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� Random forest proximities of various
data platforms can be fused via a
weighted sum to increase prediction
accuracy in complex biological data.

� The problem of variable interpreta-
tion and examination when working
with proximities or kernels is tackled
by implementing the pseudo-sample
principle.

� Random forest proximities fusion can
outperform the traditional ways of
fusion as well as demonstrate the
contribution of every platform in the
outcome.

� The pseudo-sample principle allows
for identification of relations among
variables from different data
platforms.
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Data fusion has gained much attention in the field of life sciences, and this is because analysis of bio-
logical samples may require the use of data coming from multiple complementary sources to express the
samples fully. Data fusion lies in the idea that different data platforms detect different biological entities.
Therefore, if these different biological compounds are then combined, they can provide comprehensive
profiling and understanding of the research question in hand. Data fusion can be performed in three
different traditional ways: low-level, mid-level, and high-level data fusion. However, the increasing
complexity and amount of generated data require the development of more sophisticated fusion ap-
proaches. In that regard, the current study presents an advanced data fusion approach (i.e. proximities
stacking) based on random forest proximities coupled with the pseudo-sample principle. Four different
data platforms of 130 samples each (faecal microbiome, blood, blood headspace, and exhaled breath
sease: OTUs, operation taxo-
, principal component anal-
teristic.
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Variable behaviour
Crohn's disease
Classification
samples of patients who have Crohn's disease) were used to demonstrate the classification performance
of this new approach. More specifically, 104 samples were used to train and validate the models, whereas
the remaining 26 samples were used to validate the models externally. Mid-level, high-level, as well as
individual platform classification predictions, were made and compared against the proximities stacking
approach. The performance of each approach was assessed by calculating the sensitivity and specificity of
each model for the external test set, and visualized by performing principal component analysis on the
proximity matrices of the training samples to then, subsequently, project the test samples onto that
space. The implementation of pseudo-samples allowed for the identification of the most important
variables per platform, finding relations among variables of the different data platforms, and the ex-
amination of how variables behave in the samples. The proximities stacking approach outperforms both
mid-level and high-level fusion approaches, as well as all individual platform predictions. Concurrently,
it tackles significant bottlenecks of the traditional ways of fusion and of another advanced fusion way
discussed in the paper, and finally, it contradicts the general belief that the more data, the merrier the
result, and therefore, considerations have to be taken into account before any data fusion analysis is
conducted.

© 2021 Published by Elsevier B.V.
1. Introduction

Data fusion has gained much attention in the field of, among
others, life sciences [1e10], and this is because analysis of biological
samples may require the use of data coming from multiple com-
plementary sources to express the samples fully. The principle
behind data fusion lies in the idea that different data platforms,
such as gas chromatography-mass spectrometry (GC-MS) and nu-
clear magnetic resonance (NMR) detect different biological entities.
Therefore, if these different biological compounds are then com-
bined, they can provide comprehensive profiling and understand-
ing of the research question in hand [2]. Theoretically, one would
imagine that the more data generated per biological sample, the
merrier since different data platforms demonstrate different
strengths. Practically, this is not always the case; considerations
have to be made regarding the research question, and the nature of
the samples before any data fusion analysis is conducted. Data
fusion can be performed in three different ways: low-level, mid-
level, and high-level data fusion [5]. At the low-level, the various
data platforms are fused at a data level, whereas in the mid-level,
the platforms are fused at a data level of selected variables or fea-
tures of the original data. At the high-level, the platforms are fused
at a prediction level, meaning that each platform gives predictions
individually and then, these individual predictions are combined to
get the final prediction.

Recently, a more sophisticated way of data fusion was intro-
duced that can also be seen as a modified version of mid-level
fusion [1]. Smolinska et al. introduced the fusion of kernels of the
individual platforms rather than the important variables, features
or latent variables of the platforms. More specifically, they mapped
each platform to a higher-dimensional feature spacewith the use of
a kernel function, and they then fused all the individual kernels by
using aweighted sum. Kernel functions transform the data in such a
way that they result in non-negative square matrices, and these
matrices can be seen as measures of similarity/dissimilarity of
samples; therefore, when one works with kernels, they work with
samples rather than variables. This approach holds great potential
when it comes to unravelling trends in data or getting predictions
of data since it considers both linear and nonlinear relations
amongst data, and most of the biological systems reveal nonlinear
characteristics [1]. Another advantage of working with kernels, and
therefore samples, rather than variables/features is that scaling
issues are overcome. For example, in a mid-level fusion approach,
scaling of the original variables is required before any data from
different sources are concatenated since the magnitude of the data
2

coming from different sources is most likely different. To find the
optimal scaling parameter that would suit all the data might be not
an easy task to perform, and on top of that, if the data being
concatenated are of different type (i.e. quantitative or discrete),
then this issue gets even more challenging. The major disadvantage
of working with kernels is that information about the importance/
contribution of variables of the dataset in the model performance is
lost due to the transformation of variables to distance or similarity
measures among samples, and it can be challenging to trace back
these variables. Nonlinear bi-plots introduced by Gower at al. have
been further modified and developed the idea of pseudo-samples
by Krooshof et al. [11,12] and Smolinska et al. [13], to overcome
this bottleneck. The pseudo-sample principle uses the transformed
data (i.e. the square matrices) to illustrate not only the importance
of the original variables but also the original variable trajectory (i.e.
how the variables behave amount-wise) in the samples of interest,
which are both essential assets when it comes to drawing safe
conclusions on the study results.

