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1 

Diabetes as a global health concern 

Diabetes mellitus is an increasingly prevalent worldwide health concern1. Current 

global estimates indicate that diabetes affects 463 million individuals, a figure that is 

expected to rise to 700 million by 20452. Diabetes is, by definition, characterized by 

hyperglycemia (i.e., elevated blood glucose concentrations)3, and comprises several 

distinct chronic and metabolic diseases, the most common of which are type 1 (5-10%) 

and type 2 diabetes (90-95%)4. Type 1 diabetes is caused by autoimmune destruction of 

the insulin-producing beta cells of the endocrine pancreas, which results in absolute 

insulin deficiency4. Its onset is relatively rapid and commonly occurs at a young age4. By 

contrast, type 2 diabetes is predominantly a consequence of the pancreatic inability to 

overcome peripheral insulin resistance (i.e., relative insulin deficiency), which is caused 

by the detrimental effects of obesity and an unhealthy lifestyle in conjunction with a 

genetic predisposition1,4. Type 2 diabetes typically affects middle-aged and elderly 

individuals, and develops insidiously over a period of several years1,4. The intermediate 

phase during which the glucose metabolism status (GMS) transitions from normal 

glucose metabolism (NGM) to type 2 diabetes is commonly called prediabetes4. 

Individuals with diabetes have a twofold higher risk of all-cause mortality, mostly 

as a consequence of cardiovascular disease (CVD)5, compared to their diabetes-free 

peers6-8. In addition, diabetes is associated with a multitude of other morbidities, 

which include the classic microvascular complications (i.e., nephropathy, neuropathy, 

and retinopathy)9,10, as well as heart failure11, cancer12, non-alcoholic fatty liver disease13, 

depression14, and dementia14. Diabetes and its co-morbidities not only have debilitating 

effects at an individual level15, but also negatively impact society through their large 

economic burden16,17. Hence, treatment of diabetes, which commonly entails a 

combination of lifestyle interventions and medication, is primarily focused on 

prevention of the development or progression of the aforementioned complications18. 

In addition to blood pressure control, lipid profile management, and smoking 

cessation9,19, one of the main ways to achieve this is by improving glycemic control3. 

Glycemic control: attacking the average 

Glycated hemoglobin (HbA1c) is currently the preferred method to quantify glycemic 

control3. It indirectly reflects average blood glucose levels over a period of two to three 

months4. In healthy individuals, HbA1c values are normally below 40 mmol/mol4. The 

Diabetes Control and Complications Trial (DCCT) was the first to convincingly show—

in individuals with type 1 diabetes—that targeted lowering of HbA1c from on average 

~74 to ~53 mmol/mol substantially improved microvascular complication risk20. Since 

then, several other landmark studies further reported on the benefits of HbA1c-based 

glycemic control with regard to microvascular complication risk in individuals with 

type 2 diabetes21,22, and CVD and mortality risk in individuals with type 1 diabetes23,24. 

Accordingly, HbA1c has become the gold-standard method for assessment of overall 



Chapter 1 

10 

glycemic control and complication risk, as well as a primary outcome measure in the 

development of new glucose-lowering medication and diabetes management 

technologies25. 

Despite the validity of its central role in diabetes care, HbA1c has specific 

shortcomings26. Importantly, it fails to provide sufficient information on daily glucose 

dynamics27. Examples of individuals with similar HbA1c values but very different 

glucose fluctuation profiles illustrate this notion. In Figure 1.1, the glucose profile of 

participant B is evidently characterized by greater variability. Such an example 

underscores the point that potentially harmful hyperglycemic peaks and hypoglycemic 

nadirs can go unnoticed when HbA1c is the sole focus of glycemic therapy. The danger 

of this was made clear by the Action to Control Cardiovascular Risk in Diabetes 

(ACCORD) trial28. ACCORD was discontinued after a 3.5-year follow-up, because of 

higher mortality rates in the intensive-therapy group, which was presumed to be 

caused by more frequently occurring hypoglycemia29. Hence, a case can be made 

against attacking the average without paying heed to what transpires above and 

below the mean. In addition, a post-hoc analysis of the DCCT indicated that even in 

case of equal HbA1c values the risk of diabetic retinopathy was lower in the intensive 

treatment group30. At the time, the authors proposed that intensive treatment, which 

entailed multiple daily insulin injections, could have improved risk via its effects on 

daily glucose fluctuations30. This observation, although later contended31, taken 

together with the results of several experimental studies, led to the hypothesis that 

variability in glucose concentrations may be a modifiable risk factor for diabetic 

complications, irrespective of HbA1c
32,33. 

Daily glucose variability: somewhere, beyond the mean 

Glucose or glycemic variability (GV) refers to fluctuations in glucose concentrations 

over a defined period of time34. A clear distinction needs to be made between short-

term and long-term GV, as they are measured differently and represent different 

underlying etiologic concepts34,35. Short-term or daily are the adjectives used when GV 

has been continuously measured over a period of days to weeks34,36. It reflects the 

actual variability of daily or day-to-day glucose patterns. By contrast, long-term or visit-

to-visit GV refers to the variance in classic glycemic indices (e.g., HbA1c, fasting plasma 

glucose) that have been periodically measured over weeks, months, or years34,35. While 

it may reflect daily glucose fluctuations to some extent, long-term GV is viewed to 

largely represent difficult to measure factors that affect glycemic control (e.g., therapy 

adherence, multimorbidity, infections)35. Henceforth, this thesis will focus on the 

measurement and consequences of daily GV. 



 General introduction and outline of the thesis 

11 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
HbA1c  

mmol/mol 
FPG  

mmol/L 
MSG  

mmol/L 
SD 

mmol/L 
CV 
% 

TIR 
% 

IGP  
mmol/L 

Participant A 44 6.7 8.1 1.4 16.7 90.1 7.6 

Participant B 44 6.6 8.0 2.5 31.0 76.0 12.7 

 
Figure 1.1  Six-day continuous glucose monitoring profiles of two study participants diagnosed 

with type 2 diabetes who had similar HbA1c, fasting plasma glucose and mean sensor 
glucose concentrations, but substantially different glucose variability profiles. Higher 
SD, CV, and IGP values, as well as lower TIR all reflect greater glucose variability. HbA1c, FPG, 
and IGP were measured in venous blood; MSG, SD, CV, and TIR were measured with 
continuous glucose monitoring. MSG, mean sensor glucose; FPG, fasting plasma glucose; 
SD, standard deviation; CV, coefficient of variation; TIR, time in range; IGP, oral glucose 
tolerance test-derived incremental glucose peak. 

 

 

Importantly, it should be noted that daily glucose fluctuations are part of normal 

physiology34,37,38. Despite highly sophisticated pancreatic regulation, which 

physiologically maintains blood glucose concentrations within a 4 to 6 mmol/L range39, 

it is impossible to accomplish absolutely stable concentrations27. The question then 

becomes at what point GV should be regarded abnormal. Thus far, such GV reference 

values have been sparsely investigated40,41, especially in a setting without dietary 
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restrictions42. In this thesis, we aim to establish GV reference values based on a large 

sample of individuals with NGM (Chapter 2). A logical follow-up question would be 

whether elevated daily GV is also harmful. While several reviews and opinion pieces 

posit there to be sufficient biological rationale and in vivo evidence supporting 

this33,34,43,44, other articles argue against it25,45,46. The absence of scientific consensus is 

partly due to the immaturity of the field (i.e., lack of large-scale studies), which stems 

from the fact that until the start of this century accurate measurement of GV has been 

challenging47. Before I go into the consequences of daily GV, I will first address its 

measurement. 

The measurement of daily glucose variability 

Continuous glucose monitoring (CGM) is the gold-standard method to measure daily 

GV, as it is best able to assess its many aspects, which include amplitude, frequency, 

and duration of glucose fluctuations26,48. A continuous glucose monitor is a wearable 

body sensor that is normally worn abdominally or on the back of the upper arm and 

automatically measures glucose concentrations—most commonly in the interstitial 

fluid—at 5- or 15-minute intervals49,50. In order to calibrate the sensor data, most CGM 

devices require capillary self-measurement of blood glucose (SMBG) several times a 

day49. A differentiation can be made between real-time or personal CGM, which 

enables the user to inspect their glucose value at all times, or retrospective or 

professional CGM, which only allows for glucose profile evaluation after the device has 

been removed49.  

CGM became commercially available in 200051. Since then, it is increasingly being 

used in a clinical setting, mostly by individuals with type 1 diabetes, who either use 

CGM solitarily or incorporated in a closed-loop insulin delivery system49,52. Such a 

system combines CGM, an insulin infusion device, and a control algorithm in order to 

continuously regulate blood glucose levels53,54. While CGM devices are steadily being 

improved upon with regard to, among others, their accuracy, size, and user-

friendliness51, certain inherent drawbacks persist. These include ~10-minute sensor 

delay, a consequence of interstitial glucose measurement, and brief periods of 

malfunction51,53,55, both of which can be particularly problematic in case of closed-loop 

dosing systems. In this thesis, we investigate whether machine learning-based glucose 

prediction can overcome these obstacles (Chapter 3).  

In addition to its clinical use, CGM has been increasingly utilized in large 

epidemiological studies. It, however, remains challenging to do so, mainly because of 

the costliness and relative invasiveness of CGM itself and the often required SMBG to 

calibrate device47,50. From both a scientific (i.e., data reliability) and logistic viewpoint 

(i.e., device costs, participant strain), it is useful to establish the minimum number of 

consecutive CGM days required to reliably measure CGM-derived indices. While this 

has been established for individuals with type 1 diabetes (i.e., 12-15 days)56-58, it is 
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currently unclear for individuals with other GMS categories. In this thesis, we assess 

how many days are minimally needed to reliably measure the main CGM-derived 

indices in individuals with NGM, prediabetes, or type 2 diabetes (Chapter 2). 

The detailed glucose profile data gathered with CGM can be used to calculate 

indices of average glycemia (e.g., mean sensor glucose; MSG) as well as a wide array of 

GV indices27,36, such as standard deviation (SD), coefficient of variation (CV; SD/MSG * 

100%), interquartile range, mean amplitude of glycemic excursion, and mean of daily 

differences. Based on expert opinion, SD and CV are presently the recommended 

indices for reporting GV, as they are easiest to calculate and interpret26,48. Nevertheless, 

researchers frequently propose more intricate techniques for CGM-based 

quantification of GV59-61. The spectral clustering-derived ‘glucotype’, for example, has 

recently been promoted as a more comprehensive GV measure than the currently used 

indices59. The glucotype algorithm processes the CGM glucose profiles with use of 

spectral clustering, and then categorizes individuals based on their time spent within 

each of the three glucotypes, which are asserted to represent increasing levels of GV 

(i.e., low, moderate, or severe variability)59. At present, the glucotypes’ validity and 

generalizability to other study populations are unclear. In this thesis, we investigate 

whether the glucotype has added value for GV assessment (Chapter 4).  

CGM can additionally be used to calculate time in range (TIR), a relatively novel 

glycemic index that is defined as the percentage of time spent between glucose 

concentrations of 3.9 and 10.0 mmol/L26. TIR is strongly related to HbA1c, and is 

therefore regarded as a measure of overall glycemic control62. However, TIR and GV are 

also inversely linked63, as GV entails hyperglycemic peaks (i.e., higher time above range) 

as well as hypoglycemic nadirs (i.e., higher time below range)64. As such, TIR is a CGM-

derived index that combines aspects of both mean glycemia and GV (Figure 1.1). 

If CGM is unavailable, GV can be quantified via alternative measures. First, glucose 

profiles based on frequently performed SMBG can be used to calculate most of the 

aforementioned indices of GV27,46. However, as measurement error is strongly related 

to the sampling frequency, SMBG should—depending on the GV index used—ideally 

be performed at least 6-24 times per day65. Second, certain studies have used 1,5-

anhydroglucitol (1,5-AG), a polyol that competes with glucose for renal reabsorption, as 

an inverse surrogate marker of GV66-68. However, its validity has been criticized, 

especially due to its limited added value at elevated glucose concentrations37,46. Last, 

while certain oral glucose tolerance test (OGTT)-derived glucose values could be used a 

proxies of GV69, it is currently unclear which are most suitable. In this thesis, we assess 

which OGTT-derived indices most strongly associate with GV and, thus, could be used 

as valid GV proxies (Chapter 2). We hypothesize that the incremental glucose peak 

(IGP), which is calculated by subtracting fasting plasma glucose from the highest OGTT 

glucose value minus (Figure 1.2), best reflects SD, as both indices represent a glucose 

excursion relative to the mean. 
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Figure 1.2 The calculation of the incremental glucose peak with use of the seven-point oral 

glucose tolerance test profile of a study participant with prediabetes. IGP, incremental 
glucose peak. The abbreviations t=15, t=30, t=45, t=60, t=90 and t=120 represent the 
different oral glucose tolerance test time points. 

 

The consequences of daily glucose variability 

First, it is important to reiterate the distinction between daily and long-term GV, which 

are—in the context of GV consequences—occasionally used interchangeably34,44. 

Notwithstanding its demonstrated association with several adverse outcomes (e.g., 

CVD and mortality), long-term GV is viewed to largely reflect stability of glycemic 

control rather than daily glucose fluctuations35. A wide array of potential consequences 

of daily GV have thus far been studied, which range from the molecular processes (e.g., 

oxidative stress70), to preclinical or functional measures (e.g., carotid-intima media 

thickness71), and frank complications (e.g., CVD72). As stated previously, there is 

currently no scientific consensus on whether daily GV is harmful independent of its 

contribution to mean glycemia25,33,34,43-46. Below, we provide a concise overview of the 

current studies on the adverse consequences of daily GV. 

The biological pathways through which daily GV could exert harmful effects have 

been extensively explored32. The hyperglycemia-induced generation of oxidative stress 

is known to be a central process in the pathophysiology of diabetic complications73. The 

concept that GV further aggravates this process is supported by several in vitro studies 

that observed higher levels of oxidative stress after glucose oscillations than after to 

stable hyperglycemic concentrations32,70. Compared to stable hyperglycemia, GV was 

further found to increase cellular apoptosis, protein kinase C activation, and collagen 

synthesis32. However, these results have not been convincingly translated to in vivo 

studies. While GV was associated with oxidative stress in individuals with type 2 

diabetes74,75, such findings were not replicated in individuals with type 1 diabetes76,77 or 
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individuals without diabetes78. Further, hypoglycemic nadirs could also contribute to 

the development of complications79,80. 

Currently, clinical studies have mostly focused on CVD (e.g.,71,72,81), microvascular 

disease (e.g.,82-84), and cognitive impairment (e.g.,61,68,85) as adverse consequences of 

daily GV. Although the overall results have been conflicting, those derived from the 

largest study populations tend to oppose rather than support an independent 

pathophysiological role in the development of complications46,81. However, quite a few 

of these studies were limited by specific methodological concerns. First, most CGM-

based studies had a small sample size (n<300, e.g.,61,71,85), which negatively impacts 

statistical power and, thus, increases the risk of type I and type II errors86,87. Second, 

associations with outcome measures were frequently inadequately adjusted for 

confounders (e.g.,61,68), the most important of which is mean glycemia47,88, which could 

have led to overestimated associations. Third, several studies have suboptimally 

measured GV (e.g., via SMBG72,82-84 or 1,5-AG67,68), which could have led to 

underestimated associations due to random measurement error89. In this thesis, we 

aim to sufficiently address these points when investigating the associations of daily 

GV with several arterial measures (Chapters 5 and 6), endothelial function (Chapter 5), 

retinal nerve fiber layer thickness (Chapter 7), and cognitive performance (Chapter 8). 

Studies used in this thesis 

To address the aforementioned knowledge gaps, we used data from The Maastricht 

Study, the PRE-D Trial, and OhioT1DM Dataset.  

The Maastricht Study is an ongoing prospective population-based cohort study that 

is characterized by an extensive phenotyping approach and primarily focuses on 

investigating the causes, consequences, and comorbidities of type 2 diabetes90. 

Individuals aged between 40 and 75 years and living in the southern part of the 

Netherlands were eligible for participation. Mass media campaigns and targeted 

mailings were utilized for participant recruitment, and individuals with type 2 diabetes 

were oversampled by design. In order to facilitate the study of daily GV, all participants 

of The Maastricht Study included between 19 September 2016 and 13 September 2018 

were invited to undergo professional CGM (iPro2 and Enlite Glucose Sensor; 

Medtronic) as a part of their standard measurements. In the same period, a group of 

recently included individuals were asked to return for a separate CGM research visit. 

This thesis includes cross-sectional data of the first 8,005 participants included in The 

Maastricht Study. Of these participants, 896 have undergone CGM. 

The PRE-D Trial is a Danish, investigator-initiated, randomized, controlled, parallel, 

open-label, superiority trial, designed to study the effects of four different 

interventions (i.e., 10mg of dapagliflozin once daily; 850mg of metformin twice daily; 

30-minute interval training sessions 5 days per week; or lifestyle advice) in individuals 

with prediabetes91. The primary endpoint of the PRE-D Trial is a reduction in CGM-
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measured GV. Secondary endpoints include concomitant changes in glucose 

metabolism measures, body weight, cardiorespiratory fitness, blood pressure, plasma 

lipids, physical activity, and dietary intake. This thesis includes baseline data of the 116 

participants included, all of whom underwent CGM (iPro2 and Enlite Glucose Sensor; 

Medtronic).  

The OhioT1DM Dataset is publically available for scientific purposes and contains 

data of 6 individuals with type 1 diabetes who were all using insulin pump therapy in 

combination with CGM (Enlite Glucose Sensor; Medtronic)92. The participants provided 

interstitial glucose values every five minutes for an eight-week period. The OhioT1DM 

Dataset is commonly used for the evaluation of prediction model performance 

(e.g.,93,94). 

Outline and aims of this thesis 

This thesis has two main aims. The first aim was to assess methodological aspects of 

CGM and daily GV measurement. The second aim was to investigate the adverse 

consequences of daily GV. Figure 1.3 provides an overview of the topics investigated in 

this thesis. 

In Chapters 2 through 4 (Part I), we assessed methodological aspects of CGM and 

the measurement of daily GV. In Chapter 2, we investigated the minimum number of 

days required to reliably measure CGM-derived indices, assessed the reference values 

of these indices, and studied their correlation with established glycemic indices. In 

Chapter 3, we investigated to whether machine learning-based glucose prediction can 

be used to overcome certain inherent drawbacks of CGM (i.e., ~10-minute sensor delay 

and periods of malfunction). In Chapter 4, we investigated whether the ‘glucotype’ by 

Hall et al.59 has added value for GV assessment and discussed the results in the context 

of precision medicine. 

In Chapters 5 through 8 (Part II), we investigated potential adverse consequences of 

daily GV, either measured via CGM or based on an OGTT-derived proxy (i.e., IGP). In 

Chapter 5, we studied the associations of the OGTT-based IGP with measures of arterial 

stiffness, structure, and function, and measures of endothelial function. In Chapter 6, 

we studied the associations of CGM-measured GV and TIR with measures of arterial 

stiffness, structure, and function. In Chapter 7, we studied the associations of GMS, 

measures of glycemia, and indices of daily GV with retinal nerve fiber layer thickness, 

which is an index of neurodegeneration and precursor of neuropathy and retinopathy. 

In Chapter 8, we studied the associations of CGM-measured GV and TIR, as well as the 

OGTT-based IGP with overall cognitive performance. 

In Chapter 9, I provide a summary of the main findings of this thesis and discuss 

them in the context of current literature. I further review the methodological 

challenges of measuring GV in a large epidemiological setting, and address directions 
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for future research. Last, in Chapter 10, the scientific and societal impact of this thesis is 

examined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.3 Schematic overview of the thesis aims. 
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Abstract 
Background 

Glucose variability (GV) measured by continuous glucose monitoring (CGM) has become an 

accepted marker of glycemic control. Nevertheless, several methodological aspects of GV 

assessment require further study. We therefore investigated the minimum number of days 

needed to reliably measure GV, assessed GV reference values, and studied the correlation of GV 

with established glycemic indices (i.e., HbA1c, seven-point OGTT-derived indices). 

 

Methods 

We used cross-sectional data from The Maastricht Study, an observational population-based 

cohort enriched with type 2 diabetes. Participants with more than 48 hours of CGM (iPro2; 

Medtronic) were included for analysis (n=851; age: 60±9years; 49% women; 23% type 2 diabetes). 

We used mean sensor glucose (MSG), standard deviation (SD), and coefficient of variation (CV) as 

CGM-derived indices (the latter two for GV quantification). We calculated reliability using the 

Spearman–Brown prophecy formula, established reference values by calculating 2.5th-97.5th 

percentiles, and studied correlations using Spearman's rho. 

 

Results 

Measurement of MSG, SD, and CV was sufficient reliability (R>0.80) with three monitoring days. 

The reference ranges, assessed in individuals with normal glucose metabolism (n=470), were 5.03 

- 6.69 mmol/L (MSG), 0.44 - 1.37 mmol/L (SD), and 7.74-22.45% (CV). For MSG, the strongest 

correlation was found with fasting plasma glucose (rho=0.65 [0.61;0.69]); for SD, with the 1-hour 

OGTT value (rho=0.61 [0.56;0.65]); and for CV, with both the incremental glucose peak (IGP) 

during the OGTT (rho=0.50 [0.45;0.55]) and the 1-hour OGTT value (rho=0.50 [0.45;0.55]). 

 

Conclusions 

The reliability findings and reference values are relevant for studies that aim to investigate CGM-

measured GV. One-hour OGTT and IGP values can be used as GV indices when CGM is 

unavailable. 
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Introduction 

Daily glucose variability (GV) is thought to contribute to the development of diabetes-

related complications irrespective of mean glycemia1, and, hence, is accepted as a 

valuable marker of glycemic control2. Continuous glucose monitoring (CGM) is the 

preferred method for measuring GV, as it is able to assess many of its aspects (i.e., 

amplitude, frequency, and duration of fluctuations)2, whereas other measures (e.g., 

oral glucose tolerance test [OGTT], repeated self-measurement of blood glucose 

[SMBG]) only assess singular aspects. CGM is, however, a challenging technology to 

use in a large epidemiological setting, in part due to its costliness and relative 

invasiveness3.  

Despite prior efforts, several methodological aspects of GV measurement with 

CGM need further investigation. First, the required number of days to reliably measure 

daily GV is unclear for individuals with normal glucose metabolism (NGM), prediabetes 

or type 2 diabetes. Second, there is currently little information on GV reference values, 

which are ideally determined in healthy individuals, i.e., individuals with NGM4. Third, 

little is known about the relationship of GV with established glycemic indices, such as 

fasting plasma glucose (FPG), OGTT-derived indices and HbA1c. Certain OGTT-derived 

indices may give a good approximation of GV and could thus be used as alternatives in 

an epidemiological setting when CGM is not available. 

We therefore 1) investigated the minimum number of days needed to reliably 

measure GV with CGM; 2) assessed GV reference values according to glucose 

metabolism status (GMS); and 3) studied the correlation of CGM-measured GV with 

established glycemic indices, in a large population-based cohort. 

Research design and methods 

Study population and design 

We used data from The Maastricht Study, an observational, prospective, population-

based cohort study. The rationale and methodology have been described previously5. In 

brief, The Maastricht Study focuses on the etiology, pathophysiology, complications 

and comorbidities of type 2 diabetes, and is characterized by an extensive phenotyping 

approach. All individuals aged between 40 and 75 years and living in the southern part 

of the Netherlands were eligible for participation. Participants were recruited through 

mass media campaigns and from the municipal registries and the regional Diabetes 

Patient Registry via mailings. For reasons of efficiency, recruitment was stratified 

according to known type 2 diabetes status, with an oversampling of individuals with 

type 2 diabetes. The Maastricht Study has been approved by the institutional medical 

ethical committee (NL31329.068.10) and the Minister of Health, Welfare and Sports of 

the Netherlands (Permit 131088-105234-PG). All participants gave written informed 

consent. 
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Continuous glucose monitoring 

From 19 September 2016 until 13 September 2018, all participants were invited to 

undergo CGM (iPro2 and Enlite Glucose Sensor; Medtronic, Tolochenaz, Switzerland) as 

a part of their standard measurements (see below). To ensure inclusion of a sufficient 

number of participants with prediabetes and type 2 diabetes within a reasonable 

timeframe, we re-invited a prediabetes- and type 2 diabetes-enriched group of 

participants—who had visited The Maastricht Study between January 2015 until 

September 2016 for standard measurements—to undergo CGM as a separate research 

visit (further referred to as ‘catch-up visit’). The CGM device was worn on the lower 

abdomen and recorded subcutaneous interstitial glucose values (range: 2.2 – 22.2 

mmol/L) every five minutes for a seven-day period. During this time, participants were 

asked to perform SMBG with the use of Contour Next (Ascensia Diabetes Care, 

Mijdrecht, the Netherlands) four times daily (i.e., before main meals and at bedtime). 

These SMBG values were used to retrospectively calibrate the CGM values at the 

moment of data upload to CareLink iPro (Medtronic). Accuracies (expressed as the 

mean absolute relative difference [MARD]) of the iPro2 and Contour Next are 11.0%6 

and 3.1 - 5.6%7-9, respectively. Participants were blinded to the CGM recording, but not 

to SMBG values. Diabetes medication use was allowed and no dietary or physical 

activity instructions were given.  

We used the Glycemic Variability Research Tool (GlyVaRT; Medtronic) software to 

process CGM data. First, the first 24 hours of glucose values were removed, because of 

insufficient calibration. Next, we excluded individuals of whom less than 24 hours of 

recording (less than one data day) remained. Then, we calculated mean sensor glucose 

(MSG), standard deviation (SD), and coefficient of variation (CV; SD/MSG * 100%) for 

each period of 24 hours (data day) and for the total recording period. Based on 

international consensus, we used SD and CV as indices of GV2. We additionally 

included MSG in our analyses, as GV indices are preferably interpreted in the context of 

mean glucose values3. As described in the Supplementary methods, we also calculated 

other commonly used GV indices with the use of GlyVaRT.  

Oral glucose tolerance test 

Participants underwent a standardized 2-hour 75 gram OGTT after fasting overnight to 

determine GMS, which was defined according to the World Health Organization 2006 

criteria as: a) NGM, b) impaired fasting glucose and impaired glucose tolerance 

(combined as prediabetes), or c) type 2 diabetes10. For safety reasons, individuals using 

insulin or with a fasting glucose level above 11.0 mmol/L, as determined by a finger 

prick, did not undergo an OGTT. For these participants, we determined GMS based on 

fasting plasma glucose (FPG) and information about their diabetes medication. During 

the OGTT, we took venous blood glucose samples at baseline (=FPG) and at 15, 30, 45, 

60, 90 and 120 minutes. In individuals with complete OGTT data, we calculated the 



Reliability, reference values, and correlations 

29 

2 

incremental glucose peak (IGP) by subtracting FPG from the highest OGTT glucose 

value (= maximum glucose peak). 

Measurement of covariates 

As described previously5, we assessed diabetes duration by questionnaire; assessed use 

of glucose-lowering medication as part of a medication interview; measured weight, 

height, and body mass index (BMI) during a physical examination; and measured HbA1c 

in fasting venous blood. Body weight and glucose-lowering medication use were re-

assessed in individuals who attended a CGM catch-up visit. 

Statistical analysis 

To determine the minimum number of CGM days required for a reliable assessment of 

MSG, SD, and CV, we calculated GMS-stratified reliability (R) with the use of the 

Spearman–Brown prophecy formula: R = σ2
B / (σ2

B + [σ2
W / n]), where σ2

B is the inter-

individual variance, σ2
W is the intra-individual variance, and n is the number of 

consecutive monitoring days11, 12. We used variance component analysis via ANOVA 

with the different CGM-derived indices as the dependent variable to estimate the 

participant variance component (inter-individual; σ2
B) and the residual variance 

component (intra-individual; σ2
W). For these analyses we included only individuals with 

more than five complete data days of CGM to ensure optimal reliability. A R of >0.80 

was considered reliable11.  

We calculated the distribution of MSG, SD, and CV values (10th - 90th, 5th - 95th, and 

2.5th - 97.5th percentile) in GMS-stratified groups. We established reference ranges 

based on the 2.5th - 97.5th percentile of individuals with NGM4. As an additional 

analysis, we calculated the distributions for sex- and age-stratified GMS groups. In 

addition, MSG, SD, and CV differences between GMS groups were statistically 

compared with the use of ANOVA with post-hoc Bonferroni correction. 

A Spearman's rank test was used to determine the correlation (rho) and 95% 

confidence interval of CGM-derived indices with FPG, OGTT-derived indices (i.e., 15-, 

30-, 45-, 60-, 90-, and 120-minute glucose values, maximum glucose peak, and IGP), 

and HbA1c. As an additional analysis, we used linear regression to calculate unadjusted 

regression coefficients and their corresponding 95% confidence intervals for the 

glycemic indices that correlated most strongly with MSG, SD and CV. 

Additionally, several sensitivity analyses were performed: 1) after exclusion of 

individuals with less than the reliable number of CGM days; 2) after exclusion of 

individuals who underwent CGM as part of a catch-up visit; and 3) after exclusion of 

the individuals with data gaps during CGM recording. Further, the main analyses were 

also carried out for other commonly used GV indices (i.e., mean amplitude of glucose 

excursions [MAGE], interquartile range [IQR], and mean of daily differences [MODD]. 
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Normally distributed data are presented as mean and SD, non-normally distributed 

data as median and IQR, and categorical data as n (%). We considered a p-value of 

<0.05 statistically significant. All statistical analyses were performed with the 

Statistical Package for Social Sciences (version 25.0; IBM, Chicago, Illinois, USA). 

Results 

Study population characteristics 

The total CGM study population comprised 896 individuals, from which we excluded 

two participants with diabetes types other than type 2 diabetes. Next, due to the 

removal of the first 24h of CGM data, we excluded 27 individuals with less than 

24 hours of CGM, as for them CGM-derived indices could not be calculated. Then, we 

excluded individuals (n=16) who had less than one data day (24 hours) of CGM 

remaining, which resulted in the final study population that consisted of 

851 individuals (Supplemental Figure S2.1).  

Table 2.1 shows the GMS-stratified participant characteristics of the final study 

population, based on the regular study visit measurements. With deteriorating GMS, 

participants were older, more often male, had a higher BMI, and had higher HbA1c, FPG, 

and OGTT-derived index values. Individuals with type 2 diabetes were often newly 

diagnosed by OGTT. More than half of the participants with type 2 diabetes used 

metformin as their primary diabetes medication (n=104, 53.1%); insulin use was 

uncommon (n=19, 9.6%). 

Most participants (n=772, 90.7%) completed the seven-day recording period, 

resulting in six data days of usable CGM data (Supplemental Table S2.1). A large 

number of individuals (n=721, 84.7%) also had five or more consecutive, complete days 

of CGM. Several participants (n=66, 7.8%) experienced at least one period during which 

no glucose values were recorded (i.e., a data gap), the length of which varied 

considerably (median: 5.3 hours [interquartile range: 0.9-19.6]). SMBG adherence was 

high (i.e., median average daily calibration frequency: 4.0 [3.7 – 4.1], Supplemental 

Table S2.1). 

Of the final study population (n = 851), 603 participants (70.9%) underwent CGM as 

part of their standard measurements (i.e., regular visits) and 248 participants (29.1%) 

during a catch-up visit. Supplemental Table S2.2 shows the participant characteristics 

stratified for research visit. Participant characteristics were generally comparable after 

stratification for GMS. The median time between the regular and catch-up visit was 2.1 

[2.0 – 2.2] years (Supplemental Table S2.3). Only individuals with prediabetes had 

gained weight between their regular and catch-up visit (from 82.9 ± 15.6 to 84.1 ± 16.2 

kg, p=0.011); large differences in body weight (>10%) were rare (n=12, 4.8%). Use of 

glucose-lowering medication was more frequent in individuals with type 2 diabetes at 

the catch-up visit (71.8% versus 63.7% at the regular and catch-up visit, respectively, 

p=0.035). 
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Table 2.1 Participant characteristics of the total study population and of glucose metabolism 
status-stratified groups. 

Characteristic Total (N=851) NGM (n=470) PreD (n=184) T2D (n=197) 

Age, years 59.9 ± 8.7 58.2 ± 8.8 61.5 ± 8.1 62.4 ± 7.8 
Women, n (%) 418 (49.1) 266 (56.6) 83 (45.1) 69 (35.0) 
BMI, kg/m2 27.2 ± 4.4 25.6 ± 3.6 28.5 ± 4.4 29.7 ± 4.7 
Newly diagnosed T2D, n (%) 70 (8.2) - - 70 (35.5) 
HbA1c, % 5.7 ± 0.8 5.4 ± 0.3 5.6 ± 0.4 6.7 ± 1.0 
HbA1c, mmol/mol 39.1 ± 8.3 35.4 ± 3.4 37.8 ± 4.2 49.2 ± 10.8 
Fasting plasma glucose, mmol/L 5.4 [5.0 – 6.2] 5.1 [4.8 – 5.4] 6.0 [5.4 – 6.3] 7.3 [6.5 – 8.4] 
OGTT-derived indices     
   15-minute, mmol/L 7.2 [6.5 – 8.3] 6.7 [6.2 – 7.3] 7.7 [7.0 – 8.5] 9.4 [8.4 – 10.3] 
   30-minute, mmol/L 8.8 [7.5 – 10.5] 7.8 [7.0 – 8.8] 9.8 [8.7 – 10.6] 11.9 [10.7 – 13.2] 
   45-minute, mmol/L 9.2 [7.5 – 11.8] 7.9 [6.7 – 9.0] 10.7 [9.7 – 12.2] 14.0 [12.3 – 15.7] 
   1-hour, mmol/L 8.9 [6.7 – 12.0] 7.1 [5.7 – 8.6] 11.0 [9.7 – 12.5] 15.0 [12.9 – 17.0] 
   90-minute, mmol/L 7.7 [5.8 – 11.2] 6.2 [5.2 – 7.3] 9.9 [8.7 – 11.3] 15.6 [13.2 – 17.9] 
   2-hour, mmol/L 6.7 [5.2 – 9.1] 5.5 [4.7 – 6.4] 8.4 [7.5 – 9.2] 13.6 [11.7 – 16.2] 
   MGP, mmol/L 9.8 [8.1 – 12.6] 8.3 [7.4 – 9.3] 11.4 [10.3 – 12.6] 16.0 [13.4 – 18.1] 
   IGP, mmol/L 4.3 [2.9 – 6.7] 3.2 [2.2 – 4.2] 5.7 [4.3 – 6.8] 9.0 [7.2 – 10.3] 
Diabetes medication use, n (%) 109 (12.8) - - 109 (55.6) 
   Insulin 19 (2.2) - - 19 (9.6) 
   Metformin 104 (12.2) - - 104 (53.1) 
   Sulfonylureas 21 (2.5) - - 21 (10.7) 
   Thiazolidinediones 0 (0) - - 0 (0) 
   GLP-1 analogs 3 (0.4) - - 3 (1.5) 
   DDP-4 inhibitors 1 (0.1) - - 1 (0.5) 

Data are reported as mean ± SD, median [interquartile range], or number (percentage [%]) as 
appropriate. Data represent the study population of participants with at least 48 hours of continuous 
glucose monitoring data. NGM, normal glucose metabolism; PreD, prediabetes; T2D, type 2 diabetes; 
BMI, body mass index; OGTT, oral glucose tolerance test; MGP, maximum glucose peak; IGP, 
incremental glucose peak; HbA1c, glycated hemoglobin A1c; MSG, mean sensor glucose; SD, standard 
deviation; CV, coefficient of variation; GLP-1, glucagon-like peptide-1; DPP-4, dipeptidase-4. 
 

Reliability of continuous glucose monitoring 

In the reliability analyses, individuals with more than five consecutive, complete days 

of CGM recording were included (n=721, 84.7%) (Supplemental Table S2.1 and S2.4). 

Figure 2.1 illustrates the reliability for different CGM-derived indices per number of 

consecutive monitoring days in individuals with NGM, prediabetes, or type 2 diabetes. 

In case of MSG (Figure 2.1; panel A), the reliability was sufficient (R > 0.80) after one 

day of recording for individuals with prediabetes and type 2 diabetes, and after three 

days for individuals with NGM. In case of SD (Figure 2.1; panel B), the reliability was 

sufficient (R>0.80) after two days of recording for individuals with prediabetes and 

type 2 diabetes, and after three days for individuals with NGM. In case of CV (Figure 

2.1; panel C), the reliability was sufficient after three days of recording for individuals 

with NGM, prediabetes, and type 2 diabetes. 
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Figure 2.1 Reliability for mean sensor glucose (A), standard deviation (B), and coefficient of 

variation (C) per number of consecutive continuous glucose monitoring days in 
individuals with normal glucose metabolism, prediabetes, or type 2 diabetes. The 
dashed horizontal line represents the cut-off for sufficient reliability (R>0.80). NGM, normal 
glucose metabolism; PreD, prediabetes; T2D, type 2 diabetes. 

Glucose variability according to glucose metabolism status 

Table 2.2 shows the GMS-stratified median, mean and various percentile values for 

MSG, SD and CV. Deteriorating GMS was associated with statistically significantly 
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higher MSG, SD and CV values (even after Bonferroni correction). The distributions 

(10th - 90th, 5th - 95th, 2.5th - 97.5th percentiles) of MSG, SD and CV were broader as GMS 

deteriorated. The reference values for MSG, SD and CV, based on the 2.5th - 97.5th 

percentiles of individuals with NGM, were 5.03 - 6.69 mmol/L, 0.44 - 1.37 mmol/L, and 

7.74 - 22.45%, respectively. Distributions of MSG, SD and CV were not materially 

different for age- and sex-stratified GMS groups (Supplemental Table S2.5). 

 
Table 2.2 Distribution of mean sensor glucose, standard deviation and coefficient of variation 

in glucose metabolism status-stratified groups. 

CGM-derived index NGM (n=470) PreD (n=184) T2D (n=197) p-value 

MSG, 
mmol/L 

Median [IQR] 
5.8 [5.5 – 6.1] 6.2 [5.8 – 6.6]* 7.5 [6.8 – 8.7]*† 

<0.001 

 Mean ± SD 5.8 ± 0.4 6.3 ± 0.8 7.9 ± 1.7  
 10th - 90th percentile 5.31 - 6.37 5.56 - 7.07 6.08 - 9.83  
 5th - 95th percentile 5.15 - 6.54 5.29 - 7.54 5.78 - 11.70  
 2.5th - 97.5th percentile 5.03 - 6.69 5.04 - 8.27 5.63 - 12.78  
SD, mmol/L Median [IQR] 0.73 [0.62 – 0.87] 0.90 [0.74 – 1.13]* 1.51 [1.14 – 1.95]*† <0.001 
 Mean ± SD 0.77 ± 0.23 0.98 ± 0.35 1.64 ± 0.70  
 10th - 90th percentile 0.53 - 1.09 0.65 - 1.31 0.88 - 2.47  
 5th - 95th percentile 0.48 - 1.28 0.60 - 1.58 0.79 - 3.06  
 2.5th - 97.5th percentile 0.44 - 1.37 0.55 - 1.90 0.66 - 3.44  
CV, % Median [IQR] 12.6 [10.8 – 14.9] 14.9 [12.2 – 17.5]* 19.3 [15.9 – 24.0]*† <0.001 
 Mean ± SD 13.2 ± 3.6 15.3 ± 4.3 20.5 ± 6.6  
 10th - 90th percentile 9.38 - 18.03 10.74 - 20.63 13.31 - 29.42  
 5th - 95th percentile 8.49 - 20.66 10.15 - 24.04 12.32 - 33.35  
 2.5th - 97.5th percentile 7.74 - 22.45 9.29 - 25.78 10.51 - 36.50  

CGM, continuous glucose monitoring; NGM, normal glucose metabolism; PreD, prediabetes; T2D, type 
2 diabetes; MSG, mean sensor glucose; SD, standard deviation; CV, coefficient of variation; IQR, 
interquartile range. * p<0.001 versus NGM; † p<0.001 versus PreD. 

 

Correlations with established glycemic indices 

Figure 2.2 and Supplemental Table S2.6 depict the Spearman correlation coefficients 

of MSG, SD and CV with FPG, OGTT-derived indices and HbA1c. Since a complete seven-

point OGTT was not available in all individuals, the number of individuals included in 

these correlation analyses varied from 744 to 851 (Supplemental Table S2.6). 

Correlations with MSG and SD were generally stronger than those with CV. For MSG, 

the strongest correlation was found with FPG (rho=0.65 [0.61; 0.69]), followed by HbA1c 

(rho=0.63 [0.58; 0.67]) and maximum glucose peak (rho=0.63 [0.59; 0.67]). For both SD 

and CV, a similar pattern was observed regarding the OGTT time points: the strongest 

correlations were found with the 1-hour OGTT value and correlations were gradually 

weaker for the time points that were more distant from this OGTT value. For SD, we 

found the highest correlation coefficient with the 1-hour OGTT value (rho=0.61 [0.56; 

0.65]); for CV, with both IGP (rho=0.50 [0.45; 0.55]) and the 1-hour OGTT value 

(rho=0.50 [0.45; 0.55]). Of note, the 1-hour OGTT value did not necessarily represent the 
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glucose peak time point during the OGTT. In fact, with deteriorating GMS, the peak 

time point appeared to shift to a later moment during the OGTT (Supplemental Table 

S2.7). 

