-dimensional state space model, respectively
from in-sample and out-of-sample results. The latter consists of a recursive
nowcast. We do not venture into forecasting exercises as Google Trends are
considered to be more helpful in predicting the present rather than the fu-
ture of economic activities (Choi & Varian, 2012). We conclude that Google
Trends can significantly improve the fit of the model, although the magnitude
of these improvements is sensitive to aspects of the data and the model specifi-
cation, such as the frequency of observation of the Google Trends, the number
of Google Trends’ factors included in the model, and the level of estimation
accuracy provided by the first step of the two-step estimation procedure.

The remainder of the chapter is organized as follows. Section 2.2 discusses
the data used in the empirical analysis. Section 2.3.1 describes the state
space model that is currently used by Statistics Netherlands to estimate unem-
ployment. Section 2.3.2 focuses on our proposed method to include a high-
dimensional auxiliary series in the aforementioned model. Sections 2.4 and
2.5 report, respectively, the simulation and empirical results for our method.
Section 2.6 concludes.
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2.2 Data
The Dutch LFS is conducted as follows. Each month a stratified two-stage
cluster design of addresses is selected. Strata are formed by geographical re-
gions. Municipalities are considered as primary sampling units and addresses
as secondary sampling units. All households residing at an address are in-
cluded in the sample with a maximum of three (in the Netherlands there is
generally one household per address). All household members with age of 16
or older are interviewed. Since October 1999, the LFS has been conducted
as a rotating panel design. Each month a new sample, drawn according to
the above-mentioned design, enters the panel and is interviewed five times at
quarterly intervals. The sample that is interviewed for the jth time is called
the jth wave of the panel, j = 1, . . . , 5. After the fifth interview, the sample of
households leaves the panel. This rotation design implies that in each month
five independent samples are observed. The generalized regression (GREG,
i.e., design-based) estimator (Särndal et al., 1992) is used to obtain five in-
dependent direct estimates for the unemployed labour force, which is defined
as a population total. This generates over time a five-dimensional time series
of the unemployed labour force. Table 2.1 provides a visualization for the
rotation panel design of the Dutch LFS.

quarter

month

A B C D E F G H I J K L M N O P Q R } wave 1

A B C D E F G H I J K L M N O } wave 2

A B C D E F G H I J K L } wave 3

A B C D E F G H I } wave 4

A B C D E F } wave 5

Table 2.1: Visualization for the rotation panel design of the Dutch LFS. Each capital
letter represents a sample. Every month a new sample enters the panel and is inter-
viewed five times at a quarterly frequency. After the fifth interview, the sample of
households leaves the panel.

Rotating panel designs generally suffer from Rotation Group Bias (RGB),
which refers to the phenomenon that there are systematic differences among
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the observations in the subsequent waves (Bailar, 1975). In the Dutch LFS the
estimates for the unemployment based on the first wave are indeed systemati-
cally larger compared to the estimates based on the follow-up waves (van den
Brakel & Krieg, 2015). This is the net results of different factors:

• Selective nonresponse among the subsequent waves, i.e., panel attrition.

• Systematic differences due to different data collection models that are
applied to the waves. Until 2010 data collection in the first wave was
based on face-to-face interviewing. Between 2010 and 2012 data col-
lection in the first wave was based on telephone interviewing for house-
holds for which a telephone number of a landline telephone connection
was available and face-to-face interviewing for the remaining house-
holds. After 2012 data collection in the first wave was based on a se-
quential mixed mode design that starts with Web interviewing with a
follow up using telephone interviewing and face-to-face interviewing.
Data collection in the follow-up waves is based on telephone interview-
ing only.

• Differences in wording and questionnaire design used in the waves. In
the first wave a block of questions is used to verify the status of the re-
spondent in the labour force. In the follow-up waves the questionnaire
focuses on differences that occurred compared to the previous inter-
view, instead of repeating the battery of questions.

• Panel conditioning effects, i.e., systematic changes in the behaviour of
the respondents. For example, questions about activities to find a job
in the first wave might increase the search activities of the unemployed
respondents in the panel. Respondents might also systematically adjust
their answers in the follow-up waves, since they learn how to keep the
routing through the questionnaire as short as possible.

The Dutch labour force is subject to a one-month publication delay, which
means that the sample estimates for month t become available in month
t + 1. In order to have more timely and precise estimates of unemployment,
we extend the model by including, respectively, auxiliary series of
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weekly/monthly Google Trends about job-search and economic uncertainty,
and monthly claimant counts, in the Netherlands.

Claimant counts are the number of registered people that receive unemploy-
ment benefits. The claimant counts for month t become available in month
t+ 1.

Google Trends are indexes of search activity. Each index measures the frac-
tion of queries that include the term in question in the chosen geography at
a particular time, relative to the total number of queries at that time. The
maximum value of the index is set to be 100. According to the length of
the selected period, the data can be downloaded at either monthly, weekly, or
higher frequencies. The series are standardized according to the chosen period
and their values can therefore vary according to the period’s length (Stephens-
Davidowitz & Varian, 2015). We use weekly and monthly Google Trends for
each search term. Google Trends are available in real-time (i.e., they are avail-
able in period t for period t, independently on whether the period is a week or
a month).

The list of Google search terms used in the empirical analysis of this chap-
ter, together with their translation/explanation, is reported in Tables 2.B.1 and
2.B.2. A first set of terms (which is the one used in a previous version of
this chapter) was chosen by thinking of queries that could be made by un-
employed people in the Netherlands. The rest of the terms have been chosen
by using the Google Correlate tool and selecting the queries that are highly
correlated to each term of the initial set, and that have a meaningful relation
to unemployment and, more generally, economic uncertainty1.

Figure 2.1 displays the time series of the five waves of the unemployed
labour force, together with the claimant counts and an example of a
job-related Google query. They show a similar behaviour over time, which
already shows the potential of using this auxiliary information in estimating
unemployment.

1Later in the chapter we mention that we need non-stationary (e.g., persistent) Google Trends
for our model. Correlations between non-stationary series can be spurious, and in this
respect Google Correlate is not an ideal tool in order to choose search terms. In section 2.5
we explain how to circumvent this problem.
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Figure 2.1: Monthly time series of the five waves of the Dutch unemployed labour
force (ykt ), the claimant counts, and the Google search term “werkloos”, which means
“unemployed”, in the Netherlands. The period starts in January 2004 and ends in May
2019.

2.3 The Dutch labour force model and extensions

We first describe the model in use at Statistics Netherlands in Section 2.3.1.
Next we explain how high-dimensional auxiliary series can be added to this
model in Section 2.3.2.

2.3.1 The Dutch labour force model

The monthly sample size2 of the Dutch LFS is too small to produce suffi-
ciently precise estimates directly. In the past, rolling quarterly figures were
published at a monthly frequency. This has the obvious drawback that pub-
lished figures are unnecessarily delayed since the reference period is the mid
month of the rolling quarter. Also, real monthly seasonal effects are smoothed
over the rolling quarter. Another problem that arose after the change from

2This sample size corresponds to the number of people that have been surveyed in a given
month, and that is used for a first estimation of Dutch monthly unemployment. However,
it is different from T which, as mentioned in the Introduction, is the sample size that we
need to be large enough in order to accurately re-estimate Dutch unemployment with a state
space model.
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a cross-sectional survey to a rotating panel design in 2000, was that the ef-
fects of RGB became visible in the labour force figures. Both problems are
solved with a structural time series (STS) model, that has been used by Statis-
tics Netherlands, since 2010, for the production of monthly statistics about
the Dutch labour force (van den Brakel & Krieg, 2015). In a STS model, an
observed series is decomposed into several unobserved components, such as a
trend, a seasonal component, one or more cycles with a period longer than one
year, regression components, and a white noise component. After writing an
STS model in the state space form, the Kalman filter can be applied in order
to estimate the unobserved components. See Durbin and Koopman (2012) for
an introduction to STS modelling.

Let ykj,t denote the GREG estimate for the unemployment in month t based on
the sample observed in wave j. Now ykt = (yk1,t, . . . , y

k
5,t) denotes the vector

with the five GREG estimates for unemployment in month t. The ykj,t are
treated as five distinct time series in a five dimensional time series model in
order to account for the rotation group bias. The superscript k > 1 indicates
that the vector is observed at the low frequency. We need this notation (see
e.g. Bańbura et al., 2013) to distinguish between series observed at different
frequencies, because later on we will make use of Google Trends which are
available on a weekly basis. If ykt is observed at the monthly frequency, as in
the case of the unemployed labour force, then k = 4, 5 if the high frequency
series is observed at the weekly frequency, since a month can have either 4 or
5 weeks.

The unemployment is estimated, with the Kalman filter, as a state variable in
a state space model where ykt represents the observed series. The measure-
ment equation takes the form (Pfeffermann, 1991; van den Brakel & Krieg,
2009):

ykt = ı5θ
k,y
t + λkt + ekt . (2.3.1)

where ı5 is a 5-dimensional vector of ones, and θk,yt , i.e. the unemployment, is
the common population parameter among the five-dimensional waves of the
unemployed labour force. It is composed of the level of a trend (Lt) and a
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seasonal component (St):

θk,yt = Lk,yt + Sk,yt .

The transition equations for the level (Lt) and the slope (Rt) of the trend are,
respectively:

Lk,yt = Lk,yt−1 +Rk,yt−1,

Rk,yt = Rk,yt−1 + ηk,yR,t, ηk,yR,t ∼ N
(
0, σ2

R,y

)
,

which characterize a smooth trend model. This implies that the level of the
trend is integrated of order 2, denoted as I(2), which means that the series
of the level is stationary (i.e., mean-reverting) after taking two times succes-
sive differences. The slope of the trend, Rk,yt , is a first-order integrated series,
denoted as I(1). This state variable represents the change in the level of the
trend, Lk,yt , and not in the unemployment, θk,yt , directly. Nevertheless, since
the I(2) property of the unemployment is driven by its trend, and not by its
seasonal component, the change in θk,yt will also mainly be captured by Rk,yt ,
and we can therefore consider the latter as a proxy for the change in unem-
ployment. A previous version of the model contained an innovation term for
the population parameter θk,yt . However, the maximum likelihood estimate
for its variance tended to be zero and Bollineni-Balabay et al. (2017) showed
via simulations that it is better to not include this term in the model.

The trigonometric stochastic seasonal component allows for the seasonality
to vary over time, and it is modeled as in Durbin and Koopman (2012, Chap-
ter 3):

Sk,yt =
6∑
l=1

Sk,yl,t ,(
Sk,yl,t
S∗k,yl,t

)
=

[
cos(hl) sin(hl)
− sin(hl) cos(hl)

](
Sk,yl,t−1

S∗k,yl,t−1

)
+

(
ηk,yω,l,t
η∗k,yω,l,t

)
,(

ηk,yω,l,t
η∗k,yω,l,t

)
∼ N

(
0, σ2

ω,yI2

)
,
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where hl = πl
6 , for l = 1, . . . , 6, and I2 is a 2× 2 identity matrix.

The second component in equation (2.3.1), λkt = (λk1,t, . . . , λ
k
5,t)

t, accounts
for the RGB. Based on the factors that contribute to the RGB, as mentioned
in Section 2.2, the response observed in the first wave is assumed to be the
most reliable one and not to be affected by the RGB (van den Brakel & Krieg,
2009). Therefore it is assumed that λk1,t = 0. The remaining four components
in λkt are random walks that capture time-dependent differences between the
follow-up waves with respect to the first wave3

λk1,t = 0,

λkj,t = λkj,t−1 + ηkλ,j,t, ηkλ,j,t ∼ N
(
0, σ2

λ

)
, j = 2, . . . , 5.

As a result the Kalman filter estimates for θk,yt in (2.3.1) are benchmarked to
the level of the GREG series of the first wave.

The third component in equation (2.3.1), ekt = (ek1,t, . . . , e
k
5,t)

t, models the
autocorrelation among the survey errors (ekj,t) in the follow-up waves due to
the sample overlap of the rotating panel design. In order to account for this
autocorrelation, the survey errors are treated as state variables, which follow
the transition equation below.

ekj,t = cj,tẽ
k
j,t, cj,t =

√
v̂ar
(
ykj,t

)
, j = 1, . . . , 5,

ẽk1,t ∼ N
(
0, σ2

ν1

)
,

ẽkj,t = δẽkj−1,t−3 + νkj,t, νkj,t ∼ N
(

0, σ2
νj

)
, j = 2, . . . , 5, |δ| < 1.

var
(
ẽkj,t

)
= σ2

νj/
(
1− δ2

)
, j = 2, . . . , 5,

(2.3.2)

3The choice (made by Statistics Netherlands) to model the state variables for the RGB as
random walks was arbitrary. In principle it should be possible to first model the contrasts
as AR(1) processes and then test whether the autoregressive coefficients are equal to 1, for
instance with a likelihood ratio test.
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with v̂ar
(
ykj,t

)
being the design variance of the GREG estimates ykj,t. The

scaled sampling errors, ẽkj,t, for j = 1, . . . , 5, account for the serial autocorre-
lation induced by the sampling overlap of the rotating panel. Samples in the
first wave are observed for the first time and therefore its survey errors are not
autocorrelated with survey errors of previous periods. The survey errors of
the second to fifth wave are correlated with the survey errors of the previous
wave three months before. Based on the approach proposed by Pfeffermann et
al. (1998), van den Brakel and Krieg (2009) motivate that these survey errors
should be modelled as an AR(3) process, without including the first two lags.
Moreover, the survey errors of all waves are assumed to be proportional to the
standard error of the GREG estimates. In this way the model accounts for het-
erogeneity in the variances of the survey errors, which are caused by changing
sample sizes over time. As a result the maximum likelihood estimates of the
variances of the scaled sampling errors, σ2

νj , will have values approximately
equal to one.

The structural time series model (2.3.1) as well as the models proposed in the
following sections are fitted with the Kalman filter after putting the model in
state space form. We use an exact initialization for the initial values of the
state variables of the sampling error, and a diffuse initialization for the other
state variables. It is common to call hyperparameters the parameters that de-
fine the stochastic properties of the measurement equation and the transition
equation of the state space model. These are the parameters that are assumed
to be known in the Kalman filter (Durbin & Koopman, 2012, Chapter 2). In
our case the hyperparameters are δ and all the parameters that enter the co-
variance matrices of the innovations. These hyperparameters are estimated by
maximum likelihood using the Broyden-Fletcher-Goldfarh-Shanno (BFGS)
optimization algorithm. The additional uncertainty of using maximum like-
lihood estimates for the hyperparameters in the Kalman filter is ignored in
the standard errors of the filtered state variables. Since the observed time se-
ries contains 185 monthly periods, this additional uncertainty can be ignored.
See also Bollineni-Balabay et al. (2017) for details. Both the simulation and
estimation results in Sections 2.4 and 2.5 are obtained using the statistical
software R.
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Assuming normality of the innovations is common in state space models be-
cause the hyperparameters of the model are estimated by maximizing a Gaus-
sian log-likelihood which is evaluated by the Kalman filter. Moreover, under
normality, the Kalman filter yields the minimum variance unbiased estimator
of the state variables. Nonetheless, as long as the state space model is linear,
if the true distribution of the error terms is non-Gaussian, then the Kalman fil-
ter still provides the minimum variance linear unbiased estimator of the state
variables (Durbin & Koopman, 2012, Chapter 4). In this case we can further
rely on quasi maximum likelihood (QML) theory in order to perform infer-
ence based on the QML estimates of the hyperparameters. This means that the
hyperparameters can still be consistently estimated by maximizing the Gaus-
sian log-likelihood (or in general, as Gourieroux et al. (1984) argue, a density
function that belongs to the family of linear exponential distributions), but we
shall use, if needed, the appropriate expression for the covariance matrix of
the QML estimators, which should capture the additional uncertainty caused
by the model’s misspecification (Hamilton, 1994, Chapter 13). In Appendix
2.C we conduct a Monte Carlo simulations study and find that deviations from
normality are not of concern for the performance our method.

This time series model addresses and solves the mentioned problems with
small sample sizes and rotation group bias. Every month a filtered estimate for
the trend (Lk,yt ) and the population parameter, which is defined as the filtered
trend plus the filtered seasonal effect (θk,yt = Lk,yt + Sk,yt ), are published in
month t + 1. The time series model uses sample information from previous
months in order to obtain more stable estimates. The estimates account for
RGB by benchmarking the estimates for Lk,yt and θk,yt to the level of the first
wave, which makes them comparable with the outcomes obtained under the
cross-sectional design before 2000.

We now introduce some further notation to distinguish between in-sample es-
timates and out-of-sample forecasts. In the case of in-sample estimates, θ̂k,yt|Ωt
denotes the filtered estimate of the population parameter θk,yt , assuming that
all data for time t is released and available at time t. We therefore condition
on the information set Ωt which does not contain any missing data at time t.
In the case of out-of-sample forecasts, we condition on the data set Ω−t that is
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actually available in real time at time t. For instance, ykt only gets published
during moth t+ 1, and is therefore not available yet at time t, and not part of
Ω−t . Thus θ̂k,y

t|Ω−t
is the filtered forecast for θk,yt , based on the information that

is available at time t. Under model (2.3.1), which does not contain auxiliary
information other than the labour force series, θ̂k,y

t|Ω−t
is in fact the one-step-

ahead prediction θ̂k,yt|Ωt−1
, since ykt is not available yet in month t, but ykt−1 is;

therefore, Ω−t = Ωt−1 = {ykt−1,y
k
t−2, . . .}.

2.3.2 Including high-dimensional auxiliary series

To improve precision and timeliness of the monthly unemployment
figures, we extend the labour force model by including auxiliary series of
weekly/monthly Google Trends about job-search and economic uncertainty,
and monthly claimant counts, in the Netherlands. Since the claimant counts
for month t become available in month t + 1, it is anticipated that this
auxiliary series is particularly useful to further improve the precision of the
trend and population parameter estimates after finalizing the data collection
for reference month t. The Google Trends already come at a higher frequency
during the reference month t. It is therefore anticipated that these auxiliary
series can be used to make first provisional estimates for the trend and the
population parameter of the LFS during month t, when the sample estimates
ykt are not available, but the Google Trends become available on a weekly
basis.

Weekly and monthly Google Trends are throughout the chapter denoted by
xGTt and xk,GTt , respectively. We denote the dimension of the vector xGTt
by n, which can be large. In addition, we can expect the Google Trends to
be very noisy, such that the signal about unemployment contained in them is
weak. We therefore need to address the high-dimensionality of these auxiliary
series, in order to make the dimension of our state space model manageable
for estimation, and extract the relevant information from these series. For
this purpose we employ a factor model which achieves both by retaining the
information of these time series in a few common factors.
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Moreover, when dealing with mixed frequency variables and with publication
delays, we can encounter “jagged edge” datasets, which have missing values
at the end of the sample period. The Kalman filter computes a prediction for
the unobserved components in the presence of missing observations for the
respective observable variables.

The two-step estimator by Doz et al. (2011) combines factor models with
the Kalman filter and hence addresses both of these issues. In the remainder
of this section we explain how this estimator can be employed to nowcast
the lower-frequency unobserved components of the labour force model using
information from higher-frequency or real-time auxiliary series.

We consider the following state space representation of the dynamic factor
model for the Google Trends data, with respective measurement and transition
equations, as we would like to link it to the state space model used to estimate
the unemployment (2.3.1):

xGTt = Λft + εt, εt ∼ N(0,Ψ)

ft = ft−1 + ut, ut ∼ N(0, Ir),
(2.3.3)

where xGTt is a n× 1 vector of observed series, ft is a r × 1 vector of latent
factors with r � n, Λ is a n × r matrix of factor loadings, εt is the n × 1
vector of idiosyncratic components and Ψ its n × n covariance matrix; ut
is the r × 1 vector of factors’ innovations and Ir is a r × r identity matrix
(which follows from the identification conditions used in principal component
analysis since the factors are only identified up to rotation). Notice that the
dynamic equation for ft implies that we are making the assumption that xGTt
is I(1) of dimension n, and ft is I(1) of dimension r. Later in this section the
need for these assumptions will become clearer; the intuition behind them is
that the factors and the change in unemployment, Rk,yt , must be of the same
order of integration.

Among others, Bai (2004) proves the consistency of the estimator of I(1) fac-
tors by principal component analysis (PCA), under the assumptions of limited
time and cross-sectional dependence and stationarity of the idiosyncratic com-
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ponents, εt, and non-trivial contributions of the factors to the variance of xt.4

We assume no cointegrating relationships among the factors. We further as-
sume normality of the innovations for the same reasons outlined in Section
2.3.1.

The consistency of the two-step estimator has been originally proven in the
stationary framework by Doz et al. (2011), and extended to the nonstationary
case by Barigozzi and Luciani (2017).

In the first step, the factors (ft), the factor loadings (Λ), and the covariance
matrix of the idiosyncratic components (Ψ ) in model (2.3.3) are estimated by
PCA as in Bai (2004). The matrices Λ and Ψ are then replaced, in model
(2.3.3), by their estimates Λ̂ and Ψ̂ = diag

(
ψ̂11, . . . , ψ̂nn

)
obtained in this

first step. These estimates are kept fixed in the second step, because their
high-dimensionality and associated curse of dimensionality complicates re-
estimation by maximum likelihood. Moreover, restricting the covariance ma-
trix of the idiosyncratic components Ψ to being diagonal is standard in the
literature5.

In order to make use of the auxiliary series to nowcast the unemployment,
we stack together the measurement equations for ykt and xk,GTt , respectively
(2.3.1) and the first equation of (2.3.3) withΛ andΨ replaced, respectively, by
Λ̂ and Ψ̂ , and express them at the lowest frequency (in our case the monthly
observation’s frequency of ykt ). The transition equations for the RGB and
survey error component in combination with the rotation scheme applied in
the Dutch LFS hamper a formulation of the model on the high frequency.
This means that xGTt needs to be first temporally aggregated from the high to
the low frequency (either before or after the first step which estimates Λ and
Ψ ). Since xGTt are the I(1) weekly Google Trends, which are flow variables
as they measure the proportion of queries made during each week, they are

4For the exact formulation we refer to Assumptions A-D in Bai (2004).
5The specification of the dynamic factor factor model with spherical idiosyncratic compo-

nents is often called the “approximate” dynamic factor model. Doz et al. (2011) and
Barigozzi and Luciani (2017) mention that misspecifications of this model arising from
time or cross-sectional dependence of the idiosyncratic components, do not affect the con-
sistency of the two-step estimator of the unobserved common factors, if n is large.
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aggregated according to the following rule (Bańbura et al., 2013):

xk,GTj,t =

j∑
i=1

xGTt−k+i, j = 1, . . . , k, t = k, 2k, . . . , k = {4, 5} .

(2.3.4)
The aggregatedxk,GTj,t are then rescaled (i.e., divided by their maximum value)
in order to be bounded again between 0 and 100. The subscript j allows for
real-time updating of the aggregated Google Trends in week j when new data
become available. As such, this index indicates that we aggregate weeks 1 up
to j. When j = k we are at the end of the month, and we simply write xk,GTt

to indicate the end-of-month aggregate value.

In order to get the final model, we also include a measurement equation for
the univariate auxiliary series of the claimant counts, assuming that its state
vector, θk,CCt , has the same composition as our population parameter θk,yt (i.e.,
composed of a smooth trend and a seasonal component): ykt

xk,CCt

xk,GTt

 =

 ı5θ
k,y
t

θk,CCt

Λ̂fkt

+

 λkt
0
0

+

 ekt
εk,CCt

εk,GTt

 ,

(
εk,CCt

εk,GTt

)
∼ N

(
0,

[
σ2
ε,CC 0

0 Ψ̂

])
,

(2.3.5)

(
θk,yt
θk,CCt

)
=

(
Lk,yt
Lk,CCt

)
+

(
Sk,yt
Sk,CCt

)
, (2.3.6)

(
Lk,yt
Lk,CCt

)
=

(
Lk,yt−1

Lk,CCt−1

)
+

(
Rk,yt−1

Rk,CCt−1

)
, (2.3.7)

 Rk,yt
Rk,CCt

fkt

 =

 Rk,yt−1

Rk,CCt−1

fkt−1

+

 ηk,yR,t
ηk,CCR,t

ukt

 , (2.3.8)
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cov

 ηk,yR,t
ηk,CCR,t

ukt

 =

=


σ2
R,y ρCCσR,yσR,CC ρ1,GTσR,y . . . ρr,GTσR,y

ρCCσR,yσR,CC σ2
R,CC 0 . . . 0

ρ1,GTσR,y 0 1 . . . 0
...

...
...

. . .
...

ρr,GTσR,y 0 0 . . . 1

 .
(2.3.9)

The last equality allows the innovations of the trends’ slopes,Rk,yt andRk,CCt ,
and of the factors of the Google Trends, to be correlated. Harvey and Chung
(2000) show that there can be potential gains in precision, in terms of Mean
Squared Error (MSE) of the Kalman filter estimators of θk,yt , Lk,yt , and Rk,yt ,
if the correlation parameters |ρ| are large. Specifically, if |ρCC | = 1, then
ykt and xk,CCt have a common slope. This means that ykt and xk,CCt are both
I(2), but there is a linear combination of their first differences which is sta-
tionary. Likewise, if |ρm,GT | = 1 then the mth factor of the Google Trends
and the change in unemployment, Rk,yt , are cointegrated (i.e., they have the
same source of error). This is why we need the elements of the vector in
(2.3.8) to have the same order of integration, and it is via these correlation
parameters that we exploit the auxiliary information.

The second step of the estimation procedure consists of estimating the remain-
ing hyperparameters of the whole state space model (equations (2.3.5)-(2.3.9))
by maximum likelihood, and applying the Kalman filter to re-estimate fkt and
to nowcast the variables of interest, θk,yt , Lk,yt , andRk,yt , providing unemploy-
ment estimates in real-time before LFS data become available: θ̂k,y

t|Ω−t
, L̂k,y

t|Ω−t
,

and R̂k,y
t|Ω−t

are the filtered nowcasts of, respectively, θk,yt , Lk,yt , andRk,yt based

on the information set Ω−t available in month t. The information set in this
case is Ω−t = {xk,GTt ,ykt−1, x

k,CC
t−1 ,xk,GTt−1 , . . .}. Note that, contrary to Sec-

tion 2.3.1, we now talk about “nowcast” instead of “forecast” of θk,yt because
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a part of the data (the Google Trends) used in model (2.3.5)-(2.3.9) is now
available in month t.

Some remarks are in order. First, although in Section 2.3.1 we mentioned
that Statistics Netherlands publishes only L̂k,yt and θ̂k,yt as official statistics
for unemployment, we are also interested in the estimation/nowcast accuracy
of Rk,yt since it is the state variable of the labour force model that is directly
related to the auxiliary series.

Second, note that in model (2.3.3) we do not make use of the superscript k,
meaning that the first step of the estimation can be performed on the high
frequency (weekly in our empirical case) variables. Since in each week we
can aggregate the weekly Google Trends to the monthly frequency, we can
use the information available throughout the month to update the estimates of
Λ and Ψ . If the correlations between the factors and the trend’s slope of the
target variable are large, this update should provide a more precise nowcast of
Rk,yt , Lk,yt and θk,yt .

Third, we allow the factors of the Google Trends data to be correlated with
the change in unemployment and not with its level for two reasons: first, a
smooth trend model is assumed for the population parameter, which means
that the level of its trend does not have an innovation term. Second, it is
reasonable to assume that people start looking for a job on the internet when
they become unemployed, and hence their search behaviour should reflect the
change in unemployment rather than its level6.

6However, since in equation (2.3.7) Lk,yt depends on the lagged change in unemployment,
Rk,yt−1, it also depends, via the correlation parameters, on the lagged Google Trends’ fac-
tors. This implies that the relationship between the level of unemployment and the Google
Trends is not contemporaneous in our model specification. An alternative one that pre-
serves the more intuitive contemporaneous relationship also between Lk,yt and fkt , would
be made of the following trends’ transition equations: Lk,yt

Rk,yt
fkt

 =

 Lk,yt−1 +Rk,yt−1

Rk,yt−1

fkt−1

+

 1 0
1 0
0 Ir

( ηk,yt
ukt

)
,

with ηk,yt and ukt being correlated, and similarly for the trend’s transition equations of
the claimant count series.
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Fourth, while our method to include auxiliary information in a state space
model is based on the approach proposed by Harvey and Chung (2000), the
factors of the high-dimensional auxiliary series could also be included as re-
gressors in the observation equation for the labour force. However, in such
a model, the main part of the trend, Lk,yt , will be explained by the auxiliary
series in the regression component. As a result, the filtered estimates for Lk,yt
will contain a residual trend instead of the trend of the unemployment. Since
the filtered trend estimates are the most important target variables in the of-
ficial monthly publications of the labour force, this approach is not further
investigated in this chapter7. Alternatively, the Google Trends’ factors, ex-
tracted by PCA, could be treated as observed series and included in the model
instead of xk,GTt . This strategy would greatly simplify the model as its di-
mension would be reduced, but it may result in a possible loss in estimation
accuracy of the factors, which is achieved by their second estimation with the
Kalman filter (Doz et al., 2011)8.

Finally, we refer the reader to Appendices 2.A.1, 2.A.2, and 2.A.3 for a de-
tailed state space representation of the labour force model when, respectively,
a univariate, a high-dimensional or both type of auxiliary series are included.
We further refer to Appendices 2.A.2 for an illustration on how to include
the lags of the factors and how to model their cycle or seasonality, within our
proposed high-dimensional state space model.

2.4 Simulation study
We next conduct a Monte Carlo simulation study in order to elucidate to what
extent our proposed method can provide gains in the nowcast accuracy of the
unobserved components of interest. For this purpose, we consider a simpler
model than the one used for the labour force survey. Here ykt is univariate

7Moreover, this alternative approach would allow us to achieve better estimates and nowcasts
of the observed series, ykt , rather than the unobserved components of interest, which is
instead what we are interested in.

8Technically it is the Kalman smoother that achieves the additional estimation efficiency, but
in the last period of the sample, which is what we are interested in when nowcasting, the
Kalman filter and smoother estimates are the same.
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following a smooth trend model, and xkt represents the (100×1)-dimensional
auxiliary series with one common factor (r = 1).(

ykt
xkt

)
=

(
Lkt

Λfkt

)
+

(
εk,yt
εk,xt

)
,

Lkt = Lkt−1 +Rkt−1,(
Rkt
fkt

)
=

(
Rkt−1

fkt−1

)
+

(
ηkR,t
ukt

)
,

(
ηkR,t
ukt

)
∼ N

(
0,

[
1 ρ
ρ 1

])
.

We allow the slope’s and factor’s innovations to be correlated, and we inves-
tigate the performance of the method for increasing values of the correlation
parameter ρ ∈ [0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.99]. The auxiliary variable xkt has
the same frequency as ykt and it is assumed that all xkt are released at the same
time without publication delays. The nowcast is done concurrently, i.e. in
real-time based on a recursive scheme. This means that at each time point of
the out-of-sample period, the hyperparameters of the model are re-estimated
by maximum likelihood, extending the same used up to that period. This is
done in the third part of the sample, always assuming that ykt is not available
at time t, contrary to xkt . This implies that the available data set in period t
equals Ω−t = {xkt , ykt−1,x

k
t−1, y

k
t−2, . . .}. The sample size is T = 150 and the

number of simulations is nsim = 500.

We consider three specifications for the idiosyncratic components and the fac-
tor loadings:

1. Homoskedastic idiosyncratic components and dense loadings:(
εk,yt
εk,xt

)
∼ N (0, 0.5In+1) , Λ ∼ U (0, 1) .

2. Homoskedastic idiosyncratic components and sparse loadings. The first
half of the elements in the loadings are set equal to zero. This specifi-
cation reflects the likely empirical case that some of the Google Trends
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are not related to the change in unemployment:(
εk,yt
εk,xt

)
∼ N (0, 0.5In+1) ,

Λ =
(
Λ′0,Λ

′
1

)′
, Λ0

50×1
= 0, Λ1

50×1
∼ U (0, 1) .

3. Heteroskedastic idiosyncratic components and dense loadings. The ho-
moskedasticity assumption is here relaxed, again as not being realistic
for the job search terms:(

εk,yt
εk,xt

)
∼ N

(
0,

(
0.5 0′

0 diag(H)

))
,

H ∼ U(0.5, 10), Λ ∼ U (0, 1) .

Let αkt =
(
Lkt , R

k
t , f

k
t

)′ denote the vector of state variables and α̂k
t|Ω−t

its
estimates based on the information available at time t. The results from the
Monte Carlo simulations are shown in Table 2.2. We always report the MSFE,
together with its variance and bias components, of the Kalman filter estimator
of αkt , relative to the same measures calculated from the model that does not
include the auxiliary series xkt . Recall that the latter comes down to making
one-step-ahead predictions.

MSFE(α̂k
t|Ω−t

) =
1

h

T∑
t=T−h+1

1

nsim

nsim∑
j=1

(
α̂jt|Ω−t

−αjt
)(
α̂jt|Ω−t

−αjt
)′
,
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var(α̂k
t|Ω−t

) =

=
1

h

T∑
t=T−h+1

 1

nsim

nsim∑
j=1

(α̂jt|Ω−t −αjt)− 1

nsim

nsim∑
j=1

(
α̂jt|Ω−t

−αjt
)

×

(α̂jt|Ω−t −αjt)− 1

nsim

nsim∑
j=1

(
α̂jt|Ω−t

−αjt
)′ ,

bias2(α̂k
t|Ω−t

) =

=
1

h

T∑
t=T−h+1

 1

nsim

nsim∑
j=1

(
α̂jt|Ω−t

−αjt
) 1

nsim

nsim∑
j=1

(
α̂jt|Ω−t

−αjt
)′ ,

where h is the size of the out-of-sample period.

In every setting, both the bias and the variance components of the MSFE tend
to decrease with the magnitude of the correlation parameter. The improve-
ment is more pronounced for the slope rather than the level of the trend. For
the largest value of the correlation, with respect to the model which does not
include auxiliary information, the gain in MSFE for the level and the slope
is, respectively, of around 25% and 75%. Moreover, for low values of ρ,
the MSFE does not deteriorate with respect to the benchmark model. This
implies that our proposed method is robust to the inclusion of auxiliary infor-
mation that does not have predictive power for the state variables of interest.
In Appendix 2.C we report and examine additional simulation results with
non-Gaussian idiosyncratic components, and draw the same conclusions dis-
cussed above for the MSFE and the variance of the state variables’ nowcasts.
The bias instead worsens while deviating from Gaussianity, but it does not
affect the MSFE as it only accounts for a small part of the latter measure.
We therefore conclude that the performance of our method is overall robust to
deviations from Gaussianity of the idiosyncratic components.

The decision to focus the simulation study on the nowcast (rather than the in-
sample) performance of our method, is motivated by the fact that the added
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ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 0.9 ρ = 0.99

Homoskedastic idiosyncratic components and dense loadings

MSFE(L̂k
t|Ω−t

) 1.030 1.024 1.006 0.971 0.901 0.837 0.718

var(L̂k
t|Ω−t

) 1.031 1.025 1.007 0.971 0.901 0.837 0.718

bias2(L̂k
t|Ω−t

) 0.775 0.767 0.756 0.733 0.692 0.659 0.567

MSFE(R̂k
t|Ω−t

) 1.044 1.017 0.941 0.806 0.588 0.427 0.198

var(R̂k
t|Ω−t

) 1.045 1.018 0.942 0.807 0.589 0.427 0.198

bias2(R̂k
t|Ω−t

) 0.650 0.633 0.583 0.492 0.350 0.252 0.122

Homoskedastic idiosyncratic components and sparse loadings

MSFE(L̂k
t|Ω−t

) 1.031 1.026 1.011 0.981 0.920 0.862 0.744

var(L̂k
t|Ω−t

) 1.031 1.026 1.012 0.981 0.920 0.862 0.745

bias2(L̂k
t|Ω−t

) 0.784 0.776 0.762 0.737 0.695 0.655 0.582

MSFE(R̂k
t|Ω−t

) 1.044 1.019 0.946 0.817 0.605 0.446 0.208

var(R̂k
t|Ω−t

) 1.045 1.020 0.947 0.817 0.606 0.446 0.209

bias2(R̂k
t|Ω−t

) 0.656 0.639 0.586 0.492 0.347 0.243 0.104

Heteroskedastic idiosyncratic components and dense loadings

MSFE(L̂k
t|Ω−t

) 1.036 1.032 1.019 0.994 0.945 0.901 0.823

var(L̂k
t|Ω−t

) 1.037 1.032 1.020 0.995 0.946 0.902 0.823

bias2(L̂k
t|Ω−t

) 0.707 0.645 0.579 0.521 0.484 0.483 0.543

MSFE(R̂k
t|Ω−t

) 1.049 1.027 0.960 0.840 0.644 0.499 0.299

var(R̂k
t|Ω−t

) 1.049 1.028 0.961 0.841 0.645 0.500 0.299

bias2(R̂k
t|Ω−t

) 0.805 0.697 0.556 0.397 0.230 0.161 0.237

Table 2.2: Simulation results from the three settings described in Section 2.4. The
values are reported relative to the respective measures calculated from the model
that does not include the auxiliary series; values < 1 are in favour of our method.
nsim = 500.

value of the Google Trends over the claimant counts is their real-time avail-
ability, which can be used to nowcast the unemployment. Nonetheless, for
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completeness, in the empirical application of the next section we report the
results also for the in-sample performance of our method.

2.5 Application to Dutch unemployment nowcasting

In this section we present and discuss the results of the empirical application of
our method to nowcasting the Dutch unemployment using the auxiliary series
of claimant counts and Google Trends related to job-search and economic
uncertainty.

As explained in Section 2.3.2, the Google series used in the model must be
I(1). We therefore test for nonstationarity in the Google Trends with the
Elliott et al. (1996) augmented Dickey-Fuller (ADF) test, including a constant
and a linear trend. We control for the false discovery rate as in Moon and
Perron (2012), who employ a moving block bootstrap approach that accounts
for time and cross-sectional dependence among the units in the panel.

Before proceeding with the estimation of the model by only including the
Google Trends that resulted as being I(1) from the multiple hypotheses test-
ing, we carry out an additional selection of the I(1) Google Trends by “tar-
geting” them as explained and motivated below.

Bai and Ng (2008) point out that having more data to extract factors from is
not always better. In particular, if series are added that have loadings of zero
and are thus not influenced by the factors, these will make the estimation of
factors and loadings by PCA deteriorate, as PCA assigns a non-zero weight to
each series in calculating the estimated factor as a weighted average. Bai and
Ng (2008) recommend a simple strategy to filter out irrelevant series (in our
case Google search terms) and improve the estimation of the factors, which
they call “targeting the predictors”. In this case an initial regression of the se-
ries of interest is performed on the high-dimensional input series to determine
which series are (ir)relevant. The series that are found to be irrelevant are
discarded and only the ones that are found to be relevant are kept to estimate
the factors and loadings from. In particular, they recommend the use of the
elastic net (Hastie & Zou, 2005), which is a penalized regression technique
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that performs estimation and variable selection at the same time by setting the
coefficients of the irrelevant variables to 0 exactly. After performing the elas-
tic net estimation, only the variables with non-zero coefficients are then kept.
As we do not observe our series of interest directly, we need to adapt their
procedure to our setting. To do so we approximate the unobserved unemploy-
ment by its estimation from the labour force model without auxiliary series.
Specifically, we regress the differenced estimated change in unemployment
from the labour force model without auxiliary series, ∆R̂k,yt , on the differ-
enced I(1) Google Trends using the elastic net penalized regression method,
which solves the following minimization problem:

min
β

[
1

2T

T∑
t=1

(
∆R̂k,yt − β′∆x

k,GT
t

)2
+ λPα (β)

]
,

where
Pα (β) = (1− α)

1

2
||β||22 + α||β||1.

The tuning parameters λ and α are selected from a two-dimensional grid in
order to minimize the Schwarz (1978) Bayesian information criterion (BIC).
Notice that performing the penalized regression on the differenced (and there-
fore stationary) data, also allows us to avoid the inclusion in the model of
Google Trends that have spurious relations with the change in unemploy-
ment.

We consider estimating the final model both with all Google Trends included
and with only the selected Google Trends included, thereby allowing us to
assess the empirical effects of targeting. The final number of nonstationary
Google Trends included in the model, n, may differ depending on whether we
use the weekly Google Trends aggregated to the monthly frequency according
to equation (2.3.4), or the monthly Google Trends. Whenever we apply PCA,
the Google Trends are first differenced and standardized.

We further need to make sure that the stationarity assumption of the idiosyn-
cratic components is maintained. Therefore, after having estimated the factors
by PCA in model (2.3.3), we test which of the idiosyncratic components εt
are I(1) with an ADF test without deterministic components, by controlling
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for multiple hypotheses testing as in Moon and Perron (2012). The I(1) id-
iosyncratic components are modelled as state variables in (2.3.5), with the
following transition equation:

εkt = εkt−1 + ξkt ,

with usual normality assumptions on the ξkt . The covariance matrix of the
idiosyncratic components Ψ is therefore estimated on the levels of the I(0)
idiosyncratic components and the first differences of the I(1) idiosyncratic
components. Appendix 2.A.2 provides a toy example that elucidates the esti-
mation procedure.

Finally, we notice that although the first step of the two-step estimation pro-
cedure is meant to avoid estimating Ψ and Λ by maximum likelihood (since
they are large matrices), this pre-estimation may affect the explanatory power
of the Google Trends. We here propose two different ways to obtain (possibly)
more accurate estimates of these two matrices:

• In Section 2.3.2 we mention that the first step of the two-step esti-
mator, which estimates Ψ and Λ by PCA, can be carried out on the
weekly Google Trends (which are therefore aggregated to the monthly
frequency after the first step). Since the sample size of the high fre-
quency data is larger, using weekly Google Trends might improve the
estimation accuracy of Ψ and Λ.

• Doz et al. (2011) argue that from the Kalman filter estimates of the fac-
tors, it is possible to re-estimate Ψ and Λ (by least squares), which in
turn can be used to re-estimate the factors, and so on. This iterative pro-
cedure is equivalent to the Expectation–Maximization (EM) algorithm,
which increases the likelihood at each step and therefore converges to
the maximum likelihood solution. Notice that since the Kalman filter
can (in our setting) only provide monthly estimates, the iterative esti-
mation is done on the low-frequency Google Trends.

Later in this section we check how sensitive our empirical results are to the
different estimates of Ψ and Λ. For the second type of estimation method
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discussed above, we only perform one additional iteration of the two-step pro-
cedure due to its computational burden.

We present empirical results for the in-sample estimates and out-of-sample
forecasts. With the in-sample estimates we evaluate to what extent the aux-
iliary series improve the precision of the published monthly unemployment
estimates after finalizing the data collection. With the out-of-sample fore-
casts we evaluate to which extent the auxiliary series improve the precision
of provisional estimates in a nowcast procedure during the period of data col-
lection. We always estimate four different models: the labour force model
without auxiliary series (baseline), the labour force model with auxiliary se-
ries of claimant counts (CC), of Google Trends (GT) and of both (CC & GT).
We compare the latter three models to the baseline one with the in-sample
and out-of-sample exercises. The period considered for the estimation starts
in January 2004 and ends in May 2019 (T = 185 months). The out-of-sample
nowcasts are conducted in real-time (concurrently) in the last three years of
the sample based on a recursive scheme: each week or month, depending
on whether we use weekly or monthly Google Trends, the model, including
its hyperparameters, is re-estimated on the enlarged sample now extended by
the latest observations, while assuming that the current observations for the
unemployed labour force and the claimant counts are missing. Analogously,
when the Google Trends are first targeted with the elastic net, the targeting is
re-executed in each week or month of the out-of-sample period on the updated
sample.9

We define the measure of in-sample estimation accuracy
M̂SE(α̂kt|Ωt) = 1

T−d
∑T

t=d+1 P̂
k
t|Ωt , where α̂kt|Ωt is the vector of Kalman

filter estimates of the state variables, P̂ k
t|Ωt is its estimated covariance

matrix in month t, and d is the number of state variables that are needed to
estimated the labour force model without auxiliary series, and that need
a diffuse initialization for their estimation (d = 17). The measure of
nowcast accuracy, M̂SFE(α̂k

t|Ω−t
) = 1

h

∑T
t=T−h+1 P̂

k
t|Ω−t

, is the average
of the nowcasted covariance matrices in the h prediction months. When

9The elastic net is nowadays implemented very efficiently in standard statistical software, so
the targeting step is not computationally expensive.
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weekly Google Trends are used, P̂ k
t|Ω−t

= 1
k

∑k
j=1 P̂

k
j|Ω−j,t

, where P̂ k
j|Ω−j,t

is

the nowcasted covariance matrix for the prediction in week j of month t,
and Ω−j,t = {xk,GTj,t ,ykt−1, x

k,CC
t−1 ,xk,GTt−1 , . . .} is in this case the available

information set in week j of month t. This is because the nowcast is done
recursively throughout the weeks of the out-of-sample period. We always
report the relative M̂S(F)E with respect to the baseline model; values lower
than one are in favour of our method. We note that nowcasting under the
baseline model without auxiliary series and the baseline model extended
with claimant counts comes down to making one-step-ahead predictions.
Therefore, it should be kept in mind that, although for simplicity we always
talk about “nowcast” performance of the different models, the claimant
counts can only improve the “one-step-ahead forecast” performance of the
models that include them. Expressions for α̂kt|Ωt , α̂

k
t|Ω−t

and their covariance

matrices, P̂ k
t|Ωt and P̂ k

t|Ω−t
, are given by the standard Kalman filter recursions,

see e.g. Durbin and Koopman (2012, Chapter 4).