Proximity matrices are actual measures of similarity/dissimi-
larity of samples, and they are non-negative square matrices [14].
Originally, the term proximity means “closeness” or “nearness”
between pairs, and it is calculated by using traditional distance
measures such as Euclidean distance or Gaussian distance. The
closer to zero the proximity of two samples is, the more similar
these two samples are; this is why the diagonal of a proximity
matrix always consists of zeros. The square matrix has a size of n�
n (where n is the number of samples in the original dataset) since
proximities imply similarities amongst samples. Moreover, prox-
imities do not consist of transformed data, which is the case with
kernels (e.g. the original dataset is transformed using the radial
basis function), but instead of newly generated data (i.e. distances
in space among samples). Random forest (RF) also returns a prox-
imity matrix of the data that it is run on; although, the proximity
matrix here is calculated differently [15]. The RF proximity matrix is
indicative of the number of times that samples ended up in the
same terminal node rather than a demonstration of the actual
distance in the space of samples. More details on how the proximity
via RF is calculated are shown in thematerials andmethods section.
Recently, Blanchet et al. [16] published a tutorial where they
illustrate the successful implementation of the RF proximities along
with the pseudo-sample principle to visualize variable importance.
However, to the best of the authors’ knowledge, proximity
matrices, and mainly RF proximity matrices, have not been exam-
ined before in terms of data fusion to check their performance on
predicting and investigating complex biological samples.
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In this research, Crohn's disease (CD) serves as a case study to
demonstrate the utility of data fusion using proximities. CD is a
complex biological metabolic disorder. CD is a chronic inflamma-
tory process with no known cause (idiopathic) that can affect any
part of the gastrointestinal tract, from the mouth to the anus [17].
More specifically, CD causes muscle hypertrophy, it changes the
colon to a cobblestone appearance, it creates fissures in the colon,
and it also covers the colonwith fat. Colonoscopy has been the gold
standard to diagnose and monitor the disease activity; therefore,
alternative ways (e.g. biological biomarkers) to diagnose and
monitor the disease activity are needed since colonoscopy is a
considerably invasive and costly technique. Previous research
focused on identifying CD biomarkers in either human blood (i.e.
metabolites) or faeces (i.e. bacterial species) [18e21] to diagnose
and monitor the disease activity. All studies demonstrated prom-
ising results as far as prediction accuracy is concerned; although,
each of these studies examined one data platform only to draw
their conclusions. Consequently, the aim of the present study is to
propose a new, advanced fusion approach based on RF proximities,
as well as to see whether prediction accuracy of CD can be
increased if more data are concatenated along with potential
biomarker behaviour examination using pseudo-sample principle.
To illustrate that this new fusion approach performs well, it is ad-
vantageous over the currently existing fusion approaches, and that
it can be implemented in biomedical data, it is compared against
the current ways of data fusion and the individual platforms used in
the present study.

2. Materials and methods

2.1. Data used and data preprocessing

Four different data platforms were used: faecal microbiome,
blood, blood headspace, and exhaled breath samples from patients
suffering from CD. The CD patients were categorized into two
classes based on the disease activity: remission and active cases of
CD. The criteria used to classify the patients as being in either
remission or active stage can be found elsewhere [19]. In the pre-
sent study, 130 CD patients were sampled, of which 66 were pa-
tients in the remission stage of the disease, and the remaining 64
were patients in the active stage of the disease. Initially, all the raw
data were preprocessed before the actual analysis took place. Data
preprocessing diminishes the effect of possible instrumental arte-
facts that can occur during the analysis. Each data platform fol-
lowed a different preprocessing strategy.

The faecal microbiome samples were treated and sampled as
described elsewhere [18], and they were analysed by employing
16S ribosomal RNA pyrosequencing. The faecal microbiome was
analysed in terms of operational taxonomic units (OTUs). The raw
microbiome pyrosequencing reads were, first, preprocessed by
means of quality filters to reduce the error rate, and de-multiplexed
and clustered into OTUs based on a 97% similaritydthe entire
prepossessing procedure that was followed is described elsewhere
[18].Then, they were transformed into continuous data. This is
because preprocessing of the pyrosequencing reads results in data
counts (i.e. OTUs per sample) which cannot be used for multivariate
analysis purposes; the transformation was done by employing the
inverse hyperbolic sine [22]. Next, the exclusion of zeros followed.
The majority of bacterial species (OTUs) is not present in all the
samples; consequently, only those that are present in a specified
per cent of the samples are kept. Here, species that were found in at
least 35% [18] of the samples were retained. As a final preprocessing
step, microbiome data were logarithmically transformed since the
log transformation accounts for high skewness in the data.

The blood was treated and sampled as described elsewhere [23],
3

and the blood sample metabolites were analysed by using NMR
Bruker 600 MHz with a cryoprobe. In the blood NMR data, first, the
water peak was removed, and then, baseline correction via P-
splines [24], misalignment correction via correlation optimized
warping [25], and peak picking in the form of binning via adaptive
intelligent binning [26] were performed. Moreover, normalization
via a reference peak (i.e. trimethylsilyl-propanoic acideTSP) as well
as via probabilistic quotient normalization [27] followed. Normal-
ization via the TSP peak is done to enhance the signal comparison
among the samples, whereas probabilistic quotient normalization
accounts for dilution effects, effect size, among the samples. Finally,
the blood data were logarithmically transformed.