Supplemental Table S2.8 shows GMS-stratified Spearman correlation coefficients. 

We found that MSG correlated best with FPG in individuals with NGM (rho=0.37 [0.29; 

0.44]), and with HbA1c in individuals with prediabetes (rho=0.46 [0.34; 0.57]) and type 2 

diabetes (rho=0.60 [0.50; 0.68]). SD correlated best with IGP (rho=0.31 [0.22; 0.39]) and 

maximum glucose peak (rho=0.30 [0.22; 0.39]) in individuals with NGM, with the 90-

minute OGTT value (rho=0.30 [0.16; 0.43]) and HbA1c (rho=0.30 [0.17; 0.43]) in 

individuals with prediabetes, and with the 90-minute OGTT (rho=0.54 [0.42; 0.65]) 

value, IGP (rho=0.54 [0.42; 0.65]) and maximum glucose peak (rho=0.54 [0.41; 0.64]) in 

individuals with type 2 diabetes. We observed that CV correlated best with IGP in 

individuals with NGM (rho=0.25 [0.16; 0.34]), with the 90-minute (rho=0.23 [0.09; 

0.37]) and 2-hour (rho=0.24 [0.09; 0.37]) OGTT value in individuals with prediabetes, 

and with IGP (rho=0.49 [0.35; 0.60]) in individuals with type 2 diabetes. 

Supplemental Table S2.9 displays the regression coefficients of the five glycemic 

indices that correlated most strongly with MSG, SD and CV in the total study 

population. In addition, it shows GMS-stratified regression coefficients of the three 

glycemic indices that correlated best with MSG, SD and CV in individuals with NGM, 

prediabetes and type 2 diabetes. 
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Figure2.2 Correlations of mean sensor glucose (A), standard deviation (B) and coefficient of 

variation (C) with fasting plasma glucose, oral glucose tolerance test-derived indices 
and HbA1c. A point estimate represents the Spearman’s rank correlation coefficient (rho) 
and corresponding 95% confidence interval. The abbreviations t=15, t=30, t=45, t=60, t=90 
and t=120 represent the different oral glucose tolerance test time points. FPG, fasting 
plasma glucose; IGP, incremental glucose peak; MGP, maximum glucose peak. 
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Additional analyses 

The reliability for MSG, SD and CV was not materially different after exclusion of 

participants who returned for the catch-up visit (Supplemental Figure S2.2). After 

exclusion of individuals with less than the reliable amount of recording days, exclusion 

of individuals who returned for the catch-up visit or exclusion of individuals with 

recording data gaps, all CGM-derived indices (MSG, SD and SD) still differed 

statistically significantly between individuals with NGM, prediabetes or type 2 diabetes 

(Supplemental Tables S2.10, S2.11 and S2.12). The distributions of MSG, SD and CV 

were generally comparable after exclusion of individuals with less than the reliable 

amount of recording days, exclusion of individuals who returned for the catch-up visit 

or exclusion of individuals with recording data gaps (Supplemental Tables S2.10, S2.11 

and S2.12). 

No substantially different Spearman correlation coefficients were obtained after 

exclusion of individuals with less than the reliable number of recording days 

(Supplemental Figure S2.3) or with recording data gaps (Supplemental Figure S2.4). 

Although exclusion of individuals who returned for a catch-up visit resulted in lower 

correlation coefficients (0.1-0.2 on average), it did not affect the original correlation 

patterns that were observed for the correlations of MSG, SD and CV with FPG, OGTT-

derived indices and HbA1c (Supplemental Figure S2.5). Last, the reliability, reference 

value, and correlation results of MAGE, IQR, and MODD are shown in the Supplemental 

materials (Supplemental Figures S2.6 and S2.7; Supplemental Table S2.13). 

Discussion 

We investigated—in individuals with NGM, prediabetes or type 2 diabetes—the 

minimum number of days needed to reliably measure CGM-derived indices, assessed 

their reference values, and studied their relationship with several established glycemic 

indices. Our study has three main findings. First, a reliable assessment of MSG, SD and 

CV can be made with three recording days. Second, MSG, SD and CV reference values 

were obtained based on individuals with NGM. Third, GV indices correlated most 

strongly with the 1-hour OGTT value, IGP and maximum glucose peak. 

In our study population, the common seven-day recording period—with six 

functional CGM days—yielded high reliability, especially for MSG. In addition, a reliable 

assessment (R>0.80) of CGM-derived indices could be made with relatively few days: 

one to three days depending on the individual’s GMS and the specific index used. Our 

conclusion contrasts with the sampling duration findings of comparable studies (i.e., 

12-15 days are minimally required)13-15. However, comparison is complicated by the fact 

that all prior research was performed in individuals with type 1 diabetes. Since this 

group is characterized by larger day-to-day differences in their glycemic profiles (i.e., 

higher intra-individual variance)16, a longer sampling duration is presumably required 

to achieve sufficient reliability. The differences in statistical methods (i.e., correlation, 
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percentage difference analyses) and cut-off values (i.e., r2>0.70-0.86; overall difference 

<10%) used, further hamper comparison.  

In line with several other studies, we found that MSG and SD values were 

statistically significantly higher with deteriorating GMS17-20; more interestingly, we 

observed statistically significantly higher CV values as well. Since CV quantifies GV 

adjusted for MSG, it can be concluded that GV is higher in individuals with type 2 

diabetes as compared to prediabetes and NGM, regardless of the mean glucose value. 

The MSG, SD and CV values observed in the present study were generally lower than 

previously reported17-19. In contrast to the current study, some of these studies did not 

observe a statistically significant differences between individuals with NGM and 

prediabetes17, 19, which could be attributed to their relatively small sample sizes 

(n=50 - 162).  

We established reference values for MSG, SD and CV based on the 2.5th-97.5th 

percentiles of individuals with NGM, which is preferred when reporting reference 

intervals4. While Bode et al. first aimed to establish normative values in individuals 

with type 2 diabetes16, Zhou et al. were the first to report the distribution (5th – 95th 

percentile) of MSG (4.69 - 6.60 mmol/L) and SD (0.35 - 1.40 mmol/L) in individuals with 

NGM21, 22. These values were, however, not determined under normal living conditions, 

as the participants were given dietary instructions as part of the study design. This 

could explain the lower 5th percentile values for both indices. Gude et al. also reported 

on SD (5th – 95th percentile) in a population-based cohort of Caucasian individuals with 

and without type 2 diabetes (0.72 - 4.83 mmol/L and 0.50 - 1.33 mmol/L, respectively)23. 

Although they did not specifically report reference ranges for NGM, their distributions 

were generally comparable to ours, except for the substantially higher 95th percentile 

they observed in individuals with type 2 diabetes, who had a higher mean HbA1c 

(54.0 ± 10.8 mmol/mol) and more frequently used oral glucose-lowering drugs (86%) 

and insulin (21%).  

Of all glycemic indices, MSG correlated best, albeit moderately, with FPG, 

maximum glucose peak and HbA1c. Zhou et al. previously reported similar correlations 

coefficients for MSG with FPG and HbA1c
24. We additionally found that, of all glycemic 

indices, the strongest correlations of SD and CV were observed with the 1-hour OGTT 

value, maximum glucose peak and IGP. The GMS-stratified correlation coefficients 

were generally lower than those for the total study population, which can be 

attributed to the effect of range restriction (i.e., the smaller ranges in the subgroups 

attenuate the correlation coefficients)25. Interestingly, not only SD, but also CV 

correlated quite moderately with indices of mean glycemia (i.e., FPG, HbA1c). This may 

explain the difficulty of establishing effects of specific GV improvements while 

maintaining similar HbA1c, FPG or MSG concentrations26. 

The correlations found with SD and CV legitimate the use of the 1-hour or peak 

glucose value during an OGTT to approximate GV if CGM is unavailable (e.g., in a large 

observational study27). This sheds an interesting light on prior research that found that 
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the 1-hour OGTT value was associated with cardiovascular disease and mortality28. 

Nevertheless, we observed that the strength of the correlation with GV indices was 

determined by the time point of the OGTT peak. The 1-hour OGTT value was often not 

reflective of the glucose peak, especially in individuals with NGM (15.3%) and T2D 

(20.3%) (Supplemental Table S2.7 and S2.8). Accordingly, if the total study population 

and GMS-stratified groups are taken together, IGP generally correlated most strongly 

with SD and CV. This suggests that IGP, rather than the 1-hour OGTT value, is the 

preferred OGTT-derived index to use as GV proxy. 

Our findings have important implications for the study of GV. First, the CGM period 

may be shortened to three functional days of recording for individuals with NGM, 

prediabetes or type 2 diabetes in order to alleviate participant burden without 

compromising reliability of GV assessment. Importantly, a longer recording period may 

be required in individuals with type 2 diabetes who are treated with multiple daily 

injections (not highly represented in this study). In addition, a reliable assessment of 

other CGM-derived indices (e.g., time in range) could require more recording days. 

Second, our reference ranges can be used to classify individuals as having normal or 

abnormal MSG, SD or CV values. However, these reference values need not necessarily 

represent target values, as is the case for HbA1c
29. Third, IGP should be viewed as the 

preferred OGTT-derived index to assess GV, since it correlated most strongly with SD 

and CV for both the total study population and the GMS-stratified groups. Last, the 

regression coefficients found could be used to approximate CGM-derived indices based 

on several established glycemic indices (Supplemental Table S2.9).  

This study has several strengths and limitations. Strengths are 1) the large, 

population-based study sample; 2) the high overall SMBG adherence, ensuring 

adequate CGM calibration; 3) the OGTT-based assessment of GMS, allowing the 

calculation of reference values; 4) the availability of a seven-point OGTT, enabling 

comparison with multiple time points; and 5) the robustness of the results, as reflected 

by the consistency of multiple sensitivity analyses. Our study had certain limitations. 

First, the reliability analyses would ideally have been based on a longer recording 

period than six functional days, as this could have improved the assessment of intra-

individual variation. We were, however, limited by our study design, which aimed to 

prevent excessive participant strain and was restricted by sensor lifespan6. Second, we 

focused mainly on SD and CV as indices of GV, while others exist (e.g., IQR, MAGE). 

With the use of MSG, SD, and CV we assume a normal distribution of CGM-derived 

glucose values, which is not necessarily true. Nevertheless, SD was shown to have a 

smaller random sampling error than other GV indices, is widely used and easily 

interpretable, and can be adapted to the preferred, MSG-adjusted GV index (i.e., CV)2,3. 

Additionally, the different CGM-derived GV indices have been found to be strongly 

correlated3. Accordingly, the MAGE, IQR, and MODD findings were generally 

comparable to the SD and CV results (Supplemental Figures S2.6 and S2.7; 

Supplemental Table S2.13). Third, the strength of the correlation coefficients of our 
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total study population could have been underestimated due to the inclusion of 

individuals who returned for a catch-up visit, as there was a median time of 2.1 years 

between CGM and the measurement of the OGTT and HbA1c values. While the 

correlations were investigated in only newly recruited individuals (Supplemental 

Figure S2.5), their interpretation is hampered by range restriction (i.e., lower number 

of individuals with prediabetes and type 2 diabetes in the regular visit when compared 

to the catch-up visit)25. Fourth, the fact that the individuals with type 2 diabetes were 

relatively well-controlled (i.e., mean HbA1c: 49.2 ± 10.8 mmol/mol) and uncommonly 

used insulin (n=19, 9.6%), may also have influenced our findings. Namely, a wider 

range of glycemic control could have altered the reliability of CGM-derived indices in 

individuals with type 2 diabetes by affecting the inter- and intra-individual variance 

ratio. Additionally, percentile distributions of the CGM-derived indices are inherently 

determined by the glycemic status of the included individuals. The generalizability of 

our results is additionally affected by the age-restricted and predominately Caucasian 

study population, and by the absence of individuals with type 1 diabetes. 

In conclusion, we showed that a sufficiently reliable assessment of MSG, SD, and 

CV can be made with three recording days. In addition, we established the reference 

ranges for MSG, SD, and CV as 5.03 - 6.69 mmol/L, 0.44 - 1.37 mmol/L, and 7.74 - 22. 

45 %, respectively. We additionally found that the 1-hour OGTT value, IGP and 

maximum glucose peak correlated moderately with GV indices. These findings are 

relevant for future studies that aim to use CGM to measure GV, or current studies that 

only have OGTT-derived indices at their disposal to assess GV. 
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Supplemental materials 

Supplementary methods 

Statistical analysis 

We compared body weight and medication use of catch-up participants by use of 

paired T test and chi-square analysis. We used the Glycemic Variability Research Tool 

(GlyVaRT; Medtronic) software to additionally calculate mean amplitude of glucose 

excursions (MAGE)1, interquartile range (IQR), and mean of daily differences (MODD)2. 
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Supplementary results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2.1 Flowchart of the CGM study population selection process. CGM, continuous glucose 

monitoring; NGM, normal glucose metabolism; PreD, prediabetes; T2D, type 2 diabetes. 
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Figure S2.2 Reliability for mean sensor glucose (A), standard deviation (B), and coefficient of 

variation (C), per number of consecutive monitoring days after exclusion of 
individuals who returned for a catch-up visit. The dashed horizontal line represents the 
cut-off for sufficient reliability (R>0.80). NGM, normal glucose metabolism; PreD, 
prediabetes; T2D, type 2 diabetes. 
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Figure S2.3 Correlations of mean sensor glucose (A), standard deviation (B) and coefficient of 

variation (C) with oral glucose tolerance test-derived indices and HbA1c after 
exclusion of individuals with less than three recording days. A point estimate 
represents the Spearman’s rank correlation coefficient (rho) and corresponding 95% 
confidence interval. The abbreviations t=15, t=30, t=45, t=60, t=90 and t=120 represent the 
different oral glucose tolerance test time points. FPG, fasting plasma glucose; IGP, 
incremental glucose peak; MGP, maximum glucose peak. 
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Figure S2.4 Correlations of mean sensor glucose (A), standard deviation (B) and coefficient of 

variation (C) with oral glucose tolerance test-derived indices and HbA1c after 
exclusion of individuals with data gaps during the continuous glucose monitoring 
recording. A point estimate represents the Spearman’s rank correlation coefficient (rho) 
and corresponding 95% confidence interval. The abbreviations t=15, t=30, t=45, t=60, t=90 
and t=120 represent the different oral glucose tolerance test time points. FPG, fasting 
plasma glucose; IGP, incremental glucose peak; MGP, maximum glucose peak. 
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Figure S2.5 Correlations of mean sensor glucose (A), standard deviation (B) and coefficient of 

variation (C) with oral glucose tolerance test-derived indices and HbA1c after 
exclusion of individuals who underwent continuous glucose monitoring as part of a 
catch-up visit. A point estimate represents the Spearman’s rank correlation coefficient 
(rho) and corresponding 95% confidence interval. The abbreviations t=15, t=30, t=45, t=60, 
t=90 and t=120 represent the different oral glucose tolerance test time points. FPG, fasting 
plasma glucose; IGP, incremental glucose peak; MGP, maximum glucose peak. 



Chapter 2 

48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S2.6 Reliability for MAGE (A) and IQR (B) per number of consecutive monitoring days. The 

dashed horizontal line represents the cut-off for sufficient reliability (R>0.80). MAGE, 
mean amplitude of glucose excursions; IQR, interquartile range; NGM, normal glucose 
metabolism; PreD, prediabetes; T2D, type 2 diabetes. Of note, reliability for MODD could 
not be calculated. 
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Figure S2.7 Correlations of MAGE (A), IQR (B) and MODD (C) with oral glucose tolerance test-

derived indices and HbA1c. A point estimate represents the Spearman’s rank correlation 
coefficient (rho) and corresponding 95% confidence interval. MAGE, mean amplitude of 
glucose excursions; IQR, interquartile range; MODD, mean of daily differences; NGM, 
normal glucose metabolism. The abbreviations t=15, t=30, t=45, t=60, t=90 and t=120 
represent the different oral glucose tolerance test time points. FPG, fasting plasma 
glucose; IGP, incremental glucose peak; MGP, maximum glucose peak. 
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Table S2.1 Continuous glucose monitoring properties of the total study population and of 
glucose metabolism status-stratified groups. 

  Total 
(n=851) 

NGM 
(n=470) 

PreD (n=184) Type 2 
(n=197) 

Participants with CGM recording data on:     
   Data day 1 (CGM day 2) 846 (99.4) 465 (98.9) 184 (100) 197 (100) 
   Data day 2 (CGM day 3) 849 (99.8) 468 (99.6) 184 (100) 197 (100) 
   Data day 3 (CGM day 4) 841 (98.8) 465 (98.9) 182 (98.9) 194 (98.5) 
   Data day 4 (CGM day 5) 821 (96.5) 456 (97.0) 175 (95.1) 190 (96.4) 
   Data day 5 (CGM day 6) 803 (94.4) 444 (94.5) 171 (92.9) 188 (95.4) 
   Data day 6 (CGM day 7) 772 (90.7) 426 (90.6) 164 (89.1) 182 (92.4) 
Consecutive, complete CGM data days     
   0 24 (2.8) 15 (3.2) 4 (2.2) 5 (2.5) 
   1 19 (2.2) 10 (2.1) 5 (2.7) 4 (2.0) 
   2 26 (3.1) 13 (2.8) 8 (4.3) 5 (2.5) 
   3 30 (3.5) 17 (3.6) 6 (3.3) 7 (3.6) 
   4 31 (3.6) 15 (3.2) 10 (5.4) 6 (3.0) 
   5 or more 721 (84.7) 400 (85.1) 151 (82.1) 170 (86.3) 
Individuals with at least one data gap during 
CGM 

66 (7.8) 36 (7.7) 16 (8.7) 14 (7.1) 

   Data gap length, h 5.3 [0.9-19.6] 7.9 [0.9-24.8] 3.1 [0.9-14.7] 3.6 [0.8-12.9] 
Average daily calibration frequency     
   Mean ± SD   3.9 ± 0.5 3.8 ± 0.5 3.9 ± 0.5 3.9 ± 0.5 
   Median [IQR] 4.0 [3.7 – 4.1] 4.0 [3.7 – 4.1] 4.0 [3.9 – 4.1] 4.0 [3.9 – 4.1] 

Data are reported as mean ± SD, median [interquartile range] or number (percentage [%]) as 
appropriate. NGM, normal glucose metabolism; PreD, prediabetes; T2D, type 2 diabetes  
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2 

Table S2.4 GMS-stratified median values per data day for mean sensor glucose, standard 
deviation and coefficient of variation in individuals with more than five consecutive, 
complete days of CGM. 

CGM-derived index Data day NGM (n=400) PreD (n=151) T2D (n=170) 

MSG, mmol/L 1 5.72 [5.42 – 6.01] 6.13 [5.70 – 6.55] 7.36 [6.55 – 8.41] 
 2 5.76 [5.42 – 6.09] 6.17 [5.68 – 6.74] 7.44 [6.64 – 8.42] 
 3 5.86 [5.47 – 6.14] 6.20 [5.80 – 6.72] 7.48 [6.71 – 8.72] 
 4 5.86 [5.59 – 6.19] 6.26 [5.87 – 6.64] 7.63 [6.73 – 8.69] 
 5 5.87 [5.58 – 6.16] 6.26 [5.85 – 6.67] 7.55 [6.85 – 8.52] 
 6 5.90 [5.53 – 6.23] 6.21 [5.83 – 6.80] 7.50 [6.81 – 8.57] 

SD, mmol/L 1 0.68 [0.52 – 0.87] 0.84 [0.67 – 1.07] 1.46 [1.05 – 1.89] 
 2 0.63 [0.48 – 0.79] 0.76 [0.57 – 1.02] 1.31 [0.92 – 1.80] 
 3 0.62 [0.49 – 0.82] 0.83 [0.64 – 1.05] 1.32 [0.99 – 1.71] 
 4 0.62 [0.48 – 0.78] 0.82 [0.63 – 1.05] 1.35 [1.00 – 1.78] 
 5 0.64 [0.50 – 0.80] 0.81 [0.60 – 1.01] 1.36 [1.01 – 1.73] 
 6 0.63 [0.49 – 0.83] 0.75 [0.57 – 1.00] 1.31 [0.88 – 1.90] 

CV, % 1 11.8 [9.4 – 14.8] 13.7 [11.3 – 17.3] 18.4 [15.1 – 23.1] 
 2 10.9 [8.4 – 13.5] 12.6 [9.5 – 16.5] 17.0 [13.3 – 21.7] 
 3 10.7 [8.6 – 13.7] 13.2 [10.8 – 16.4] 16.4 [12.8 – 20.8] 
 4 10.5 [8.3 – 13.3] 12.9 [10.3 – 16.3] 17.0 [13.2 – 22.2] 
 5 11.0 [8.8 – 13.8] 13.0 [10.4 – 15.9] 16.8 [13.2 – 21.4] 
 6 10.9 [8.5 – 13.8] 12.0 [9.2 – 15.3] 16.8 [12.5 – 22.5] 

Data are reported as median [interquartile range]. Data represent the study population of participants 
with more than five consecutive, complete days of CGM. GMS, glucose metabolism status; CGM, 
continuous glucose monitoring; NGM, normal glucose metabolism; PreD, prediabetes; T2D, type 2 
diabetes; MSG, mean sensor glucose; SD, standard deviation; CV, coefficient of variation. 
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Table S2.6 Correlation coefficients of mean sensor glucose, standard deviation and coefficient 
of variation with fasting plasma glucose, oral glucose tolerance test-derived indices 
and HbA1c.  

 MSG SD CV n 

FPG 0.65 (0.61; 0.69) 0.50 (0.45; 0.55) 0.36 (0.30; 0.42) 851 
t=15 0.57 (0.62; 0.52) 0.48 (0.42; 0.53) 0.37 (0.31; 0.43) 791 
t=30 0.61 (0.56; 0.65) 0.55 (0.50; 0.60) 0.44 (0.39; 0.50) 792 
t=45 0.62 (0.57; 0.66) 0.59 (0.54; 0.63) 0.47 (0.42; 0.53) 794 
t=60 0.62 (0.58; 0.66) 0.61 (0.56; 0.65) 0.50 (0.45; 0.55) 783 
t=90 0.60 (0.55; 0.64) 0.59 (0.54; 0.63) 0.49 (0.43; 0.54) 765 
t=120 0.56 (0.51; 0.60) 0.53 (0.48; 0.58) 0.44 (0.38; 0.49) 813 
IGP 0.58 (0.52; 0.62) 0.59 (0.55; 0.64) 0.50 (0.45; 0.55) 744 
MGP 0.63 (0.59; 0.67) 0.60 (0.55; 0.65) 0.49 (0.43; 0.54) 744 
HbA1c 0.63 (0.58; 0.67) 0.56 (0.51; 0.61) 0.45 (0.39; 0.50) 851 

This table shows the Spearman’s rank correlation coefficients (rho) and corresponding 95% confidence 
intervals. MSG, mean sensor glucose; SD, standard deviation; CV, coefficient of variation; MGP, 
maximum glucose peak; IGP, incremental glucose peak; HbA1c, glycated hemoglobin A1c. The 
abbreviations t=15, t=30, t=45, t=60, t=90 and t=120 represent the different oral glucose tolerance test 
time points. 
 
 
Table S2.7 Moment of glucose peak during the oral glucose tolerance test (OGTT) in individuals 

with a complete 7-point OGTT.   

Peak time point during OGTT Total study 
population (n=744) 

NGM 
(n=430) 

PreD 
(n=166) 

T2D 
(n=148) 

FPG 0 (0) 0 (0) 0 (0) 0 (0) 
t=15 41 (5.5) 41 (9.5) 0 (0) 0 (0) 
t=30 170 (22.8) 154 (35.8) 13 (7.8) 3 (2.0) 
t=45 198 (26.6) 146 (34.0) 40 (24.1) 12 (8.1) 
t=60 172 (23.1) 66 (15.3) 76 (45.8) 30 (20.3) 
t=90 135 (18.1) 20 (4.7) 33 (19.9) 82 (55.4) 
t=120 28 (3.8) 3 (0.7) 4 (2.4) 21 (14.2) 

Data are reported as number (percentage %). OGTT, oral glucose tolerance test; NGM, normal glucose 
metabolism; PreD, prediabetes; T2D, type 2 diabetes; FPG, fasting plasma glucose. The abbreviations 
t=15, t=30, t=45, t=60, t=90 and t=120 represent the different oral glucose tolerance test time points. 
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Table S2.9 Linear regression coefficients of MSG, SD, and CV in the total study population and in 
GMS-stratified groups. 

Total study population Glycaemic index Constant Regression coefficient 
   MSG, mmol/L FPG, mmol/L 2.828 (2.588; 3.067) 0.609 (0.570; 0.649) 
 MGP, mmol/L 4.216 (4.058; 4.375) 0.193 (0.178; 0.207) 
 HbA1c, mmol/mol 2.093 (1.824; 2.362) 0.110 (0.104; 0.117) 
 45-minute, mmol/L 4.318 (4.148; 4.488) 0.200 (0.184; 0.217) 
 1-hour, mmol/L 4.589 (4.449; 4.729) 0.174 (0.161; 0.188) 
   SD, mmol/L 1-hour, mmol/L 0.222 (0.157; 0.287) 0.076 (0.070; 0.083) 
 MGP, mmol/L 0.075 (0.001; 0.149) 0.083 (0.076; 0.089) 
 IGP, mmol/L 0.436 (0.387; 0.485) 0.105 (0.097; 0.114) 
 45-minute, mmol/L 0.108 (0.029; 0.187) 0.087 (0.080; 0.095) 
 90-minute, mmol/L 0.326 (0.271; 0.381) 0.071 (0.065; 0.760) 
   CV, % 1-hour, mmol/L 8.136 (7.315; 8.958) 0.706 (0.627; 0.785) 
 IGP, mmol/L 9.956 (9.329; 10.583) 1.002 (0.891; 1.114) 
 MGP, mmol/L 6.918 (5.948; 7.888) 0.750 (0.663; 0.836) 
 90-minute, mmol/L 9.228 (8.516; 9.941) 0.640 (0.567; 0.712) 
 45-minute, mmol/L 7.097 (6.109; 8.084) 0.807 (0.710; 0.903) 
Normal glucose metabolism    
   MSG, mmol/L FPG, mmol/L 3.840 (3.402; 4.278) 0.389 (0.304; 0.474) 
 MGP, mmol/L 5.184 (4.983; 5.384) 0.078 (0.054; 0.101) 
 45-minute, mmol/L 5.345 (5.186; 5.503) 0.063 (0.043; 0.082) 
   SD, mmol/L IGP, mmol/L 0.608 (0.556; 0.661) 0.049 (0.035; 0.063) 
 MGP, mmol/L 0.405 (0.292; 0.519) 0.043 (0.030; 0.560) 
 1-hour, mmol/L 0.530 (0.451; 0.608) 0.033 (0.023; 0.044) 
   CV, % IGP, mmol/L 10.845 (10.015; 11.675) 0.699 (0.475; 0.924) 
 MGP, mmol/L 8.392 (6.584; 10.201) 0.566 (0.357; 0.775) 
 1-hour, mmol/L 10.030 (8.787; 11.274) 0.435 (0.271; 0.600) 
Prediabetes    
   MSG, mmol/L HbA1c, mmol/mol 3.120 (2.231; 4.010) 0.084 (0.061; 0.108) 
 FPG, mmol/L 3.449 (2.398; 4.501) 0.487 (0.309; 0.665) 
 30-minute, mmol/L 4.450 (3.733; 5.166) 0.191 (0.118; 0.264) 
   SD, mmol/L 30-minute, mmol/L 0.579 (0.226; 0.933) 0.041 (0.005; 0.077) 
 HbA1c, mmol/mol -0.039 (-0.483; 0.405) 0.027 (0.015; 0.039) 
 1-hour, mmol/L 0.443 (0.167; 0.720) 0.048 (0.024; 0.073) 
   CV, % 2-hour, mmol/L 11.017 (7.554; 14.481) 0.528 (0.113; 0.943) 
 90-minute, mmol/L 10.749 (7.529; 13.970) 0.469 (0.151; 0.786) 
 IGP, mmol/L 12.662 (10.273; 15.050) 0.489 (0.082; 0.897) 
Type 2 diabetes    
   MSG, mmol/L HbA1c, mmol/mol 3.440 (2.565; 4.315) 0.090 (0.072; 0.107) 
 MGP, mmol/L 3.965 (2.958; 4.972) 0.218 (0.156; 0.280) 
 90-minute, mmol/L 4.686 (3.826; 5.545) 0.181 (0.127; 0.236) 
   SD, mmol/L IGP, mmol/L 0.353 (0.047; 0.659) 0.126 (0.092; 0.160) 
 MGP, mmol/L -0.062 (-0.489; 0.365) 0.095 (0.069; 0.121) 
 90-minute, mmol/L 0.179 (-0.180; 0.538) 0.084 (0.061; 0.106) 
   CV, % IGP, mmol/L 9.095 (5.561; 12.630) 1.169 (0.776; 1.562) 
 90-minute, mmol/L 8.590 (4.498; 12.681) 0.700 (0.440; 0.960) 
 MGP, mmol/L 7.166 (2.110; 12.222) 0.760 (0.448; 1.072) 

This table shows the constants and unadjusted regression coefficients (95% confidence intervals) of the 
associations of mean sensor glucose (MSG), standard deviation (SD), and coefficient of variation (CV) 
with established glycaemic indices (i.e. FPG, fasting plasma glucose; IGP, incremental glucose peak; 
MGP, maximum glucose peak; several other oral glucose tolerance test time points). 
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Table S2.10 Distribution of CGM-derived indices after exclusion of individuals who underwent 
continuous glucose monitoring as part of a catch-up visit. 

CGM-derived indices NGM (n=423) PreD (n=108) T2D (n=72) p-value 

MSG, mmol/L Median [IQR] 5.8 [5.5 – 6.1] 6.2 [5.7 – 6.6] 7.3 [6.5 – 8.2] <0.001 
 Mean ± SD 5.8 ± 0.4 6.2 ± 0.6 7.6 ± 1.6  
 10th – 90th percentile 5.32 - 6.37 5.46 - 7.00 5.82 - 9.15  
 5th – 95th percentile 5.14 - 6.57 5.20 - 7.19 5.56 - 12.16  
 2.5th – 97.5th percentile 5.01 - 6.71 5.04 - 7.41 5.32 - 12.52  
SD, mmol/L Median [IQR] 0.73 [0.63 – 0.88] 0.89 [0.73 – 1.11] 1.46 [0.97 – 1.95] <0.001 
 Mean ± SD 0.78 ± 0.23 0.94 ± 0.27 1.54 ± 0.70  
 10th – 90th percentile 0.53 - 1.12 0.62 - 1.24 0.78 - 2.47  
 5th – 95th percentile 0.48 - 1.28 0.60 - 1.47 0.63 - 3.01  
 2.5th – 97.5th percentile 0.44 - 1.38 0.54 - 1.65 0.53 - 3.23  
CV, % Median [IQR] 12.7 [10.9 – 15.1] 14.8 [12.2 – 17.5] 19.0 [14.5 – 24.1] <0.001 
 Mean ± SD 13.3 ± 3.7 15.2 ± 3.9 20.0 ± 7.5  
 10th – 90th percentile 9.40 - 18.23 10.66 - 20.54 11.47 - 29.63  
 5th – 95th percentile 8.35 - 20.93 10.02 - 23.64 10.40 - 37.08  
 2.5th – 97.5th percentile 7.72 - 22.46 9.29 - 24.46 9.95 - 39.62  

CGM, continuous glucose monitoring; NGM, normal glucose metabolism; PreD, prediabetes; T2D, type 
2 diabetes; MSG, mean sensor glucose; SD, standard deviation; CV, coefficient of variation; IQR, 
interquartile range.  

 

 
Table S2.11 Distribution of CGM-derived indices after exclusion of individuals with less than 

three recording days. 

CGM-derived indices NGM (n=454) PreD (n=174) T2D (n=190) p-value 

MSG, mmol/L Median [IQR] 5.8 [5.5 – 6.1] 6.2 [5.8 – 6.6] 7.6 [6.8 – 8.7] <0.001 
 Mean ± SD 5.8 ± 0.4 6.2 ± 0.8 7.9 ± 1.6  
 10th – 90th percentile 5.30 - 6.36 5.56 - 7.07 6.11 - 9.87  
 5th – 95th percentile 5.15 - 6.52 5.24 - 7.60 5.90 - 11.78  
 2.5th – 97.5th percentile 5.02 - 6.70 5.03 - 8.33 5.63 - 12.78  
SD, mmol/L Median [IQR] 0.72 [0.62 – 0.86] 0.89 [0.73 – 1.12] 1.52 [1.15 – 1.94] <0.001 
 Mean ± SD 0.77 ± 0.23 0.97 ± 0.54 1.64 ± 0.70  
 10th – 90th percentile 0.53 - 1.08 0.64 - 1.30 0.88 - 2.46  
 5th – 95th percentile 0.48 - 1.23 0.60 - 1.62 0.78 - 3.10  
 2.5th – 97.5th percentile 0.44 - 1.36 0.54 - 1.93 0.66 - 3.45  
CV, % Median [IQR] 12.6 [10.8 – 14.8] 14.7 [12.2 – 17.5] 19.3 [15.9 – 24.0] <0.001 
 Mean ± SD 13.2 ± 3.6 15.3 ± 4.4 20.4 ± 6.5  
 10th – 90th percentile 9.40 - 18.00 10.70 - 20.63 13.14 - 28.62  
 5th – 95th percentile 8.39 - 19.95 10.13 - 24.06 12.21 - 32.59  
 2.5th – 97.5th percentile 7.70 - 22.43 9.29 - 25.94 10.48 - 36.25  

CGM, continuous glucose monitoring; NGM, normal glucose metabolism; PreD, prediabetes; T2D, type 
2 diabetes; MSG, mean sensor glucose; SD, standard deviation; CV, coefficient of variation; IQR, 
interquartile range. 
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Table S2.12 Distribution of CGM-derived indices after exclusion of individuals with data gaps 
during the continuous glucose monitoring recording.  

CGM-derived indices NGM (n=434) PreD (n=168) T2D (n=183) P-value 

MSG, mmol/L Median [IQR] 5.8 [5.5 – 6.1] 6.2 [5.8 – 6.6] 7.5 [6.8 – 8.6] <0.001 
 Mean ± SD 5.8 ± 0.4 6.3 ± 0.7 7.8 ± 1.7  
 10th – 90th percentile 5.31 - 6.35 5.56 - 7.06 6.07 - 9.90  
 5th – 95th percentile 5.15 - 6.58 5.31 - 7.51 5.73 - 11.87  
 2.5th – 97.5th percentile 5.03 - 6.71 5.02 - 8.16 5.63 - 12.78  
SD, mmol/L Median [IQR] 0.72 [0.62 – 0.86] 0.90 [0.75 – 1.13] 1.51 [1.12 – 1.93] <0.001 
 Mean ± SD 0.77 ± 0.23 0.97 ± 0.32 1.60 ± 0.67  
 10th – 90th percentile 0.53 - 1.07 0.64 - 1.30 0.87 - 2.43  
 5th – 95th percentile 0.48 - 1.23 0.60 - 1.58 0.77 - 3.04  
 2.5th – 97.5th percentile 0.45 - 1.37 0.54 - 1.86 0.66 - 3.42  
CV, % Median [IQR] 12.6 [10.8 – 14.7] 15.0 [12.2 – 17.5] 19.1 [15.8 – 23.9] <0.001 
 Mean ± SD 13.1 ± 3.5 15.2 ± 3.8 20.1 ± 6.1  
 10th – 90th percentile 9.44 - 17.88 10.72 - 20.51 13.09 - 27.53  
 5th – 95th percentile 8.58 - 19.91 10.12 - 23.70 12.10 - 32.44  
 2.5th – 97.5th percentile 8.02 - 22.43 9.28 - 24.54 10.45 - 34.65  

CGM, continuous glucose monitoring; NGM, normal glucose metabolism; PreD, prediabetes; T2D, type 
2 diabetes; MSG, mean sensor glucose; SD, standard deviation; CV, coefficient of variation; IQR, 
interquartile range. 
 
 
Table S2.13 Distribution of MAGE, IQR and MODD.  

CGM-derived indices NGM (n=470) PreD (n=184) T2D (n=197) P-value 

MAGE, mmol/L Median [IQR] 1.47 [1.19 – 1.86] 2.01 [1.54 – 2.47] 3.43 [2.47 – 4.59] <0.001 
 Mean ± SD 1.60 ± 0.60 2.10 ± 0.84 3.64 ± 1.46  
 10th – 90th percentile 1.01 - 2.36 1.23 - 3.06 1.94 - 5.73  
 5th – 95th percentile 0.90 - 2.70 1.11 - 3.80 1.58 - 6.12  
 2.5th – 97.5th percentile 0.83 - 3.00 1.01 - 4.29 1.22 - 6.47  
IQR, mmol/L Median [IQR] 0.90 [0.70 – 1.10] 1.10 [0.90 – 1.40] 1.85 [1.38 – 2.60] <0.001 
 Mean ± SD 0.94 ± 0.30 1.20 ± 0.46 2.07 ± 1.00  
 10th – 90th percentile 0.60 - 1.30 0.80 - 1.70 1.10 - 3.09  
 5th – 95th percentile 0.60 - 1.57 0.70 - 2.08 0.80 - 3.80  
 2.5th – 97.5th percentile 0.50 - 1.70 0.60 - 2.62 0.72 - 5.10  
MODD, mmol/L Median [IQR] 0.69 [0.58 – 0.82] 0.80 [0.68 – 1.01] 1.36 [1.05 – 1.72] <0.001 
 Mean ± SD 0.72 ± 0.20 0.88 ± 0.30 1.47 ± 0.65  
 10th – 90th percentile 0.50 - 0.98 0.56 - 1.27 0.75 - 2.25  
 5th – 95th percentile 0.45 - 1.07 0.53 - 1.43 0.66 - 2.72  
 2.5th – 97.5th percentile 0.41 - 1.21 0.48 - 1.70 0.62 - 3.47  

CGM, continuous glucose monitoring; NGM, normal glucose metabolism; PreD, prediabetes; T2D, type 
2 diabetes; MAGE, mean amplitude of glucose excursions; IQR, interquartile range; MODD, mean of 
daily differences. 
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Abstract 
Background 

Closed-loop insulin delivery systems, which integrate continuous glucose monitoring (CGM) and 

algorithms that continuously guide insulin dosing, have been shown to improve glycemic control. 

The ability to predict future glucose values can further optimize such devices. In this study, we 

used machine learning to train models in predicting future glucose levels based on prior CGM 

and accelerometry data. 

 

Methods 

We used data from The Maastricht Study, an observational population-based cohort that 

comprises individuals with normal glucose metabolism, prediabetes, or type 2 diabetes. We 

included individuals who underwent >48h of CGM (n=851), most of whom (n=540) 

simultaneously wore an accelerometer to assess physical activity. A random subset of individuals 

was used to train models in predicting glucose levels at 15- and 60-minute intervals based on 

either CGM data or both CGM and accelerometer data. In the remaining individuals, model 

performance was evaluated with root-mean-square error (RMSE), Spearman’s correlation 

coefficient (rho) and surveillance error grid. For a proof-of-concept translation, CGM-based 

prediction models were optimized and validated with the use of data from individuals with type 1 

diabetes (OhioT1DM Dataset, n=6). 

 

Results 

Models trained with CGM data were able to accurately predict glucose values at 15 (RMSE: 

0.19mmol/L; rho: 0.96) and 60 minutes (RMSE: 0.59mmol/L, rho: 0.72). Model performance was 

comparable in individuals with type 2 diabetes. Incorporation of accelerometer data only slightly 

improved prediction. The error grid results indicated that model predictions were clinically safe 

(15 min: >99%, 60 min >98%). Our prediction models translated well to individuals with type 1 

diabetes, which is reflected by high accuracy (RMSEs for 15 and 60 minutes of 0.43 and 1.73 

mmol/L, respectively) and clinical safety (15 min: >99%, 60 min: >91%). 