The initial values of the hyperparameters for the maximum likelihood esti-
mation are equal to the estimates for the labour force model obtained in van
den Brakel and Krieg (2015). We use a diffuse initialisation of the Kalman
filter for all the state variables except for the 13 state variables that define
the autocorrelation structure of the survey errors, for which we use the exact
initialisation of Bollineni-Balabay et al. (2017).

We use the three panel information criteria proposed by Bai and Ng (2002)
which we indicate, as in Bai and Ng (2002), with IC1, IC2 and IC3, in order
to choose how many factors of the Google Trends to include in the model10.
When the Google Trends are targeted with the elastic net, the information
criteria suggest to include one or two factors. In the empirical analysis we
check the sensitivity of the results with respect to these two different numbers
of factors included in the model.

We employ a Wilks (1938) likelihood ratio (LR) test to assess whether the cor-
relation parameters are significantly different from zero, and hence adding the

10In this chapter, if for instance the information criterion IC1 suggests to include 2 factors, we
indicate as IC1 = 2.
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auxiliary information might yield a significant improvement from the baseline
model. Specifically, we indicate with ρCC = 0, ρ1,GT = 0 and ρ2,GT = 0 the
null hypotheses for the individual insignificance of the correlation parameter
with, respectively, the claimant counts, and the first and second factor (when
present) of the Google Trends. With ρGT = 0 and ρ = 0 we instead indicate
the null hypotheses for the joint insignificance of, respectively, the correlations
with the Google Trends’ factors, and all correlation parameters. If the true dis-
tribution of the error terms is non-Gaussian, the LR test, based on the QML
estimates, does not generally retain, under the null hypothesis, an asymptotic
χ2 distribution with degrees of freedom equal to the number of restrictions.
One exception is when the covariance matrix of the error terms from a regres-
sion involving observed variables, is replaced by a consistent estimator prior
to the maximization of the log-likelihood (Gourieroux & Monfort, 1993). In
our case, if the idiosyncratic components of the Google Trends, εk,GTt , are
the only error terms not being normally-distributed, we may fall into this ex-
ception. The covariance matrix Ψ is indeed replaced, for the maximization of
the log-likelihood, by its consistent PCA estimator obtained in the first step of
the two-step estimation procedure. Nonetheless, in the setting of Gourieroux
and Monfort (1993) the regressors are observed, whereas in our case the latter
are the unobserved factors. Consequently, it is not trivial to assess whether
our model specification indeed falls into the above-mentioned exception. A
formal proof for this is beyond the scope of this chapter, but in Appendix 2.C
we conduct a simulation study in order to obtain the finite-sample probability
density of the LR test under misspecifications of the distribution of the id-
iosyncratic components. We conclude that the distribution of the LR test is
not affected by these misspecifications. At the end of this section we show
that that there is no evidence that the error terms other than εk,GTt , are not
normally-distributed. We should therefore be able perform inference based
on the usual asymptotic distribution of the LR test.

Table 2.3 reports the estimated hyperparameters for the four models, as well as
the respective value for the maximized log-likelihood, the relative measures of
in and out-of-sample performance, and the p-values from the LR tests, when
the monthly Google Trends are used.

The maximum likelihood estimates for the standard error of the seasonal com-
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n = 162, IC1 = 3, IC2 = 1, IC3 = 10 Targeted GT, n = 39, IC1 = 2, IC2 = 1, IC3 = 2

r = 1 r = 1 r = 2

LF CC GT CC & GT GT CC & GT CC & GT, all corr. GT CC & GT

σ̂R,y 2082.652 2776.030 1995.917 2704.918 3036.281 2608.394 3447.973 3587.985 3002.947
σ̂ω,y 0.020 0.020 0.023 0.078 0.013 0.011 0.022 0.054 0.010
σ̂λ 3841.035 3883.658 3592.394 3715.303 3740.097 3740.748 3115.596 3670.943 3709.361
σ̂ν1 1.140 1.151 1.181 1.146 1.155 1.142 1.205 1.155 1.198
σ̂ν2 1.291 1.300 1.270 1.359 1.276 1.304 1.378 1.281 1.263
σ̂ν3 1.188 1.181 1.201 1.211 1.188 1.196 1.117 1.224 1.200
σ̂ν4 1.240 1.247 1.241 1.224 1.241 1.252 1.356 1.286 1.243
σ̂ν5 1.223 1.228 1.236 1.260 1.221 1.239 1.358 1.254 1.247
δ̂ 0.384 0.381 0.378 0.395 0.377 0.384 0.390 0.383 0.384
σ̂R,CC 3490.261 3515.222 3503.077 3982.583 3979.232
σ̂ω,CC 0.020 0.020 0.021 0.016 0.020
σ̂ε,CC 1318.691 1310.108 1309.136 1181.291 1052.729
ρ̂CC 0.918 0.913 0.803 0.935 0.755
ρ̂1,GT -0.200 -0.003 -0.899 -0.509 -0.250 -0.785 -0.381
ρ̂2,GT -0.591 -0.456
ρ̂1,CC,GT -0.093

M̂SE(L̂k,yt|Ωt) 0.868 1.003 0.863 0.919 0.796 0.895 0.861 0.849

M̂SE(R̂k,yt|Ωt) 0.878 0.916 0.849 0.655 0.618 1.112 0.485 0.702

M̂SE(θ̂k,yt|Ωt) 0.889 1.009 0.888 0.941 0.835 0.916 0.899 0.881

M̂SFE(L̂k,y
t|Ω−t

) 0.818 0.951 0.853 0.875 0.766 0.786 0.935 0.889

M̂SFE(R̂k,y
t|Ω−t

) 0.983 0.878 0.981 0.705 0.801 0.755 0.839 0.869

M̂SFE(θ̂k,y
t|Ω−t

) 0.827 0.956 0.860 0.886 0.779 0.796 0.942 0.899

log-likelihood -10160.378 -11835.779 -44726.153 -46392.985 -18712.139 -20379.780 -20384.560 -18719.515 -20388.495

p-value from the LR test

H0 : ρCC = 0 0.002 0.000 0.001 0.000 0.000
H0 : ρ1,GT = 0 0.470 0.830 0.001 0.025 0.028 0.000 0.082
H0 : ρ2,GT = 0 0.014 0.014
H0 : ρGT = 0 0.000 0.017
H0 : ρ1,CC,GT = 0 0.470
H0 : ρ = 0 0.001 0.000 0.000 0.000

Table 2.3: Estimation and nowcast results for the labour force model with and without
auxiliary series. The auxiliary series are the claimant counts and the monthly Google
Trends about job-search and economic uncertainty. The number of Google Trends
and the number of their factors included in the model are denoted with n and r,
respectively. The abbreviation “all corr.” denotes that the correlation between the
claimant counts and the Google Trends is also estimated. “Targeted GT” indicates
that the Google Trends have been targeted with the elastic net before including them
in the model.

ponents’ disturbance terms tend to zero, indicating that the seasonal effects are
time invariant.

Recall from equation (2.3.2) that the variances of the scaled sampling errors,
σ2
νj , should take values close to one. Their estimates are divided by (1 - δ̂2)

and are always slightly larger than one, which is an indication that the variance
estimates of the GREG estimates, used to scale the sampling errors in equation
(2.3.2), somewhat underestimate the real variance of the GREG estimates.
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The correlation with the claimant counts is estimated to be above 0.9, and
remains large and significant when including the Google Trends. Similar con-
clusions can be drawn for the correlations with the Google Trends’ factors,
when the Google Trends are targeted with the elastic net, and 39 of them are
included in the model. When the additional targeting is not applied, and the
162 I(1) Google Trends are directly included in the model, the correlation
parameter with the first factor of the Google Trends is instead always small
and insignificant (in this setting we do not include more than one factor).
Moreover, for the same number of factors, targeting the Google Trends al-
ways yields a better performance in terms of estimation and nowcast accuracy
of the state variables of interest, with respect to not targeting them. For this
reason, we focus the remaining analysis of the empirical results only on the
targeted Google Trends.

The best results in terms of both estimation and nowcast accuracy of all the
state variables, is achieved by the CC & GT model with one factor, yielding
a gain of, respectively, around 40% and 20% for R̂k,y

t|Ω−t
, and around 20% and

25% for both L̂k,y
t|Ω−t

and θ̂k,y
t|Ω−t

, with respect to the baseline model. Note that
this implies that the above-mentioned model outperforms also the model that
contains only the claimant counts as auxiliary series. In general, the models
with Google Trends tend to achieve a better estimation and nowcast of the
change in unemployment, Rk,yt , rather than the other two state variables, with
respect to the models that include the claimant counts.

Including two factors instead of one clearly increases the complexity of the
model, which is reflected in smaller accuracy gains (in the CC & GT model
probably also due to the decreased magnitude of the correlation parameter
with the claimant counts), especially for the nowcast of the state variables,
with respect to including only one factor. Nonetheless, the correlations with
both factors are individually and jointly significantly different from zero, in-
dicating that both factors bring additional information about the Dutch unem-
ployment.

Notice that in general all the relative measures of accuracy are below one,
indicating that both the claimant counts and the Google Trends improve the
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estimation and nowcast accuracy of the unemployment and its change. Even
when the Google Trends are not targeted and their factor is not significantly
related to the unemployment, the measures are never drastically above one,
meaning that our method tends to ignore auxiliary series that are not related
to the target variable.

Finally, when we specified the covariance matrix (2.3.9) in Section 2.3.2,
we did not let the claimant counts and the Google Trends be correlated be-
cause our goal is to improve the estimation/nowcast accuracy of the unob-
served components of the labour force series, not of the claimant counts nor
the Google Trends. Nonetheless, if the state variables of equation (2.3.8) are
all cointegrated (i.e. the correlation parameters are all equal to one) a more
efficient estimation method would be to only estimate the variance of their
common source of error. We therefore estimate the CC & GT model with
one factor, when all series are correlated. We call this model “CC & GT all
corr.”. Table 2.3 reports the empirical results also for this model. Although the
nowcast accuracy is similar to the same model without the additional correla-
tion between the claimant counts and the Google Trends (which we indicate
as ρ1,CC,GT ), the in-sample accuracy deteriorates (even with respect to the
baseline model), and ρ1,CC,GT is not significantly different from zero. We
therefore conclude that the specification of the covariance matrix (2.3.9) is
appropriate.

In Table 2.4 we report the empirical results for the GT and CC & GT models
which employ the targeted Google Trends observed at the weekly frequency,
and aggregated to the monthly frequency according to equation (2.3.4) in or-
der to include them in the models. In this case we still look at the sensitivity
of the results with respect to the number of factors included in the model, but
also with respect to the two additional methods for the estimation ofΛ and Ψ
discussed at the beginning of this section.

The measures of accuracy are again broadly lower than one, but the gains are
not as large as observed for the monthly Google Trends. Including two fac-
tors improves the accuracy in the GT model, but not in the CC & GT model,
except for a more precise nowcast of Rk,yt . The correlation parameter with
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the claimant counts remains large and significant. On the contrary, the corre-
lation parameter with the first factor of the Google Trends is not significantly
different from zero, and there is a weak evidence for the second factor be-
ing significantly related to the change in unemployment. For this reason we
continue the analysis by considering two factors in the model.

Estimating Λ and Ψ on the weekly Google Trends improves the measures
of accuracy only for the CC & GT model, and not for the GT model. An
additional iteration of the two step estimator, in order to obtain more accu-
rate estimates of Λ and Ψ , achieves instead better nowcasts for both the GT
and the CC & GT models (and also better in-sample estimates for the latter
model), and a similar performance to the models which employ the monthly
Google trends and include two factors. Notice that the values of the log-
likelihood for these two models increased with respect to the same model
specifications that use the original two-step estimation (without the additional
iteration). The latter result, as pointed out in the explanation of the iterated
estimation of Λ and Ψ at the beginning of this section, is to be expected. De-
spite the above-mentioned improvements in estimation/nowcast accuracy, the
correlation parameters with the Google Trends’ factors are always insignifi-
cant. The aggregation of the Google Trends from the weekly to the monthly
frequency yields time series that are more noisy with respect to the Google
Trends that are directly observed at the monthly frequency, and detecting sig-
nificant results therefore becomes harder.

Finally, even though weekly Google Trends allow us to perform the monthly
nowcasts on a weekly basis, we notice that, in general, the precision of the
nowcast does not monotonically improve with the number of weeks. If the
high-dimensional state space model could be expressed and estimated at the
highest frequency, the weekly gains in nowcast accuracy could be more evi-
dent. Nonetheless, we are limited by the transition equations for the RGB and
the survey errors, to estimate the model at the monthly frequency.

Figures 2.2-2.4 compare the point nowcasts, respectively, of the change in un-
employment, its trend, and the population parameter, obtained with the base-
line, the CC, the GT and the CC & GT models which employ monthly Google
Trends and include two of their factors. From the first graph, it is evident that
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the models including claimant counts tend to deviate from the baseline model.
The latter, on the contrary, gives similar results as those of the GT model.
The point nowcasts of Lk,yt and θk,yt are more similar throughout the model
specifications, with a slight and positive difference between the models that
include the Google Trends and the ones that do not, at the beginning of the
out-of-sample period.

Figure 2.2: Nowcast ofRk,yt with the labour force models. The results for the GT and
the CC & GT models refer to setting where the monthly Google Trends are used, and
two of their factors are included in the model.

Figures 2.D.1 and 2.D.2 show the selection frequency of, respectively, the
monthly and weekly Google Trends in the out-of-sample period. Some of
the most selected search terms in both cases are: werklozen (unemployed
people), baan zoeken (job search), curriculum vitae voorbeeld (curriculum
vitae example), ww uitkering (unemployment benefits), ww aanvragen (to re-
quest unemployment benefits), resume, tijdelijk werk (temporary job), huizen-
markt zeepbel (housing market bubble). Notice that the latter term (as well
as “economische crisis” (economic crisis) or “failliet” (bankrupt), which are
also frequently selected monthly Google Trends) is of economic uncertainty
nature, rather than being job-search related. Other investigations not reported
here only used the latter type of search terms, and did not find them to have ex-
planatory power for Dutch unemployment, which is now instead significantly
improved by the inclusion of search terms related to economic uncertainty.

The results of the empirical analysis can be summarized as follows. Target-
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Figure 2.3: Nowcast of Lk,yt with the labour force models, compared to the five waves
of the unemployed labour force. The results for the GT and the CC & GT models refer
to the setting where the monthly Google Trends are used, and two of their factors are
included in the model.

Figure 2.4: Nowcast of θk,yt with the labour force models, compared to the five waves
of the unemployed labour force. The results for the GT and the CC & GT models refer
to the setting where the monthly Google Trends are used, and two of their factors are
included in the model.

ing the Google Trends improves its explanatory power for the Dutch unem-
ployment. Monthly Google Trends significantly improve the estimation and
nowcast accuracy of Dutch unemployment and its change, with both one and
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two factors. The largest gains are obtained when both the claimant count and
the Google Trends are included, and considering only one factor for the latter
series. When two factors are considered, the gains are smaller but both factors
seem to be significantly related to the change in unemployment, indicating
that both of them should be included in the model in order to exploit all the
information that the Google Trends give about the target variable. The sen-
sitivity to the number of factors is somewhat similar for the weekly Google
Trends, although there is only weak evidence for their second factor to have
a significant relation with the change in unemployment. The weekly Google
Trends are less informative about the Dutch unemployment, yielding in gen-
eral less improvement in estimation and nowcast accuracy, with respect to the
monthly Google Trends. The contributions of the two types of Google Trends
are comparable only when the two-step estimator is additionally re-iterated
for the weekly Google Trends (in order to obtain more precise estimates of
Λ and Ψ ). This result suggests that iterating the two-step estimation can im-
prove the explanatory power of the Google Trends, and that the latter series
are sensitive to the estimates of Λ and Ψ . Improvements are, instead, not al-
ways present whenΛ and Ψ are estimated on the weekly data. In general, the
claimant counts mainly have a positive impact on the estimation and nowcast
accuracy of θk,yt and Lk,yt , whereas the Google Trends affect Rk,yt . The point
nowcasts of the latter state variable are more sensitive to the type of auxiliary
series included, than those of θk,yt and Lk,yt .

The assumptions of normality made and discussed throughout the chapter can
be tested on the standardized one-step ahead forecast errors (Durbin & Koop-
man, 2012, Chapter 7): ṽkt = Bk

t v
k
t , for t = d + 1, . . . , T with Bk

t such
that (F k

t )−1 = Bk′
t B

k
t , where F k

t is the covariance matrix of the predic-
tion errors vkt estimated with the Kalman filter. The prediction errors for
the labour force are defined as vk,yt = ykt − Z

y
t α̂

k,y
t|Ωt−1

, for the claimant

counts as vk,CCt = xk,CCt − ZCCα̂k,CCt|Ωt−1
, and for the Google Trends as

vk,yt = xk,GTt − Λ̂f̂kt|Ωt−1
, for t = d + 1, . . . , T (the expressions for Zy

t

andZCC can be found in Appendix 2.A). We test the assumptions on the esti-
mated CC & GT models when two factors of the Google Trends are included,
and which employ, respectively, the monthly Google Trends, and the weekly
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Google Trends with the additional iteration of the two-step estimator (as they
yield the best results in terms of estimation and nowcast accuracy of the state
variables of interest, when two factors of the Google Trends are included).

We test the null hypothesis of univariate normality for each of the prediction
error, with the Shapiro and Wilk (1965) and Bowman and Shenton (1975)
tests, as suggested, respectively, in Harvey (1989, Chapter 5) and Durbin and
Koopman (2012, Chapter 2). The former test is based on the correlation be-
tween given observations and associated normal scores, whereas the latter test
is based on the measures of skewness and kurtosis.

Figure 2.5: p-values from the Shapiro-Wilk test for individual normality, performed
on each of the standardized prediction errors of the labour force, the claimant counts,
and the Google Trends series (ṽkt ). The standardized prediction errors are obtained
from the CC & GT model which employs the monthly Google Trends and include
two of their factors. The red line represents the confidence level of 0.05.

The p-values from the Shapiro-Wilk test are reported in Figures 2.5 and 2.6
for the two different model specifications discussed above, respectively. For
both model specifications, there is no (strong) evidence against the normality
assumptions for the error terms of the labour force and the claimant counts
series, as their corresponding p-values are above the confidence level of 0.05.
This result suggests that the model is correctly specified for these series. The
test instead rejects the null hypothesis of normality for most of the idiosyn-
cratic components of the Google Trends. The normality assumption seems
therefore not appropriate for the latter series, but as discussed in Sections
2.3.1 and 2.5, and examined in the simulation study of Appendix 2.C, this
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Figure 2.6: p-values from the Shapiro-Wilk test for individual normality, performed
on each of the standardized prediction errors of the labour force, the claimant counts,
and the Google Trends series (ṽkt ). The standardized prediction errors are obtained
from the CC & GT model which employs the weekly Google Trends and include two
of their factors, and which iterates the estimation ofΛ and Ψ . The red line represents
the confidence level of 0.05.

type of misspecification does not affect the consistency of the estimators of
the state variables and the hyperparameters, and does not seem to influence
the performance of our method, nor the distribution of the LR test which al-
lows us to perform inference on the correlation parameters11. The conclusions
from the Bowman-Shenton test are the same and the corresponding p-values
are reported in Figures 2.D.3 and 2.D.4.

11Notice that we do not control for multiple hypotheses testing in this case. If we did control
for it, we would obtain fewer rejections of the null hypothesis of normality for the error
terms of the Google Trends, but the conclusions for the error terms of the labour force and
the claimant counts series would stay the same.
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Targeted GT, n = 37, IC1 = 1, IC2 = 1, IC3 = 2

r = 1 r = 2

Weekly Λ̂, Ψ̂ Iterated Λ̂, Ψ̂

GT CC & GT GT CC & GT GT CC & GT GT CC & GT

σ̂R,y 2020.195 2644.552 2590.937 3671.191 1995.064 2612.712 2238.557 2745.331
σ̂ω,y 0.014 0.006 0.027 0.020 0.037 0.020 0.016 0.018
σ̂λ 3604.274 3738.299 3638.503 4281.357 3640.527 3568.508 3616.609 3635.421
σ̂ν1 1.146 1.151 1.142 1.181 1.161 1.147 1.155 1.148
σ̂ν2 1.295 1.286 1.292 1.376 1.294 1.294 1.278 1.312
σ̂ν3 1.203 1.171 1.208 1.211 1.167 1.204 1.207 1.199
σ̂ν4 1.253 1.225 1.248 1.358 1.247 1.274 1.252 1.267
σ̂ν5 1.240 1.179 1.234 1.227 1.244 1.225 1.231 1.243
δ̂ 0.390 0.371 0.385 0.412 0.380 0.384 0.388 0.386
σ̂R,CC 3491.025 3635.234 3494.779 3508.248
σ̂ω,CC 0.019 0.018 0.017 0.018
σ̂ε,CC 1342.202 1302.024 1280.971 1302.781
ρ̂CC 0.882 0.578 0.858 0.886
ρ̂1,GT 0.173 -0.054 0.441 -0.286 -0.101 -0.226 -0.245 0.275
ρ̂2,GT 0.539 -0.687 0.212 -0.030 0.371 0.015

M̂SE(L̂k,yt|Ωt) 0.985 0.878 0.976 0.998 0.989 0.878 0.994 0.843

M̂SE(R̂k,yt|Ωt) 0.936 0.872 0.904 0.996 0.912 0.836 0.961 0.799

M̂SE(θ̂k,yt|Ωt) 0.991 0.896 0.984 1.007 0.996 0.900 0.998 0.872

M̂SFE(L̂k,y
t|Ω−t

) 0.990 0.817 0.909 0.906 1.008 0.858 0.914 0.895

week 1 0.988 0.811 0.928 0.890 1.005 0.860 0.909 0.897
week 2 0.989 0.827 0.894 0.899 1.015 0.864 0.910 0.873
week 3 0.993 0.811 0.901 0.932 0.993 0.847 0.895 0.943
week 4 0.995 0.816 0.911 0.894 1.011 0.862 0.948 0.870
week 5 0.969 0.823 0.920 0.932 1.032 0.858 0.897 0.894
M̂SFE(R̂k,y

t|Ω−t
) 0.965 0.982 0.833 0.843 0.930 0.840 0.830 0.819

week 1 0.975 0.981 0.856 0.860 0.912 0.843 0.845 0.839
week 2 0.972 0.991 0.835 0.832 0.948 0.862 0.824 0.812
week 3 0.956 0.954 0.816 0.832 0.922 0.831 0.806 0.821
week 4 0.967 0.987 0.823 0.844 0.937 0.817 0.850 0.811
week 5 0.934 1.021 0.834 0.852 0.931 0.867 0.818 0.794
M̂SFE(θ̂k,y

t|Ω−t
) 0.991 0.825 0.917 0.937 0.994 0.873 0.897 0.902

week 1 0.990 0.820 0.933 0.943 1.006 0.876 0.908 0.894
week 2 0.991 0.835 0.928 0.963 0.980 0.873 0.890 0.886
week 3 0.995 0.820 0.905 0.933 1.010 0.860 0.892 0.959
week 4 0.996 0.825 0.905 0.908 1.008 0.884 0.891 0.882
week 5 0.970 0.830 0.903 0.944 0.911 0.867 0.917 0.871

log-likelihood -17954.398 -19621.000 -17767.456 -19438.409 -18651.434 -20318.457 -17745.335 -19413.916

p-value from the LR test

H0 : ρCC = 0 0.001 0.000 0.001 0.000
H0 : ρ1,GT = 0 0.813 0.514 0.689 1.000 0.555 1.000 0.685 1.000
H0 : ρ2,GT = 0 0.133 0.070 0.604 1.000 0.221 1.000
H0 : ρGT = 0 0.247 0.062 0.759 1.000 0.429 1.000
H0 : ρ = 0 0.001 0.001 0.004 0.002

Table 2.4: Estimation and nowcast results for the labour force model with auxiliary
series of claimant counts and weekly Google Trends about job-search and economic
uncertainty (aggregated to the monthly frequency according to equation (2.3.4)). The
number of Google Trends and the number of their factors included in the model are
denoted with n and r, respectively. “Weekly Λ̂, Ψ̂” denotes that the latter estimates
are obtained using the weekly Google Trends. “Iterated Λ̂, Ψ̂” means that the latter
estimates are obtained from an additional iteration of the two-step estimator. “Tar-
geted GT” indicates that the Google Trends have been targeted with the elastic net
before including them in the model.

50



2.6 Conclusions

This chapter proposes a method to include a high-dimensional auxiliary se-
ries in a state space model in order to improve the estimation and nowcast of
unobserved components. The method is based on a combination of PCA and
Kalman filter estimation to reduce the dimensionality of the auxiliary series,
originally proposed by Doz et al. (2011), while the auxiliary information is
included in the state space model as in Harvey and Chung (2000). In this way
we extend the state space model used by Statistics Netherlands to estimate the
Dutch unemployment, which is based on monthly LFS data, by including the
auxiliary series of claimant counts and Google Trends related to job-search
and economic uncertainty. The strong explanatory power of the former series,
in similar settings, has already been discovered in the literature (see Harvey
and Chung (2000) and van den Brakel and Krieg (2016)). We explore to what
extent a similar success can be obtained from online job-search and economic
uncertainty behaviour. The advantage of Google Trends is that they are freely
available at higher frequencies than the labour force survey and the claimant
counts, and, contrary to the latter, they are not affected by publication delays.
This feature can play a key role in the nowcasting of unemployment, as being
the only real-time available information.

A Monte Carlo simulation study shows that in a smooth trend model our pro-
posed method can improve the MSFE of the nowcasts of the trend’s level and
slope up to, respectively, around 25% and 75%. These results are robust to
misspecifications regarding the distribution of the idiosyncratic components
of the auxiliary series. Therefore, our method does have the potential to im-
prove the nowcasts of unobserved components of interest.

In the empirical application of our method to Dutch unemployment estimation
and nowcasting, we find that our considered Google Trends (when first tar-
geted with the elastic net) do in general yield gains in the estimation and now-
cast accuracy (respectively up to 40% and 25%) of the state variables of inter-
est, with respect to the model which does not include any auxiliary series. This
result stresses the advantage of using the high-dimensional auxiliary series of
Google Trends, despite involving a more complex model to estimate, which
is especially relevant for countries that do not have any data sources related to
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unemployment (such as the registry-sourced series of claimant counts), other
than the labour force survey. We also find that, under certain model speci-
fications, including both claimant counts and Google Trends outperforms the
model which only includes the former auxiliary series. This result is explained
by the fact that the two auxiliary series have a positive impact on the estima-
tion/nowcast accuracy of different unobserved components which constitute
the unemployment, thus yielding an overall improvement of the fit of the
model. This also indicates that claimant counts and Google Trends do not
bring redundant information about the Dutch unemployment.

The magnitude of the above-mentioned gains is, nonetheless, sensitive to the
following aspects of the data and the model specification. First, in our em-
pirical application we employ both monthly and weekly Google Trends. The
latter need to be aggregated to the monthly frequency in order to be included
in the model, but allow us to perform the nowcast on a weekly basis. We
find that the former are less noisy and provide in general more accurate es-
timates/nowcasts of the state variables of interest. The explanatory power of
the monthly Google Trends for Dutch unemployment is further corroborated
by results from LR testing, which are in favour of their inclusion in the model.
There is, instead, no strong and consistent evidence for this when the weekly
Google Trends are employed.

Second, PCA involves the estimation of common factors that drive the Google
Trends, and in our method we relate these factors to the unobserved com-
ponents that constitute Dutch unemployment estimates. Information criteria
suggest that the Google Trends are driven by either one or two common fac-
tors. We find that including two factors yields, in general, less gain in accu-
racy, compared to including one factor (due to the increased complexity of the
model), but there is evidence that the second factor is related to the unemploy-
ment, and therefore it should be included in the model in order to exploit all
the information that the Google Trends give about unemployment.

Finally, our estimation method is based on a two-step procedure. In the first
step, the matrix of factor loadings and the covariance matrix of the idiosyn-
cratic components of the Google Trends are estimated by PCA. In the sec-
ond step, these matrices are replaced by their PCA estimates, in order to re-
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estimate the Google Trends’ factors and the unobserved components of the
labour force series, with the Kalman filter. Replacing these matrices by their
estimates might affect the explanatory power of the Google Trends. We find
that the explanatory power of the weekly Google Trends can be improved (in
order to yield similar gains to the ones obtained with the monthly Google
Trends), with an additional iteration of the two-step estimation procedure,
which should provide more accurate estimates of the two matrices.

As already mentioned, we generally find estimation/nowcast accuracy gains
from the inclusion of the Google Trends, when they are first “targeted”, by
selecting the ones that are relevant for Dutch unemployment, based on the
elastic net penalized regression. If the targeting is not applied first, we do not
find gains and significant relationships between the Google Trends and Dutch
unemployment. Nonetheless, in this case the results do not deteriorate with
respect to the model that does not include any auxiliary series, suggesting that
our method is able to ignore the inclusion of irrelevant auxiliary series, in the
estimation/nowcast of unobserved components of interest. This result is cor-
roborated in our Monte Carlo simulation study. Hence, our proposed approach
provides a framework to analyse the usefulness of “Big Data” sources, with
little risk in case the series do not appear to be useful.

One limitation of the current chapter is that it does not allow for time-variation
in the relation between the unobserved component of interest and the auxiliary
series. For example, legislative changes may change the correlation between
unemployment and administrative series such as claimant counts. Addition-
ally, one can easily imagine the relevance of both specific search terms as
well as internet search behaviour overall to change over time. While such
time-variation may partly be addressed by considering shorter time periods,
decreasing the already limited time dimension will have a strong detrimental
effect on the quality of the estimators. Therefore, a more structural method is
required that extends the current approach by building the potential for time
variation into the estimation method directly, while retaining the possibility to
use the full sample size. Such extensions are investigated in Chapters 3 and
4.
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2.A State space representations
For the sake of simplicity, in this appendix material the subscript t (without
the superscript k) indicates that the model is expressed at the low (monthly)
frequency.

2.A.1 Labour force model with univariate auxiliary series

Throughout this section it is assumed that the univariate auxiliary series are
the claimant counts, therefore xt = xCCt .

The observation equation is:(
yt
xt

)
6×1

= Zt

(
αyt
αxt

)
+

(
0
εxt

)
=

[
Zy
t 0
0 Zx

](
αyt
αxt

)
+

(
0
εxt

)
,

(
0
εxt

)
∼ N (0,H) ,

H
6×6

= diag
(
0′, σ2

ε,x

)
.

The state variables for yt (i.e., the level, the slope, the seasonality, the RGB
and the survey errors) are:

αyt
30×1

=
(
Lyt Ryt Sy1,t S∗y1,t Sy2,t S∗y2,t Sy3,t S∗y3,t Sy4,t S∗y4,t

Sy5,t S∗y5,t Sy6,t λ2,t λ3,t λ4,t λ5,t α′E,t
)′

αE,t
13×1

=
(
ẽ1,t ẽ2,t ẽ3,t ẽ4,t ẽ5,t ẽ1,t−2 ẽ2,t−2 ẽ3,t−2 ẽ4,t−2

ẽ1,t−1 ẽ2,t−1 ẽ3,t−1 ẽ4,t−1

)′
,

where E refers to the structure of the autocorrelated sampling errors that are
modelled as state variables.
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The state variables for xt (i.e., the level, the slope and the seasonality) are:

αxt
13×1

=
(
Lxt Rxt Sx1,t S∗x1,t Sx2,t S∗x2,t Sx3,t S∗x3,t Sx4,t S∗x4,t

Sx5,t S∗x5,t Sx6,t
)′
.

Zy
t

5×30
=


1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1

Zy
E,t

 ,

Zy
E,t

5×13

=


c1,t 0 0 0 0 0 0 0 0 0 0 0 0
0 c2,t 0 0 0 0 0 0 0 0 0 0 0
0 0 c3,t 0 0 0 0 0 0 0 0 0 0
0 0 0 c4,t 0 0 0 0 0 0 0 0 0
0 0 0 0 c5,t 0 0 0 0 0 0 0 0

 ,
Zx

1×13
=
(

1 0 1 0 1 0 1 0 1 0 1 0 1
)
.

The transition equation takes the form:(
αyt
αxt

)
43×1

= T

(
αyt−1

αxt−1

)
+

(
ηyt
ηxt

)
=

[
T y 0
0 T x

](
αyt−1

αxt−1

)
+

(
ηyt
ηxt

)
.

The transition matrix for yt is:

T y
30×30

= blockdiag(T yµ ,T
y
ω ,T

y
λ ,T

y
E).

The transition matrix for the level and slope components is:

T yµ
2×2

=

[
1 1
0 1

]
.
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The transition matrix for the seasonal component is:

T yω
11×11

= blockdiag(C1,C2,C3,C4,C5,−1),

Cl =

[
cos(hl) sin(hl)
− sin(hl) cos(hl)

]
, hl = πl/6, l = 1, ..., 5.

The transition matrix for the RGB component is:

T yλ
4×4

= I4.

The transition matrix for the autocorrelated survey errors is:

T yE
13×13

=



0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 δ 0 0 0 0 0 0 0
0 0 0 0 0 0 δ 0 0 0 0 0 0
0 0 0 0 0 0 0 δ 0 0 0 0 0
0 0 0 0 0 0 0 0 δ 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0



.

The transition matrix for xt, T x
13×13

= blockdiag (T yµ ,T
y
ω ), is the same as T y

without the transition matrices for the RGB component and for the survey
errors.
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The vector of innovations is defined as follows:

ηyt
30×1

=
(
ηyL,t ηyR,t ηyω,1,t η∗yω,1,t ηyω,2,t η∗yω,2,t ηyω,3,t η∗yω,3,t ηyω,4,t

η∗yω,4,t ηyω,5,t η∗yω,5,t ηyω,6,t ηλ,2,t ηλ,3,t ηλ,4,t ηλ,5,t η′yE,t

)′
,

ηyE,t
13×1

=
(
ν1,t ν2,t ν3,t ν4,t ν5,t 0′

)′
,

ηxt
13×1

=
(
ηxL,t ηxR,t ηxω,1,t η∗xω,1,t ηxω,2,t η∗xω,2,t ηxω,3,t η∗xω,3,t ηxω,4,t

η∗xω,4,t ηxω,5,t η∗xω,5,t ηxω,6,t
)′
,

ηt
43×1

=
(
η′yt η′xt

)′ ∼ N (0,Q) ,

Q
43×43

=

=



σ2
L,y 0 0′ 0′ 0′ 0′ 0 0 0′

0 σ2
R,y 0′ 0′ 0′ 0′ 0 ρσR,yσR,x 0′

0 0 Qy
ω 0

11×4
0

11×5
0

11×8
0 0 0

11×11

0 0 0
4×11

Qy
λ 0

4×5
0

4×8
0 0 0

4×11

0 0 0
5×11

0
5×4

Qy
ν 0

5×8
0 0 0

5×11

0 0 0
8×11

0
8×4

0
8×5

0
8×8

0 0 0
8×11

0 0 0′ 0′ 0′ 0′ σ2
L,x 0 0′

0 ρσR,yσR,x 0′ 0′ 0′ 0′ 0 σ2
R,x 0′

0 0 0
11×11

0
11×4

0
11×5

0
11×8

0 0 Qx
ω


,

where σ2
L,y = σ2

L,x = 0 in the Dutch labour force model, Qz
ω

11×11
= σ2

ω,zI11,

for z = x, y, Qy
λ

4×4

= σ2
λI4 and Qy

ν
5×5

= diag
(
σ2
ν1 , σ

2
ν2 , σ

2
ν3 , σ

2
ν4 , σ

2
ν5

)
.
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2.A.2 Labour force model with high-dimensional auxiliary series

Throughout this section it is assumed that the high-dimensional auxiliary se-
ries are the Google Trends, therefore xt = xGTt . n is the number of Google
Trends. It is assumed only r = 1 factor for the Google Trends.

The observation equation is:(
yt
xt

)
(5+n)×1

= Zt
(5+n)×31

(
αyt
αxt

)
+

(
0
εt

)
=

=

[
Zy
t 0

0
n×31

Λ̂
n×1

](
αyt
ft

)
+

(
0
εt

)
,

(
0
εt

)
∼ N

(
0, Ĥ

)
,

Ĥ
(5+n)×(5+n)

= diag
(
0′, ψ̂11, . . . , ψ̂nn

)
.

Zy
t is the same as in Appendix 2.A.1.

The transition equation takes the form:(
αyt
ft

)
31×1

= T
31×31

(
αyt−1

ft−1

)
+

(
ηyt
ηxt

)
=

=

[
T y 0
0 T x

](
αyt−1

ft−1

)
+

(
ηyt
ut

)
.

T y is the same as in Appendix 2.A.1, and T x = 1.
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The vector of innovations is:

ηt
31×1

=
(
η′yt ut

)′ ∼ N (0,Q) ,

Q
31×31

=



σ2
L,y 0 0′ 0′ 0′ 0′ 0

0 σ2
R,y 0′ 0′ 0′ 0′ ρσR,yσu

0 0 Qy
ω 0

11×4
0

11×5
0

11×8
0

0 0 0
4×11

Qy
λ 0

4×5
0

4×8
0

0 0 0
5×11

0
5×4

Qy
ν 0

5×8
0

0 0 0
8×11

0
8×4

0
8×5

0
8×8

0

0 ρσR,yσu 0′ 0′ 0′ 0′ σ2
u


,

where ηyt and the first (30 × 30) diagonal elements of Q are the same as in
Appendix 2.A.1.

Extension of the model to incorporate the lags of ft

Consider a regression of ηyR,t on the past values of ut:(
Ryt
ft

)
=

(
Ryt−1

ft−1

)
+

(
ηyR,t
ut

)
, ut ∼ N

(
0, σ2

u

)
,

ηyR,t =

q∑
j=1

κjut−j + wt =

= κ1ft−1 +

q∑
j=2

(κj − κj−1) ft−j − κqft−q−1 + wt,

wt ∼ N
(
0, σ2

w

)
.
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Lyt
Ryt
ft
ft−1

ft−2
...

ft−q


=

=



1 1 0 0 0′ 0 0
0 1 κ1 (κ2 − κ1) . . . (κq − κq−1) −κq
0 0 1 0 0′ 0 0
0 0 1 0 0′ 0 0
0 0 0 1 0′ 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0′ 1 0





Lyt−1

Ryt−1

ft−1

ft−2

ft−3
...

ft−q−1


+

+



0
wt
ut
0
0
0
0


,

(
wt
ut

)
∼ N

(
0,

[
σ2
w ρσwσu

ρσwσu σ2
u

])
.

In the measurement equation Zx =
[

Λ̂
n×1

0
n×q

]
.

60



Extension of the model to incorporate the seasonality/cycle in ft with
a (seasonal) ARIMA model

Assume an ARIMA(3, 1, 1) process for ft:

ft = ft−1 + φ1(ft−1 − ft−2) + φ2(ft−2 − ft−3) + φ3(ft−3 − ft−4)+

+ ut + γut−1, ut ∼ N (0, 1) .

The state space representation of the above model is based on Durbin and
Koopman (2012, Chapter 3) and illustrated below. Let ft be the state vector

ft =


ft−1

ft − ft−1

φ2(ft−1 − ft−2)
φ3(ft−2 − ft−3) + γut

 .

The transition equation for ft takes the form:

ft =


1 1 0 0
0 φ1 1 1
0 φ2 0 0

0 0 φ3
φ2

0

ft−1 +


0
1
0
γ

ut.

Consequently, the observation equation becomes:

xt = Λ̂
(

1 1 0 0
)

+ εt.

Note that the transition equation of the full state space model is now expressed
in the form:

αt = Tαt−1 +Rηt,
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where

R
dim(αt)×dim(αt)

=


Idim(αt)−4 0 0 0 0

0′ 0 0 0 0
0′ 0 1 0 0
0′ 0 0 0 0
0′ 0 0 0 γ

 .
We here allow ut to be correlated with ηyR,t.

I(1) idiosyncratic components

Consider the following toy example to have a clearer understanding of the
estimation procedure when some of the idiosyncratic components are I(1).

xt = Λft + εt.

Suppose that xt and εt are 5-dimensional vectors (n = 5), and ft is univariate.
Suppose that ε1,t and ε3,t are I(1), whereas ε2,t, ε4,t and ε5,t are I(0). Then
the observation equation for xt becomes:

x1,t

x2,t

x3,t

x4,t

x5,t

 =


Λ1 1 0
Λ2 0 0
Λ3 0 1
Λ4 0 0
Λ5 0 0


 ft

ε1,t

ε3,t

+


0
ε2,t

0
ε4,t

ε5,t

 ,

where ft, ε1,t and ε3,t are state variables with transition equation ft
ε1,t

ε3,t

 = I3

 ft−1

ε1,t−1

ε3,t−1

+

 ut
ξ1,t

ξ3,t

 .

Ψ = cov
(
ξ1,t ε2,t ξ3,t ε4,t ε5,t

)′
=

= cov
(

∆ε1,t ε2,t ∆ε3,t ε4,t ε5,t

)′
.
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The covariance matrix between the innovation terms in the observation equa-
tion is

cov
(

0 ε2,t 0 ε4,t ε5,t

)′
=


0 0 0 0 0
0 ψ22 0 0 0
0 0 0 0 0
0 0 0 ψ44 0
0 0 0 0 ψ55

 ,

and ends up in the H matrix defined in Appendices 2.A.2 or 2.A.3. On the
contrary, the covariance matrix between the innovations of the state variables
is

cov
(
ut ξ1,t ξ3,t

)′
=

 1 0 0
0 ψ11 0
0 0 ψ33

 ,

and ends up in theQ matrix defined in Appendices 2.A.2 or 2.A.3.

2.A.3 Labour force model with univariate and high-dimensional
auxiliary series

Throughout this section both the claimant counts and the Google Trends are
included in the model as auxiliary series.
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The observation equation is: yt
xCCt
xGTt


(6+n)×1

= Zt
(6+n)×44

 αyt
αCCt
αGTt

+

 0
εCCt
εt

 =

=


Zy
t 0

5×13
0

0′ ZCC

1×13
0

0
n×30

0
n×13

Λ̂
n×1


 αyt
αCCt
ft

+

 0
εCCt
εGTt

 ,

 0
εCCt
εGTt

 ∼ N (0,H) , H
(6+n)×(6+n)

= diag
(
0′, σ2

ε,x, ψ̂11, . . . , ψ̂nn

)
.

Zy
t is the same as in Appendix 2.A.1, andZCC is the same asZx in Appendix

2.A.1.

The transition equation takes the form: αyt
αCCt
ft


44×1

= T
44×44

 αyt−1

αCCt−1

ft−1

+

 ηyt
ηCCt
ηGTt

 =

=

 T y 0
30×13

0

0
13×30

TCC 0

0′ 0′ 1


 αyt−1

αCCt−1

ft−1

+

 ηyt
ηCCt
ut

 .