The blood headspace was treated and sampled as described
elsewhere [28]; in short, the blood headspace samples were
measured by utilizing gas chromatography/gas chromatography-
time-of-flight-mass spectrometry (GC � GC-tof-MS; Pegasus 4D,
LECO Corporation, St Joseph, MI, USA). Blood headspace was ana-
lysed in terms of volatile organic compounds (VOCs). The blood
headspace data were initially preprocessed as discussed elsewhere
[28], and in the end, the exclusion of zeros followed. As with the
microbiome data, the majority of VOCs does not occur in all the
samples; therefore, only those found present in at least 20% [29] of
the samples coming from the same class were kept for further
analysis. In the end, a logarithmic transformation was performed.

Finally, the exhaled breath was captured as described elsewhere
[19], and the exhaled breath samples were analysed by using GC-
tof-MS. Breath was analysed in terms of VOCs as well. The exhaled
breath data were preprocessed as described elsewhere [19], and as
an extra preprocessing step, these data underwent exclusion of
zeros (compounds found in at least 20% of each class [29] of the
samples were retained) and logarithmic transformation.

2.2. Data fusion approaches

Data platforms can traditionally be fused at three different
levels: low-level, mid-level, and high-level data fusion [5]. Low-
level data fusion refers to concatenation of the whole data plat-
forms, sample-wise, into a single matrix that consists of as many
rows as the number of samples, and as many columns as the total
number of variables from all different data platforms. Low-level
fusion attempts were not tried here because this would affect the
degrees of freedom of the data, and thus, making the concatenated
matrix challenging to deal with and the analysis results untrust-
worthy; readers interested in low-level fusion applications are
referred to Ref. [5].

2.2.1. Mid-level fusion
Mid-level data fusion can be divided into two categories: the

concatenation of either important/significant variables or features
of the different platforms. A variety of ways exists to find important
variables or features. For example, variables can be found by using,
among others, RF [15], partial least squares based variable selection
[30], or even significance multivariate correlation [31], whereas
features (or latent variable space) can be found by implementing
principal component analysis (PCA) (and use the principal com-
ponents) [32], recursive feature elimination [33], or partial least
squares analysis (and use the latent variables) [34,35]. Then, all
these variables or features are concatenated, sample-wise, to create
the single fused matrix to be used for further analysis. In the pre-
sent study, RF was used to find the most important variables per
platform. A schematic representation of the mid-level fusion
approach is given in Fig. 1.

2.2.2. High-level fusion
High-level data fusion refers to a combination of the outcome of



Fig. 1. Schematic representation of the mid-level fusion approach of three datasets. RF is run on each of the datasets to get their most important variables. Then, all the important
variables of all three datasets are fused sample-wise to get the final fused matrix.
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the individual platforms; this is why it is also called as decision-
level fusion. Specifically, a classification or regression model is
built for each one of the available data platforms, and the results
from eachmodel are combined to obtain the final decision for every
sample of interest. The outcome of each model is given as either a
class label or a set of probabilities; therefore, one can choose to
either use majority voting [36] or adjusted probabilities to get the
final decision for the samples of interest. In the current study,
adjusted probabilities via the Bayes' theorem [37] were used to get
the final decisions, and the optimal decision threshold was found
from a loop of 100 cross-validation iterations; in every iteration, the
data were randomly split into training and validation sets, and
therefore, each iteration used different training and validation
samples. Bayes' theorem is also called Bayesian integration because
it provides the ability to define probability models for disparate or
independent types of data. More specifically, RF was used on every
single platform to get the sets of initial likelihood probabilities (i.e.
prior probabilities) for every sample of interest, and then, these
probabilities were transformed into posterior probabilities. A
detailed description of the implementation of the Bayes’ theorem in
biological data can be found elsewhere [38]. A schematic repre-
sentation of the high-level fusion approach is shown in Fig. 2.
2.2.3. Proximities stacking
The current study implemented a modified version of mid-level

fusion. This approach makes use of proximity matrices (Pi) of the
original platforms, which are then arranged one on top of each
other; consequently, this approach was called as proximities
stacking. The proposed approach consists of two steps: the creation
of the (Pi) matrices of each used data platforms, and the discovery
of an optimal set of weights w with which the platforms are
combined in a weighted linear parameterized way to create a new
single proximity matrix K that is used for further analysis.

Pi matrices are square distance matrices that show how similar
or dissimilar the data are. RF returns Pi matrices of the data that the
algorithm was run on, and these proximities were used here;
however, these Pi matrices are not calculated by using a distance
measure [15]. More specifically, for every pair of samples, the
4

proximity indicates the percentage of the times these two samples
ended up in the same terminal node. For instance, if the RF consists
of 1000 trees and the pair of samples ended up in the same terminal
node in 100 of the 1000 trees, then the proximity for this pair of
samples is 100/1000¼ 0.1. As a result, the higher the proximity, the
more similar the objects are. This means that the diagonal of the RF
Pi matrix is filled with ones rather than zeros (as an actual prox-
imity matrix); therefore, the RF Pi matrix is subtracted from one to,
ultimately, transform it to an actual distance/proximity matrix
(Ptrans;i). Equation ð1Þ depicts a toy example of such transformation.