 

Conclusions 

Machine learning-based models are able to accurately and safely predict glucose values at 15- and 

60-minute intervals based on CGM data only. Future research should further optimize the 

models for implementation in closed-loop insulin delivery systems. 
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Introduction 

The increasing prevalence of diabetes entails an increase in debilitating complications, 

such as retinopathy, neuropathy, and cardiovascular disease1-3. Maintaining plasma 

glucose levels within the reference range is essential for the prevention of diabetes-

related complications, which are generally attributable to chronic hyperglycemia, 

although hypoglycemia has been suggested to contribute to cardiovascular disease 

risk as well3-5. One of the most promising developments to minimize hyperglycemia 

and hypoglycemia—and, hence, to increase time in range—in individuals with 

diabetes who require insulin treatment is a closed-loop insulin delivery system (also 

known as the artificial pancreas). Such a system integrates continuous glucose 

monitoring (CGM), insulin (with or without glucagon) infusion, and a control algorithm 

to continuously regulate blood glucose levels6,7. Multiple studies have shown the merit 

of incorporating the artificial pancreas into clinical care of individuals with type 1 or 

type 2 diabetes8,9. 

Despite prior efforts, there are still numerous points that need to be addressed in 

order to improve the individual components of closed-loop systems6,10. With regard to 

CGM, this includes overcoming sensor delay (i.e., the inherent ~10-minute discrepancy 

between interstitially measured and actual plasma glucose values), and sensor 

malfunctions (i.e., periods during which no glucose values are recorded)6,10,11. 

Continuous glucose prediction is a potentially viable strategy to both handle sensor 

delay and bridge periods of sensor malfunction. The use of machine learning has 

yielded encouraging glucose prediction accuracy results in relatively small study 

populations (mostly individuals with type 1 diabetes) or in silico studies, as extensively 

reviewed elsewhere12. Large, human-based study populations are now needed to 

reliably assess to what extent and within what time interval (i.e., prediction horizon) 

glucose values can be accurately predicted by use of machine learning. Additionally, 

incorporation of physical activity, which is considered an important factor for glucose 

control in daily life, could further improve glucose prediction6.  

In this study, we investigated to what extent glucose values can be accurately 

predicted at intervals of 15 and 60 minutes by a machine learning model that has been 

trained with a sliding time window of glucose values preceding the predicted values at 

a fixed interval. Additionally, we studied whether glucose prediction can be further 

improved by incorporation of accelerometer-measured physical activity, and to what 

extent the results differ in a subgroup analysis of individuals with type 2 diabetes only. 

For this, we used a large population of individuals with either normal glucose 

metabolism (NGM), prediabetes, or type 2 diabetes who simultaneously underwent 

CGM and continuous accelerometry during a one-week period. Last, we used the 

publicly available OhioT1DM Dataset to explore whether CGM-based prediction 

models would translate to individuals with type 1 diabetes, the primary target 

population for closed-loop insulin delivery. 
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Methods 

Study population and design 

We used data from The Maastricht Study, an observational, prospective, population-

based cohort study. The rationale and methodology have been described previously13. 

In brief, The Maastricht Study focuses on the etiology, pathophysiology, complications 

and comorbidities of type 2 diabetes, and is characterized by an extensive phenotyping 

approach. All individuals aged between 40 and 75 years and living in the southern part 

of the Netherlands were eligible for participation. Participants were recruited through 

mass media campaigns and from the municipal registries and the regional Diabetes 

Patient Registry via mailings. For reasons of efficiency, recruitment was stratified 

according to known type 2 diabetes status, with an oversampling of individuals with 

type 2 diabetes. In general, the examinations of each participant were performed 

within a time window of three months. From 19 September 2016 until 13 September 

2018, participants were invited to also undergo CGM14. During this period, a selected 

group of recently included participants were invited to return for CGM. In these 

participants only, there was a median time interval of 2.1 years between CGM and all 

other measurements. The present report includes cross-sectional data of the 851 

participants who had at least 48h of CGM data available and were classified with 

NGM, prediabetes, or type 2 diabetes. The Maastricht Study has been approved by the 

institutional medical ethical committee (NL31329.068.10) and the Minister of Health, 

Welfare and Sports of the Netherlands (Permit 131088-105234-PG). All participants gave 

written informed consent.  

Continuous glucose monitoring 

The rationale and methodology of CGM (iPro2 and Enlite Glucose Sensor; Medtronic, 

Tolochenaz, Switzerland) have been described previously14. In brief, the CGM device 

was worn abdominally and recorded subcutaneous interstitial glucose values (range: 

2.2 - 22.2 mmol/L) every five minutes for a seven-day period. For calibration purposes, 

participants were asked to perform self-measurements of blood glucose four times 

daily (Contour Next; Ascensia Diabetes Care, Mijdrecht, the Netherlands). Participants 

were blinded to the CGM recording, but not to self-measured values. Diabetes 

medication use was allowed and no dietary instructions were given. We only included 

individuals with at least 48h of CGM, but excluded the first 24h of CGM from analysis 

because of insufficient calibration. For the glucose prediction analyses, all remaining 

glucose data points were used. We additionally calculated mean sensor glucose, 

standard deviation (SD), and coefficient of variation (CV) with the use of Glycemic 

Variability Research Tool (GlyVaRT; Medtronic) software.  
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Accelerometry 

As described previously, daily physical activity was measured with use of the triaxial 

activPAL3 accelerometer (PAL technologies; Glasgow, United Kingdom)13,15. The 

accelerometer was, just as the CGM device, attached during the first research visit; 

participants wore the accelerometer on the front of the right thigh for eight 

consecutive days. No physical activity instructions were given. PAL Software Suite 

version 8 (PAL technologies) was used to convert the event-based accelerometry data 

files into 15-second interval data files. We used the composite of X, Y, and Z 

accelerations for each 15-second interval as the measure of physical activity.  

Assessment of participant characteristics 

As described previously13, we classified glucose metabolism status (GMS) as either 

NGM, prediabetes, or type 2 diabetes based on both a standardized 2-hour 75 gram oral 

glucose tolerance test and use of glucose-lowering medication16. We assessed 

medication use as part of a medication interview. Additionally, we determined 

smoking status and history of diabetes based on questionnaires, measured weight and 

height—to calculate body mass index (BMI)—and office blood pressure during a 

physical examination, and measured HbA1c as well as lipid profile in fasting venous 

blood.  

Dataset construction 

An overview of data preprocessing, model development, and model evaluation is given in 

Figure 3.1. In order to train our models in predicting future glucose values, we 

constructed two separate datasets (Figure 3.1, panel a). The first dataset consisted of 

only the participants’ six-day, five-minute interval CGM data (n=851). The second dataset 

consisted of both CGM and accelerometry data (n=540). To synchronize CGM 

(determined at 5-minute intervals) and accelerometry data (determined at 15-second 

intervals) in the second dataset, we linearly interpolated glucose values between two 

glucose data points with a frequency of 15 seconds. Consistent and aligned frequency 

intervals across these parameters are a statistical precondition for this type of model 

development17. The study populations were randomly split into a training (70%), tuning 

(10%), and evaluation (20%) dataset such that data from a given individual were present 

only in one set. The training set was used to train the proposed models. The tuning set 

was used to iteratively improve the models by selecting the best model architectures and 

hyperparameters. Finally, the best models were evaluated on the independent 

evaluation set that was retained during model development. 
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Figure 3.1 Overview of data preprocessing, model development and evaluation. Data was used 

from The Maastricht Study, an observational population-based cohort that comprises 
individuals with normal glucose metabolism (NGM), prediabetes, or type 2 diabetes (panel 
A). We included 851 individuals who underwent continuous glucose monitoring (CGM), 
most of whom simultaneously wore an accelerometer to assess physical activity (X, Y, and 
Z accelerations). Models developed with the long-short term memory (LSTM) architecture 
were trained in predicting glucose levels at 15- and 60-minute intervals with either CGM 
data only (1) or both CGM and accelerometer data (2) (panel B). Finally, model performance 
was evaluated by glucose profile analysis, performance metrics (root-mean-square error 
[RMSE]; Spearman’s correlation coefficient [rho]; proportions), and clinical error grids 
(panel C). 

 

Model development and design 

Our proposed predictive model operates sequentially over CGM and accelerometry 

data (Figure 3.1, panel b). At each individual time point, 30 minutes of prior time series 

data were provided to the statistical model (e.g., six CGM-based glucose values), based 

on which it predicted glucose values at specified time intervals. For this study, we set 

these time intervals at 15 and 60 minutes. The nature of this prediction task can be 

solved by a variety of statistical and machine learning models. In the current study, we 

assessed autoregressive integrated moving average, support vector regression, 
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gradient-boosting systems, shallow and deep multi-layer perceptron neural networks, 

and several recurrent neural network (RNN) architectures, including classical RNN18,19, 

gated recurrent units20, long-short term memory (LSTM) networks21, and all of its bi-

directional variants22,23. We chose to use a LSTM architecture, as this had the best 

performance in the tuning dataset. This architecture runs sequentially over time series 

data and is able to implicitly model the historical context of an individual by modifying 

an internal state through time. Specifically, we designed this architecture to predict 

both time intervals simultaneously, often referred to as “multi-task learning”, which 

aims to share knowledge amongst prediction tasks.  

Model selection and training 

We selected the multi-task LSTM network among several alternatives based on the 

tuning set performance (Supporting Information S3.1 and Table S3.1). Next, we 

evaluated a broad spectrum of hyperparameter combinations for this network (Table 

S3.2). This resulted in a multi-task LSTM architecture, consisting of three layers, 

including a dropout layer with a total of 56-104 neurons (Table S3.3). During training, 

we used exponential learning-rate decay via the Adam optimization scheme24. The 

best validation results were achieved by use of an initial learning rate with a decay of 

0.001 every 1,000 training steps, with a batch size of 1024, and a back-propagation 

through a time window of 30 minutes. This defines the amount of historic data the 

model uses, which in our case translates to six (first dataset) or 120 (second dataset) 

glucose data points, for the model to provide a prediction. The loss function during 

training was the mean average of the mean-squared error function of all predictions. 

The maximum amount of epochs was 50.000 with an early stopping criterion (based 

on 20% hold-out data) set to 250 epochs. We performed data preprocessing, model 

development, selection, and training using Python programming language (version 

3.7.1) with the use of packages Numpy (version 1.17), Pandas (version 0.24), Keras 

(version 2.2.2), Scikit-learn (version 0.22.0) and Tensorflow (version 2.0.1, beta). 

Translation of the prediction models to the OhioT1DM Dataset 

We used data from the OhioT1DM Dataset to explore whether our CGM-based 

prediction models would translate to individuals with type 1 diabetes. The OhioT1DM 

Dataset is freely available for scientific purposes and contains data of 6 individuals with 

type 1 diabetes who were all using insulin pump therapy and CGM25. The participants 

provided interstitial glucose values every five minutes for an eight-week period. First, in 

order to also include 30-minute prediction, we retrained our main CGM-based models 

on the main study population with identical hyperparameters and settings (Table S3.3). 

Then, we evaluated the main CGM-based model on the test portion of the OhioT1DM 

Dataset (20%). Next, we aimed to optimize our main CGM-based model by training it on 

the train portion of the OhioT1DM Dataset. Specifically, we trained the model using an 
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Adam optimizer with a learning rate of 10-4, a batch size of 1024, a maximum of 10.000 

epochs and an early stopping criterion (based on 20% of the training data) set to 100 

epochs. Last, we evaluated this optimized model on the test portion using performance 

metrics and safety error grids, as described previously. 

Model evaluation and statistical analysis 

Model evaluation was performed in the independent evaluation sets of individuals that 

were not used during model development (Figure 3.1, panel c). We employed several 

metrics to assess the performance of our models: root-mean-square error (RMSE), 

proportion of predicted values within 5% or 10% of actual glucose values, and 

Spearman’s rank correlation coefficient (rho) (Supporting Information S3.2). 

Bootstrapping was performed to obtain 95% confidence intervals for each of these 

metrics26. In addition, we used error grids that are classically used for assessment of 

blood glucose monitor safety (i.e., surveillance error grid, Parkes error grid) to evaluate 

the safety of our glucose prediction models27,28. Last, we performed several sensitivity 

analysis in our main study population by stratifying model performance for: (1) GMS 

(i.e., separate results for NGM and prediabetes); (2) day (06.00 to 24.00h) and night 

(24.00 to 06.00h); and (3) low or high glucose variability, defined as the 97.5th percentile 

of CGM-assessed SD in individuals with NGM (SD > 1.37 mmol/L)14.  

Normally distributed data are presented as mean ± SD, non-normally distributed 

data as median and interquartile range, and categorical data as n (%). Statistical 

analyses were performed using the Statistical Package for Social Sciences (version 25.0; 

IBM, Chicago, Illinois, USA) and the Python programming language (version 3.7.1). 

Results 

Main study population characteristics 

In total, 896 individuals underwent CGM as part of The Maastricht Study’s extensive 

phenotyping approach. We included participants with at least 48h of CGM data and 

either NGM, prediabetes, or type 2 diabetes. This resulted in the final study population 

of 851 individuals. Of this population, 540 participants (63.5%) simultaneously 

underwent CGM and accelerometry.  

Table 3.1 shows the overall and type 2 diabetes-stratified characteristics of the two 

study populations (CGM-based as well as CGM- and accelerometry-based glucose 

prediction). The overall participant characteristics of both populations were generally 

comparable with regard to age, sex, BMI, glycemic indices, blood pressure, and lipid 

profile, although the latter contained fewer participants with prediabetes or type 2 

diabetes. Additionally, the participants with type 2 diabetes in the CGM- and 

accelerometry-based glucose prediction population were more often newly diagnosed 

with type 2 diabetes. Accordingly, these participants less often used glucose-lowering 
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medication. Participant characteristics of the NGM and prediabetes subgroups are 

described in Table S3.4. 

 

 
Table 3.1 Participant characteristics of the CGM-based and CGM- and accelerometry-based 

glucose prediction study populations. 

 CGM-based glucose 
prediction 

CGM- and accelerometry-
based  glucose prediction 

Characteristic Total (n=851) T2D (n=197) Total (n=540) T2D (n=68) 

Age, years 59.9 ± 8.7 62.4 ± 7.8 59.1 ± 8.7 62.0 ± 6.9 
Women, n (%) 418 (49.1) 69 (35.0) 276 (51.1) 22 (32.4) 
BMI, kg/m2 27.2 ± 4.4 29.7 ± 4.7 26.5 ± 4.0 28.6 ± 4.1 
Newly diagnosed T2D, n (%) 70 (8.2) 70 (35.5) 35 (6.5) 35 (51.5) 
Glucose metabolism status     
   NGM/PreD/T2D, n 470/184/197 - 372/99/68 - 
   NGM/PreD/T2D, % 55.2/21.6/23.1 - 69.1/18.3/12.6 - 
   Fasting plasma glucose, mmol/L 5.4 [5.0–6.2] 7.3 [6.5–8.4] 5.3 [4.9–5.8] 7.2 [6.3–8.4] 
   2-h post-load glucose, mmol/L 6.7 [5.2–9.1] 13.6 [11.7–16.2] 6.2 [5.0–7.7] 12.5 [11.3–16.6] 
HbA1c, % 5.7 ± 0.8 6.7 ± 1.0 5.6 ± 0.6 6.4 ± 0.9 
HbA1c, mmol/mol 39.1 ± 8.3 49.2 ± 10.8 37.3 ± 6.2 46.9 ± 10.2 
Sensor glucose 
   Mean, mmol/L 

 
6.1 [5.7–6.7] 

 
7.5 [6.8–8.7] 

 
5.9 [5.6–6.4] 

 
7.3 [6.5–8.2] 

   SD, mmol/L 0.84 [0.68–1.18] 1.51 [1.14 – 1.95] 0.79 [0.66–1.01] 1.46 [0.94–1.99] 
   SD >1.37 mmol/L, n (%) 142 (16.7) 115 (58.4) 50 (9.3) 36 (52.9) 
   CV, % 14.0 [11.6–17.6] 19.3 [15.9–24.0] 13.3 [11.2–16.8] 19.2 [14.5–24.1] 
Diabetes medication use, n (%) 109 (12.8) 109 (55.6) 27 (4.8) 27 (39.7) 
   Insulin 19 (2.2) 19 (9.6) 4 (0.7) 4 (5.9) 
   Metformin 104 (12.2) 104 (53.1) 27 (5.0) 27 (39.7) 
   Sulfonylureas 21 (2.5) 21 (10.7) 6 (1.1) 6 (8.8) 
   Thiazolidinediones 0 (0) 0 (0) 0 (0) 0 (0) 
   GLP-1 analogues 3 (0.4) 3 (1.5) 1 (0.2) 1 (1.5) 
   DDP-4 inhibitors 1 (0.1) 1 (0.5) 0 (0) 0 (0) 
   SGLT-2 inhibitors 1 (0.1) 1 (0.5) 0 (0) 0 (0) 
Office SBP, mmHg 133.3 ± 18.0 139.4 ± 15.6 132.2 ± 17.9 137.7 ± 15.3 
Office DBP, mmHg 75.2 ± 10.2 77.7 ± 10.5 74.7 ± 10.1 77.7 ± 9.6 
Antihypertensive medication use, n (%) 305 (35.9) 126 (64.3) 162 (30.0) 41 (60.3) 
Total-to-HDL cholesterol ratio 3.5 [2.8–4.3] 3.6 [2.9–4.3] 3.4 [2.8–4.3] 3.7 [2.8–4.6] 
Triglycerides, mmol/L 1.3 [0.9–1.8] 1.5 [1.0–2.1] 1.2 [0.9–1.7] 1.6 [1.0–2.3] 
Lipid-modifying medication use, n (%) 212 (24.9) 115 (58.4) 100 (18.5) 39 (57.4) 
Smoking status     
   Never/former/current, n 327/415/106 67/104/26 214/253/70 19/36/13 
   Never/former/current, % 38.6/48.9/12.5 34.0/52.8/13.2 39.9/47.1/13.0 27.9/52.9/19.1 

Data are reported as mean ± SD, median [interquartile range], or number (percentage [%]) as 
appropriate. CGM, continuous glucose monitoring; BMI, body mass index; T2D, type 2 diabetes; NGM, 
normal glucose metabolism; PreD, prediabetes; HbA1c, glycated hemoglobin A1c; SD, standard 
deviation; CV, coefficient of variation; GLP-1, glucagon-like peptide-1; DPP-4, dipeptidase-4; SGLT-2, 
sodium-glucose cotransporter 2; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL, high-
density lipoprotein. 
 

 



Chapter 3 

70 

Overall performance of machine learning-based glucose prediction 

We trained two machine learning models (i.e., CGM-based; CGM- and accelerometry-

based) in predicting glucose levels at 15- and 60-minute intervals. Visually, both models 

appeared capable of accurately predicting the real glucose profiles, as illustrated by the 

representative examples in Figure S3.1 and Figure S3.2. Next, we assessed the 

performance of our models in our evaluation datasets with a variety of metrics, 

including an average error term (RMSE), the proportion of predictions within 5% or 10% 

deviation of the actual value, and correlation (rho). The evaluation datasets comprise 

20% of the original or stratified study populations and thus vary in sample size (n=13 - 

170). 

Overall, our models demonstrated high prediction accuracy, supported by low 

RMSE values and high proportions of predicted glucose values within 5% and 10% 

deviation (Table 3.2). Model performance in the type 2 diabetes subgroup was 

generally lower compared to the overall group, except for correlation coefficients, 

which were often higher in individuals with type 2 diabetes. This phenomenon can be 

largely attributed to the lower correlation coefficients of individuals with NGM and 

prediabetes (Table S3.5), which is caused by range restriction (i.e., smaller glucose 

ranges attenuate the correlation coefficients)29. Consequently, the correlation 

coefficients are valid for the comparison of CGM-based glucose prediction to CGM- and 

accelerometry-based glucose prediction, but not for comparison of the overall study 

population to the type 2 diabetes subgroup. In addition, we observed  short-to-

moderate time lags for the 15- and 60-minute predictions (Table S3.6). 

 

 
Table 3.2 Overall performance in the main study population of CGM-based and CGM- and 

accelerometry-based machine learning models trained in predicting glucose values 
at time intervals of 15 and 60 minutes. 

CGM-based glucose prediction 
 

CGM- and accelerometry-based 
glucose prediction 

 

Total (n=170) T2D (n=43) Total (n=109) T2D (n=13) 

15 minutes     
   RMSE, mmol/L 0.188 [0.186–0.191] 0.288 [0.281–0.306] 0.184 [0.177–0.189] 0.271 [0.260–0.282] 
   <5% , % 92.98 [92.87–93.05] 92.02 [91.83–92.25] 93.06 [93.03–93.09] 92.04 [91.99–92.11] 
   <10% , % 99.17 [99.13–99.23] 98.88 [98.82–98.94] 99.25 [99.21–99.28] 98.90 [98.83–98.97] 
   Rho 0.961 [0.959–0.962] 0.987 [0.985–0.989] 0.968 [0.964–0.970] 0.990 [0.988–0.993] 
60 minutes     
   RMSE, mmol/L 0.589 [0.582–0.592] 0.701 [0.692–0.711] 0.582 [0.579–0.586] 0.700 [0.693–0.708] 
   <5% , % 70.22 [70.09–70.41] 66.23 [66.13–66.33] 70.11 [70.05–70.17] 66.17 [66.09–66.22] 
   <10% , % 87.39 [87.24–87.53] 85.82 [85.70–85.93] 87.44 [87.38–87.50] 86.11 [86.01–86.20] 
   Rho 0.721 [0.719–0.722] 0.781 [0.779–0.782] 0.725 [0.721–0.729] 0.790 [0.782–0.799] 

Data are reported as mean [95% confidence interval]. CGM, continuous glucose monitoring; T2D, type 2 
diabetes; RMSE, root-mean-square error; < 5%, percentage of predicted values within 5% of actual 
glucose values; < 10%, percentage of predicted values within 10% of actual glucose values; rho, 
Spearman’s rank correlation coefficient. 
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In general, incorporation of accelerometry data in the models only slightly improved 

performance metrics at both prediction intervals (Table 3.2). Table S3.5 shows the 

model performance in NGM and prediabetes subgroups. Glucose prediction was most 

precise in individuals with NGM. Of note, the ML-based models substantially 

outperformed a naive approach that used t0 as predicted glucose value (Table S3.7, 

Figures S3.3 and S3.4).  

Safety evaluation with clinical error grids 

We assessed the safety of our machine learning-based glucose prediction using two 

clinical error grids (i.e., surveillance and Parkes error grids). Figure 3.2 depicts the safety 

results for individuals with type 2 diabetes according to the surveillance error grid. At 

the 15-minute interval, almost all predictions (>99.9%) were clinically safe (i.e., a risk 

score between 0 and 1.0) (Figure 3.2, panels A and B). At the extended prediction 

window of 60 minutes, clinical safety was slightly lower (98.4-99.2%) (Figure 3.2, 

panels C and D). Parkes error grid assessment yielded similar results (Figure S3.5). Of 

note, less accurate predictions were more often in the vertical B-D zones than in the 

horizontal B-E zones (e.g., Figure S3.4, panel C: 11.80% versus 4.24%), which suggests a 

model tendency to underestimate rather than overestimate actual glucose values, the 

latter of which being more dangerous.  

Additional analyses 

To further obtain insights into our model predictions, we assessed performance 

metrics stratified by day and night (Table S3.8). Fifteen-minute predictions did not 

materially differ between day and night. By contrast, accuracy of 60-minute 

predictions was lower during the day than at night. In addition, we stratified the 

results by high or low glucose variability (i.e., SD cut-off of 1.37 mmol/L) (Table S3.9). 

Model performance was slightly lower at higher glucose variability, at both time 

intervals of 15 and 60 minutes. 

Translation of the prediction models to the OhioT1DM Dataset 

The prediction accuracy of the CGM-based model that was developed with our main 

study population was moderate in individuals with type 1 diabetes (RMSEs at 15, 30, 

and 60 min: 0.689 [0.685 – 0.693], 1.189 [1.183 – 1.195], and 1.918 [1.910 – 1.926] mmol/L), 

but substantially improved after being trained on data from each individual with type 1 

diabetes (RMSEs at 15, 30, and 60 min: 0.426 [0.422 – 0.430], 1.046 [1.039 – 1.052], and 

1.733 [1.725 – 1.741] mmol/L; Table S3.10). Accordingly, clinical safety was substantial as 

shown by the high percentages of clinically safe predictions (15-minute: >99%, 

30-minute: >97%, and 60-minute: >91%; Figure 3.3). 
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Figure 3.2 Surveillance error grid evaluation of glucose prediction safety at time intervals of 15 

and 60 minutes in the main study population. Assessment of CGM-based glucose 
prediction safety in individuals with type 2 diabetes (n=43) at 15 minutes (panel A) and 60 
minutes (panel C). Assessment of CGM- and accelerometry-based glucose prediction 
safety in individuals with type 2 diabetes (n=13) at 15 minutes (panel B) and 60 minutes 
(panel D). The risk score values translate to the following degrees of risk: 0 - 0.5, none; 
0.5 - 1.0, slight (lower); 1.0 - 1.5, slight (higher); 1.5 - 2.0, moderate (lower); 2.0 - 2.5, 
moderate (higher); 2.5 – 3.0, great (lower); 3.0 - 3.5, great (higher); >3.5 extreme27. 
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Figure 3.3 Surveillance error grid evaluation of glucose prediction safety at time intervals of 15, 

30, and 60 minutes in individuals with type 1 diabetes. Assessment of CGM-based 
glucose prediction safety in individuals with type 1 diabetes (n=6) at 15 (panel A), 30 (panel 
B), and 60 minutes (panel C). The risk score values translate to the following degrees of 
risk: 0 - 0.5, none; 0.5 - 1.0, slight (lower); 1.0 - 1.5, slight (higher); 1.5 - 2.0, moderate (lower); 
2.0 - 2.5, moderate (higher); 2.5 – 3.0, great (lower); 3.0 - 3.5, great (higher); >3.5 extreme27. 

 

Discussion 

In this study with 851 individuals and almost 1.4 million glucose measurements, we 

investigated whether glucose values can be accurately predicted by using machine 

learning-based models that utilize recently measured CGM and physical activity data 

with the prospect of improving closed-loop insulin delivery systems. Our study has 

several important findings and unique characteristics. First, the machine learning-

based models are capable of accurately predicting the actual glucose profiles at 

15 minutes, as reflected by several objective performance metrics (e.g., RMSE, rho; 

Table 3.1) and visual illustrations (Figure S3.1 and Figure S3.2). Despite prediction 

accuracy being moderately lower at 60 minutes, more than 98% of the predicted 

values remained sufficiently accurate to be deemed clinically safe based on 

surveillance error grids (Figure 3.2). Second, glucose prediction only improved slightly 

when accelerometer-assessed physical activity data was incorporated in the models. 

Third, translation of our CGM-based glucose prediction models to individuals with 
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type 1 diabetes yielded encouraging results (i.e., ample prediction accuracy and clinical 

safety). 

Although most research has thus far focused on type 1 diabetes12, several efforts 

have been made to use machine learning for glucose prediction in individuals with 

type 2 diabetes30-34. Most of these studies assessed technical aspects of glucose 

prediction in relatively small (n=1 to 50) or even virtual, in silico populations. Such 

studies provide valuable comparisons of models, but show suboptimal and highly 

variable performance in predicting glucose values. To our knowledge, this is the first 

study to report this level of performance in a large, population-based sample of 

individuals with NGM, prediabetes, or type 2 diabetes. Our CGM-based models were 

able to accurately predict glucose values at 15 (RMSEs, overall/type 2 diabetes: 

0.19/0.29 mmol/L) and 60 minutes (RMSEs, overall/type 2 diabetes: 0.59/0.70 mmol/L). 

These results surpass previously reported RMSE values for a sample of 50 individuals 

with type 2 diabetes, which were 0.65 and 1.50 mmol/L for 15- and 60-minute CGM-

based glucose prediction, respectively34. We expect this difference to, in part, stem 

from our much larger sample size. To our knowledge, our exploratory translation to 

individuals with type 1 diabetes (Table S3.10) showed that our models perform equally 

well as recent publications in the field12,35-38. For example, the best performing model of 

the Blood Glucose Level Prediction Challenge 2018, which was also based on a LSTM 

architecture as well as was trained on and evaluated in the OhioT1DM Dataset, 

reported 30-minute and 60-minute RMSEs of 1.05 and 1.74 mmol/L35. Additionally, 

Kriventsov et al. recently described large-scale application of glucose prediction in a 

smartphone app (Diabits) and reported a comparable RMSE at 30 minutes 

(1.04 mmol/L)36. We anticipate that further technical development of our prediction 

models, while using a larger sample of individuals with type 1 diabetes, will advance 

performance even more. 

We integrated physical activity, which we assessed via accelerometry, into our 

glucose prediction model, because of its short- and long-term effects on daily glucose 

patterns. Whereas an acute bout of physical activity can either decrease or increase 

serum glucose levels, prolonged exercise improves insulin sensitivity, and thus insulin-

stimulated glucose uptake39. While it should be noted that CGM- and accelerometry-

based glucose prediction yielded larger improvements relative to CGM-based glucose 

prediction for the 60-minute interval, most notably during the day (Table S3.8) and in 

individuals with higher glucose variability (Table S3.9), incorporation of physical 

activity generally only marginally improved glucose prediction. This can be explained 

by the observation that the models based on CGM data only already performed very 

well, which limits the ability to achieve additional improvements40. Also, the effect of 

physical activity on serum glucose levels is relatively small in people with beta-cell 

function that is either normal or only mildly deficient. Given the absence of pancreatic 

glucoregulation in individuals with type 1 diabetes, it is conceivable that incorporation 

of accelerometry data leads to more substantially improved model performance in this 
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patient group40, which, at present, we were not able to further explore.  In addition, a 

time interval of 15 or 60 minutes could be too short to incorporate long-term physical 

activity effects into the prediction model.  

The closed-loop insulin delivery system has been shown to improve glycemic 

control in individuals with type 1 or type 2 diabetes8,9,41. Nevertheless, several aspects of 

the artificial pancreas require further enhancement6,10. Our results demonstrate that 

machine learning-based glucose prediction has the promise of being a valid and safe 

strategy to both overcome ~10-minute sensor delay and bridge prolonged periods of 

sensor malfunction. Not only are more than 99% of the predicted glucose values in 

clinically safe zones (i.e., Parkes error grid zone A and B), the model also tended to 

slightly underestimate rather than overestimate the actual glucose values. In case the 

prediction model were to be implemented, this would further reduce the risk of 

iatrogenic hypoglycemia. Nevertheless, future research  is needed to assess whether 

incorporation of these prediction models in a closed-loop insulin delivery system safely 

improves glycemic control.  

This proof-of-principle study has several strengths and limitations. Strengths are 1) 

the largest well-characterized, population-based study sample thus far, which ensured 

sufficient statistical power; 2) the unique large-scale combination of CGM and 

continuous accelerometry, which enabled us to study to what extent incorporation of 

data on physical activity would improve prediction in this population; 3) result 

robustness, as reflected by the consistency of several statistical and clinical 

performance metrics; and 4) the gold-standard assessment of GMS, which allowed for 

the comparison of performance in NGM, prediabetes and type 2 diabetes.  

Our research had certain limitations. First, the main study population comprised 

individuals with NGM, prediabetes, or type 2 diabetes, who are generally not the target 

population for closed-loop insulin delivery systems. We, therefore, exploratively 

investigated whether our prediction models would translate to individuals with type 1 

diabetes using the OhioT1DM Dataset, which yielded encouraging results. 

Nevertheless, we underscore the importance of extensive evaluation of the models in a 

larger sample of individuals with type 1 diabetes, insulin-treated type 2 diabetes, or 

both. Second, we were unable to factor in other important elements pertaining to 

glycemic control (e.g., diet or medication use)6. In automated, self-regulatory closed-

loop systems, utilization of these kinds of data requires manual input, which is less 

convenient and reliable than CGM. In addition, since glucose prediction was only 

slightly improved by incorporating physical activity, we expect relatively little gain 

from including such factors into our models, at least in individuals with type 2 

diabetes. However, given the results of several small studies that have incorporated 

diet and medication use12, we acknowledge that this may not hold true for individuals 

with type 1 diabetes. In this regard, large-scale studies are required to reach more 

definitive conclusions. If diet, medication use, or other factors were to be incorporated, 
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it is necessary to evaluate whether LSTM remains the best-performing machine 

learning architecture. 

Conclusion 

In this study, we show that our machine learning-based models are able to accurately 

and safely predict glucose values for up to 60 minutes in individuals with, NGM, 

prediabetes, or type 2 diabetes. In addition, translation of our prediction models to 

individuals with type 1 diabetes showed encouraging results. We observed particularly 

high precision at a 15-minute prediction window, which is a clinically relevant timespan 

to align interstitially measured glucose values by continuous glucose measurement 

systems with actual plasma glucose values. As such, the prediction model can be used 

to improve closed-loop insulin delivery systems by overcoming sensor delay. In 

addition, longer prediction intervals may be used to safely bridge periods of sensor 

malfunction. Last, our current findings question the use of accelerometry to 

substantially improve prediction. Future research should validate our findings by 

replicating the results in a larger sample of individuals with type 1 diabetes and 

studying the effects of implementing the prediction model in a closed-loop insulin 

delivery system. 
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Supplemental materials 

Supporting information S3.1. Background information on machine learning 

models reviewed in current study  

We conducted a comparison of available algorithms on the continuous glucose 

prediction task. We considered the following algorithms: 

 ARIMA: an autoregressive integrated moving average (ARIMA) model is an adaptation 

of the autoregressive moving average (ARMA) model. These models aim to estimate 

the time series using two polynomials, one for autoregression (AR), and the other for 

the moving average (MA). ARIMA models for glucose prediction have widely been 

described in the literature1-4. For the current comparison, we used a ARIMA (p=3, d=0, 

q=0) model based on previous findings by Otoom et al1.  

 Support vector regression: support vector regression (SVR) is a generalization of 

support vector machines (SVM) that work for regression problems. SVR models for the 

prediction of glucose values have been described in the literature5, 6. For the current 

comparison, we build the SVR model with a Gaussian RFB kernel that was optimized by 

the differential evolution algorithm as described by Georga et al5. 

 Gradient-boosting trees: gradient-boosting trees have shown superior performances 

in the medical domain, but lack the capability to aggregate information over time. For 

baseline comparison, we used the LightGBM7 implementation with a learning rate of 

0.01, a maximum number of trees of 500, and a maximum depth of each base learner 

to be 50. 

 Feed-forward neural networks: feed-forward neural networks do not have the 

capacity to aggregate the information about past glucose status of an individual over 

time. Yet, they are relatively simple networks which have previously been employed for 

glucose8-10. We considered shallow and deep multi-layer perceptron (MLP) neural 

networks. The shallow MLP consisted of one hidden layer (ReLU) with 16 neurons. The 

deep MLP consisted of three hidden layers (ReLU) with 64, 32, and 16 neurons, 

respectively. Both networks were trained using the Adam optimizer scheme with a 

learning rate of 0.001.  

 Recurrent neural networks: recurrent neural networks are a type of neural networks 

with the capacity to explicitly model information over time. These type of neural 

networks are designed to work with temporal data such as glucose and physical 

activity data. Although we acknowledge the broad availability of neural network 

architectures11-15, we only considered recurrent neural networks (RNN), and long-short 

term memory (LSTM) networks for the baseline comparison. Both models consisted of 

one RNN layer (either RNN or LSTM) with 32 neurons, followed by a Dense layer of 

8 neurons. Both networks were trained using the Adam optimizer scheme with a 

learning rate of 0.001. 
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Supporting information S3.2. Background information on metrics used in the 

current study 

In the current study we used several metrics to assess the performance of our models. 

In this paragraph we will describe each of them briefly and also provide their 

mathematical definition. 

 Root-mean-square error (RMSE): the RMSE is an average error term which is in 
the order of the predicted / measured variable. It also can be interpreted as 

the standard deviation of the prediction errors. The formula of RMSE is as 

follows: 
 

 

 

 

 with ŷ1, ŷ2, ŷn depicting the predicted values; y1, y2, yn depicting the real values 

and 
n
 representing the total number of predictions 

 

 Correlation: correlation is a measure of how well the relationship between 

two variables is. In this study, we deal with non-parametrically distributed 
data and therefore use Spearman’s rank correlation coefficient (rho) which 

tries to describe the relationship of two variables using a monotonic function:  

 
 

 

 
 

 

 with x1, x2, xn depicting the predicted values; y1, y2, yn depicting the real values 

and n representing the total number of predictions 

 

 Time lag: time lag is a measure of the time shift between the actual and 
predicted glucose profile which results in the highest cross correlation 

coefficient between them10,16:  
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Figure S3.1 Illustrative examples of continuous glucose monitoring-based machine learning 

model predictions compared to actual values. Predictions in an individual with normal 
glucose metabolism (NGM) on a time interval of 15 (A) and 60 (B) minutes. Predictions in 
an individual with prediabetes (PreD) on a time interval of 15 (C) and 60 (D) minutes. 
Predictions in an individual with type 2 diabetes (T2D) on a time interval of 15 (E) and 60 (F) 
minutes. 
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Figure S3.2 Illustrative examples of continuous glucose monitoring- and accelerometry-based 

machine learning model predictions compared to actual values. Predictions in an 
individual with normal glucose metabolism (NGM) on a time interval of 15 (A) and 60 (B) 
minutes. Predictions in an individual with prediabetes (PreD) on a time interval of 15 (C) 
and 60 (D) minutes. Predictions in an individual with type 2 diabetes (T2D) on a time 
interval of 15 (E) and 60 (F) minutes. 
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Figure S3.3 Surveillance error grid evaluation of glucose prediction safety at time intervals of 15 

and 60 minutes using glucose value t0 as predictor. Assessment of glucose prediction 
safety in individuals with type 2 diabetes (n=43) at 15 minutes (panel A) and 60 minutes 
(panel B) using a naïve approach with t0 as predictor. The risk score values translate to the 
following degrees of risk: 0-0.5, none; 0.5-1.0, slight (lower); 1.0-1.5, slight (higher); 1.5-2.0, 
moderate (lower); 2.0-2.5, moderate (higher); 2.5–3.0, great (lower); 3.0-3.5, great (higher); 
>3.5 extreme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3.4 Performance characteristics of a prediction model using t0 as predictor across time 
horizons between 0 and 120 minutes. An extended analysis of model performance using 
t0 glucose value as predictor was carried out for normal glucose metabolism (NGM), 
prediabetes (PreD) and individuals with type 2 diabetes (T2D). Models were evaluated 
using RMSE (root-mean-square error; upper-left), Spearman’s rank correlation coefficient 
(upper-right) and percentage of predicted values within 5% and 10% of actual glucose 
values, respectively (lower-left and right). 
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Figure S3.5 Parkes error grid evaluation of glucose prediction safety at time intervals of 15 and 60 
minutes. Assessment of CGM-based glucose prediction safety in individuals with type 2 
diabetes (n=43) at 15 minutes (panel A) and 60 minutes (panel C). Assessment of CGM- 
and accelerometry-based glucose prediction safety in individuals with type 2 diabetes 
(n=13) at 15 minutes (panel B) and 60 minutes (panel D). Each error zone (panel E) has a 
different clinical interpretation and consequence (panel F). A horizontal shift towards zone 
E represents overestimation by the algorithm (higher predicted than actual glucose 
values); a vertical shift towards zone D represents underestimation (lower predicted than 
actual glucose values).  

 



Machine learning-based glucose prediction 

85 

3 

Tables 

Table S3.1 Baseline statistical and machine learning model comparison for predicting glucose 
values. 

CGM-based glucose prediction Combined glucose prediction Prediction window 
and baseline model Rho RMSE, mmol/L Rho RMSE, mmol/L 

15 minutes     
   ARIMA  0.842  

[0.837 – 0.848] 
0.504  

[0.490 – 0.518] 
0.834  

[0.829 – 0.840] 
0.498  

[0.492 – 0.505] 
   SVR 0.791  

[0.781 – 0.802] 
0.558  

[0.549 – 0.567] 
0.703  

[0.694 – 0.712] 
0.612  

[0.601 – 0.622] 
   LightGBM 0.783  

[0.767 – 0.795] 
0.589  

[0.577 – 0.601] 
0.783 

[0.771 – 0.794] 
0.497  

[0.582 – 0.613] 
   Shallow MLP  0.810  

[0.804 – 0.816] 
0.517  

[0.506 – 0.529] 
0.763  

[0.754 – 0.772] 
0.592  

[0.581 – 0.603] 
   Deep MLP 0.807  

[0.797 – 0.818] 
0.511  

[0.504 – 0.518] 
0.828  

[0.819 – 0.837] 
0.510  

[0.503 – 0.517] 
   RNN 0.894  

[0.887 – 0.902] 
0.485  

[0.481 – 0.490] 
0.890  

[0.882 – 0.898] 
0.477  

[0.472 – 0.482] 
   LSTM 0.872  

[0.865 – 0.879] 
0.482  

[0.477 – 0.487] 
0.884  

[0.878 – 0.890] 
0.501  

[0.496 – 0.506] 
60 minutes     
   ARIMA  0.307  

[0.284 – 0.329] 
1.543  

[1.489 – 1.623] 
0.303  

[0.283 – 0.322] 
1.502  

[1.455 – 1.568] 
   SVR 0.388  

[0.376 – 0.398] 
1.386  

[1.322 – 1.452] 
0.394  

[0.382 – 0.405] 
1.412  

[1.350 – 1.475] 
   LightGBM 0.500  

[0.491 – 0.508] 
1.118  

[1.098 – 1.136] 
0.498  

[0.485 – 0.511] 
1.128  

[1.107 – 1.148] 
   Shallow MLP  0.503  

[0.495 – 0.511] 
1.081  

[1.074 – 1.088] 
0.483  

[0.470 – 0.495] 
1.081  

[1.070 – 1.092] 
   Deep MLP 0.496  

[0.484 – 0.509] 
1.108  

[1.100 – 1.115] 
0.515  

[0.502 – 0.528] 
1.108  

[1.099 – 1.017] 
   RNN 0.591  

[0.581 – 0.600] 
0.989  

[0.983 – 0.995] 
0.596  

[0.589 – 0.603] 
0.992  

[0.984 – 0.998] 
   LSTM 0.605  

[0.593 – 0.616] 
0.941  

[0.937 – 0.945] 
0.602  

[0.595 – 0.609] 
0.922  

[0.919 – 0.926] 

Comparison of statistical and machine learning models for the continuous glucose prediction. We 
trained models on the training dataset and evaluated their performance on the tuning dataset. 
Performance was assessed by Spearman’s rank correlation coefficient (rho) and root-mean-square error 
(RMSE). 95% confidence intervals were calculated using 1,000 bootstraps. 
 