T y is the same as in Appendix 2.A.1, and TCC and αCCt are, respectively,
the same as T x and αxt in Appendix 2.A.1.

The vector of innovations is:
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η
t

4
4
×

1
=
( η′y t

η
′C
C

t
u
t

) ′ ∼
N

(0
,Q

)
,

Q
4
4
×

4
4

=

=

                    σ
2 L
,y

0
0
′

0
′

0
′

0
′

0
0

0
′

0

0
σ

2 R
,y

0
′

0
′

0
′

0
′

0
ρ
C
C
σ
R
,y
σ
R
,C
C

0
′

ρ
G
T
σ
R
,y
σ
u

0
0

Q
y ω

0
1
1
×

4
0

1
1
×

5
0

1
1
×

8
0

0
0

1
1
×

1
1

0

0
0

0
4
×

1
1

Q
y λ

0
4
×

5
0

4
×

8
0

0
0

4
×

1
1

0

0
0

0
5
×

1
1

0
5
×

4
Q
y ν

0
5
×

8
0

0
0

5
×

1
1

0

0
0

0
8
×

1
1

0
8
×

4
0

8
×

5
0

8
×

8
0

0
0

8
×

1
1

0

0
0

0
′

0
′

0
′

0
′

σ
2 L
,C
C

0
0
′

0

0
ρ
C
C
σ
R
,y
σ
R
,C
C

0
′

0
′

0
′

0
′

0
σ

2 R
,C
C

0
′

0

0
0

0
1
1
×

1
1

0
1
1
×

4
0

1
1
×

5
0

1
1
×

8
0

0
Q
C
C

ω
0

0
ρ
G
T
σ
R
,y
σ
u

0
′

0
′

0
′

0
′

0
0

0
′

σ
2 u

                    ,
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where ηyt is the same as in Appendix 2.A.1. ηCCt and σR,CC are respectively
the same as ηxt and σR,x in Appendix 2.A.1. The first (43 × 43) elements of
Q are the same as in Appendix 2.A.1, whereas the last row and column are
the same as in Appendix 2.A.2.
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2.B List of Google Trends

Search term Translation/explanation Search term Translation/explanation

aanpassing adjustment job interview
aanvragen uitkering to apply for benefit job vacancy
adecco Adecco is an employment agency jobbird Jobbird is a website to look for a job
advertentie plaatsen to place an advertisement jobbird vacatures Jobbird vacancies
adverteren to announce jobnet Jobnet is a website to look for a job
arbeidsbureau employment office jobs
automatische incasso automatic collection of money jobtrack
baan job juridische vacatures legal vanacies
baan zoeken job search kantonrechter cantonal judge
banen jobs kantonrechtersformule cantonal court formula (to treat e.g. severance payments)
bedrijven failliet businesses bankrupt maatschappelijk werk social work
belegger.nl website about investments’ information manpower Manpower is an employment agency
bezuinigen to economize maximum dagloon maximum daily wage
bijscholen retraining mijn uwv my uwv
bijstand assistance modernisering modernization
bijstandsuitkering social assistance benefit monsterboard Monsterboard is a website to look for a job
collectief ontslag collective dismissal monsterboard vacatures Monsterboard vacancies
creyfs Creyfs is an empolyment agency motivatiebrief motivation letter
curriculum vitae motivatiebrief schrijven to write a motivation letter
curriculum vitae template motivatiebrief voorbeeld example of motivation letter
curriculum vitae voorbeeld curriculum vitae example motivation letter
cv nationale vacaturebank national job bank
cv maken to make a cv olympia uitzendbureau Olympia employment agency
cv maken voorbeeld to make a cv example omscholen retrain
dagloon daily wage ondernemingsplan voorbeeld business plan example
duur ww duration of the unemployment benefit ontslag dismissal
economische crisis economic crisis ontslagaanvraag dismissal application
failliet bankrupt ontslagprocedure dismissal procedure
faillisementen bankruptcies ontslagvergoeding severance pay
fulltime baan full-time job ontslagvergunning dismissal permit
functieomschrijving job description open sollicitatiebrief open application letter
geen werk no work partijhandel stock trading
hoofdbedrijfschap ambachten main business crafts productiemedewerker production employee
hoogte ww level of unemployment benefit promotiewerk promotional work
huizenmarkt zeepbel housing market bubble randstad Randstad is an employment agency
ict vacatures IT vacancies randstad jobs
ik zoek werk I am looking for a job randstad uitzendbureau Randstad employment agency
indeed Indeed is a website to look for a job randstad vacatures Randstad vacancies
indeed jobs receptioniste receptionist
indeed uitzendbureau Indeed employment agency recht op ww right to unemployment
indeed vacatures Indeed vacancies reorganisatie reorganization
ing direct website of the ING bank restructuring
interim Interim is an employment agency resume
job resumé
job bird Jobbird is a website to look for a job resume example
job description resume template

salarisadministrateur payroll administrator

Table 2.B.1: List of Google search terms and their translations/explanations (part 1).
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Search term Translation/explanation Search term Translation/explanation

schoonmaakwerk cleaning work vacatures limburg jobs in Limburg (Dutch province)
schuldsanering debt restructuring vacatures noord brabant jobs in North Brabant (Dutch province)
sociaal plan social plan vacatures zorg vacancies care
sollicitatie job application vakantiebaan vacation job
sollicitatiebrief cover letter vakantiewerk holidayjob
sollicitatiebrief schrijven to write a cover letter verkoopmedewerker sales employee
sollicitatiebrief voorbeeld cover letter example voorbeeld cv example cv
sollicitatiegesprek job interview voorbeeld motivatiebrief example of motivation letter
sollicitaties job applications vrijwilligerswerk volunteer work
solliciteren to apply vrijwilligerswerk buitenland volunteering abroad
solliciteren bij apply at werk gezocht job search
start people Start People is an employment agency werk in work in
start uitzendbureau Start employment agency werk nl work NL
tempo team Tempo Team is an employment agency werk.nl website for job placement
tempo-team Tempo Team is an employment agency werk rotterdam work Rotterdam
tempo team uitzendbureau Tempo Team employment agency werk utrecht work Utrecht
tempo team vacatures Tempo Team vacancies werk vacature job vacancy
tempoteam Tempo Team is an employment agency werk vacatures job vacancies
tence Tence is an employment agency werk vinden to find a job
tijdelijk werk temporary job werk zoeken to look for a job
uitkering payment werkbedrijf operating company
uitkering aanvragen to claim benefits werkeloos unemployed
uitzendbureau employment agency werken bij to work at
uitzendbureau amsterdam employment agency Amsterdam werken in to work in
uitzendbureau den haag employment agency The Hague werking working
uitzendbureaus employment agencies werkloos unemployed
uwv Employee Insurance Agency werkloosheid unemployment
uwv uitkering Employee Insurance Agency payment werkloosheidsuitkering unemployment benefits
uwv vacatures Employee Insurance Agency vacancies werkloosheidswet unemployment law
uwv werkbedrijf Employee Insurance Agency operating company werkloze unemployed person
uwv ww Employee Insurance Agency unemployment benefits werklozen unemployed people
vacature job offer werkzoekende job seeker
vacature amsterdam job offer Amsterdam wet op de ondernemingsraden Works Councils Act
vacature eindhoven job offer Eindhoven wholesale
vacature secretaresse vacancy secretary Ww unemployment benefits
vacaturebank job bank ww unemployment benefits
vacatures job offers ww aanvragen to request unemployment benefits
vacatures beveiliging job security ww uitkering unemployment benefit payments
vacatures bouw job construction ww-uitkering unemployment benefit payments
vacatures brabant jobs in Brabant (Dutch province) ww uitkering aanvragen claim benefits
vacatures communicatie vacancies communication ww uitkering aanvragen uwv claim benefits Employee Insurance Agency
vacatures flevoland jobs in Flevoland (Dutch province) www.asnbank.nl website of ASN bank
vacatures friesland jobs in Friesland (Dutch province) www.uwv.nl website of the Employee Insurance Agency
vacatures horeca vacancies hospitality zeepbel bubble
vacatures in de zorg vacancies in healthcare zoek werk search for work

Table 2.B.2: List of Google search terms and their translations/explanations (part 2).

From the set of search terms listed above we discard the Google Trends which
have zero values for more than half of the time, before performing the empir-
ical analysis. The final dataset is composed of 182 monthly Google Trends
and 173 weekly Google Trends.

68



2.C Simulation results with non-Gaussian
idiosyncratic components

We conduct an additional simulation study in order to assess to what extent
the Gaussianity assumptions made on the innovations of the state space model
influences the performance of our method. The setting of this additional study
is the same as the one discussed in Section 2.4, with the only difference that
the nowcast is done in the last period of the sample for 1000 simulation runs.
We consider two additional specifications that allow the idiosyncratic compo-
nents to have distributions that deviate from the Gaussian one, respectively in
terms of skeweness and heaviness of the tails:

1. Gaussian-distributed idiosyncratic components:(
εk,yt
εk,xt

)
∼ N (0, 0.5In+1) .

Notice that this specification is the same as the first one considered in
the Section 2.4.

2. Exponentially-distributed idiosyncratic components.

εk,yt ∼ N (0, 0.5) , εk,xi,t
iid∼ Exp(1), for i = 1, . . . , n.

The exponential distribution is skewed with respect to the Gaussian one.

3. Student’s t-distributed idiosyncratic components:

εk,yt ∼ N (0, 0.5) , εk,xi,t
iid∼ t4, for i = 1, . . . , n.

The t distribution with 4 degrees of freedom has heavier tails with re-
spect to the Gaussian one.
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In all specifications Λ ∼ U (0, 1). The generated innovations according to
specifications 2 and 3 above, are then standardized to make sure that their dis-
tribution is centered around 0 and their variance is equal to 0.5. This ensures
that the simulations results are directly comparable with specification 1, and
that any deterioration or improvement in the performance of the method can
only be attributed to the non-Gaussianity of the innovations.

The additional simulation results are reported in Table 2.C.1 (we report the
same measures of nowcast accuracy used in the simulation study of Section
2.4). In terms of MSFE and variance of the nowcasts of the state variables, the
distribution does not seem to play a major role. For every specification these
two measures improve with a similar magnitude as the correlation parameter
increases. The gains are larger for the slope rather than the level of the trend.
Their values, relative to the model that does not include any auxiliary series,
are broadly lower than one (being around one only when the correlation pa-
rameter is small). These results are in line with the ones discussed in Section
2.4. The squared bias, instead, seems to be much more affected by the distri-
bution, as it worsens while deviating from Guassianity and does not improve
with a larger correlation parameter. Nonetheless, we notice from Table 2.C.1
that this deterioration of the squared bias has a minor impact on the MSFE
since the latter measure is largely composed of its variance component.12

We finally look at the consequences of non-Gaussian idiosyncratic compo-
nents, on the finite-sample distribution of the LR test for the null hypothesis
that ρ = 0. The formula for computing the LR test is LR = −2(LR − L),
where LR is the value of the log-likelihood under the restriction imposed by
the null hypothesis, andL is the value of the log-likelihood for the unrestricted
model, which estimates ρ. We simulate data for each of the three model spec-
ifications discussed at the beginning of this section with ρ = 0, and we calcu-
late the values of the LR test. We do this for 1000 simulation runs. Notice that
under the null hypothesis that ρ = 0, and a correct specification of the model,
the LR test should be asymptotically χ2

1-distributed, which (as mentioned in
Section 2.5) does not necessarily hold if the model is misspecified, e.g. if the

12In particular, we believe that the extremely large values for the relative squared bias are due
to the numerical instability caused by the very small absolute values of the squared bias.
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true distribution of the error terms is not Gaussian, but a Gaussian distribution
is instead used in order to estimate the model. In Figure 2.C.1 we therefore
compare the probability densities of the LR tests obtained as described above,
to a χ2

1 distribution. We notice that the density of the LR test is not sensitive
to deviations of the idiosyncratic components from Gaussianity. For all three
distributions of the error terms considered, i.e., Gaussian, Exponential, and
Student’s t with 4 degrees of freedom, the density of the LR test is close to
a χ2

1 distribution. These simulation results suggest that our method allows us
to conduct inference as usual based on the results of the LR test, even if the
distribution of the idiosyncratic components is misspecified.

Figure 2.C.1: Probability densities of the LR tests obtained under the null hypothesis
that ρ = 0, for nsim = 1000 and for the three model specifications discussed at the
beginning of Appendix 2.C, respectively, a Gaussian, an Exponential, and a Student’s
t4 distribution for the idiosyncratic components, εk,xt . We compare these probability
densities to a χ2

1 distribution, which is the asymptotic distribution of the LR test under
the null hypothesis, and a correct specification of the model.
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ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 0.9 ρ = 0.99

Gaussian-distributed idiosyncratic components

MSFE(L̂k
t|Ω−t

) 1.016 0.988 0.994 0.941 0.890 0.835 0.773

var(L̂k
t|Ω−t

) 1.016 0.988 0.994 0.941 0.890 0.835 0.773

bias2(L̂k
t|Ω−t

) 0.945 3.805 0.992 0.818 0.608 1.302 1.040

MSFE(R̂k
t|Ω−t

) 1.048 0.982 0.924 0.754 0.580 0.411 0.253

var(R̂k
t|Ω−t

) 1.047 0.981 0.924 0.754 0.580 0.411 0.253

bias2(R̂k
t|Ω−t

) 1.266 2.152 0.884 2.102 0.795 0.125 0.663

Exponentially-distributed idiosyncratic components

MSFE(L̂k
t|Ω−t

) 1.012 1.004 0.985 0.923 0.880 0.864 0.804

var(L̂k
t|Ω−t

) 1.012 1.003 0.985 0.923 0.880 0.864 0.804

bias2(L̂k
t|Ω−t

) 0.886 1.217 0.124 1.033 551.692 0.267 0.498

MSFE(R̂k
t|Ω−t

) 1.041 0.998 0.947 0.754 0.547 0.434 0.286

var(R̂k
t|Ω−t

) 1.042 0.995 0.946 0.749 0.538 0.429 0.276

bias2(R̂k
t|Ω−t

) 0.172 1.774 2.579 6.216 390.045 17.565 12.570

t-distributed idiosyncratic components

MSFE(L̂k
t|Ω−t

) 1.011 1.017 0.992 0.970 0.935 0.815 0.788

var(L̂k
t|Ω−t

) 1.012 1.017 0.992 0.970 0.934 0.815 0.788

bias2(L̂k
t|Ω−t

) 0.927 1.233 0.869 13.867 2.116 3.330 7.463

MSFE(R̂k
t|Ω−t

) 1.039 1.015 0.937 0.782 0.564 0.381 0.231

var(R̂k
t|Ω−t

) 1.039 1.015 0.937 0.782 0.564 0.380 0.231

bias2(R̂k
t|Ω−t

) 0.965 4.126 0.091 0.840 1.119 90.106 53.658

Table 2.C.1: Simulation results from the three settings described in Appendix 2.C.
The values are reported relative to the respective measures calculated from the model
that does not include the auxiliary series; values < 1 are in favour of our method.
nsim = 1000.
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2.D Additional empirical results
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Figure 2.D.1: Frequency of monthly Google search terms selection by the elastic net
in the out-of-sample period. A value of 1 means that the variable has been selected in
every month of the out-of-sample period. We only report search terms that have been
selected at least 50% of the times.

73



Chapter 2. A dynamic factor model approach to incorporate Big Data in
state space models for official statistics

0.4 0.5 0.6 0.7 0.8 0.9 1

werklozen
monsterboard vacatures

voorbeeld cv
werkeloos

resume
tijdelijk werk
kantonrechter

aanpassing
jobtrack

huizenmarkt zeepbel
interim

uwv vacatures
vacatures zorg
ww aanvragen

sollicitatiebrief voorbeeld
jobnet

vacatures in de zorg
randstad uitzendbureau

bezuinigen
vacature eindhoven

partijhandel
ww uitkering

wholesale
wet op de ondernemingsraden

randstad jobs
randstad vacatures

werk rotterdam
ict vacatures

open sollicitatiebrief
motivatiebrief
reorganisatie

jobbird
www.asnbank.nl

randstad
restructuring
baan zoeken

schoonmaakwerk
start people

juridische vacatures
werk utrecht

curriculum vitae voorbeeld
receptioniste
werk vinden

solliciteren
sollicitatie

bijstand
ik zoek werk
fulltime baan

sollicitatiebrief schrijven
werkbedrijf

Frequency

Figure 2.D.2: Frequency of weekly Google search terms (aggregated to the monthly
frequency according to equation (2.3.4)) selection by the elastic net in the out-of-
sample period. A value of 1 means that the variable has been selected in every week
of the out-of-sample period. We only report search terms that have been selected at
least 50% of the times.
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Figure 2.D.3: p-values from the Bowman-Shenton test for individual normality, per-
formed on each of the standardized prediction errors of the labour force, the claimant
counts, and the Google Trends series (ṽkt ). The standardized prediction errors are
obtained from the CC & GT model which employs the monthly Google Trends and
include two of their factors. The red line represents the confidence level of 0.05.

Figure 2.D.4: p-values from the Shapiro-Wilk test for individual normality, performed
on each of the standardized prediction errors of the labour force, the claimant counts,
and the Google Trends series (ṽkt ). The standardized prediction errors are obtained
from the CC & GT model which employs the weekly Google Trends and include two
of their factors, and which iterates the estimation ofΛ and Ψ . The red line represents
the confidence level of 0.05.

75





3
Time-varying state correlations in state

space models and their estimation via
indirect inference

Adapted from: Schiavoni et al. (2021a).

77



Chapter 3. Time-varying state correlations in state space models and their
estimation via indirect inference

Abstract
Statistics Netherlands uses a state space model to estimate the Dutch unem-
ployment by using monthly series about the labour force surveys (LFS). More
accurate estimates of this variable can be obtained by including auxiliary in-
formation in the model, such as the univariate administrative series of claimant
counts. Legislative changes and economic crises may affect the relation be-
tween survey-based and auxiliary series. This time-changing relationship is
captured by a time-varying correlation parameter in the covariance matrix of
the transition equation’s error terms. We treat the latter parameter as a state
variable, which makes the state space model become nonlinear and therefore
its estimation by Kalman filtering and maximum likelihood infeasible. We
therefore propose an indirect inference approach to estimate the static param-
eters of the model, which employs cubic splines for the auxiliary model, and a
bootstrap filter method to estimate the time-varying correlation together with
the other state variables of the model. We conduct a Monte Carlo simulation
study that shows that our proposed methodology is able to correctly estimate
both the time-constant parameters and the state vector of the model. Empir-
ically we find that the financial crisis of 2008 triggered a deeper and more
prolonged deviation between the survey-based and the claimant counts series,
than a legislative change in 2015. Promptly tackling such changes, which
our proposed method does, results in more realistic real-time unemployment
estimates.
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3.1 Introduction
Official statistics about the labour force, as published by national statistical
institutes, are generally based on survey data collected via a rotating panel
design in combination with direct estimation procedures, such as the general
regression (GREG) estimator (Särndal et al., 1992). Direct or design-based
estimators have nice statistical properties under large sample sizes, but the
variance of these estimates rapidly becomes unacceptably large in the case of
small sample sizes (Rao & Molina, 2015). Small sample sizes typically occur
if estimates for short reference periods or estimates at a detailed regional level
are required. As a result most national statistical institutes publish quarterly
or rolling quarterly figures about the labour force. Since monthly figures are
more timely and relevant for policy makers and GREG estimates for monthly
labour force figures are not precise enough, Statistic Netherlands implemented
a state space model for the production of official monthly labour force figures.
This model is used as a form of small area estimation (Rao & Molina, 2015),
by using the labour force survey (LFS) data collected over many months to
improve the estimates for the current month. The model also accounts for
rotation group bias (Bailar, 1975), and serial correlation in the survey errors
due to the rotating panel design of the Dutch LFS (Pfeffermann, 1991; van
den Brakel & Krieg, 2015).

The aforementioned state space model estimates the Dutch unemployed1 as an
unobserved trend and seasonal component. The state space structure allows us
to model not only the unemployment itself, but also its change, its seasonality,
the survey errors, and the rotation group bias that affects the observed series
from the labour force survey. The estimation accuracy of unemployment can
be further improved by augmenting the model with auxiliary series that might
be related to it. Harvey and Chung (2000), van den Brakel and Krieg (2016)
and Chapter 2 show that the monthly univariate auxiliary series of claimant
counts, which is a registry source, can significantly improve the estimation
accuracy of the unemployment.

In this chapter we augment the Dutch labour force state space model with the

1Throughout the chapter, we use the terms “unemployment”, “unemployed” and “unem-
ployed labour force” interchangeably to indicate the total number of unemployed people.
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auxiliary series of claimant counts, and we model the relationship between
survey-based and auxiliary series as time-varying. This is the main novelty of
the chapter. Modeling relationships between variables as time-varying allows
us to tackle changes that are triggered, for instance, by economic crises. Time-
changing relations between different sources of data that aim at measuring
the same variables, can also be due to legislative changes. Of course these
events are of different nature and can result in different evolutions over time
for the relationship of interest. This one can, for instance, show an abrupt
change and then be followed by a gradual recovery, or be just characterised
by a smooth adjustment to a new level. In a Monte Carlo simulation study we
will therefore look at different possible patterns of the relationship between
two time series.

We let the time-varying relation be captured by a time-varying correlation in
the covariance matrix of the disturbances of the state space model’s transition
equation. Solving our problem, i.e., extracting this time-varying state corre-
lation, is therefore already challenging by the fact that this parameter relates
innovations of components that are unobserved. Additionally, data and their
respective log-likelihood functions, are much less informative about correla-
tions than other parameters, such as means or variances.

We treat the time-varying correlation that enters this covariance matrix as an
additional state variable with its own dynamic equation, which makes this pa-
rameter random, i.e. subject to its own source of error. The state space model
therefore becomes nonlinear. The nonlinearity of the model makes it infeasi-
ble the estimation of the state variables by standard Kalman filtering, which
in turns makes the likelihood function (needed to estimate the static parame-
ters of the model) intractable. There are several frequentist methods that can
be employed in order to estimate nonlinear state space models. Importance
sampling (see Jungbacker and Koopman (2007), Koopman et al. (2015), and
Koopman et al. (2018)) and the Extended Kalman filter (explained in Durbin
and Koopman (2012, Chapter 10)) are some examples, and they allow us to
estimate both the state variables and the time-constant parameters of the non-
linear model. The reprojection method of Gallant and Tauchen (1998) is an-
other technique that can be employed in order to estimate the state vector but
not the static parameters of nonlinear state space models. Nonetheless, the
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implementation of these methods in our setting is hampered by the nonlin-
earity being in the transition equation and involving not only state variables
but also disturbance terms (as will become clear at the beginning of Section
3.3). The above-mentioned methods are more suited to solve nonlinearities
appearing in the observation equation or involving only state variables. Shift-
ing our nonlinear problem from the transition to the observation equation is
non-trivial. Alternatively, sequential Monte Carlo methods, such as particle
filtering, can be employed (and we do) for the estimation of the state vec-
tor, but the resulting log-likelihood function is not continuous with respect to
the static parameters of the nonlinear model, which hinders their estimation
via this approach (Creal, 2012). We circumvent this problem by estimating
the time-constant parameters by indirect inference, before applying particle
filtering.

The indirect inference method, originally proposed by Gourieroux et al.
(1993), requires the use of an auxiliary model which approximates the
true one, but which can also be easily estimated. In our case the auxiliary
model employs a deterministic specification for the time-varying correlation,
which preserves the linearity of the state space model. This deterministic
specification assumes a smooth change over time for the correlation, and is
based on the cubic splines estimation method. The latter approach requires
the change points in time to be chosen a priori, and can already be employed,
by itself, in estimating the time-varying state correlation. Koopman et al.
(2006) and Proietti and Hillebrand (2017) already utilised this method for
modeling time-varying parameters in state space models. However, the use
of cubic splines for the auxiliary model in the indirect inference estimation
of static parameters, not only in state space models, has not been explored
before. Once the time-constant parameters have been estimated by indirect
inference, we employ a Rao-Blackwellised (Chen & Liu, 2000) bootstrap
filter (Gordon et al., 1993), which is a type of sequential Monte Carlo
algorithm, and more specifically a type of particle filter, in order to estimate
the state variables of the model. The Rao-Blackwellisation of the bootstrap
filter is needed in order to simplify the estimation of the state vector when
this is large, which is the case in the Dutch labour force model extended with
the claimant counts series.

81



Chapter 3. Time-varying state correlations in state space models and their
estimation via indirect inference

Monfardini (1998) and Gagliardini et al. (2017) are works very close to this
chapter as they both employ indirect inference in order to estimate the static
parameters of nonlinear state space models, where the nonlinearity arises from
stochastic variances in the innovations of the observation equation. In the for-
mer paper Autoregressive and Moving Average (ARMA) are employed as
auxiliary models, whereas the latter work makes use of Mixed Data Sam-
pling (MIDAS) regressions and Autoregressive Conditional Heteroskedastic-
ity (ARCH) models, and it also provides a filtering step for the estimation
of state variables based on the reprojection method of Gallant and Tauchen
(1998). Stochastic variances are a rather common source of nonlinearity in
state space models and there are many, also applied, papers that deal with
them. Stock and Watson (2007) and Antolin-Diaz et al. (2017) are two ex-
amples, and they consider nonlinear state space models, respectively for US
inflation and a set of US macroeconomic variables, where both the innova-
tions in the measurement and transition equations have stochastic variances.
The models are estimated via the Bayesian approach of Markov Chain Monte
Carlo (MCMC), which could probably also be employed to estimate our non-
linear model, but we do not venture into Bayesian techniques. Both papers
show how recession periods can play a big role in triggering changes in pa-
rameters, in their cases by boosting volatilities. To the best of our knowledge,
this chapter is the first one to deal with the estimation of a stochastic state
correlation, and that therefore employs particle filtering for this purpose.

We conduct a Monte Carlo simulation study in order to assess the performance
of our proposed estimation methods: the one purely based on cubic splines,
and the one which combines indirect inference and Rao-Blackwellised boot-
strap filtering. We investigate not only how they are able to estimate the time-
constant parameters of the model as well as the true time-varying relation, but
also to what extent estimating this relation as time-varying, instead of time-
constant, yields gains in the estimation accuracy of unobserved components
of interest. We then conduct an empirical study to estimate the Dutch un-
employment by means of the labour force state space model augmented with
the auxiliary series of claimant counts, while modeling the relationship be-
tween survey-based and auxiliary series as time-varying, with our proposed
methods.
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The chapter is structured as follows. Section 3.2 presents a description of
the state space model used by Statistics Netherlands for estimating monthly
unemployment figures, and its extension with the univariate auxiliary series
of claimant counts. Section 3.3 describes our proposed methods for the esti-
mation of the time-varying correlation, together with the remaining state vari-
ables and the static parameters of the nonlinear state space model. Sections 3.4
and 3.5 report the results of, respectively, the Monte Carlo simulation study
and the empirical application. Finally, Section 3.6 concludes the chapter.

3.2 The Dutch labour force model and its extension

The Dutch LFS is conducted according to a rotating panel design. Each month
a new sample, drawn according to the stratified two-stage cluster design de-
scribed in van den Brakel and Krieg (2015) and Chapter 2, enters the panel
and is interviewed five times at quarterly intervals. After the fifth interview,
the sample leaves the panel. The sample that is interviewed for the jth time
is called the jth wave of the panel, for j = 1, ..., 5. This rotation design im-
plies that in each month five samples are observed, which over time generate
a five-dimensional time series of the survey-based unemployed labour force,
defined as population total (see Table 2.1 for a visualisation of the rotation
panel design of the Dutch LFS).

Let yj,t denote the general regression (GREG) estimate (Särndal et al., 1992)
for the Dutch unemployment in month t based on the sample observed in
wave j. Now yt = (y1,t, . . . , y5,t)

′ denotes the vector with the five GREG es-
timates for the Dutch unemployment in month t. This five-dimensional vector
of GREG estimates is cast in a state space model whose measurement equa-
tion takes the expression:

yt = ı5θy,t + λt + et, (3.2.1)

where ı5 is a five-dimensional column vector of ones, and θy,t is a common
unobserved state variable among the five-dimensional waves of the survey-
based unemployed labour force, and it represents the Dutch unemployment
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itself. As such, it is our variable of interest, and as an unobserved compo-
nent, it is assumed to be unknown and estimable. The reason why the unem-
ployment is re-estimated by means of a state space model, using the GREG
estimates as observed series, is because the latter are considered too volatile
to produce sufficiently reliable monthly estimates for the unemployed labour
force at monthly frequency. The additional estimation method via state space
models, which was originally proposed by Pfeffermann (1991), improves the
precision of the monthly estimates for the unemployment with sample infor-
mation from previous periods, and can therefore be seen as a form of small
area estimation (Rao & Molina, 2015).

The state variable of interest, θy,t, is assumed to be composed of a trend and
a seasonal component (which means that strictly speaking θy,t is the sum of
state variables, but for simplicity we refer to it as state variable throughout the
chapter):

θy,t = Ly,t + Sy,t.

The exclusion of an innovation term in the formula above is motivated by
Bollineni-Balabay et al. (2017). The transition equations for the level (Ly,t)
and the slope (Ry,t) of the trend are, respectively:

Ly,t+1 = Ly,t +Ry,t,

Ry,t+1 = Ry,t + ηR,y,t, ηR,y,t ∼ N
(
0, σ2

R,y

)
.

The random walk specification for the slope means that the latter is assumed
to be integrated of order 1, I(1), which implies that its first differences are
assumed to be stationary (i.e., mean-reverting). Consequently, the level of the
trend, which is expressed as the cumulative sum of the slope, is integrated of
order 2, I(2), implying that its second differences are stationary. The absence
of an innovation term for the trend’s level is motivated in van den Brakel and
Krieg (2016) as being the result of Likelihood Ratio testing, and implies a
smoothness assumption on the level of the trend in unemployment.

The trigonometric stochastic seasonal component allows for the seasonality
to vary over time, and it is modeled as in Durbin and Koopman (2012, Chap-
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ter 3):

Sy,t =

6∑
l=1

S1,y,l,t,(
S1,y,l,t+1

S2,y,l,t+1

)
=

[
cos(hl) sin(hl)
− sin(hl) cos(hl)

](
S1,y,l,t

S2,y,l,t

)
+

(
η1,ω,y,l,t

η2,ω,y,l,t

)
,(

η1,ω,y,l,t

η2,ω,y,l,t

)
∼ N

(
0, σ2

ω,yI2

)
,

where hl = πl
6 , for l = 1, . . . , 6, and I2 is a 2× 2 identity matrix.

Rotating panel designs can induce Rotation Group Bias (RGB), i.e., sys-
tematic differences among the observations in the subsequent waves (Bailar,
1975). van den Brakel and Krieg (2015) argue that, for the Dutch LFS, the
estimates for unemployment based on the first wave are systematically larger
than the estimates based on the follow-up waves. Some of the reasons that trig-
ger this phenomenon are discussed in Chapter 2, and they suggest that the an-
swers from the first wave of interviews have to be considered as being the most
reliable ones and not to be affected by the RGB. The five-dimensional state
vector λt in equation (3.2.1) accounts for the RGB in the second to fifth wave,
as proposed in Pfeffermann (1991), and its last four elements are modeled as
a random walk because they are supposed to capture the time-dependent dif-
ferences with respect to the first wave:

λ1,t+1 = 0,

λj,t+1 = λj,t + ηλ,j,t, ηλ,j,t ∼ N
(
0, σ2

λ

)
, j = 2, . . . , 5.

Notice that λ1,t+1 = 0 because it is assumed that the first wave is not affected
by the RGB.

The rotating panel design also induces autocorrelation among the survey er-
rors in the follow-up waves. In order to account for this autocorrelation, the
survey errors, which are represented by the five-dimensional vector et in equa-
tion (3.2.1), are treated as state variables. The transition equation for the sur-
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vey errors takes the following form:

ej,t = cj,tξj,t, cj,t =
√

var (yj,t), j = 1, . . . , 5,

ξ1,t+1 ∼ N
(
0, σ2

ν1

)
,

ξj,t+1 = δξj−1,t−2 + νj,t, νj,t ∼ N
(

0, σ2
νj

)
, j = 2, . . . , 5, |δ| < 1,

var (ξj,t) = σ2
νj/
(
1− δ2

)
, j = 2, . . . , 5.

The survey errors of all waves, ej,t, are assumed to be proportional to the
standard errors of the GREG estimates,

√
var (yj,t), for j = 1, . . . , 5, in or-

der to account for heterogeneity in their variances, which are caused by, for
instance, changing sample sizes over time. The scaled sampling errors ξj,t,
j = 1, . . . , 5, capture the serial autocorrelation induced by the sampling over-
lap of the rotating panel. Since in the first wave of interview samples are
observed for the first time, the survey errors of the first wave are not auto-
correlated with survey errors of previous periods. The survey errors of the
second to fifth wave are, instead, correlated with the survey errors of the pre-
vious wave three months before. For this reason van den Brakel and Krieg
(2009), following an approach proposed by Pfeffermann et al. (1998), suggest
to model the survey errors with an auto-regressive process of order 3, AR(3),
without including the first and second lag.

In order to achieve more accurate estimates, or forecasts, of the unemploy-
ment, it is possible to augment the model with auxiliary series that are related
to this variable. Harvey and Chung (2000), van den Brakel and Krieg (2016)
and Chapter 2 show that including in the model the univariate auxiliary series
of monthly claimant counts, which represents the number of people claim-
ing unemployment benefits and which is a registry source, can significantly
improve the accuracy of estimation (and nowcasting) of unemployment. Only
unemployed people who have worked enough time, and therefore paid enough
taxes, can receive unemployment benefits in the Netherlands, for a maximum
of three years and two months, whether they are employed or not at the end
of this period. The claimant counts therefore tend to underestimate the Dutch
long-term unemployment. Figure 3.2.1 displays the monthly time series of
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the GREG estimates and the claimant counts, from January 2004 until March
2020. It is possible to see how the two series overall tend to follow the same
trend over time, but deviate from each other between 2010 and 2016.

Figure 3.2.1: Monthly GREG estimates for Dutch unemployment based on the labour
force survey (black), yt, and the univariate time series of claimant counts in the
Netherlands (red).

If we let xCC,t be the univariate series of monthly claimant counts, the labour
force model augmented with this auxiliary series, looks as follows:(

yt
xCC,t

)
=

(
ı5θy,t
θCC,t

)
+

(
λt
0

)
+

(
et
εCC,t

)
, εCC,t ∼ N

(
0, σ2

ε,CC

)
,

(3.2.2)(
θy,t
θCC,t

)
=

(
Ly,t
LCC,t

)
+

(
Sy,t
SCC,t

)
, (3.2.3)(

Ly,t+1

LCC,t+1

)
=

(
Ly,t
LCC,t

)
+

(
Ry,t
RCC,t

)
, (3.2.4)(

Ry,t+1

RCC,t+1

)
=

(
Ry,t
RCC,t

)
+

(
ηR,y,t
ηR,CC,t

)
, (3.2.5)
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with

cov

(
ηy,R,t
ηCC,R,t

)
=

[
σ2
R,y ρσR,yσR,CC

ρσR,yσR,CC σ2
R,CC

]
. (3.2.6)

The augmented state space model above shows that the series of claimant
counts is also supposed to be composed of a level and a seasonal component,
which are assumed to have the same transition equations of the level and the
seasonal components of θy,t.

The static parameters (which are also referred to as “hyperparameters” in the
state space literature) and the state variables of the model defined by equa-
tions (3.2.2)-(3.2.6) are estimated, respectively, by maximum likelihood using
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimisation algorithm, and
by the Kalman filter (details about these estimation methods are provided in
Section 3.3). A diffuse initialisation of the Kalman filter is used for all state
variables of the model, except for the 13 state variables that define the autocor-
relation structure of the survey errors, for which we use the exact initialisation
of Bollineni-Balabay et al. (2017).

The transition equation (3.2.5) implies that the trend’s slopes of the survey-
based and the claimant counts series have the same order of integration: they
are both I(1). Their innovations are allowed to be correlated, as their covari-
ance matrix in equation (3.2.6) shows. Harvey and Chung (2000) show, via
simulations, that if the magnitude of this correlation parameter is large, there
are gains in the accuracy of estimation and nowcast, respectively in terms of
MSE and MSFE, of the Kalman filter estimators of θy,t, Ly,t and Ry,t. In the
special case where the absolute value of the correlation parameter is equal to
1, the covariance matrix of equation (3.2.6) is not full rank any more, which
means that the corresponding state variables have the same source of error,
and are said to be cointegrated. This correlation parameter is of key impor-
tance in our study, because it represents the means for the Dutch labour force
model to exploit auxiliary information.

Notice that the smooth trend model specification for the claimant counts’ trend
implies that the claimant counts series is I(2).
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We employ the method proposed by Harvey and Chung (2000) in order to
incorporate auxiliary information in the model, by augmenting the observed
series with the auxiliary one. Alternatively, the claimant counts series could
be added as a regressor in the measurement equation. However, with this
latter option the main part of the trend in unemployment would be explained
by the auxiliary series, and its filtered estimates would contain a residual trend
instead of the unemployment’s trend. Since trend estimates are published as
part of the monthly official labour force figures, this approach is not an option
for Statistics Netherlands, and we do not consider it in this chapter.

Model (3.2.1) has been used by Statistics Netherlands since 2010 for the pro-
duction of official labour force figures. To further improve the precision of the
time series model estimates, Statistics Netherlands decided in 2014 to aug-
ment this model with the series of Dutch claimant counts. Until the end of
2014, survey-based and auxiliary series were actually cointegrated. In Febru-
ary 2015, some changes were implemented in the registration of claimant
counts. Namely, since then people that find a job can receive unemployment
benefits up to two months after having found the job. These people are there-
fore still part of the claimant counts for those two additional months despite
being actually employed. This resulted in systematic higher time series esti-
mates for the unemployed labour force in the second quarter of 2015, com-
pared to the model without claimant counts. It was anticipated that this leg-
islative change would disturb the relationship between the survey-based and
the claimant counts series, and that a model assuming a time constant corre-
lation incorrectly would not not observe the drop in this parameter during the
first months after the legislative change. As a result, Statistics Netherlands
went back to the model without claimant counts in June 2015, and revised
the monthly figures that were published from March until May 2015. This
model has been used for publishing official monthly figures about the Dutch
labour force since then. Hence the main purpose of this chapter to model
the relationship between survey-based and auxiliary series as time-varying,
by proposing a method for the estimation of time-varying state correlations
in state space models. The correlation parameter in the covariance matrix of
equation (3.2.6) is therefore, hereinafter, assumed to be time-varying.
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3.3 Method for the estimation of a time-varying state
correlation

This section describes our proposed approach to model a time-varying state
correlation, when this is assumed to be random. For the sake of generality,
the auxiliary series included in the model will be indicated as xt (which in the
case of the claimant counts is just a scalar). Additionally, we need to impose a
restriction on the space of ρt, namely of being between -1 and 1. We therefore
re-parametrise the correlation parameter as

ρt = tanh (γt) ,

for t = 1, . . . , T , and where tanh is the hyperbolic tangent, which is a time-
invariant, continuous, invertible, and twice differentiable function.

We let zt = (y′t,x
′
t)
′ be the n× 1 vector that collects all the observed series,

and Zt−1 = {z1, . . . ,zt−1} be the available information set at time t. The
Dutch labour force model (3.2.2)-(3.2.6) can be compactly written as

zt = Zαt +Mεt, εt ∼ N (0,H)

αt+1 = Tαt +Rηt, ηt ∼ N (0,Qt) ,
(3.3.1)

for t = 1, . . . , T , where T is the sample size, αt is the p × 1 vector of state
variables and ηt is the corresponding r × 1 vector of disturbances. The re-
spective covariance matrix, Qt, is varying over time because it contains the
time-varying correlation parameter, ρt. The p × p matrix T defines the dy-
namic structure of the state variables, and R is a p × r selection matrix. The
n×p matrixZ links the observed series to the state vector, εt is the q×1 dis-
turbance vector of the observation equation, with covariance matrix H , and
M is a n × q selection matrix. We assume the matrices Z, M , H , T and
R to be non-stochastic2. If we also assume Qt to be non-stochastic, which
happens if ρt is actually constant, or if we assume a deterministic specification

2The exact expressions for all these matrices in the extended Dutch labour force model, can
be found in Chapter 2.
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that captures the time-variation of ρt, then the state space model (3.3.1) is lin-
ear. We indicate withβ the vector of unknown time-constant parameters of the
linear model (which are contained in the above-listed matrices). Then, con-
ditionally on the information set and β, the observations and the state vector
are Gaussian: (zt|Zt−1;β) ∼ N (Zat,Ft) and (αt|Zt−1;β) ∼ N (at,Pt).
Therefore, the log-likelihood function for zt takes the form3

` =
T∑
t=1

`t, (3.3.2)

with

`t = log p (zt|Zt−1;β) = −n
2

log (2π)− 1

2
log (detFt)−

1

2
v′tF

−1
t vt,

(3.3.3)

for t = 1, . . . , T , where the prediction error vt and its covariance matrix Ft
are evaluated by the following Kalman Filter recursions:

vt = zt −Zat
Ft = ZPtZ

′ +MHM ′

Kt = TPtZ
′F−1
t

at|t = at + PtZ
′F−1
t vt

Pt|t = Pt − PtZ ′F−1
t ZPt

at+1 = Tat +Ktvt

Pt+1 = TPt (T −KtZ)′ +RQtR
′,

(3.3.4)

3In case of a diffuse initialisation of the Kalman filter, we employ the following diffuse log-
likelihood (Harvey, 1989), instead of equations (3.3.2)-(3.3.3):

`d = −Tn
2

log(2π)− 1

2

T∑
t=d+1

[
log (detFt)−

1

2
v′tF

−1
t vt

]
,

with d being the number of nonstationary state variables of the target observed series (in
the empirical application of Section 3.5, d is the number of unobserved components of the
GREG estimates for which a diffuse initialisation is used).
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for t = 1, . . . , T . The vector at|t represents the filtered estimate of αt, and
Pt|t is its estimated covariance matrix. The one-step-ahead prediction of the
state vector, together with its predicted covariance matrix, are represented, re-
spectively, by at+1 and Pt+1. Assuming normality of the innovations is stan-
dard in state space models because it allows us to estimate β by maximising
the log-likelihood (3.3.2). Under the normality assumption, the Kalman filter
yields the minimum variance unbiased estimator of the state vector. How-
ever, if the Gaussianity assumption of the innovations is not met, then the
Kalman filter still provides the minimum variance linear unbiased estimator
of the state vector, as long as the model is linear (Durbin & Koopman, 2012,
Chapter 4).

The correlation parameter, ρt, can be assumed to be stochastic, instead of de-
terministic, by treating γt as an additional state variable with its own transition
equation:

γt+1 = γt + ηγ,t, ηγ,t ∼ N
(
0, σ2

γ

)
(3.3.5)

for t = 1, . . . , T . The state vector hence becomes α∗t = (α′t, γt)
′, yielding

what we refer to as the “nonlinear state space model”:

zt = Z∗α∗t +Mεt, εt ∼ N (0,H)

α∗t+1 = T ∗α∗t +R∗η∗t , η∗t ∼ N (0,Q∗t ) ,
(3.3.6)

for t = 1, . . . , T , where η∗t = (η′t, ηγ,t)
′, andZ∗, T ∗,R∗ andQ∗t are straight-

forwardly obtained by adding γt as an additional state variable and ηγ,t as an
additional state innovation. We let τ be the parameter vector that collects all
the static parameters of the nonlinear model, i.e., the time-constant param-
eters appearing in H , T ∗, and Q∗t (including σγ) of model (3.3.6). Notice
that the matrices M and H are the same as the ones specified for the linear
state space model (3.3.1). Model (3.3.6) is nonlinear in its transition equa-
tion. To see this, let us define with CQ,t the Cholesky decomposition of Q∗t
(i.e., such that CQ,tC ′Q,t = Q∗t ). Then η∗t ∼ N (0,Q∗t ) can be re-written
as CQ,tη∗t ∼ N (0, Ir+1), where CQ,tη∗t involves multiplications (i.e., non-
linear structures) of random components (ρt and ηt). This implies that the
state vector of the nonlinear model, α∗t , cannot be estimated by the standard
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Kalman filter recursions (3.3.4), and the consequent evaluation of the log-
likelihood (3.3.2) is therefore precluded. As already mentioned in the Intro-
duction, we solve this problem by proposing an indirect inference approach,
which makes use of cubic splines for the auxiliary model, in order to estimate
τ , and then estimating the state vector, α∗t , with the Rao-Blackwellised Boot-
strap filter (RBBF). The next two sub-sections explain our proposed method-
ology in detail.