Ptrans;i ¼1� Pi ¼ 1�
0
@

1 x1;2 x1;3
x2;1 1 x2;3
x3;1 x3;2 1

1
A

¼
0
@

0 1� x1;2 1� x1;3
1� x2;1 0 1� x2;3
1� x3;1 1� x3;2 0

1
A (1)

Subsequently, the Ptrans;i matrices of the present study were
combined in a weighted linear parameterized combination to
create the new single proximity matrix K that was used for further
analysis. This linear combination can be expressed as follows:

K ¼
Xm

i¼1

wi � Ptrans;i (2)

where m is the total number of Ptrans;i matrices (here, m equals
four), andwi is the weight or importance of the Ptrans;i matrix in the
new K matrix. The set of weights w can be found by applying
regularisation methods such as L1 or L2 norm. Regularisation
methods are processes that introduce additional information to
prevent over-fitting. L2 norm is applied when the data platforms
are complementary to each other because it avoids the possibility
of shrinking the importance of any of the platforms; L2 norm [1]
was used here, and it is expressed as follows:



Fig. 2. Schematic representation of the high-level fusion approach of three datasets. RF is run on each of the datasets to get their predictions (i.e. classification probabilities here),
which are then adjusted via the Bayes' theorem to get the outcome. The Bayes' theorem formula is depicted at the bottom right corner of the figure, where P(A) and P(B) are the
probabilities of observing the events A and B respectively, P(B|A) is the probability of event B occurring given that event A is true, and P(A|B) is the probability of event A occurring
given that event B is true.
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w¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

w2
i

vuut ¼ 1 (3)

wherem is the total number of Ptrans;i matrices, andwi is theweight
of the Ptrans;i matrix.

The optimal set of weights was selected in two steps approach.
In the first step, ten sets of numbers that fulfilled the equation ð3Þ
were generated via grid search. Then, the weight values of everywi
were shuffled to create a total of 40 different possible combinations
of w since there were four data platforms available in this study.
The woptimal that maximizes classification accuracy of the model
was found from a loop of 100 cross-validation iterations. A sche-
matic representation of the proximities stacking fusion is pictured
in Fig. 3.

2.3. Pseudo-sample principle

The pseudo-sample principle was employed to explore the
behaviour and importance of the original variables (i.e. bacterial
species, metabolites, and VOCs) in the final classification model in
the proximities stacking fusion approach [11]. A pseudo-sample is a
matrix that has the values of one particular variable from an entire
dataset (e.g. A ¼ ðn � pÞ, where n is the number of samples, and p is
the number of variables) sorted out in one column, and the rest of
its columns are filled inwith zeros. For every original variable in the
A matrix, a B ¼ ðk�pÞ pseudo-sample matrix is created, where k is
the number of points that one chooses to spread the range of the
values of that particular variable on. Based on existing literature
[1,11], k usually ranges from 20 to 40, to properly represent the
range of the values of each variabledthe present study used 40
points. Then, this B matrix is predicted using RF, which results in
obtaining its corresponding pseudo-sample proximity matrix. In
the end, one gets asmany pseudo-sample proximitymatrices as the
5

total number of the original variables (i.e. p pseudo-sample prox-
imity matrices to be analysed, in total). A graphical illustration of
how a single pseudo-sample proximity matrix is created is shown
in Fig. 4. As a final step, principal coordinate analysis (PCoA) is run
on the proximity matrix of the original dataset, and subsequently,
all the pseudo-sample proximity matrices are projected onto the
PCoA space of the proximity of the original dataset since they can
be treated as any other subject/patient sample.
2.4. Conceptual flowchart and fusion approach optimization

2.4.1. Variable selection and RF model optimization
Each data platform underwent preprocessing, and then, its

samples were divided into the training and validation samples (i.e.
104 samples, of which 57 were remission and 47 were active), and
independent internal test set samples (i.e. 26 samples, of which 11
were remission and 15 were active). The division between the
training and validation, and the independent internal test samples
was achieved by employing the Duplex algorithm [39] since Duplex
algorithm aims to maintain a comparable diversity between the
sets. The URF/RFmodel parameters (i.e. number of trees, predictors,
and samples per tree terminal leaf per RF model), as well as to the
number of variables to be kept per platformwere optimized within
a 1000-iteration loopdthe number of samples per tree terminal
leaf accounts for overfitting minimization and model complexity
reduction.

For each iteration, the training and validation set samples were
randomly split (80% of the 104 samples were used as training
samples, and the remaining 20% of the 104 samples were used as
validation samples), an RF model was built, and the importance of
every variable was found. By default, a variable is considered
important if its importance value is positive; however, here, a
variable was considered as important if its importance value was
equal or higher than 30% of the amount of the highest variable



A

B

Fig. 3. Schematic representation of the proximities stacking fusion approach of three datasets. RF is run on each of the datasets to get their proximity matrix. Then, all three
proximity matrices are stacked one on top of each other, and via a weighted sum, they create the final single proximity matrix K. *The proximity/dissimilarity matrices can also be
created via unsupervised random forest, and these proximities were used in the present study. More details on the matter can be found in section 2.4.3.