 



Chapter 3 

86 

Table S3.2 Hyperparameter combinations evaluated in current experiments. 

Hyperparameter Values considered 

Data preprocessing 
   Normalization to [0, 1] On, off 
   Back-propagation window 15, 30, 60, 120 minutes 
Neural Network architecture 
   RNN cell type LSTM, RNN, GRU 
   RNN cell type, bi-directional structure On, off 
   RNN number of hidden layers 1, 2, 3 
   RNN cell size 128, 64, 32, 16, 8, 4 
   RNN, activation function ReLU, leaky ReLU, tanh, sigmoid, ELU 
   Dropout, presence On, off 
   Dropout 0.05, 0.1, 0.2, 0.25 
Model training 
   Learning rate 1e-2, 1e-3, 1e-4, 1e-5   
   Learning rate scheduling On, off 
   Learning rate scheduling decay 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 
   Batch size 64, 128, 256, 512, 1024, 2048, 4096 
   Optimizer scheme Adam, NAdam, RMSprop, SGD 

 
 

Table S3.3 Final set of hyperparameters for each of the machine learning models. 

Hyperparameter CGM-based glucose 
prediction 

Combined glucose 
prediction 

Data preprocessing  
   Normalization to [0, 1] On On 
   Back-propagation window 30 minutes 30 minutes 
Neural Network architecture  
   RNN cell type LSTM, LSTM, Dense LSTM, LSTM, Dense 
   RNN cell type, bi-directional structure Off, off, off On, off, off 
   RNN number of hidden layers 3 3 
   RNN cell size 32, 16, 8 64, 32, 8 
   RNN, activation function ReLU, ReLU, ReLU ReLU, ReLU, ReLU 
   Dropout, presence Off, off, on Off, off, on 
   Dropout 0.1 0.1 
Model training  
   Learning rate 0.001 0.001 
   Learning rate scheduling On On 
   Learning rate scheduling decay 0.005 every 1,000 steps 0.005 every 1,000 steps 
   Batch size 1024 1024 
   Optimizer scheme Adam Adam 
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Table S3.5 Extended analysis of model performance in normal glucose metabolism and 
prediabetes subgroups.  

CGM-based glucose prediction Combined glucose prediction  

NGM (n=92) PreD (n=35) NGM (n=75) PreD (n=21) 

15 minutes     
   RMSE, mmol/L 0.158 [0.154–0.161] 0.238 [0.233–0.343] 0.151 [0.149–0.153] 0.232 [0.227–0.237] 
   <5% , % 93.56 [93.50–93.62] 92.58 [92.51–92.66] 93.76 [93.71–93.80] 92.65 [92.57–97.73] 
   <10% , % 99.47 [99.42–99.52] 99.01 [98.98–99.05] 99.65 [99.62–99.68] 99.08 [99.04–99.12] 
   Rho 0.951 [0.948–0.954] 0.973 [0.967–0.980] 0.953 [0.950–0.957] 0.974 [0.968–0.979] 
60 minutes     
   RMSE, mmol/L 0.501 [0.498–0.505] 0.602 [0.594–0.610] 0.503 [0.495–0.510] 0.599 [0.594–0.604] 
   <5% , % 74.19 [74.11–74.26] 69.48 [69.39–69.56] 75.02 [74.95–75.08] 70.01 [69.95–70.07] 
   <10% , % 89.89 [89.82–89.97] 87.43 [87.36–87.50] 89.25 [89.19–89.31] 88.20 [88.09–88.30] 
   Rho 0.699 [0.697–0.702] 0.732 [0.727–0.738] 0.701 [0.697–0.705] 0.739 [0.732–0.747] 

Data are reported as mean [95% confidence interval]. CGM, continuous glucose monitoring; NGM, 
normal glucose metabolism; PreD, prediabetes; RMSE, root-mean-square error; <5%, percentage of 
predicted values within 5% of actual glucose values; <10%, percentage of predicted values within 10% of 
actual glucose values; rho, Spearman’s rank correlation coefficient. 
 
 
Table S3.6 Extended analysis on time lag between predicted and actual glucose values. 

Time lag Total (n=170) NGM (n=92) PreD (n=35) T2D (n=43) 

15 minutes     
   CGM-based 0.12 ± 0.18 0.08 ± 0.12 0.07 ± 0.11 0.41 ± 0.92 
   Combined 0.17 ± 0.11 0.11 ± 0.18 0.10 ± 0.18 0.44 ± 0.38 
60 minutes     
   CGM-based 12.28 ± 6.84 7.02  ± 3.46 9.03  ± 3.77 14.92 ± 11.18 
   Combined 11.95 ± 7.32 7.19  ± 2.87 8.75  ± 3.91 14.28 ± 9.96 

Data are reported as mean ± SD. NGM, normal glucose metabolism; PreD, prediabetes; T2D, type 2 
diabetes. 
 

Time lag Total (n=170) NGM (n=92) PreD (n=35) T2D (n=43) 

15 minutes     
   CGM-based 0 [0 – 5] 0 [0 – 0] 0 [0 – 0] 0 [0 – 0] 
   Combined 0.50 [0.25 – 0.75] 0.25 [0.0 – 0.75] 0.25 [0 – 0.50] 0.50 [0.25 – 0.75] 
60 minutes     
   CGM-based 10 [5 – 15] 10 [0 – 15] 10 [5 – 15] 15 [5 – 20] 
   Combined 9.50 [4.25 – 16.50] 6.75 [4.25 – 9.50] 7.50 [4.50 – 10.75] 14.50 [6.75 – 21.50] 

Data are reported as median [IQR]. NGM, normal glucose metabolism; PreD, prediabetes; T2D, type 2 
diabetes. 
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Table S3.7 Extended analysis of model performance with t0 glucose value as predictor. 

Prediction with t0 Total (n=170) NGM (n=92) PreD (n=35) T2D (n=43) 

15 minutes     
   RMSE, mmol/L 0.158 [0.154–0.161] 0.238 [0.233–0.343] 0.151 [0.149 – 0.153] 0.232 [0.227 – 0.237] 
   <5% , % 93.56 [93.50–93.62] 92.58 [92.51–92.66] 93.76 [93.71 – 93.80] 92.65 [92.57 – 97.73] 
   <10% , % 99.47 [99.42–99.52] 99.01 [98.98–99.05] 99.65 [99.62–99.68] 99.08 [99.04–99.12] 
   Rho 0.951 [0.948–0.954] 0.973 [0.967–0.980] 0.953 [0.950–0.957] 0.974 [0.968–0.979] 
60 minutes     
   RMSE, mmol/L 0.501 [0.498–0.505] 0.602 [0.594–0.610] 0.503 [0.495–0.510] 0.599 [0.594–0.604] 
   <5% , % 74.19 [74.11–74.26] 69.48 [69.39–69.56] 75.02 [74.95–75.08] 70.01 [69.95–70.07] 
   <10% , % 89.89 [89.82–89.97] 87.43 [87.36–87.50] 89.25 [89.19–89.31] 88.20 [88.09–88.30] 
   Rho 0.699 [0.697–0.702] 0.732 [0.727–0.738] 0.701 [0.697–0.705] 0.739 [0.732–0.747] 

Data are reported as mean [95% confidence interval]. NGM, normal glucose metabolism; PreD, 
prediabetes; T2D, type 2 diabetes; RMSE, root-mean-square error; <5%, percentage of predicted values 
within 5% of actual glucose values; <10%, percentage of predicted values within 10% of actual glucose 
values; rho, Spearman’s rank correlation coefficient. 
 

 

TableS3.8 Model performance stratified by day and night.  

 CGM-based glucose prediction Combined glucose prediction 

15 minutes Total (n=170) T2D (n=43) Total (n=109) T2D (n=13) 

Day     
   RMSE, mmol/L 0.199 [0.196–0.202] 0.300 [0.295–0.305] 0.197 [0.193–0.201] 0.287 [0.283–0.291] 
   <5% , % 92.92 [92.85–92.99] 91.97 [91.87–92.07] 92.94 [92.90–92.98] 91.95 [91.92–91.98] 
   <10% , % 99.11 [99.07–99.15] 98.84 [98.72–98.95] 99.17 [99.13–99.21] 98.82 [98.78–98.86] 
   Rho 0.955 [0.952–0.958] 0.984 [0.981–0.987] 0.964 [0.962–0.966] 0.986 [0.984–0.988] 
Night     
   RMSE, mmol/L 0.182 [0.175–0.189] 0.278 [0.273 – 0.283] 0.178 [0.173 – 0.183] 0.257 [0.252 – 0.262] 
   <5% , % 93.08 [93.01–93.15] 92.07 [91.99 – 92.15] 93.11 [93.07 – 93.15] 92.14 [92.10 – 92.18] 
   <10% , % 99.28 [99.20–99.36] 98.94 [98.88–99.00] 99.34 [99.30–99.38] 99.03 [98.98–99.08] 
   Rho 0.967 [0.964–0.970] 0.989 [0.986–0.992] 0.974 [0.970–0.978] 0.994 [0.992–0.996] 

 

 CGM-based glucose prediction Combined glucose prediction 

60 minutes Total (n=170) T2D (n=43) Total (n=109) T2D (n=13) 

Day     
   RMSE, mmol/L 0.687 [0.683–0.691] 0.775 [0.768–0.783] 0.536 [0.532–0.540] 0.768 [0.760–0.776] 
   <5% , % 68.40 [68.35–68.45] 63.69 [63.57–63.81] 68.87 [68.80–68.94] 64.03 [63.95–64.11] 
   <10% , % 85.27 [85.20–85.35] 83.82 [83.77–83.87] 86.12 [86.07–86.17] 84.08 [84.01–84.15] 
   Rho 0.640 [0.629–0.651] 0.703 [0.697–0.709] 0.658 [0.654–0.663] 0.710 [0.705–0.715] 
Night     
   RMSE, mmol/L 0.497 [0.491–0.503] 0.634 [0.629–0.639] 0.512 [0.503–0.521] 0.633 [0.627–0.639] 
   <5% , % 72.61 [72.56–72.66] 69.42 [69.33–69.51] 71.58 [71.47–71.69] 69.28 [69.21–69.35] 
   <10% , % 89.44 [89.31–89.57] 87.10 [87.01–87.20] 88.78 [88.68–88.88] 87.30 [87.19–87.41] 
   Rho 0.793 [0.784–0.802] 0.854 [0.848–0.860] 0.783 [0.780–0.786] 0.861 [0.855–0.867] 

Data are reported as mean [95% confidence interval]. CGM, continuous glucose monitoring; T2D, type 2 
diabetes; RMSE, root-mean-square error; <5%, percentage of predicted values within 5% of actual 
glucose values; <10%, percentage of predicted values within 10% of actual glucose values; rho, 
Spearman’s rank correlation coefficient. 
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Table S3.9 Model performance stratified by low versus high glucose variability.  

CGM-based glucose prediction Combined glucose prediction 

 
SD ≤1.37 mmol/L 

(n=142) 
SD >1.37 mmol/L 

(n=28) 
SD ≤1.37 mmol/L 

(n=101) 
SD >1.37 mmol/L 

(n=8) 

15 minutes     
   RMSE, mmol/L 0.179 [0.176–0.181] 0.301 [0.289–0.313] 0.180 [0.177–0.183] 0.288 [0.276–0.299] 
   <5% , % 93.02 [92.99–93.05] 91.88 [91.77–92.05] 93.21 [93.18–93.24] 92.00 [91.92–92.08] 
   <10% , % 99.25 [99.22–99.28] 98.79 [98.76–98.84] 99.30 [99.29–99.32] 98.82 [98.73–98.91] 
   Rho 0.960 [0.959–0.962] 0.983 [0.980–0.986] 0.965 [0.964–0.967] 0.992 [0.988–0.996] 
60 minutes     
   RMSE, mmol/L 0.549 [0.542–0.555] 0.711 [0.699–0.724] 0.559 [0.552–0.565] 0.710 [0.700–0.719] 
   <5% , % 71.04 [70.89–71.21] 65.33 [65.19–66.46] 71.81 [71.77–71.85] 66.17 [66.09–66.23] 
   <10% , % 89.19 [89.15–89.22] 84.42 [84.28–84.56] 90.01 [89.95–90.06] 85.25 [85.11–85.39] 
   Rho 0.701 [0.700–0.702] 0.741 [0.737–0.745] 0.723 [0.719–0.728] 0.801 [0.784–0.817] 

Data are reported as mean [95% confidence interval]. CGM, continuous glucose monitoring; SD, 
standard deviation; RMSE, root-mean-square error; <5%, percentage of predicted values within 5% of 
actual glucose values; <10%, percentage of predicted values within 10% of actual glucose values; rho, 
Spearman’s rank correlation coefficient. 

 
 

Table S3.10 Extended analysis of model performance in the OhioT1DM Dataset.  

 15 minutes 30 minutes 60 minutes 

Main model    
   RMSE, mmol/L 0.689 [0.685 – 0.693] 1.189 [1.183 – 1.195] 1.918 [1.910 – 1.926] 
   <5% , % 61.84 [61.64 – 61.04] 39.10 [38.86 – 39.34] 22.28 [22.01 – 22.65] 
   <10% , % 86.02 [85.83 – 86.21] 64.72 [64.45 – 64.99] 40.19 [39.89 – 40.50] 
   Rho 0.908 [0.905 – 0.911] 0.792 [0.789 – 0.795] 0.605 [0.602 – 0.608] 
Optimized model    
   RMSE, mmol/L 0.426 [0.422 – 0.430] 1.046 [1.039 – 1.052] 1.733 [1.725 – 1.741] 
   <5% , % 72.22 [71.95 – 72.47] 48.99 [48.77 – 49.22] 39.85 [39.55 – 40.15] 
   <10% , % 91.22 [91.01 – 91.43] 71.48 [71.24 – 71.73] 49.81 [49.48 – 50.14] 
   Rho 0.948 [0.946 – 0.950] 0.886 [0.884 – 0.888] 0.689 [0.686 – 0.692] 

Data are reported as mean [95% confidence interval]. Main model: CGM-based model trained on main 
study population; Optimized model; main CGM-based model trained on main study population and 
portion of data from individuals with type 1 diabetes; RMSE, root-mean-square error; < 5%, percentage 
of predicted values within 5% of actual glucose values; < 10%, percentage of predicted values within 
10% of actual glucose values; rho, Spearman’s rank correlation coefficient. 
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Abstract 
In response to a study previously published in PLoS Biology, this Formal Comment thoroughly 

examines the concept of 'glucotypes' with regard to its generalizability, interpretability and 

relationship to more traditional measures used to describe data from continuous glucose 

monitoring. 

 



A critical review of glucotypes 

95 

4 

Although the promise of precision medicine has led to advances in the recognition and 

treatment of rare monogenic forms of diabetes, its impact on prevention and 

treatment of more common forms of diabetes has been underwhelming1. Several 

approaches to the subclassification of individuals with, or at high risk of, type 2 

diabetes have been published recently2-4. Hall and colleagues introduced the concept 

of 'glucotypes' in a research article3 that has received enormous attention in the top 

high-impact scientific journals5-8, mostly in relation to precision medicine. The authors 

developed an algorithm to identify patterns of glucose fluctuations based on 

continuous glucose monitoring (CGM). They named the three identified patterns ‘low 

variability’, ‘moderate variability’, and ‘severe variability’ glucotypes. Each individual 

was characterized by the proportion of time spent in the three glucotypes and was 

assigned to an overall glucotype based on the highest proportion. They argued that 

glucotypes provide the advantage of taking into account a more detailed picture of 

glucose dynamics, in contrast to commonly used single time point or average-based 

measures, revealing subphenotypes within traditional diagnostic categories of glucose 

regulation. Even though the study was based on data from only 57 individuals without 

a prior diabetes diagnosis, others have interpreted the results as indicating that 

glucotypes might identify individuals at an early stage of glucose dysregulation, 

suggesting a potential role in diabetes risk stratification and prevention5. However, 

before glucotypes can become ‘an important tool in early identification of those at risk 

for type 2 diabetes’3, the concept requires thorough validation. Therefore, we explore 

the generalizability and interpretability of glucotypes, and their relationship to 

traditional CGM-based measures.  

We used data from The Maastricht Study9, 10 and the PRE-D Trial11 comprising a total 

number of 770 diabetes-free individuals with a seven-day CGM registration. We 

observed that the average proportion of time spent in the low variability glucotype 

was low both in The Maastricht Study (6%) and the PRE-D Trial (4%), compared to 20% 

in the original study. A reason for the difference may be that our study populations 

were on average 11-12 years older, and that the PRE-D Trial (n=116) included only 

overweight and obese individuals with prediabetes. In The Maastricht Study, the 

median (interquartile range) body mass index was 25.9 kg/m2 (23.4-28.7) and 72% had 

normal glucose tolerance. As a logical consequence, the severe glucotype was most 

common in the PRE-D Trial (55%). Regardless, our data show that the initial estimates 

of the different glucotype prevalences do not necessarily generalize to other 

populations, especially in age groups at increased risk of type 2 diabetes. 

Hall and colleagues described glucotypes as a new measure of glucose variability, a 

clinically relevant metric of glycemic patterns3. In the figures that accompanied the 

original publication, the low variability pattern was characterized by both the lowest 

mean glucose level and variation, while the severe pattern had both the highest mean 

glucose level and variation. As such, these examples did not give an intuition whether 
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glucotypes were predominantly driven by glucose variability or by mean glucose levels. 

We therefore present three examples from the PRE-D trial (Figure 4.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Example CGM profiles of participants in the PRE-D Trial with corresponding 
proportion of time spent in different glucotypes and conventional measures (mean 
CGM glucose and CV). CGM, continuous glucose monitoring; CV, coefficient of variation 

 

 

The first two profiles are very similar with regard to glucose variability. Thus, the driver 

of the most severe glucotype of the second participant is clearly the slightly higher 

mean glycemic level. Also, even though the third participant has a much larger 

variation than the first two, the proportion of time in the severe glucotype is not 

higher than for the second participant as one would expect from a classical measure of 

glucose variability. To investigate this further, we assessed the association between 

glucotypes and classical CGM measures, i.e., the mean CGM glucose level (Figure 4.2A) 

and the coefficient of variation (Figure 4.2B) in The Maastricht Study. The scatterplots 
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show a clear association between the mean CGM glucose and glucotypes. They also 

suggest that participants with a high proportion of time in the moderate glucotype do 

not have high variation in glucose. Rather than a biological feature, this may well be a 

methodological consequence of being assigned to the middle cluster. If large 

fluctuations were present, glucose levels would reach either low or high values, 

resulting in a higher proportion of time spent in the low or severe glucotypes 

respectively (assuming a strong association between glucotypes and mean CGM 

glucose). Therefore, we decided to quantify this association using regression analysis 

where glucotype proportions were the outcomes and the mean CGM glucose 

concentration was the independent variable modelled with natural cubic splines (more 

details on the specification of the models are given in the supporting information S1 

Code, S2 Code, S3 Code). Then, we used the equation estimated in The Maastricht 

Study to predict glucotypes in the external validation sample (PRE-D Trial, Figure 4.2C). 

First, similarly to Hall and colleagues, we assigned individuals to the pattern with the 

highest proportion of time and then compared the predicted and the observed 

glucotypes. We found that in 107 out of 116 individuals, the glucotype was predicted 

correctly when using only the mean CGM glucose value. When the glucotypes were 

considered as continuous proportions of time, the root mean squared errors (RMSE) 

were 0.05, 0.09 and 0.07 for the low, moderate and severe variability glucotypes, 

respectively, which indicates good predictive ability. These results demonstrate that 

glucotypes either mainly reflect the mean CGM glucose level or do not translate to 

external datasets (e.g., due to overfitting).  

To investigate this further, we conducted the same analyses as described for the 

PRE-D trial in the original data from Hall et al. and found a slightly weaker, but still 

strong association between mean CGM glucose levels and glucotypes. Using the 

regression model from The Maastricht Study, we could correctly predict 79% of the 

glucotypes, while the RMSEs were 0.11, 0.15 and 0.13. Scatterplots are shown in the 

electronic supplement. 

Although the transformation of continuous measures into categorical ones is a 

common procedure in clinical research, assigning individuals to the glucotype with the 

highest proportion of time runs very much against the ‘precision’ tenet of precision 

medicine. In line with this, a recent study has demonstrated how simple clinical 

features outperformed clusters in predicting relevant clinical outcomes12. This is 

especially problematic when a method does not provide clear separation between 

clusters, which can be quantified by calculating relative entropy13. A relative entropy of 

zero would mean that all individuals spend one third of the time in each of the three 

glucotypes, while a value of one would indicate that each individual spends the entire 

time period in only one of the three glucotypes. In the original cohort of Hall et al.3, we 

calculated a relative entropy of 0.24, which indicates that cluster separation is far from 

optimal and—together with the previous results—questions the claim that the 
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glucotype is really a ‘more comprehensive measure of the pattern of glucose 

excursions than the standard laboratory tests in current use’3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2 Observed proportion of time spent in the three glucotypes by mean CGM glucose 

(panel A) and coefficient of variation (panel B) in The Maastricht Study, and by mean 
CGM glucose in the PRE-D Trial (panel C) alongside predicted proportions based on 
the regression analysis in The Maastricht Study. CGM, continuous glucose monitoring 

 
 

In conclusion, we demonstrate in two large, external datasets that the assessment of 

glucotypes does not offer more novel insights than the mean CGM glucose, 

highlighting the importance of large development datasets and external validation for 

data-driven algorithms. As CGM is becoming more widely used in large clinical studies 

(also among individuals without diabetes), glucose patterns derived from CGMs will be 

an important focus area in future diabetes research. However, it is important that 

scientific scrutiny precedes the introduction of emerging tools with a promise of 

identifying individuals at high risk of type 2 diabetes and its late complications at an 

earlier stage of disease progression, especially in an observational setting. 

Furthermore, future efforts towards precision medicine for diabetes prevention and 

treatment should go beyond the glucocentric approach we have seen so far. We know 
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that hyperglycemia is a late feature of diabetes development and that patients benefit 

most from a multifactorial treatment approach14. A multifactorial approach, with 

relevance to the etiology of micro- and macrovascular complications, may also yield a 

more clinically useful risk stratification of non-diabetic individuals15. Even so, if we aim 

for precision medicine, we should strive to retain as much precision as possible—at 

every step of the process—by treating determinants and outcomes as continuous 

measures, if possible, and by retaining information on the uncertainty of any hard 

classification such as cluster membership. 
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Supplemental materials 

Supplementary methods 

S1 Code. This R script demonstrates the assessment of glucotypes in the PRE-D Trial. It 

uses files from Alessandra Breschi’s GitHub page (https://github.com/abreschi/ 

shinySpecClust). These files were accessed and downloaded on 5th of July, 2019. 

Glucotypes in The Maastricht Study were assessed with the same method (code not 

shown). The script also includes the code to create Figure 4.1 displaying individual 

glucose trajectories. To avoid plotting individual data points, we calculate a 10-minute 

moving average for the glucose values. 

S2 Code. The regression model is fitted with glucotypes as outcomes and mean 

CGM glucose exposure. R code is also available for Figure 4.2 showing the association 

between glucotypes and mean CGM glucose (Figure 4.2A) and the coefficient of 

variation (Figure 4.2B). 

S3 Code. We are using the regression model developed in The Maastricht Study 

cohort (see S2 Code) to predict glucotypes based on mean CGM glucose in the PRE-D 

Trial. Then, the root mean-squared error and the number of correctly classified 

individuals are calculated. Also, relative entropy is calculated in the Stanford cohort 

from the original paper (Hall et al., PLoS Biol, 2018). 
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Abstract 
Background 

Daily glucose variability may contribute to vascular complication development irrespective of 

mean glucose values. The incremental glucose peak (IGP) during an oral glucose tolerance test 

(OGTT) can be used as a proxy of glucose variability. We investigated the association of IGP with 

arterial stiffness, arterial remodeling, and microvascular function, independent of HbA1c and 

other confounders. 

 

Methods 

IGP was calculated as the peak minus baseline plasma glucose value during a seven-point OGTT 

in 2,758 participants (age: 60±8years; 48% women) of The Maastricht Study, an observational 

population-based cohort. We assessed the cross-sectional associations between IGP and arterial 

stiffness (carotid-femoral pulse wave velocity [cf-PWV], carotid distensibility coefficient [carDC]); 

arterial remodeling (carotid intima-media thickness [cIMT]; mean [CWSmean] and pulsatile 

[CWSpuls] circumferential wall stress), and microvascular function (retinal arteriolar average 

dilatation; heat-induced skin hyperemia) via multiple linear regression with adjustment for age, 

sex, HbA1c, cardiovascular risk factors, lifestyle factors, and medication use. 

 

Results 

Higher IGP was independently associated with higher cf-PWV (regression coefficient [B]: 0.054 

m/s [0.020; 0.089]) and with higher CWSmean (B: 0.227 kPa [0.008; 0.446]). IGP was not 

independently associated with carDC (B: -0.026 10-3/kPa [-0.112; 0.060]), cIMT (B: -2.745 μm [-

5.736; 0.245]), CWSpuls (B: 0.108 kPa [-0.054; 0.270]), retinal arteriolar average dilatation (B: -0.022 

% [-0.087; 0.043]), or heat-induced skin hyperemia (B: -1.380% [-22.273; 19.513]). 

 

Conclusions 

IGP was independently associated with aortic stiffness and maladaptive carotid remodeling, but 

not with carotid stiffness, cIMT, and microvascular function measures. Future studies should 

investigate whether glucose variability is associated with cardiovascular disease. 
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Background 

Chronic hyperglycemia is a key factor in the development of type 2 diabetes-related 

macrovascular and microvascular complications1,2. In the macrovasculature, elevated 

mean blood glucose levels contribute to arterial stiffening3,4, atherosclerosis1, and large 

artery endothelial dysfunction5. In the microvasculature, hyperglycemia and 

endothelial dysfunction are considered to be bidirectionally related, potentially 

entering a vicious cycle that could lead to microvascular complications6. Of note, these 

pathophysiologic processes have been shown to already occur in the prediabetic 

state7,8. 

Importantly, chronic hyperglycemia per se does not fully explain the incidence of 

complications9. Daily glucose variability could play a role in vascular complication 

development irrespective of mean glucose values10. While relatively small 

observational studies have found conflicting results regarding the association between 

glucose variability and classic diabetic complications11-13, experimental studies have 

shown that greater glucose variability can be harmful independent of mean glucose 

values14,15. 

Continuous glucose monitoring, the gold standard for glucose variability 

assessment16, is a challenging technology to use in a large epidemiological setting. The 

incremental glucose peak (IGP), i.e. the glucose increase from baseline during an oral 

glucose tolerance test (OGTT), can be used as an index of glucose variability17. In view 

of the aforementioned, we investigated, in a large population-based cohort, whether 

IGP is associated with arterial stiffness, arterial remodeling, and microvascular 

function, independent of HbA1c. 

Methods 

Study population and design 

We used data from The Maastricht Study, an observational prospective population-

based cohort study. The rationale and methodology have been described previously18. 

In brief, The Maastricht Study focuses on the etiology, pathophysiology, complications 

and comorbidities of type 2 diabetes, and is characterized by an extensive phenotyping 

approach. All individuals aged between 40 and 75 years and living in the southern part 

of the Netherlands were eligible for participation. We recruited participants through 

mass media campaigns and from the municipal registries and the regional Diabetes 

Patient Registry via mailings. For reasons of efficiency, we stratified recruitment 

according to known type 2 diabetes status, with an oversampling of individuals with 

type 2 diabetes. The present report includes cross-sectional data from the first 3,451 

participants who completed the baseline survey between November 2010 and 

September 2013. All examinations were performed within a three-month time 

window; the OGTT and vascular measurements were performed during different 
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research visits. The Maastricht Study has been approved by the institutional medical 

ethical committee (NL31329.068.10) and the Minister of Health, Welfare and Sports of 

the Netherlands (Permit 131088-105234-PG). All participants gave written informed 

consent. 

Assessment of glucose metabolism status and incremental glucose peak 

Participants underwent a standardized 2-hour 75 gram OGTT after fasting overnight to 

determine glucose metabolism status (GMS), which was defined according to the 

World Health Organization 2006 criteria as normal glucose metabolism (NGM), 

impaired fasting glucose, impaired glucose tolerance (combined as prediabetes), or 

type 2 diabetes19. For safety reasons, participants using insulin or with a fasting plasma 

glucose (FPG) value above 11.0 mmol/L (determined by finger prick) did not undergo the 

OGTT. For these individuals, we used FPG and information about their diabetes 

medication to determine GMS. During the OGTT, we took venous blood glucose 

samples at baseline and 15, 30, 45, 60, 90 and 120 minutes; we calculated IGP by 

subtracting FPG from the absolute glucose peak (AGP) value. 

Assessment of arterial stiffness, intima-media thickness and circumferential 

wall stress 

The rationale and methodology of the macrovascular measurements have been 

described previously20, 21. We determined carotid-femoral pulse wave velocity (cf-PWV) 

with the use of applanation tonometry (SphygmoCor, Atcor Medical, Sydney, 

Australia)22, and used the median of three consecutive cf-PWV recordings in our 

analyses.  

We measured the left common carotid artery using an ultrasound scanner 

equipped with a 7.5-MHz linear probe (MyLab 70, Esaote Europe B.V., Maastricht, the 

Netherlands) to assess local carotid distension, intima-media thickness (cIMT), and 

interadventitial diameter (IAD)23. We quantified local arterial stiffness by calculating 

the carotid distensibility coefficient (carDC) based on the following formula: carDC = 

(2*D*IAD + D2)/(braPP*IAD2), where IAD is interadventitial arterial diameter, D 

distension, and braPP brachial pulse pressure24. 

We defined cIMT as the distance between the lumen-intima and media-adventitia 

interfaces of the far (posterior) wall23, and IAD as the distance between the media-

adventitia interfaces of the near and far wall. The median carDC, cIMT and IAD of three 

consecutive measurements were used. We calculated carotid lumen diameter (LD) 

according to the following formula25: LD = IAD – (2*cIMT). In parallel with the vascular 

measurements, we determined mean heart rate (HR) and mean arterial pressure (MAP) 

every five minutes with an oscillometric device (Accutorr Plus, Datascope Inc., 

Montvale, NJ, USA). Mean (CWSmean) and pulsatile (CWSpuls) carotid circumferential wall 

stress were calculated by use of the Lamé equation as CWSmean = (MAP*(LD/2))/cIMT 
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and CWSpuls = (carPP*(LD/2))/cIMT, where carotid pulse pressure (carPP) was obtained 

from carotid pressure waveform calibration20. 

Assessment of microvascular function 

The rationale and methodology of assessing the microcirculation of the retina and skin 

have been described previously8. In short, we measured the retinal microvascular 

dilation response to flicker light during a 50-second baseline, 40-second flicker-light 

provocation, and 60-second recovery phase, by use of the Dynamic Vessel Analyzer 

(DVA; Imedos, Jena, Germany). The integrated DVA software (version 4.51; Imedos) 

automatically calculated average baseline diameter size (expressed in measurement 

units; MUs) during the 20-50 seconds of baseline recording, and percentage dilation at 

time points 10 and 40 seconds during the flicker stimulation period. Two regression 

lines were drawn (at the 0–10-second and 10–40-second intervals) and averaged to 

assess average percentage dilation. We measured skin blood flow with a laser-Doppler 

system (Periflux 5000; Perimed, Järfalla, Sweden) equipped with a thermostatic laser-

Doppler probe (PF457; Perimed) at the dorsal side of the left wrist. After a two-minute 

baseline recording, the probe temperature was rapidly increased to 44 °C and kept 

constant until the end of the registration. The heat-induced skin hyperemic response 

was expressed as the percentage increase in average perfusion units (PUs) during the 

23-minute heating phase over the average baseline PU.  

Measurement of covariates 

As described previously18, we assessed history of cardiovascular disease (CVD), physical 

activity, and smoking status (never, former, current) by questionnaire; calculated 

Mediterranean diet adherence according to Trichopoulou et al. based on a food 

frequency questionnaire26; assessed lipid-modifying, antihypertensive, and glucose-

lowering medication use as part of a medication interview; measured weight, height, 

body mass index (BMI), and waist circumference, during a physical examination; 

measured office and 24-hour ambulatory blood pressure (BP); measured HbA1c, fasting 

plasma insulin and lipid profile in fasting venous blood samples; quantified insulin 

resistance (IR) based on the updated Homeostatic Model Assessment (HOMA2-IR); 

measured albumin excretion in two 24-hour urine collections; calculated the 

estimated glomerular filtration rate (eGFR) based on both serum creatinine and 

cystatin C27; and assessed retinopathy presence in both eyes via fundus photography. 

Statistical analysis 

Normally distributed data are presented as mean and standard deviation (SD), non-

normally distributed data as median and interquartile range (IQR), and categorical data 

as n (%). We used multivariable linear regression to study the associations between IGP 

and arterial stiffness (cf-PWV, carDC), arterial remodeling (cIMT, CWSmean, CWSpuls), and 
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microvascular function (retinal arteriolar average dilatation, heat-induced skin 

hyperemia). Model 1 was the crude model, which included only IGP as a determinant; 

model 2 was adjusted for age and sex; model 3 was additionally adjusted for HbA1c; 

model 4 was additionally adjusted for MAP (or alternatively office systolic BP; or carPP) 

and HR in case of cf-PWV only; model 5 was additionally adjusted for cardiovascular 

risk and lifestyle factors (i.e. BMI, smoking status, physical activity, Mediterranean diet 

score, antihypertensive and lipid-modifying drug use, fasting triglycerides and total-to-

high-density lipoprotein cholesterol levels). The results are presented as: regression 

coefficient (B) (corresponding 95% confidence interval [CI]), p-value. We considered a 

p-value of <0.05 statistically significant. To test the robustness of our findings, we 

performed multiple sensitivity analyses by: 1) additionally adjusting for history of CVD, 

retinopathy, eGFR, and urinary albumin excretion; 2) additionally adjusting for fasting 

plasma insulin or HOMA2-IR; 3) replacing HbA1c with GMS or FPG; 4) replacing IGP with 

AGP or percentage increase from baseline (IGPpercentage = IGP/FPG*100%); 5) adjusting for 

alternative BP measurements (e.g. ambulatory 24-hour systolic BP); and 6) replacing 

IGP with time to glucose peak. We incorporated interaction terms in the fully adjusted 

regression models to test for interactions between IGP and sex28, as well as IGP and 

age, as previously advocated29. We considered a p-value for interaction of <0.10 

statistically significant. We performed all statistical analyses with the Statistical 

Package for Social Sciences (Version 25.0; IBM, Chicago, IL). 

Results 

Study population characteristics 

The total study population comprised 3,451 individuals, from which we excluded 

41 participants with diabetes types other than type 2 diabetes. Some participants had 

incomplete data on the seven-point OGTT, either because of missing glucose samples 

(n=368) or an OGTT contraindication (n=238; i.e. insulin use or plasma glucose levels 

>11.0 mmol/L before initiation of the OGTT), resulting in a study population of 

2,804 individuals. Those with missing glucose samples were generally comparable to 

the final study population (Supplementary Table S5,1); as expected, those with an 

OGTT contraindication differed statistically significantly from the final study 

population with regard to almost all characteristics (Supplementary Table S5.1). 

Finally, for 46 participants all outcome data was missing. These individuals were 

similar to the final study population (Supplementary Table S5.1), which consisted of 

2,758 individuals. Since outcome and covariate data could not be obtained in all 

individuals (Supplementary Table S5.2), the number of individuals included in the 

different regression analyses varied (n=1,134-1,978) (Figure 5.1). 



Incremental glucose peak and vascular measures 

111 

5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5.1 Flowchart of the IGP study population selection process. OGTT, oral glucose tolerance 

test; IGP, incremental glucose peak; cf-PWV, carotid-femoral pulse wave velocity; carDC, 
carotid distensibility coefficient; cIMT, carotid intima-media thickness; CWSmean, mean 
circumferential wall stress; CWSpuls, pulsatile circumferential wall stress. 

 
 
 

Table 5.1 shows the general characteristics of the final study population, stratified 

according to IGP tertiles. Participants in the highest tertile were older, predominantly 

male, and had a worse cardiometabolic profile, i.e. higher BMI, waist circumference, 

systolic BP, and fasting glucose, 2-hour post-load glucose, HbA1c, fasting plasma insulin, 

and triglycerides levels. They were also less physically active, more often smoker, more 

frequently used lipid-modifying, antihypertensive or glucose-lowering medication, and 

more often had a history of CVD, decreased eGFR, albuminuria, and retinopathy. Of 
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note, IGP tertiles did not fully correspond with GMS. Several individuals with type 2 

diabetes (n=47; 17 newly diagnosed) were not in the highest IGP tertile. Individuals 

with prediabetes were distributed equally among the second and third tertile. 

Heterogeneity existed regarding the OGTT glucose peak time point (Supplementary 

Table S5.3); for the first, second and third IGP tertile, the most frequently occurring 

time points were 30, 45 and 90 minutes, respectively. 

 

 
Table 5.1 Participant characteristics according to incremental glucose peak (IGP) tertiles. 