3.3.1 Indirect inference with a cubic splines approximate model

When the likelihood function needed to estimate the static parameters of a
model is intractable, which, as explained above, is the case for a nonlinear
state space model, Gourieroux et al. (1993) propose to indirectly estimate
these parameters via the optimisation of an “incorrect criterion”. This can
be, for instance, the exact log-likelihood of an approximate model, which
can therefore be easily estimated. In our case a natural approximate model
would be a linear Gaussian state space model, which assumes a deterministic
specification for the time-varying correlation. We do so by means of cubic
splines.

Cubic splines are continuous piecewise polynomial functions of cubic order
whose function values and first and second derivatives agree at the points
where they join (Smith, 2008). The abscissas of these joint points are called
knots and are chosen to determine the complexity of the approximation. A
common choice is to set the knots to evenly partition the support 1, . . . , T of
t. Specifically, in the Monte Carlo simulation and empirical studies, we spec-
ify two choices for the location of the knots: at the quartiles and septiles of
the sample size. We then let an information criterion decide on the best choice
of the knots’ locations4. If the date of a structural change in the time-varying

4The information criteria that we employ are the Akaike and the Bayesian, respectively given
by the following expressions (Durbin & Koopman, 2012, Chapter 7):

AIC =
1

T
[−2`d + 2 (d+ dim(β))]

BIC =
1

T
[−2`d + log (T ) (d+ dim(β))] ,
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parameter is known, it can be used as (additional) knot. The polynomial or-
der controls for the smoothness of the splines and is treated as fixed (Hansen,
2019).

The deterministic time-varying specification for γt, based on cubic splines,
is

γt = w′tφ, (3.3.7)

where wt is a k × 1 vector of known weights, which depends on t, on the
position of the knots and the distance between them; it corresponds to the
tth row of a T × k matrix W of splines weights constructed as in Poirier
(1973), where k is equal to the number of knots. Moreover, φ is a k × 1
vector of coefficients. Each element φj of φ, represents the value of γt at
the jth knot, for j = 1, . . . , k. We use a natural cubic spline with truncated
power polynomial basis. The natural feature restricts the spline functions to
be linear beyond the boundary knots, in order to decrease the large variance
that affects cubic splines at the boundaries, while paying the price for a larger
bias (Hastie et al., 2009, Chapter 5). Notice that the weightswt make sure that
γt varies over time, but they are all pre-specified, which means that there is no
stochastic component in specification (3.3.7). This makes sure that the state
space model remains linear. Equations (3.3.1) and (3.3.7) define what we
refer to as the “approximate/auxiliary model” or the “cubic splines model”.
The parameter vector β of this approximate linear model therefore contains
the time-constant parameters appearing in H , T , and Qt of model (3.3.1),
together with φ. Vectors β and τ only differ because the latter contains σγ
instead of φ. Very importantly, β is easily estimated by maximising the log-
likelihood (3.3.2). We indicate with β̂ the maximum likelihood estimate of β.
The cubic splines estimate for ρt is therefore equal to ρ̂CS,t = tanh(w′tφ̂).

In the context of state space models, a cubic splines approach to estimate time-
varying parameters has already been employed by Koopman et al. (2006) and
Proietti and Hillebrand (2017). They use this method to model, respectively,

where dim(β) is the dimension of β. We use the former criterion in the Monte Carlo
simulation study of Section 3.4, and the latter in the empirical application of Section 3.5.
This is because BIC is notoriously more parsimonious than AIC, an it therefore prevents
an unnecessary increase in the (already high) complexity of the Dutch labour force model.
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time-changing volatilities and smoothly changing parameters over the seasons
of the year.

After β has been estimated by maximum likelihood on the observed series,
ZT , the indirect inference approach proceeds by simulating, for a given value
of τ , S paths of ZT according to the nonlinear model. The nonlinear model
is therefore required to be simulable (which is the case for model (3.3.6)).
The cubic splines model is re-estimated on every simulated path Z(s)

T (τ ), for
s = 1, . . . , S, yielding S different maximum likelihood estimates, β̂(s)(τ ).
The parameter vector of the nonlinear model, τ , is then estimated as

τ̂ = argmin
τ∈T

(
µ̂− 1

S

S∑
s=1

µ̂(s)(τ )

)′(
µ̂− 1

S

S∑
s=1

µ̂(s)(τ )

)
, (3.3.8)

where T is the parameter space of τ . The vector µ̂ =
(
β̂\φ̂, var(φ̂)

)
, where

β̂\φ̂ corresponds to the vector β̂ without φ̂, and var(φ̂) = 1
k−1

∑k
j=1(φ̂j− ¯̂

φ)2

is the variance of φ̂, with φ̂j being its jth element and ¯̂
φ = 1

k

∑k
j=1 φ̂j . In

the literature about indirect inference, the minimisation (3.3.8) is generally
applied to β̂ directly5, instead of a modified version of it, which in our case
is µ̂. However, in our setting matching the estimates for φ, based on true and
simulated data, is inadvisable since this parameter vector bears information
about the evolution of γt over time, not only about σγ , which we instead aim
to estimate by indirect inference. The goal at this stage is to estimate only the
time-constant parameters of the nonlinear model, not the evolution of its state
variables over time, which we instead need in the filtering step (described in
Section 3.3.2). This is the reason why the simulated paths, Z(s)

T (τ ), only need
to depend on the values of τ and need not be conditioned on the observed data,
ZT ; the maximum likelihood estimates for φ can be very different for distinct
simulated paths, even if these paths are generated based on the same value of
τ , and therefore of σγ . We therefore need a function of φ̂ that is informative

5In this case Gourieroux et al. (1993) show that τ̂ is a consistent estimator of τ , and that,
for S fixed,

√
T (τ̂ − τ ) is asymptotically normally distributed with covariance matrix

depending on the function relating β and τ , which is (as in our case) often unknown.
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only about σγ ; the statistics var(φ̂) achieves this goal since φ̂j represents the
value of the cubic spline estimate of γt at the jth knot, for j = 1, . . . , k, and
var(φ̂) is therefore a measure of the cubic spline estimate’s spread. Intuitively,
the larger σγ , the more volatile we would expect the cubic splines estimate of
γt to be, and therefore the larger the value of var(φ̂)6.

Finally, notice that dim(µ) ≥ dim(τ ), in order for τ to be idenitifiable
(Gourieroux et al., 1993). In our case the two vectors have the same dimen-
sion7.

Algorithm 1 reports the detailed steps for the implementation of the indirect
inference estimation of τ .

The stochastic specification of a time-varying parameter is more flexible than
the deterministic one based on cubic splines, since it requires fewer assump-
tions on the parameter’s evolution over time. With the cubic splines we in-
deed have to assume that the parameter is changing smoothly over time, and
we need to choose the location of the knots a priori. The dynamic equation
(random walk in our case) for the stochastic specification also needs to be
chosen a priori, but (as will be shown in the Monte Carlo simulation study)
is able to accommodate a wider variety of time-varying patterns. However,
other non-random and more flexible time-varying specifications, than the one
based on cubic splines, could potentially be used for the approximate model
in the indirect inference approach. For instance, we also followed the idea of
Delle Monache et al. (2016), who estimate time-varying parameters in state
space models with the score-driven method of Creal et al. (2013) and Harvey

6Monte Carlo simulation results, that we do not report in this chapter, suggest that other
measures, such as the variance of the cubic spline estimate of γt, can alternatively be
employed in order to achieve the same goal. In principle, several other measures of the
spline variability, also based on its second derivative, could be alternatively employed for
the indirect inference estimation. Poirier (1973) provides the analytical expression for this
second derivative, and it should be possible to start from them in order to build such a
measure.

7We choose a random walk specification for γt, given in equation (3.3.5), because it is a
rather flexible one, and it allows for structural changes in the correlation parameter. Gen-
erally, an AR(1) specification could be employed instead. However, in the latter case the
inequality would not hold anymore, because the AR(1) specification implies that at least
one additional parameter in the nonlinear model needs to be estimated.
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(2013), by assuming that the time-varying correlation depends on its past val-
ues and past values of the score function (i.e., the scaled derivative of the log-
likelihood with respect to the correlation). Nevertheless, Monte Carlo simula-
tion results, which we report and discuss in Chapter 4, show that this method
does not satisfactorily estimate the time-varying correlation. Moreover, this
approach is computationally much more expensive than the one based on cu-
bic splines. We therefore decided not to pursue it.

3.3.2 Rao-Blackwellised bootstrap filter

Once the static parameters of the nonlinear model have been estimated, we
can proceed with the filtering step in order to estimate ρt, together with the
other state variables of the model. The nonlinearity of the state space model
remains after the estimation of τ , which means that alternative filters than the
Kalman filter need to be used. As already anticipated in the Introduction, we
employ the bootstrap filter of Gordon et al. (1993), which is a type of particle
filter.

Before proceeding with the explanation of the method, we point out that the
bootstrap filter is always applied to the nonlinear model (3.3.6), evaluated at
the indirect inference estimate, τ̂ , even when we do not make this explicit in
what follows. We therefore indicate with T̂ ∗, Ĥ , and Q̂∗t the indirect infer-
ence estimates for the corresponding matrices of model (3.3.6). Notice that Q̂t

(from model (3.3.1)) is equivalent to Q̂∗t without its last row and column.

The idea of bootstrap filtering is to simulate, at time t and unconditionally
on the data, zt, M values for each state variable of model (3.3.6), from
the density distribution implied by their transition equation: draw α

(m)∗
t ∼

N
(
T̂ ∗α

(m)∗
t−1 ,R

∗Q̂∗tR
∗′
)

, form = 1, . . . ,M . TheseM generated values are
called particles. Of course, since the particles are simulated unconditionally
on the data, some of them will be far from the true values of the state variables,
and some others will be close. To make sure that the latter happens, M should
be large. In order to understand which of the particles are closer to the true

values, we compute the likelihood for each one of them: p
(
zt|α(m)∗

t , τ̂
)(m)

,
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Algorithm 1 INDIRECT INFERENCE ESTIMATION OF τ

1: Estimate the cubic splines model on the observed data, ZT , by Kalman filter and maximum
likelihood. Store the maximum likelihood estimate, β̂.

2: Generate standard normal errors ε̃(s)t ∼ N(0, Iq), and η̃(s)∗
t ∼ N(0, Ir+1), for

t = 1, . . . , T and s = 1, . . . , S. These simulated errors are used for all values of τ
in minimisation (3.3.8), which means that they have to be stored before performing the
minimisation (otherwise the objective function used in equation (3.3.8) is not continuous
with respect to τ ).

3: for τ ∈ T do
4: for s ∈ {1, ..., S} do
5: Set initial values α(s)∗

0 = 0. Then generate new series Z(s)
T according to the non-

linear model (3.3.6). This is done as follows:
6: for t ∈ {1, ..., T} do
7: LetCH be the Cholesky decomposition ofH . Get ε(s)t = CH ε̃

(s)
t .

8: Get η(s)γ,t = σγ η̃
(s)
γ,t, and then γ(s)

t = γ
(s)
t−1 + η

(s)
γ,t.

9: EvaluateQ(s)∗
t at γ(s)

t . Let U (s)
Q,t be the Cholesky decomposition ofQ(s)∗

t with-

out its last row and column (which is Q(s)
t ). Get η(s)

t = U
(s)
Q,tη̃

(s)
t (notice that

η̃
(s)
t is equal to η̃(s)∗

t without its last element, which is η̃(s)γ,t).
10: Get α(s)

t = Tα
(s)
t−1 +Rη

(s)
t .

11: Get z(s)
t = Zα

(s)
t +Mε

(s)
t .

12: end for
13: Let Z(s)

T = {z(s)
1 , . . . , z

(s)
T }. Estimate the cubic splines model on the simulated

data, Z(s)
T , by Kalman filter and maximum likelihood. Store the maximum likeli-

hood estimate, β̂(s), and respective µ̂(s).
14: end for
15: Store

(
µ̂− 1

S

∑S
s=1 µ̂

(s)
)′ (

µ̂− 1
S

∑S
s=1 µ̂

(s)
)

.
16: end for
17: Find the value of τ which minimises

(
µ̂− 1

S

∑S
s=1 µ̂

(s)
)′ (

µ̂− 1
S

∑S
s=1 µ̂

(s)
)

. This
can be done for a grid of values of τ , or, more appropriately, with a gradient/Hessian-based
optimisation algorithm that finds the solution numerically.
Notice that, for notation simplicity, in the algorithm we omitted the dependence on τ of
all simulated series and respective maximum likelihood estimates. However, it should be
kept in mind that all elements with an (s)-superscript depend on τ .

for m = 1, . . . ,M . The larger the likelihood, the more likely the correspond-
ing particle is close to the true value of α∗t . We then build M weights that are

proportional to the respective likelihoods, w̃(m)
t = w

(m)
t−1p

(
zt|α(m)∗

t , τ̂
)(m)

,
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and we standardise them: w(m)
t =

w̃
(m)
t∑M

m=1 w̃
(m)
t

, for m = 1, . . . ,M . Finally,

we resample with replacement M particles with probabilities corresponding
to the normalised weights

{
w

(1)
t , . . . , w

(M)
t

}
, in order to make sure that we

keep the particles that yield a larger likelihood. The bootstrap filter estimate
forα∗t at time t is equal to 1

M

∑M
m=1α

(m)∗
t , whereα(m)∗

t , form = 1, . . . ,M ,
are the resampled particles. These resampled particles are then used at time
t + 1 in the expected value of the normal distribution from which new M

vectors α(m)∗
t+1 are generated. The entire procedure then repeats again until

t = T .

However, we do not stop at standard bootstrap filtering because when the state
vector is large, which is the case for the extended Dutch labour force model,
then the bootstrap filter can become computationally costly. We therefore no-
tice that if γt is known at time t, then model (3.3.6) becomes linear again, as
it is only γt that triggers the nonlinearity of the model. Therefore, if we could
condition on γt at time t, then the other state variables, αt, could be predicted
by standard Kalman filtering, which is a very efficient estimation method.
This conditioning can be achieved by Rao-Blackwellising the bootstrap fil-
ter, as proposed by Chen and Liu (2000). Namely, at time t we generate M
particles only for γt: γ

(m)
t ∼ N

(
γ

(m)
t−1 , σ̂γ

)
, for m = 1, . . . ,M . Then the

one-step ahead forecasts of the other state variables, a(m)
t+1, together with their

variances,P (m)
t+1 , can be obtained by running the prediction step of the Kalman

filter recursions (3.3.4), applied to the linear model (3.3.1) evaluated at τ̂ and
with γt replaced by γ(m)

t .

At time t+ 1, for each set of particles
{
γ

(m)
t ,a

(m)
t+1,P

(m)
t+1

}
, it is then possible

to obtain the prediction error, v(m)
t+1 , together with its covariance matrix, F (m)

t+1 ,
for m = 1, . . . ,M . These two elements can be used in order to evaluate the
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following likelihood:

p
(
zt+1|γ(m)

t ,a
(m)
t+1,P

(m)
t+1 , τ̂

)(m)
=

exp

(
−n

2
log(2π)− 1

2
log
(

detF
(m)
t+1

)
− 1

2
v

(m)′

t+1

(
F

(m)
t+1

)−1
v

(m)
t+1

)
,

(3.3.9)

for m = 1, . . . ,M . The M likelihood values can in turn be employed to build
the same standardised weights used in the standard bootstrap filter, which al-
low us to resample with replacement the sets of particles

{
γ

(m)
t ,a

(m)
t+1,P

(m)
t+1

}
,

for m = 1, . . . ,M , that yield larger likelihood values. The resampled parti-
cles can then be used in order to repeat the procedure again for the next period
in time. Notice that we also need to resample a(m)

t+1 and P (m)
t+1 because they

need to be used as inputs in the prediction step of the Kalman filter, in order to
obtain a(m)

t+2 and P (m)
t+2 , for m = 1, . . . ,M . The Rao-Blackwellised bootstrap

filter (RBBF) estimate of γt at time t, which we indicate with γ̂RBBF,t, is again
obtained by taking the average of the M resampled particles γ(m)

t . Algorithm
2 outlines the Rao-Blackwellised bootstrap filter estimation of ρt in detail.

Some remarks are now in place. First, the likelihood (3.3.9) for zt at time t
is conditioned on γ(m)

t−1 , i.e., on values for the time-varying correlation at the
previous point in time. This is due to the Kalman filter recursions (3.3.4),
where the prediction errors, vt, and respective covariance matrix, Ft, depend
onQt−1, which contains γt−1, notQt. Therefore, it is only possible to obtain
the RBBF estimate of γt for t = 1, . . . , T − 1, and not for the last point in
time, T . This is a consequence of the Rao-Blackwellisation as this issue does
not arise in standard bootstrap filtering. In the latter case all state variables are
generated simultaneously, whereas in the former only predictions ofαt+1 can
be obtained based on sampled values for γt.

Second, the final estimates for the state vector αt, can be obtained by run-
ning the standard Kalman filter recursions (3.3.4) applied to the linear model
evaluated at τ̂ and with γt replaced by γ̂t,RBBF, for t = 1, . . . , T − 1 (notice

100



that the estimate for αt at time T is also unavailable). Although we do not
cover it in this chapter, we would like to point out that a prediction for γT
could be obtained, for instance, by taking the unweighted (i.e., not depending
on likelihood values) average of the M particles γ(m)

T , which in turn could be
employed to predict αT .

Third, a more efficient particle filter could be obtained by generating particles
for γt, conditionally on the observed data, zt. This can be done by, for in-
stance, using a sequential importance sampling approach, instead of the boot-
strap filter. However, as pointed out in the Introduction, the type of nonlinear-
ity we are dealing with challenges the quest for an importance density (i.e.,
a linear model that approximates the nonlinear one, in a more sophisticated
way than the cubic splines model), which is needed in order to implement the
above-mentioned approach (see Durbin and Koopman (2012, Chapter 12) and
Creal (2012) for details about this and other methods).

Fourth, the resampling step of the algorithm is sometimes necessary in order
to avoid the degeneracy of the particle filter over time (see again Durbin and
Koopman (2012, Chapter 12) and Creal (2012) for an in-depth discussion of
this problem). More sophisticated resampling methods, than the generalised
one discussed above, can be employed. Li et al. (2015) provide an extensive
review of all existing resampling methods for particle filtering. The ones that
are shown to yield the particle filters with lowest Monte Carlo variation, are
the stratified resampling of Kitagawa (1996) and the residual resampling of
Liu and Chen (1998). We employ the former. However, before performing
stratified resampling, we include an additional step. As mentioned in the In-
troduction, the likelihood function for zt, given in equation (3.3.9), is not that
sensitive to different values of γ(m)

t−1 : in other words, the M particles γ(m)
t−1

yield different values for the likelihood, but these differences are not large.
Therefore, the corresponding normalised weights are similar to each other
and any kind of resampling method will tend to select most of the particles,
yielding a final RBBF estimate for γt that looks rather constant over time. In
order to avoid this problem we first increase the differences among the nor-
malised weights, which in turn increases the probability of resampling those
particles that yield slightly larger likelihood values. We do so by following
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Algorithm 2 RAO-BLACKWELLISED BOOTSTRAP FILTER ESTIMATION OF ρt

1: Initialise the filter at t = 0 (before the first observed period) with w̃(m)
0 = 1 (which

implies w(m)
0 = 1/M ), for m = 1, . . . ,M . First sample γ(m)

0 ∼ N
(
γ̂, σ̂2

γ

)
, where γ̂ is

the maximum likelihood estimate of γ from the model where this parameter is treated as
static. Then draw a1 ∼ N

(
0, Q̂

(m)
0

)
, and set P (m)

1 = Q̂
(m)
0 , for m = 1, . . . ,M . In

this case at is the one-step ahead prediction of the Kalman filter for αt, with Pt being its
predicted covariance matrix, and Q̂(m)

0 is evaluated at γ(m)
0 . We need initialisations for

both at and Pt in order to implement the Kalman filter.
2: for t ∈ {1, ..., T} do
3: Use

{
γ
(m)
t−1 ,a

(m)
t ,P

(m)
t

}
in order to run the prediction step of the Kalman filter applied

to the linear model evaluated at τ̂ , which yields v(m)
t and F (m)

t . Then compute

p
(
zt|γ(m)

t−1 ,a
(m)
t ,P

(m)
t , τ̂

)(m)

=

exp

(
−n

2
log(2π)− 1

2
log
(

detF
(m)
t

)
− 1

2
v
(m)′

t

(
F

(m)
t

)−1

v
(m)
t

)
,

for m = 1, . . . ,M .

4: Compute the weights w̃
(m)
t = w

(m)
t−1p

(
zt|γ(m)

t−1 ,a
(m)
t ,P

(m)
t , τ̂

)(m)

for m =

1, . . . ,M . Then obtain the normalised weights w(m)
t =

w̃
(m)
t∑M

m=1 w̃
(m)
t

, for m =

1, . . . ,M .
5: Resample M particles

{
γ
(m)
t−1 ,a

(m)
t ,P

(m)
t

}
, with m = 1, . . . ,M , with replacement,

based on the modified stratified resampling technique (such modification is discussed
at the end of Section 3.3.2).

6: Reset w(m)
t = 1/M for m = 1, . . . ,M .

7: Compute γ̂RBBF,t−1 = 1
M

∑M
m=1 γ

(m)
t−1 , which is the Rao-Blackwellised bootstrap filter

estimate for γt−1. To get the corresponding estimate for ρt−1 we take the hyperbolic
tangent of γ̂RBBF,t−1.

8: Draw γ
(m)
t ∼ N

(
γ
(m)
t−1 , σ̂

2
γ

)
and use it with the resampled particles

{
a
(m)
t ,P

(m)
t

}
in

order to run the prediction step of the Kalman filter applied to the linear model evaluated
at τ̂ and with γt replaced by γ(m)

t , which yields
{
a
(m)
t+1,P

(m)
t+1

}
, for m = 1, . . . ,M .

9: end for
10: The final estimates for αt can be obtained by running the usual Kalman filter applied to

the linear model evaluated at τ̂ and with γt replaced by γ̂t,RBBF, for t = 1, . . . , T − 1.

Chen et al. (2001), who take functions of the normalised weights,
[
w

(m)
t

]pt
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for m = 1, . . . ,M , where pt ≥ 0 and depends on the coefficient of variation,
which takes the expression

CVt =

[
1

M

M∑
m=1

(
Mw

(m)
t − 1

)2
]0.5

,

and is a measure of weight instability. It varies between 0 and
√
M − 1. If

all weights are equal, then CVt is equal to its lower bound (Creal, 2012). If
the goal is to give more presence to the particles with larger weights, which is
our case, then pt > 1 if the coefficient of variation is low, otherwise pt < 1.
We use pt = ln

(√
M−1
CVt

)
in order to achieve this goal. Once the weights have

been transformed according to this function, they have to be re-standardised
before performing stratified resampling.

Finally, for simplicity we sometimes state, throughout the chapter, that the
RBBF is employed to estimate the entire state vector of the nonlinear model.
However, it should now be clear that it is really only ρt that is estimated by
the RBBF, and the remaining part of the state vector is estimated by Kalman
filtering with ρt replaced by its RBBF estimate. The above-mentioned sim-
plification therefore only helps us to point out that it is the RBBF that solves
the nonlinearity of the model, and that therefore allows us to estimate the state
vector.

3.4 Monte Carlo simulation study

We conduct a Monte Carlo simulation study to assess the performance of the
two estimation methods proposed in Section 3.3: the cubic splines method,
which already is, per se, an estimation method of the time-varying state cor-
relation, and the method based on the combination of indirect inference and
Rao-Blackwellised bootstrap filtering. The performance of the methods is
evaluated in several ways. First, we want to assess whether the indirect infer-
ence approach appropriately estimates the static parameters of the nonlinear
model. Secondly, we check if the proposed methods are able to estimate the
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true time-varying relationships, and, in that case, to what level of accuracy.
Finally, since in the empirical application our variable of interest, Dutch un-
employment, is assumed to be unknown and therefore enters the model as an
unobserved component, we want to understand to what extent the accuracy of
the estimation of the state variables of interest changes if we take the time-
varying relationships between the observed series into account.

For the sake of computational time, in the Monte Carlo simulation study we
consider the following bivariate local level model, which is more simple than
the Dutch Labour Force model:

zt = Zαt + εt, εt ∼ N (0,H)

αt+1 = Tαt + ηt, ηt ∼ N (0,Qt) , t = 1, . . . , T,

where zt = (yt, xt)
′, αt = (Ly,t, Lx,t)

′, εt and ηt are all 2 × 1 vectors,
Z = T = I2, H = diag(σ2

ε,y, σ
2
ε,x), with σε,y = σε,x = 1, and Qt =[

σ2
η,y ρtση,yση,x

ρtση,yση,x σ2
η,x

]
, with ση,y = ση,x = 1 (we are also implicitly

imposingM = R = I2).

In the model above, zt represents the observed vector, αt the vector of state
variables, εt the vector of innovations in the measurement equation, and ηt
the vector of innovations in the transition equation. We assume that the state
variable of the first observable series, Ly,t, is the unobserved component of
interest.

We consider the following data generating processes (DGPs) for the time-
varying parameter, ρt, which are partly inspired by Creal et al. (2011) and
Delle Monache et al. (2016):

1. Constant: ρt = 0.9

2. Sine: ρt = 0.5 + 0.4 cos(2πt/(T/3))

3. Fast sine: ρt = 0.5 + 0.4 cos(2πt/(T/6))

4. Step: ρt = 0.9− 0.5(t > T/2)
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5. Ramp: ρt = 2/T mod (t/(T/2))

6. Random walk: ρt = tanh(γt), where γt = γt−1 + ηγ,t, with ηγ,t ∼
N(0, σ2

γ) ,

for t = 1, . . . , T . We consider two different sample sizes: T = 200, which
is close to the sample size of our empirical application, and T = 500. For
the random walk specification of ρt, we set σγ = 0.1 when T = 200 and
σγ = 0.05 when T = 500, to make sure that ρt does not become too volatile
with a larger sample size (since the variance of a random walk process in-
creases with time). An improvement in estimation performance is to be ex-
pected with a larger sample size. We run nsim = 500 Monte Carlo simulations
and always use S = 3 simulations for the indirect inference method, and
M = 5000 particles for the RBBF. We use the BFGS algorithm to solve the
minimisation problem, given in equation (3.3.8), that finds the indirect infer-
ence estimates.

We start the discussion of the Monte Carlo simulation results by looking
at the performance of the indirect inference approach in estimating
the static parameters of the nonlinear model. Figure 3.4.1 shows the
density distributions of the indirect inference estimators of the elements
of τ = (ση,y, ση,x, σε,y, σε,x, σγ)′, based on the Monte Carlo replicates,
together with the true values of these parameters, when the DGP for ρt is a
random walk. All distributions are centered around the true values, and their
spread decreases with the sample size. For σγ , the distribution of its indirect
inference estimator is skewed to the right and shows a bump around values
of the parameter close to zero, which tends to be less pronounced, but does
not disappear, with a larger sample size . This issue seems somewhat similar
to the pile-up problem discussed, among others, by Shephard and Harvey
(1990) and Stock and Watson (1998): if the scale parameter (in our case σγ)
of a coefficient that varies stochastically over time by following a random
walk specification, is small, then its maximum likelihood estimator has a
point mass at zero, and this probability mass decreases with a larger sample
size. The results shown in Figure 3.4.1 are obtained by using the true values
of the parameters as initial values in the BFGS algorithm. In practice, a good
starting value for σγ is difficult to find. Figure 3.A.1 therefore reports the
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same results when the initial value for σγ is twice as big as its true one.
When T = 200, the algorithm gets stuck around the initial value half of the
times, making the distribution of the indirect inference estimator of σγ look
bimodal. This problem, however, does not occur any more when the sample
size increases; in this case the distribution is very similar to the one shown in
Figure 3.4.1. We therefore advise practitioners who deal with small sample
sizes, to first evaluate the objective function that needs to be minimised in
order to find the indirect inference estimates (from equation (3.3.8)), for a
grid of values for σγ , in order to come up with a good starting value for this
parameter (we do so ourselves in the empirical application of Section 3.58).
Figures 3.A.2-3.A.6 show the same results for the remaining five DGPs of
ρt. All distributions, for all parameters except σγ , are again symmetrical and
centered around the true values of the parameters, and their spread decreases
with the sample size. In these cases, however, we do not know the true
value for σγ , so we cannot assess whether its indirect inference estimator is
centered around it. The shapes of the distributions for the latter estimator are
similar to the ones observed for the random walk specification of ρt. The
BFGS algorithm in these cases is initialised at σγ = 0.1 when T = 200 and
σγ = 0.05 when T = 500.

Next we investigate the accuracy of our methods in estimating the time vary-
ing correlation and whether treating ρt as time-varying also improves the es-
timation of the state variable of interest. We indicate with L̂y,t the Kalman
filter estimator (i.e., the first element of at|t from the Kalman filter recursions
(3.3.4)) ofLy,t, and with ρ̂t the estimator of ρt (whether this estimator is based
on the cubic splines or the RBBF method, will be clear in the discussion that
follows). The Mean Squared Error (MSE) and the squared bias of ρ̂t are com-

8The grid values are chosen arbitrarily. However, since ρt is bounded to be between -1 and
1, σγ cannot get too large values, and this restricts the dimension of its space (in practice).
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(a) T = 200

(b) T = 500

Figure 3.4.1: Distribution of the indirect inference estimators of the static parameters
of the nonlinear model, τ = (ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo
replicates, when the DGP of ρt is a random walk; S = 3, nsim = 500. The red lines
represent the true values of the parameters.

puted as follows:

MSE (ρ̂t) =
1

T − 1− d

T−1∑
t=d+1

(
1

nsim

nsim∑
s=1

(ρ̂t,s − ρt,s)2

)
,

bias2 (ρ̂t) =
1

T − 1− d

T−1∑
t=d+1

(
1

nsim

nsim∑
s=1

(ρ̂t,s − ρt,s)

)2

.

The same measures of fit are obtained also for L̂y,t by substituting ρt byLy,t in
the formulae above (d = 0 for the measures of ρ̂t, and d = 1 for the measures
of L̂y,t, since Ly,t is the only state variable of the target series which requires
a diffuse initialisation). The MSE captures both the variance and the bias of
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the estimators, and therefore gives an indication (also) of their volatility. The
squared bias, instead, is supposed only to capture the difference between the
estimated and the true values. We use the square of the bias because we deal
with estimators of time-varying parameters/variables, and therefore averag-
ing the biases over time, without taking their squared values, would provide a
misleading measure of comparison among different methods. Table 3.4.1 re-
ports these measures of fit, obtained with both the cubic splines and the RBBF
methods, relative to the same measures observed while estimating the correla-
tion as time-constant (i.e., by maximum likelihood). We refer to Table 3.A.1
for the absolute figures. We indicate with “ideal Rao-Blackwellised bootstrap
filter” the setting where the static parameter vector τ is not estimated by in-
direct inference, but it is treated as known by using its true values (which is
only possible when the DGP of ρt is a random walk), hence the term “ideal”.
This should allow us to quantify the influence that the estimation of the static
parameters by indirect inference has on the performance of the RBBF. The
Tables show that, when T = 200, the MSE of ρ̂t is almost always better
when the correlation parameter is estimated as constant, since the other two
methods are, because of their time-varying nature, obviously more volatile.
The latter methods, however, tend to strongly beat the time-constant estima-
tion of the correlation in terms of squared bias, indicating that they are able
to capture its time-variation (when this is present). The cubic splines shows
a better performance than the RBBF, due to its milder volatility, except when
the true DGP for ρt is a fast sine; the RBBF seems therefore more suited than
the cubic splines method in estimating rapidly-changing time variations in the
correlation parameter. The ideal RBBF only shows a marginal improvement
over the RBBF, suggesting that the estimation of the static parameters by in-
direct inference does not strongly influence the performance of the filter. All
measures of fit for the two methods improve when the sample size increases,
also with respect to estimating ρt as time-constant. When the true correlation
is static, however, estimating it as such is preferred.

Since time-variation is the focal point of this chapter, it is also interesting to
investigate how the two estimation methods perform over time. Figures 3.4.2
and 3.4.3 display, for each deterministic DGP of ρt, the 5%, 20%, 80% and
95% percentiles of the Monte Carlo simulation estimates (which we loosely
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T = 200 T = 500
0.9 Sine Fast sine Step Ramp Random walk 0.9 Sine Fast sine Step Ramp Random walk

Cubic splines

MSE(ρ̂t) 25.769 1.688 2.194 1.269 1.345 0.920 8.114 0.615 1.364 0.454 0.643 0.574
bias2(ρ̂t) 45.540 0.086 1.016 0.069 0.178 0.505 29.112 0.123 1.003 0.062 0.165 0.001
MSE(L̂y,t) 1.015 1.002 1.015 0.983 0.993 0.982 1.004 0.983 1.003 0.970 1.019 0.988
bias2(L̂y,t) 0.948 1.048 0.982 0.948 0.978 0.955 0.997 0.991 0.988 0.953 1.000 1.043

Rao-Blackwellised bootstrap filter

MSE(ρ̂t) 28.118 1.835 1.716 1.565 1.775 1.269 15.317 1.504 1.207 1.048 1.457 1.074
bias2(ρ̂t) 47.041 0.623 0.845 1.813 0.442 1.191 97.757 0.370 0.878 0.228 0.337 0.003
MSE(L̂y,t) 1.889 1.121 1.083 1.296 1.236 1.175 1.057 1.074 1.011 1.051 1.087 1.026
bias2(L̂y,t) 1.858 1.095 0.991 1.403 1.098 1.030 1.001 1.036 0.995 1.018 1.039 1.063

Ideal Rao-Blackwellised bootstrap filter

MSE(ρ̂t) 1.183 1.118
bias2(ρ̂t) 1.070 0.002
MSE(L̂y,t) 0.997 1.004
bias2(L̂y,t) 1.017 1.043

Table 3.4.1: Mean squared error and squared bias for the cubic splines and the Rao-
Blackwellised bootstrap filter estimators of ρt, and the Kalman filter estimator ofLy,t,
relative to the same measures of fit obtained while estimating ρt as time-constant. The
second row lists the DGPs for ρt. “Ideal Rao-Blackwellised bootstrap filter” indicates
that the static parameter vector τ is treated as known by using its true values . S = 3,
M = 5000, nsim = 500.

call confidence bands), together with the median, obtained, respectively, with
the cubic splines and the RBBF methods, when T = 200 (Figures 3.A.7 and
3.A.8 show the same results when T = 500). The results discussed above
are confirmed by these Figures. Both methods are able to pick up the true
time-variation of the correlation parameter, and their estimation performance
improves with a larger sample size. The RBBF is therefore robust to misspec-
ifications of the dynamic structure of ρt since none of the true correlations
displayed in the Figures is a random walk. The confidence bands for the cubic
splines are narrower, except towards the end of the sample, and less volatile
than their RBBF’s counterparts, but the fast sine DGP of ρt is estimated al-
most as constant by the cubic splines method, contrary to the RBBF. Notice
also that the RBBF is slightly delayed in time with respect to the true time
variation in ρt, which is to be expected from filters, since they are only based
on past information, contrary to the time-constant estimation and the cubic
splines (a particle smoother would not show this delay). Although the indirect
inference method estimates the static parameters based on the entire sample,
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the RBBF can therefore be considered a real-time estimator. For this reason
the time-constant and cubic splines methods are rewarded too much by the
simulation study, with respect to the RBBF. A real-time comparison of the
methods would tend to favour more the latter. In a simulation study, van den
Brakel and Krieg (2016) showed that with a time constant correlation between
survey and claimant counts data, it takes more than a year before the maxi-
mum likelihood estimate for the correlation picks up a change in the relation
between the two series. However, for computational purposes, we only per-
form such a comparison in the empirical application of Section 3.5, since it
is also of interest for the production of official statistics. The scope of the
simulation study is just to understand to what extent the employed methods
appropriately estimate, on average, the (time-varying) parameters.

Figures 3.A.9-3.A.12 report the absolute (i.e., not relative) MSE and squared
bias of ρ̂t, over time, for all estimations methods (including the method that
estimates the correlation as static). These pictures reveal information that was
hidden in Tables 3.4.1 and 3.A.1, but already partly discovered from Figures
3.4.2, 3.4.3, 3.A.7 and 3.A.8: a better performance of the RBBF over the cubic
splines, in terms of MSE, at the end of the sample, when T = 200. This is
due to the large uncertainty that affects the cubic splines at the boundaries of
the sample (we cannot conclude the same for the start of the sample because
the performance of the RBBF there very much depends on the initial values
for γt). In terms of squared bias and when T = 500, the two methods tend
instead to perform similarly while approaching the end of the sample. What
also appears from these Figures is that, when there are structural changes (i.e.,
when the true DGP of ρt is either a step or a ramp function) the RBBF is
much worse in estimating the correlation at the change point in time, with
respect to the other methods, due to its delayed behaviour. However, a real-
time comparison would, also in this case, reward less the methods based on
maximum likelihood.

Finally, the relative MSE and squared bias of L̂y,t in Table 3.4.1 are generally
around 1 for all DGPs of ρt and for both estimation methods, also when the
sample size is large. This result indicates that estimating the correlation as
time-varying, also when appropriate, instead of time-constant, does not have
an impact on the estimation accuracy of the state variable of interest, probably
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp

Figure 3.4.2: True process of ρt (black) together with the 95% (red), 80% (green)
confidence bands, and the median (blue) of the simulation estimates for the cubic
splines estimator of ρt. T = 200, S = 3, M = 5000, nsim = 500.

due to the Kalman filter’s high accuracy in estimating unobserved compo-
nents, irrespectively of the parameters’ estimates. Nonetheless, results from
Section 3.5 suggest that in a real-time estimation these conclusions would be
different. Figures 3.A.13-3.A.16 show the absolute (i.e., not relative) MSE
and the squared bias of L̂y,t over time, for all estimation methods. Except for
a slightly worse performance, in terms of MSE, of the RBBF when T = 200,
and a slightly better one of the cubic splines when T = 500, it is almost im-
possible to tell the difference, among methods, in the estimation accuracy of
Ly,t. What appears evident from these Figures, however, is how the magnitude
of the MSE tends to follow the time-varying pattern of ρt (for its determinis-
tic DGPs): the MSE is lower when the magnitude of the correlation is larger,
as the auxiliary series brings in this case more information about the state
variable of interest.

In conclusion, the Monte Carlo simulation study shows that our proposed in-
direct inference method is able to correctly estimate the time-invariant pa-

111



Chapter 3. Time-varying state correlations in state space models and their
estimation via indirect inference

(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp

Figure 3.4.3: True process of ρt (black) together with the 95% (red), 80% (green)
confidence bands, and the median (blue) of the simulation estimates for the Rao-
Blackwellised bootstrap filter estimator of ρt. T = 200, S = 3, M = 5000, nsim =
500.

rameters of the nonlinear model. Only the finite-sample distribution of the
indirect inference estimator of σγ is not symmetrical, suggesting that it is not
normal either. Nevertheless, since we do not carry out any inference on this
parameter, we do not need normality of the estimator to hold9. Both the cubic
splines and the RBBF approaches are suited to estimating a time-varying state
correlation. The former method, on average, always beats the latter, in terms
of estimation accuracy of ρt, due to the strong volatility that affects the RBBF,
except when it comes to estimating correlations that change rapidly over time.
Moreover, with small sample sizes, the RBBF yields more precise estimates
for ρt towards the end of the sample, which is relevant when the focus is on

9Notice that providing theoretical properties for the indirect inference estimators is beyond
the scope of this chapter. However, we point out that the knowledge of such asymptotic
distributions would allow us to test for time-constancy in the correlation parameter, by
testing whether σγ = 0.
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exploring how the relationship between the observed series has evolved in re-
cent times. The estimation accuracy of all methods (indirect inference, cubic
splines and RBBF) improves with the sample size. Appropriately estimating
the time-varying correlation as such, instead of as time-constant, does not af-
fect the estimation accuracy of the state variables of interest. The RBBF is a
real-time estimator of the correlation (i.e., it only exploits past information),
whereas the time-constant and cubic splines methods estimate this parameter
based on the entire sample. The simulation results obtained here therefore
tend to reward the latter approaches too much. In real-time, the RBBF would
yield an even better performance compared to the other two methods. Such a
real-time comparison is not explored in the Monte Carlo simulation study, but
is investigated in the upcoming Section.

3.5 Empirical application to the extended Dutch
labour force model

In this Section we perform the in-sample estimation of the Dutch labour
force model extended with the univariate series of claimant counts, described
in Section 3.2. We model the time-varying correlation with our proposed
methodology based on indirect inference and Rao-Blackwellised bootstrap
filtering. As in the Monte Carlo simulation study, we compare the results
so obtained to estimating the correlation parameter as time constant, and
with the cubic splines method only. We also investigate the sensitivity of
our results to the location of the cubic splines’ knots. Specifically, we first
consider the case where the (five, as suggested by the BIC) knots correspond
to the quartiles of the sample. Then, we examine the case when February
2015 is one of the knots (since we know that a potential change in the
correlation happened on this date), and the remaining (four) knots are chosen
accordingly in order to keep an approximately equal distance between each
pair of knots10. Finally, we compare the performance of the methods when

10The quartiles of the sample corresponds to the 0th, 25th, 50th, 75th and 100th percentiles
of the sample. When February 2015 is one of the knots, the knots are located at the 0th,
28th, 55th, 69th and 100th percentiles of the sample.
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the estimation of the model is conducted in real-time, and not only on the
entire sample. We use monthly data from January 2004 until March 2020
(T = 195) for both the GREG estimates and the claimant counts, S = 5
simulations for the indirect inference method, and M = 5000 particles for
the RBBF.

Figure 3.5.1 displays the estimated correlation, ρt, and its unbounded counter-
part, γt, with all three methods, when the knots are located at the quartiles of
the sample. The time-constant estimate for ρt is positive and very large, but it
hides the decrease of the correlation parameter that occurred in the middle of
the sample. Indeed, both the cubic splines and the RBBF estimates of ρt indi-
cate that the two types of observed series started deviating from each other in
2010, that is, around two years after the financial crisis of 2008. Recession pe-
riods can induce long-term unemployment, and in the Netherlands unemploy-
ment benefits cannot be claimed for more than three years and two months,
whether someone is unemployed or not, at the end of this period. However,
not everyone is entitled to receive benefits for the maximum amount of time.
The long-term unemployment caused by the economic crisis of 2008 is there-
fore not entirely picked up by the claimant counts series, which hence starts
deviating from the GREG estimates around two years after the burst of the cri-
sis. The magnitude of the correlation increased again in 2013, and stabilized
around its ante-crisis levels from 2017 until the most recent times. Remem-
ber from the results of the Monte Carlo simulation study, that it is the RBBF
estimate that provides the most reliable information on the behaviour of the
parameter towards the end of the sample, which is indeed when the RBBF and
the cubic splines estimates deviate the most from each other. We also notice
how the RBBF, but not the cubic splines, captures a drop in the correlation
after the legislative change of February 2015. New legislation often applies
to new claims of unemployment benefits, which explains why the correlation
does not drop immediately in February 2015, but shortly after. This decrease
is, however, not as deep and prolonged as the one caused by the financial crisis
of 2008.