Fig. 4. Graphical representation of how the pseudo-sample proximity matrix of the very first original variable is created. A) First, all the values of variable one are sorted out and
placed in column one of the pseudo-sample matrix, whereas the remaining of the columns are filled in with zeros. B) Then, RF is run on the pseudo-sample matrix to obtain the
pseudo-sample proximity matrix, which ultimately holds information of the very first variable only. n is the number of samples, p is the number of the original variables, and k is the
number of points that the user chooses to spread the range of the values of variable one on.
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importance value found in the RF model. Next, the number of times
that every single variable had been found as important in all the
1000 RFmodels was calculated (i.e. counts per variables), and in the
end, the variables that had the most counts were kept. The
thresholdwhich determined the optimal number of variable counts
to be kept for further analysis differed per platform since the data
platforms contained different types of data. For each of the 1000
iterations, a one-by-one backwards variable elimination procedure
was performed, and every time a variable was eliminated, the root-
mean-square-error-prediction (RMSEP) value was calculated. The
number of variables that gave the lowest RMSEP value was
considered as optimal. Each of the 1000 iterations gave its own
optimal number of variables, and by averaging them out, the
optimal number of variables per platform (i.e. counts per variable)
was found. The RFmodel parameters were optimized with a similar
way too. The RF model optimization, i.e. number of trees and the
number of samples to be kept per tree terminal leaf, was done using
the out-of-bag error of the model. As far as the number of pre-
dictors to be used in the bootstrapping procedure goes, the square
root of the total number of predictors present in the data was used.
Finally, a 1000-iteration permutation test was run to confirm that
the selection of the RF parameters was indeed optimized. In the
present study, 4000 trees per model were used, and at the same
time, the minimum number of samples per tree leaf for every tree
in each model was set to eight. Ultimately, a new optimized RF
model was built by using the 104 training and validation samples to
predict the independent internal test set samples. Its performance
was assessed by calculating the sensitivity and specificity for the
independent internal test set.

2.4.2. Mid-level and high-level fusion
In the mid-level fusion case (Fig. 1), the variables with the most

counts (found as described in section 2.4.1) from all the platforms
were fused, sample-wise, and then, a single optimized RF model
was built by using all the 104 samples. Its performance was
assessed by calculating the sensitivity and specificity for the inde-
pendent internal test set and visualized by subsequently perform-
ing PCA on the RF proximity matrix of the training samples, where
then the independent internal test samples were also projected.

In the high-level fusion case (Fig. 2), optimization of the clas-
sification probability threshold within a 100-iteration loop fol-
lowed the optimization of the variable selection and the RF model
parameters (section 2.4.1). For each of the 100 iterations, the 104
samples were randomly split into training and validation sets, and
individual platform predictions were made. Then, the individual
platform classification probabilities were adjusted via the Bayes’
theorem, and the receiver operating characteristic (ROC) curve was
plotted to find the classification probability threshold that maxi-
mized both sensitivity and specificity of the model. The average of
all the optimal thresholds of all the 100 models was calculated, and
this threshold was then considered optimal. In the end, all 104
samples were used once again to build the final optimized RF
model, whose performance was then assessed by predicting the
independent internal test set, in terms of sensitivity and specificity.

2.4.3. Proximities stacking fusion
As mentioned already in the data fusion approaches paragraph

(paragraph 2.2), first, ten sets of numbers that fulfilled the equation
ð3Þ were found. Then, these sets were shuffled to give 40 different
possible combinations of sets. A table with all the sets of weights w
can be found in the supplementary materials.

For each of the 100 iterations, the 104 samples were randomly
split into training and validation sets, and the proximity matrices of
these sets and for all the data platforms were obtained by unsu-
pervised random forest (URF) (i.e. four training and four validation
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proximitymatrices) [40]. URF is the unsupervised version of RF that
assumes that if there is any structure hidden in the data, it should
be possible to distinguish them from a randomly generated version
of themselves. URF was employed to get the proximity matrices
instead of RF to limit possible overfitting when a small number of
samples is used (Fig. 3). The use of RF proximities may result in
possible overfitting even though an optimization of the RF model
has been performed due to the supervised nature of RF. The sample
classes of the training data are embedded in the RF model by
definition, and when the number of samples is small, it can lead to
overfitting and to unnecessarily complex or nonflexible models.
The use of URF proximities should suffice for improving classifi-
cation accuracy; however, if the user does not achieve a fair clas-
sification accuracy by using the URF proximities, RF proximities
may also be used. In each iteration and for every set of weights (i.e.
w, found via equation ð3Þ), the training proximities were stacked as
well as the validation proximities (Fig. 3). This resulted in 40
training proximities with their corresponding validation proxim-
ities. PCA was applied to every training proximity, and its related
validation proximity was projected onto its training proximity PCA
space, and based on how well the validation samples were pro-
jected on the training sample PCA space, the best set of weights w
for this particular set of training and validation samples was found.
The number of times that every set of weights wi was found as the
optimal one out of all the 100 iterations was calculated. In brief, an
AUC was calculated for every set of weights w to find the optimal
one per iteration; the PCo1 scores of each iteration validation set
were used to calculate these AUCs. The set of weights w that gave
the highest AUC was considered as the optimal. The final classifi-
cation model was assessed by calculating the sensitivity and
specificity for the independent internal test set.

All data analyses were performed by using MatLab R2016b
versiondthe Statistics and Machine Learning Toolbox. For the RF
models, the TreeBagger function was used, whereas for the URF
models, the code was found elsewhere [40].