 
Characteristic 

first tertile 
(n=924) 

second tertile 
(n=909) 

third tertile 
(n=925) 

Age, y 57.3±8.2 60.0±8.0 62.1±7.7 
Women 569 (61.6) 431 (47.4) 330 (35.7) 
Body mass index, kg/m2 25.2±3.6 26.4±3.9 28.8±4.6 
Waist circumference, cm    
Men 95.1±9.1 98.4±10.0 105.2±11.3 
Women 85.4±10.5 89.1±11.4 96.5±13.9 
Office SBP, mmHg 129.3±16.6 134.2±17.3 140.2±17.7 
Office DBP, mmHg 74.7±9.5 76.7±10.3 78.1±9.6 
Ambulatory 24-h SBP, mmHg 116.6±10.9 119.0±10.9 121.9±12.4 
Ambulatory 24-h DBP, mmHg 73.6±7.0 74.5±7.2 74.3±7.4 
Mean arterial pressure, mmHg 94.3±10.3 96.9±10.4 98.8±10.1 
Carotid pulse pressure, mmHg 46.3±14.1 49.7±14.7 52.3±16.0 
Mean heart rate, beats/minute 60.7±8.1 61.8±9.0 64.5±10.0 
Physical activity, hours/week 14.0 [9.5-19.0] 13.5 [8.3-19.0] 11.5 [7.5-17.4] 
Mediterranean diet score, (range: 0-9) 4.6±1.7 4.6±1.7 4.3±1.6 
Smoking    
   Never/former/current 368/451/91 315/463/125 261/511/135 
   Never/former/current, % 40.4/49.6/10.0 34.9/51.3/13.8 28.8/56.3/14.9 
Fasting plasma glucose (FPG), mmol/L 5.2±0.5 5.5±0.7 6.8±1.3 
2-hour post-load glucose, mmol/L 5.1±1.1 6.3±1.7 12.3±4.6 
Glucose metabolism status    
NGM/prediabetes/type 2 diabetes 858/53/13 672/203/34 132/192/601 
NGM/prediabetes/type 2 diabetes, % 92.9/5.7/1.4 73.9/22.3/3.7 14.3/20.8/65.0 
Newly diagnosed type 2 diabetes 10 (1.1) 7 (0.8) 92 (9.9) 
Incremental glucose peak (IGP), mmol/L 2.2 [1.8-2.7] 4.1 [3.6-4.7] 8.1 [6.5-10.0] 
HbA1c, % 5.4±0.3 5.6±0.4 6.3±0.7 
HbA1c, mmol/mol 35.8±3.7 37.4±4.5 45.2±7.8 
Fasting plasma insulin, pmol/L 52.4 [38.3-71.0] 59.6 [41.7-86.8] 81.9 [51.5-125.5] 
HOMA2-IR 1.2 [0.9-1.5] 1.3 [1.0-2.0] 2.0 [1.2-2.9] 
Triglycerides, mmol/L 1.0 [0.8-1.4] 1.2 [0.9-1.6] 1.5 [1.1-2.1] 
Total-to-HDL cholesterol ratio 3.3 [2.8-4.1] 3.5 [2.9-4.4] 3.6 [3.0-4.5] 
Total cholesterol, mmol/L 5.5±1.0 5.5±1.1 4.9±1.2 
LDL cholesterol, mmol/L 3.4±0.9 3.3±1.0 2.8±1.1 
HDL cholesterol, mmol/L 1.7±0.4 1.6±0.5 1.3±0.4 
Lipid-modifying medication use 145 (15.7) 219 (24.1) 558 (60.5) 
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Table 5.1 (continued) 

 
Characteristic 

first tertile 
(n=924) 

second tertile 
(n=909) 

third tertile 
(n=925) 

Antihypertensive medication use 197 (21.3) 276 (30.4) 546 (59.2) 
Diabetes medication use 1 (0.1) 21 (2.3) 449 (48.6) 
   Insulin 0 (0) 0 (0) 0 (0) 
   Metformin 1 (0.1) 20 (2.2) 423 (45.8) 
   Sulfonylureas 0 (0) 3 (0.3) 149 (16.1) 
   Thiazolidinediones 0 (0) 1 (0.1) 8 (0.9) 
   GLP-1 analogs 0 (0) 0 (0) 6 (0.7) 
   DDP-4 inhibitors 0 (0) 1 (0.1) 50 (5.4) 
History of CVD 110 (12.3) 116 (13.1) 174 (19.4) 
   eGFR, mL/min/1.73 m2 90.7±13.2 88.5±13.3 86.0±15.6 
   eGFR < 60 mL/min/1.73 m2 14 (1.5) 20 (2.2) 58 (6.3) 
(Micro)albuminuria 31 (3.4) 49 (5.4) 120 (13.0) 
Retinopathy 0 (0) 2 (0.2) 14 (1.6) 
Carotid-femoral pulse wave velocity (cf-PWV), m/s 8.3±1.7 8.8±1.9 9.7±2.2 
Carotid distensibility coefficient (carDC), 10-3/kPa 15.6±5.4 14.4±5.1 13.2±4.8 
Carotid intima-media thickness (cIMT), μm 846.3±150.3 854.4±155.8 876.1±161.1 
Mean circumferential wall stress (CWSmean), kPa 43.8 [37.8-50.9] 46.5 [40.8-53.0] 47.5 [41.0-56.0] 
Pulsatile circumferential wall stress (CWSpuls), 
kPa 

20.9 [16.3-26.4] 23.1 [18.6-28.9] 24.2 [19.0-31.3] 

Retinal arteriolar average dilatation, % 3.1 [1.1-5.3] 2.8 [1.1-5.2] 2.1 [0.5-4.4] 
Heat-induced skin hyperemia, % 1,110.5 

[666.3-1,592.3] 
1,027.6 

[633.3-1,587.3] 
868.6 

[521.3-1,318.0] 

Data are reported as mean ± SD, median [interquartile range], or number (percentage %) as 
appropriate. Data represent the study population of participants with complete oral glucose tolerance 
test data and results of at least one primary outcome. CVD, cardiovascular disease; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; NGM, normal glucose metabolism; HbA1c, glycated hemoglobin 
A1c; HOMA2-IR, updated homeostasis model assessment; HDL, high-density lipoprotein; LDL, low-
density lipoprotein; GLP-1, glucagon-like peptide-1; DPP-4, dipeptidase-4; eGFR, estimated glomerular 
filtration rate. 
 

Incremental glucose peak and arterial stiffness 

Figure 5.2 (panels A-B) and Supplementary Table S5.4 show the associations of IGP 

with cf-PWV and carDC. Higher IGP was statistically significantly associated with 

higher cf-PWV in the crude analysis. This association persisted after adjustment for 

age, sex, and HbA1c (model 3), and additional adjustment for MAP and HR (model 4). 

After further adjustment for cardiovascular risk and lifestyle factors, the association of 

IGP with cf-PWV remained statistically significant (model 5, B: 0.054 m/s [0.020; 

0.089], p=0.002).  

Higher IGP was statistically significantly associated with lower carDC in the crude 

analysis. This association persisted after adjustment for age, sex, and HbA1c (model 3). 

The association did not remain statistically significant after adjustment for MAP, and 

cardiovascular risk factors and lifestyle factors (model 5, B: -0.026 10-3/kPa [-0.112; 

0.060], p=0.551). 
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Figure 5.2 Multivariable-adjusted associations of incremental glucose peak (IGP) and arterial 
stiffness and arterial remodeling. Regression coefficients (B) indicate the mean 
difference (95% confidence interval) associated with 1 unit (mmol/L) increase of IGP. The 
panels depict the (a) associations between IGP and carotid-femoral pulse wave velocity 
(cf-PWV); (b) associations between IGP and carotid distensibility coefficient (carDC); (c) 
associations between IGP and carotid intima-media thickness (cIMT); (d) associations 
between IGP and mean circumferential wall stress (CWSmean); (e) associations between IGP 
and pulsatile circumferential wall stress (CWSpuls). Model 1: crude. Model 2: additionally 
adjusted for age and sex. Model 3: additionally adjusted for HbA1c. Model 4: additionally 
adjusted for mean arterial pressure and mean heart rate (cf-PWV), mean arterial pressure 
(carDC, CWSpuls), office systolic blood pressure (cIMT) or carotid pulse pressure (CWSmean). 
Model 5: additionally adjusted for body mass index, smoking status, physical activity, 
Mediterranean diet score, use of antihypertensive and lipid-modifying drugs, fasting 
triglycerides, and total-to-HDL cholesterol levels. 
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Incremental glucose peak, intima-media thickness and circumferential wall 

stress 

Figure 5.2 (panels C-E) and Supplementary Table S5.4 show the associations of IGP 

with cIMT, CWSmean and CWSpuls. There was a statistically significant, positive 

association between IGP and cIMT in the crude analysis (crude, B: 4.157 μm [1.944; 

6.370], p<0.001). Of note, this association became negative after correction for age, sex, 

and HbA1c (model 3). Conversely, HbA1c was positively associated with cIMT (data not 

shown). Higher IGP was not statistically significantly associated with lower cIMT in the 

fully adjusted model (model 5, B: -2.745 μm [-5.736; 0.245], p=0.072).  

Higher IGP was associated with higher CWSmean in the crude model, and remained 

associated after adjustment for age, sex, and HbA1c (model 3). The association between 

IGP and CWSmean remained statistically significant after further correction for 

cardiovascular risk factors and lifestyle factors (model 5, B: 0.227 kPa [0.008; 0.446], 

p=0.043). IGP was positively associated with CWSpuls in the crude model, and after 

additional adjustment for age, sex, and HbA1c (model 3). The association between IGP 

and CWSpuls did not remain statistically significant after correction for cardiovascular 

risk and lifestyle factors (model 5, B: 0.108 kPa [-0.054; 0.270], p=0.192). 

Incremental glucose peak and microvascular function 

IGP was not associated with retinal arteriolar baseline diameter or skin baseline blood 

flow (Table 5.2). Higher IGP was statistically significantly associated with lower retinal 

arteriolar average dilatation and lower heat-induced skin hyperemia (crude models, 

Table 5.2). These associations did not remain statistically significant after adjustment 

for age, sex, and HbA1c (retinal arteriolar average dilatation), and age and sex (heat-

induced skin hyperemia). 

Additional analyses 

Additional adjustment for history of CVD, retinopathy, eGFR, and urinary albumin 

excretion did not materially alter the results (Supplementary Table S5.5 and S5.6), 

although statistical significance was not retained in the associations of IGP with 

CWSmean (model 6). Additional adjustment for fasting plasma insulin or HOMA2-IR did 

not materially affect the results (Supplementary Table S5.7). The GMS- or FPG-

adjusted models yielded results that were mostly comparable with the main (i.e. HbA1c-

adjusted) models (Supplementary Table S5.8). Differences from the main models with 

regard to statistical significance were observed for the GMS-adjusted association of 

IGP and cf-PWV (5a, B: 0.031 m/s [-0.008; 0.071], p=0.120), the GMS-adjusted 

association of  IGP and cIMT (5a, B: -4.282  μm [-7.706; -0.857], p=0.014), and the FPG-

adjusted association of IGP and CWSmean (5b, B: 0.156 kPa [-0.065; 0.377], p=0.167). In 

general, the results were not materially different when AGP or IGPpercentage were used as 
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determinant instead of IGP (Supplementary Tables S5.9 and S5.10). Adjustment for 

alternative BP measurements did not materially affect the results either 

(Supplementary Tables S5.11, S5.12 and S5.13). When time to glucose peak was used as 

determinant instead of IGP, only cf-PWV was found to be statistically significantly 

associated (B: 0.005 m/s [0.001; 0.008], p-value=0.007) (Supplementary Table S5.14).  

The association between IGP and cf-PWV was stronger with higher age (p-value for 

interaction <0.001; Supplementary Table S5.15). The association between IGP and 

carDC was weaker with higher age (p-value for interaction <0.001; Supplementary 

Table S5.16). Age statistically significantly modified the association between IGP and 

CWSpuls (p-value for interaction = 0.013; Supplementary Table S5.17). Sex did not 

modify the associations of IGP with arterial stiffness, arterial remodeling, or 

microvascular function. 

 

 
Table 5.2 Multivariable-adjusted associations of incremental glucose peak (IGP) and 

microvascular function.  

Model B (95%CI) p-value 

Retinal arteriolar baseline diameter, MU (n=1,591) 
   Crude -0.035 (-0.295; 0.225) 0.792 
   Model 2 0.068 (-0.204; 0.339) 0.626 
   Model 3 -0.145 (-0.503; 0.213) 0.428 
   Model 4 -0.092 (-0.451; 0.267) 0.614 
   Model 5 -0.157 (-0.528; 0.214) 0.406 
Retinal arteriolar average dilatation, % (n=1,591) 
   Crude -0.088 (-0.134; -0.043) < 0.001 
   Model 2 -0.073 (-0.121; -0.026) 0.002 
   Model 3 -0.038 (-0.101; 0.024) 0.229 
   Model 4 -0.042 (-0.105; 0.020) 0.184 
   Model 5 -0.022 (-0.087; 0.043) 0.506 
Skin baseline blood flow, PU (n=1,134) 
   Crude 0.016 (-0.110; 0.142) 0.799 
   Model 2 -0.024 (-0.155; 0.107) 0.722 
   Model 3 0.025 (-0.149; 0.198) 0.780 
   Model 4 0.049 (-0.126; 0.224) 0.581 
   Model 5 0.065 (-0.117; 0.246) 0.485 
Heat-induced skin hyperemia, % (n=1,134) 
   Crude -28.109 (-42.778; -13.440) < 0.001 
   Model 2 -12.503 (-27.509; 2.504) 0.102 
   Model 3 -3.311 (-23.208; 16.586) 0.744 
   Model 4 -5.332 (-25.420; 14.756) 0.603 
   Model 5 -1.380 (-22.273; 19.513) 0.897 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of IGP. Model 1: crude. Model 2: additionally adjusted for age and sex. Model 3: 
additionally adjusted for HbA1c. Model 4: additionally adjusted for office systolic blood pressure. Model 
5: additionally adjusted for body mass index, smoking status, physical activity, Mediterranean diet 
score, use of antihypertensive and lipid-modifying drugs, fasting triglycerides, and total-to-HDL 
cholesterol levels. 
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Discussion 

In the present study, we investigated cross-sectional associations of IGP with arterial 

stiffness, arterial remodeling and microvascular function. Our study has two main 

findings. First, higher IGP was independently associated with higher aortic stiffness (cf-

PWV) and higher CWSmean, but not with carotid stiffness (carDC), cIMT and CWSpuls. 

Second, IGP was not independently associated with measures of microvascular 

function.  

Our study shows that IGP measured during an OGTT provides additional 

information on top of established glycemic indices (i.e. HbA1c, GMS, and FPG). We found 

that IGP not fully corresponds with GMS, as individuals with prediabetes were equally 

distributed among the second and third IGP tertile (Table 5.1). Furthermore, we 

showed that the associations of IGP with cf-PWV and CWSmean were independent of 

HbA1c. 

Current observations in the perspective of prior research 

This is the first study to report on the association of IGP with arterial stiffness 

measures. Our findings are in concordance with studies using comparable 

determinants or outcomes. Hulman et al., for example, showed that individuals with 

the highest glucose peak during an OGTT were characterized by a worse 

cardiometabolic risk factor profile (i.e. age, sex, smoking status, BP, plasma lipids)30. 

Moreover, the 1-hour OGTT value has previously been found to be independently 

associated with cf-PWV31 and brachial-ankle PWV29. Still, in our study IGP was observed 

at this time point in only 20.8% of the participants (Supplementary Table S5.3). Our 

independent association between time to glucose peak and arterial stiffness 

(Supplementary Table S5.14), is also in line with Hulman et al.’s findings on glucose 

peak time point and cardiometabolic risk30. By contrast, in a study by the same 

research group no independent association between OGTT glucose peak and incident 

CVD was found32. However, their use of just a three-point OGTT entails a major 

limitation.  

We observed a negative, albeit not statistically significant, association of IGP with 

cIMT, which is in contrast with two studies that have found a positive association 

between IGP and cIMT33,34. These associations, however, were not adjusted for HbA1c or 

other glycaemic indices. Adjustment for HbA1c, GMS or FPG consistently resulted in a 

negative association between IGP and cIMT. 

The absence of a HbA1c-independent association between IGP and measures of 

microvascular function is in line with current literature to the extent that the 

association of glucose variability, as assessed by continuous glucose monitoring, with 

macroalbuminuria disappeared after adjustment for mean sensor glucose11. This could 

imply that mean glucose values, rather than glucose peaks, are an important 

determinant of microvascular function. 



Chapter 5 

118 

Mechanistic explanations 

The biological mechanism underlying the relationship between IGP and aortic stiffness 

remains to be elucidated. Previous research has shown that the glucose peak during an 

OGTT correlates well with glucose variability based on a self-determined ten-point 

home glucose profile17. Greater daily glucose variability may lead to greater oxidative 

stress14,15, which in turn could lead to advanced glycation end product (AGE) formation2. 

AGEs are thought to induce arterial stiffening by accumulating in the arterial wall and 

forming cross-links between elastin and collagen3,35. Of interest, a previous study by 

our group showed that AGE precursor levels peaked in parallel with glucose values 

during an OGTT36. This supports the mechanistic concept that the mean glucose 

(reflected by HbA1c) and glucose variability (reflected by IGP) both contribute to arterial 

stiffness, mediated by AGEs. Alternatively, elevated IGP could be a hallmark of higher 

IR, which may, just as hyperinsulinemia, cause arterial stiffening3,37. Indeed, glucose 

peak height and time point were associated with higher indices of IR in our study, as 

recently reported by Wang et al.38. However, additional adjustment for fasting plasma 

insulin or HOMA2-IR did not substantially alter the results (Supplementary Table S5.7). 

Reflections on unexpected findings 

Our analyses yielded several interesting findings. First, IGP was independently 

associated with cf-PWV, but not with carDC. This difference could be due to structural 

differences between the aorta (mixed elastic and muscular) and carotid artery 

(predominately elastic)22. Indeed, while an association of tissue and circulating AGEs 

with cf-PWV has been reported39, no link has been established for carDC40. Second, the 

inverse association between IGP and cIMT was unexpected, in particular because we 

observed a positive association of cIMT with HbA1c, and found a statistically significant 

positive association between IGP and CWSmean, which normally should stimulate 

arterial remodeling to increase arterial wall thickness25. Our findings could therefore 

imply that individuals with high IGP values experience maladaptive arterial remodeling 

of the carotid artery, as has previously been demonstrated in patients with type 2 

diabetes25. Alternatively, although the assumptions of linear regression were met and 

the sensitivity analyses showed comparable results, our findings could still be spurious 

(type 1 error). Third, IGP was statistically significantly associated with CWSmean, but not 

with CWSpuls. Based on this finding and on the notion that the regression coefficients 

decreased more from model 3 to 4 for CWSpuls compared to CWSmean, we conclude that 

IGP is more strongly associated with MAP than with carPP, and thus that in our study 

population IGP corresponds more with mean than pulsatile vascular stress. Fourth, 

while we observed an independent association of IGP with the macrovasculature, no 

such association was found with the microvasculature, which might be attributable to 

sample size differences. Future research should focus on further elucidating this 

discrepancy. Fifth, the regression coefficients of the HbA1c-adjusted models differed in 
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magnitude from the GMS- and FPG-adjusted models, which were performed as 

sensitivity analyses. This could be a result of using a categorical (i.e. GMS) instead of a 

continuous (i.e. HbA1c and FPG) confounder41. Still, these associations were not 

statistically significantly dissimilar, as the 95% CIs strongly overlap and include each 

other’s regression coefficients42. The loss of statistical significance after adjustment for 

additional variables (e.g. history of CVD, eGFR) could be due to smaller sample size or 

overadjustment bias43.  

Clinical relevance 

Aortic stiffness, as measured by cf-PWV, is an independent determinant of CVD, 

cardiovascular mortality, and all-cause mortality22. We found that after adjustment for 

HbA1c and all other relevant confounders cf-PWV was 0.054 m/s higher per IGP unit 

(mmol/L). This corresponds with six months of vascular aging per 1 mmol/L higher 

IGP44. Accordingly, the 5.9 mmol/L difference in median IGP between the first and third 

IGP tertile reflects a three year vascular aging difference. Our results may imply that, 

even in case of well-controlled HbA1c, the harmful effects of glucose peaks on aortic 

stiffness are still present. Future studies should investigate whether these findings 

translate to daily glucose fluctuations. If they are replicated using continuous glucose 

monitoring data, it would further justify therapeutic interventions that specifically 

target glucose variability. 

Strengths and limitations 

This study has several strengths and limitations. Strengths are 1) the use of multiple, 

state-of-the-art measurements to study arterial stiffness, arterial remodeling, and 

microvascular function; 2) the study sample size and the extensive participant 

characterization, allowing adjustment for a broad array of possible confounders; and 3) 

the robustness of the results, reflected by the consistency of several sensitivity 

analyses. Our study had certain limitations. First, we could only calculate the main 

determinant using one OGTT, which is known for its moderate reproducibility45. The 

consequent random measurement error in IGP may have resulted in underestimated 

associations (i.e. attenuation bias)46. Second, a relatively large number of individuals 

were excluded due to missing determinant, outcome and/or confounder data (Figure 

5.1). Still, individuals with missing data were generally comparable to the final study 

population (Supplementary Table S5.1), except for the participants with an OGTT 

contraindication, who were characterized by a more adverse cardiometabolic profile. 

The inability to calculate IGP in this relatively unhealthy subgroup might have affected 

the precision of the associations. Third, the cross-sectional design renders us unable to 

rule out reverse causality. Arterial stiffness, which has been associated with incident 

diabetes, could theoretically influence glucose values47. Fourth, our study population is 

mostly Caucasian, which limits the generalizability of our results. Fifth, although the 
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models were adjusted for a large number of cardiovascular risk and lifestyle factors, 

residual confounding may still be present. 

Conclusions 

We show that higher IGP is independently associated with greater aortic stiffness and 

maladaptive carotid remodeling, but not with carotid stiffness, cIMT, or microvascular 

function. Taken together, these findings support the concept that glucose peaks have 

harmful macrovascular effects, regardless of mean glucose levels. Further research is 

needed to elucidate how these findings translate to daily glucose fluctuations and to 

what extent CVD could be prevented by reducing glucose variability. 
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Supplemental materials 

Supplementary methods 

Statistical analysis 

We compared the groups stratified according to missing data reason with the total 

study population using independent T test in case of normally distributed continuous 

variables, Mann-Whitney U test in case of non-normally distributed continuous 

variables, and chi-square analysis in case of categorical variables. 

Supplementary results 
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Table S5.2 Participant characteristics of the final study population and individuals excluded 
from the analyses due to missing data. 

Characteristic IGP study 
population 

 
(n=2,758) 

Missing 
data 

Excluded due to 
missing OGTT and 

outcome values 
(n=652) 

Missing 
data 

Age, y 59.8±8.2 0 59.8±8.6 0 
Women 1,330 (48.2) 0 324 (49.7) 0 
Body mass index, kg/m2 26.8±4.3 2 28.3±5.4 1 
Waist circumference, cm  3  1 
Men 100.4±11.2  106.7±14.6  
Women 89.4±12.5  93.0±14.5  
Office SBP, mmHg 134.6±17.8 6 137.2±19.6 0 
Office DBP, mmHg 76.5±9.9 2 75.0±9.5 0 
Ambulatory 24-hour SBP, mmHg 119.1±11.6 323 119.7±12.4 93 
Ambulatory 24-hour DBP, mmHg 74.1±7.2 323 73.0±6.9 93 
Mean arterial pressure, mmHg 96.7±10.4 327 96.9±9.8 124 
Carotid pulse pressure, mmHg 49.4±15.1 488 51.8±15.9 177 
Mean heart rate, beats/minute 62.3±9.2 326 64.7±9.9 124 
Physical activity, hours/week 13.0 [8.3-18.5] 328 12.5 [7.5-18.8] 120 
Mediterranean diet score, (range: 0-9) 4.5±1.7 165 4.3±1.6 57 
Smoking  38  23 
Never/former/current 944/1,425/351  216/304/109  
Never/former/current, % 34.7/52.4/12.9  34.3/48.3/17.3  
Fasting plasma glucose, mmol/L 5.8±1.2 0 7.0±2.8 4 
2-hour post-load glucose, mmol/L 7.9±4.3 0 7.7±3.9 260 
Glucose metabolism status  0  0 
NGM/prediabetes/type 2 diabetes 1,662/448/648  262/63/327  
NGM/prediabetes/type 2 diabetes , % 60.3/16.2/23.5  40.2/9.7/50.2  
Incremental glucose peak (IGP), mmol/L 4.1 [2.7-6.5] 0 3.2 [2.4-5.6] 606 
Newly diagnosed type 2 diabetes 109 (4.0) 0 24 (3.7) 0 
HbA1c, % 5.8±0.6 1 6.5±1.4 12 
HbA1c, mmol/mol 39.5±7.0  48.1±16.0  
Fasting plasma insulin, pmol/L 61.0 [42.8-93.0] 7 61.4 [40.5-98.2] 41 
HOMA2-IR 1.4 [1.0-2.1] 105 1.5 [1.0-2.3] 93 
Triglycerides, mmol/L 1.2 [0.9-1.7] 0 1.3 [0.9-1.9] 4 
Total-to-HDL cholesterol ratio 3.5 [2.9-4.3] 0 3.4 [2.8-4.3] 4 
Total cholesterol, mmol/L 5.3±1.1 0 4.9±1.2 4 
LDL cholesterol, mmol/L 3.1±1.0 0 2.8±1.0 4 
HDL cholesterol, mmol/L 1.5±0.5 0 1.5±0.5 4 
Lipid-modifying medication use 922 (33.4) 4 308 (47.2) 0 
Antihypertensive medication use 1,019 (36.9) 4 336 (51.5) 0 
Diabetes medication use 471 (17.1) 4 294 (45.1) 0 
Insulin 0 (0)  216 (33.1)  
Metformin 444 (16.1)  234 (35.9)  
Sulfonylureas 152 (5.5)  46 (7.1)  
Thiazolidinediones 9 (0.3)  4 (0.6)  
GLP-1 analogs 6 (0.2)  3 (0.5)  
DDP-4 inhibitors 51 (1.9)  8 (1.2)  
History of CVD 400 (14.9) 78 152 (24.3) 27 
eGFR, mL/min/1.73 m2 88.4±14.2 6 86.8±17.3 27 
eGFR < 60 mL/min/1.73 m2 92 (3.3)  51 (8.2)  
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Table S5.2 (continued) 

Characteristic IGP study 
population 

 
(n=2,758) 

Missing 
data 

Excluded due to 
missing OGTT and 

outcome values 
(n=652) 

Missing 
data 

(Micro)albuminuria 200 (7.3) 20 91 (14.4) 22 
Retinopathy 16 (0.6) 266 30 (4.6) 86 
Carotid-femoral pulse wave velocity (cf-
PWV), m/s 

8.9±2.0 397 9.5±2.5 162 

Carotid distensibility coefficient (carDC), 10-
3/kPa 

14.4±5.2 368 13.7±4.8 148 

Carotid intima-media thickness (cIMT), μm 858.9±156.2 373 858.2±164.7 149 
Mean circumferential wall stress 
(CWSmean), kPa 

45.9 [39.7-53.4] 377 46.4 [40.5-54.2] 149 

Pulsatile circumferential wall stress 
(CWSpuls), kPa 

22.8 [17.8-28.9] 536 23.8 [19.1-30.1] 193 

Retinal arteriolar average dilatation (DVA), % 2.7 [0.9-5.1] 877 2.3 [0.7-4.1] 272 
Heat-induced skin hyperemia, % 999.1 [588.9-1,512.9] 1388 954.1 [560.6-1,387.4] 375 

Data are reported as mean ± SD, median [interquartile range], or number (percentage %) as 
appropriate. Data represent the study population of participants with complete oral glucose tolerance 
test data and results of at least one primary outcome. CVD, cardiovascular disease; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; NGM, normal glucose metabolism; HbA1c, glycated hemoglobin 
A1c; HDL, high-density lipoprotein; LDL, low-density lipoprotein; GLP-1, glucagon-like peptide-1; DPP-4, 
dipeptidase-4; eGFR, estimated glomerular filtration rate. 
 
 
Table S5.3 Glucose peak time point during oral glucose tolerance test for the total study 

population and incremental glucose peak (IGP) tertiles. 

Peak time point during OGTT Total study population 
(n=2,758) 

first tertile 
(n=924) 

second tertile 
(n=909) 

third tertile 
(n=925) 

Fasting plasma glucose (FPG) 0 (0) 0 (0) 0 (0) 0 (0) 
15 minutes 151 (5.5) 143 (15.5) 8 (0.9) 0 (0) 
30 minutes 682 (24.7) 436 (47.2) 225 (24.8) 21 (2.3) 
45 minutes 758 (27.5) 217 (23.5) 407 (44.8) 124 (14.5) 
60 minutes 574 (20.8) 76 (8.2) 199 (21.9) 299 (32.3) 
90 minutes 446 (16.2) 33 (3.6) 50 (5.5) 363 (39.2) 
120 minutes 147 (5.3) 19 (2.1) 20 (2.2) 108 (11.7) 

Data are reported as number (percentage %). OGTT, oral glucose tolerance test 
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Table S5.4 Multivariable-adjusted associations of incremental glucose peak (IGP) and arterial 
stiffness and arterial remodeling. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=1,954) 

   Crude 0.172 (0.144; 0.201) <0.001 
   Model 2 0.110 (0.083; 0.136) <0.001 
   Model 3 0.099 (0.063; 0.134) <0.001 
   Model 4* 0.067 (0.034; 0.100) <0.001 
   Model 5 0.054 (0.020; 0.089) 0.002 
Carotid distensibility coefficient (carDC), 10

-3
/kPa (n=1,978) 

   Crude -0.315 (-0.389; -0.240) <0.001 
   Model 2 -0.187 (-0.256; -0.118) <0.001 
   Model 3 -0.093 (-0.184; -0.001) 0.047 
   Model 4* -0.045 (-0.128; 0.039) 0.294 
   Model 5 -0.026 (-0.112; 0.060) 0.551 
Carotid intima-media thickness (cIMT), μm (n=1,973) 
   Crude 4.157 (1.944; 6.370) <0.001 
   Model 2 -0.094 (-2.274; 2.087) 0.933 
   Model 3 -2.089 (-4.980; 0.801) 0.157 
   Model 4† -3.159 (-6.047; -0.271) 0.032 
   Model 5 -2.745 (-5.736; 0.245) 0.072 
Mean circumferential wall stress (CWSmean), kPa (n=1,870) 
   Crude 0.441 (0.279; 0.603) <0.001 
   Model 2 0.325 (0.159; 0.491) <0.001 
   Model 3 0.404 (0.185; 0.623) <0.001 
   Model 4‡ 0.350 (0.137; 0.564) 0.001 
   Model 5 0.227 (0.008; 0.446) 0.043 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=1,849) 
   Crude 0.387 (0.257; 0.518) <0.001 
   Model 2 0.244 (0.110; 0.377) <0.001 
   Model 3 0.320 (0.144; 0.495) <0.001 
   Model 4* 0.196 (0.040; 0.353) 0.014 
   Model 5 0.108 (-0.054; 0.270) 0.192 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of IGP. Model 1: crude. Model 2: additionally adjusted for age and sex. Model 3: 
additionally adjusted for HbA1c. Model 4: additionally adjusted for mean arterial pressure (*), office 
systolic blood pressure (†) or carotid pulse pressure (‡) and heart rate in case of cf-PWV. Model 5: 
additionally adjusted for body mass index, smoking status, physical activity, Mediterranean diet score, 
use of antihypertensive and lipid-modifying drugs, fasting triglycerides, and total-to-HDL cholesterol 
levels. 
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Table S5.5 Multivariable-adjusted associations of incremental glucose peak (IGP) and arterial 
stiffness and arterial remodeling, additionally adjusted for history of cardiovascular 
disease, retinopathy, estimated glomerular filtration rate, and urinary albumin 
excretion. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=1,722) 
    Crude 0.168 (0.138; 0.199) <0.001 
   Model 2 0.105 (0.076; 0.134) <0.001 
   Model 3 0.096 (0.058; 0.134) <0.001 
   Model 4* 0.065 (0.030; 0.100) <0.001 
   Model 5 0.056 (0.019; 0.093) 0.003 
   Model 6 0.054 (0.017; 0.091) 0.004 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=1,744) 
   Crude -0.321 (-0.400; -0.242) <0.001 
   Model 2 -0.195 (-0.269; -0.121) <0.001 
   Model 3 -0.109 (-0.207; -0.011) 0.029 
   Model 4* -0.060 (-0.149; 0.030) 0.189 
   Model 5 -0.035 (-0.128; 0.057) 0.453 
   Model 6 -0.031 (-0.124; 0.062) 0.511 
Carotid intima-media thickness (cIMT), μm (n=1,741) 
   Crude 4.045 (1.729; 6.362) 0.001 
   Model 2 -0.197 (-2.489; 2.094) 0.866 
   Model 3 -2.491 (-5.537; 0.555) 0.109 
   Model 4† -3.415 (-6.463; -0.367) 0.028 
   Model 5 -2.920 (-6.088; 0.248) 0.071 
   Model 6 -2.827 (-6.016; 0.362) 0.082 
Mean circumferential wall stress (CWSmean), kPa (n=1,633) 
   Crude 0.408 (0.235; 0.582) <0.001 
   Model 2 0.281 (0.102; 0.459) 0.002 
   Model 3 0.420 (0.184; 0.656) <0.001 
   Model 4‡ 0.372 (0.143; 0.601) 0.001 
   Model 5 0.250 (0.013; 0.486) 0.039 
   Model 6 0.224 (-0.013; 0.462) 0.064 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=1,633) 
   Crude 0.333 (0.194; 0.471) <0.001 
   Model 2 0.188 (0.047; 0.329) 0.009 
   Model 3 0.280 (0.094; 0.466) 0.003 
   Model 4* 0.152 (-0.014; 0.317) 0.073 
   Model 5 0.069 (-0.103; 0.242) 0.431 
   Model 6 0.066 (-0.108; 0.239) 0.458 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of IGP. Model 1: crude. Model 2: additionally adjusted for age and sex. Model 3: 
additionally adjusted for HbA1c. Model 4: additionally adjusted for mean arterial pressure (*), office 
systolic blood pressure (†) or carotid pulse pressure (‡) and heart rate in case of cf-PWV. Model 5: 
additionally adjusted for body mass index, smoking status, physical activity, Mediterranean diet score, 
use of antihypertensive and lipid-modifying drugs, fasting triglycerides, and total-to-HDL cholesterol 
levels. Model 6: additionally adjusted for history of cardiovascular disease, retinopathy, estimated 
glomerular filtration rate, and urinary albumin excretion.  
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Table S5.6 Multivariable-adjusted associations of incremental glucose peak (IGP) and 
microvascular function, additionally adjusted for history of cardiovascular disease, 
retinopathy, estimated glomerular filtration rate, and urinary albumin excretion. 

Model B (95%CI) p-value 

Retinal arteriolar baseline diameter, MU (n=1,514) 
   Crude -0.043 (-0.308; 0.223) 0.753 
   Model 2 0.076 (-0.202; 0.354) 0.591 
   Model 3 -0.133 (-0.498; 0.232) 0.474 
   Model 4 -0.079 (-0.446; 0.287) 0.672 
   Model 5 -0.143 (-0.522; 0.235) 0.458 
   Model 6 -0.149 (-0.527; 0.230) 0.440 
Retinal arteriolar average dilatation, % (n=1,514) 
   Crude -0.091 (-0.138; -0.044) <0.001 
   Model 2 -0.077 (-0.125; -0.028) 0.002 
   Model 3 -0.041 (-0.105; 0.022) 0.203 
   Model 4 -0.045 (-0.109; 0.019) 0.169 
   Model 5 -0.023 (-0.090; 0.043) 0.497 
   Model 6 -0.018 (-0.084; 0.049) 0.607 
Skin baseline blood flow, PU (n=1,013) 
   Crude 0.010 (-0.123; 0.143) 0.880 
   Model 2 -0.034 (-0.172; 0.105) 0.634 
   Model 3 0.028 (-0.156; 0.211) 0.767 
   Model 4 0.052 (-0.134; 0.237) 0.582 
   Model 5 0.077 (-0.117; 0.270) 0.437 
   Model 6 0.042 (-0.153; 0.237) 0.674 
Heat-induced skin hyperemia, % (n=1,013) 
   Crude -26.408 (-41.668; -11.147) 0.001 
   Model 2 -8.673 (-24.293; 6.946) 0.276 
   Model 3 -1.164 (-21.867; 19.540) 0.912 
   Model 4 -3.704 (-24.615; 17.208) 0.728 
   Model 5 -0.211 (-22.086; 21.664) 0.985 
   Model 6 0.194 (-21.935; 22.322) 0.986 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of IGP. Model 1: crude. Model 2: additionally adjusted for age and sex. Model 3: 
additionally adjusted for HbA1c. Model 4: additionally adjusted for office systolic blood pressure. Model 
5: additionally adjusted for body mass index, smoking status, physical activity, Mediterranean diet 
score, use of antihypertensive and lipid-modifying drugs, fasting triglycerides, and total-to-HDL 
cholesterol levels. Model 6: additionally adjusted for history of cardiovascular disease, retinopathy, 
estimated glomerular filtration rate, and urinary albumin excretion. 
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Table S5.7 Multivariable-adjusted associations of incremental glucose peak (IGP) and arterial 
stiffness and arterial remodeling, additionally adjusted for fasting plasma insulin 
(6.1) or HOMA2-IR (6.2).  

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=1,890) 
   Crude 0.174 (0.144; 0.203) <0.001 
   Model 2 0.109 (0.081; 0.136) <0.001 
   Model 3 0.101 (0.065; 0.138) 0.001 
   Model 4* 0.070 (0.036; 0.103) <0.001 
   Model 5 0.056 (0.021; 0.091) 0.002 
   Model 6.1 0.056 (0.021; 0.091) 0.002 
   Model 6.2 0.056 (0.021; 0.091) 0.002 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=1,908) 
   Crude -0.316 (-0.392; -0.240) < 0.001 
   Model 2 -0.185 (-0.256; -0.114) < 0.001 
   Model 3 -0.099 (-0.192; -0.005) 0.039 
   Model 4* -0.050 (-0.135; 0.036) 0.254 
   Model 5 -0.030 (-0.118; 0.059) 0.509 
   Model 6.1 -0.030 (-0.118; 0.059) 0.509 
   Model 6.2 -0.031 (-0.120; 0.058) 0.491 
Carotid intima-media thickness (cIMT), μm (n=1,903) 
   Crude 3.975 (1.710; 6.239) 0.001 
   Model 2 -0.306 (-2.542; 1.929) 0.788 
   Model 3 -2.105 (-5.064; 0.854) 0.163 
   Model 4† -3.215 (-6.172; -0.258) 0.033 
   Model 5 -2.791 (-5.859; 0.277) 0.075 
   Model 6.1 -2.797 (-5.866; 0.272) 0.074 
   Model 6.2 -2.782 (-5.851; 0.287) 0.076 
Mean circumferential wall stress (CWSmean), kPa (n=1,784) 
   Crude 0.445 (0.278; 0.612) < 0.001 
   Model 2 0.329 (0.157; 0.501) < 0.001 
   Model 3 0.406 (0.180; 0.633) < 0.001 
   Model 4‡ 0.345 (0.124; 0.565) 0.002 
   Model 5 0.201 (-0.025; 0.428) 0.082 
   Model 6.1 0.202 (-0.025; 0.428) 0.082 
   Model 6.2 0.203 (-0.024; 0.430) 0.079 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=1,784) 
   Crude 0.394 (0.261; 0.527) < 0.001 
   Model 2 0.253 (0.117; 0.389) < 0.001 
   Model 3 0.326 (0.147; 0.505) < 0.001 
   Model 4* 0.202 (0.043; 0.362) 0.013 
   Model 5 0.105 (-0.060; 0.271) 0.213 
   Model 6.1 0.105 (-0.060; 0.271) 0.212 
   Model 6.2 0.106 (-0.059; 0.272) 0.209 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of IGP. Model 1: crude. Model 2: additionally adjusted for age and sex. Model 3: 
additionally adjusted for HbA1c. Model 4: additionally adjusted for mean arterial pressure (*), office 
systolic blood pressure (†) or carotid pulse pressure (‡)and heart rate in case of cf-PWV. Model 5: 
additionally adjusted for body mass index, smoking status, physical activity, Mediterranean diet score, 
use of antihypertensive and lipid-modifying drugs, fasting triglycerides, and total-to-HDL cholesterol 
levels. Model 6 additionally adjusted for fasting plasma insulin (6.1) or HOMA2-IR (6.2). 
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Table S5.8 Multivariable-adjusted associations of incremental glucose peak (IGP) and arterial 
stiffness, arterial remodeling and microvascular function after adjustment for 
glucose metabolism status or fasting plasma glucose instead of HbA1c. 