Notably, Figure 3.5.1 further shows how the RBBF method yields a much
more volatile estimate for ρt, than the cubic splines, which partly reflects es-
timation error. We already concluded from the simulation study of Section
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Knots at quartiles Knots include February 2015

Maximum likelihood Indirect inference Maximum likelihood Indirect inference

Constant Cubic splines Cubic splines

σ̂R,y 2719.916 3011.516 2996.161 2953.373 2971.015
σ̂ω,y 0.016 0.028 0.02 0.044 0.044
σ̂λ 3778.169 3739.127 3831.573 3695.226 3690.149
σ̂ν1 1.335 1.322 1.261 1.328 1.331
σ̂ν2 1.309 1.304 1.260 1.3 1.272
σ̂ν3 1.199 1.192 1.106 1.186 1.176
σ̂ν4 1.234 1.234 1.173 1.235 1.229
σ̂ν5 1.219 1.214 1.179 1.22 1.22
δ̂ 0.378 0.38 0.327 0.378 0.375
σ̂R,CC 3422.074 3453.365 3371.296 3485.617 3282.554
σ̂ω,CC 0.019 0.021 0.02 0.01 0.01
σ̂ε,CC 1499.447 1481.391 1479.833 1462.325 1466.448
ρ̂ 0.851
φ̂1 0.367 -0.629
φ̂2 2.484 2.39
φ̂3 0.127 -0.098
φ̂4 1.697 1.386
φ̂5 0.333 0.269
σ̂γ 0.081 0.127

Log-likelihood -12549.42 -12546.34 -12476.98 -12547.15 -12475.59

Table 3.5.1: The columns named “Maximum likelihood” report the maximum likeli-
hood estimates of the static parameters of the Dutch labour force model extended with
the auxiliary series of claimant counts (described in Section 3.2), when the correla-
tion parameter is estimated as time constant and with the cubic splines method. The
remaining columns show the indirect inference estimates of the static parameters (in-
cluding σγ). “Knots at quartiles” means that the knots for the cubic splines approach
correspond to the quartiles of the sample; they are otherwise approximately equally
distant by fixing February 2015 as a knot. The log-likelihood values are obtained by
evaluating the Kalman filter recursions (3.3.4) at the corresponding estimates for ρt
and the static parameters.

3.4, that the volatility of the RBBF estimator represents its Achilles’ heel. Al-
though we do not implement them in the chapter, we here give two suggestions
that could potentially correct for this problem. First, a bootstrap smoother (in-
stead of a filter) should yield, as its name gives away, a smoother estimate for
ρt. Second, we explain in Section 3.3.2 how we modify the resampling step
of the RBBF’s algorithm, in order to keep particles that yield slightly larger
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likelihood values. We mentioned that without this modification, the filtered
estimate for the correlation would almost be constant over time. We arbitrar-
ily decided to take the pt = ln

(√
M−1
CVt

)
power of the normalised weights

in order to achieve our goal. However, this function may increase the differ-
ences among weights too much and therefore make the RBBF too volatile.
Many other functions of the normalised weights can be applied instead and
potentially diminish the volatility of the filter.

Figure 3.B.1 compares the cubic splines and RBBF estimates for ρt that have
been discussed above, with the ones obtained for the second choice of knots’
location (which uses February 2015 as one of the knots). The estimates are not
very sensitive to the location of the knots, if not for a slightly larger volatility
of the cubic splines estimate with the second choice of knots’ location, which
is inherited also by the RBBF estimate.

Table 3.5.1 reports the estimates of the static parameters for each considered
model. The indirect inference estimate for σγ is indeed larger when February
2015 is part of the knots. The table also displays the log-likelihood values that
are obtained by evaluating the Kalman filter recursions (3.3.4), and subsequent
likelihood function (3.3.2), at the corresponding estimates for ρt and the static
parameters. Although we cannot perform a formal test on these log-likelihood
values, because we are comparing non-nested models, we can still conclude
that the estimation based on indirect inference and RBBF always yields a
better fit to the data.

We employ the BFGS and a conjugate gradient optimisation algorithm when
we estimate the static parameters, respectively, by maximum likelihood and by
indirect inference. The complexity of the Dutch labour force model hampers
its estimation by indirect inference with the BFGS algorithm11. When esti-
mating the static parameters by maximum likelihood, we use their estimates
from the labour force model obtained in van den Brakel and Krieg (2015), as
initial values. The initial values of the static parameters in the indirect infer-
ence estimation are instead equal to the corresponding maximum likelihood
estimates obtained with the cubic splines model.

11The algorithms hardly moves away from the initial values of the static parameters.
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Figure 3.5.2 plots the Kalman filter estimates and respective estimated vari-
ances (i.e., the corresponding elements of at|t and Pt|t in the Kalman filter
recursions (3.3.4)) of the state variables of interest θy,t, Ly,t and Ry,t, in the
extended Dutch labour force model. The results refer to the setting where the
knots correspond to the quartiles of the sample. The point estimates of the
state variables are slightly sensitive to the estimation method of ρt, especially
in the middle of the sample where the difference between time-constant and
time-varying estimates for ρt is largest. The estimated variances are much
more dependent on the magnitude of the correlation’s estimates: they are
larger when the estimated correlation shrinks, i.e., when the claimant counts
bring less information about the Dutch unemployment. This is especially evi-
dent for Ry,t, than the other two state variables, since the slopes of the series’
trends are directly related to each other via ρt. The estimated variances, when
the correlation is estimated as time-constant, are generally very low (given the
large value of the correlation’s estimate). This may suggest that treating ρt as
time-constant improves the estimation accuracy of state variables of interest.
However, these variances are, in this case, wrongly estimated if the true pro-
cess for ρt is time-varying. The variance estimates obtained with the cubic
splines and the RBBF methods, although larger in the middle of the sample,
are therefore more realistic as they reflect the economic uncertainty of that
period. We again notice a better performance of the RBBF, compared to the
cubic splines method, in the estimation accuracy of the state variables towards
the end of the sample. Notice that these estimated variances do not reflect the
additional uncertainty of using estimates for ρt and the static parameters.

Finally, Figure 3.B.2 compares the estimated correlation, when this is treated
as static, to the same estimates obtained with shorter samples. Namely, we
use five sub-samples that include observed monthly data form January 2004
up until and including years 2010-2014 (notice that extending the sample with
one additional year corresponds to including twelve additional monthly ob-
servations). The time-constant correlation model shows a delay of around
four years in picking up the deviation between the survey-based data and the
claimant counts. This result 1) motivates our choice to model the state cor-
relation as time-varying and 2) further stresses the need for an approach that
is able to capture the time-variation of the correlation in a more timely man-
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ner, which is achieved by the RBBF rather than the cubic splines method.
We therefore conduct a real-time exercise where we estimate the state vari-
ables of interest for the sub-samples mentioned above, while estimating the
correlation as static and with the RBBF12. We compare these results to the
ones obtained with the Dutch labour force model that does not include any
auxiliary series13. Figures 3.B.3-3.B.5 and 3.B.6-3.B.8 respectively show the
Kalman filter estimates of the three state variables of interest, and their esti-
mated variances, obtained for all models and sub-samples (as well as for the
entire sample, which ends in March 2020)14. We notice that, until the end of
2010 and from 2014, the RBBF and the time-constant correlation models both
yield close estimates to the ones obtained with the model that does not include
auxiliary series. Between these years, however, the latter estimates are much
closer to the ones provided by the model which employs the RBBF, rather
that the time-constant correlation one. This deviation is due to the incapabil-
ity of the static correlation estimation method to quickly detect and capture
the change in the correlation parameter, contrary to the RBBF. We here use
the model without auxiliary series as benchmark, not because we treat is as
the true one, but because too large deviations between the state estimates that
it yields and the ones obtained with other models, are an indication that some
time-varying characteristics are not being taken into account. The variance
estimates for θy,t and Ly,t are always larger, except in the middle of the sam-
ple, for the model that does not include auxiliary series as it does not exploit
any additional information. The estimation of Ry,t is instead affected by a
12We do not also perform the real-time analysis with the cubic splines estimation method for

the correlation, since the large uncertainty that affects cubic splines at the end of the sample
makes this method unsuited for real-time estimation.

13Whenever we add an additional year of observations, we re-estimate the static parameters,
by maximum likelihood, of the time-constant correlation model and the one without aux-
iliary series. The static parameters of the model that employs the RBBF are instead, for
computational purposes, always kept equal to the ones obtained by indirect inference for
the entire sample (and with knots corresponding to the quartiles of the sample). This choice
may have an impact on the results, but we expect it to be marginal given that our simulation
study for the ideal RBBF suggests that its performance is not very sensitive to the indirect
inference estimates.

14Notice that in these Figures the (variance) estimate for the last point in time is not reported
when the RBBF is employed, because the algorithm used for the RBBF does not provide
such an estimate. This issue is discussed in Section 3.3.2.
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much stronger uncertainty, represented by larger variance estimates, when the
RBBF is employed for the estimation of the correlation.
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(a) ρ̂t

(b) γ̂t

Figure 3.5.1: Time constant (blue), cubic splines (red) and RBBF (black) estimates
of ρt and γt, from the Dutch labour force model extended with the auxiliary series
of claimant counts (described in Section 3.2). Monthly data from January 2004 until
March 2020 (T = 195), S = 5, M = 5000. The knots for the cubic splines approach
correspond to the quartiles of the sample. The first shaded area represent the reces-
sion period due to the financial crisis of 2008, whereas the second one refers to the
legislative change of February 2015.
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(a) θ̂y,t (b) v̂ar
(
θ̂y,t
)

(c) L̂y,t (d) v̂ar
(
L̂y,t

)

(e) R̂y,t (f) v̂ar
(
R̂y,t

)
Figure 3.5.2: Kalman filter estimates (left panels) and respective estimated variances
(right panels) of the state variables of interest θy,t, Ly,t and Ry,t, in the Dutch labour
force model extended with the auxiliary series of claimant counts (described in Sec-
tion 3.2). The results are obtained when the correlation parameter is estimated as
constant (blue), with the cubic splines method (red), and with the RBBF (black).
Monthly data from January 2004 until March 2020 (T = 195), S = 5, M = 5000.
The knots for the cubic splines approach correspond to the quartiles of the sample.
The first d months are not displayed because of the Kalman filter’s diffuse initialisa-
tion.
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3.6 Conclusions

This chapter proposes a new methodology to estimate nonlinear state space
models, where the nonlinearity arises from a stochastic state correlation. The
static parameters are estimated with an indirect inference approach, which
employs a cubic splines specification for the time-varying correlation as an
auxiliary model. The stochastic correlation and remaining state variables
are instead estimated with the Rao-Blackwellised bootstrap filter (RBBF).
We perform a Monte Carlo simulation study and an empirical application to
Dutch unemployment estimation, in order to evaluate the performance of our
methodology. In the empirical analysis the correlation represents the relation-
ship between survey-based data about the unemployed labour force, and the
series of claimant counts. We compare our method to estimating the time-
varying correlation by means of cubic splines only, and as time-constant.

The Monte Carlo simulation study shows that both the cubic splines and the
RBBF methods are able to capture the true time-varying pattern of the correla-
tion. This parameter is, on average, more accurately estimated by the former
approach. The latter is affected by a strong volatility that tends to deterio-
rate its performance. This issue also arises from the results of the empirical
application. In Section 3.5 we therefore mention two possible solutions that
could correct for this problem. Nevertheless, the RBBF beats the cubic splines
method in estimating correlations that change rapidly over time, and in yield-
ing more accurate estimates for the correlation towards the end of the sample,
especially when sample sizes are small. These latter results already highlight
the usefulness of the RBBF in case of real-time estimation.

Both the cubic splines and the RBBF estimators of the correlation are more
volatile than the time-constant one, due to their time-varying nature. Hence,
in small samples they beat the latter method in terms of squared bias but not
in terms of mean squared error (which also captures the volatility of an esti-
mator).

The indirect inference estimators appropriately estimate the static parameters,
as their finite-sample distributions are centered around them. Although these
distributions are not all symmetrical when sample sizes are small, their shape
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improves with a larger sample size. So does the performance of the cubic
splines and the RBBF estimators, also with respect to estimating the correla-
tion as static.

The point estimates of state variables of interest, when the estimation is not
conducted in real-time, do not depend on the method that is employed for the
estimation of the time-varying correlation, as much as their estimated vari-
ances do. The larger the magnitude of the estimated correlation, the lower the
variance estimates of the state variables. In other words, the more information
the auxiliary series brings about the variables of interest, the more accurate
the estimates for the latter are. Results from the empirical application sug-
gest that the state estimates can instead be rather different when obtained in
real time, depending on the method used for the estimation of the correlation.
Specifically, the RBBF promptly detects changes in the correlation parameter,
thus yielding more reliable state estimates. The static estimation of the corre-
lation parameter, on the other hand, is affected by a strong delay in tackling
such changes, which is reflected in unrealistic real-time estimates of the state
variables. Moreover, the cubic splines method is not suited for real-time esti-
mation because of its uncertainty in estimating the correlation towards the end
of the sample. Real-time estimation of variables is important in the context of
official statistics, and finding a method that is reliable for this purpose, such
as the RBBF, is an important result.

Empirically, the cubic splines and RBBF agree in estimating a strong and pos-
itive correlation in the first and last years of the sample. They capture a de-
viation between the two types of observed series in the middle of the sample,
which is caused by the financial crisis of 2008. The long-term unemploy-
ment induced by this recession period can indeed not be completely picked
up by the claimant counts. Moreover, only the RBBF manages to tackle an
additional drop in the correlation parameter after the implementation of a leg-
islative change that affected the claimant counts series in 2015. This decrease
is, however, less protracted and of smaller magnitude than the one triggered
by the financial crisis.

In this chapter we employ only one auxiliary series in the state space model,
and hence deal with estimating only one time-varying correlation parameter.
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Our proposed method can theoretically be extended to the case where more
than one auxiliary series are included in the model, and therefore several cor-
relation parameters need to be estimated. However, the indirect inference and
the RBBF are both simulation-based methods and are, as such, computation-
ally rather expensive. Hence, the model should not be too complex in order to
guarantee a successful performance of our proposed method.
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3.A Additional results from the Monte Carlo
simulation study

T = 200 T = 500
0.9 Sine Fast sine Step Ramp Random walk 0.9 Sine Fast sine Step Ramp Random walk

Cubic splines

MSE(ρ̂t) 0.041 0.159 0.206 0.092 0.130 0.124 0.005 0.053 0.116 0.030 0.057 0.051
bias2(ρ̂t) 0.001 0.007 0.081 0.004 0.015 1.4e-04 3.9e-05 0.010 0.080 0.004 0.014 1.1e-04
MSE(L̂y,t) 0.508 0.597 0.608 0.565 0.592 0.585 0.500 0.584 0.595 0.555 0.583 0.586
bias2(L̂y,t) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Rao-Blackwellised bootstrap filter

MSE(ρ̂t) 0.045 0.172 0.161 0.113 0.172 0.171 0.009 0.129 0.103 0.070 0.129 0.095
bias2(ρ̂t) 0.001 0.050 0.067 0.019 0.037 3.4e-04 1.3e-04 0.030 0.070 0.014 0.028 2.2e-04
MSE(L̂y,t) 0.946 0.669 0.649 0.746 0.737 0.700 0.527 0.638 0.600 0.602 0.622 0.609
bias2(L̂y,t) 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001

Ideal Rao-Blackwellised bootstrap filter

MSE(ρ̂t) 0.159 0.099
bias2(ρ̂t) 3.1e-04 1.3e-04
MSE(L̂y,t) 0.594 0.596
bias2(L̂y,t) 0.001 0.001

Constant

MSE(ρ̂t) 0.002 0.094 0.094 0.072 0.097 0.135 0.001 0.085 0.085 0.067 0.089 0.089
bias2(ρ̂t) 1.7e-05 0.080 0.080 0.063 0.083 2.9e-04 1.4e-06 0.080 0.080 0.062 0.083 0.083
MSE(L̂y,t) 0.501 0.596 0.599 0.575 0.597 0.596 0.498 0.594 0.593 0.572 0.572 0.594
bias2(L̂y,t) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 3.A.1: Mean squared error and squared bias for the cubic splines, the Rao-
Blackwellised bootstrap filter and the constant estimators of ρt, and the Kalman filter
estimator of Ly,t. The second row lists the DGPs for ρt. “Ideal Rao-Blackwellised
bootstrap filter” indicates that the static parameter vector τ is treated as known. S =
3, M = 5000, nsim = 500.
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(a) T = 200

(b) T = 500

Figure 3.A.1: Distribution of the indirect inference estimators of the static parameters
of the nonlinear model, τ = (ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo
replicates, when the DGP of ρt is a random walk and the BFGS algorithm is not
started at the true values; S = 3, nsim = 500. The red lines represent the true values
of the parameters.
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(a) T = 200

(b) T = 500

Figure 3.A.2: Distribution of the indirect inference estimators of the static parameters
of the nonlinear model, τ = (ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo
replicates, when the DGP of ρt is constant and equal to 0.9; S = 3, nsim = 500. The
red lines represent the true values of the parameters.
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(a) T = 200

(b) T = 500

Figure 3.A.3: Distribution of the indirect inference estimators of the static parameters
of the nonlinear model, τ = (ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo
replicates, when the DGP of ρt is a sine function; S = 3, nsim = 500. The red lines
represent the true values of the parameters.
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(a) T = 200

(b) T = 500

Figure 3.A.4: Distribution of the indirect inference estimators of the static parameters
of the nonlinear model, τ = (ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo
replicates, when the DGP of ρt is a fast sine function; S = 3, nsim = 500. The red
lines represent the true values of the parameters.
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(a) T = 200

(b) T = 500

Figure 3.A.5: Distribution of the indirect inference estimators of the static parameters
of the nonlinear model, τ = (ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo
replicates, when the DGP of ρt is a step function; S = 3, nsim = 500. The red lines
represent the true values of the parameters.
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(a) T = 200

(b) T = 500

Figure 3.A.6: Distribution of the indirect inference estimators of the static parameters
of the nonlinear model, τ = (ση,y, ση,x, σε,y, σε,x, σγ)

′, based on the Monte Carlo
replicates, when the DGP of ρt is a ramp function; S = 3, nsim = 500. The red lines
represent the true values of the parameters.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp

Figure 3.A.7: True process of ρt (black) together with the 95% (red), 80% (green)
confidence bands, and the median (blue) of the simulation estimates for the cubic
splines estimator of ρt. T = 500, S = 3, M = 5000, nsim = 500.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp

Figure 3.A.8: True process of ρt (black) together with the 95% (red), 80% (green)
confidence bands, and the median (blue) of the simulation estimates for the Rao-
Blackwellised bootstrap filter estimator of ρt. T = 500, S = 3, M = 5000, nsim =
500.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure 3.A.9: MSE of the cubic splines (red), the Rao-Blackwellised bootstrap filter
(black) and the constant (blue) estimators of ρt, over time. T = 200, S = 3, M =
5000, nsim = 500.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure 3.A.10: Squared bias of the cubic splines (red), the Rao-Blackwellised boot-
strap filter (black) and the constant (blue) estimators of ρt, over time. T = 200,
S = 3, M = 5000, nsim = 500.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure 3.A.11: MSE of the cubic splines (red), the Rao-Blackwellised bootstrap filter
(black) and the constant (blue) estimators of ρt, over time. T = 500, S = 3, M =
5000, nsim = 500.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure 3.A.12: Squared bias of the cubic splines (red), the Rao-Blackwellised boot-
strap filter (black) and the constant (blue) estimators of ρt, over time. T = 500,
S = 3, M = 5000, nsim = 500.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure 3.A.13: MSE, over time, of the Kalman filter estimator of Ly,t when ρt is
estimated by the cubic splines (red) and the Rao-Blackwellised bootstrap filter (black)
methods, and as time-constant (blue). T = 200, S = 3, M = 5000, nsim = 500.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure 3.A.14: Squared bias, over time, of the Kalman filter estimator of Ly,t when
ρt is estimated by the cubic splines (red) and the Rao-Blackwellised bootstrap filter
(black) methods, and as time-constant (blue). T = 200, S = 3, M = 5000, nsim =
500.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure 3.A.15: MSE, over time, of the Kalman filter estimator of Ly,t when ρt is
estimated by the cubic splines (red) and the Rao-Blackwellised bootstrap filter (black)
methods, and as time-constant (blue). T = 500, S = 3, M = 5000, nsim = 500.
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(a) Constant (b) Sine (c) Fast sine

(d) Step (e) Ramp (f) Random walk

Figure 3.A.16: Squared bias, over time, of the Kalman filter estimator of Ly,t when
ρt is estimated by the cubic splines (red) and the Rao-Blackwellised bootstrap filter
(black) methods, and as time-constant (blue). T = 500, S = 3, M = 5000, nsim =
500.
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3.B Additional results from the empirical application

(a) Cubic splines

(b) RBBF

Figure 3.B.1: Cubic splines and RBBF estimates of ρt, from the Dutch labour force
model extended with the auxiliary series of claimant counts (described in Section
3.2). Monthly data from January 2004 until March 2020 (T = 195), S = 5, M =
5000. The dashed lines refer to the setting where the knots for the cubic splines
approach are approximately equally distant by fixing February 2015 as one of them,
otherwise they correspond to the quartiles of the sample (the solid lines are the same
as in Figure 3.5.1a). The first shaded area represent the recession period due to the
financial crisis of 2018, whereas the second one refers to the legislative change of
February 2015.
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Figure 3.B.2: Estimates of the correlation parameter when this is treated as time-
constant, obtained with monthly data observed from January 2004 up to and including
the year displayed on the horizontal axis. The results refer to the Dutch labour force
model extended with the auxiliary series of claimant counts (described in Section
3.2).
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(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2020

Figure 3.B.3: Kalman filter estimates of θy,t in the Dutch labour force model (de-
scribed in Section 3.2). The green lines refer to the model without auxiliary se-
ries. The blue and black lines refer to the model extended with the auxiliary series
of claimant counts, when the correlation is estimated as time constant and with the
RBBF, respectively. Each panel shows the results obtained with monthly data ob-
served from January 2004 up to and including the year displayed in the respective
caption. We do not always show estimates for all time periods in order to facilitate
the comparison among panels.
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(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2020

Figure 3.B.4: Kalman filter estimates of Ly,t in the Dutch labour force model (de-
scribed in Section 3.2). The green lines refer to the model without auxiliary se-
ries. The blue and black lines refer to the model extended with the auxiliary series
of claimant counts, when the correlation is estimated as time constant and with the
RBBF, respectively. Each panel shows the results obtained with monthly data ob-
served from January 2004 up to and including the year displayed in the respective
caption. We do not always show estimates for all time periods in order to facilitate
the comparison among panels.
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(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2020

Figure 3.B.5: Kalman filter estimates of Ry,t in the Dutch labour force model (de-
scribed in Section 3.2). The green lines refer to the model without auxiliary se-
ries. The blue and black lines refer to the model extended with the auxiliary series
of claimant counts, when the correlation is estimated as time constant and with the
RBBF, respectively. Each panel shows the results obtained with monthly data ob-
served from January 2004 up to and including the year displayed in the respective
caption. We do not always show estimates for all time periods in order to facilitate
the comparison among panels.
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(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2020

Figure 3.B.6: Estimated variances, v̂ar
(
θ̂y,t

)
, of the Kalman filter estimates of θy,t in

the Dutch labour force model (described in Section 3.2). The green lines refer to the
model without auxiliary series. The blue and black lines refer to the model extended
with the auxiliary series of claimant counts, when the correlation is estimated as time
constant and with the RBBF, respectively. Each panel shows the results obtained with
monthly data observed from January 2004 up to and including the year displayed in
the respective caption. We do not always show estimates for all time periods in order
to facilitate the comparison among panels.
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(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2020

Figure 3.B.7: Estimated variances, v̂ar
(
L̂y,t

)
, of the Kalman filter estimates of Ly,t

in the Dutch labour force model (described in Section 3.2). The green lines refer to the
model without auxiliary series. The blue and black lines refer to the model extended
with the auxiliary series of claimant counts, when the correlation is estimated as time
constant and with the RBBF, respectively. Each panel shows the results obtained with
monthly data observed from January 2004 up to and including the year displayed in
the respective caption. We do not always show estimates for all time periods in order
to facilitate the comparison among panels.
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(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2020

Figure 3.B.8: Estimated variances, v̂ar
(
R̂y,t

)
, of the Kalman filter estimates of Ry,t

in the Dutch labour force model (described in Section 3.2). The green lines refer to the
model without auxiliary series. The blue and black lines refer to the model extended
with the auxiliary series of claimant counts, when the correlation is estimated as time
constant and with the RBBF, respectively. Each panel shows the results obtained with
monthly data observed from January 2004 up to and including the year displayed in
the respective caption. We do not always show estimates for all time periods in order
to facilitate the comparison among panels.
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Chapter 4. On score-driven, extended Kalman filter and importance
sampling methods, and their attempt to estimate time-varying state
correlations

Abstract
Part of doing research involves taking directions that do not lead anywhere or
that yield unsuccessful results. Hence, what is discovered during such jour-
neys is often left unpublished. A PhD thesis is, on the other hand, an oppor-
tunity to share also negative results, as well as documenting in more detail all
the work that is behind a project. In this chapter we therefore discuss other
econometric methods, than the ones presented in Chapter 3, that we, unsuc-
cessfully, try to use in order to estimate time-varying state correlations in state
space models. Specifically, we consider a score-driven approach, the extended
Kalman filter and importance sampling. The former method does not yield a
satisfactory performance, compared to the cubic splines approach adopted in
Chapter 3. We also cannot find a way to feasibly implement the latter two
methods. All these issues are discussed in this chapter.
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4.1 Introduction

This chapter is made of a collection of notes that have been taken by the au-
thor while exploring other econometric methods, than the ones presented in
Chapter 3, in order to tackle the same problem: estimating time-varying state
correlations in state space models. Such methods did not yield a successful
or feasible performance, as will be shown, and have therefore not been in-
cluded in Chapter 3. However, we believe that presenting negative results can
improve science and we therefore dedicate this chapter to them.

We first consider another method, than the cubic splines discussed in Chapter
3, that deals with a deterministic time-variation of the correlation parameters,
and that is here presented in order to deal with multiple state correlations in
the state space model (not only one as we did, for simplicity, in Chapter 3).
This method is called the generalized autoregressive score (GAS) method and
has been proposed by Delle Monache et al. (2016) in order to estimate time-
varying parameters in state space models. The approach assumes that the
time-varying correlations depend on their past values as well as past values of
the (scaled) score of the log-likelihood (which is required in order to estimate
the state space model). Closed form expressions for the scores are needed
and derived in this chapter. The scores are supposed to provide the direction,
at each point in time, for updating the time-varying correlations in order to
improve the model’s local fit, but the GAS estimates of the correlations look
more volatile than the estimates obtained with the cubic splines approach.

As in Chapter 3, we also investigate two additional estimation methods that
instead assume that the correlations are varying stochastically over time. The
latter parameters are therefore treated as additional unobserved components
and the state space model in this case becomes nonlinear. The nonlinearity of
the state space model hampers its estimation with the standard technique of
Kalman filtering. The idea underlying both approaches is to apply the Kalman
filter to a linear model that approximates the nonlinear one as much as possi-
ble (and better than the cubic splines model). The first method is the extended
Kalman filter and consists of linearising the model based on a first-order Tay-
lor expansion around the estimates of the unobserved components (Durbin &
Koopman, 2012, Chapter 10). It is possible to then estimate the approximate
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linear state space model with the standard Kalman filter. The second approach
is based on importance sampling and involves a linear model that approxi-
mates the nonlinear one up to the second order. As such, the approximation is
more accurate than the one employed by the extended Kalman filter, but the
estimation method becomes more complex. The Kalman filter can again be
applied to the approximate linear model, and the estimation accuracy of the
unobserved components can be further improved by Monte Carlo simulation
methods (Durbin & Koopman, 2012, Chapter 11). For simplicity, we here
show how these two methodologies can potentially deal with the estimation
of only one state correlation parameter.

This chapter is purely methodological since we explain how the three above-
mentioned methods can attempt to estimate rather simple state space models,
not the (extended) Dutch labour force model of Chapters 2 and 3. For the
GAS method only, we report also the results of a Monte Carlo simulation
study which demonstrates that this approach is not as successful as the cu-
bic splines one. We will finally show that the linearisation required by the
extended Kalman filter and importance sampling methods is non-trivial to
obtain, thus rendering these approaches (or at least the way we tried to im-
plement them) impractical to estimate time-varying state correlations in state
space models.

We re-introduce the general form of the state space model (equation (3.3.1) of
Section 3.3), for a n× 1 observable vector zt = (y′t,x

′
t)
′:

zt = Zαt + εt, εt ∼ N (0,H)

αt = Tαt−1 +Rηt, ηt ∼ N (0,Qt) ,
(4.1.1)

for t = 1, . . . , T , where T is the sample size. The m × 1 vector αt contains
the state variables and ηt is the corresponding r × 1 vector of disturbances.
The respective r × r covariance matrix, Qt, is assumed to have time-varying
correlation parameter(s). The m×m matrix T defines the dynamic structure
of the state vector, whereas the n ×m matrix Z links the observed series to
the latent variables. The n× 1 vector εt represents the innovation term of the
observation equation. The selection matrixR has dimensions m× r.
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4.2 Score-driven method

In the score-driven framework, we let Qt contain k correlation parameters,
which we collect in the k×1 vector ρt. We further assume the matricesZ,H ,
T and Qt to be non-stochastic. The score-driven approach indeed employs
a specification for the time-varying correlations that preserves the linearity
of the state space model, as the time-varying correlations do not depend on
components that are random at time t, given past information. Let Zt−1 =
{zt−1, . . . ,z1} and P t = {ρt, . . . ,ρ1}. We define the available information
set at time t as F t = {Zt−1,P t}. Conditional on the information set and on
the vector of time-constant parameters, β (i.e, the time-constant parameters
contained in H , T and Qt, which are also referred to as “hyperparameters”),
the observations and the state vector are Gaussian: zt|F t;β ∼ N (Zat,Ft)
and αt|F t;β ∼ N (at,Pt). Therefore, the log-likelihood function for zt at
time t takes the form:

`t = log p (zt|F t;β) = −n
2

log (2π)− 1

2
log (detFt)−

1

2
v′tF

−1
t vt, (4.2.1)

where the prediction error vt and its covariance matrix Ft are estimated by
means of the following standard Kalman filter recursions:

vt = zt −Zat
Ft = ZPtZ

′ +H

Kt = TPtZ
′F−1
t

at|t = at + PtZ
′F−1
t vt

Pt|t = Pt − PtZ ′F−1
t ZPt

at+1 = Tat +Ktvt

Pt+1 = TPt (T −KtZ)′ +RQtR
′,

(4.2.2)

for t = 1, . . . , T . The vector at|t represents the filtered estimate of αt, and
Pt|t is its filtered estimated covariance matrix. The one-step ahead forecast
(based on F t) of the state vector is at, and the corresponding forecasted co-
variance matrix isPt. The recursions for the Kalman smoother (KFS) use also
future information to estimate the state variables, and can be found in Durbin
and Koopman (2012, Chapter 4).
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For observation-driven methods, and specifically for the GAS method, orig-
inally proposed by Creal et al. (2013) and Harvey (2013), the time-varying
parameters are assumed to depend on deterministic functions of their lagged
values as well as lagged values of the (scaled) scores of the log-likelihood.
The latter are the first derivatives of the log-likelihood with respect to the time-
varying parameters. Since such lagged values are assumed to be known at the
current time, the time-varying parameters are perfectly predictable. More-
over, the log-likelihood is available in closed form. The scores provide the
directions for updating the time-varying parameters in order to improve the
model’s local fit in terms of the log-likelihood. Since these updates occur at
each point in time, the estimates of the time-varying correlations are expected
to be non-smooth.

We specify the following GAS, with orders p and q, updating equation for the
time-varying vector ρt:

ρt+1 = τ +

p∑
i=1

Aist−j+1 +

q∑
j=1

Bjρt−i+1, t = 1, . . . , T, (4.2.3)

where τ is a k× 1 vector of constants andAi andBj are diagonal coefficient
matrices. The scaled-score of the conditional log-likelihood is st = St∇t,
where

∇t =
∂`t
∂ρt

, St ≡ I−lt =
[
Et−1

(
∇t∇′t

)]−l
, l = 0, 1/2, 1.

Under a correct model specification, St =
[
−Et−1

(
∂2`t
∂ρt∂ρ′t

)]−l
and it can

be proven that the score function st forms a martingale difference sequence:
Et−1 [st] = 0. This follows from the information matrix equality and the
properties of the score vector (zero mean score/zero expected gradient). More-
over, if we choose St = I−1/2

t , then st has unit variance, since Et−1 [sts
′
t] =

StItS′t. If we express ρt in terms of its infinite moving average representa-
tion, then we need the roots of the equation |I–B(L)| = 0, where L is the lag
operator, to lie inside the unit circle in order for ρt to be covariance stationary.
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For a GAS(1,1) process, the infinite moving-average representation is

ρt = (I −B1)−1τ +A1

∞∑
i=0

Bi
1st−i. (4.2.4)

In the Monte Carlo simulation study we always use l = 1
2 , in line with pre-

vious literature. We avoid numerical instability by replacing It with the
smoothed estimator Ĩt = (1 − ζ)It + ζĨt−1, where ζ is estimated by max-
imising the log-likelihood, with ζ ∈ [0, 1]. Notice that the vector of time-
constant parameters, β, contains ζ, the time-invariant hyperparameters of
model (4.1.1), as well as τ and the coefficient matrices of equation (4.2.3).

Delle Monache et al. (2016) show that in the context of a state space model
with time-varying parameters, the gradient and the information matrix, re-
spectively, take the form

∇t =
1

2

[
Ḟ ′t
(
F−1
t ⊗ F−1

t

)
vec
(
vtv
′
t − Ft

)
− 2V̇ ′t F

−1
t vt

]
It =

1

2

[
Ḟ ′t
(
F−1
t ⊗ F−1

t

)
Ḟt + 2V̇ ′t F

−1
t V̇t

]
,

(4.2.5)

for t = 1, . . . , T , where V̇t = ∂vt
∂ρ′t

and Ḟt = ∂ vec(Ft)
∂ρ′t

are computed via the
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following additional recursions:

V̇t = −ZȦt

Ḟt = (Z ⊗Z) Ṗt

K̇t =
(
F−1
t Z ⊗ T

)
Ṗt −

(
F−1
t ⊗Kt

)
Ḟt

Ȧt|t = Ȧt +
(
v′tF

−1
t Z ⊗ Im

)
Ṗt −

(
v′tF

−1
t ⊗ PtZ ′F−1

t

)
Ḟt

+ PtZ
′F−1
t V̇t

Ṗt|t = Ṗt −
[
PtZ

′F−1
t Z ⊗ Im + Im ⊗ PtZ ′F−1

t Z
]
Ṗt

+
(
PtZ

′F−1
t ⊗ PtZ ′F−1

t

)
Ḟt

Ȧt+1 = TȦt +
(
v′t ⊗ Im

)
K̇t +KtV̇t

Ṗt+1 = [(T ⊗ T )− (KtZ ⊗ T )] Ṗt −
(
Im ⊗ TPtZ ′

)
CmnK̇t

+ (R⊗R) Q̇t,

(4.2.6)

for t = 1, . . . , T , with Q̇t = ∂ vec(Qt)
∂ρ′t

. The mn ×mn commutation matrix
Cmn is such that Cmn vec (X) = vec (X ′), given a m × n matrix X . The
vec (X) operator stacks the columns of X , one underneath the other. The
above-listed additional recursions are based on the assumption that Qt is the
only matrix containing time-varying parameters.

The derivations of equations (4.2.5) and (4.2.6) follow, with minor differences,
the ones of Delle Monache et al. (2016), and are reported in Appendix 4.A.

We need to impose a restriction on the space of ρt, namely of being between
-1 and 1. We therefore re-parametrize the correlation parameter vector as

ρt = tanh (γt) ,

where tanh is the hyperbolic tangent, which is a time-invariant, continuous,
invertible, and twice differentiable function. The vector γt, instead of ρt, now
follows the updating rule of equation (4.2.3). The equations that define the
gradient and the Fisher information matrix in formula (4.2.5) therefore have
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to take the Jacobian ∂ρt
∂γ′t

into account, by taking the form

∇t =
∂`t
∂γt

=

[
∂`t
∂γ ′t

]′
=

[
∂`t
∂ρ′t

∂ρt
∂γ ′t

]′
=
∂ρ′t
∂γt

∂`t
∂ρt

,

It = −Et−1

(
∂2`t
∂γt∂γ ′t

)
= −Et−1

(
∂ρ′t
∂γt

∂2`t
∂ρt∂ρ′t

∂ρt
∂γ ′t

)
= −∂ρ

′
t

∂γt
Et−1

(
∂2`t
∂ρt∂ρ′t

)
∂ρt
∂γ ′t

.

(4.2.7)

In our case the matrix Qt, containing the time-varying correlations, takes the
form

Qt =


σ2

1 ρt,1,2σ1σ2 . . . ρt,1,mσ1σm
ρt,1,2σ1σ2 σ2

2 . . . ρt,2,mσ2σm
...

...
. . .

...
ρt,1,mσ1σm ρt,2,mσ2σm . . . σ2

m

 .

Therefore, Q̇t = ∂ vec(Qt)
∂ρ′t

is a m2 × k matrix and
∂ρt
∂γ′t

= diag
(
1− tanh2(γt,1,2), . . . , 1− tanh2(γt,m−1,m)

)
is a

k × k diagonal matrix1. Consider, as illustration, the following simple
bivariate example:

Qt =

[
σ2

1 ρtσ1σ2

ρtσ1σ2 σ2
2

]
.

Then,
∂ vec (Qt)

∂ρt
=


0

σ1σ2

σ1σ2

0

 and
∂ρt
∂γt

= 1− tanh2(γt).

(4.2.8)

1If the parametrization ρt = γt√
1+γ2

t

is used, then ∂ρt
∂γ′t

=

diag
(

1/
(
1 + γ2

t,1,2

) 3
2 , . . . , 1/

(
1 + γ2

t,m−1,m

) 3
2

)
. Different parametrizations may

be employed to simplify mathematical derivations, and to avoid numerical problems.
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The orders of the updating equation (4.2.3), p and q, can be chosen by infor-
mation criteria. The Akaike and Bayesian information criteria for state space
models with diffuse initialization take the form (Durbin & Koopman, 2012,
Chapter 7):

AIC =
1

T
[−2`d + 2 (d+ dim(β))]

BIC =
1

T
[−2`d + log (T ) (d+ dim(β))] ,

(4.2.9)

where d is the number of nonstationary state variables of yt, dim(β) is the
dimension of β, and `d is the diffuse log-likelihood (Harvey, 1989):

`d = −Tn
2

log(2π)− 1

2

T∑
t=d+1

[
log (detFt)−

1

2
v′tF

−1
t vt

]
. (4.2.10)

However, we constrain our analysis to p = q = 1 since the GAS(1,1) model is
already very flexible due to its infinite moving average representation (4.2.4),
but restricted by the “ARMA” structure.

All the time-constant parameters, β, are estimated by maximum likelihood.

4.2.1 Monte Carlo simulation study

The Monte Carlo simulation study is conducted in order to evaluate the perfor-
mance of the GAS method in estimating a time-varying state correlation. Such
performance is compared to the one of the cubic splines approach discussed
in Chapter 3, and to estimating the correlation parameter as time constant, i.e.,
by maximum likelihood. We consider the following state space model speci-
fications, which entail only one state correlation parameter to be estimated:

zt = Zαt + εt, εt ∼ N (0,H)

αt = Tαt−1 + ηt, ηt ∼ N (0,Qt) , t = 1, . . . , T.

1. Bivariate local level model: zt, αt, εt and ηt are 2 × 1 vectors.
αt = (L1,t, L2,t)

′, Z = T = I2,H = diag(1, 1) and
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Qt =

[
exp(2σ1) tanh(γt) exp(σ1) exp(σ2)

tanh(γt) exp(σ1) exp(σ2) exp(2σ2)

]
,

with σ1 = σ2 = 0.

2. Bivariate smooth trend model: zt, εt and ηt are 2 × 1 vectors;

αt = (L1,t, R1,t, L2,t, R2,t)
′ is a 4 × 1 vector. Z =

[
1 0 0 0
0 0 1 0

]
,

T =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

,H = diag(1, 1) and

Qt =


0 0 0 0
0 exp(2σ1) 0 tanh(γt) exp(σ1) exp(σ2)
0 0 0 0
0 tanh(γt) exp(σ1) exp(σ2) 0 exp(2σ2)

,

with σ1 = σ2 = 0 (which implies exp(σ1) = exp(σ2) = 1).

For both model specifications and all estimation methods, we consider the
following data generating processes (DGPs) for the time-varying parameter
ρt, which are similar to the ones employed in Chapter 3:

1. No-correlation: ρt = 0

2. Constant correlation: ρt = 0.9

3. Smoothly decreasing function: ρt = 0.9/(1 + exp(0.02(t− T/2))

4. Sine: ρt = 0.5 + 0.4 cos(2πt/(T/5))

5. Fast sine: ρt = 0.5 + 0.4 cos(2πt/(T/50))

6. Step: ρt = 0.9− 0.5(t > T/2)

7. Ramp: ρt = 2/T mod (t/(T/2))

for t = 1, . . . , T . We consider two different sample sizes, T = 200 and
T = 500, and run nsim = 500 Monte Carlo simulations.

Figures 4.2.1 and 4.2.2 display the 5%, 10%, 80%, and 95% percentiles
(which we loosely call confidence bands), and the median, of the simulation
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estimates of the correlation parameter obtained with the GAS and the cubic
splines methods, respectively. The results refer to the bivariate local level
model when T = 200. The GAS approach barely manages to follow the true
time-varying patterns of ρt, and its confidence bands are rather wide, which
is an indication of a weak accuracy of the estimation method. The cubic
splines technique instead shows a better performance in terms of estimation
accuracy and capability of capturing the true time-variation (or constancy)
of the correlation parameter. Figures 4.A.3 and 4.A.4 report the same
results for the larger sample size of T = 500. Although, as expected, the
estimation accuracy of both methods improves, the cubic splines approach
confirms its superior performance. Similar conclusions can be drawn for
the bivariate smooth trend model, as Figures 4.A.7-4.A.10 show. These
results indicate that the cubic splines are a better choice, than the GAS, for a
deterministic specification of the time-varying correlation, and subsequent
approximate linear model, employed in the indirect inference estimation of
Chapter 3. Finally, figures 4.A.1,4.A.2, 4.A.5 and 4.A.6 display the same
results discussed above, when the correlation parameter is estimated as time
constant.

In Section 3.1 we wrote: “Solving our problem, i.e., extracting this time-
varying state correlation, is therefore already challenging by the fact that this
parameter relates innovations of components that are unobserved. Addition-
ally, data and their respective log-likelihood functions, are much less infor-
mative about correlations than other parameters, such as means or variances.”.
This is of course an issue for all estimation methods. However, our intuition
behind the failure of the score-driven method is that the additional Kalman
filter recursions needed for it, make the relationship between the score-driven
estimator of the correlation parameter and the observed data highly complex,
and so render further difficult to extract the relevant (for us) information from
the data. Both the cubic spline (maximum likelihood) and the bootstrap filter
estimators, instead, depend on the data “only” via the Kalman filter recursions
(not the additional ones).
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Figure 4.2.1: Bivariate local level model. T = 200, nsim = 500.

Figure 4.2.2: Bivariate local level model. T = 200, nsim = 500.
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4.3 Extended Kalman filter
In this Section we explain how to implement the extended Kalman filter for
a bivariate local level model with time-varying level correlations (Appendix
4.B shows how to implement the extended Kalman filter for a bivariate smooth
trend model).

As already mention in the Introduction, we now make the assumption of a
stochastic state correlation, which is therefore treated as an additional unob-
served component in the model.

The observation equations for a bivariate local level model are:

yt = αyt + εyt

xt = αxt + εxt , t = 1, . . . , T,

with (εyt , ε
x
t )
′ ∼ N (0,H).

The transition equations are:

αyt+1 = αyt + ηyt

αxt+1 = αxt + ηxt

γt+1 = γt + ηγt , t = 1, . . . , T,

with (ηyt , η
x
t , η

γ
t )
′ ∼ N (0,Qt), andQt =

 σ2
y tanh(γt)σyσx 0

tanh(γt)σyσx σ2
x 0

0 0 σ2
γ

.