3. Results

The raw microbiome data consisted of 6629 variables, whereas
the raw blood data consisted of 32768 variables. The raw blood
headspace data consisted of 2549 variables, while the raw exhaled
breath data consisted of 545 variables. After data preprocessing and
data reduction steps, microbiome matrix was left with 734 vari-
ables, bloodmatrix with 423, blood headspacematrix with 531, and
exhaled breath matrix with 256. The optimal number of variables
per platform (found via the platform optimization process
described in section 2.5.1) to be used for both individual and fused
matrices predictions were 58 for the microbiome (the threshold
was 50%, meaning that the variables that found as important in
more than 50% of the total number of iterations were kept), 19 for
blood (with a threshold of 35%), 14 for blood headspace (with a
threshold of 40%), and 16 for exhaled breath (with a threshold of
40%). At the same time, all four data platforms consisted of 130
samples, of which 66 were remission cases, and the remaining 64
were active cases of the disease. Notably, 104 samples were used to
build and validate themodels, whereas the remaining 26were used
to validate the models independently.

Mid-level, high-level, proximities stacking data fusion, as well as
individual platform RF models were built, and their performance
was assessed by calculating the sensitivity and specificity for the
independent internal test set. Furthermore, for the individual
platform cases, the mid-level, and the proximities stacking fusion
cases, PCA was performed on the training sample proximity
matrices, where the independent internal test samples were pro-
jected for visualisation purposes. The mid-level case gave a



Table 1
Sensitivities and specificities of all the fusion and all the individual platform cases for
the external test set. The numbers in the parentheses show the actual number of the
correctly classified patients; the number of patients in each individual platform
differed from either other and from the number of samples present in the external
test set in the fused cases. This is because some patients provided all three samples
(i.e. faeces, blood, breath), whereas some others only provided one (meaning either
only breath, or faeces, or blood) or two samples (meaning either blood and faeces, or
faeces and breath, or breath and blood).

Sensitivity Specificity

Mid-level fusion 67% (10/15) 91% (10/11)
High-level fusion 27% (4/15) 100% (11/11)
Proximities stacking fusion 93% (14/15) 100% (11/11)
Microbiome 95% (19/20) 94% (15/16)
Blood 21% (3/14) 93% (13/14)
Blood headspace 35% (6/17) 47% (8/17)
Exhaled breath 85% (17/20) 50% (8/16)

Fig. 5. Score plot of the training (i.e. 104) and validation (i.e. 26) samples of the RF
model in the mid-level fusion case. The blue dots represent the remission training
samples, whereas the black dots represent the remission validation samples. The red
crosses represent the active training samples, while the greens crosses represent the
active validation samples. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Fig. 6. Score plot of the training (i.e. 104) and validation (i.e. 26) samples of the RF
model in the proximities stacking fusion case. The blue dots represent the remission
training samples, whereas the black dots represent the remission validation samples.
The red crosses represent the active training samples, while the greens crosses
represent the active validation samples. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. Bar plot depicting the importance of the two most important variables per
platform (in total, there were 107 fused variables). The variables 17 and 58 come from
the microbiome, the variables 59 and 72 come from blood, the variables 80 and 89
from blood headspace, and the variables 93 and 94 come from exhaled breath. The
variable indices come from the RF model, and they represent the position of each
variable in the dataset. The different colours are used for illustrative purposes only.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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sensitivity of 67% and a specificity of 91% (Table 1) and its corre-
sponding score plot can be seen in Fig. 5, while the high-level case
gave a sensitivity of 27% and a specificity of 100% (Table 1). In the
proximities stacking attempt, the optimal set of weights w was
[m1 ¼ 0:900 m2 ¼ 0:200 m3 ¼ 0:0100 m4 ¼ 0:3872], which shows
the contribution of the microbiome, blood, blood headspace, and
exhaled breath in the final RF model, respectively; the final RF
model gave a sensitivity of 93% and a specificity of 100% (Table 1).
The proximities stacking corresponding score plot is illustrated in
Fig. 6. The sensitivities and specificities of the individual platforms
are summarised in Table 1, and their corresponding score plots can
be found in the supplementary materials. The proximities stacking
approach outperformed both the mid-level and high-level fusion
approaches, as well as all the individual platform results in terms of
sensitivity and specificity except for the microbiome, which per-
formed equally well.

The results of the pseudo-sample principle applied in the
proximities stacking case are shown in Fig. 7 and Fig. 8. In partic-
ular, Fig. 7 shows the importance of the two most important vari-
ables per platform: the first two variables (i.e., variables number 17
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and 58 out of all the 107 that were fused) come from the micro-
biome, the next two variables (i.e., variables number 59 and 72)
come from blood, the following two (i.e., 80 and 89) variables come
from blood headspace, and the last two (i.e., 93 and 94) variables
come from exhaled breath. It should be mentioned here that the
variable numbers represent the position of each variable in the
original variable concatenated dataset, and that the importance of
each variable was found via the pseudo-samples projected onto the
PCoA space, and it is calculated by using the maximum absolute
value of the loadings of the original variables trajectories. Fig. 8
represents the trajectory plot of two selected variables (i.e. those
with the highest importance) per data platform. The variables are