Model B (95%CI) p-value Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=1,954) 
   Crude 0.172 (0.144; 0.201) <0.001  Crude   
   Model 2 0.110 (0.083; 0.136) <0.001  Model 2   
   Model 3a 0.074 (0.032; 0.116) 0.001  Model 3b 0.079 (0.043; 0.114) <0.001 
   Model 4a* 0.040 (0.001; 0.079) 0.045  Model 4b* 0.061 (0.028; 0.094) <0.001 
   Model 5a 0.031 (-0.008; 0.071) 0.120  Model 5b 0.048 (0.014; 0.082) 0.006 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=1,978) 
   Crude -0.315 (-0.389; -0.240) < 0.001  Crude   
   Model 2 -0.187 (-0.256; -0.118) < 0.001  Model 2   
   Model 3a -0.162 (-0.270; -0.053) 0.003  Model 3b -0.090 (-0.182; 0.002) 0.054 
   Model 4a* -0.109 (-0.208; -0.011) 0.030  Model 4b* -0.078 (-0.162; 0.005) 0.067 
   Model 5a -0.095 (-0.194; 0.005) 0.062  Model 5b -0.061 (-0.148; 0.026) 0.166 
Carotid intima-media thickness (cIMT), μm (n=1,973) 
   Crude 4.157 (1.944; 6.370) <0.001  Crude   
   Model 2 -0.094 (-2.274; 2.087) 0.933  Model 2   
   Model 3a -3.582 (-6.991; -0.172) 0.039  Model 3b -2.446 (-5.347; 0.454) 0.098 
   Model 4a† -4.181 (-7.568; -0.793) 0.016  Model 4b† -3.067 (-5.952; -0.182) 0.037 
   Model 5a -4.282 (-7.706; -0.857) 0.014  Model 5b -3.004 (-6.005; -0.002) 0.050 
Mean circumferential wall stress (CWSmean), kPa (n=1,870) 
   Crude 0.441 (0.279; 0.603) <0.001  Crude   
   Model 2 0.325 (0.159; 0.491) <0.001  Model 2   
   Model 3a 0.429 (0.169; 0.689) 0.001  Model 3b 0.258 (0.038; 0.479) 0.022 
   Model 4a‡ 0.380 (0.127; 0.633) 0.003  Model 4b‡ 0.219 (0.004; 0.434) 0.046 
   Model 5a 0.343 (0.090; 0.596) 0.008  Model 5b 0.156 (-0.065; 0.377) 0.167 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=1,849) 
   Crude 0.387 (0.257; 0.518) <0.001  Crude   
   Model 2 0.244 (0.110; 0.377) <0.001  Model 2   
   Model 3a 0.265 (0.057; 0.472) 0.013  Model 3b 0.214 (0.037; 0.391) 0.018 
   Model 4a* 0.126 (-0.059; 0.312) 0.182  Model 4b* 0.159 (0.001; 0.316) 0.048 
   Model 5a 0.076 (-0.111; 0.264) 0.423  Model 5b 0.067 (-0.097; 0.230) 0.425 
Retinal arteriolar average dilatation (n=1,591) 
   Crude -0.088 (-0.134; -0.043) <0.001  Crude   
   Model 2 -0.073 (-0.121; -0.026) 0.002  Model 2   
   Model 3a 0.019 (-0.055; 0.093) 0.619  Model 3b -0.026 (-0.089; 0.037) 0.424 
   Model 4a† 0.015 (-0.059; 0.090) 0.689  Model 4b† -0.029 (-0.092; 0.035) 0.375 
   Model 5a 0.026 (-0.049; 0.101) 0.501  Model 5b -0.006 (-0.072; 0.060) 0.854 
Heat-induced skin hyperemia (n=1,134) 
   Crude -28.109 (-42.778; -13.440) <0.001  Crude   
   Model 2 -12.503 (-27.509; 2.504) 0.102  Model 2   
   Model 3a 1.347 (-22.597; 25.291) 0.912  Model 3b -10.477 (-30.879; 9.926) 0.314 
   Model 4a† -0.043 (-24.042; 23.956) 0.997  Model 4b† -11.996 (-32.497; 8.505) 0.251 
   Model 5a 4.340 (-19.989; 28.669) 0.726  Model 5b -6.214 (-27.437; 15.009) 0.566 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of IGP. Model 1: crude. Model 2: additionally adjusted for age and sex. Model 3: 
additionally adjusted for glucose metabolism status (a, left column) or fasting plasma glucose (FPG) 
(b, right column). Model 4: additionally adjusted for mean arterial pressure (*), office systolic blood 
pressure (†) or carotid pulse pressure (‡) and heart rate in case of cf-PWV. Model 5: additionally adjusted 
for body mass index, smoking status, physical activity, Mediterranean diet score, use of 
antihypertensive and lipid-modifying drugs, fasting triglycerides, and total-to-HDL cholesterol levels. 
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Table S5.9 Multivariable-adjusted associations of absolute glucose peak (AGP) and arterial 
stiffness, arterial remodeling and microvascular function. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=1,954) 
   Crude 0.144 (0.121; 0.166) <0.001 
   Model 2 0.090 (0.069; 0.112) <0.001 
   Model 3 0.092 (0.061; 0.123) <0.001 
   Model 4* 0.059 (0.031; 0.088) <0.001 
   Model 5 0.049 (0.019; 0.079)   0.001 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=1,978) 
   Crude -0.268 (-0.326; -0.210) <0.001 
   Model 2 -0.163 (-0.217; -0.108) <0.001 
   Model 3 -0.097 (-0.176; -0.017)   0.017 
   Model 4* -0.042 (-0.115; 0.030)   0.250 
   Model 5 -0.020 (-0.096; 0.055)   0.598 
Carotid intima-media thickness (cIMT), μm (n=1,973) 
   Crude 4.013 (2.290; 5.736) <0.001 
   Model 2 0.380 (-1.338; 2.098)   0.664 
   Model 3 -1.217 (-3.719; 1.285)   0.340 
   Model 4† -2.296 (-4.803; 0.212)   0.073 
   Model 5 -1.778 (-4.389; 0.833)   0.182 
Mean circumferential wall stress (CWSmean), kPa (n=1,870) 
   Crude 0.363 (0.237; 0.490) <0.001 
   Model 2 0.263 (0.132; 0.394) <0.001 
   Model 3 0.382 (0.192; 0.572)   0.001 
   Model 4‡ 0.333 (0.148; 0.517) <0.001 
   Model 5 0.200 (0.008; 0.391)   0.041 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=1,849) 
   Crude 0.315 (0.213; 0.417) <0.001 
   Model 2 0.193 (0.088; 0.299) <0.001 
   Model 3 0.296 (0.144; 0.447) <0.001 
   Model 4* 0.167 (0.031; 0.302)   0.016 
   Model 5 0.087 (-0.054; 0.228)   0.228 
Retinal arteriolar average dilatation (n=1,591) 
   Crude -0.076 (-0.111; -0.041) <0.001 
   Model 2 -0.065 (-0.102; -0.028)   0.001 
   Model 3 -0.043 (-0.097; 0.011)   0.116 
   Model 4† -0.048 (-0.102; 0.007)   0.085 
   Model 5 -0.031 (-0.087; 0.026)   0.284 
Heat-induced skin hyperemia (n=1,134) 
   Crude -23.140(-34.467; -11.813) <0.001 
   Model 2 -9.906 (-21.625; 1.813)   0.097 
   Model 3 -1.556 (-18.602; 15.490)   0.858 
   Model 4† -3.408 (-20.647; 13.831)   0.698 
   Model 5 -0.757 (-18.811; 17.297)   0.934 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of absolute glucose peak (AGP). Model 1: crude. Model 2: additionally adjusted for 
age and sex. Model 3: additionally adjusted for HbA1c. Model 4: additionally adjusted for mean arterial 
blood pressure and heart rate in case of cf-PWV. Model 5: additionally adjusted for body mass index, 
smoking status, physical activity, Mediterranean diet score, use of antihypertensive and lipid-modifying 
drugs, fasting triglycerides, and total-to-HDL cholesterol levels. 
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Table S5.10 Multivariable-adjusted associations of percentage increase from baseline 
(IGPpercentage) and arterial stiffness, arterial remodeling and microvascular function. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=1,954) 
   Crude 0.011 (0.009; 0.013) <0.001 
   Model 2 0.007 (0.005; 0.009) <0.001 
   Model 3 0.005 (0.003; 0.007) <0.001 
   Model 4* 0.004 (0.001; 0.006)   0.001 
   Model 5 0.003 (0.001; 0.005)   0.010 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=1,978) 
   Crude -0.020 (-0.025; -0.014) <0.001 
   Model 2 -0.011 (-0.016; -0.006) <0.001 
   Model 3 -0.005 (-0.011; 0.000)   0.071 
   Model 4* -0.003 (-0.008; 0.002)   0.274 
   Model 5 -0.002 (-0.007; 0.003)   0.498 
Carotid intima-media thickness (cIMT), μm (n=1,973) 
   Crude 0.204 (0.040; 0.368)   0.015 
   Model 2 -0.062 (-0.221; 0.097)   0.445 
   Model 3 -0.154 (-0.335; 0.026)   0.094 
   Model 4† -0.203 (-0.383; -0.023)   0.027 
   Model 5 -0.193 (-0.378; -0.008)   0.041 
Mean circumferential wall stress (CWSmean), kPa (n=1,870) 
   Crude 0.029 (0.017; 0.041) <0.001 
   Model 2 0.022 (0.010; 0.034) <0.001 
   Model 3 0.022 (0.008; 0.036)   0.002 
   Model 4‡ 0.019 (0.005; 0.032)   0.006 
   Model 5 0.013 (-0.001; 0.026)   0.069 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=1,849) 
   Crude 0.027 (0.017; 0.036) <0.001 
   Model 2 0.017 (0.008; 0.027) <0.001 
   Model 3 0.018 (0.007; 0.029)   0.001 
   Model 4* 0.012 (0.002; 0.021)   0.019 
   Model 5 0.007 (-0.003; 0.017)   0.173 
Retinal arteriolar average dilatation (n=1,591) 
   Crude -0.005 (-0.008; -0.001)   0.005 
   Model 2 -0.004 (-0.007; 0.000)   0.040 
   Model 3 -0.001 (-0.005; 0.003)   0.536 
   Model 4† -0.001 (-0.005; 0.003)   0.476 
   Model 5 0.000 (-0.004; 0.004)   0.910 
Heat-induced skin hyperemia (n=1,134) 
   Crude -1.852 (-2.951; -0.754)   0.001 
   Model 2 -0.896 (-2.002; 0.209)   0.112 
   Model 3 -0.440 (-1.686; 0.805)   0.488 
   Model 4† -0.544 (-1.797; 0.709)   0.395 
   Model 5 -0.289 (-1.577; 1.000)   0.661 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(%) increase of percentage increase from baseline (IGPpercentage). Model 1: crude. Model 2: additionally 
adjusted for age and sex. Model 3: additionally adjusted for HbA1c. Model 4: additionally adjusted for 
mean arterial pressure (*), office systolic blood pressure (†) or carotid pulse pressure (‡) and heart rate in 
case of cf-PWV. Model 5: additionally adjusted for body mass index, smoking status, physical activity, 
Mediterranean diet score, use of antihypertensive and lipid-modifying drugs, fasting triglycerides, and 
total-to-HDL cholesterol levels. 
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Table S5.11.  Multivariable-adjusted associations of incremental glucose peak (IGP) and arterial 
stiffness after adjustment for alternative blood pressure measurements. 

Model B (95%CI) p-value 

Carotid-femoral pulse wave velocity (cf-PWV), m/s (n=1,950) 
   Crude 0.171 (0.142; 0.199) <0.001 
   Model 2 0.109 (0.082; 0.136) <0.001 
   Model 3 0.097 (0.062; 0.133) <0.001 
   Model 4* 0.048 (0.014; 0.082)   0.005 
   Model 5 0.041 (0.006; 0.076)   0.021 
Carotid-femoral pulse wave velocity (cf-PWV), m/s (n=1,751) 
   Crude 0.170 (0.140; 0.200) <0.001 
   Model 2 0.110 (0.081; 0.138) <0.001 
   Model 3 0.100 (0.062; 0.138) <0.001 
   Model 4† 0.074 (0.039; 0.110) <0.001 
   Model 5 0.061 (0.024; 0.098)   0.001 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=1,974) 
   Crude -0.313 (-0.388; -0.239) <0.001 
   Model 2 -0.186 (-0.255; -0.117) <0.001 
   Model 3 -0.092 (-0.184; -0.001)   0.048 
   Model 4* -0.029 (-0.119; 0.060) 0.521 
   Model 5 -0.021 (-0.113; 0.070)   0.648 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=1,769) 
   Crude -0.274 (-0.353; -0.195) <0.001 
   Model 2 -0.153 (-0.227; -0.079) <0.001 
   Model 3 -0.061 (-0.158; 0.035) 0.214 
   Model 4† -0.054 (-0.148; 0.041)   0.266 
   Model 5 -0.030 (-0.128; 0.067) 0.539 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of IGP. Model 1: crude. Model 2: additionally adjusted for age and sex. Model 3: 
additionally adjusted for HbA1c. Model 4: additionally adjusted for office systolic blood pressure (*) or 
ambulatory 24-h systolic blood pressure (†) and heart rate in case of cf-PWV. Model 5: additionally 
adjusted for body mass index, smoking status, physical activity, Mediterranean diet score, use of 
antihypertensive and lipid-modifying drugs, fasting triglycerides, and total-to-HDL cholesterol levels. 
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Table S5.12 Multivariable-adjusted associations of incremental glucose peak (IGP) and arterial 
remodeling after adjustment for alternative blood pressure measurements. 

Model B (95%CI) p-value 

Carotid intima-media thickness (cIMT), μm (n=1,769) 
   Crude 3.315 (0.947; 5.683)   0.006 
   Model 2 -1.085 (-3.409; 1.239)   0.360 
   Model 3 -3.088 (-6.147; -0.029)   0.048 
   Model 4* -3.287 (-6.310; -0.265)   0.033 
   Model 5 -3.126 (-6.269; 0.017)   0.051 
Carotid intima-media thickness (cIMT), μm (n=1,974) 
   Crude 4.137 (1.919; 6.355) <0.001 
   Model 2 -0.124 (-2.309; 2.061)   0.912 
   Model 3 -2.136 (-5.029; 0.758)   0.148 
   Model 4† -2.455 (-5.345; 0.434)     0.096 
   Model 5 -2.193 (-5.198; 0.813)   0.153 
Mean circumferential wall stress (CWSmean), kPa (n=1,765) 
   Crude 0.443 (0.277; 0.609) <0.001 
   Model 2 0.33 (0.16; 0.501) <0.001 
   Model 3 0.404 (0.180; 0.628) <0.001 
   Model 4* 0.383 (0.165; 0.602)   0.001 
   Model 5 0.268 (0.043; 0.492)   0.019 
Mean circumferential wall stress (CWSmean), kPa (n=1,969) 
   Crude 0.408 (0.251; 0.564) <0.001 
   Model 2 0.288 (0.128; 0.449) <0.001 
   Model 3 0.385 (0.172; 0.598) <0.001 
   Model 4‡ 0.248 (0.040; 0.457)   0.020 
   Model 5 0.162 (-0.053; 0.377)   0.139 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=1,767) 
   Crude 0.372 (0.235; 0.509) <0.001 
   Model 2 0.227 (0.088; 0.366)   0.001 
   Model 3 0.283 (0.101; 0.464)   0.002 
   Model 4* 0.250 (0.077; 0.423)   0.005 
   Model 5 0.163 (-0.016; 0.342)   0.074 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=1,848) 
   Crude 0.398 (0.268; 0.529) <0.001 
   Model 2 0.256 (0.123; 0.389) <0.001 
   Model 3 0.333 (0.158; 0.509) <0.001 
   Model 4‡ 0.155 (-0.011; 0.320)   0.067 
   Model 5 0.099 (-0.073; 0.270)   0.259 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of IGP. Model 1: crude. Model 2: additionally adjusted for age and sex. Model 3: 
additionally adjusted for HbA1c. Model 4: additionally adjusted for ambulatory 24-hour systolic blood 
pressure (*), mean arterial pressure (†), or office systolic blood pressure (‡). Model 5: additionally 
adjusted for body mass index, smoking status, physical activity, Mediterranean diet score, use of 
antihypertensive and lipid-modifying drugs, fasting triglycerides, and total-to-HDL cholesterol levels. 
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Table S5.13 Multivariable-adjusted associations of incremental glucose peak (IGP) and 
microvascular function after adjustment for alternative blood pressure 
measurements. 

Model B (95%CI) p-value 

Retinal arteriolar average dilatation (n=1,422) 
   Crude -0.091 (-0.14; -0.043) <0.001 
   Model 2 -0.075 (-0.125; -0.025)   0.003 
   Model 3 -0.040 (-0.106; 0.026)   0.238 
   Model 4 -0.040 (-0.106; 0.026)   0.231 
   Model 5 -0.023 (-0.092; 0.046)   0.512 
Heat-induced skin hyperemia (n=1,000) 
   Crude -27.164 (-42.764; -11.563)   0.001 
   Model 2 -13.087 (-28.994; 2.819)   0.107 
   Model 3 -5.924 (-27.064; 15.216)   0.583 
   Model 4 -5.654 (-26.806; 15.499)   0.600 
   Model 5 -0.237 (-22.360; 21.886)   0.983 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of IGP. Model 1: crude. Model 2: additionally adjusted for age and sex. Model 3: 
additionally adjusted for HbA1c. Model 4: additionally adjusted for ambulatory 24-hour systolic blood 
pressure. Model 5: additionally adjusted for body mass index, smoking status, physical activity, 
Mediterranean diet score, use of antihypertensive and lipid-modifying drugs, fasting triglycerides, and 
total-to-HDL cholesterol levels. 
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Table S5.14 Multivariable-adjusted associations of time to glucose peak and arterial stiffness, 
arterial remodeling and microvascular function. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=1,954) 
   Crude 0.018 (0.015; 0.022) <0.001 
   Model 2 0.011 (0.008; 0.008) <0.001 
   Model 3 0.009 (0.005; 0.005) <0.001 
   Model 4* 0.006 (0.002; 0.009)   0.001 
   Model 5 0.005 (0.001; 0.008)   0.007 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=1,978) 
   Crude -0.030 (-0.039; -0.022) <0.001 
   Model 2 -0.014 (-0.022; -0.006) <0.001 
   Model 3 -0.004 (-0.013; 0.005)   0.425 
   Model 4* 0.004 (-0.005; 0.012)   0.402 
   Model 5 0.006 (-0.002; 0.015)   0.131 
Carotid intima-media thickness (cIMT), μm (n=1,973) 
   Crude 0.501 (0.246; 0.736) <0.001 
   Model 2 0.031 (-0.219; 0.282)   0.807 
   Model 3 -0.081 (-0.368; 0.206)   0.579 
   Model 4† -0.189 (-0.475; 0.098)   0.196 
   Model 5 -0.140 (-0.433; 0.152)   0.348 
Mean circumferential wall stress (CWSmean), kPa (n=1,869) 
   Crude 0.048 (0.029; 0.067) <0.001 
   Model 2 0.036 (0.017; 0.055) <0.001 
   Model 3 0.037 (0.015; 0.059)   0.001 
   Model 4‡ 0.029 (0.008; 0.051)   0.007 
   Model 5 0.015 (-0.006; 0.037)   0.162 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=1,849) 
   Crude 0.043 (0.028; 0.058) <0.001 
   Model 2 0.027 (0.012; 0.042)   0.001 
   Model 3 0.029 (0.011; 0.046)   0.001 
   Model 4* 0.011 (-0.004; 0.027) 0.155 
   Model 5 0.005 (-0.011; 0.021)   0.546 
Retinal arteriolar average dilatation (n=1,591) 
   Crude -0.011 (-0.016; -0.005) <0.001 
   Model 2 -0.009 (-0.014; -0.028)   0.001 
   Model 3 -0.007 (-0.012; -0.001)   0.029 
   Model 4† -0.007 (-0.013; -0.001)   0.022 
   Model 5 -0.006 (-0.012; 0.001)   0.074 
Heat-induced skin hyperemia (n=1,134) 
   Crude -3.181 (-4.867; -1.495) <0.001 
   Model 2 -1.521 (-3.236; 0.194)   0.082 
   Model 3 -0.814 (-2.777; 1.149)   0.416 
   Model 4† -1.046 (-3.032; 0.940)   0.302 
   Model 5 -1.044 (-3.080; 0.993) 0.315 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(minute) increase of time to glucose peak. Model 1: crude. Model 2: additionally adjusted for age and 
sex. Model 3: additionally adjusted for HbA1c. Model 4: additionally adjusted for mean arterial blood 
pressure and heart rate in case of cf-PWV. Model 5: additionally adjusted for body mass index, smoking 
status, physical activity, Mediterranean diet score, use of antihypertensive and lipid-modifying drugs, 
fasting triglycerides, and total-to-HDL cholesterol levels. 



Chapter 5 

140 

Table S5.15 Fully adjusted associations of incremental glucose peak (IGP) and carotid-femoral 
pulse wave velocity (cf-PWV) stratified according to age tertiles. 

Age tertiles Model 5: B (95%CI) p-value 

Carotid-femoral pulse wave velocity (cf-PWV), m/s 
   1st (n=627) 0.032 (-0.021; 0.085) 0.234 
   2nd (n=707) 0.034 (-0.020; 0.088) 0.219 
   3rd (n=620) 0.101 (0.032; 0.169) 0.004 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of IGP. Model 5: fully adjusted model. 
 
 
Table S5.16 Fully adjusted associations of incremental glucose peak (IGP) and carotid 

distensibility coefficient (carDC) stratified according to age tertiles. 

Age tertiles Model 5: B (95%CI) p-value 

Carotid destensibility coefficient (carDC), 10-3/kPa 
   1st (n=634) -0.120 (-0.306; 0.066) 0.207 
   2nd (n=712) -0.070 (-0.205; 0.066) 0.313 
   3rd (n=632) 0.071 (-0.067; 0.208) 0.313 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of IGP. Model 5: fully adjusted model. 
 
 
Table S5.17 Fully adjusted associations of incremental glucose peak (IGP) and pulsatile 

circumferential wall stress (CWSpuls) stratified according to age tertiles. 

Age tertiles Model 5: B (95%CI) p-value 

Pulsatile circumferential wall stress (CWSpuls), kPa 
   1st (n=525) -0.135 (-0.405; 0.135) 0.326 
   2nd (n=594) 0.170 (-0.112; 0.451) 0.237 
   3rd (n=514) 0.270 (-0.027; 0.566) 0.075 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of IGP. Model 5: fully adjusted model. 
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Abstract 
Aims 

Cardiovascular disease (CVD) is the main cause of morbidity and mortality in individuals with 

diabetes. It is currently unclear whether daily glucose variability contributes to CVD. We 

therefore investigated whether glucose variability is associated with arterial measures that are 

considered important in the pathogenesis of CVD. 

 

Methods 

We included participants of The Maastricht Study, an observational population-based cohort, 

who underwent at least 48h of continuous glucose monitoring (CGM) (n=853; age: 59.9±8.6y), 

49% women, 23% type 2 diabetes). We studied the cross-sectional associations of two glucose 

variability indices (standard deviation [SDCGM]; coefficient of variation [CVCGM]) and time in range 

(TIRCGM) with carotid-femoral pulse wave velocity (cf-PWV), carotid distensibility coefficient, 

carotid intima-media thickness, ankle-brachial index, and circumferential wall stress via multiple 

linear regression. 

 

Results 

Higher SDCGM was associated with higher cf-PWV after adjustment for demographics, 

cardiovascular risk factors, lifestyle factors, and medication use (regression coefficient [B] per 

1mmol/L SDCGM [and corresponding 95% confidence interval; 95%CI]: 0.413m/s [0.147;0.679], 

p=0.002). In the model additionally adjusted for mean sensor glucose (MSGCGM), SDCGM and 

MSGCGM contributed similarly to cf-PWV (respective standardized regression coefficients [st.β and 

95%CI] of 0.065 [-0.018; 0.167], p=0.160; and 0.059 [-0.043; 0.164], p=0.272). In the fully adjusted 

models, both higher CVCGM (B [95%CI] per 10% CVCGM: 0.303m/s [0.046;0.559], p=0.021) and lower 

TIRCGM (B [95%CI] per 10% TIRCGM: -0.145m/s [-0.252;-0.038] p=0.008) were statistically 

significantly associated with higher cf-PWV. Such consistent associations were not observed for 

the other arterial measures. 

 

Conclusions 

Our findings show that greater daily glucose variability and lower TIRCGM are associated with 

greater aortic stiffness (cf-PWV), but not with other arterial measures. If corroborated in 

prospective studies, these results support the development of therapeutic agents that target 

both daily glucose variability and TIRCGM in order to prevent CVD. 
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Introduction 

Cardiovascular disease (CVD) is the main cause of morbidity and mortality in 

individuals with type 2 diabetes1. Additionally, individuals with prediabetes are already 

at an elevated risk of CVD2. Hyperglycemia contributes to this CVD risk, in part, by its 

adverse effects on arterial stiffness3-5, atherosclerosis1,6, and large-artery endothelial 

function5,7. Accordingly, both achieving and maintaining normoglycemia are important 

for the reduction of CVD risk1. However, current treatment modalities have not been 

able to fully normalize the elevated CVD risk of individuals with type 2 diabetes1. A 

better understanding of the involved pathophysiologic processes could yield new 

therapeutic targets to further reduce CVD risk.  

Glucose variability (GV) is thought to contribute to the development of CVD, 

irrespective of mean glucose values. Notably, two types of GV need to be distinguished, 

as they are measured differently and represent different underlying etiologic 

concepts8,9. Short-term (or daily) GV reflects actual glucose fluctuations over the day9,10. 

By contrast, long-term (or visit-to-visit) GV reflects variance in classic glycemic indices 

(e.g., HbA1c) that have been periodically measured over weeks, months, or years8, 9. 

While long-term GV may assess daily glucose fluctuations to some extent, it is viewed 

to largely represent difficult to measure factors that affect glycemic control (e.g., 

therapy adherence, multimorbidity, infections)8. Whereas multiple studies have shown 

that long-term GV is independently associated with CVD and all-cause mortality8,11-15, 

the association between daily GV and CVD has only been sparsely investigated16.  

In general, the study of incident CVD requires both a substantial sample size and an 

ample follow-up period. Large-scale measurement of daily GV with the gold standard 

method (i.e., continuous glucose monitoring; CGM)17 has been challenging up until 

recently, in part, due to costliness and relative invasiveness18. Therefore, most studies 

on this topic have cross-sectionally associated daily GV with measures that reflect the 

aforementioned processes leading up to CVD19-25. Importantly, however, these studies 

either did not adjust for certain important potential confounders20-23 or assessed daily 

GV with less precise methods than CGM24,25. 

Hence, we investigated whether daily GV is associated with arterial measures that 

are considered important in the pathogenesis of CVD in a population-based cohort 

study. We studied whether the associations were independent of key demographics, 

cardiovascular risk factors, and lifestyle factors, and assessed to what extent the 

associations were explained by mean glycaemia. Based on previous work25, we 

hypothesized that CGM-derived indices of GV would be most strongly associated with 

carotid-femoral pulse wave velocity (cf-PWV), which is the gold standard measure of 

aortic stiffness because of its independent association with incident CVD, 

cardiovascular mortality, and all-cause mortality26-28. In secondary analyses, we 

assessed the associations of coefficient of variation (CVCGM), an index that is 

intrinsically adjusted for mean glycaemia, and time in range (TIRCGM), an emerging 



Chapter 6 

144 

glycemic index that is partly determined by GV29, with the same arterial outcome 

variables. 

Research design and methods 

Study population and design 

We used data from The Maastricht Study, an observational, prospective, population-

based cohort study. The rationale and methodology have been described previously30. 

In brief, The Maastricht Study focuses on the etiology, pathophysiology, complications, 

and comorbidities of type 2 diabetes, and is characterized by an extensive phenotyping 

approach. All individuals aged between 40 and 75 years and living in the southern part 

of the Netherlands were eligible for participation. Participants were recruited through 

mass media campaigns and from the municipal registries and the regional Diabetes 

Patient Registry via mailings. For reasons of efficiency, recruitment was stratified 

according to known type 2 diabetes status, with an oversampling of individuals with 

type 2 diabetes. In general, the examinations of each participant were performed 

within a time window of three months. The Maastricht Study has been approved by 

the institutional medical ethical committee (NL31329.068.10) and the Minister of 

Health, Welfare and Sports of the Netherlands (Permit 131088-105234-PG). All 

participants gave written informed consent. 

Continuous glucose monitoring 

The rationale and methodology of CGM (iPro2 and Enlite Glucose Sensor; Medtronic, 

Tolochenaz, Switzerland) have been described previously31. From 19 September 2016 

until 13 September 2018, all participants were invited to undergo CGM as part of their 

regular work-up at The Maastricht Study. To accelerate the inclusion process and to 

ensure inclusion of a sufficient number of participants with prediabetes and type 2 

diabetes, we re-invited a selected group of participants who had recently visited The 

Maastricht Study to undergo CGM as a separate research visit (further referred to as 

‘catch-up visit’). The CGM device was worn on the lower abdomen and recorded 

subcutaneous interstitial glucose values (range: 2.2 - 22.2 mmol/L) every five minutes 

for a seven-day period. Participants were asked to perform self-measurements of blood 

glucose four times daily (Contour Next; Ascensia Diabetes Care, Mijdrecht, the 

Netherlands) for retrospective CGM calibration. Participants were blinded to the CGM 

recording, but not to the self-measured values. Diabetes medication use was allowed, 

and no dietary or physical activity instructions were given.  

The first 24 hours of CGM were excluded, because of insufficient calibration. Next, 

we excluded individuals of whom less than 24 hours of recording (less than one data 

day) remained. Then, we calculated, per participant, mean sensor glucose (MSGCGM), 

SDCGM, CVCGM (i.e., SDCGM/MSGCGM * 100%), and TIRCGM (i.e., % of time between 
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3.9 - 10.0 mmol/L) using the total recording period. Based on international consensus, 

we used SDCGM and CVCGM as indices of GV17. 

Arterial measurements 

The rationale and methodology of the arterial measurements have been described 

previously25,32,33. We assessed cf-PWV by use of applanation tonometry (SphygmoCor, 

Atcor Medical, Sydney, Australia)26, and used the median of at least three consecutive 

cf-PWV recordings in our analyses. Because of its established clinical relevance26-28, cf-

PWV was our main outcome measure of interest. 

In addition, we measured the left common carotid artery with the use of an 

ultrasound scanner equipped with a 7.5-MHz linear probe (MyLab 70, Esaote Europe 

B.V., Maastricht, the Netherlands) to assess local carotid distension, intima-media 

thickness (cIMT), and interadventitial diameter (IAD)34. We quantified local arterial 

stiffness by calculating the carotid distensibility coefficient (carDC) according to the 

following formula: carDC = (2*D*IAD + D2)/(braPP*IAD2), where IAD interadventitial 

arterial diameter, D distension, and braPP brachial pulse pressure35. We defined cIMT 

as the distance between the lumen-intima and media-adventitia interfaces of the far 

(posterior) wall34, and IAD as the distance between the media-adventitia interfaces of 

the near and far wall. The median carDC, cIMT and IAD of three consecutive 

measurements were used.  

We calculated carotid lumen diameter (LD) according to the following formula36: 

LD = IAD – (2*cIMT). In parallel with the vascular measurements, we also determined 

mean heart rate and mean arterial pressure (MAP) every five minutes with an 

oscillometric device (Accutorr Plus, Datascope Inc., Montvale, NJ, USA). We calculated 

mean (CWSmean) and pulsatile (CWSpuls) carotid circumferential wall stress by use of the 

Lamé equation as CWSmean = (MAP*(LD/2))/cIMT and CWSpuls = (braPP*(LD/2))/cIMT32. 

Last, the Omron VP2000 (Omron, Kyoto, Japan) was used to automatically 

determine the ankle-brachial index (ABI) based on simultaneous blood pressure 

measurements at both ankles and upper arms. The left and right ABI were calculated 

by dividing the systolic blood pressure (BP) measured at the ankle by the highest 

systolic BP measured at either upper arm. We used the lowest ABI in our analyses, and 

excluded individuals with an ABI above 1.437.  

Measurement of covariates 

As described previously30, we categorized glucose metabolism status (GMS) based on 

both a standardized 2-hour 75 gram oral glucose tolerance test (OGTT) and the 

participant’s medication use as either normal glucose metabolism (NGM), prediabetes, 

or type 2 diabetes38. Participants who used insulin or had a fasting plasma glucose 

value above 11.0 mmol/L did not undergo the OGTT. In addition, we assessed 

educational level (low, intermediate, high), moderate-to-vigorous physical activity, 
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smoking status (never, former, current), alcohol use (none, low, high), and history of 

CVD by questionnaire; calculated Dutch Healthy Diet index sum score, a measure of 

adherence to the Dutch dietary guidelines 201539, based on a food frequency 

questionnaire40; assessed lipid-modifying, antihypertensive, and glucose-lowering 

medication use as part of a medication interview; measured weight, height, and waist 

circumference during a physical examination; calculated body mass index (BMI); 

measured office and 24-hour ambulatory BP; measured HbA1c and lipid profile in 

fasting venous blood samples; measured albumin excretion in two 24-hour urine 

collections; and calculated the estimated glomerular filtration rate (eGFR) based on 

serum creatinine only, as cystatin C was not presently available in this subpopulation. 

Statistical analysis 

Normally distributed data are presented as mean and standard deviation (SD), non-

normally distributed data as median and interquartile range, and categorical data as n 

(%). We used multiple linear regression with a complete-case approach to study the 

associations of daily GV with arterial measures. The crude analyses only included SDCGM 

as determinant. Model 1 was adjusted for demographics: age, sex, and education level. 

Model 2 was additionally adjusted for cardiovascular risk and lifestyle factors: MAP (in 

case of cf-PWV, carDC, and CWSpuls), office systolic BP (in case of cIMT and ABI), or braPP 

(in case of CWSmean), mean heart rate (in case of cf-PWV and ABI only), BMI, total-to-

high-density lipoprotein cholesterol levels, smoking status, alcohol use, and 

antihypertensive and lipid-modifying drug use. In order to study its contribution 

relative to SDCGM, the associations were further adjusted for MSGCGM in an additional 

model (i.e., model 2 + MSGCGM). The main regression results are presented as: 

regression coefficient (B) (corresponding 95% confidence interval [95%CI]), p-value. 

We presumed the reliability of our model 2 + MSGCGM results to be negatively 

impacted by multicollinearity, due to the strong correlation between SDCGM and 

MSGCGM (rho=0.69)41. Hence, we additionally performed ridge regression, a L2-

regularized form of linear regression (formula is provided in the Supplemental 

Methods), which is a valid statistical method to counter a degree of model instability 

caused by multicollinearity42. Ridge regression estimates are computed according to 

the combination of the residual sum of squares, characteristic of regular linear 

regression, and predefined penalization of the coefficients. As such, it slightly biases 

the regression coefficients and can strongly reduce inflated variances that arise when 

high levels of multicollinearity are present. We pragmatically chose the level of 

penalization based on the lambda (λ) required to reduce the variance inflation factor 

(VIF) of model 2 + MSGCGM back to the VIF of model 2 (or halfway back). The ridge 

regression results are presented as: standardized regression coefficient (st.β) (95%CI), 

p-value. The median st.βs (95%CIs) were estimated with use of resampling (1,000 

bootstrap). 
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In secondary analyses, we replaced the main determinant SDCGM with CVCGM and 

TIRCGM. For reasons of clarity, the regression coefficients of both indices are presented 

per 10% difference instead of per 1%. In order to further explore the clinical applicability 

of our results in the context of the International Consensus on TIRCGM
43, we repeated 

the analyses with TIRCGM≥70% (yes/no) as main determinant. In addition, we 

investigated whether the associations were modified by sex44, age25, or (type 2) 

diabetes status by adding interaction terms (e.g., SDCGM*sex) to model 2.  

To test the robustness of our main findings, we performed several sensitivity 

analyses by 1) replacing MSGCGM with GMS, HbA1c or fasting plasma glucose; 2) adding 

physical activity and diet as a separate model, as for these confounders relatively many 

missing values were observed (Supplemental Table S6.1); 3) adding specific variables 

(eGFR, urinary albumin excretion, history of CVD) as a separate model, since they may 

introduce overadjustment bias45; 4) substituting office systolic BP with ambulatory 

systolic BP; and 5) excluding individuals with type 1 diabetes, individuals with CGM 

data gaps, individuals who underwent CGM as part of a “catch-up visit”, or individuals 

with a suboptimal CGM recording period (i.e., less than two data days)31. Last, we also 

repeated the primary analyses with MSGCGM as main determinant. 

We considered a p-value of <0.05 statistically significant. Statistical analyses were 

performed using the Statistical Package for Social Sciences (version 25.0; IBM, Chicago, 

Illinois, USA) and the R programming language (version 3.6.1; R Foundation for 

Statistical Computing, Vienna, Austria) with package glmnet (version 4.0.2). 

Results 

Study population characteristics 

The total CGM study population comprised 853 individuals. Because outcome and 

covariate data could not be obtained in all individuals (Supplemental Figure S6.1, 

Supplemental Table S6.1), the number of participants who were included in the 

different regression analyses varied (n=643–816). Table 6.1 shows the participant 

characteristics of the largest sample size (i.e., ABI study population) stratified according 

to tertiles of SDCGM. With higher GV, participants were older, more often male, and 

were generally characterized by a more unfavorable cardiometabolic profile (i.e., higher 

HbA1c, BP, and BMI values and more often current smoker). GMS did not fully 

correspond with daily GV. Namely, 31 (17%) of the 185 individuals with type 2 diabetes 

were not in the highest tertile of SDCGM, participants with prediabetes were evenly 

distributed between the tertiles, and 58 (13%) of the 454 individuals with NGM were 

not in the lowest or middle tertiles. Supplemental Table S6.2 and Supplemental 

Figures S6.2-4 additionally show that the different GMS categories have substantially 

overlapping SDCGM values. 
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Table 6.1 Participant characteristics of ankle-brachial index study population (n=816) stratified 
according to tertiles of SDCGM. 

Characteristic First SDCGM tertile: 
0.32 – 0.72 

mmol/L 
(n=276) 

Second SDCGM 
tertile: 

0.73 – 1.00 mmol/L 
(n=267) 

Third SDCGM 
tertile: 

1.01 – 4.81 mmol/L 
(n=273) 

Demographics    
Age, y 57.8 ± 8.9 59.3 ± 8.7 62.1 ± 7.7 
   Women, n 147 (53.3) 126 (47.2) 125 (45.8) 
   Educational level (low/medium/high), n 63/76/137 86/80/101 107/71/95 
   Educational level (low/medium/high), % 22.8/27.5/49.6 32.2/30.0/37.8 39.2/26.0/34.8 
Glycemic parameters    
Glucose metabolism status    
   NGM/PreD/T2D/T1D, n 230/40/6/0 166/76/25/0 58/59/154/2 
   NGM/PreD/T2D/T1D, % 83.3/14.5/2.2/0 62.2/28.5/9.4/0 21.2/21.6/56.4/0.7 
   Newly diagnosed T2D, n 6 (2.2) 18 (6.7) 44 (16.1) 
   Fasting plasma glucose, mmol/L 5.1 [4.9-5.5] 5.4 [5.0-5.9] 6.5 [5.4-7.6] 
   2-hour post-load glucose, mmol/L 5.5 [4.7-6.9] 6.4 [5.2-8.0] 10.3 [7.2-14.5] 
   MSGCGM, mmol/L 5.7 [5.4-6.0] 6.0 [5.7-6.3] 7.1 [6.4-8.1] 
   SDCGM, mmol/L 0.63 [0.55-0.68] 0.84 [0.77-0.93] 1.40 [1.17-1.86] 
   CVCGM, % 10.8 [9.9-11.7] 14.0 [13.0-15.3] 19.9 [17.5-23.9] 
   TIRCGM, % 100.0 [100.0-100.0] 100.0 [99.5-100.0] 94.6 [82.1-98.4] 
   HbA1c, % 5.4 [5.2-5.5] 5.5 [5.4-5.7] 6.0 [5.6-6.8] 
   HbA1c, mmol/mol 35.0 [33.0-37.0] 37.0 [35.0-39.0] 42.0 [38.0-51.0] 
   Diabetes medication use, n 0 (0) 6 (2.2) 96 (35.2) 
   Insulin 0 (0) 1 (0.4) 19 (7.0) 
   Metformin 0 (0) 6 (2.2) 91 (33.3) 
   Sulfonylureas 0 (0) 0 (0) 21 (7.7) 
   GLP-1 analogs 0 (0) 0 (0) 4 (1.5) 
   DDP-4 inhibitors 0 (0) 0 (0) 1 (0.4) 
   SGLT-2 inhibitors 0 (0) 0 (0) 1 (0.4) 
Lifestyle factors    
   BMI, kg/m2 26.1 ± 3.7 26.7 ± 3.9 28.3 ± 4.8 
   Waist circumference (men), cm 98.8 ± 9.9 100.7 ± 10.6 106.3 ± 12.4 
   Waist circumference (women), cm 87.2 ± 10.7 90.4 ± 11.5 94.2 ± 12.8 
   Physical activity, hours/week 12.5 [7.8-18.5] 12.5 [7.5-19.6] 11.5 [6.8-17.9] 
   Dutch healthy diet index, (range: 0-150) 85.4 ± 17.3 84.5 ± 16.2 81.3 ± 14.6 
   Alcohol use (none/low/high), n 38/179/59 36/180/51 69/164/40 
   Alcohol use (none/low/high), % 13.8/64.9/21.4 13.5/67.4/19.1 25.3/60.1/14.7 
   Smoking (never/former/current), n 122/126/28 100/135/32 95/136/42 
   Smoking (never/former/current), % 44.2/45.7/10.1 37.5/50.6/12.0 34.8/49.8/15.4 
Cardiovascular risk factors    
   History of CVD 41 (14.9) 28 (10.6) 53 (19.4) 
   Office systolic BP, mmHg 129.0 ± 17.5 133.3 ± 17.9 137.0 ± 17.9 
   Office diastolic BP, mmHg 73.7 ± 9.8 75.4 ± 10.4 75.9 ± 10.2 
   Mean arterial pressure, mmHg 95.5 ± 10.9 96.8 ± 10.7 98.6 ± 10.7 
   Mean heart rate, beats/minute 59.2 ± 8.1 60.3 ± 8.6 63.3 ± 8.9 
   Antihypertensive medication use, n 58 (21.0) 84 (31.5) 142 (52.0) 
   Total-to-HDL cholesterol ratio 3.3 [2.8-4.3] 3.6 [2.9-4.3] 3.6 [2.8-4.3] 
   Triglycerides, mmol/L 1.2 [0.9-1.5] 1.3 [0.9-1.7] 1.4 [1.0-1.9] 
   Lipid-modifying medication use, n 31 (11.2) 42 (15.7) 128 (46.9) 
   eGFR, mL/min/1.73 m2 81.8 ± 13.0 79.8 ± 13.8 80.0 ± 10.2 
   Albuminuria, n 7 (2.5) 23 (8.6) 33 (12.2) 
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Table 6.1 (continued) 

Characteristic First SDCGM tertile: 
0.32 – 0.72 

mmol/L 
(n=276) 

Second SDCGM 
tertile: 

0.73 – 1.00 mmol/L 
(n=267) 

Third SDCGM 
tertile: 

1.01 – 4.81 mmol/L 
(n=273) 

Outcome measures    

Carotid-femoral pulse wave velocity 
(cf-PWV), m/s 

8.3 ± 1.8 8.5 ± 1.9 9.5 ± 2.5 

Carotid distensibility coefficient 
(carDC), 10−3/kPa 

16.3 ± 5.8 16.5 ± 5.9 14.9 ± 6.1 

Carotid intima-media thickness (cIMT), 
μm 

865.6 ± 144.0 899.2 ± 152.3 906.7 ± 160.2 

Ankle-brachial index (ABI) 1.14 ± 0.10 1.14 ± 0.10 1.13 ± 0.12 
Ankle-brachial index (ABI) < 0.9, n 6 (2.2) 8 (3.0) 10 (3.7) 
Mean circumferential wall stress 
(CWSmean), kPa 

43.8 [38.1-49.5] 44.0 [37.7-49.7] 44.3 [37.9-52.1] 

Pulsatile circumferential wall stress 
(CWSpuls), kPa 

21.7 [18.6-26.1] 22.5 [18.7-26.5] [19.7-29.1] 

Data are reported as mean ± SD, median [interquartile range], or number (percentage %) as 
appropriate. Data represent the study population of participants with complete data on determinant, 
outcome (i.e., ABI) and confounders. NGM, normal glucose metabolism; PreD, prediabetes; T2D, type 2 
diabetes; T1D, type 1 diabetes, MSGCGM, mean sensor glucose; SDCGM, standard deviation; CVCGM, 
coefficient of variation; TIRCGM, time in range; HbA1c glycated hemoglobin A1c; GLP-1 glucagon-like 
peptide-1; DPP-4 dipeptidase-4; SGLT2, sodium/glucose cotransporter 2; BMI, body mass index; CVD, 
cardiovascular disease; BP, blood pressure; HDL high-density lipoprotein; eGFR, estimated glomerular 
filtration rate. 
 