The bivariate local level model can be written in compact notation as equation
(4.1.1), with zt = (xt, yt)

′, εt = (εyt , ε
x
t )
′,αt = (αyt , α

x
t , γt)

′, ηt = (ηyt , η
x
t )
′,

Z =

[
1 0 0
0 1 0

]
, T = I3, andR = I2.

In this case γt is an additional state variable with a random walk transition
equation and its own source of error, ηγt . The state space model therefore
becomes nonlinear since the correlation parameter in the covariance matrix
Qt, is random at time t. The extended Kalman filter can be used in order to
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linearise the model, if the nonlinearity is present among state variables. In
this case the non-linearity is caused by the interaction of the state variable
γt with the innovation vector ηt. Therefore, we first transform the model
by means of the Cholesky decomposition of Qt: Qt = CtC

′
t, with Ct = σy 0 0

tanh(γt)σx σx

√
1− tanh2(γt) 0

0 0 σγ

. We then replace αt by Ctα∗t in

the observation equation of model (4.1.1):

zt = ZCtα
∗
t + εt = Zαt + εt, εt ∼ (0,H) , t = 1, . . . , T,

whereαt = Ctα
∗
t =

 σy 0 0

tanh(γt)σx σx

√
1− tanh2(γt) 0

0 0 σγ


 αy∗t

αx∗t
γt

.

The observation equations of the transformed local level model are:

yt = σyα
y∗
t + εyt

xt = σx

(
tanh(γt)α

y∗
t +

√
1− tanh2(γt)α

x∗
t

)
+ εxt , t = 1, . . . , T,

(4.3.1)

with (εyt , ε
x
t )
′ ∼ N (0,H).

The transition equations of the transformed model are:

αy∗t+1 = αy∗t + ηy∗t

αx∗t+1 = αx∗t + ηx∗t

γt+1 = γt + ηγt , t = 1, . . . , T,

with
(
ηy∗t , η

x∗
t , η

γ
t

)′ ∼ N (0,Q∗) andQ∗ =

 1 0 0
0 1 0
0 0 σ2

γ

.
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Notice that the elements of the transformed innovation vector
(
ηy∗t , η

x∗
t , η

γ
t

)′
are not correlated anymore, and that therefore their covariance matrix, Q∗, is
now time-constant.

The nonlinearity is now present in the observation equation (4.3.1), which can
be written as:

zt = Zt(α
∗
t ) + εt, (4.3.2)

where

Zt(α
∗
t ) =

 σyα
y∗
t

σx

(
tanh(γt)α

y∗
t +

√
1− tanh2(γt)α

x∗
t

)  .

The extended Kalman filter linearises the model by approximating Zt(α
∗
t )

with its first-order Taylor expansion around at (i.e., the predicted state vec-
tor):

Zt(α
∗
t ) ≈ Zt(at) + Żt(α

∗
t − at),

where

Żt =
∂Zt(α

∗
t )

∂α∗
′
t

∣∣∣∣
α∗t=at

=
∂Zt(α

∗
t )

∂
(
αy∗t , α

x∗
t , γt

)∣∣∣∣∣
α∗t=at

=

[
σy 0

σx tanh(γt) σx

√
1− tanh2(γt)

0

σx

√
1− tanh2(γt)

(√
1− tanh2(γt)α

y∗
t − tanh(γt)α

x∗
t

) ∣∣∣∣∣∣
α∗t=at

.

The extended Kalman filter recursions, needed to estimate the state variables,
are:
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vt = zt − Zt(at)

Ft = ŻtPtŻt
′
+H

Kt = TPtŻt
′
F−1
t

at|t = at + PtŻt
′
F−1
t vt

Pt|t = Pt − PtŻt
′
F−1
t ŻtPt

at+1 = Tat +Ktvt

Pt+1 = TPt

(
T −KtŻt

)′
+RQ∗R′,

for t = 1, . . . , T . The recursions for the extended state smoother are:

rt−1 = Ż ′tF
−1
t vt +

(
T −KtŻt

)′
rt

α̂t = at + Ptrt−1,

for t = T, . . . , 1, and with rT = 0.

The filtered and smoothed estimates for γt correspond, respectively, to the
last element of at|t and α̂t, and the confidence intervals can be built using
the corresponding diagonal element of Pt|t, for t = 1, . . . , T . By taking the
hyperbolic tangent of the estimate and the confidence intervals, we find the
respective estimate and confidence intervals for ρt.

4.4 Importance sampling

In this Section we show how to implement the importance sampling approach
for a bivariate local level model with time-varying level correlations.

We keep making the assumption of a stochastic time-varying state correla-
tion. In Section 4.3 we discussed how to rewrite a bivariate local level model
with stochastic time-varying level correlation, in such a way that the model
becomes nonlinear Gaussian in the observation equation, and linear Gaussian
in the state equation. The resulting model takes the form

zt = Zt(θt) + εt, εt ∼ N(0,H)

θt = Zα∗t

α∗t+1 = Tα∗t + η∗t , η∗t ∼ N(0,Q∗),

(4.4.1)
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for t = 1, . . . , T , where zt = (xt, yt)
′, α∗t = (αy∗t , α

x∗
t , γt)

′, Z = T = I3,

Q∗ =

 1 0 0
0 1 0
0 0 σ2

γ

, and

Zt(θt) = Zt(α
∗
t ) =

 σyα
y∗
t

σx

(
tanh(γy)α

y∗
t +

√
1− tanh2(γt)α

x∗
t

)  .

In model (4.4.1), the diagonal elements of H (σy and σx), and σγ are the pa-
rameters that need to be estimated by maximum likelihood. The off-diagonal
elements ofH are equal to zero.

The conditional log-density of zt on θt for model (4.4.1) is

log p(zt|θt;β) = −n
2

log(2π) +
1

2
log(detH−1)

− 1

2
(zt − Zt(θt))′H−1(zt − Zt(θt)), (4.4.2)

for t = 1, . . . , T . Since the unobserved components of the nonlinear model
(4.4.1) cannot be estimated by the standard Kalman filter (due to the nonlin-
earity of the model), the idea behind importance sampling is to first obtain a
Gaussian linear state space model which approximates the nonlinear model
(4.4.1) as much as possible. This approximate linear Gaussian model takes
the following form

bt = θt + εt, εt ∼ N (0,At)

θt = Zα∗t

α∗t+1 = Tα∗t + η∗t , η∗t ∼ N(0,Q∗),

(4.4.3)

for t = 1, . . . , T . Notice that model (4.4.3) is now linear in the signal vec-
tor, θt, and the distribution of the error terms is still Gaussian. Moreover,
the transition equations of models (4.4.1) and (4.4.3) are the same (i.e., the
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unconditional density of θt is linear Gaussian in both models). The condi-
tional log-density of bt on θt for model (4.4.3) is based on a linear Gaussian
distribution, which we indicate with g, and takes the form

log g(bt|θt;β) = −dim(bt)

2
log(2π)

+
1

2
log(detA−1

t )− 1

2
(bt − θt)′A−1

t (bt − θt),

for t = 1, . . . , T , where dim(bt) represents the dimension of the vector
bt. Notice also that the observed vector, bt, and the covariance matrix of
the innovations in the measurement equation, At, in model (4.4.3), are
different from, respectively, zt and H in model (4.4.1). If these two new
elements (which are called importance parameters) are chosen such that

At = −
[
p̈(zt|θt;β)|θt=θ̂t

]−1
and bt = θ̂t + At ṗ(zt|θt;β)|θt=θ̂t , where

ṗ(zt|θt;β) = ∂ log p(zt|θt;β)
∂θt

and p̈(zt|θt;β) = ∂2 log p(zt|θt;β)
∂θt∂θ′t

, and with

θ̂t = arg maxθt p(θt|zt;β), which implies that θ̂t is the mode of p(θt|zt;β),
then

∂ log g(bt|θt;β)

∂θt

∣∣∣∣
θt=θ̂t

=
∂ log p(zt|θt;β)

∂θt

∣∣∣∣
θt=θ̂t

∂2 log g(bt|θt;β)

∂θt∂θ′t

∣∣∣∣
θt=θ̂t

=
∂2 log p(zt|θt;β)

∂θt∂θ′t

∣∣∣∣
θt=θ̂t

,

for t = 1, . . . , T . This last statement implies that the linear Gaussian model
(4.4.3) approximates the nonlinear Gaussian model (4.4.1) up to the second or-
der, since the first and second derivatives of the densities implied by both mod-
els, with respect to the signal vector, are the same at the mode θ̂t. In Appendix
4.C.1 we show how to derive the expressions forAt and bt. Finally, Koopman
et al. (2018) show that g(bt|θt;β) = g(zt|θt;β), for t = 1, . . . , T .

Shephard and Pitt (1997) and Durbin and Koopman (1997) explain that, given
an initial guess for θ̂t (for instance θ̂t = 0 for t = 1, . . . , T ), which yields
initial guesses for bt and At in model (4.4.3), it is possible to obtain the KFS
estimate for θt, since model (4.4.3) is linear. The KFS estimate then replaces
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the initial guess for θ̂t, and a new KFS estimate for θt can be obtained again
for the new values of bt and At, and so on until convergence. The KFS esti-
mate for θt at convergence represents the mode θ̂t. The method just described
for choosing bt and At, which is based on the second order approximation
of the nonlinear model at the mode, is called SPDK (after Shephard and Pitt
(1997) and Durbin and Koopman (1997)).

The necessity to find a Gaussian linear model that approximates the nonlinear
one, is motivated by the fact that importance sampling aims at estimating E(θ)
by means of its Monte Carlo estimator (Durbin & Koopman, 2012, Chapter
11), which is expressed as

θ̂M =
1

S

S∑
i=1

θ̃(i), with draw θ̃(i) ∼ p(θ|z;β), (4.4.4)

for S draws of θ̃(i) from p(θ|z;β), where θ = Zα, with α being the mT × 1
state vector, and z the nT × 1 observed vector. The problem is that it is
not possible to draw from the conditional density p(θ|z;β) implied in model
(4.4.1), because of the nonlinearity of the model. Nonetheless, it is possible
to rewrite (4.4.4) as

θ̂M =
1

S

S∑
i=1

θ̃(i)p(θ̃(i)|z;β)

g(θ̃(i)|z;β)
, with draw θ̃(i) ∼ g(θ|z;β), (4.4.5)

and draw θ̃(i) from the linear Gaussian conditional density g(θ|z;β) implied
by model (4.4.3), which is referred to as the importance density2. Since the
transition equation of the nonlinear model (4.4.1) is linear Gaussian, it is pos-
sible to show (by simply applying the Bayes rule) that equation (4.4.5) boils

2Notice that the importance density is expressed in terms of zt instead of bt because, as men-
tioned earlier in this Section, Koopman et al. (2018) show that g(bt|θt;β) = g(zt|θt;β),
for t = 1, . . . , T .
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down to

θ̂M =

∑S
i=1 θ̃

(i)w(z|θ̃(i);β)∑S
i=1w(z|θ̃(i);β)

, with draw θ̃(i) ∼ g(θ|z;β), (4.4.6)

where w(z|θ̃(i);β) = p(z|θ̃(i);β)

g(z|θ̃(i);β)
are called importance weights.

Durbin and Koopman (2002) provide an algorithm for simulation smooth-
ing (which holds only for linear Gaussian models), which allows us to draw
θ̃(i) from g(θ|z;β). The algorithm can be found in Appendix 4.C.2. For
each draw θ̃(i), we evaluate g(z|θ̃(i);β) =

∏T
t=1 g(bt|θ̃(i)

t ;β), with bt|θ̃(i)
t ∼

N(θ̃
(i)
t ,At), and p(z|θ̃(i);β) =

∏T
t=1 p(zt|θ̃

(i)
t ;β), in order to compute the

importance weights, and, finally, θ̂M . The hyperbolic tangent of the third and
last element of θ̂t,M represents the Monte Carlo estimator of the time-varying
correlation at time t.

The parameter vector β, which contains the static parameters of the model, is
estimated by maximizing the following log-likelihood

log p̂(z;β) = log g(z;β) + log

[
1

S

S∑
i=1

w(z|θ̃(i);β)

]
,

where log g(z;β) =
∑T

t=1 log g(zt;β), with log g(zt;β) taking expression
(4.2.1) and being evaluated via the Kalman filter recursions (4.2.2), with the
difference that zt = bt and H = At evaluated at the mode θ̂t, for t =
1, . . . , T .

4.5 Discussion and conclusions
We have just finished illustrating how the extended Kalman filter and impor-
tance sampling methods can attempt to deal with nonlinear state space models,
where the nonlinearity is triggered by a stochastic state correlation. Both ap-
proaches require the linearisation of the model, and we did so by first bringing
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the nonlinearity from the transition equation to the observation equation. We
therefore claimed that we could rewrite model (4.1.1) as

zt = ZCtα
∗
t + εt

α∗t+1 = Tα∗t + η∗t , η∗t ∼ N(0,Q∗), t = 1, . . . , T.
(4.5.1)

However, the attentive readers may have already realised that (4.5.1) is not a
different way to rewrite model (4.1.1). Indeed, model (4.1.1) can be correctly
rewritten as

zt = Zαt + εt

αt+1 = Tαt +Ctη
∗
t , η∗t ∼ N(0,Q∗), t = 1, . . . , T.

Now, since in the case of a bivariate local level model T is an identity ma-
trix,

αt+1 =
t+1∑
i=1

Ciη
∗
i , η∗i ∼ N(0,Q∗), t = 1, . . . , T,

and therefore, model (4.1.1) can, one last time, be correctly rewritten as

zt = Z
t∑
i=1

Ciη
∗
i + εt

η∗i ∼ N(0,Q∗), t = 1, . . . , T.

In model (4.5.1) we were therefore missing a partial sum term which clearly
renders the subsequent linearisation required by the extended Kalman filter
and importance sampling methods, more cumbersome. These approaches
have therefore not been investigated further. One possible, yet non-trivial, way
out of this problem would be to employ the importance sampling approach by
linearising the transition equation directly.

Although we could not show how to feasibly employ the two above-mentioned
methods for the estimation of a stochastic state correlation, we illustrated that
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the estimation of a deterministic time-varying state correlation by the score-
driven method, is feasible. However, it is not satisfactory, in terms of estima-
tion accuracy of the correlation, with respect to the cubic splines method. This
finding motivates the reason why we employed the latter approach, instead of
the score-driven one, in order to create an approximate model (based on a
deterministic time-varying specification for the correlation) for the indirect
inference procedure of Chapter 3.
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4.A GAS method: proofs and Monte Carlo
simulation results

The following proofs apply to a more general state space model than the one
considered in this chapter, where all matrices (i.e., Zt, Ht, Tt, Rt and Qt)
are allowed to have time-varying parameters.

4.A.1 Derivation of equations (4.2.5)

∇t =
∂`t
∂ρt

=

[
∂`t
∂ρ′t

]′
=

[
−1

2

∂ log (detFt)

∂ρ′t
− 1

2

∂v′tF
−1
t vt

∂ρ′t

]′
= −1

2

[
∂ log (detFt)

∂ vec (Ft)
′
∂ vec (Ft)

∂ρ′t
+
∂v′tF

−1
t vt

∂vt

vt
∂ρ′t

+
∂v′tF

−1
t vt

∂ vec (Ft)
′
∂ vec (Ft)

∂ρ′t

]′
= −1

2

[
vec
(
F−1
t

)′
Ḟt + v′t

(
F−1
t + F−1

t

)
V̇t −

(
F−1
t vt ⊗ F−1

t vt
)′
Ḟt

]′
= −1

2

[
Ḟ ′t vec

(
F−1
t

)
+ 2V̇ ′t F

−1
t vt − Ḟ ′t

(
F−1
t ⊗ F−1

t

)
(vt ⊗ vt)

]
= −1

2

[
Ḟ ′t vec

(
F−1
t FtF

−1
t

)
− Ḟ ′t

(
F−1
t ⊗ F−1

t

)
(vt ⊗ vt) + 2V̇ ′t F

−1
t vt

]
= −1

2

[
Ḟ ′t
(
F−1
t ⊗ F−1

t

)
vec (Ft)− Ḟ ′t

(
F−1
t ⊗ F−1

t

)
(vt ⊗ vt)

+2V̇ ′t F
−1
t vt

]
= −1

2

[
Ḟ ′t
(
F−1
t ⊗ F−1

t

)
[vec (Ft)− (vt ⊗ vt)] + 2V̇ ′t F

−1
t vt

]
=

1

2

[
Ḟ ′t
(
F−1
t ⊗ F−1

t

)
[(vt ⊗ vt)− vec (Ft)]− 2V̇ ′t F

−1
t vt

]
=

1

2

[
Ḟ ′t
(
F−1
t ⊗ F−1

t

) [
vec
(
vtv
′
t

)
− vec (Ft)

]
− 2V̇ ′t F

−1
t vt

]
=

1

2

[
Ḟ ′t
(
F−1
t ⊗ F−1

t

)
vec
(
vtv
′
t − Ft

)
− 2V̇ ′t F

−1
t vt

]
.

(4.A.1)
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∂2`t
∂ρt∂ρ′t

=
∂∇t
∂ρ′t

=
∂∇t

∂ vec
(
Ḟt

)′ ∂ vec
(
Ḟt

)
ρ′t

+
∂∇t

∂ vec (Ft)
′
∂ vec (Ft)

ρ′t

+
∂∇t

∂ vec
(
V̇t

)′ ∂ vec
(
V̇t

)
ρ′t

+
∂∇t
∂v′t

∂vt
ρ′t

=
1

2

[
vec
(
vtv
′
t − Ft

)′ (
F−1
t ⊗ F−1

t

)
⊗ In2

]
Cn2kF̈t

+
1

2

[
∂Ḟt

(
F−1
t ⊗ F−1

t

)
vec (vtv

′
t − Ft)

∂ vec
(
F−1
t ⊗ F−1

t

)′ ∂ vec
(
F−1
t ⊗ F−1

t

)
∂ vec (Ft)

′

−Ḟ ′t
(
F−1
t ⊗ F−1

t

)]
Ḟt

+
(
vt ⊗ V̇t

)′ (
F−1
t ⊗ F−1

t

)
Ḟt −

(
v′tF

−1
t ⊗ In

)
CnkV̈t

+
1

2
Ḟ ′t
(
F−1
t ⊗ F−1

t

)
(vt ⊗ In + In ⊗ vt) V̇t − V̇ ′t F−1

t V̇t,

(4.A.2)

since

∂∇t
∂ vec

(
Ḟt

)′ ∂ vec
(
Ḟt

)
∂ρ′t

=
∂ 1

2 Ḟ
′
t

(
F−1
t ⊗ F−1

t

)
vec (vtv

′
t − Ft)− V̇ ′t Ḟ−1

t vt

∂ vec
(
Ḟt

)′
∂ vec

(
Ḟt

)
∂ρ′t

=
1

2

[
vec
(
vtv
′
t − Ft

)′ (
F−1
t ⊗ F−1

t

)
⊗ In2

]
Cn2kF̈t,
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∂∇t
∂ vec (Ft)

′
∂ vec (Ft)

∂ρ′t
=
∂ 1

2 Ḟt
(
F−1
t ⊗ F−1

t

)
vec (vtv

′
t − Ft)− V̇ ′t F−1

t vt

∂ vec (Ft)
′

∂ vec (Ft)

∂ρ′t

=
1

2

[
∂Ḟt

(
F−1
t ⊗ F−1

t

)
vec (vtv

′
t − Ft)

∂ vec
(
F−1
t ⊗ F−1

t

)′
∂ vec

(
F−1
t ⊗ F−1

t

)
∂ vec (Ft)

′

+
∂Ḟt

(
F−1
t ⊗ F−1

t

)
vec (vtv

′
t − Ft)

vec (vtv′t − Ft)
′

∂ vec (vtv
′
t − Ft)

∂ vec (Ft)
′

]
Ḟt

+
(
F−1
t vt ⊗ F−1

t V̇t

)′
Ḟt

=
1

2

[
∂Ḟt

(
F−1
t ⊗ F−1

t

)
vec (vtv

′
t − Ft)

∂ vec
(
F−1
t ⊗ F−1

t

)′
∂ vec

(
F−1
t ⊗ F−1

t

)
∂ vec (Ft)

′ − Ḟ ′t
(
F−1
t ⊗ F−1

t

)]
Ḟt

+
(
vt ⊗ V̇t

)′ (
F−1
t ⊗ F−1

t

)
Ḟt,

∂∇t
∂ vec

(
V̇t

)′ ∂ vec
(
V̇t

)
∂ρ′t

=
∂ 1

2 Ḟt
(
F−1
t ⊗ F−1

t

)
vec (vtv

′
t − Ft)− V̇ ′t Ḟ−1

t vt

∂ vec
(
V̇t

)′
∂ vec

(
V̇t

)
∂ρ′t

= −
(
v′tF

−1
t ⊗ In

)
CnkV̈t,
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∂∇t
∂v′t

∂vt
∂ρ′t

=
∂ 1

2 Ḟt
(
F−1
t ⊗ F−1

t

)
vec (vtv

′
t − Ft)− V̇ ′t Ḟ−1

t vt

∂v′t

∂vt
∂ρ′t

=
1

2
Ḟ ′t
(
F−1
t ⊗ F−1

t

)
(vt ⊗ In + In ⊗ vt) V̇t − V̇ ′t F−1

t V̇t.

F̈t =
∂ vec(Ḟt)

∂ρ′t
and V̈t =

∂ vec(V̇t)
∂ρ′t

.

It = −Et−1

(
∂2`t
∂ρt∂ρ′t

)
=

1

2
Ḟ ′t
(
F−1
t ⊗ F−1

t

)
Ḟt + V̇ ′t F

−1
t V̇t, (4.A.3)

since vt is the only random element in equation (4.A.2), Et−1 (vt) = 0 and
Et−1 (vtv

′
t) = Ft. Et−1

(
V̇t

)
= Et−1

(
−ZtȦt

)
= −ZtȦt since Ȧt de-

pends on past information which is known at time t. The same argument holds
for V̈t. V̇t and V̈t are therefore non-random given the conditional expectation
at time t− 1. Moreover, Et−1 (∇t) = 0.

4.A.2 Derivation of the additional Kalman filter recursions (4.2.6)

V̇t
n×k

=
∂vt
∂ρ′t

=
∂vt

∂ vec (Zt)
′
∂ vec (Zt)

∂ρ′t
+
∂vt
∂a′t

∂at
∂ρ′t

= −
[(
a′t ⊗ In

)
Żt +ZtȦt

]
= −ZȦt.
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Ḟt
n2×k

=
∂ vec (Ft)

∂ρ′t

=
∂ vec (Ft)

∂ vec (Zt)
′
∂ vec (Zt)

∂ρ′t
+
∂ vec (Ft)

∂ vec (Pt)
′
∂ vec (Pt)

∂ρ′t

+
∂ vec (Ft)

∂ vec (Ht)
′
∂ vec (Ht)

∂ρ′t

= (In2 +Cn) (ZtPt ⊗ In) Żt + (Zt ⊗Zt) Ṗt + Ḣt

= (Z ⊗Z) Ṗt.

K̇t
mn×k

=
∂ vec (Kt)

∂ρ′t

=
∂ vec (Kt)

∂ vec (Tt)
′
∂ vec (Tt)

∂ρ′t
+
∂ vec (Kt)

∂ vec (Pt)
′
∂ vec (Pt)

∂ρ′t

+
∂ vec (Kt)

∂ vec (Zt)
′
∂ vec (Zt)

∂ρ′t
+
∂ vec (Kt)

∂ vec (Ft)
′
∂ vec (Ft)

∂ρ′t

=
(
F−1
t ZtPt ⊗ Im

)
Ṫt +

(
F−1
t Zt ⊗ Tt

)
Ṗt +

(
F−1
t ⊗ TtPt

)
CnmŻt

−
(
InF

−1
t ⊗ TtPtZ ′tF−1

t

)
Ḟt

=
(
F−1
t ZtPt ⊗ Im

)
Ṫt +

(
F−1
t Zt ⊗ Tt

)
Ṗt +

(
F−1
t ⊗ TtPt

)
CnmŻt

−
(
F−1
t ⊗Kt

)
Ḟt

=
(
F−1
t Z ⊗ T

)
Ṗt −

(
F−1
t ⊗Kt

)
Ḟt.
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Ȧt|t
m×k

=
∂at|t

∂ρ′t

=
∂at|t

∂a′t

∂at
∂ρ′t

+
∂at|t

∂ vec (Pt)
′
∂ vec (Pt)

∂ρ′t

+
∂at|t

∂ vec (Zt)
′
∂ vec (Zt)

∂ρ′t
+

∂at|t

∂ vec (Ft)
′
∂ vec (Ft)

∂ρ′t
+
∂at|t

∂v′t

∂vt
∂ρ′t

= Ȧt +
(
v′tF

−1
t Zt ⊗ Im

)
Ṗt +

(
v′tF

−1
t ⊗ Pt

)
CnmŻt

−
(
v′tF

−1
t ⊗ PtZ ′tF−1

t

)
Ḟt + PtZ

′
tF
−1
t V̇t

= Ȧt +
(
v′tF

−1
t Z ⊗ Im

)
Ṗt −

(
v′tF

−1
t ⊗ PtZ ′F−1

t

)
Ḟt + PtZ

′F−1
t V̇t.

Ṗt|t
m2×k

=
∂ vec

(
Pt|t
)

∂ρ′t

=
∂ vec

(
Pt|t
)

∂ vec (Pt)
′
∂ vec (Pt)

∂ρ′t
+
∂ vec

(
Pt|t
)

∂ vec (Zt)
′
∂ vec (Zt)

∂ρ′t

+
∂ vec

(
Pt|t
)

∂ vec (Ft)
′
∂ vec (Ft)

∂ρ′t

= Ṗt −
[
PtZ

′
tF
−1
t Zt ⊗ Im + Im ⊗ PtZ ′tF−1

t Zt
]
Ṗt

− (Pt ⊗ Pt) (In2 +Cn)
(
ZtF

−1
t ⊗ In

)
Żt

+
(
PtZ

′
tF
−1
t ⊗ PtZ ′tF−1

t

)
Ḟt

= Ṗt −
[
PtZ

′F−1
t Z ⊗ Im + Im ⊗ PtZ ′F−1

t Z
]
Ṗt

+
(
PtZ

′F−1
t ⊗ PtZ ′F−1

t

)
Ḟt.
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Ȧt+1
m×k

=
∂at+1

∂ρ′t

=
∂at+1

∂ vec (Tt)
′
∂ vec (Tt)

∂ρ′t
+
∂at+1

∂a′t

∂ vecat
∂ρ′t

+
∂at+1

∂ vec (Kt)
′
∂ vec (Kt)

∂ρ′t
+
∂at+1

∂v′t

∂vt
∂ρ′t

=
(
a′t ⊗ Im

)
Ṫt + TtȦt +

(
v′t ⊗ Im

)
K̇t +KtV̇t

= TȦt +
(
v′t ⊗ Im

)
K̇t +KtV̇t.

Pt+1 = TtPt
(
T ′t −Z ′tK ′t

)
+RtQtR

′
t

= TtPtT
′
t − TtPtZ ′tK ′t +RtQtR

′
t.

Ṗt+1
m2×k

=
∂ vec (Pt+1)

∂ρ′t

=
∂ vec (Pt+1)

∂ vec (Tt)
′
∂ vec (Tt)

∂ρ′t
+
∂ vec (Pt+1)

∂ vec (Pt)
′
∂ vec (Pt)

∂ρ′t

+
∂ vec (Pt+1)

∂ vec (Kt)
′
∂ vec (Kt)

∂ρ′t
+
∂ vec (Pt+1)

∂ vec (Zt)
′
∂ vec (Zt)

∂ρ′t

+
∂ vec (Pt+1)

∂ vec (Rt)
′
∂ vec (Rt)

∂ρ′t
+
∂ vec (Pt+1)

∂ vec (Qt)
′
∂ vec (Qt)

∂ρ′t

= [(Im2 +Cm) (TtPt ⊗ Im)− (KtZtPt ⊗ Im)] Ṫt

+ [(Tt ⊗ Tt)− (KtZt ⊗ Tt)] Ṗt
−
(
Im ⊗ TtPtZ ′t

)
CmnK̇t − (Kt ⊗ TtPt)CnmŻt

+ (Im2 +Cm) (RtQt ⊗ Im) Ṙt + (Rt ⊗Rt) Q̇t

= [(T ⊗ T )− (KtZ ⊗ T )] Ṗt −
(
Im ⊗ TPtZ ′

)
CmnK̇t

+ (R⊗R) Q̇t.

All the last equalities hold if Qt is the only matrix which contains time-
varying parameters.
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4.A.3 Monte Carlo simulation results

Figure 4.A.1: Bivariate local level model. T = 200, nsim = 500.

Figure 4.A.2: Bivariate local level model. T = 500, nsim = 500.
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Figure 4.A.3: Bivariate local level model. T = 500, nsim = 500.

Figure 4.A.4: Bivariate local level model. T = 500, nsim = 500.
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Figure 4.A.5: Bivariate smooth trend model. T = 200, nsim = 500.

Figure 4.A.6: Bivariate smooth trend model. T = 500, nsim = 500.
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Figure 4.A.7: Bivariate smooth trend model. T = 200, nsim = 500.

Figure 4.A.8: Bivariate smooth trend model. T = 500, nsim = 500.
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Figure 4.A.9: Bivariate smooth trend model. T = 200, nsim = 500.

Figure 4.A.10: Bivariate smooth trend model. T = 500, nsim = 500.
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4.B Extended Kalman filter: bivariate smooth trend
model

The observation equations for a bivariate smooth trend model are:

yt = Lyt + εyt

xt = Lxt + εxt , t = 1, . . . , T,
(4.B.1)

with (εyt , ε
x
t )
′ ∼ N (0,H).

The transition equations are:

Lyt+1 = Lyt +Ryt

Ryt+1 = Ryt + ηyt

Lxt+1 = Lxt +Rxt

Rxt+1 = Rxt + ηxt

γt+1 = γt + ηγt , t = 1, . . . , T,

with (ηyt , η
x
t , η

γ
t )
′ ∼ N (0,Qt), andQt =

 σ2
y tanh(γt)σyσx 0

tanh(γt)σyσx σ2
x 0

0 0 σ2
γ

.

The states Lt and Rt represent, respectively, the level and the slope of the
trend.

The bivariate smooth trend model can be written in compact notation as equa-
tion (4.1.1), with zt = (xt, yt)

′, εt = (εyt , ε
x
t )
′, αt = (Lyt , R

y
t , L

x
t , R

x
t , γt)

′,

ηt = (ηyt , η
x
t , η

γ
t )
′,Z =

[
1 0 0 0 0
0 0 1 0 0

]
, T =


1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

, and
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R =


0 0 0
1 0 0
0 0 0
0 1 0
0 0 1

.

Similarly as seen for the local level model in Section 4.3, it is possible to
transform the model in such a way that the nonlinearity involves only the state
variables, and not the innovation terms, by means of the Cholesky decompo-
sition of Qt. Again the nonlinearity has to be tackled in the measurement
equations, which become:

yt = σyL
y∗
t + εyt

xt = σx

(
tanh(γt)L

y∗
t +

√
1− tanh2(γt)L

x∗
t

)
+ εxt , t = 1, . . . , T,

(4.B.2)

and which have the same form as equation (4.3.1). The transition equations
of the transformed model are:

Ly∗t+1 = Ly∗t +Ry∗t

Ry∗t+1 = Ry∗t + ηy∗t

Lx∗t+1 = Lx∗t +Rx∗t

Rx∗t+1 = Rx∗t + ηx∗t

γt+1 = γt + ηγt , t = 1, . . . , T,

with
(
ηy∗t , η

x∗
t , η

γ
t

)′ ∼ N (0,Q∗) andQ∗ =

 1 0 0
0 1 0
0 0 σ2

γ

.

The procedure for the linearisation of the model is the same as the one dis-
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cussed in Section 4.3, with the difference that now

Żt =
∂Zt(α

∗
t )

∂α∗
′
t

∣∣∣∣
α∗t=at

=
∂Zt(α

∗
t )

∂
(
Ly∗t , R

y∗
t , L

x∗
t , R

x∗
t , γt

)∣∣∣∣∣
α∗t=at

=

[
σy 0 0 0

σx tanh(γt) 0 σx

√
1− tanh2(γt) 0

0

σx

√
1− tanh2(γt)

(√
1− tanh2(γt)α

y∗
t − tanh(γt)α

x∗
t

) ∣∣∣∣∣∣
α∗t=at

.

The extended recursions for the Kalman filter and smoother are the same as
the ones discussed in Section 4.3.

4.C Importance sampling: importance parameters
and simulation smoothing

4.C.1 Derivation of the expressions for the importance
parameters

Given the conditional log-density (4.4.2) of the nonlinear Gaussian model
(4.4.1),

ṗ(zt|θt;β) =
∂ log p(zt|θt;β)

∂θt
= Ż ′tH

−1(zt − Zt(θt)),
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where

Żt =
∂Zt(θt)

∂θ′t

=
∂Zt(α

∗
t )

∂α∗
′
t

=
∂Zt(α

∗
t )

∂
(
αy∗t , α

x∗
t , γt

)
=

[
σy 0

σx tanh(γt) σx

√
1− tanh2(γt)

0

σx

√
1− tanh2(γt)

(√
1− tanh2(γt)α

y∗
t − tanh(γt)α

x∗
t

)  ,

for t = 1, . . . , T . The second derivative is

p̈(zt|θt;β) =
∂2 log p(zt|θt;β)

∂θt∂θ′t

=
∂ṗ(zt|θt;β)

∂θ′t

=
∂(Ż ′tH

−1zt − Ż ′tH−1Zt(θt))

∂θ′t

=
∂Ż ′tH

−1zt
∂θ′t

− ∂Ż ′tH
−1Zt(θt)

∂θ′t

=
∂Ż ′tH

−1zt

∂ vec(Żt)′
∂ vec(Żt)

∂θ′t
− Ż ′tH−1Żt

= (Im ⊗ z′tH−1)Z̈t − Ż ′tH−1Żt,
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where m = 3 is the dimension of θt and n = 2 is the dimension of zt.

Z̈t =
∂ vec(Żt)

∂θ′t

=
∂ vec(Żt)

∂α∗
′
t

=
∂ vec(Żt)

∂
(
αy∗t , α

x∗
t , γt

)

=



0 0
0 0
0 0
0 0
0 0

σx(1− tanh2(γt)) −σx tanh(γt)
√

1− tanh2(γt)

0
σx(1− tanh2(γt))

0

−σx tanh(γt)
√

1− tanh2(γt)

0

−σx
√

1− tanh2(γt)

(
2 tanh(γt)

√
1− tanh2(γt)α

y∗
t + (1− 2 tanh2(γt))α

x∗
t

)


,

for t = 1, . . . , T .

Therefore,

At = −
[(

(Im ⊗ z′tH−1)Z̈t − Ż ′tH−1Żt

)∣∣∣
θt=θ̂t

]−1

bt = θ̂t +At Ż
′
tH
−1(zt − Zt(θt))

∣∣∣
θt=θ̂t

,

for t = 1, . . . , T . The problem is that (Im ⊗ z′tH−1)Z̈t is random because
it depends on γt and therefore it happens often in practice thatAt is not posi-
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tive definite. Other approaches as the modified efficient importance sampling
(MEIS) of Koopman et al. (2018) or the numerically accelerated importance
sampling (NAIS) of Koopman et al. (2015) might be used instead in order to
get an expression forAt and bt.

4.C.2 Simulation smoothing algorithm

1. Compute θ̂t = E(θt|zt;β) by mode estimation, for t = 1, . . . , T .

2. Initialize θ+
1 = Zα+

1 , with draw α+
1 ∼ N(0,P1).

3. Draw θ+
t from g(θt;β), i.e. the transition equation of the approximate

linear Gaussian model (4.4.3), by following the steps:

a) Draw η+
t ∼ N(0,Q), for t = 1, . . . , T .

b) Obtain recursively α+
t+1 = Tα+

t + η+
t , and θ+

t = Zα+
t , for

t = 1, . . . , T .

4. Use θ+
t to generate z+

t ∼ g(zt|θ+
t ;β), i.e. from the measurement equa-

tion of the approximate linear Gaussian model (4.4.3), by following the
steps:

a) Draw ε+
t ∼ N(0,At), for t = 1, . . . , T , with At evaluated at the

mode θ̂t.

b) Obtain recursively z+
t = θ+

t + ε+
t , for t = 1, . . . , T .

5. Compute θ̂+
t = E(θt|z+

t ;β) by KFS applied to the approximate linear
Gaussian model (4.4.3), with At evaluated at the mode θ̂t, and with
bt = z+

t , for t = 1, . . . , T .

6. Compute θ̃t = θ̂t + θ+
t − θ̂

+
t , for t = 1, . . . , T ; θ̃t is a draw from

g(θt|zt;β).
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Chapter 5. The spatial lag state space model with an application to regional
concentrations of NO2 in the Netherlands

Abstract
Dutch emissions of nitrogen per hectare are the highest in Europe. Up to 40%
of these emissions are made of nitrogen oxides (NOX ), and are due to com-
bustion processes, with road vehicles being their primary contributors. NOX
is an air pollutant that is responsible for the creation of acid rains and of other
secondary aerosols and pollutants, and can be harmful for the respiratory sys-
tem. As such, it is a pollutant of concern and modeling its concentrations in
the Netherlands, which are approximated by concentrations of nitrogen diox-
ide (NO2), is of interest. This chapter does so at the regional level, by means
of a novel spatial lag state space model that takes into account the determi-
nants of NO2 concentrations, such as traffic intensity and meteorological fac-
tors, but also spatial spillovers of NO2 that are due to its transportation by the
wind. The model also has the flexibility of allowing for time-varying coeffi-
cients, it is efficiently estimated by Kalman filtering/smoothing and maximum
likelihood, and it is employed for forecasting NO2 concentrations based on
different scenarios of road traffic. We find a static effect of the latter variable
on the levels of NO2 concentration, but we also find time-varying differences
inNO2 concentrations between peripheral Dutch regions and inland Dutch re-
gions. Our proposed model realistically forecasts an overall decrease in NO2

concentrations of around 35%, following an hypothetical 100% decrease in
traffic intensity with respect to its actual observed values. The decrease in
NO2 concentrations is gradual and it is predicted to take around eight months
for them to achieve their new steady level.
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5.1 Introduction

The Netherlands is the region with the largest density of people, animals and
economic activity in Europe. The Netherlands Organisation for applied sci-
entific research (TNO, 2019) estimates that Dutch emissions of nitrogen per
hectare are the highest in Europe (almost four times the average value), and
are made up of 60% ammonia (NH3) and 40% nitrogen oxides (NOX =
NO + NO2) emissions. NH3 emissions are mainly caused by agricultural
activity, whereas NOX is emitted during combustion processes. The latter
emissions can be from natural sources, such as wildfires and lightning strikes,
but for the vast majority they are anthropogenic. The Dutch Government has
recently (in 2020) taken actions in both the agriculture and the road transport
sectors, in order to reduce nitrogen emissions. Measures to cut NOX emis-
sions include the reduction of the speed limit on highways, since vehicles are
more fuel-efficient at moderate speeds, and the stimulation to use modern and
more environmental-friendly vehicles in place of old ones. The focus of this
chapter is on NOX .

Again TNO (2019) estimates that in the Netherlands the largest anthropogenic
sources of this air pollutant are represented by road traffic (31%), industry
(20%), agriculture (21%) and inland shipping (11%). Road traffic emissions
are dominated by diesel consumption of light vehicles (including passenger
cars and vans; 14%) and heavy vehicles (trucks and buses; 12%). NOX
emissions in the agricultural sector are due to fertilised soils (15%), natural
gas use in horticulture (3.2%) and vehicles (3.2%). Electricity production,
together with space heating and wood burning in households and offices, ac-
count for the remaining percentage. NOX emissions are therefore higher in
urban areas, and it is estimated that around 90% of DutchNOX emissions are
exported abroad. All the estimates mentioned above are based on data gath-
ered from the Dutch emission registry, and collected from ground stations in
the Netherlands.

At emission NOX is made up of about 90%-95% nitric oxide (NO), and of
nitrogen dioxide (NO2) for the remaining part. Once in the atmosphere NO
is quickly (over a couple of seconds or hours) converted into NO2. There
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are also other chemical reactions that take place in the atmosphere. For in-
stance, with the presence of sunlight NO2 turns back into NO, but it also
contributes to the creation of ozone (Finlayson-Pitts & Pitts Jr., 1993). Ad-
ditionally, NOX is responsible for the formation of secondary (i.e., not di-
rectly emitted in the atmosphere, but created by chemical reactions) aerosols.
Stratospheric ozone (i.e., located in the higher level of the atmosphere) and
aerosols affect the climate by scattering solar radiation and cooling the Earth’s
surface (Krotkov et al., 2017). When ozone is instead present in the tropo-
sphere (which is the lower level of the atmosphere) it forms smog and hence
becomes toxic for human beings (Buchdahl, 2002). Moreover, NOX con-
tributes to the creation of particulate matter, which is another pollutant, and
of acid rains, which contain nitric acid and may be harmful for terrestrial and
aquatic ecosystems (Krotkov et al., 2017). Finally, NOX can have negative
effects on human health, since at high concentrations it can cause inflamma-
tion of the airways, reduced lung function and increasing susceptibility to res-
piratory infection (European Environment Agency, 2018). Ogen (2020) also
finds a strong relation between long-term exposure to NO2 and COVID-19
fatalities.

Because of all these side effects,NOX is an air pollutant of concern and mod-
eling its concentration in the atmosphere over time, by means of econometric
techniques, is of interest. Such a model should ideally take into account most
of the interactions mentioned above: from the determinants of NOX emis-
sions, to meteorological conditions that affect its concentration, and spatial
spillovers due to its transportation by the wind. In practice this goal is difficult
to achieve because of the unavailability of data. For instance, satellite-based
data are able to provide rather geographically detailed estimates of pollutants’
concentrations, but they are not available for all pollutants, such as NOX it-
self. NO2, on the contrary, is easily measured by remote-sensing techniques
and satellite-based NO2 data have therefore often been used as proxy for
NOX (Duncan et al., 2014). We will also do so in this chapter. However,
it should still be kept in mind that the two chemicals are not the same. More
NOX generally implies more NO2, but if we take as an example the role of
sunlight discussed above, we will observe lessNO2 in sunnier periods, which
does not imply a lower presence of NOX and pollution in general; it only
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means that NO2 is converted back into NO, which does not diminish the
overall concentration of NOX . It is also challenging finding data that quan-
tify all economic activities responsible for NOX emissions. In this chapter
we employ a dynamic multivariate econometric model for the concentrations
of NO2 in the regions of the Netherlands, which accounts for (time-varying)
effects of road vehicles and meteorological conditions on such concentrations,
as well as time-varying differences between border and inland regions, spatial
dependences and inertial dynamics. The model is also used for forecasting
NO2 concentrations, based on different (hypothetical) scenarios of traffic in-
tensity.

This econometric model is called a spatial lag state space model, and
is new to the econometric literature. Spatial econometric models are
multivariate regression models that assume a spatial dependence among the
cross-sectional/spatial units of a dataset. This spatial dependence can either
be incorporated in the error term of the regression, in the regressors, or in the
dependent variable. In the latter case it is assumed that the dependent variable
of each cross-sectional unit depends on the same variable in neighbouring
units. Such a model is known as a spatial lag model, and can be estimated by
maximum likelihood.