Fig. 8. Trajectory plot of the two most important variables per platform. More spe-
cifically, variables 17 and 58 come from microbiome and in active groups, they are
present in very low relative abundances, while in remission cases, they show their
highest relative abundances. Variables 80 and 89 come from blood headspace, and
they show the same trend as the ones coming from microbiome. The same holds for
variables 93 and 94 that come from exhaled breath, whereas variables 59 and 72 that
come from blood, they are present in very low relative concentrations in remission
groups; when these groups become active, these variables show their highest relative
abundances. The different colours are used for illustrative purposes only. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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colour-coded with the same colours in both figures to provide
better illustrative comparisons. More specifically, Fig. 8 shows the
relation between the top two variables per platform and their
relative amount change in the active and remission groups. One can
see that the relative amounts of variables 59 and 72 exhibit
downregulation in the remission group in comparison to the active
group. The other way around holds for the other six variables (i.e.,
17, 58, 80, 89, 93, and 94) coming from the microbiome, blood
headspace, and exhaled breath. These particular variables are
present in very low relative abundance amounts in active cases of
the disease, but when these cases become remission, these vari-
ables show their highest relative abundance amount.
4. Discussion

The current study investigated the potential of fusing RF prox-
imities of various datasets (i.e. proximities stacking) to ultimately
increase the prediction accuracy of disease activity in CD cases, and
compared its performance against traditional ways of data fusion in
terms of sensitivity and specificity of an external test set. Proxim-
ities stacking demonstrated an excellent classification of the inde-
pendent internal test samples (Fig. 6), whereas mid-level fusion
(Fig. 5) gave a fair classification accuracy of the independent in-
ternal test samples. Proximities stacking significantly out-
performed all individual platform results as well except for the
microbiome case, which performed equally well (Table 1 and
supplementary materials). Concurrently, this study also applied the
pseudo-sample principle that helped discover and examine
possible biomarker behaviour in CD patients in the proximities
stacking fusion case (Figs. 7 and 8).

Data fusion has proved to be a valuable asset not only in com-
puter science domains but also in life science fields (e.g. metab-
olomics) too [1e10] as a result of the vast amount of data that are
generated nowadays. High-level fusion is rightfully considered as,
perhaps, the most potent traditional way of data fusion when it
comes to high prediction accuracy due to the way it is defined:
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many models are combined to get the final predictions instead of
one model. The various model outcomes can be combined by using
either class labels (i.e. majority voting [36]) or adjusted probabili-
ties. The substantial advantage of choosing adjusted probabilities
over majority voting is that one can find how sure the individual
models are about their decisions on the samples of interest.
Another advantage of high-level fusion is that if a new dataset for
the problem in hand becomes available, it can be used to improve
the versatility of the decision process too. The major disadvantage,
however, of high-level fusion is that it does not give any informa-
tion about variables/compounds that are important in classifying/
predicting samples since it only works with outcomes and not
variables. However, in the present study, the high-level fusion re-
sults (via the Bayes’ theorem) did not demonstrate the best per-
formance with a sensitivity and specificity of 27% and 100%,
respectively, which may be due to the limited number of platforms
and therefore models that were combined to get the fused
outcome. Mid-level fusion can, possibly, increase prediction accu-
racy when compared to individual platform predictions, as well as
it gives the ability to biomarker discovery since it works with either
variables or features. In life science fields, and the metabolomic
world more specifically, an at least fair prediction accuracy along
with biomarker identification are sought; this is why mid-level
fusion has become the most broadly implemented fusion
approach. Here, the mid-level fusion results (Fig. 5) were inferior to
the proximities stacking results (Fig. 6), and superior to both the
high-level fusion and the individual platform results (Figs. S1eS4)
except for the microbiome case, achieving a sensitivity and speci-
ficity of 67% and 91%, respectively. Further variable importance in
the mid-level fusion results (e.g. compound behaviour in the CD
samples) was not conducted. Low-level fusion is the least applied
approach in themetabolomic world, and as it was mentioned in the
2.3 section already, the degrees of freedom of the data play a crucial
role in this. In low-level fusion approach, the error degrees of
freedom is negative since the number of variables is almost always
a lot bigger than the number of samples; leading to challenges in
proper model optimization and development. Metabolomic data
are high-dimensionality data on their own (i.e. the number of
variables far exceeds the number of samples); therefore, fusing
already high-dimensionality data creates matrices of hundreds or
thousands of variables which are challenging to be dealt with. This
is why low-level fusion was not applied in the present study.
Furthermore, all individual platform results (Figs. S1eS4) were
inferior to the proximities stacking fusion results (Fig. 6), except for
the microbiome case and superior to the high-level fusion results.
The sensitivities and specificities of the individual platforms are
summarised in Table 1dthemicrobiomewas the only platform that
outperformed the mid-level fusion results.