Daily glucose variability and arterial stiffness 

Figure 6.1 and Supplemental Table S6.3 show the associations of SDCGM with cf-PWV 

and carDC estimated by use of multiple linear regression. Higher SDCGM was 

statistically significantly associated with higher cf-PWV after adjustment for 

demographics, cardiovascular risk factors, and lifestyle factors (model 2, B: 0.413 m/s 

[0.147; 0.679], p=0.003). Although, numerically, the regression estimate was 

attenuated by a third after additional adjustment for MSGCGM (model 2 + MSGCGM, B: 

0.270 m/s [-0.125; 0.666], p=0.180), the coefficients were not statistically significantly 

different.  

Table 6.2 shows the fully adjusted st.βs of SDCGM and MSGCGM, as estimated with 

ridge regression, to allow better comparison of the strength of association of both 

indices with cf-PWV. The coefficients were comparable and both not statistically 

significant (st.β: 0.065 [-0.018; 0.167], p=0.160 for SDCGM; and st.β: 0.059 [-0.043; 0.164], 

p=0.272 for MSGCGM).  
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Table 6.2 Standardized regression coefficients of standard deviation and mean sensor glucose 
in the fully adjusted models with arterial outcome variables. 

Ridge regression penalization (λ) SDCGM (st.β, 95%CI) p-value MSGCGM (st.β, 95%CI) p-value 

Carotid femoral pulse wave velocity* (cf-PWV), SD (n=643) 
   λ=0.11 0.065 (-0.018; 0.167) 0.160 0.059 (-0.043; 0.164) 0.272 
Carotid distensibility coefficient* (carDC), SD (n=725) 
   λ=0.12 -0.003 (-0.097; 0.092) 0.952 0.088 (-0.014; 0.184) 0.102 
Carotid intima-media thickness† (cIMT), SD (n=726) 
   λ=0.12 -0.007 (-0.123; 0.111) 0.916 0.078 (-0.038; 0.207) 0.198 
Ankle-brachial index† (ABI), SD (n=816) 
   λ=0.11 -0.033 (-0.071; 0.002) 0.060 -0.008 (-0.032; 0.017) 0.548 
Mean circumferential wall stress‡ (CWSmean), SD (n=725) 
   λ=0.12 -0.059 (-0.169; 0.066) 0.318 0.082 (-0.044; 0.204) 0.180 
Pulsatile circumferential wall stress* (CWSpuls), SD (n=725) 
   λ=0.12 -0.045 (-0.145; 0.053) 0.374 0.042 (-0.055; 0.138) 0.410 

Standardized regression coefficients (st.β) indicate the median difference (95% confidence interval) 
associated with 1 SD higher SDCGM or MSGCGM. In the cf-PWV study population, 1 SD corresponds to 0.57 
mmol/L for SDCGM, 1.3 mmol/L for MSGCGM, and 2.2 m/s for cf-PWV. In the carDC, cIMT, and CWS study 
populations, 1 SD corresponds to 0.57 mmol/L for SDCGM, 1.3 mmol/L for MSGCGM, 6.0 10−3/kPa for carDC, 
152.7 μm for cIMT, 10.2 kPa for CWSmean, and 6.6 kPa for CWSpuls. In the ABI study population, 1 SD 
corresponds to 0.56 mmol/L for SDCGM, 1.3 mmol/L for MSGCGM, and 0.11 for ABI. The associations were 
adjusted for age, sex, educational level, mean arterial pressure (*), office systolic blood pressure (†) or 
brachial pulse pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, smoking 
status, alcohol use, total-to-HDL cholesterol levels, use of antihypertensive and lipid-modifying drugs, 
and the other CGM-assessed index. All coefficients were estimated by use of ridge regression. Point 
estimates and 95% confidence intervals were calculated by use of 1,000 bootstrap estimates. SDCGM, 
standard deviation; st.β, standardized regression coefficient; MSGCGM, mean sensor glucose. 
 
 

In the analysis with CVCGM as determinant, the association with cf-PWV was 

statistically significant after full adjustment (model 2, B per 10% CVCGM: 0.303 m/s 

[0.046; 0.559], p=0.021; Supplemental Table S6.4). In line with the main results, 

higher TIRCGM was independently associated with lower cf-PWV (model 2, B per 10% 

TIRCGM: -0.145 m/s [-0.252; -0.038] p=0.008; Figure 6.1, Supplemental Table S6.5). 

Correspondingly, TIRCGM≥70% was independently associated with lower cf-PWV (model 

2, B: -1.098 m/s (-1.745; -0.451), p=0.001; Supplemental Table 6.6). 

SDCGM was not associated with carDC after adjustment for demographics, 

cardiovascular risk factors, lifestyle factors, and MSGCGM (model 2 + MSGCGM, B: -0.071 

10-3/kPa [-1.204; 1.063], p=0.903). CVCGM and TIRCGM≥70% were also not associated with 

carDC (Supplemental Table S6.4 and S6.6). Inconsistently, TIRCGM was independently 

associated with carDC (model 2, B per 10% TIRCGM: -0.350 10-3/kPa [-0.646; -0.055] 

p=0.020; Supplemental Table S6.5).  

Daily glucose variability and arterial structure 

Figure 6.2 and Supplemental Table S6.3 show the associations of SDCGM with cIMT 

and ABI. SDCGM and cIMT were not associated after adjustment for all potential 
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confounders and MSGCGM (model 2 + MSGCGM, B: -1.648 μm [-33.984; 30.688], p=0.920). 

While CVCGM and TIRCGM were not independently associated with cIMT (Supplemental 

Table 4 and 5), TIRCGM≥70% was (model 2: B: -63.722 [-115.422; -12.023], p=0.016; 

Supplemental Table S6.6).  

Higher SDCGM was statistically significantly associated with lower ABI after 

adjustment for demographics, but not after further adjustment for cardiovascular risk 

and lifestyle factors (model 2, B: -0.011 [-0.026; 0.003], p=0.126). Adjustment for 

MSGCGM numerically altered the regression coefficient, but did not affect statistical 

significance (model 2 + MSGCGM, B: -0.017 [-0.039; 0.005], p=0.121). Although CVCGM and 

TIRCGM were not independently associated with ABI (Supplemental Tables S6.4 and 

S6.5), TIRCGM≥70% was (model 2, B: 0.041 [0.004; 0.077], p=0.030; Supplemental Table 

S6.6). 

Daily glucose variability and circumferential wall stress 

After full adjustment, SDCGM was not associated with CWSmean (model 2, B: 0.077 kPa 

[-1.313; 1.467], p=0.913; Supplemental Table S6.3) or CWSpuls (model 2, B: -0.202 kPa 

[-1.019; 0.614], p=0.627; Supplemental Table S6.3). Further adjustment for MSGCGM did 

not materially alter the results. CVCGM and TIRCGM were not independently associated 

with CWSmean and CWSpuls (Supplemental Tables S6.4 and S6.5). 

Interaction analyses 

Supplemental Table S6.7 shows all Pinteraction values for the associations between 

SDCGM and the arterial outcome measures. A statistically significant Pinteraction for age 

was only observed for the association between SDCGM and cIMT (p=0.044). The 

association between SDCGM and cIMT was stronger in women (Supplemental Table 

S6.8). Age and (type 2) diabetes status did not modify any of the associations under 

study (Supplemental Tables S6.7 and S6.9).  
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Additional analyses 

In general, replacement of MSGCGM with GMS, HbA1c or fasting plasma glucose 

(Supplemental Table S6.10); additional adjustment for physical activity and diet 

(Supplemental Table S6.11) or for eGFR, urinary albumin excretion, and history of CVD 

(Supplemental Table S6.12); replacement of office systolic BP with ambulatory 

systolic BP (Supplemental Table S6.13); or exclusion of individuals with type 1 diabetes 

(Supplemental Table S6.14) did not materially alter the main results. The associations 

of SDCGM with arterial measures were, in general, slightly stronger after exclusion of 

individuals with CGM data gaps or with a suboptimal CGM recording period 

(Supplemental Tables S6.15 and S6.16). Exclusion of individuals who underwent CGM 

as part of a ‘catch-up visit’ substantially altered the associations between SDCGM and 

the arterial measures (Supplemental Table S6.17). Supplemental Table S6.18 

provides the associations of MSGCGM with the arterial measures. Last, Supplemental 

Table S6.19 shows the effects of different degrees of ridge regression penalization on 

the studied associations. In case of ABI, slight regularization (λ=0.11) reversed the st.β of 

MSGCGM. 

Discussion 

In the present study, we investigated the cross-sectional associations of daily GV with 

several arterial outcome variables in a relatively large population of individuals who 

underwent more than 48h of CGM. Our study has two main findings. First, greater GV 

was linearly associated with higher cf-PWV, the gold-standard measure to assess aortic 

stiffness, irrespective of demographics, cardiovascular risk factors, and lifestyle factors. 

The observed association between SDCGM and cf-PWV was corroborated by our CVCGM 

and TIRCGM results. Notably, SDCGM and MSGCGM contributed to a similar extent to the 

association with cf-PWV, which suggests an equivalent pathophysiological relevance 

to aortic stiffness. Second, we established no consistent independent associations 

between indices of daily GV and the other investigated arterial measures. 

Our main analyses were performed in a study population that comprises the 

complete spectrum of daily GV (i.e., individuals with NGM, prediabetes, type 2 

diabetes, and type 1 diabetes). This approach is justified by the substantial overlap in 

CGM-derived indices between GMS groups, which can be appreciated from 

Supplemental Table S6.2, Supplemental Figures S6.2-6.4, and a recent publication 

on this cohort31, and has several advantages over subgroup analyses, such as more 

statistical power46 and less range restriction47. In addition, because no effect 

modification by (type 2) diabetes status was observed (Supplemental Table S6.7), 

stratification was not indicated. Further, the linearity of the observed associations 

between daily GV and arterial measures is consistent with work on the “ticking clock 

hypothesis”, which postulates that hyperglycemia-induced damage is a continuous 
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process that starts in prediabetes, progresses with the onset of type 2 diabetes, and 

continues during type 2 diabetes48, 49. 

Few studies have investigated the association of CGM-measured GV with arterial 

measures20-22 in concert with sufficient adjustment for potential confounders19. Lu et 

al. did not establish an association of GV with cIMT19, which is in line with our cIMT 

results. Recently, we observed that the incremental glucose peak, an OGTT-based 

proxy of daily GV31, was statistically significantly associated with higher cf-PWV and 

CWSmean, but not with carDC, cIMT and CWSpuls
25. Notably, our current findings are 

corroborated by this larger study, as the directions of the regression coefficients 

generally correspond, and in both instances the strongest association was found with 

cf-PWV. We presume that discrepancies in statistical significance are largely 

attributable to the almost threefold sample size differences of our previous (n=1,849-

1,978) and current study populations (n=643–816). Although Lu et al. previously 

reported on the relation between TIRCGM and cIMT19, we are the first to establish a 

statistically significant association of TIRCGM with cf-PWV. 

We present—as the primary analysis—MSGCGM-adjusted associations with SDCGM, 

and –as secondary analyses– associations with the intrinsically MSGCGM-adjusted index 

CV, and with TIRCGM, which inversely reflects both mean glycaemia and GV29. Due to 

their strong correlation, it is both necessary and complex to disentangle the effects of 

glucose fluctuations (i.e., SDCGM) and mean glucose (i.e., MSGCGM)18. The strong 

correlation between SDCGM and MSGCGM (rho = 0.69), the substantial increase (121-139%) 

in VIF from model 2 to model 2 + MSGCGM (Supplemental Table S6.3), and the opposite 

directions of the regression coefficients of SDCGM and MSGCGM (e.g., ABI) all indicate the 

presence of multicollinearity41. Previous studies on other potential consequences of GV 

encountered similar contrariety50,51, but insufficiently addressed this. We employed 

ridge regression to partially counter the potential adverse effects of multicollinearity, 

thereby allowing for better comparison of SDCGM and MSGCGM (Table 6.2). Notably in 

case of ABI, slight regularization (λ=0.11) reversed the st.β of MSGCGM (Supplemental 

Table S6.19). Interestingly, the relative contributions of SDCGM and MSGCGM differed per 

measure. In case of cf-PWV, the estimates were similar, which is corroborated by its 

independent association with CVCGM and TIRCGM.  

The biological mechanisms that mediate the relationship between GV and aortic 

stiffness require further elucidation. Several studies observed that greater GV 

augments inflammation and oxidative stress52,53. This could promote the formation of 

advanced glycation end-products (AGEs)54, which have been suggested to induce 

arterial stiffening by accumulating in the arterial wall and forming cross-links between 

elastin and collagen3-5. An association of tissue and circulating AGEs has, thus far, only 

been reported with cf-PWV55,56, which might explain our contrasting findings for the 

structurally different aorta (i.e., cf-PWV) and carotid artery (i.e., carDC, cIMT). In 

addition, cultured human fibroblasts synthesized more collagen during intermittently 

high glucose concentrations than during stable hyperglycaemia57. Higher GV could, 
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thus, lead to higher aortic stiffness by altering the elastin-collagen ratio. Additionally, 

large-artery endothelial dysfunction may, in part, explain the association between 

daily GV and cf-PWV5,58. Further, not only higher glucose peaks, but also more 

pronounced glucose nadirs could contribute to CVD development59. Recurrent 

hypoglycaemia has, for example, been shown to negatively affect certain preclinical 

vascular measures in individuals with type 1 diabetes60. 

Aortic stiffness, assessed via cf-PWV, is an independent determinant of CVD, 

cardiovascular mortality, and all-cause mortality26-28. We found that cf-PWV was 

0.27-0.41 m/s higher per SDCGM unit (mmol/L) increase in the final regression models 

(i.e., model 2, model 2 + MSGCGM), which corresponds with three to four years of 

vascular aging61. Hence, the 0.8 mmol/L SDCGM difference between the first and third 

SDCGM tertile (Table 6.1) can be translated to a 2- or 3-year vascular aging difference, 

which closely matches our recent findings on the OGTT-based incremental glucose 

peak25. Moreover, per 10% higher TIRCGM cf-PWV was 0.15 m/s lower, which equals 

minus 18 months of vascular aging61. After full adjustment, a TIRCGM≥70% corresponded 

with 1.10 m/s lower cf-PWV, an 11-year vascular aging difference61. This statistically 

significant association remained even after further adjustment for HbA1c 

(Supplemental Table S6.6), which strengthens the recommendations from the 

International Consensus on TIRCGM
43. Prospective studies should further explore the 

observed association with aortic stiffness. If confirmative, it would be justified to study 

whether interventions that specifically target CGM-measured GV or TIRCGM (e.g., 

closed-loop insulin delivery systems) can improve CVD risk or incidence16,62. 

This study has certain strengths and limitations. Strengths include 1) the use of the 

gold-standard methods for daily GV quantification17; 2) the use of several, state-of-the-

art arterial outcome measures; 3) the extensive participant characterization, which 

enabled adjustment for a broad array of possible confounders; 4) the additional use of 

ridge regression, which allowed us to partly address multicollinearity between SDCGM 

and MSGCGM; and 5) the robustness of the results, i.e., the overall consistency of several 

sensitivity analyses, in particular for cf-PWV.  

Our study has specific limitations. First, a relatively large number of individuals 

were excluded due to missing outcome data (Supplemental Figure S6.1). Although the 

study populations were generally comparable (Supplemental Table S6.1), the smaller 

sample size of the cf-PWV study population negatively impacted statistical power. 

Second, most of the individuals with diabetes had relatively well-controlled glycemic 

indices31. The consequent range restriction in the upper SDCGM and lower TIRCGM 

spectrum may have biased the regression estimates towards null47. Third, the strength 

of the associations may have been additionally underestimated due to individuals who 

underwent CGM as a catch-up visit (n=249; 29.2%)63, as for these there was a median 

time of 2.1 years between CGM and the other measurements31. While the associations 

were also investigated in newly recruited individuals only (Supplemental Table S6.17), 

their applicability is substantially hampered by the smaller sample size and different 
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GMS distribution (i.e., lower number of individuals with prediabetes and type 2 

diabetes) of the study populations. Fourth, due to the cross-sectional design of our 

study, we are unable to rule out reverse causality. As, for example, greater arterial 

stiffness has been associated with incident diabetes64, it could increase GV. Fifth, it 

could be argued that adjustment for multiple testing would be required in our study65. 

However, we regarded the consequently higher chance of type 2 error undesirable65, 66, 

especially in the context of a CGM-based study, which commonly has a relatively small 

size because of the costliness and relative invasiveness of CGM18. Further, it would be 

overly strict to enforce adjustment based on the determinants used, since SDCGM, 

CVCGM, and TIRCGM are conceptually and statistically related10, 29. Sixth, our study 

population is predominately Caucasian, which might limit the generalizability of our 

results. Last, although the models were adjusted for a large number of cardiovascular 

risk and lifestyle factors, residual confounding could still be present. 

Our findings support the concept that greater daily GV and lower TIRCGM are 

determinants of worse aortic stiffness, but do not support this for other arterial 

measures. Interestingly, the fully adjusted associations of SDCGM and MSGCGM with cf-

PWV were comparable. Taken together, this study further underscores the 

pathophysiological relevance of daily GV, irrespective of mean glycaemia, in the 

context of macrovascular complications. Future studies should explore this association 

prospectively and assess whether interventions that specifically target CGM-measured 

GV or TIRCGM can prevent CVD. 
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Supplemental materials 

Supplemental methods 

Ridge regression 

The method used in R package glmnet (version 4.0.2) estimates regression coefficients 

according to the formula:                                                                    , where RSS is the residual 

sum of squares, n is the sample size, λ is the chosen amount of penalization, and 

               represents the sum of all squared regression coefficients. 
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Supplemental results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure S6.1 Flowchart delineating the derivation of the study populations. CGM, continuous 
glucose monitoring; MAP, mean arterial pressure; HR, heart rate; HDL, high-density 
lipoprotein; cf-PWV, carotid-femoral pulse wave velocity; carDC, carotid distensibility 
coefficient; cIMT, carotid intima-media thickness; ABI, ankle-brachial index; CWS, 
circumferential wall stress. * Not mutually exclusive. 

 

 



Chapter 6 

164 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S6.2 GMS-highlighted scatter plots of the associations of CGM-assessed SD (SDCGM) with 

carotid-femoral pulse wave velocity and carotid distensibility coefficient. CGM, 
continuous glucose monitoring; SD, standard deviation; GMS, glucose metabolism status; 
NGM, normal glucose metabolism. 

 



Daily glucose variability and arterial measures 

165 

6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S6.3 GMS-highlighted scatter plots of the associations of CGM-assessed SD (SDCGM) with 

carotid intima-media thickness and ankle-brachial index. CGM, continuous glucose 
monitoring; SD, standard deviation; GMS, glucose metabolism status; NGM, normal 
glucose metabolism. 
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Figure S6.4 GMS-highlighted scatter plots of the associations of CGM-assessed SD (SDCGM) with 
mean and pulsatile circumferential wall stress. CGM, continuous glucose monitoring; 
SD, standard deviation; GMS, glucose metabolism status; NGM, normal glucose 
metabolism. 
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Table S6.2 GMS-stratified distributions of CGM-derived indices in the ankle-brachial index study 
population. 

CGM-derived indices* NGM (n=454) PreD (n=175) T2D (n=185) 

MSGCGM, mmol/L Median [IQR] 5.8 [5.5 – 6.1] 6.2 [5.8 – 6.6] 7.5 [6.8 – 8.7] 
 5th – 95th percentile 5.15 - 6.54 5.25 - 7.60 5.73 – 11.85 
SDCGM, mmol/L Median [IQR] 0.72 [0.61 – 0.87] 0.89 [0.73 – 1.12] 1.55 [1.16 – 1.98] 
 5th – 95th percentile 0.48 - 1.28 0.60 - 1.61 0.79 - 3.13 
CVCGM, % Median [IQR] 12.6 [10.7 – 14.9] 14.7 [12.2 – 17.5] 19.3 [16.1 – 24.1] 
 5th – 95th percentile 8.51 - 20.57 10.13 – 24.08 12.42 – 33.36 
TIRCGM, % Median [IQR] 100.0 [99.5 – 100.0] 99.8 [98.5 – 100.0] 91.8 [79.1 – 98.3] 
 5th – 95th percentile 95.91 – 100.0 87.96 – 100.0 24.18 – 100.0 

GMS, glucose metabolism status; CGM, continuous glucose monitoring; NGM, normal glucose 
metabolism; PreD, prediabetes; T2D, type 2 diabetes; MSGCGM, mean sensor glucose; SDCGM, standard 
deviation; CVCGM, coefficient of variation; TIRCGM, time in range; IQR, interquartile range. *Because of the 
small sample size (n=2), these values are not reported for individuals with type 1 diabetes. 
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Table S6.3 Multivariable-adjusted associations of daily glucose variability (expressed as SDCGM) 
with arterial outcome variables. 

Model B (95%CI) p-value VIF 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=643) 
   Crude 0.920 (0.636; 1.205) <0.001 1 
   Model 1 0.647 (0.384; 0.909) <0.001 1.044 
   Model 2* 0.413 (0.147; 0.679) 0.002 1.322 
   Model 2 + MSGCGM 0.270 (-0.125; 0.666) 0.180 2.918 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=725) 
   Crude -0.822 (-1.615; -0.029) 0.042 1 
   Model 1 -0.184 (-0.917; 0.549) 0.622 1.036 
   Model 2* 0.684 (-0.052; 1.420) 0.068 1.291 
   Model 2 + MSGCGM -0.071 (-1.204; 1.063) 0.903 3.070 
Carotid intima-media thickness (cIMT), μm (n=726) 
   Crude 25.441 (5.286; 45.595) 0.013 1 
   Model 1 11.907 (-7.253; 31.066) 0.223 1.036 
   Model 2† 14.679 (-6.257; 35.615) 0.169 1.286 
   Model 2 + MSGCGM -1.648 (-33.984; 30.688) 0.920 3.071 
Ankle-brachial index (ABI) (n=816) 
   Crude -0.020 (-0.033; -0.007) 0.003 1 
   Model 1 -0.023 (-0.036; -0.010) <0.001 1.048 
   Model 2† -0.011 (-0.026; 0.003) 0.126 1.339 
   Model 2 + MSGCGM -0.017 (-0.039; 0.005) 0.121 3.001 
Mean circumferential wall stress (CWSmean), kPa (n=725) 
   Crude 1.530 (0.183; 2.877) 0.026 1 
   Model 1 1.009 (-0.320; 2.338) 0.136 1.036 
   Model 2‡ 0.077 (-1.313; 1.467) 0.913 1.287 
   Model 2 + MSGCGM -1.126 (-3.271; 1.019) 0.303 3.070 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=725) 
   Crude 1.551 (0.690; 2.413) <0.001 1 
   Model 1 1.014 (0.161; 1.867) 0.020 1.036 
   Model 2* -0.202 (-1.019; 0.614) 0.627 1.291 
   Model 2 + MSGCGM -0.602 (-1.862; 0.658) 0.349 3.070 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of SDCGM. Crude: SDCGM. Model 1: adjusted for age, sex, and education level. Model 2: 
additionally adjusted for mean arterial pressure (*), office systolic blood pressure (†) or brachial pulse 
pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, smoking status, alcohol use, 
total-to-HDL cholesterol levels, and use of antihypertensive and lipid-modifying drugs. Model 2 + 
MSGCGM: additionally adjusted for mean sensor glucose. VIF, variance inflation factor 
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Table S6.4 Multivariable-adjusted associations of daily glucose variability (expressed as CVCGM) 
with arterial outcome variables. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=643) 
   Crude 0.732 (0.443; 1.021) <0.001 
   Model 1 0.488 (0.223; 0.752) <0.001 
   Model 2* 0.303 (0.046; 0.559) 0.021 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=725) 
   Crude -0.790 (-1.587; 0.006) 0.052 
   Model 1 -0.160 (-0.893; 0.573) 0.669 
   Model 2* 0.274 (-0.436; 0.984) 0.449 
Carotid intima-media thickness (cIMT), μm (n=726) 
   Crude 18.784 (-1.497; 39.064) 0.069 
   Model 1 7.487 (-11.684; 26.659) 0.443 
   Model 2† 9.021 (-11.182; 29.223) 0.381 
Ankle-brachial index (ABI) (n=816) 
   Crude -0.020 (-0.033; -0.006) 0.003 
   Model 1 -0.021 (-0.034; -0.008) 0.002 
   Model 2† -0.010 (-0.024; 0.004) 0.166 
Mean circumferential wall stress (CWSmean), kPa (n=725) 
   Crude 0.494 (-0.863; 1.851) 0.475 
   Model 1 0.131 (-1.200; 1.462) 0.847 
   Model 2‡ -0.440 (-1.779; 0.899) 0.519 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=725) 
   Crude 0.919 (0.049; 1.789) 0.038 
   Model 1 0.436 (-0.419; 1.292) 0.317 
   Model 2* -0.388 (-1.174; 0.398) 0.333 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 10% 
increase in CVCGM. Crude: CVCGM. Model 1: adjusted for age, sex, and education level. Model 2: 
additionally adjusted for mean arterial pressure (*), office systolic blood pressure (†) or brachial pulse 
pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, smoking status, alcohol use, 
total-to-HDL cholesterol levels, and use of antihypertensive and lipid-modifying drugs. 
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Table S6.5 Multivariable-adjusted associations of time in range (TIRCGM) with arterial outcome 
variables. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=643) 
   Crude -0.303 (-0.424; -0.182) <0.001 
   Model 1 -0.247 (-0.356; -0.139) <0.001 
   Model 2* -0.145 (-0.252; -0.038) 0.008 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=725) 
   Crude 0.107 (-0.227; 0.441) 0.529 
   Model 1 0.028 (-0.277; 0.333) 0.857 
   Model 2* -0.350 (-0.646; -0.055) 0.020 
Carotid intima-media thickness (cIMT), μm (n=726) 
   Crude -9.743 (-18.211; -1.276) 0.024 
   Model 1 -7.380 (-15.336; 0.576) 0.069 
   Model 2† -8.144 (-16.563; 0.275) 0.058 
Ankle-brachial index (ABI) (n=816) 
   Crude 0.005 (-0.001; 0.010) 0.118 
   Model 1 0.006 (0.001; 0.012) 0.026 
   Model 2† 0.002 (-0.005; 0.008) 0.620 
Mean circumferential wall stress (CWSmean), kPa (n=725) 
   Crude -0.785 (-1.349; -0.220) 0.007 
   Model 1 -0.564 (-1.116; -0.013) 0.045 
   Model 2‡ -0.179 (-0.739; 0.380) 0.530 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=725) 
   Crude -0.552 (-0.915; -0.190) 0.003 
   Model 1 -0.433 (-0.788; -0.079) 0.017 
   Model 2* 0.049 (-0.280; 0.378) 0.768 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 10% 
increase in TIRCGM. Crude: TIRCGM. Model 1: adjusted for age, sex, and education level. Model 2: 
additionally adjusted for mean arterial pressure (*), office systolic blood pressure (†) or brachial pulse 
pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, smoking status, alcohol use, 
total-to-HDL cholesterol levels, and use of antihypertensive and lipid-modifying drugs. 
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Table S6.6 Multivariable-adjusted associations of time in range above 70% (TIRCGM≥70%) with 
arterial outcome variables. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=643) 
   Crude -1.943 (-2.707; -1.179) <0.001 
   Model 1 -1.732 (-2.416; -1.048) <0.001 
   Model 2* -1.098 (-1.745; -0.451) 0.001 
   Model 2 + HbA1c -0.775 (-1.504; -0.047) 0.037 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=725) 
   Crude 0.618 (-1.513; 2.749) 0.569 
   Model 1 0.455 (-1.482; 2.393) 0.645 
   Model 2* -1.759 (-3.583; 0.066) 0.059 
   Model 2 + HbA1c -1.828 (-3.886; 0.230) 0.082 
Carotid intima-media thickness (cIMT), μm (n=726) 
   Crude -69.366 (-123.377; -15.354) 0.012 
   Model 1 -62.914 (-113.401; -12.426) 0.015 
   Model 2† -63.722 (-115.422; -12.023) 0.016 
   Model 2 + HbA1c -48.116 (-106.285; 10.054) 0.105 
Ankle-brachial index (ABI) (n=816) 
   Crude 0.055 (0.018; 0.091) 0.003 
   Model 1 0.063 (0.028; 0.099) 0.001 
   Model 2† 0.041 (0.004; 0.077) 0.030 
   Model 2 + HbA1c 0.045 (0.004; 0.086) 0.037 
Mean circumferential wall stress (CWSmean), kPa (n=725) 
   Crude -4.480 (-8.087; -0.872) 0.015 
   Model 1 -3.400 (-6.909; 0.108) 0.057 
   Model 2‡ -1.394 (-4.834; 2.047) 0.427 
   Model 2 + HbA1c -2.242 (-6.119; 1.635) 0.257 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=725) 
   Crude -2.686 (-5.006; -0.365) 0.023 
   Model 1 -2.224 (-4.481; 0.203) 0.053 
   Model 2* 0.523 (-1.502; 2.549) 0.612 
   Model 2 + HbA1c 0.374 (-1.911; 2.659) 0.748 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 10% 
increase in TIRCGM. Crude: TIRCGM≥70%. Model 1: adjusted for age, sex, and education level. Model 2: 
additionally adjusted for mean arterial pressure (*), office systolic blood pressure (†) or brachial pulse 
pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, smoking status, alcohol use, 
total-to-HDL cholesterol levels, and use of antihypertensive and lipid-modifying drugs. Model 2 + 
HbA1c: additionally adjusted for HbA1c. 
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Table S6.7 P-values for interaction for sex, age, and type 2 diabetes status for the associations 
between SDCGM and arterial outcome variables. 

Outcome Sex Age Diabetes statusa Type 2 diabetes statusb 

cf-PWV* 0.41 0.10 0.57 0.41 
carDC* 0.07 0.69 0.96 0.93 
cIMT† 0.044 0.94 0.34 0.36 
ABI† 0.68 0.80 0.86 0.15 
CWSmean‡ 0.06 0.60 0.54 0.46 
CWSpuls* 0.07 0.67 0.99 0.90 

All models were adjusted for age, education level, mean arterial pressure (*), office systolic blood 
pressure (†) or brachial pulse pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, 
smoking status, alcohol use, total-to-HDL cholesterol levels, and use of antihypertensive and lipid-
modifying drugs. a For the associations with ‘SDCGM*diabetes status’ as interaction term, the 
associations were additionally adjusted for diabetes status. Bold denotes statistical significance; b For 
the associations with ‘SDCGM*type 2 diabetes status’ as interaction term, the associations were 
additionally adjusted for type 2 diabetes status. Bold denotes statistical significance. 

 
 

Table S6.8 Sex-stratified associations of daily glucose variability (expressed as SDCGM) with 
carotid intima-media thickness. 

Model B (95%CI) p-value B (95%CI) p-value 

 cIMT, men (n=375) cIMT, women (n=351) 

Crude 3.693 (-23.829; 31.215) 0.792 51.562 (21.871; 81.254) 0.001 
Model 1 -7.205 (-33.606; 19.197) 0.592 39.873 (11.918; 67.829) 0.005 
Model 2 1.003 (-27.653; 29.659) 0.945 33.853 (2.814; 64.891) 0.033 
Model 2 + MSGCGM -7.146 (-51.779; 37.487) 0.753 1.448 (-46.749; 49.644) 0.953 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of SDCGM. Crude: SDCGM. Model 1: adjusted for age and education level. Model 2: 
additionally adjusted for office systolic blood pressure, body mass index, smoking status, alcohol use, 
total-to-HDL cholesterol levels, and use of antihypertensive and lipid-modifying drugs. Model 2 + 
MSGCGM: additionally adjusted for mean sensor glucose. 
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Table S6.9 Diabetes status-stratified associations of daily glucose variability (expressed as 
SDCGM) with arterial outcome measures. 

Model B (95%CI) p-value B (95%CI) p-value 

cf-PWV, m/s No diabetes (n=481) Diabetes (n=162) 
   Crude 1.031 (0.450; 1.613) 0.001 0.271 (-0.260; 0.802) 0.316 
   Model 1 0.483 (-0.057; 1.023) 0.079 0.345 (-0.148; 0.839) 0.169 
   Model 2* 0.505 (-0.008; 1.017) 0.054 0.276 (-0.171; 0.723) 0.224 
   Model 2 + MSGCGM 0.249 (-0.373; 0.872) 0.432 0.367 (-0.247; 0.982) 0.239 
carDC, 10-3/kPa No diabetes (n=553) Diabetes (n=172) 
   Crude -1.096 (-2.794; 0.602) 0.205 0.947 (-0.375; 2.270) 0.159 
   Model 1 0.820 (-0.727; 2.368) 0.298 0.576 (-0.733; 1.884) 0.386 
   Model 2* 1.164 (-0.278; 2.605) 0.113 0.868 (-0.322; 2.058) 0.152 
   Model 2 + MSGCGM 0.965 (-0.779; 2.708) 0.278 -0.575 (-2.254; 1.103) 0.499 
cIMT, μm No diabetes (n=553) Diabetes (n=173) 
   Crude 69.320 (26.604; 112.037) 0.002 4.316 (-30.835; 39.467) 0.809 
   Model 1 36.178 (-4.282; 76.638) 0.080 13.354 (-19.747; 46.455) 0.427 
   Model 2† 37.967 (-3.157; 79.091) 0.070 13.855 (-19.914; 47.625) 0.419 
   Model 2 + MSGCGM 18.148 (-31.489; 67.784) 0.473 -7.393 (-56.083; 41.297) 0.765 
ABI No diabetes (n=629) Diabetes (n=187) 
   Crude -0.026 (-0.053; 0.001) 0.060 -0.014 (-0.040; 0.011) 0.289 
   Model 1 -0.023 (-0.049; 0.004) 0.091 -0.015 (-0.041; 0.011) 0.252 
   Model 2† -0.013 (-0.039; 0.014) 0.354 -0.007 (-0.035; 0.020) 0.588 
   Model 2 + MSGCGM -0.013 (-0.045; 0.019) 0.425 -0.017 (-0.055; 0.020) 0.363 
CWSmean, kPa No diabetes (n=553) Diabetes (n=172) 
   Crude -1.280 (-3.991; 1.431) 0.354 -0.032 (-2.661; 2.124) 0.981 
   Model 1 -1.523 (-4.232; 1.187) 0.270 -0.434 (-2.992; 2.124) 0.738 
   Model 2‡ -1.508 (-4.094; 1.078) 0.253 -0.196 (-2.741; 2.349) 0.879 
   Model 2 + MSGCGM -0.955 (-4.083; 2.172) 0.549 -1.763 (-5.421; 1.895) 0.343 
CWSpuls, kPa No diabetes (n=553) Diabetes (n=172) 
   Crude 0.549 (-1.203; 2.300) 0.539 -0.344 (-1.970; 1.282) 0.677 
   Model 1 -0.558 (-2.295; 1.179) 0.528 -0.315 (-1.961; 1.330) 0.706 
   Model 2* -0.876 (-2.412; 0.660) 0.263 -0.725 (-2.218; 0.768) 0.339 
   Model 2 + MSGCGM -0.698 (-2.556; 1.160) 0.461 -1.069 (-3.211; 1.072) 0.326 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of SDCGM. Crude: SDCGM. Model 1: adjusted for age, sex, and education level. Model 2: 
additionally adjusted for mean arterial pressure (*), office systolic blood pressure (†) or brachial pulse 
pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, smoking status, alcohol use, 
total-to-HDL cholesterol levels, and use of antihypertensive and lipid-modifying drugs. Model 2 + 
MSGCGM: additionally adjusted for mean sensor glucose.  
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Table S6.10 Multivariable-adjusted associations of daily glucose variability (expressed as SDCGM) 
with arterial outcome variables after adjustment for glucose metabolism status, 
HbA1c, or fasting plasma glucose instead of mean sensor glucose. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=643) 
   Model 2 + GMS 0.260 (-0.058; 0.579) 0.109 
   Model 2 + HbA1c 0.244 (-0.081; 0.569) 0.140 
   Model 2 + FPG 0.294 (-0.014; 0.603) 0.061 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=725) 
   Model 2 + GMS 0.827 (-0.062; 1.716) 0.068 
   Model 2 + HbA1c 0.792 (-0.116; 1.700) 0.087 
   Model 2 + FPG 0.687 (-0.157; 1.531) 0.111 
Carotid intima-media thickness (cIMT), μm (n=726) 
   Model 2 + GMS 22.231 (-3.061; 47.524) 0.085 
   Model 2 + HbA1c 2.242 (-23.487; 27.972) 0.864 
   Model 2 + FPG 9.738 (-14.259; 33.735) 0.426 
Ankle-brachial index (ABI) (n=816) 
   Model 2 + GMS -0.009 (-0.026; 0.008) 0.307 
   Model 2 + HbA1c -0.013 (-0.031; 0.004) 0.141 
   Model 2 + FPG -0.009 (-0.025; 0.008) 0.290 
Mean circumferential wall stress (CWSmean), kPa (n=725) 
   Model 2 + GMS -0.670 (-2.349; 1.010) 0.434 
   Model 2 + HbA1c 0.408 (-1.307; 2.123) 0.641 
   Model 2 + FPG 0.275 (-1.321; 1.871) 0.735 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=725) 
   Model 2 + GMS -0.868 (-1.853; 0.117) 0.084 
   Model 2 + HbA1c -0.130 (-1.138; 0.879) 0.801 
   Model 2 + FPG -0.147 (-1.084; 0.791) 0.759 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of SDCGM. Model 2 + represents the fully adjusted model that was additionally 
adjusted for glucose metabolism status (GMS), HbA1c, or fasting plasma glucose (FPG). 
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Table S6.11 Multivariable-adjusted associations of SDCGM with arterial outcome variables, 
additionally adjusted for physical activity and Dutch healthy diet adherence. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=487) 
   Crude 0.970 (0.639; 1.301) <0.001 
   Model 1 0.669 (0.356; 0.981) <0.001 
   Model 2* 0.487 (0.169; 0.804) 0.003 
   Model 3 0.487 (0.169; 0.805) 0.003 
   Model 3 + MSGCGM 0.461 (-0.014; 0.935) 0.057 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=519) 
   Crude -0.895 (-1.806; 0.017) 0.054 
   Model 1 -0.256 (-1.112; 0.601) 0.558 
   Model 2* 0.628 (-0.219; 1.475) 0.146 
   Model 3 0.641 (-0.209; 1.490) 0.139 
   Model 3 + MSGCGM 0.866 (-0.461; 2.194) 0.200 
Carotid intima-media thickness (cIMT), μm (n=520) 
   Crude 18.139 (-5.039; 41.317) 0.125 
   Model 1 3.957 (-18.619; 26.534) 0.731 
   Model 2† 6.775 (-18.133; 31.683) 0.593 
   Model 3 7.294 (-17.684; 32.271) 0.566 
   Model 3 + MSGCGM -10.304 (-49.368; 28.760) 0.605 
Ankle-brachial index (ABI) (n=562) 
   Crude -0.025 (-0.040; -0.009) 0.002 
   Model 1 -0.029 (-0.044; -0.013) <0.001 
   Model 2† -0.014 (-0.031; 0.003) 0.115 
   Model 3 -0.014 (-0.031; 0.003) 0.112 
   Model 3 + MSGCGM -0.021 (-0.047; 0.005) 0.114 
Mean circumferential wall stress (CWSmean), kPa (n=519) 
   Crude 2.785 (1.184; 4.386) 0.001 
   Model 1 1.952 (0.348; 3.556) 0.017 
   Model 2‡ 1.242 (-0.445; 2.928) 0.149 
   Model 3 1.227 (-0.465; 2.918) 0.155 
   Model 3 + MSGCGM -0.040 (-2.688; 2.607) 0.976 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=519) 
   Crude 2.024 (0.978; 3.071) <0.001 
   Model 1 1.414 (0.367; 2.462) 0.008 
   Model 2* 0.110 (-0.888; 1.109) 0.828 
   Model 3 0.059 (-0.938; 1.056) 0.908 
   Model 3 + MSGCGM -0.605 (-2.161; 0.951) 0.445 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated 1 unit 
(mmol/L) increase of SDCGM. Crude: SDCGM. Model 1: adjusted for age, sex, and education level. Model 2: 
additionally adjusted for mean arterial pressure (*), office systolic blood pressure (†) or brachial pulse 
pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, smoking status, alcohol use, 
total-to-HDL cholesterol levels, and use of antihypertensive and lipid-modifying drugs. Model 3: 
additionally adjusted for physical activity and Dutch healthy diet adherence. Model 3 + MSGCGM: 
additionally adjusted for mean sensor glucose. Of note, the alcohol component of the Dutch healthy 
diet adherence index was subtracted from the sum score prior to performing the regression analyses to 
avoid multicollinearity.  
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Table S6.12 Multivariable-adjusted associations of SDCGM with arterial outcome variables, 
additionally adjusted for history of cardiovascular disease, estimated glomerular 
filtration rate, and urinary albumin excretion. 