In the context of time series data, so when the spatial units are repeatedly
observed over time for a relatively long time-span, Yu et al. (2008) establish
the asymptotic properties of quasi maximum likelihood estimators for large
cross-sectional and time dimensions. However, their approach does not take
into account an important feature that often characterises time series data:
time-varying parameters. These can, for instance, govern the relationships
between time series, which would then be captured by time-varying regres-
sion coefficients. Time-changing parameters can also be used to let means
and variances of series vary over time, and allow us to capture nonlinearities
that often affect environmental variables (Nordhaus, 2013; Castle & Hendry,
2020). Blasques et al. (2016) and Catania and Billé (2017) allow for different
kinds of time-varying parameters in a spatial lag model, and propose a score-
driven approach to estimate them. This method has the drawback of not being
very efficient to implement.
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State space models are time series models that contain time-varying parame-
ters (which are in this context also called state variables), and that allow them
to be estimated in a much more efficient way than the score-drive approach.
When the state space model is linear, which occurs when only the regression
coefficients or the time series’ means are assumed to vary stochastically over
time, these can be efficiently estimated by the Kalman filter/smoother. Exam-
ples of state space models with a spatial structure only on the state variables
or the error term of the model, can be found in Bocci and Petrucci (2016) and
Hinrichsen and Holmes (2009). State space and spatial lag econometric mod-
els have, however, so far not met in the literature. In the empirical application
of this chapter, the regional concentrations of NO2 in the Netherlands repre-
sent the dependent variable of the model. The spatial lag (instead of a spatial
error) structure is in this case needed since spatial spillovers of pollutants are
due their transportation by the wind, and therefore directly depend on their
levels in neighbouring regions. The time-varying effects of traffic intensity
discussed above, as well as other state variables, are estimated by the Kalman
filter/smoother.

The analysis of NO2 concentrations and NOX emissions has received atten-
tion from the geoscientific literature. For example, van der A et al. (2006)
analyse time series of NO2 concentrations over China by means of determin-
istic components. Dallmann and Harley (2010) and Russell et al. (2012) ap-
ply non-econometric methods to estimate NOX emissions from (non) mobile
sources in the US.

The effects of economic activity on the chemistry of the atmosphere also
represents a subject of interest for both the geoscientific and the economic
research communities. Among many others, see Ozturk (2015) who em-
ploys panel econometric techniques to measure the impact of energy con-
sumption on emissions of greenhouse gasses for a set of countries, or Benned-
sen et al. (2021) who model, forecast and nowcast carbon dioxide emissions
in the US using macroeconomic predictors by means of state space models,
as well as the entire literature on the environmental Kuznets curve hypothe-
sis, which stipulates an inverted U-shape relationship over time between eco-
nomic growth and pollution (e.g., Maddison (2006), Wagner (2015) and Lin
and Reuvers (2020b)).
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Spatial dependencies are of key importance in the analysis of environmental
data. In what follows we cite some of the existing studies which take such
a data feature into account. Anselin and Le Gallo (2006) conduct a cross-
sectional spatial econometric analysis of ozone observations in southern Cali-
fornia. Cole et al. (2013) use a similar econometric technique to model carbon
dioxide emissions of firms in Japan. Deb and Tsay (2019) develop a spatio-
temporal model with space-time interaction for particulate matter in Taiwan.
Guan et al. (2019) employ mobile monitors on Google Street View vehicles
(in Oakland, California) in a spatio-temporal model, to make short-term fore-
casts and high-resolution maps of current NO2 levels.

State space models have already been used, in the econometric literature,
for modeling time series of environmental variables. Proietti and Hillebrand
(2017) employ them to model seasonal changes in central England temper-
atures, Bennedsen et al. (2019) to analyse the trend of the airborne fraction
and sink rate of anthropogenically released carbon dioxide, Li et al. (2020)
to forecast El Niño events, and Hillebrand et al. (2020) to study the relation
between global mean sea level and surface temperature.

This chapter lies at the intersection of the four above-mentioned research
fields, and it therefore contributes to all of them. It is indeed the first time
that a spatial state space model is employed to analyse and forecast NO2 con-
centrations, while modeling the (time-varying) effect traffic intensity has on
them. Moreover, the novel econometric method here proposed also brings a
methodological contribution to the literature on time series and spatial econo-
metrics. Lastly, such regional econometric analyses of NO2 concentrations
have, to the best of our knowledge, not been performed for the Netherlands
yet.

The structure of the chapter is as follows. Section 5.2 introduces the spatial lag
state space model and explains its estimation procedure. Section 5.3 reports
the results of a Monte Carlo simulation study, which is conducted in order
to assess the performance of the Kalman smoother and maximum likelihood
methods in estimating the proposed econometric model. Section 5.4 discusses
the results of an empirical application of the spatial lag state space model for
modeling and forecasting Dutch regional concentrations of NO2.
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5.2 The spatial lag state space model
The spatial lag (also known as spatial autoregressive or spatial Durbin) econo-
metric model takes the following form:

yt = ρWyt +Xtβ + εt, t = 1, . . . , T, (5.2.1)

where yt is the stationary (i.e., mean-reverting) n×1 vector for the dependent
variable, Xt is a known n × k matrix of stationary regressors (which could
also include time lags of yt) with corresponding k × 1 coefficient vector β,
and εt is the n × 1 vector of errors. The dimensions of the spatial (cross-
sectional) and time units are represented by n and T , respectively. The so-
called spatial lag of the dependent variable, Wyt, is also included in model
(5.2.1) as additional regressor, and it is pre-multiplied by the spatial parameter,
ρ, which measures the degree of spatial dependence in yt. The spatial weight
matrix, W , is pre-specified and defines which spatial units are neighbours
of each other. The identification of the model is guaranteed by the diagonal
elements of W , wii, being equal to zero. Its off-diagonal elements, wij , are
not equal to zero if spatial unit j is a neighbour of spatial unit i, and therefore
yj affects yi; otherwisewij = 0, for i, j = 1, . . . , n. The spatial weight matrix
is therefore sparse. More details about the form of W will be given later in
this section.

The regressors Xt are treated as weakly exogenous, but the same cannot be
assumed forWyt. Namely, E[(Wyt)

′εt] 6= 0 poses an endogeneity problem
which renders the ordinary least squares estimators of the parameters of model
(5.2.1) inconsistent. Other methods, such as spatial two-stage least squares,
or the generalised method of moments estimator, which often make use of
the external instruments {WXt,W

2Xt, . . . } for Wyt (Kelejian & Prucha,
1998), can be employed in order to achieve a consistent estimation of the
parameters. Alternatively, by imposing a normality assumption on the error
terms, εt ∼ N(0, σ2

εIn), with In being a n×n identity matrix, and re-writing
the model in the following reduced form (i.e., where the right hand side of the
equation contains only exogenous variables)

yt = (In − ρW )−1Xtβ + (In − ρW )−1εt, t = 1, . . . , T, (5.2.2)
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it is possible to obtain the following log-likelihood expression for yt (Yu et al.,
2008)

` = −nT
2

log(2π)− nT

2
log(σ2

ε) + T log (det (In − ρW ))

− 1

2σ2
ε

T∑
t=1

((In − ρW )yt −Xtβ)′ ((In − ρW )yt −Xtβ) ,

and estimate the model’s parameters (i.e., the β coefficients and σ2
ε ) by maxi-

mum likelihood. The method that we propose in this chapter will be based on
the maximum likelihood approach.

The spatial weight matrix is generally row-standardised (and it will be in
this chapter) such that, for each spatial unit, the spatial lagged variable is a
weighted average of the values of yt observed in neighbouring locations, with
weights summing to unity. The row-standardisation also allows to control the
space of the spatial parameter, since in such case |ρ| < 1 (Lee, 2004). Notice
that if ρ = 1 andW is row-standardised, In − ρW in equation (5.2.2) is sin-
gular and cannot be inverted. Moreover, restricting |ρ| < 1 allows to rewrite
(I−ρW )−1 as the following infinite sum: I+ρW +ρ2W 2 +ρ3W 3 + . . . .
This implies that the spatial effects are decaying over space, i.e., they become
milder as the distance between spatial units increases (to see this notice that
W 2 represents the matrix of the neighbours’ neighbours of the spatial units,
and that ρ2 < ρ when |ρ| < 1). A similar decaying effect, over time, is ob-
served in autoregressive (AR) models for time series, where the coefficient of
the dependent variable’s time lag is also restricted to be lower than unity in
absolute value. The spatial weight matrix need not be based (only) on geo-
graphical distances, as will also be illustrated in more detail in Section 5.4.1.
Depending on the type of cross-sectional units at hand,W could also be built
according to economic, financial or cultural proximities.

As already mentioned in the Introduction, spatial relationships can (also) be
incorporated in the regressors Xt or in the error term. Although the estima-
tion method proposed in this chapter can be employed also for such model
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specifications, this possibility is not considered here because it is not sup-
ported by the empirical application of Section 5.4. We refer to Anselin (1988)
and LeSage and Pace (2009) for an extensive treatment of spatial econometric
models.

In a time series setting, so when both n and T are large, which is also the case
in this chapter, Yu et al. (2008) provide the asymptotic properties of quasi
maximum likelihood estimators of the parameters in model (5.2.1). Blasques
et al. (2016) and Catania and Billé (2017) let these parameters vary over time,
and estimate them with a score-driven approach. This method assumes that
the time-varying parameters depend on their past values as well as past val-
ues of the score functions, which measure the sensitivity of the log-likelihood
with respect to the time-varying parameters. Although being the only exist-
ing method to model time-varying parameters in spatial econometric models,
it has the drawback of needing analytical expressions for all score functions,
which can vary for different parameters, and it is therefore not computation-
ally efficient to implement. In this chapter we propose an alternative and more
efficient way to estimate some of these parameters as time-varying, which
makes use of state space models.

The spatial lag state space model takes the form

yt = ρWyt +Xtβt +Zαt + εt, εt ∼ N(0,H)

θt = (β′t,α
′
t)
′

θt+1 = Tθt + ηt, ηt ∼ N(0,Q)

(5.2.3)

for t = 1, . . . , T , and it is, as all state space models, composed of an obser-
vation equation (the first one) and a transition equation (the last one) which
specifies the dynamics of the time-varying parameters, θt. In model (5.2.3),
αt is a p×1 vector of time-varying unobserved/latent components which can,
for instance, capture inertial dynamics in the error term of the observation
equation, as well as modeling time-varying means or time-varying differences
between the intercepts of the dependent variable, yt; Z is a n × p known se-
lection matrix, which links the dependent variable to the latent components;
θt is a (k+ p)× 1 vector which collects all the time-varying parameters (also
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called state variables) of the model, and T is a (k + p) × (k + p) matrix
which defines their dynamic structure; εt and ηt are, respectively, n × 1 and
(k + p) × 1 error terms, with H = σ2

εIn and Q being their covariance ma-
trices. We also introduce the matrix Z∗t = (In − ρW )−1 [Xt Z], where
[Xt Z] is a n × (k + p) matrix which concatenates Xt and Z. From this
point onwards, we will indicate with “hyperparameters” ρ, σ2

ε , and the param-
eters of T and Q, and with “static parameters” all parameters of the model
that are constant over time (i.e., the hyperparameters and the β coefficients
that are not time-varying).

The reduced form of model (5.2.3) is

yt = (In − ρW )−1(Xtβt +Zαt) + (In − ρW )−1εt, εt ∼ N(0,H)

θt = (β′t,α
′
t)
′

θt+1 = Tθt + ηt, ηt ∼ N(0,Q)

for t = 1, . . . , T , and its hyperparameters can be estimated by maximising the
log-likelihood

` =
T∑
t=1

`t =
T∑
t=1

(
−n

2
log (2π)− 1

2
log (detFt)−

1

2
v′tF

−1
t vt

)
,

where the prediction error, vt, and its covariance matrix, Ft, are evaluated by
the following Kalman Filter recursions

vt = zt −Z∗t at
Ft = Z∗t PtZ

∗′
t + (In − ρW )−1H(In − ρW )−1′

Kt = TPtZ
∗′
t F

−1
t

at|t = at + PtZ
∗′
t F

−1
t vt

Pt|t = Pt − PtZ∗
′
t F

−1
t Z∗t Pt

at+1 = Tat +Ktvt

Pt+1 = TPt (T −KtZ
∗
t )′ +Q,

(5.2.4)
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for t = 1, . . . , T . In recursions (5.2.4), at|t is the filtered estimate of the
state vector, θt, and Pt|t is its estimated covariance matrix; at+1 is the one-
step-ahead prediction for the state vector, with Pt+1 being the corresponding
predicted covariance matrix. The Kalman filter requires an initialisation for
a1 = 0 and P1, which is a diagonal matrix whose diagonal elements are
equal to the diffuse or unconditional variances of the elements of θt (more
details about the form of P1 are provided in Section 5.3). We refer to Harvey
(1989) and Durbin and Koopman (2012) for a detailed discussion of state
space models and their estimation.

The estimation accuracy of the state vector can be further improved with the
Kalman smoother. The Kalman smoother recursions of De Jong (1989) are

rt−1 = Z∗
′
t F

−1
t vt + (T −KtZ

∗
t )′ rt

θ̂t = at + Ptrt−1

Nt−1 = Z∗
′
t F

−1
t Z∗t + (T −KtZ

∗
t )′Nt (T −KtZ

∗
t )

Vt = Pt − PtNt−1Pt,

(5.2.5)

for t = T, . . . , 1, with rT = 0 and NT = 0. The Kalman smoother estimate
of θt is represented by θ̂t, and Vt is its smoothed covariance matrix.

Notice that since the time-varying parameters have their own sources of error
in the transition equation, they are assumed to vary stochastically over time.
Stochastic specifications are generally very flexible in modeling the evolution
of parameters over time. In order to ensure that the stationarity property of yt
is maintained, we are generally imposing an autoregressive dynamic structure
for the unobserved components, by assuming that the corresponding diagonal
elements in T are below 1 in absolute value. However, there is no intercept in
the autoregressive equations, which is equivalent to assuming that the latent
variables are returning to zero (which is their implied mean in case of no
intercept). This assumption is unlikely to always hold in practice. However,
simulation results, that we do not report in this chapter, show that the Kalman
filter/smoother estimates of the unobserved components are very robust to
such misspecifications. This implies that even when the true intercepts of
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the autoregressive structures are different from zero, then the autoregressive
parameter may not be estimated as being lower than unity, but the resulting
Kalman filter/smoother estimates will still be able to follow the true time-
variation of the unobserved components. The long-horizon forecasts of the
unobserved components, based on the Kalman filter recursions, are instead
not robust to such a misspecification, as will be seen in Section 5.4.

For βt we impose a random walk dynamic, which is in line with the econo-
metric literature on stochastically time-varying regression coefficients (see,
for instance, Koop and Korobilis (2013)), and ensures the stationarity in yt
unless one of the regressors is constant over time.

Contrary to Blasques et al. (2016) and Catania and Billé (2017), in this chap-
ter we do not allow for stochastic time variation in the spatial parameter nor in
the error variances of model (5.2.3). Doing this will make the model become
nonlinear and its estimation by Kalman filtering and maximum likelihood in-
feasible. More sophisticated methods to estimate such models are needed, and
their performance is currently under investigation by the author.

5.3 Monte Carlo simulation study

This section reports the results of a Monte Carlo simulation study, which is
performed in order to show the performance of the Kalman smoother and max-
imum likelihood method in estimating, respectively, the state vector (which
includes the time-varying coefficients and the latent variables) and the hyper-
parameters of the spatial lag state space model (5.2.3).

We consider the following five model specifications (data generating pro-
cesses) for yt, which mainly aim at illustrating some possible advantages
that the inclusion of latent variables can have in modeling the dynamics of
yt. They are all based on model (5.2.3), with ρ = 0.7, σε = 1, n = 40,
T = {80, 300}, k = 4 and only the first element of β is time-varying: βt =
(β1,t, β2, β3, β4)′, with β2 = β3 = β4 = 2. The regressors Xt ∼ N(0, Ik),
for t = 1, . . . , T .
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1. Time varying coefficients and no unobserved components: αt and Z
are not part of model (5.2.3); T = I4 and Q = diag(σ2

β, 0, 0, 0), with
σβ = 1, and where the diag function creates a diagonal matrix whose
diagonal elements are reported in the argument of the function; W is a
queen spatial weight matrix with one order of contiguity, which is row-
standardised, and whose off-diagonal elements differ from zero if two
spatial units (polygons) have a side or a vertex in common1; P1 = κIk.

2. Common time-varying mean: αt is a scalar (p = 1) and it is com-
mon among all elements of yt; Z = ın is a n × 1 vector of ones;
T = diag(1, 1, 1, 1, γα) and Q = diag(σ2

β, 0, 0, 0, σ
2
α), with γα = 0.5

and σβ = σα = 1;W is a queen spatial weight matrix with one order of

contiguity; P1 = blockdiag
(
κIk,

σ2
α

(1−γ2α)

)
, where the blockdiag func-

tion creates a block-diagonal matrix whose diagonal blocks are reported
in the argument of the function.

3. Time-varying dummies: αt is a 2 × 1 vector (p = 2) and captures
time-varying differences between the intercepts of the dependent
variable, yt; Z = [blockdiag(ı10, ı10)′ 02×20]′, with 02×20

being a 2 × 20 matrix of zeros; T = diag(1, 1, 1, 1, γα,1, γα,2)
and Q = diag(σ2

β, 0, 0, 0, σ
2
α,1, σ

2
α,2), with γα,1 = γα,2 = 0.5 and

σβ = σα,1 = σα,2 = 1;W is a queen spatial weight matrix with one or-

der of contiguity; P1 = blockdiag

(
κIk,diag

(
σ2
α,1

(1−γ2α,1)
,

σ2
α,2

(1−γ2α,2)

))
.

4. Deterministic time-varying weight matrix: the only difference from
specification 3 above is that the structure of Wt, although still being
pre-specified, changes at each point in time. The time-variation in Wt

is therefore deterministic (non-stochastic), contrary to the other time-
varying parameters of the model. The values forWt, for t = 1, . . . , 80,
are obtained based on the contiguities of the 40 Dutch COROP regions
and data about wind speed and direction, as described in Section 5.4.1.
In this case we do not also consider T = 300 since there is no available
data for such a large sample size.

1Such a matrix is built based on the contiguities of the 40 Dutch COROP regions, which are
the spatial units employed in the empirical application of Section 5.4.
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5. Moving averages: αt is a n × 1 vector (p = n), such
that each element of yt has its own latent variable, and it
captures inertial dynamics in the error terms of the observation
equation; Z = In, T = blockdiag (diag(1, 1, 1, 1), γαIn) and
Q = blockdiag

(
diag(σ2

β, 0, 0, 0), σ2
αIn

)
, with γα = 0.5 and

σβ = σα = 1; W is a queen spatial weight matrix with one order of

contiguity; P1 = blockdiag
(
κIk,

σ2
α

(1−γ2α)
In

)
.

Notice that diagonal elements equal to 1 in T , coupled with zero diagonal
elements in Q, imply a time-constant specification and Kalman smoother
estimation of the corresponding state variable. On the other hand, all the
time-varying parameters have an autoregressive coefficient different from zero
(equal to 1 for β1,t and to 0.5 for the unobserved components) and an error
variance equal to unity. The value for κ is chosen to be large (it is equal to
100 in the Monte Carlo simulation study and to 10 in the empirical applica-
tion of Section 5.4, as these values ensure the convergence of the Kalman fil-
ter/smoother due to the small magnitude of the β coefficients), since a diffuse
initialisation of the Kalman filter is needed for the non-stationary time-varying
parameter β1,t.

The maximisation of the log-likelihood requires an initialisation for the hy-
perparameters of the model. All hyperparameters are initialised at their true
values, in order to reduce the computational time needed to obtain the results.
However, simulation results, that we do not include in this chapter, show that
the maximum likelihood estimates are not very sensitive to the initial val-
ues.

The results that are about to be discussed are based on 500 Monte Carlo sim-
ulations. Figures 5.A.1-5.A.4 and 5.A.6 display the distributions of the max-
imum likelihood and Kalman smoother estimators of the static parameters,
based on the Monte Carlo replicates, of model specifications 1-5, respectively,
and when T = 80. All estimators seem to be unbiased since their distributions
are centered around the corresponding true values of the parameters. Figures
5.A.7-5.A.10 report the same results, for model specifications 1-3 and 5, re-
spectively, obtained with a larger sample size of T = 300. As expected, the
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estimation accuracy of the estimators improves as all distributions become
more bell-shaped and concentrated around the true values of the static param-
eters. Finally, Figure 5.A.5 shows the accurate performance of the Kalman
smoother in estimating the time-varying parameters of model specification 4,
when T = 80.

5.4 Empirical application to regional concentrations
of NO2 in the Netherlands

5.4.1 Data description

The data employed in the empirical analysis are about tropospheric
NO2 concentrations, road vehicles as a pollutant emission source, and
meteorological conditions. Data about traffic intensity are available
monthly from January 2011 until December 2017 (T = 84), and for the
(n = 40) Dutch regions defined by the “Coördinatiecommissie Regionaal
Onderzoeksprogramma” (COROP), which represent the spatial units of
the analysis. All the other variables employed in the econometric model
are therefore, if necessary, spatially aggregated to the COROP regional
level, temporally aggregated to the monthly frequency and limited to the
aforementioned time span. Figure 5.B.1 displays the maps of the Dutch
provinces and COROP regions (the latter are part of the former).

Data for tropospheric NO2 concentrations

There are two main possible data sources for pollutants’ concentrations: mea-
surement stations and satellite pictures. Although the former provide more
precise estimates, they are spatially sparse. The latter are less accurate but
provide a much higher spatial coverage (Fowlie et al., 2019). Since spatial
variation is of key importance in our study, we employ satellite-based data for
NO2 concentrations. TNO (2019) also pushes towards the use of satellite-
based data in order to obtain more timely and geographically detailed esti-
mations of pollutants’ concentrations, and to measure import and export of
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emissions (although they do not consider satellite-based data as a substitute
for ground measurements).

(a) Europe

(b) The Netherlands

Figure 5.4.1: Tropospheric NO2 concentrations in Europe and the Netherlands, av-
eraged over the entire monthly series, measured by OMI and based on the DOMINO
v2.0 retrieval. Unit of measure: 1013molec./cm2.
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A detailed description of available satellite-based data for atmospheric pollu-
tion can be found in Duncan et al. (2014). In what follows we summarise the
type of satellite-based data that we employ in the empirical analysis, based on
the aforementioned paper. Satellite instruments are able to detect the number
of molecules of a particular gas between the instrument and the Earth’s sur-
face, which is technically called “vertical column density” (VCD), measured
in units of molecules per unit area of the Earth’s surface. The Ozone Mon-
itoring Instrument (OMI) resides on the polar-orbiting Aura satellite, which
was launched in July 2004. Since the 1st of October of the same year, the in-
strument has been collecting daily data at approximately the same local time
(early afternoon) at every location of the globe. Such passive instruments de-
tect the solar radiation that is backscattered by the Earth’s atmosphere and
surface. This radiation passes through spectrometers, which are devices that
measure energy intensity as a function of wavelength, and allow creation of
a spectrum of wavelengths. Each pollutant has a unique way to absorb and
reflect specific wavelengths. By comparing the spectral signature recorded
by the satellite instrument to a spectral laboratory-measured signature for a
given quantity of the pollutant, it is then possible to infer the quantity of that
pollutant in the atmosphere. This last step is performed with so-called “re-
trieval algorithms”. For NO2 concentrations, we employ data obtained with
the retrieval algorithm based on the second version of the DOMINO product
(Boersma et al., 2011), provided by the Tropospheric Emissions Monitoring
Internet Service (TEMIS)2. The product provides Level 3 data, where the level
corresponds to the degree of data processing. Contrary to Level 2, Level 3 data
is mapped to a regular spatial grid and averaged over time. It generally has
lower spatial resolution than Level 2, but it has the advantage of being easier
to read, visualise and analyse. We directly employ the monthly data provided
by the DOMINO product. Most of the NO2 VCD is found near its surface
emission sources because its chemical life is short, i.e., hours to about a day

2Satellite-based data can be downloaded from http://temis.nl. An alternative retrieval algo-
rithm is the third version of the NASA standard product (Krotkov et al., 2017), performed
by the National Aeronautics and Space Administration Goddard Space and Flight Center
(NASA-GSFC) and available on https://disc.gsfc.nasa.gov. The two algorithms produce
very similar atmospheric quantities. However, the DOMINO product offers a better reso-
lution in terms of pixel size.
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depending on meteorological conditions (Duncan et al., 2014). The contribu-
tion to the NO2 VCD from the stratosphere is already subtracted in Levels 2
and 3 of the OMI NO2 products, yielding tropospheric NO2 VCD.

Figure 5.4.1 displays the concentrations of tropospheric NO2 in Europe and
in the Netherlands based on the data described above, and averaged over time.
Each pixel, which covers 13× 14 km2 of the Earth’s surface, represents a cer-
tain value of NO2 concentration, which is measured in 1013molec./cm2. The
Figure shows that this type of pollution is highest in the Benelux area (which
includes Belgium, the Netherlands and Luxembourg) and in Northern Italy,
followed by Western Germany and the region around London (UK). Zoom-
ing in the Netherlands reveals that the more southern regions of the country
and the area around Rotterdam are the most polluted. However, in the former
regions, NO2 seems to have been, at least partially, transported by the wind
from the German industrial area delimited by Cologne, Düsseldorf and Dort-
mund, and the Belgian city of Antwerp. Figure 5.4.2a shows the same data for
the COROP regions, which are obtained by averaging the values of the corre-
sponding overlapping pixels. Figure 5.4.2b uses box plots to summarise the
distribution ofNO2 concentrations in each month of the year. There is clearly
less concentration ofNO2 during warmer seasons, not only because of a lower
use of household heating, but also because of the role that some meteorolog-
ical factors play, such as the amount of sunlight. Such seasonality, together
with the international spatial spillovers mentioned above, is taken into account
while building the econometric model for NO2 concentrations.

Data for traffic intensity

Since road vehicles are the primary source of NOX emissions, data about
traffic intensity can potentially be very powerful in modeling NO2 concentra-
tions. This type of data is collected and provided by Statistics Netherlands3.

Traffic intensity is measured by counting the number of motor vehicles passed
(in both directions) per hour at a (fixed) measuring point on national roads.

3Traffic intensity data can be downloaded from the open access database of Statistics Nether-
lands: https://opendata.cbs.nl.
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(a) NO2 concentrations (unit of measure:
1013molec./cm2)

(b) Seasonality of NO2 concentrations

Figure 5.4.2: The left panel displays the satellite-based data about NO2 concentra-
tions transformed into COROP regional data, averaged over the months. The right
panel summarises the distribution of such NO2 concentrations, in each month.

These counts are performed electronically 24 hours a day every day of the
week, by around 20,000 road sensors located on the highways of the Nether-
lands, whose location is shown in Figure 5.B.5. By multiplying these counts
by 24 (number of hours per day) and the number of days in each month, it
is possible to obtain the number of road vehicles per month. These values
are subsequently divided by the number of hectares that form each COROP
region, in order to allow for a fair comparison among spatial units of different
geographical dimensions. We indicate with Traffic the variable represent-
ing the number of motor vehicles per hectare and per month, passed in each
COROP region.

Traffic intensity data are not available for the COROP regions of
Oost-Groningen and Noord-Friesland. Missing are also the first three
monthly observations for Noord-Overijssel, and the monthly observations for
years 2011 and 2015 for Zeeuwsch-Vlaanderen. We impute these missing
values with the observed values for the corresponding province (which
contains the COROP region at hand, and whose traffic data is obtained as
a weighted average of the traffic data of its COROP regions): respectively,
Groningen, Friesland, Overijssel, and Zeeland.
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Other economic variables, such as energy consumption/production as well as
the total number and sizes of farms and industries, would capture the share of
NOX emissions that are due to these other types of economic activity. How-
ever, data about these variables are unfortunately publicly available only either
at the yearly frequency or at the national level. Because of their heavy lack
of spatial or time variation, we do not use these economic indicators in the
empirical analysis. Moreover, Curier et al. (2014) employ a chemistry trans-
port model to show that in Benelux, at OMI overpass time, NOX emissions
are mainly caused by combustion processes in the road transport sector and
explain almost half of the OMINO2 VCD. This finding reinforces the leading
role that data about traffic intensity plays in modeling the pollutant. Finally,
Lin and Reuvers (2020a) urge econometricians to start modeling air pollutants
with variables that are more direct sources of pollution, and not only proxies
for economic activity (such as population or gross domestic product). We will
therefore not consider such variables as possible regressors in the model for
NO2 concentrations.

Data for the meteorological variables

We consider five meteorological variables, whose data are collected by mea-
surement stations and can be found in the database of the Royal Nether-
lands Meteorological Institute (in Dutch: Koninklijk Nederlands Meteorol-
ogisch Instituut or KNMI)4 . Namely, temperature (Temp), sunlight duration
(Sun), amount of rainfall (Rain), wind speed (WindSpd) and wind direction
(WindDir). In the Introduction we mentioned the role of sunlight in deter-
mining the level ofNO2 concentrations. We do not have any prior knowledge
about the effect of temperature and rain, but we can discover it by includ-
ing these variables in the analysis. The role of these first three meteorolog-
ical factors is to capture the seasonality of NO2 concentrations. Data about
wind speed and direction are used to determine the spatial dependences among
COROP regions, as will be explained in Section 5.4.1.

4Meteorological data can be downloaded from http://projects.knmi.nl.
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Figures 5.B.2 and 5.B.3 illustrate the transformation process applied to data
from 50 measurement stations located throughout the Netherlands, into data
for the COROP regions. This step is necessary because the COROP regions
represent the spatial units needed for the econometric analysis, and they are
spatial polygons. The locations of the measurement stations are instead spa-
tial points. This data transformation is done as follows. First, we check which
stations have measured a particular variable. Second, since all meteorolog-
ical variables are observed at the daily frequency, we aggregate them to the
monthly frequency by averaging the daily observations for Temp, WindSpd
and WindDir (since they are stock variables), and summing the daily ob-
servations of Sun and Rain (since they are flow variables), in order to keep
their “per month” interpretation. Third, we proceed with the spatial interpo-
lation in order to estimate the values of the variables for the COROP regions.
To do so we create a fine spatial square grid that spans the territory of the
Netherlands. Then we employ inverse distance weighting in order to predict
the variables’ values for every cell of the grid. Specifically, let xi generally
define the value of a meteorological variable for measurement station i. Then
the predicted/interpolated value of the same variable for grid cell j is obtained
as (Anselin & Le Gallo, 2006):

xj =

∑
iwixi∑
iwi

,

with wi = 1/(d2
ij), where dij is the distance between station i and grid cell

j. The spatial predictions are therefore obtained as weighted averages of the
variables’ values at all stations, with larger weights given to closer stations.
The left panels of Figures 5.B.2 and 5.B.3 display the results from this spatial
interpolation. In order to get the final values of the meteorological variables
for the COROP regions (right panels of Figures 5.B.2 and 5.B.3), we average
the interpolated values of the COROP regions’ overlapping grid cells.

A few words need to be spent on the temporal and spatial aggregation of
WindDir, which represents the direction from which the wind originates.
The values for this variable are reported in degrees: 0 or 360 indicate the
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North, 90 the East, 180 the South and 270 the West. This implies that averag-
ing these values by taking their sample mean will not yield meaningful results.
We therefore aggregate WindDir (either spatially or temporally) by comput-
ing its average as follows (Grange, 2014). Let xi denote the wind direction
for observation i. Then the average of WindDir is

x̄ =

{
360 +

(
arctan

(
ū
v̄

)
180
)
/π if

(
arctan

(
ū
v̄

)
180
)
/π ≤ 0(

arctan
(
ū
v̄

)
180
)
/π otherwise,

where ū = 1
N

∑N
i=1 sin

(
2πxi
360

)
, v̄ = 1

N

∑N
i=1 cos

(
2πxi
360

)
, and N is the sample

size at hand. When performing the spatial interpolation discussed above, the

latter formulae become ū =

∑N
i=1 wi sin

(
2πxi
360

)
∑N
i=1 wi

and v̄ =

∑N
i=1 wi cos

(
2πxi
360

)
∑N
i=1 wi

, and

the average is the prediction for grid cell j (x̄ = xj).

Based on figures 5.B.2 and 5.B.3, we can conclude that, on average, temper-
ature is, as expected, higher in the South. The wind speed is stronger and
the sunlight duration is longer along the coast. The wind is mainly blowing
from the South-West, and rainfall is more abundant in the central-western re-
gions of the country. Further details on these meteorological variables, such as
measurement units and descriptive statistics, can be found in Table 5.B.15.

Time-varying spatial weight matrix based on wind speed and direction

Since spatial spillovers of NO2 are due to its transportation by the wind, the
spatial weight matrix should ideally capture this role of the wind, and there-
fore be built on information about it. We do so by slightly modifying the
approach of Merk and Otto (2020) in using data about wind speed and direc-
tion in order to construct a deterministic time-varying spatial weight matrix.
Namely, we let

Wt = φW (D) + (1− φ)W
(W )
t (5.4.1)

5The standard deviation for WindDir is there calculated with the method of Yamartino
(1984), which also employs trigonometric functions.
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for t = 1, . . . , T , which implies that Wt is a linear combination of a static
and a dynamic spatial weight matrix. The former,W (D), is row-standardised
and it is constructed based on geographical distances between spatial units; its
diagonal elements are equal to zero and its off-diagonal elements are different
from zero if the centroids of the corresponding COROP regions are closer
than a certain threshold, which is chosen to make sure that all regions have at
least one neighbour. The latter spatial weight matrix, W (W )

t , is built on wind
characteristics. Let w(W )

ij,t be the element corresponding to its ith row and jth

column, for i, j = 1, . . . , n. Then the diagonal elements of W (W )
t are equal

to zero, whereas its off-diagonal elements are equal to

w
(W )
ij,t =

WindSpdj,t
dij

K(δij,t)

δij,t =
2

r

[
mod

(
bij −WindDirj,t + 180

360

)
− 180

]
,

(5.4.2)

for i, j = 1, . . . , n and t = 1, . . . , T . In the formula above, bij represents
the bearing (i.e., the relative position) of the centroid of COROP region j
with respect to the centroid of COROP region i, and dij is the great circle
distance between them (measured in km). The bearing is measured in de-
grees and varies within the interval (0, 360]. For instance, a bearing of 90
degrees indicates that the centroid of COROP region j is located to the east
of the centroid of COROP region i. In equation (5.4.2), r represents the range
of maximum admissible deviations between the prevailing wind direction in
COROP region j at time t, WindDirj,t, and the bearing. The more the bear-
ing is aligned with the wind direction, the more δij,t, in equation (5.4.2), takes
values close to zero. The latter is the argument of a kernel function, K, whose
values are positive and decrease while δij,t moves away from zero. We employ
the Epanechnikov kernel function, which takes the form

K(δij,t) =

{
3
4

(
1− δ2

ij,t

)
if δij,t ∈ [−1, 1]

0 otherwise,
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for i, j = 1, . . . , n and t = 1, . . . , T . This implies that if the deviation be-
tween the bearing and the wind direction exceeds r/2, then wij,t = 0 and
therefore the concentrations of NO2 in COROP region i are not transported
by the wind from COROP region j, at time t. Moreover, the sparsity of the
spatial weight matrix is so guaranteed. On the other hand, for an increasing
alignment between the bearing and the wind direction, the kernel function
takes larger values and therefore intensifies the spatial dependence of COROP
region i on COROP region j. These values are finally multiplied by the av-
erage wind speed in COROP region j at time t, WindSpdj,t, and divided by
dij , since these two measures respectively strengthen and weaken the spatial
relationships.

We refer to Merk and Otto (2020) for a visualisation of the above-described
method to build a time-varying spatial weight matrix based on data about wind
speed and direction.

In practice we choose φ = 0.85 and r = 150, which are the values that Merk
and Otto (2020) observe in their empirical study, even though they analyse
a different pollutant (particulate matter) in a different geographical location
(eastern United States)6. However, this choice for r does not prevent some
rows of W (W )

t from having only zero elements; we therefore let those rows
ofWt be equal just to the corresponding rows ofW (D). The non-zero rows of
W

(W )
t , which is built as described above, are then standardised at each point

in time, beforeW (W )
t is plugged in formula (5.4.1). This makes sure that also

Wt is row-standardised. On average, around 50% of the elements of Wt are
equal to zero.

5.4.2 Empirical results

Before diving into the model specification and discussion of the empirical
results, we check whether our data satisfy some of the assumptions that we

6Merk and Otto (2020) estimate φ by standard maximum likelihood and choose, from a grid
of values for r, the one that maximises the log-likelihood function, in order to estimate r.
Nonetheless, the theoretical properties of these “estimators” have not been derived and we
therefore prefer to fix values for the two parameters a priori.
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made in Section 5.2. Figure 5.4.3 displays the time series of the variables
employed in the empirical analysis, for the Netherlands (i.e., the averaged
observed data over the Dutch COROP regions). We notice that all time se-
ries, except for Traffic, seem to be stationary around a mean. Traffic in-
tensity looks instead stationary around a positive trend7. Therefore, despite
an increase of road vehicles per hectare over time, we do not notice a simi-
lar increase in NO2 concentrations. This finding can have two main possible
explanations: either the increasing efficiency of vehicles and environmental
awareness tend to decrease the contribution of traffic to NO2 concentrations
over time, or other types of economic activities are subject to such an envi-
ronmentally sustainable change, or both. Therefore, modeling the effect of
Traffic on NO2 as time-varying, is of interest in order to shed light on this
issue. Figure 5.4.4 displays the time series for the same variables, but this
time observed for the six COROP regions in the province of Zuid-Holland.
The comovements of these series among neighbouring regions suggests that
there is spatial dependence among them, which motivates the use of a spatial
lag-type of econometric model.

The model specification for the analysis of regional NO2 concentrations in
the Netherlands, is based on specification 4 of the Monte Carlo simulation
study of Section 5.3. Namely, model (5.2.3), where T = 84 and yt is a
40 × 1 vector (n = 40) whose elements correspond to the natural logarithm
of NO2 concentrations in the Dutch COROP regions: yi,t = log(NO2,i,t)
for i = 1, . . . , 40. The use of the logarithms instead of the levels for the
dependent variable avoids problems such as obtaining negative predicted val-
ues for yt, since NO2 concentrations cannot be negative (this choice is com-
mon in the climate econometrics literature: see, e.g., Wagner (2015)). The
spatial weight matrix, Wt, is time-varying and built as explained in Section
5.4.1. The structure of (partial) autocorrelation functions for the elements of
yt (which we do not report in this chapter) suggests that the dependent vari-

7Such stationary behaviour is widely confirmed by the Augmented Dickey-Fuller test (Elliott
et al., 1996) for the presence of a unit root (which accounts for a deterministic time trend
when appropriate), applied to all regional time series; at the 5% confidence level, only
Traffic for the COROP region “Zeeuwsch-Vlaanderen” fails to reject the null hypothesis.
We do not report these results in the chapter.
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(a) NO2 concentrations (unit of measure:
1013molec./cm2)

(b) Temp (unit of measure: ◦C)

(c) Sun (unit of measure: hours) (d) Rain (unit of measure: mm)

(e) WindSpd (unit of measure: m/s)
(f) Traffic (unit of measure: number of
vehicles/hectare)

Figure 5.4.3: Time series plots of the variables observed for the Netherlands. The
circular characteristic ofWindDir hampers the visualisation of its time series, which
is therefore not here included.
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(a) NO2 concentrations (unit of measure:
1013molec./cm2)

(b) Temp (unit of measure: ◦C)

(c) Sun (unit of measure: hours) (d) Rain (unit of measure: mm)

(e) WindSpd (unit of measure: m/s)
(f) Traffic (unit of measure: number of
vehicles/hectare)

Figure 5.4.4: Time series plots of the variables observed for the six COROP regions
in the province of Zuid-Holland. The circular characteristic of WindDir hampers
the visualisation of its time series, which are therefore not here included.
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able follows an order one autoregressive rather than a moving average struc-
ture. Therefore, the 40 × 6 (k = 6) matrix of regressors, Xt, contains an
intercept and the following explanatory variables: log(NO2,t−1), Traffic,
Temp, Sun and Rain.

The vector of unobserved components, αt = (αSea,t, αBorder,t)
′, is made of

two (p = 2) elements which aim to capture time-varying deviations between
the intercepts of COROP regions that, respectively, face the sea and are lo-
cated at land borders, and the ones that do not. This implies that αSea,t is
common among maritime regions, whereas αBorder,t is common among re-
gions bordering Belgium and/or Germany, and the 40× 2 selection matrix Z
is built accordingly. The role of such a latent vector is therefore to account
for the so-called “border effect”: on one hand the fact the pollution of regions
located at land borders can affect and be affected by neighbouring countries;
on the other hand the fact that the little pollution coming from the sea (mainly
shipping pollution) can only very limitedly influence the NO2 concentrations
of maritime regions, while the pollution of such regions can still be exported
to the sea. Another way to account for the border effect would be to include
the neighbouring German/Belgian regions and fictitious geographical regions
located on the sea, as spatial units in the model, and augment yt with their
levels of NO2 concentrations. This would imply an extension of the spatial
weight matrix, but not necessarily an inclusion of explanatory variables also
for these additional regions. However, the use of latent components in order
to model the border effect is novel and illustrates an advantage of including a
state space structure in the spatial lag econometric model, over employing a
more static specification.

We let βt = (βIntercept, βNO2,t−1 , βTraffic,t, βTemp, βSun, βRain)′ be the
6 × 1 coefficient vector, which assumes that only the coefficient of Traffic
varies over time. Indeed, although the model could potentially allow for more
time-changing coefficients, it makes little intuitive sense to assume that me-
teorological factors can have a varying effect on NO2 concentrations over
time. The time-varying effect of traffic intensity on pollution was instead mo-
tivated at the beginning of this section. Therefore, the transition matrix is
T = blockdiag(I6, diag(γα,Sea, γα,Border)) and the covariance matrix of the
state innovations isQ = diag(0, 0, σ2

Traffic, 0, 0, 0, σ
2
α,Sea, σ

2
α,Border).
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We compare the results that model (5.2.3) yields, to the ones obtained with the
spatial lag model (5.2.1), which does not include as many dynamics as the spa-
tial state space model does, and is therefore of a more static nature. Dummy
variables for maritime and bordering regions are the static equivalent of the
two unobserved components discussed above. Therefore, in this empirical
analysis, the matrix of regressors of model (5.2.1) includes the same regres-
sors as model (5.2.3) plus these two dummies (i.e., it is equal to [Xt Z]),
whose coefficients will be denoted as βSea and βBorder, respectively. We em-
ploy the same spatial weight matrix in the two models. The initial values
(needed for the maximisation of the log-likelihood) for the parameters that
need to be estimated by maximum likelihood, are equal to 1 for all variance
parameters, and 0 for the remaining parameters.

The in-sample results based on the entire sample (i.e., January 2011 - De-
cember 2017) for both models are reported in Table 5.4.1. All common coef-
ficients between the models are estimated similarly. The standard errors (re-
ported in parentheses in Table 5.4.1) for the Kalman smoother estimates of the
static β coefficients of the state space model, correspond to the square roots of
the respective diagonal elements of PT |T from recursions (5.2.4)8. However,
there are only theoretical grounds to test hypotheses on the parameters that
are estimated by maximum likelihood.

We find that the spatial dependence, represented by the estimate of ρ, is posi-
tive, significant and very large in magnitude, thus suggesting that the inclusion
of the spatial structure is appropriate. As expected, the effect of traffic inten-
sity is positive and significant (“ceteris paribus” is here and in what follows
left implicit), whereas sunlight yields a negative and significant contribution
to NO2 concentrations. We also find the time lag of NO2 concentrations
and temperature to have a positive and significant impact on the dependent
variable, and the coefficient of Rain is estimated as being negative and sig-
nificant. From the spatial lag model (5.2.1) we can conclude that maritime
and border regions significantly have, respectively, lower and higher concen-
trations of NO2, with respect to the remaining inland regions. This result is

8Since the diagonal elements of PT |T that refer to constant state variables, are equal to the
diagonal elements of Vt, from recursions (5.2.5), for t = 1, . . . , T .
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also to be expected: as Figure 5.4.1b shows, most of the border regions are
located in proximity of industrial and very polluted Belgian and German loca-
tions, therefore importing some of this pollution and increasing their overall
level of NO2 concentrations; on the contrary, the mostly clean air coming
from the sea has a reducing effect on the quantity of pollution in maritime
regions.

When the spatial weight matrix is row-standardised and the time-lag of the
dependent variable is included as a regressor in the model, Yu et al. (2008)
argue that the spatial lag model is stable when ρ+βNO2,t−1 < 1. This seems to
be our case according to the results displayed in Table 5.4.1, although the sum
of ρ̂ and β̂NO2,t−1 is very close to unity for model (5.2.1). The log-likelihood
value is, as expected, larger for the state space model than the spatial lag
model, due to the higher complexity of the former.