The fusion of RF/URF proximities by using a weighted sum (i.e.
proximities stacking) has not been performed before to the best of
the authors’ knowledge, and the current study results showed that
they could be successfully implemented in complex biological
samples, such as CD cases. In particular, proximities stacking
demonstrated excellent performance in classifying the external CD
cases (Fig. 6). The optimal set of weights w was [m1 ¼ 0:900 m2 ¼
0:200m3 ¼ 0:0100m4 ¼ 0:3872], which shows the contribution of
every platform in the final model. On the one hand, themicrobiome
contributed the most, and then breath and blood followed. On the
other hand, blood headspace contribution was the least. The low
contribution of blood headspace contradicts the general belief that
the more data, the merrier the result, and as it has been stated
already in the introduction, considerations have to be taken before
any data fusion analysis is conducted. For example, if the aim of a
study is to explore the biology of a system, then the more data
gathered would be beneficial; however, if the aim is biomarker
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discovery, the more data gathered is not always beneficial. The
contribution of each platform provided by the set of weightswwas
to be expected given the individual platform performances. The
pseudo-sample principle results illustrated the importance of the
original variables in classifying the CD cases (Fig. 7), as well as the
original variable behaviour in the samples for two selected vari-
ables per platform (Fig. 8). Fig. 7 supports the optimal set of weights
w since one can see in the figure that the most high-importance
variables are the microbiome variables. In Fig. 8, one can see that
the blood selected variables are present in very low relative
abundances in the remission cases of CD, and they reach their
highest relative abundances in the active CD casesdthe other way
around holds for the microbiome, blood, and exhaled breath
selected variables. Most importantly, Fig. 8 helps demonstrate
changes that occur in the variable relative abundances. For
example, the breath variables (i.e. variable numbers 93 and 94)
exhibit an instant increase in their relative abundance when going
from active to remission. The same holds for the blood headspace
variables (i.e. variable numbers 80 and 89) as well; however, the
blood headspace variables exhibit a slower pace increase right
before they reach their highest relative abundances. This similar
behaviour amongst the blood headspace and exhaled breath vari-
ables indicates a connection of these four compounds coming from
different sources, and therefore, it can also help dive deeper into
the CD pathophysiology.

URF/RF proximities, in terms of fusion, would be of added value
in the field of metabolomics and data science, in general. This is
because the URF/RF proximities stacking, combined with the
pseudo-sample principle approach, has several strengths to show
over the other traditional ways of fusion. First of all, it proved that it
significantly outperforms the other traditional fusionways in terms
of sample classification, and when compared against the mid-level
fusion, it also solves the variable scaling problem since proximities
make use of samples rather than variables [5]. Moreover, when
compared against the high-level fusion, it solves the variable ex-
amination problem that occurs since high-level only uses model
outcomes rather than variables [5]. Most importantly, URF/RF
proximities stacking, via the weighted sum, also demonstrates the
contribution of every platform in the final model, something that
no other traditional fusion approach does. The proximities stacking
approach also permits the fusion of any type of data (i.e. continuous
or discrete), which has proved to be an issue when different data
sources are used for a question in hand. It should also be noted here
that the URF/RF proximities stacking approach illustrates an
essential advantage over the approach reported by Smolinska et al.
[1] as well. Smolinska et al. [1] fused kernels instead of proximities.
Their approach was successfully applied in metabolomics data,
however, finding the optimal kernel for the analysis in hand might
be a challenging task to conduct because it requires variable scaling
beforehand, and a rather extensive optimization process. In a fused
kernel approach, the user has to select and optimize the type of the
kernel and the corresponding parameters, such as the polynomial
order if the kernel used is the polynomial or the distribution width
if the kernel used is the radial basis function. Finally, it has to be
mentioned that in the proximities stacking approach, the final
fused matrix (i.e. all the individual proximities combined via the
weighted sum) can be used for visualisation purposes of the data as
well by directly applying PCA, for instance. In the present study, this
fused matrix was used for classification purposes of the indepen-
dent internal test set samples instead (Fig. 6). Linear supervised
approaches such as partial-least-squares (PLS) [35] analysis may
also be used for either classification or visualisation purposes.

The present study validated its results by using an independent
internal test set, thus strengthening its validity even more; none-
theless, the present study also demonstrates some limitations that
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have to be addressed. The current study did not perform the low-
level fusion. Although, it is considered highly unlikely that low-
level fusion would have been of any added value to the study
since the dimensionally of the data was high, and low-level fusion
cannot cope with high dimensionality data. One can also argue that
the present analysis lacks variable/compound identification since
the pseudo-sample principle permits for compound identification.
This was not performed due to the nature of the paper, which is to
present the proximities stacking approach rather than identify
biomarkers for the disease activity. Lastly, the authors acknowledge
the fact that the study results might be seen as accidental since the
proposed fusion approach was applied only on one disease data; to
prove that the presented approach works on other datasets as well,
a simulation analysis was also performed, and it can be found in the
supplementary materials. Briefly, four data platforms consisting of
250 samples and 50 variables each were generated. Proximities
stacking achieved the best classification results, and the contribu-
tion of each simulated platform provided by the set of weights w
was to be expected given the individual simulated platform per-
formances. Nevertheless, the proposed fusion approach should be
tried on other real data fusion occasions as well to further confirm
its strength over the currently available fusion ways.

5. Conclusion

In conclusion, URF/RF proximities stacking fusion coupled with
the pseudo-sample principle approach proved to outperform the
traditional ways of fusion significantly, overcame essential draw-
backs of the current fusion methods, and helped examine variable
behaviour and relations; therefore, establishing itself as a new,
powerful data fusion tool that can be implemented in any scientific
domain. Data fusion keeps gaining a lot of attention in various
scientific fields since combining different types of data can yield
higher model performance. However, this is not always the case,
and considerations have to be taken into account before any anal-
ysis is conducted based on the type of study and the ultimate
analysis aim. For example, the data have to be complementary for
data fusion to work successfully, and as the present study dem-
onstrates, the more data used or fused does not necessarily mean
the merrier the result. The traditional ways of fusion (i.e., low-level,
mid-level, and high-level) have been successfully implemented
[1e10] so far, but as complexity and amount of data increase along
with the complexity of the question in hand, more advanced and
sophisticated fusion ways are needed.
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