Figure 5.4.5 shows the Kalman filter and smoother estimates, together with
the 95% confidence intervals9 for the filter estimates, of the time-varying pa-
rameters of the spatial lag state space model (5.2.3): βTraffic,t, αSea,t and
αBorder,t. The estimated time-varying effect of traffic intensity fluctuates
around a positive mean. Its wide confidence intervals, together with the in-
significance of σTraffic (from Table 5.4.1), which is supposed to drive the
time-variation in βTraffic,t, suggests that the latter parameter is actually con-
stant. This result implies that the non-increasing pattern of Dutch NO2 con-
centrations, displayed in Figure 5.4.3a, is not due to the use of more environ-
mentally sustainable vehicles. In fact, the constant effect of traffic intensity
on pollution suggests that the partial adoption of such vehicles has not been
enough to reduce their contribution to NO2 concentrations. It can therefore
be the case that other types of economic activity, such as energy consump-
tion/production or industrial production, have become more sustainable and
have therefore started offsetting, over time, the extra NOX emissions derived
by the rising number of road vehicles.

The estimated time-varying dummies, α̂Sea,t and α̂Border,t, also fluctuate
around a negative and positive mean, respectively. This result is in line with

9These confidence intervals and the forecast intervals of Figure 5.B.6 do not reflect the addi-
tional uncertainty of using estimates for the hyperparameters.
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the estimates for βSea and βBorder discussed above. The time-variation of
the unobserved components seems to be more pronounced than the one
of βTraffic,t, because of narrower confidence intervals. Moreover, the
estimates and standard errors obtained for the hyperparameters that govern
their time-variation (i.e., the respective γ and σ parameters), reported in
Table 5.4.1, suggest that we can reject the hypothesis of time-constancy
for both of them. Indeed, we can reject the individual hypotheses that
γα,i = 1 and σα,i = 0, for i = {Sea,Border}, which (jointly) define a
time-constant evolution of the parameter. These findings therefore suggest
that the differences in NO2 concentrations between maritime and border
regions, with respect to the remaining inland regions, are time-varying10.

The positive difference in NO2 concentrations between regions that are lo-
cated at land borders and inland regions, is, as already discussed, due to the
import of pollution from neighbouring countries. The negative difference be-
tween maritime and inland regions reflects instead the fact that the former
regions can export pollution to the sea, but they hardly import any pollution
from the sea. Such “import/export effects” can be time-varying due, for ex-
ample, to changes in meteorological factors that are not controlled for in the
regressor matrix. Information about wind speed and direction is used to build
the spatial weight matrix, which does not, by itself, take into account the fact
that some regions are located at land borders and some other along the coast,
and that therefore some of their pollution can be exported/imported abroad;
the “border effect” needs indeed to be taken into account by the model in other
ways, as we do. However, wind speed and direction are not also included as
regressors, yet these wind characteristics can vary over time the quantity of
pollution that peripheral regions import or export. For instance, the highest
peak of wind speed11, from Figure 5.4.3e, which is observed on December

10It should be noted that from Figure 5.4.5 it looks like the confidence intervals of the time-
varying coefficients do not always deviate from zero. However, when estimated as time-
constant, the spatial lag model finds the same coefficients to be significantly different from
zero. A larger sample size (T ) would allow us to achieve narrower confidence intervals
for the state variables and to be more conclusive about this issue. This could be achieved
by, for instance, employing daily rather than monthly data. However, daily data for traffic
intensity are not made available by Statistics Netherlands yet.

11Which does not correspond to the highest peak of NO2 concentrations, from Figure 5.4.3a,
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2011, corresponds to a very low peak in both α̂Sea,t and α̂Border,t. Seasonal
fluctuations in inland shipping and economic activity of adjacent Belgian and
German industrial areas, might also explain some of the time variation in the
unobserved components. Finally, although we could not reject the hypothesis
that the coefficient for Traffic is time constant, Figure 5.4.5 shows that its
estimate is more volatile at the beginning of the sample. Such behaviour might
be explained by the implementation of legislative changes. For instance, in
September 2012 the speed limit on some Dutch highways was increased from
120 km/h to 130 km/h. This may have triggered the subsequent increased
volatility in the coefficient estimate for Traffic, which would reflect both
the fact that the change was not applied to all highways, and that drivers did
not adjust to it abruptly and homogeneously.

The assumptions of homoskedasticity and no serial correlation made through-
out the chapter can be tested on the standardized one-step ahead forecast errors
(Durbin & Koopman, 2012, Chapter 7): ṽt = Btvt, for t = 1, . . . , T withBt

such that (Ft)
−1 = B

′
tBt. We test each series of standardized forecast errors

for no serial correlation with the Ljung and Box (1978) test on 4 and 12 lags12,
and for homoskedasticity using the H(h) test described in in Durbin and Koop-
man (2012, Chapter 2), with h equal to 27 and 41 (which roughly correspond
to a third and a half of the sample size, respectively). The p-values of the
diagnostic tests are displayed in Figure 5.B.7. At the 5% significance level,
the hypothesis of homoskedasticity seems to hold in general, taking also into
account that we do not correct for multiple hypotheses testing here, in which
case we would expect fewer rejections. The hypothesis of no serial correlation
is rarely rejected by the Ljung-Box test when 12 lags are included, which sug-
gests that the seasonality is not left over in the residuals, but captured by the
meteorological regressors. However, when only 4 lags are included in the test,
the hypothesis of no serial correlation is rejected much more often, indicating
that there is still some time persistency that is not captured by the dynamics

which is instead observed on November 2011; it corresponds to the subsequent drop in
NO2 concentrations as they would tend to disperse with a higher wind speed.

12For each series, we correct the degrees of freedom of the test statistic, based on the number of
parameters needed to estimate its unobserved components. See Harvey (1989, Chapter 5)
for more details on the degrees of freedom correction for the Ljung-Box test.
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of the state space model, and which requires further investigation.

Of wide interest it is not only to model air pollutants, but also to predict their
future values based on different scenarios of economic activity. We therefore
conclude this section with two forecast exercises of NO2 for 2017 (which is
the out-of-sample period in this forecast study), by considering two different
scenarios of traffic intensity during the same year. In both cases, we first es-
timate the static parameters of models (5.2.1) and (5.2.3) based on data avail-
able until the end of 2016, and we use the so-obtained estimates in order to
forecast up to twelve future monthly values ofNO2 concentrations (hence we
do not adopt a moving or rolling window setting for our forecast analysis).

The forecasted values for yt, based on the state space model (5.2.3), are ob-
tained as follows

ŷt∗+m = (In − ρ̂Wt∗+m)−1(Xt∗+mβ̂t∗+m +Zα̂t∗+m) (5.4.3)

for m = 1, . . . , 12 and with t∗ being December 2016. In the formula above,
ρ̂ is the maximum likelihood estimate and the static elements of β̂t∗+m are
the Kalman smoother estimates, of the corresponding parameters. For the
time-varying parameters, we instead employ the m-step ahead Kalman filter
forecasts, denoted by β̂Traffic,t∗+m and α̂t∗+m, implied by their transition
equations.

For the spatial lag model (5.2.1) we compute the predicted values as

ŷt∗+m = (In − ρ̂Wt∗+m)−1[Xt∗+m Z]β̂ (5.4.4)

form = 1, . . . , 12, where now ρ̂ and β̂ are all maximum likelihood estimates.
Equations (5.4.3) and (5.4.4) also imply that we treat the spatial weight matrix
and the regressors as known in the out-of-sample period. Specifically, the time
lag of yt (which is part of the regressors) is equal to yt∗ when m = 1 and
ŷt∗+m−1 when m > 1.

In a first forecast exercise, the values for all regressors and for the spatial
weight matrix in 2017 are left unchanged from their actual observations in the
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same period. We are therefore in a scenario where we assume that there is no
future change in traffic intensity and meteorological conditions. Figure 5.4.6a
displays the time series of log(NO2) in 2017, averaged over the COROP
regions

(
i.e., ȳt∗+m = 1

40

∑40
i=1 log(NO2,i,t∗+m), for m = 1, . . . , 12

)
together with the corresponding forecasts (solid lines), based on models
(5.2.1) and (5.2.3), which are also averaged over the COROP regions(

i.e., ¯̂yt∗+m = 1
40

∑40
i=1 ŷi,t∗+m, for m = 1, . . . , 12

)
. The forecasts obtained

with both models are rather similar for the first half of the out-of-sample
period, and tend to deviate more from each other afterwards. This result
is attributable to the autoregressive dynamic structure for the unobserved
components of the state space models, which, as the forecast horizon
increases, yields predictions of such state variables equal to their zero
expected value, as Figure 5.B.6 shows. This is equivalent to assuming that
the “import/export effect” vanishes over time, when forecasting it, which is
unrealistic and a drawback of the state space model, over the spatial lag
model. The mean squared forecast error obtained with the latter model is
equal to 0.113, compared to a slightly larger 0.129 yielded by the former
model. Notice also that the spatial lag and the state space model tend to,
respectively, under- and over-predict the level of NO2 concentrations.

The second forecast exercise consists in reducing the level of Traffic by
100%, with respect to its observed values, in all months of 2017, which is
equivalent to assuming that there are no road vehicles during that year. Such
a scenario is unrealistic in practice, but it allows us to understand what is the
maximum decrease in NO2 concentrations that we can expect by removing
the traffic-related source of NOX emissions. The forecasts obtained under
this scenario, and with both models (5.2.1) and (5.2.3), are again displayed in
Figure 5.4.6a (dashed lines). Moreover, Figure 5.4.6b shows the percentage
change of the predictions of NO2 concentrations (in levels, not in logarithms)
obtained under the two scenarios13. We notice that the removal of traffic activ-

13Let ¯̂y
(s1)
t∗+m and ¯̂y

(s2)
t∗+m be the averaged forecasted value of log(NO2) at time t∗ +m under

scenarios 1 and 2, respectively (with scenario 2 corresponding to a drop in Traffic of
100%). The percentage change in predicted NO2 concentrations at time t∗ + m is cal-
culated as

(
¯̂y
(s2)
t∗+m − ¯̂y

(s1)
t∗+m

)
100, since the log-difference is approximately equal to the
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ity produces a gradual decrease in predicted NO2 concentrations, which take
around eights months to stabilize around their new steady level. The state
space model (5.2.3) predicts a maximum percentage decrease in NO2 con-
centrations of around 35%, which is in line with the TNO (2019) finding that
road traffic is responsible for 31% of NOX emissions, but it is still not con-
sistent with the claim of Curier et al. (2014) that road vehicles are responsible
for around 50% of NO2 VCD at OMI overpass time. However, the spatial lag
model (5.2.1) predicts a maximum decrease in NO2 concentrations of around
70%, which is clearly too optimistic. This result implies that our proposed
spatial lag state space model is able to provide more realistic predictions of
NO2 concentrations, under different scenarios of traffic intensity, with respect
to the spatial lag model, probably due to the close-to-instability feature of the
latter model discussed earlier in this section.

We mentioned in the Introduction that the Dutch government implemented a
speed-limit reduction on highways in March 2020. The forecast analysis that
we just conducted shows that we can potentially use our state space model in
order to evaluate policies, such as the one just mentioned. However, we do not
have data about speeds of vehicles, and it is non-trivial to quantify how many
vehicles per hectare less would correspond to a maximum speed reduction of
20/30 kmph14. Therefore, we cannot use our model to evaluate this specific
policy. However, the forecast results discussed above immediately allow us to
evaluate the effect of less drastic decreases in traffic intensity, than the one we
considered: e.g., a reduction in Traffic by 10% in every month of 2017, is
expected to yield an overall decrease in NO2 concentrations of around 3.5%,
and so on.

percentage change.
14There is, nonetheless, research on the effects that speed limit reductions have on air pollu-

tants concentrations, of which Lopez-Aparicio et al. (2020) is an example.
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Spatial lag state space model (5.2.3) Spatial lag model (5.2.1)

ρ̂ 0.5959***

(0.0244)
0.8828***

(0.0063)
σ̂ε 0.2056***

(0.0450)
0.1342***

(0.0134)
β̂Intercept 1.0767

(0.0888)
0.2271***

(0.0595)
β̂NO2,t−1 0.2570

(0.0124)
0.0815***

(0.0076)
β̂Traffic 0.0096***

(0.0007)
β̂Temp 0.0120

(0.0022)
0.0031***

(0.0008)
β̂Sun -0.0013

(0.0002)
-0.0003***

(0.00006)
β̂Rain -0.0012

(0.0002)
-0.0004***

(0.00008)
β̂Sea -0.0433***

(0.0059)
β̂Border 0.0440***

(0.0060)
γ̂α,Sea -0.2781***

(0.0385)
γ̂α,Border 0.5956***

(0.0552)
σ̂Traffic 0.0930

(0.3433)
σ̂α,Sea 0.4679***

(0.0453)
σ̂α,Border 1.6867***

(0.0091)

Log-likelihood -441.895 -1420.94

Table 5.4.1: In-sample results. Maximum likelihood and Kalman smoother estimates
of the models’ static parameters. The standard errors are reported in parentheses; *p-
value < 0.1, **p-value < 0.05, ***p-value < 0.01, from a Wald χ2 test for individual
hypotheses (when possible, i.e., not for the static β coefficients that are estimated by
Kalman smoothing). Harvey (1989, Chapter 5) explains how to modify the test when
the null hypothesis corresponds to the boundary of the parameter space, which is the
case for the standard deviations. Namely, the p-values from the Wald test statistic
have to be compared to a critical level of 2α, instead of α, because under the null
hypothesis its asymptotic distribution is not χ2

1 as usual any more.
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(a) β̂Traffic,t

(b) α̂Sea,t

(c) α̂Border,t

Figure 5.4.5: Kalman filter (black solid lines) and Kalman smoother (red solid lines)
estimates of βTraffic,t, αSea,t and αBorder,t. The dashed black lines are the 95%
confidence intervals of the Kalman filter estimates.
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(a) Forecasts

(b) Percentage changes in predicted NO2 concentrations

Figure 5.4.6: In Figure 5.4.6a, the black line displays the observed values of
log(NO2) (averaged over the Dutch COROP regions). The solid green and red lines
represent the average (over the Dutch COROP regions) of the forecasted values for
log(NO2) based on, respectively, the spatial lag model (5.2.1) and the state space
model (5.2.3), when Traffic is left unchanged. The dashed lines refer to the same
forecasts obtained when Traffic is decreased by 100%. Figure 5.4.6b displays the
percentage changes in the predictions of NO2 concentrations obtained under the sce-
narios that Traffic is left unchanged and Traffic is decreased by 100%. The green
and red lines refer to the results obtained with models (5.2.1) and (5.2.3), respectively.
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5.5 Conclusions

In this chapter we propose a new dynamic multivariate econometric model,
called spatial lag state space model, which adds, to standard state space mod-
els, a spatial (cross-sectional) dependence in the dependent variable. Such
a model has the advantage, over spatial lag models, of allowing for time-
varying regression coefficients and latent variables that can capture, for in-
stance, inertial dynamics or time-varying differences between the intercepts
of the dependent variable. A Monte Carlo simulation study shows that all
of these state variables, i.e., (time-varying) regression coefficients and unob-
served components, as well as the remaining static parameters of the model,
can be efficiently and accurately estimated by Kalman filtering/smoothing and
maximum likelihood, respectively.

We apply our proposed model to a regional analysis of nitrogen dioxide
(NO2) concentrations in the Netherlands, over the period January
2011-December 2017. We employ monthly data, and traffic intensity and
meteorological variables as predictors of the pollutant of interest. The spatial
weight matrix, which defines the connectivity of the geographical regions, is
based on data about wind speed and direction in order to capture the spatial
spillovers of NO2 concentrations, which are due to its transportation by the
wind.

Our empirical results suggest that the spatial dependence among Dutch re-
gions, in terms of NO2 concentrations, is positive and strong, thus supporting
the choice of a spatial type of model. On top of the positive impact of road
traffic, temperature and the time lag of the pollutant’s concentrations, we find
sunlight and rain to have a negative effect on NO2 concentrations.

Despite an observed overall increase in Dutch traffic intensity, over the sam-
ple considered, we do not see a similar rise in NO2 concentrations. However,
we do not find the effect of traffic intensity on the latter variable to be time-
varying, suggesting that other economic activities (that we do not control for
in our model yet) have been subject to a sustainable change which decreased
their contributions to the quantity of tropospheric NO2. We employ unob-
served components in order to model the so-called “border effect”, i.e., to
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take into account the fact that NO2 concentrations of peripheral Dutch re-
gions can affect (and be affected by) neighbouring regions that are not part of
the spatial units under study. We find time-varying differences, in the levels
of tropospheric NO2 concentration, between peripheral regions with respect
to inland regions, thus supporting the use of a state space model in order to
account for such time-changing features. Specifically, the pollution of mar-
itime regions is generally lower than inland regions, due to the fact that they
export more NO2 to the sea, than they import from the sea. On the contrary,
regions bordering with Belgium and/or Germany tend to import more NO2

from these neighbouring countries than they export, resulting in an overall
higher level of pollution, with respect to inland regions. These differences are
likely time-varying due to meteorological conditions and seasonal fluctuations
of economic activities abroad.

The proposed spatial lag state space model is further employed to forecast, up
to twelve-months-ahead, regional NO2 concentrations, under different sce-
narios of traffic intensity. When leaving the level of road traffic unchanged in
the forecast period, with respect to its actual observations, our model yields
a similar performance compared to a more static spatial lag model. However,
when hypothesising a complete removal of road traffic in the forecast period,
our state space approach yields much more realistic forecasts of NO2 con-
centrations, predicting an overall decrease of 35%, which is consistent with
the TNO (2019) finding that vehicles are responsible for 31% of NOX emis-
sions. The spatial lag model, instead, too optimistically predicts a decrease in
pollution of about 70%. With both models, it is estimated to take around eight
months for the concentrations of NO2 to achieve their new steady level, after
a given decrease in traffic intensity in the forecasted period.

In the Introduction we mentioned that NOX is responsible for the creation of
stratospheric ozone and secondary aerosols, which cool the Earth’s surface.
There is therefore the possibility of an indirect effect of NO2 concentrations
on temperature, which is not currently taken into account in the econometric
model specification. In case of such contemporaneous and reverse effect, the
maximum likelihood estimators would suffer from a simultaneity bias. This
problem could be tackled by employing a simultaneous equations structure
for the state space model, thus augmenting the observed dependent vector
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with temperature, as well as aerosol and stratospheric ozone concentrations
variables. However, in a spatial econometric setting this would dramatically
increase the dimensionality of the dependent variable, hence hampering a fea-
sible estimation of the model. Econometric models that do not include many
cross-sectional observations would be more suited to study this type of chem-
ical interactions and reverse effects. Such a model is, for instance, employed
by Montamat and Stock (2020) who take an instrumental variables approach
in order to deal with the simultaneity bias due to the direct effect that carbon
dioxide, as a greenhouse gas, has on temperature, and viceversa.
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5.A Monte Carlo simulation results

5.A.1 T = 80

(a) σε (b) ρ (c) σβ

(d) β1 (e) β2 (f) β3

Figure 5.A.1: Distributions of the maximum likelihood and Kalman smoother estima-
tors of the static parameters, based on the Monte Carlo replicates, for model specifi-
cation 1 and with T = 80. The β coefficients are estimated by the Kalman smoother,
and the remaining parameters (the hyperparameters) by maximum likelihood. The
dashed lines represent the true values of the parameters.
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(a) σε (b) ρ (c) γα

(d) σβ (e) σα

(f) β1 (g) β2 (h) β3

Figure 5.A.2: Distributions of the maximum likelihood and Kalman smoother estima-
tors of the static parameters, based on the Monte Carlo replicates, for model specifi-
cation 2 and with T = 80. The β coefficients are estimated by the Kalman smoother,
and the remaining parameters (the hyperparameters) by maximum likelihood. The
dashed lines represent the true values of the parameters.
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(a) σε (b) ρ

(c) γα,1 (d) γα,2

(e) σβ (f) σα,1 (g) σα,2

(h) β1 (i) β2 (j) β3

Figure 5.A.3: Distributions of the maximum likelihood and Kalman smoother estima-
tors of the static parameters, based on the Monte Carlo replicates, for model specifi-
cation 3 and with T = 80. The β coefficients are estimated by the Kalman smoother,
and the remaining parameters (the hyperparameters) by maximum likelihood. The
dashed lines represent the true values of the parameters.
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(a) σε (b) ρ

(c) γα,1 (d) γα,2

(e) σβ (f) σα,1 (g) σα,2

(h) β1 (i) β2 (j) β3

Figure 5.A.4: Distributions of the maximum likelihood and Kalman smoother estima-
tors of the static parameters, based on the Monte Carlo replicates, for model specifi-
cation 4 and with T = 80. The β coefficients are estimated by the Kalman smoother,
and the remaining parameters (the hyperparameters) by maximum likelihood. The
dashed lines represent the true values of the parameters.
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(a) β1,t

(b) α1,t

(c) α2,t

Figure 5.A.5: True β1,t, α1,t and α2,t (black lines) and respective 5% and 95% per-
centiles of the Kalman smoother estimates (gray shaded areas), based on the Monte
Carlo replicates. The results refer to model specification 4 with T = 80.
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(a) σε (b) ρ (c) γα

(d) σβ (e) σα

(f) β1 (g) β2 (h) β3

Figure 5.A.6: Distributions of the maximum likelihood and Kalman smoother estima-
tors of the static parameters, based on the Monte Carlo replicates, for model specifi-
cation 5 and with T = 80. The β coefficients are estimated by the Kalman smoother,
and the remaining parameters (the hyperparameters) by maximum likelihood. The
dashed lines represent the true values of the parameters.
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5.A.2 T = 300

(a) σε (b) ρ (c) σβ

(d) β1 (e) β2 (f) β3

Figure 5.A.7: Distributions of the maximum likelihood and Kalman smoother es-
timators of the static parameters, based on the Monte Carlo replicates, for model
specification 1 and with T = 300. The β coefficients are estimated by the Kalman
smoother, and the remaining parameters (the hyperparameters) by maximum likeli-
hood. The dashed lines represent the true values of the parameters.
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(a) σε (b) ρ (c) γα

(d) σβ (e) σα

(f) β1 (g) β2 (h) β3

Figure 5.A.8: Distributions of the maximum likelihood and Kalman smoother es-
timators of the static parameters, based on the Monte Carlo replicates, for model
specification 2 and with T = 300. The β coefficients are estimated by the Kalman
smoother, and the remaining parameters (the hyperparameters) by maximum likeli-
hood. The dashed lines represent the true values of the parameters.
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(a) σε (b) ρ

(c) γα,1 (d) γα,2

(e) σβ (f) σα,1 (g) σα,2

(h) β1 (i) β2 (j) β3

Figure 5.A.9: Distributions of the maximum likelihood and Kalman smoother es-
timators of the static parameters, based on the Monte Carlo replicates, for model
specification 3 and with T = 300. The β coefficients are estimated by the Kalman
smoother, and the remaining parameters (the hyperparameters) by maximum likeli-
hood. The dashed lines represent the true values of the parameters.
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(a) σε (b) ρ (c) γα

(d) σβ (e) σα

(f) β1 (g) β2 (h) β3

Figure 5.A.10: Distributions of the maximum likelihood and Kalman smoother es-
timators of the static parameters, based on the Monte Carlo replicates, for model
specification 5 and with T = 300. The β coefficients are estimated by the Kalman
smoother, and the remaining parameters (the hyperparameters) by maximum likeli-
hood. The dashed lines represent the true values of the parameters.
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5.B Data characteristics and additional empirical
results

(a) The 14 Dutch provinces. (b) The 40 Dutch COROP regions.

Figure 5.B.1: Maps of the provinces and the COROP regions of the Netherlands.
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Variable Description Units Mean St. dev. Min Max

NO2 NO2 concentrations 1013 molec./cm2 889.17 365.21 224.18 2604.33
Traffic road vehicles number of vehicles/hectare 3.08 3.7 0.22 16.7
Temp temperature ◦C 10.59 5.31 -0.2 19.82
Sun sunlight duration hours 149.34 65.1 19.24 278.88
Rain amount of rainfall mm 67.49 36.15 3.8 193.9
WindSpd wind speed m/s 4.79 1.15 2.35 10.15
WindDir wind direction degrees 234.47 60.2 0.69 359.88

Table 5.B.1: Descriptive statistics for tropospheric NO2 concentrations, traffic inten-
sity and the meteorological variables. Sunshine and rainfall variables are equal to
zero when failing to reach 0.05 hours and 0.05 mm per day, respectively. The de-
scriptive statistics refer to the monthly variables (so they have to be interpreted as
“per month”).
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(a) Temp (unit of measure: ◦C)

(b) Sun (unit of measure: hours)

(c) Rain (unit of measure: mm)

Figure 5.B.2: The meteorological variable Temp has been observed by 32 measure-
ment stations, whereas Sun and Rain by 30 measurement stations. The left panels
show the interpolated values of the variables, averaged over the months, together with
the location of the measurement stations (black triangles). The right panels display
the transformed variables into COROP regional data, averaged over the months.
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(a) WindSpd (unit of measure: m/s)

(b) WindDir (unit of measure: degrees)

Figure 5.B.3:WindSpd andWindDir have both been observed by 44 measurement
stations. The left panels show the interpolated values of the variables, averaged over
the months, and the location of the measurement stations (black triangles). The right
panels display the transformed variables into COROP regional data, averaged over
the months.
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Figure 5.B.4: Spatial visualisation of traffic intensity (Traffic), averaged over the
months, for the COROP regions. Unit of measure: number of vehicles/hectare.

Figure 5.B.5: Location of road sensors on the Dutch highways. Source: Statistics
Netherlands.
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(a) β̂Traffic,t

(b) α̂Sea,t

(c) α̂Border,t

Figure 5.B.6: Kalman filter (solid lines) estimates (until 2016) and forecasts (in 2017)
of βTraffic,t, αSea,t and αBorder,t. The dashed lines are the 95% confidence inter-
vals of the Kalman filter estimates and forecasts.
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(a) H(27) (b) H(41)

(c) LB(4) (d) LB(12)

Figure 5.B.7: P-values of the diagnostic tests applied to the standardized forecast
errors. H(h) is the test for homoskedasticity, with h equal to 27 and 41. LB(q) is the
Ljung-Box test for no serial correlation with q equal to 4 and 16 lags. The horizontal
line represents the 0.05 significance level.

The shape files for Europe, the Dutch provinces and the Dutch COROP
regions have been downloaded, respectively, from https://tapiquen-
sig.jimdo.com, https://gadm.org and https://www.imergis.nl.
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6
Summary and general discussion

This thesis explores how state space models, which are a type of econometric
models designed to analyse time series data, can be employed to achieve more
accurate and realistic estimates of official statistics, and to model and forecast
regional concentrations of air pollutants. Specifically, a novel approach is pre-
sented, which incorporates survey-based, claimant counts and Google Trends
data in order to provide more timely and accurate estimates of Dutch unem-
ployment, over only employing survey-based data. A new method is proposed
to model the relationship between the latter and claimant counts data as time-
varying, which allows us to promptly tackle changes in such relationship and
therefore achieve more realistic real-time estimates of Dutch unemployment.
Time-varying relationships can potentially be modelled with other, already
existing, econometric techniques, than the one proposed in this thesis, and the
reasons why they have not been considered further are here documented. Fi-
nally, a novel spatial type of state space model is employed in order to model
regional concentrations of nitrogen dioxide (NO2) in the Netherlands. The
(time-varying) effects on this air pollutant of meteorological conditions, traf-
fic intensity and geographical location of the Dutch regions, are accounted for
in the model. The latter is further used to forecast regional NO2 concentra-
tions for different scenarios of traffic intensity, and can therefore be potentially
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employed for evaluation of pollution-reduction policies. This chapter is con-
tinued by outlining the main conclusions of the thesis in more detail.

In Chapter 2 we propose a new methodological approach to include a high-
dimensional, and available in real time, auxiliary series in state space models.
A Monte Carlo simulation study shows that the nowcast accuracy of state
variables of interest (obtained with the Kalman filter) can so be improved.
Empirically the high-dimensional auxiliary series is represented by Google
Trends of search terms related to economic uncertainty and job-search activ-
ity. We find that the series do improve the estimation and nowcast accuracy
of Dutch unemployment, over only using survey-based data. Moreover, if we
also include claimant count data, such improvement can be further boosted.
The magnitude of these gains is however sensitive to several aspects: it de-
pends on whether we employ monthly or weekly Google Trends, and whether
and how the high-dimensional econometric techniques (penalised regressions
and factor models) are implemented in order to filter out the noise of Google
Trends. Nevertheless, an important finding is that in the worse case scenario,
that is when Google Trends do not show any predictive power in estimat-
ing/nowacasting Dutch unemployment, our method is able to ignore the in-
formation coming from these auxiliary series, thus yielding similar results as
when only survey-based data are employed.

Take-home message from Chapter 2: the more data sources are included in the
state space model, the better we can estimate and nowcast the Dutch unem-
ployment, but be careful with the way you handle the noise of Google Trends.
If the latter series turn out to not be related to the unemployment, do not worry
because the model will automatically ignore them.

Chapter 3 focuses on modelling the relationship between survey-based data
and claimant counts data as time-varying, in the state space model mentioned
above. We do so with two methods: cubic splines, and a new approach
based on indirect inference and particle filtering, which still makes use of
cubic splines. According to a Monte Carlo simulation study, both methods
are able to properly estimate the time-varying relationship (represented by a
time-varying state correlation), as well as the remaining parameters and state
variables of the model. The newly proposed methodology is affected by a
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strong volatility in estimating the time-varying correlation, contrary to the
cubic splines and a time-constant estimation of the correlation, but it out-
performs the latter in real-time estimation of the time-varying relationship
and state variables of interest. This implies that the approach based on indi-
rect inference and particle filtering is able to promptly tackle changes in the
time-varying relationship, which in turn yields realistic real-time estimates of
Dutch unemployment. We find that the magnitude of the relationship between
survey-based and claimant count data, otherwise very strong, weakened after
the financial crisis of 2008 and, to a lesser extent, due to a legislative change
in claimant count data collection in 2015. Our method could potentially be
extended to modelling a time-varying relationship with Google Trends data as
well, but its computationally intensive feature makes it unsuited to deal with
high-dimensional models.

Take-home message from Chapter 3: if you are interested in realistic real-time
estimates of Dutch unemployment, while using survey-based and claimant
count data, then model the relationship between these data sources as time-
varying with our proposed method. Be aware that events like economic crises
and legislative changes in data collection can likely vary such relationship
over time. Also, make sure to bring a book to read while you wait for the
results!

In Chapter 4 we tried to use other, already existing, methodologies in order to
model the time-varying relationship discussed above: a score driven approach,
the Extended Kalman filter and the importance sampling method. However,
the former approach did not yield a satisfactory performance in estimating the
time-varying relationship, based on a Monte Carlo simulation study. More-
over, we did not find a way to feasibly implement the latter two methods,
which are challenged by our specific type of nonlinear state space model. We
anyway opted for documenting our attempts in this thesis.

Take-home message from Chapter 4: if you are struggling to solve a research
puzzle, I feel for you.

Chapter 5 evolves around the development of a state space model suited for
analysing and forecasting regional concentrations of nitrogen dioxide (NO2)
in the Netherlands. Our proposed state space model has the novel feature
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of incorporating a spatial structure that is often crucial to study environmental
variables, such as our air pollutant of interest. A Monte Carlo simulation study
illustrates that this spatial state space model is accurately estimated by Kalman
filtering and maximum likelihood. In our empirical study we find NO2 to
be significantly affected by meteorological conditions and to be subject to a
strong spatial dependence, explained by the role of the wind in spatially trans-
porting air pollution. According to our results, the effect of traffic intensity
on NO2 concentrations is positive but not changing over time, which sug-
gests that the adoption of environmentally sustainable vehicles has not been
strong enough to have a pollution-reduction effect. However, differences be-
tween peripheral and inland regions are found to be time-varying, likely due to
changes in meteorological factors and in economic activities abroad. In gen-
eral, maritime regions tend to have less pollution than inland regions, because
they can export NO2 to the sea and hardly import it from abroad. The oppo-
site holds for regions located at land borders as they import pollution from the
neighbouring countries of Belgium and Germany. We finally employ our state
space model to forecast regional NO2 concentrations following an hypothet-
ical 100% reduction in traffic intensity. We find an overall realistic reduction
of 35% in NO2 concentrations, with respect to their observed values, and that
it takes around eight months in order for NO2 concentrations to achieve their
new steady level.

Take-home message from Chapter 5: A spatial approach is often needed for
modelling environmental variables, such asNO2 concentrations. Moreover, a
state space model allows us to discover time-varying features of these concen-
trations, such as time-changing border effects. The adoption of environmen-
tally sustainable vehicles has not been strong enough in order to significantly
reduce NO2 concentrations, but the latter can be definitely, and relatively
quickly, cut down by decreasing the number of polluting vehicles.
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Li, T., M. Bolić, and P. M. Djurć (2015). “Resampling Methods for Particle
Filtering: Classification, Implementation, and Strategies”. In: IEEE Sig-
nal Processing Magazine 32.3, pp. 70–86.

Lin, Y. and H. Reuvers (2020a). “Cointegrating Polynomial Regressions with
Power Law Trends: A New Angle on the Environmental Kuznets Curve”.
Working paper, https://arxiv.org/abs/2009.02262.

— (2020b). “Efficient Estimation by Fully Modified GLS with an
Application to the Environmental Kuznets Curve.” Working paper,
https://arxiv.org/abs/1908.02552.

Liu, J. S. and R. Chen (1998). “Sequential Monte Carlo Methods for Dynamic
Systems”. In: Journal of the American Statistical Association 93.443,
pp. 1032–1044.

Ljung, G. M. and G. E. P. Box (1978). “On a Measure of Lack of Fit in Time
Series Models”. In: Biometrika 65.2, pp. 297–303.

Lopez-Aparicio, S., H. Grythe, R. J. Thorne, and M. Vogt (2020). “Costs
and Benefits of Implementing an Environmental Speed Limit in a Nordic
City”. In: Science of the Total Environment 720, p. 137577.

263



Bibliography

Maas, B. (2019). Short-term Forecasting of the US Unemployment Rate.
MPRA Paper 94066. University Library of Munich, Germany.

Maddison, D. (2006). “Environmental Kuznets Curves: A Spatial Economet-
ric Approach”. In: Journal of Environmental Economics and Manage-
ment 51.2, pp. 218–230.

Merk, M. S. and P. Otto (2020). “Estimation of Anisotropic, Time-Varying
Spatial Spillovers of Fine Particulate Matter Due to Wind Direction”. In:
Geographical Analysis 52.2, pp. 254–277.

Monfardini, C. (1998). “Estimating Stochastic Volatility Models through In-
direct Inference”. In: The Econometrics Journal 1.1, pp. C113–C128.

Montamat, G. and J. H. Stock (2020). “Quasi-experimental Estimates of the
Transient Climate Response Using Observational Data”. In: Climatic
Change 160, pp. 361–371.

Moon, H. R. and B. Perron (2012). “Beyond Panel Unit Root Tests: Using
Multiple Testing to Determine the Nonstationarity Properties of Individ-
ual Series in a Panel”. In: Journal of Econometrics 169.1, pp. 29–33.

Naccarato, A., S. Falorosi, S. Loriga, and A. Pierini (2018). “Combining Offi-
cial and Google Trends Data to Forecast the Italian Youth Unemployment
Rate”. In: Technological Forecasting and Social Change 130, pp. 114–
122.

Nordhaus, W. (2013). The Climate Casino: Risk, Uncertainty, and Economics
for a Warming World. Yale University Press, p. 392.

Ogen, Y. (2020). “Assessing Nitrogen Dioxide (NO2) Levels as a Contribut-
ing Factor to Coronavirus (COVID-19) Fatality”. In: Science of the Total
Environment 726, pp. 1–5.

Ozturk, I. (2015). “Measuring the Impact of Energy Consumption and Air
Quality Indicators on Climate Change: Evidence from the Panel of UN-
FCC Classified Countries”. In: Environmental Science and Pollution Re-
search 22, pp. 15459–15468.

Pfeffermann, D. (1991). “Estimation and Seasonal Adjustment of Population
Means Using Data from Repeated Surveys”. In: Journal of Business and
Economic Statistics 9.2, pp. 163–175.

Pfeffermann, D., M. Feder, and D. Signorelli (1998). “Estimation of Autocor-
relations of Survey Errors with Application to Trend Estimation in Small
Areas”. In: Journal of Business & Economic Statistics 16.3, pp. 339–348.

264



Poirier, D. J. (1973). “Piecewise Regression Using Cubic Splines”. In: Journal
of the American Statistical Association 68.343, pp. 515–524.

Proietti, T. and E. Hillebrand (2017). “Seasonal Changes in Central Eng-
land Temperatures”. In: Journal of the Royal Statistical Society: Series
A (Statistics in Society) 180.3, pp. 769–791.

Rao, J. N. K. and I. Molina (2015). Small Area Estimation. 2nd ed. Wiley
Series in Survey Methodology. John Wiley & Sons, Inc., p. 480.

Russell, A. R., L. C. Valin, and R. C. Cohen (2012). “Trends in OMI NO2
Observations over the United States: Effects of Emission Control Tech-
nology and the Economic Recession”. In: Atmospheric Chemistry and
Physics 12, pp. 12197–12209.

Särndal, C.-E., B. Swensson, and J. Wretman (1992). Model Assisted Survey
Sampling. New York, NY, US: Springer-Verlag Publishing.

Schiavoni, C., S. J. Koopman, F. Palm, S. Smeekes, and J. van den Brakel
(2021a). “Time-varying State Correlations in State Space Models and
Their Estimation via Indirect Inference.” Tinbergen Institute Discussion
Paper 2021-020/III.

Schiavoni, C., F. Palm, S. Smeekes, and J. van den Brakel (2021b). “A Dy-
namic Factor Model Approach to Incorporate Big Data in State Space
Models for Official Statistics”. In: Journal of the Royal Statistical Soci-
ety: Series A (Statistics in Society) 184.1, pp. 324–353.

Schwarz, G. (1978). “Estimating the Dimension of a Model”. In: Annals of
Statistics 6.2, pp. 461–464.

Shapiro, S. S. and M. B. Wilk (1965). “An Analysis of Variance Test for Nor-
mality (Complete Samples)”. In: Biometrika 52.3-4, pp. 591–611.

Shephard, N. and M. Pitt (1997). “Likelihood Analysis of Non-Gaussian Mea-
surement Time Series”. In: Biometrika 84.3, pp. 653–667.

Shephard, N. G. and A. C. Harvey (1990). “On the Probability of Estimating a
Deterministic Component in the Local Level Model”. In: Journal of Time
Series Analysis 11.4, pp. 339–347.

Smith, P. L. (2008). “Splines As a Useful and Convenient Statistical Tool”. In:
The American Statistician 33.2, pp. 57–62.

Stephens-Davidowitz, S. and H. Varian (2015). “A
Hands-on Guide to Google Data”. Working Paper,
https://people.ischool.berkeley.edu/ hal/Papers/2015/primer.pdf.

265



Bibliography

Stock, J. H. and M. W. Watson (2007). “Why Has U.S. Inflation Become
Harder to Forecast?” In: Journal of Money, Credit and Banking 39.1,
pp. 3–33.

— (1998). “Median Unbiased Estimation of Coefficient Variance in a Time-
varying Parameter Model”. In: Journal of the American Statistical Asso-
ciation 93.441, pp. 349–358.

Suhoy, T. (2009). Query Indices and a 2008 Downturn: Israeli Data. Discus-
sion Paper Series No. 2009.06. Bank of Israel, pp. 1–33.

TNO (2019). Emissies en Depositie van Stikstof in Nenderland. Factsheet. The
Netherlands Organisation for applied scientific research.

Van den Brakel, J. and S. Krieg (2009). “Estimation of the Monthly Unem-
ployment Rate Through Structural Time Series Modelling in a Rotating
Panel Design”. In: Survey Methodology 35.2, pp. 177–190.

Van den Brakel, J. A. and S. Krieg (2016). “Small Area Estimation with State
Space Common Factor Models for Rotating Panels”. In: Journal of the
Royal Statistical Society: Series A (Statistics in Society) 179.3, pp. 763–
791.

— (2015). “Dealing with Small Sample Sizes, Rotation Group Bias and Dis-
continuities in a Rotating Panel Design”. In: Survey Methodology 41.2,
pp. 267–296.

Van der A, R. J., D. H. Peters, H. Eskes, K. F. Boersma, M. van Roozen-
dael, I. De Smedt, and H. M. Kelder (2006). “Detection of the Trend
and Seasonal Variation in Tropospheric NO2 over China”. In: Journal of
Geophysical Research Atmospheres 111.12, pp. 1–10.

Wagner, M. (2015). “The Environmental Kuznets Curve, Cointegration and
Nonlinearity”. In: Journal of Applied Econometrics 967, pp. 948–967.

Wilks, S. S. (1938). “The Large-Sample Distribution of the Likelihood Ra-
tio for Testing Composite Hypotheses”. In: The Annals of Mathematical
Statistics 9.1, pp. 60–62.

Yamartino, R. J. (1984). “A Comparison of Several “Single-Pass” Estimators
of the Standard Deviation of Wind Direction”. In: Journal of Climate and
Applied Meteorology 23.9, pp. 1362–1366.

Yu, J., R. de Jong, and L.-f. Lee (2008). “Quasi-maximum Likelihood Esti-
mators for Spatial Dynamic Panel Data with Fixed Effects when both n
and T are Large”. In: Journal of Econometrics 146.1, pp. 118–134.

266



Impact paragraph

Chapters 2 and 3, and to a lesser extent Chapter 4, focus on the use of state
space models to provide more timely, accurate and realistic estimates of Dutch
unemployment. This is done by either using Big Data (Google Trends) and/or
registry-based data (claimant counts), on top of survey-based data, or by em-
ploying the latter two types of data while accounting for their time-varying
relationship. Clearly this research work can be beneficial for national statis-
tical offices, who are in charge of publishing this kind of official statistics,
and therefore interested in doing so in a precise and timely manner. Addition-
ally, not all countries have data about claimant counts, whereas Google Trends
are freely available virtually all over the world and therefore represent a very
accessible source of information.

The methods employed in the above-mentioned chapters can also be used
to estimate other macroeconomic variables, than unemployment, such as the
gross domestic product of a country. Achieving accurate and timely estimates
of these variables is important in order to have a better understanding of the
current state of the economy, especially in times of economic distress. More-
over, modelling parameters as time-varying, which is relatively easily done
with state space models, allows us to discover how the same variables can be
affected by important events, such as the burst of a pandemic or economic
and financial crises. All this knowledge can be used for policy making by, for
instance, central banks.

The econometric methods discussed in Chapter 4 can, potentially, be used to
model the same time-changing relationship discussed above, but the chapter
itself is purely methodological. As already mentioned several times through-
out the thesis, the main purpose of Chapter 4 is to illustrate the research pro-
cess of trying several, unsuccessful, approaches to answer a research question,
before finding the right one. Generally research papers only report the perfor-
mance of the successful methods and therefore tend to hide all the work that
has been done behind them. Sharing it can instead be helpful to provide a
more realistic picture of what research entails and hopefully be relieving for
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researchers undergoing the same type of struggles. Moreover, it can prevent
econometricians from taking the same wrong paths, or allow them to start
from where we stopped in case they find a solution to our issues.

Chapter 5 illustrates how to use state space methods for modelling climate
variables, specifically air pollutants. Climate change is obviously one of the
biggest problems and challenges of our times and it is (fortunately) increas-
ingly catching the attention of scientists from all kind of fields, including
econometrics. Climate econometric models are thus becoming a comple-
ment to the widely used integrated assessment models in economics, which
aim at understanding the relationship between economic and environmental
variables. They allow to predict how future climate scenarios can affect the
economy, or how future economic scenarios can affect the climate. Chapter 5
therefore brings a small contribution to this field by building an econometric
model that can be used to evaluate the effect that hypothetical reductions in
traffic intensity (and therefore a type of economic activity) have on pollution.
This analysis can be relevant for makers of pollution-reduction policies.
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