Model  B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=638) 
   Crude 0.885 (0.599; 1.171) < 0.001 
   Model 1 0.609 (0.347; 0.871) < 0.001 
   Model 2* 0.390 (0.124; 0.656) 0.004 
   Model 3 0.315 (0.048; 0.583) 0.021 
   Model 3 + MSGCGM 0.225 (-0.169; 0.618) 0.263 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=720) 
   Crude -0.832 (-1.631; -0.033) 0.041 
   Model 1 -0.187 (-0.925; 0.551) 0.620 
   Model 2* 0.668 (-0.072; 1.409) 0.077 
   Model 3 0.697 (-0.061; 1.455) 0.071 
   Model 3 + MSGCGM -0.015 (-1.167; 1.138) 0.980 
Carotid intima-media thickness (cIMT), μm (n=721) 
   Crude 25.173 (4.872; 45.474) 0.015 
   Model 1 11.635 (-7.671; 30.942) 0.237 
   Model 2† 14.680 (-6.391; 35.751) 0.172 
   Model 3 15.638 (-5.910; 37.187) 0.155 
   Model 3 + MSGCGM 1.648 (-31.181; 34.477) 0.922 
Ankle-brachial index (ABI) (n=811) 
   Crude -0.021 (-0.034; -0.008) 0.002 
   Model 1 -0.024 (-0.037; -0.011) < 0.001 
   Model 2† -0.012 (-0.027; 0.002) 0.094 
   Model 3 -0.007 (-0.022; 0.007) 0.333 
   Model 3 + MSGCGM -0.012 (-0.034; 0.009) 0.258 
Mean circumferential wall stress (CWSmean), kPa (n=720) 
   Crude 1.430 (0.079; 2.782) 0.038 
   Model 1 0.911 (-0.423; 2.245) 0.180 
   Model 2‡ -0.036 (-1.431; 1.359) 0.960 
   Model 3 -0.129 (-1.556; 1.297) 0.859 
   Model 3 + MSGCGM -1.300 (-3.472; 0.872) 0.240 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=720) 
   Crude 1.528 (0.661; 2.395) 0.001 
   Model 1 0.989 (0.131; 1.846) 0.024 
   Model 2* -0.215 (-1.036; 0.605) 0.607 
   Model 3 -0.306 (-1.143; 0.532) 0.474 
   Model 3 + MSGCGM -0.787 (-2.062; 0.488) 0.226 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated 1 unit 
(mmol/L) increase of SDCGM. Crude: SDCGM. Model 1: adjusted for age, sex, and education level. Model 2: 
additionally adjusted for mean arterial pressure (*), office systolic blood pressure (†) or brachial pulse 
pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, smoking status, alcohol use, 
total-to-HDL cholesterol levels, and use of antihypertensive and lipid-modifying drugs. Model 3: 
additionally adjusted for history of cardiovascular disease, estimated glomerular filtration rate, and 
urinary albumin excretion. Model 3 + MSGCGM: additionally adjusted for mean sensor glucose. 
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Table S6.13 Multivariable-adjusted associations of SDCGM with arterial structure adjusted for 
ambulatory systolic blood pressure instead of office systolic blood pressure. 

Model B (95%CI) p-value 

Carotid intima-media thickness (cIMT), μm (n=649) 
   Crude 29.322 (7.349; 51.294) 0.009 
   Model 1 15.560 (-5.410; 36.530) 0.146 
   Model 2 18.314 (-4.281; 40.909) 0.112 
   Model 2 + MSGCGM 8.592 (-25.341; 42.525) 0.619 
Ankle-brachial index (ABI) (n=728) 
   Crude -0.026 (-0.040; -0.012) <0.001 
   Model 1 -0.030 (-0.044; -0.016) <0.001 
   Model 2 -0.019 (-0.034; -0.004) 0.015 
   Model 2 + MSGCGM -0.021 (-0.043; 0.001) 0.062 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated 1 unit 
(mmol/L) increase of SDCGM. Crude: SDCGM. Model 1: adjusted for age, sex, and education level. Model 2: 
additionally adjusted for ambulatory systolic blood pressure and heart rate (in case of cf-PWV and ABI 
only), body mass index, smoking status, alcohol use, total-to-HDL cholesterol levels, and use of 
antihypertensive and lipid-modifying drugs. Model 2 + MSGCGM: additionally adjusted for mean sensor 
glucose. 
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Table S6.14 Multivariable-adjusted associations of SDCGM with arterial outcome variables after 
exclusion of individuals with type 1 diabetes. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=641) 
   Crude 0.910 (0.619; 1.200) <0.001 
   Model 1 0.629 (0.362; 0.896) <0.001 
   Model 2* 0.402 (0.132; 0.673) 0.004 
   Model 2 + MSGCGM 0.256 (-0.146; 0.658) 0.211 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=724) 
   Crude -0.831 (-1.627; -0.034) 0.041 
   Model 1 -0.187 (-0.923; 0.549) 0.618 
   Model 2* 0.679 (-0.058; 1.416) 0.071 
   Model 2 + MSGCGM -0.068 (-1.203; 1.067) 0.906 
Carotid intima-media thickness (cIMT), μm (n=725) 
   Crude 25.389 (5.144; 45.634) 0.014 
   Model 1 11.724 (-7.511; 30.960) 0.232 
   Model 2† 14.708 (-6.267; 35.682) 0.169 
   Model 2 + MSGCGM -1.779 (-34.168; 30.610) 0.914 
Ankle-brachial index (ABI) (n=814) 
   Crude -0.017 (-0.030; -0.003) 0.014 
   Model 1 -0.020 (-0.033; -0.007) 0.003 
   Model 2† -0.007 (-0.022; 0.007) 0.313 
   Model 2 + MSGCGM -0.011 (-0.033; 0.011) 0.328 
Mean circumferential wall stress (CWSmean), kPa (n=724) 
   Crude 1.527 (0.174; 2.880) 0.027 
   Model 1 1.026 (-0.308; 2.360) 0.132 
   Model 2‡ 0.103 (-1.289; 1.495) 0.884 
   Model 2 + MSGCGM -1.170 (-3.317; 0.977) 0.285 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=724) 
   Crude 1.532 (0.667; 2.397) 0.001 
   Model 1 0.999 (0.143; 1.855) 0.022 
   Model 2* -0.209 (-1.027; 0.610) 0.617 
   Model 2 + MSGCGM -0.596 (-1.858; 0.666) 0.354 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of SDCGM. Crude: SDCGM. Model 1: adjusted for age, sex, and education level. Model 2: 
additionally adjusted for mean arterial pressure (*), office systolic blood pressure (†) or brachial pulse 
pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, smoking status, alcohol use, 
total-to-HDL cholesterol levels, and use of antihypertensive and lipid-modifying drugs. Model 2 + 
MSGCGM: additionally adjusted for mean sensor glucose. 
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Table S6.15 Multivariable-adjusted associations of daily glucose variability (expressed as SDCGM) 
with arterial outcome variables after exclusion of individuals with CGM data gaps. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=591) 
   Crude 0.984 (0.671; 1.297) <0.001 
   Model 1 0.734 (0.446; 1.022) <0.001 
   Model 2*  0.501 (0.207; 0.796) 0.001 
   Model 2 + MSGCGM 0.368 (-0.095; 0.831) 0.119 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=672) 
   Crude -0.628 (-1.470; 0.214) 0.144 
   Model 1 -0.043 (-0.821; 0.736) 0.914 
   Model 2* 0.909 (0.127; 1.691) 0.023 
   Model 2 + MSGCGM 0.139 (-1.102; 1.380) 0.826 
Carotid intima-media thickness (cIMT), μm (n=673) 
   Crude 20.012 (-1.404; 41.428) 0.067 
   Model 1 8.587 (-11.835; 29.009) 0.409 
   Model 2† 12.413 (-9.973; 34.798) 0.277 
   Model 2 + MSGCGM -2.126 (-37.762; 33.510) 0.907 
Ankle-brachial index (ABI) (n=749) 
   Crude -0.023 (-0.037; -0.008) 0.002 
   Model 1 -0.026 (-0.040; -0.011) <0.001 
   Model 2† -0.015 (-0.031; 0.001) 0.071 
   Model 2 + MSGCGM -0.026 (-0.051; 0.000) 0.047 
Mean circumferential wall stress (CWSmean), kPa (n=672) 
   Crude 1.751 (0.311; 3.192) 0.017 
   Model 1 1.254 (-0.165; 2.672) 0.131 
   Model 2‡ 0.180 (-1.309; 1.670) 0.812 
   Model 2 + MSGCGM -1.027 (-3.396; 1.341) 0.395 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=672) 
   Crude 1.693 (0.773; 2.614) <0.001 
   Model 1 1.230 (0.315; 2.145) 0.008 
   Model 2* -0.011 (-0.886; 0.864) 0.980 
   Model 2 + MSGCGM -0.277 (-1.668; 1.114) 0.696 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of SDCGM. Crude: SDCGM. Model 1: adjusted for age, sex, and education level. Model 2: 
additionally adjusted for mean arterial pressure (*), office systolic blood pressure (†) or brachial pulse 
pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, smoking status, alcohol use, 
total-to-HDL cholesterol levels, and use of antihypertensive and lipid-modifying drugs. Model 2 + 
MSGCGM: additionally adjusted for mean sensor glucose. 
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Table S6.16 Multivariable-adjusted associations of daily glucose variability (expressed as SDCGM) 
with arterial outcome variables after exclusion of individuals with a suboptimal CGM 
recording period. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=620) 
   Crude 0.931 (0.642; 1.221) <0.001 
   Model 1 0.649 (0.381; 0.917) <0.001 
   Model 2* 0.425 (0.151; 0.698) 0.002 
   Model 2 + MSGCGM 0.299 (-0.109; 0.706) 0.151 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=698) 
   Crude -0.711 (-1.519; 0.098) 0.085 
   Model 1 -0.017 (-0.765; 0.730) 0.964 
   Model 2* 0.782 (0.028; 1.537) 0.044 
   Model 2 + MSGCGM 0.066 (-1.116; 1.248) 0.913 
Carotid intima-media thickness (cIMT), μm (n=699) 
   Crude 26.580 (6.011; 47.149) 0.011 
   Model 1 12.627 (-6.950; 32.204) 0.206 
   Model 2† 16.739 (-4.712; 38.190) 0.126 
   Model 2 + MSGCGM 4.126 (-29.577; 37.829) 0.810 
Ankle-brachial index (ABI) (n=785) 
   Crude -0.020 (-0.034; -0.007) 0.003 
   Model 1 -0.024 (-0.037; -0.010) 0.001 
   Model 2† -0.011 (-0.026; 0.004) 0.163 
   Model 2 + MSGCGM -0.019 (-0.041; 0.004) 0.109 
Mean circumferential wall stress (CWSmean), kPa (n=698) 
   Crude 1.514 (0.155; 2.872) 0.029 
   Model 1 0.944 (-0.396; 2.285) 0.167 
   Model 2‡ 0.097 (-1.316; 1.510) 0.893 
   Model 2 + MSGCGM -1.544 (-3.759; 0.671) 0.172 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=698) 
   Crude 1.579 (0.707; 2.452) <0.001 
   Model 1 0.996 (0.133; 1.859) 0.024 
   Model 2* -0.175 (-1.006; 0.656) 0.679 
   Model 2 + MSGCGM -0.619 (-1.923; 0.685) 0.352 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of SDCGM. Crude: SDCGM. Model 1: adjusted for age, sex, and education level. Model 2: 
additionally adjusted for mean arterial pressure (*), office systolic blood pressure (†) or brachial pulse 
pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, smoking status, alcohol use, 
total-to-HDL cholesterol levels, and use of antihypertensive and lipid-modifying drugs. Model 2 + 
MSGCGM: additionally adjusted for mean sensor glucose. 
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Table S6.17 Multivariable-adjusted associations of daily glucose variability (expressed as SDCGM) 
with arterial outcome variables after exclusion of individuals who underwent CGM 
as part of a ‘catch-up visit’. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=418) 
   Crude 0.724 (0.337; 1.107) <0.001 
   Model 1 0.408 (0.062; 0.754) 0.021 
   Model 2* 0.188 (-0.160; 0.536) 0.289 
   Model 2 + MSGCGM -0.200 (-0.673; 0.273) 0.406 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=500) 
   Crude -0.728 (-1.882; 0.425) 0.215 
   Model 1 0.147 (-0.904; 1.198) 0.784 
   Model 2* 0.521 (-0.513; 1.555) 0.323 
   Model 2 + MSGCGM -0.355 (-1.758; 1.047) 0.619 
Carotid intima-media thickness (cIMT), μm (n=500) 
   Crude 42.209 (12.158; 72.261) 0.006 
   Model 1 22.183 (-5.946; 50.312) 0.122 
   Model 2† 27.960 (-2.331; 58.251) 0.070 
   Model 2 + MSGCGM 4.808 (-36.285; 45.902) 0.818 
Ankle-brachial index (ABI) (n=577) 
   Crude 0.000 (-0.019; 0.019) 0.998 
   Model 1 -0.004 (-0.022; 0.015) 0.684 
   Model 2† 0.011 (-0.009; 0.031) 0.266 
   Model 2 + MSGCGM -0.002 (-0.028; 0.025) 0.902 
Mean circumferential wall stress (CWSmean), kPa (n=500) 
   Crude -0.767 (-2.710; 1.176) 0.438 
   Model 1 -0.987 (-2.909; 0.936) 0.314 
   Model 2‡ -1.740 (-3.697; 0.217) 0.081 
   Model 2 + MSGCGM -1.867 (-4.531; 0.797) 0.169 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=500) 
   Crude 0.434 (-0.824; 1.692) 0.498 
   Model 1 -0.139 (-1.382; 1.105) 0.827 
   Model 2* -0.872 (-2.060; 0.315) 0.150 
   Model 2 + MSGCGM -0.473 (-2.088; 1.142) 0.565 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of SDCGM. Crude: SDCGM. Model 1: adjusted for age, sex, and education level. Model 2: 
additionally adjusted for mean arterial pressure (*), office systolic blood pressure (†) or brachial pulse 
pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, smoking status, alcohol use, 
total-to-HDL cholesterol levels, and use of antihypertensive and lipid-modifying drugs. Model 2 + 
MSGCGM: additionally adjusted for mean sensor glucose. 
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Table S6.18 Multivariable-adjusted associations of mean sensor glucose with arterial outcome 
variables. 

Model B (95%CI) p-value 

Carotid femoral pulse wave velocity (cf-PWV), m/s (n=643) 
   Crude 0.437 (0.315; 0.560) <0.001 
   Model 1 0.298 (0.184; 0.412) <0.001 
   Model 2* 0.177 (0.057; 0.297) 0.004 
   Model 2 + SDCGM 0.087 (-0.091; 0.265) 0.338 
Carotid distensibility coefficient (carDC), 10-3/kPa (n=725) 
   Crude -0.423 (-0.759; -0.087) 0.014 
   Model 1 -0.143 (-0.456; 0.171) 0.372 
   Model 2* 0.412 (0.089; 0.734) 0.012 
   Model 2 + SDCGM 0.435 (-0.062; 0.933) 0.086 
Carotid intima-media thickness (cIMT), μm (n=726) 
   Crude 14.612 (6.085; 23.139) 0.001 
   Model 1 7.526 (-0.670; 15.722) 0.072 
   Model 2† 8.847 (-0.330; 18.024) 0.059 
   Model 2 + SDCGM 9.398 (-4.793; 23.589) 0.194 
Ankle-brachial index (ABI) (n=816) 
   Crude -0.005 (-0.011; 0.000) 0.068 
   Model 1 -0.008 (-0.014; -0.002) 0.006 
   Model 2† -0.002 (-0.009; 0.004) 0.507 
   Model 2 + SDCGM 0.004 (-0.0006 0.013) 0.477 
Mean circumferential wall stress (CWSmean), kPa (n=725) 
   Crude 1.096 (0.528; 1.664) <0.001 
   Model 1 0.823 (0.256; 1.390) 0.005 
   Model 2‡ 0.317 (-0.293; 0.927) 0.308 
   Model 2 + SDCGM 0.694 (-0.248; 1.635) 0.149 
Pulsatile circumferential wall stress (CWSpuls), kPa (n=725) 
   Crude 0.905 (0.542; 1.268) <0.001 
   Model 1 0.657 (0.293; 1.020) <0.001 
   Model 2* 0.029 (-0.330; 0.388) 0.873 
   Model 2 + SDCGM 0.230 (-0.323; 0.784) 0.414 

Regression coefficients (B) indicate the mean difference (95% confidence interval) associated with 1 unit 
(mmol/L) increase of MSGCGM. Crude: SDCGM. Model 1: adjusted for age, sex, and education level. Model 
2: additionally adjusted for mean arterial pressure (*), office systolic blood pressure (†) or brachial pulse 
pressure (‡), heart rate (in case of cf-PWV and ABI only), body mass index, smoking status, alcohol use, 
total-to-HDL cholesterol levels, and use of antihypertensive and lipid-modifying drugs. Model 2 + SDCGM: 
additionally adjusted for standard deviation. 
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A meaningful addition to the mean? 

Diabetes mellitus is an increasingly prevalent global health concern that currently 

affects approximately 463 million individuals1,2. It is defined by elevated blood glucose 

concentrations (i.e., hyperglycemia)3 and encompasses a number of distinct metabolic 

diseases, the most common of which are type 1 (5-10%) and type 2 diabetes (90-95%)4. 

Diabetes not only engenders a twofold higher risk of all-cause mortality5-7, but also 

predisposes to many chronic morbidities. These include, amongst others, 

cardiovascular disease (CVD)8, the classic microvascular complications (i.e., 

retinopathy, neuropathy, and nephropathy)9,10, and dementia11. Notably, increasing 

evidence indicates that individuals with moderately elevated blood glucose 

concentration (i.e., prediabetes) already have a higher risk of such complications10-13. 

Diabetes and its co-morbidities have debilitating effects at an individual level14 and 

also have a negative societal impact due to their large economic burden15,16. Diabetes 

treatment, which generally involves both lifestyle interventions and medication, is 

primarily aimed at the prevention of the development or progression of 

complications17. Lowering of glucose concentrations (i.e., improving glycemic control) is 

one of the main ways to achieve this3. For decades, HbA1c has been the gold-standard 

measure to quantify glycemic control3. However, this index of average glycaemia fails 

to provide sufficient information on daily glucose fluctuations (i.e., daily glucose 

variability; GV)18. 

Daily GV may be a modifiable risk factor for complications, regardless of mean 

glucose concentrations19-25, and, hence, measuring it in addition to the mean glycemia 

may prove meaningful. However, since large-scale, accurate measurement of daily GV 

has been challenging up until recently, there is a paucity of large epidemiological 

studies on the potential consequences of daily glucose fluctuations26. This thesis, 

therefore, aims to extend the current literature by investigating these potential 

consequences and, in addition, strives to address specific methodological aspects of 

continuous glucose monitoring (CGM) and GV measurement in order to improve 

current clinical practice and future research. This chapter provides a summary of the 

main findings and discusses them in the context of existing scientific literature. In 

addition, the present chapter reflects on the methodology of the performed studies 

and suggests future directions for research on daily GV. 

Key findings and their implications 

In this section, the key findings of this thesis as well as their scientific and clinical 

implications will be comprehensively discussed. First, I will review the foremost 

findings on the methodology of daily GV measurement and CGM (Part I). Next, I will 

discuss the main results on potential consequences of daily GV (Part II). 
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Part I: Methodological aspects of daily glucose variability measurement and 

continuous glucose monitoring 

While frequent venous blood glucose sampling (e.g., by venipuncture or fingerprick) 

was initially the only feasible way to assess daily GV27,28, CGM has become the gold 

standard method to do so more than ten years ago29,30. CGM is increasingly being used 

in diabetes care31, mostly by individuals with type 1 diabetes, either solitarily or 

incorporated in advanced closed-loop insulin delivery systems32,33. A considerable 

number of glycemic indices can be derived from frequently measured glucose 

values18,34. In this thesis, the main CGM-assessed indices of interest were: 

 Mean sensor glucose (MSG), which is calculated by averaging all glucose 

measurements. Presently, MSG is one of the key CGM-derived metrics29,30.  

 Standard deviation (SD), which reflects the amount of variation in all glucose 

measurements. SD is one of the two currently recommended daily GV indices 

because it is easily interpretable, is widely used, has small random sampling error 

relative to other commonly used indices, and can be easily translated to a MSG-

adjusted index (see below)26,29,30. It is justified to primarily use SD, since it strongly 

correlates with the other commonly used indices (e.g., interquartile range [IQR], 

mean amplitude of glycemic excursion [MAGE])26. 

 Coefficient of variation (CV), which is calculated as SD / MSG * 100%. Currently, CV 

is the main recommended index for the quantification of daily GV29. It has the 

advantage of being intrinsically MSG-adjusted, which is important because of the 

strong biological and mathematical correlation between MSG and SD26. In 

addition, this relativeness to MSG is thought to make CV more informative than 

SD with regard to hypoglycemia risk29. The current international consensus report 

on clinical CGM-based targets recommends a CV of ≤36%30. 

 Time in range (TIR), which reflects the percentage of glucose values between 3.9 

and 10 mmol/L. TIR, which is partly determined by average glycemia and daily GV35, 

is an emerging glycemic index30,36.The specific target range of 3.9 to 10 mmol/L 

was decided by international consensus and applies to individuals with type 1 

diabetes or type 2 diabetes; a TIR of ≥70% is the recommended clinical target30. 

 

In this thesis, the following oral glucose tolerance test-derived index was additionally 

used as a proxy of daily GV: 

 Incremental glucose peak (IGP), which is calculated by subtracting the fasting 

plasma glucose (FPG) value from the highest glucose value during a complete 

seven-point OGTT. In this thesis, we establish that IGP is a valid OGTT-derived 

index of daily GV. Compared to CGM-derived indices of GV, IGP has the major 

advantage of being available in a substantially larger sample of The Maastricht 

Study population. 
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Recording period reliability for continuous glucose monitoring-derived indices 

While the number of CGM recording days required for a reliable measurement of daily 

GV indices had been established for individuals with type 1 diabetes (i.e., 12-15 days)37-39, 

it was insufficiently clear for individuals with other glucose metabolism status (GMS) 

categories. In Chapter 2, we showed that relatively few days are needed to reach 

sufficient reliability (R>0.8) for MSG quantification: 1 day for individuals with 

prediabetes or type 2 diabetes, and 3 days for individuals with normal glucose 

metabolism (NGM). The number of days required are slightly higher for SD (i.e., 2 days 

in case of prediabetes and type 2 diabetes; and 3 days in case of NGM) and CV (i.e., 

3 days in case of NGM, prediabetes, and type 2 diabetes). The current international 

consensus report on clinical CGM-based targets recommends that the device is worn 

at least 14 days (with at least 70% of usable data)30, an advice that is established on 

data in type 1 diabetes only37-39. Based on our findings, we propose reevaluation of this 

clinical recommendation with the intend of establishing a different target for 

individuals with type 2 diabetes. Six days of functional CGM would be appropriate to 

measure MSG, SD, and CV highly reliably (R>0.9) in these individuals. Additionally, 

from the specific viewpoint of scientific studies, it would be valid to further shorten the 

CGM period for individuals with NGM, prediabetes or type 2 diabetes to three 

functional days in order to alleviate participant burden without compromising 

reliability. Notably, however, we observed that reliable measurement of MAGE in 

individuals with type 2 diabetes required at least 6 days of CGM, which is in agreement 

with findings on the relatively large sampling error of this index40. This is an important 

observation because a substantial number of studies have calculated MAGE based on 

72h of CGM or less (e.g., 41,42), which may have caused biased results43,44. In addition, the 

reliability analyses were not performed for the increasingly important TIR, which 

might, like MAGE, require a longer recording period than three days. 

Machine learning-based glucose prediction as a method to improve continuous glucose 

monitoring and closed-loop insulin delivery systems 

While closed-loop insulin delivery systems are steadily being improved upon45, certain 

obstacles to the optimal performance of these devices remain. With regard to CGM, 

these include ~10-minute sensor delay, which, in part, results from measuring 

interstitial glucose rather than blood glucose concentrations, and short periods of 

sensor malfunction45-47. In Chapter 3, we used 1.4 million glucose measurements of 

participants with NGM, prediabetes or type 2 diabetes (n=853) to show that machine 

learning-based glucose prediction can be used to address both. Namely, our models, 

which are based on a long-short term memory network architecture and only require 

30 minutes of prior CGM data, are capable of accurately predicting glucose values at 

15- and 60-minute intervals. Notably, in individuals with type 2 diabetes, more than 

98% of the predicted glucose values were highly clinically safe, as assessed with 
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surveillance error grids. Our prediction model outperformed the model based on the 

largest study to date in individuals with type 2 diabetes(n=50)48, which we expect to 

partly stem from the larger sample, which tends to yield better and more reliable 

prediction49. 

Since individuals with type 1 diabetes are, at present, the primary target population 

for closed-loop insulin delivery systems50 and generally experience greater, less 

predictable daily glucose fluctuations51, we explored whether the glucose prediction 

model that was trained on participants with NGM, prediabetes or type 2 diabetes 

would generalize to individuals with type 1 diabetes. For this, we employed the 

publically available OhioT1DM Dataset52, which is commonly utilized for model 

performance evaluation (e.g.,53,54). Exploratory translation to individuals with type 1 

diabetes showed that our glucose prediction models performed well in this group, 

albeit not to the extent that was observed in the original evaluation set, which 

underscores the importance of assessing prediction model generalizability. 

Nevertheless, the models had sufficient clinical safety and performed equally well as 

the most recent studies in individuals with type 1 diabetes53-57. We anticipate that 

further technical optimization of our models in combination with a larger population 

of individuals with type 1 diabetes will advance the accuracy and safety even more. 

We also studied whether glucose prediction can be improved by incorporation of 

accelerometry data, since physical activity is known to impact glucose concentrations58 

and because it would be feasible to combine an accelerometer with the other devices 

of a closed-loop insulin delivery system. Somewhat unexpectedly, the additional 

information provided by accelerometry only slightly improved our CGM-based 

prediction models. This may be due to the already excellent performance of the CGM-

based prediction. Namely, the better a prediction model, the more difficult it becomes 

to substantially improve it59. As such, the conclusion would be to not use 

accelerometry in order to improve closed-loop insulin delivery systems. However, it 

should be noted that the combined approach yielded larger improvements at the 

60-minute interval, most notably during the day and in individuals with greater daily 

GV. Hence, accelerometer-derived data may be more important in case of longer 

prediction intervals or in individuals with more pronounced, less predictable daily 

glucose fluctuations51. This should be further explored in individuals with type 1 

diabetes. 

Reference values of continuous glucose monitoring-derived indices 

Reference values for CGM-derived indices have, thus far, been sparsely investigated in 

individuals without diabetes60, 61, especially in a setting without dietary restrictions62. 

In Chapter 2, we established—under normal living conditions—reference values for 

MSG (5.03 - 6.69 mmol/L), SD (0.44 - 1.37 mmol/L), and CV (7.74 - 22.45%) based on the 

2.5th-97.5th percentiles of individuals with NGM63. Our SD and MSG reference values are 

slightly higher than those previously reported for Chinese individuals with NGM60,61, 
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which could stem from ethnic or cultural differences, or from the fact that these 

participants were given dietary instructions as part of the study design. The previously 

mentioned international consensus report on clinical CGM-based targets recommends 

a CV of ≤36%30, which lies substantially higher than our upper reference value of 22.5%. 

This target was chosen because it represented the highest CV value in diet- or 

metformin-treated individuals with type 2 diabetes and had been linked with 

substantially less hypoglycemic events compared to a CV of >36%64. However, 

hypoglycemic events still occurred in the CV≤36% group, which questions the 

legitimacy of this specific cut-off point. Interestingly, in a study on the association 

between CV and percentage in hypoglycemia, Rodbard showed that the pertinent 

regression line crossed the zero percent in hypoglycemia mark, both for a 4.4 and 

2.8 mmol/L hypoglycemia threshold, for a CV of ~22.5%65. This implies that aiming for a 

more physiological degree of daily GV (i.e., a CV of 22.5% or lower), although not easily 

achieved in insulin-treated diabetes, would fully prevent hypoglycemic events.  

Novel daily glucose variability indices 

New and increasingly advanced techniques for the assessment of CGM-based daily GV 

are proposed on a regular basis66-68. One of these methods, the spectral clustering-

based ‘glucotype’, has garnered considerable attention—especially in the context of 

precision medicine—from multiple high-impact journals69-72 after it was promoted by 

the authors as a more comprehensive GV measure than those in current practice66. In 

Chapter 4, we evaluated the validity and generalizability of the glucotype as an index 

of daily GV by using CGM data of participants from The Maastricht Study73 and PRE-D 

Trial74. We showed that the distribution of the three glucotypes (i.e., low, moderate, or 

severe variability) observed in the original study66 generalizes poorly to other study 

populations. Additionally, by calculating relative entropy75, we demonstrated that 

cluster separation is far from optimal (i.e., a relative entropy of 0.24), which means that 

all participants spend a substantial amount of time in other glucotypes than the main 

one assigned to them. Most importantly, we established, using data from the above 

mentioned cohorts as well as the original study, that the classification of glucotypes is 

almost completely driven by MSG. As such, we dispute the authors’ claim that the 

glucotype is a ‘more comprehensive measure of the pattern of glucose excursions than 

the standard laboratory tests in current use’. These findings again underscore the 

importance of using large study samples to develop valid data-driven models and of 

utilizing other populations to assess their generalizability.  

We hypothesized that indices that quantify the glucose excursion during an OGTT 

could be used to assess daily GV, in particular when CGM is unavailable. Conceptually, 

we expected that the aforementioned IGP (i.e., highest OGTT glucose value minus FPG) 

would best reflect SD, as both indices represent a glucose excursion relative to the 

mean. In Chapter 2, we showed that CGM-assessed SD and CV were most strongly 

correlated with the maximum glucose peak (rho=0.60 and 0.49), IGP (rho=0.59 and 
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0.50), and 1-hour OGTT value (rho=0.61 and 0.49). Because of the strength of the 

correlations (i.e., moderate-to-strong), we posit that these OGTT-based indices can all 

be used to approximate daily GV when CGM is unavailable, particularly in a large 

epidemiological setting. However, because the 1-hour OGTT value often does not 

correspond with the actual glucose peak time point—especially in individuals with 

NGM (only in 15%) and type 2 diabetes (only in 20%)—and since IGP outperformed both 

the 1-hour OGTT value and maximum glucose peak in GMS-stratified correlations, we 

conclude that IGP is indeed the preferred OGTT-derived index to use as proxy of daily 

GV.  

The independent associations of IGP with aortic stiffness (Chapter 5), 

neurodegeneration (Chapter 7), and cognitive performance (Chapter 8) further 

underscore the relevance of this OGTT-derived index. In agreement with the observed 

correlations of IGP with SD and CV (Chapter 2), the associations of IGP with outcome 

measures were generally consistent with those of CGM-assessed indices of daily GV 

(Part II). As such, we believe IGP to be a valid proxy of daily GV in a research setting, 

especially in case of such a large epidemiological cohort as The Maastricht Study. 

Nevertheless, we underscore the importance of verifying the generalizability to other 

studies76. 

Notwithstanding the above, we do not expect that IGP will have a place in clinical 

practice for several reasons. First, it is questionable whether IGP will reflect daily GV 

well on an individual basis, given that the correlation coefficients were at most 0.6 

(Chapter 2). Second, CGM measures real-life physiology, whereas OGTT-based 

assessment of daily GV can be seen as a non-physiological stress test, which will, for 

example, disregard strict diet adherence in daily life. Third, CGM can provide more 

detailed information (e.g., MSG, TIR) than a sole OGTT can, and given its increasing 

availability31 is more preferable. Last, an OGTT is not commonly performed clinically 

and, more importantly, is contraindicated for individuals who use insulin77, in whom 

assessment of daily GV is arguably of most interest.  

Part II: The consequences of daily glucose variability  

Fifteen years ago, daily GV was put forward as a potentially modifiable, mean 

glycemia-independent risk factor for diabetes-associated complications19. Since then, a 

relatively small number of studies have investigated whether this is the case for 

common complications of diabetes, which include CVD, microvascular complications, 

and cognitive decline22, 78. Moreover, the majority of prior research on the 

consequences of daily GV is limited by specific methodological concerns, which include 

small study populations, inadequate adjustment for confounding, and suboptimally 

precise quantification of daily GV. These limitations are understandable when one 

considers that CGM-based measurement of daily GV has been challenging on a large 

scale up until recently, in part, due to costliness and relative invasiveness of CGM26. 

Logically, there is an even greater paucity of CGM-based prospective studies. 
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In part II of this thesis, we studied the cross-sectional associations of daily GV, assessed 

with CGM and OGTT, with multiple precursors of the aforementioned diseases (Figure 

9.1) using data from a large, well-characterized cohort study. This approach has certain 

advantages, which are particularly related to the use of precursors. First, the statistical 

power is higher when using continuous (e.g., carotid-femoral pulse wave velocity; cf-

PWV) rather than dichotomous (e.g., CVD diagnosis) variables79. Second, it can provide 

insights into the underlying biological processes that lead up to a specific adverse 

outcome. Third, the greater biological proximity of daily GV to such processes is 

expected to result in stronger associations and, thereby, greater statistical power. 

However, it also has disadvantages. First, clinical relevance is much clearer for the 

association with an adverse outcome (e.g., CVD) than with one of its precursors (e.g., 

cf-PWV). Second, the cross-sectional design of our studies hampers insight into 

causality80. 

Daily glucose variability as determinant of cardiovascular disease 

In the current thesis, we used several measures that reflect specific processes leading 

up to CVD. Stiffening of the aorta and carotid artery (i.e., arteriosclerosis) was 

measured as cf-PWV and carotid distensibility coefficient (carDC), respectively81-83. 

Higher cf-PWV indicates greater aortic stiffness, which independently increases the 

risk of incident CVD, cardiovascular mortality, and all-cause mortality84-86. Lower carDC 

reflects greater carotid stiffness, which has been linked to incident stroke87. In addition, 

carotid intima-media thickness (cIMT) and ankle-brachial index (ABI) were measured. 

Higher cIMT and lower ABI represent more pronounced atherosclerosis and, hence, are 

associated with a higher risk of CVD8,88,89. Last, mean and pulsatile circumferential wall 

stress of the carotid artery were measured with echography90. Higher circumferential 

wall stress is thought to reflect maladaptive arterial remodeling91. 
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Figure 9.1 Potential consequences of daily glucose variability. Solid lines represent probable 

associations (i.e., statistically significant associations that were consistently observed for 
different indices of daily glucose variability). Dashed lines represent possible associations 
(i.e., non-consistent associations or findings that were indicative of an associations, but 
were not statistically significant). cf-PWV, carotid-femoral pulse wave velocity; carDC, 
carotid distensibility coefficient; cIMT, carotid intima-media thickness; CWS, 
circumferential wall stress; ABI, ankle-brachial index. 

 

 

In Chapter 6, we showed that greater daily GV (i.e., SD and CV) and lower TIR (either as 

a continues variable or dichotomized [i.e., TIR≥70%]), all assessed with CGM, are 

linearly associated with greater aortic stiffness (i.e., cf-PWV), independent of 

demographics, cardiovascular risk factors, and lifestyle risk factors. Additional 

adjustment for MSG attenuated the association between SD and cf-PWV by a third 

and, thereby, undid statistical significance. This finding can be interpreted as evidence 

against an association between daily GV and aortic stiffness. Conversely, it can indicate 

that the sample size was too small to provide sufficient statistical power92,93, which 

may be further undermined by the impact of multicollinearity on precision94 (See 

Overall methodological considerations). Regardless of statistical significance, the 

associations of SD and MSG with cf-PWV were very similar, which may imply that both 
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have an equivalent pathophysiological relevance to aortic stiffness. The studies that 

have reported independent associations between measures of average glycemia (e.g., 

HbA1c and FPG) and cf-PWV82 could, thereby, be viewed as support for daily GV as 

determinant of aortic stiffness. In agreement with this, we showed—with a threefold 

larger sample size—that higher IGP is associated with greater aortic stiffness, 

independent of all potential confounders including HbA1c (Chapter 5). The body of 

evidence that identifies cf-PWV as independent determinant of CVD, cardiovascular 

mortality, and all-cause mortality84-86 underscores the relevance of our observations. 

Further, the difference in daily GV, either expressed as SD or IGP, between the highest 

and lowest population tertiles could both be translated to a substantial 2- to 3-year 

vascular aging difference95.  

In contrast with the findings on aortic stiffness, no independent associations were 

observed between OGTT-assessed (Chapter 5) or CGM-assessed (Chapter 6) daily GV 

and carotid stiffness (i.e., carDC). This difference could stem from structural differences 

between the aorta (i.e., mixed elastic and muscular) and carotid artery (i.e., 

predominately elastic)84. While no independent association was found between SD 

and cIMT, lower TIR was near statistically significantly associated with higher cIMT 

(Chapter 6). Both results contradict the findings in Chapter 5, where higher IGP was 

near statistically significantly associated with lower cIMT. Because of these contrasting 

results, and since higher HbA1c was associated with higher cIMT (Chapter 5), which is in 

agreement with prior studies on hyperglycemia96, we presume the negative 

association between IGP and cIMT to be spurious. Further, CGM-based indices of daily 

GV were neither associated with mean or pulsatile circumferential wall stress (Chapter 

6). By contrast, higher IGP was statistically significantly associated with higher mean 

circumferential wall stress (Chapter 5), which may indicate that higher daily GV is a 

determinant of maladaptive remodeling of the carotid artery, as has previously been 

reported for individuals with type 2 diabetes91. However, since cIMT is the denominator 

in the formula to calculate mean circumferential wall stress (i.e., lower cIMT 

mathematically results in higher circumferential wall stress)90, this finding could also 

be spurious. 

In Chapter 6, we observed that higher SD was associated with lower ankle-brachial 

index (ABI) values after adjustment for all potential confounders and MSG, albeit 

statistically non-significantly so (p=0.12). Although CV and TIR were not independently 

associated with ABI, a TIR≥70% was, even after additional adjustment for HbA1c. This 

finding might indicate that daily GV is a determinant of atherosclerosis88. At present, 

the association between IGP and ABI has not yet been investigated. As sample size was 

observed to be crucial in case of cf-PWV and since ABI is a prognostic indicator of 

CVD88, it would be of interest to do so in the future.  

Several biological mechanisms may underlie the relationship between daily GV and 

CVD. Greater daily GV has been found to augment oxidative stress97,98, which is known 

to promote the formation of advanced glycation endproducts (AGEs)99. AGEs have 
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been suggested to induce arterial stiffening by accumulating in the arterial wall and 

forming cross-links between elastin and collagen81-83. Thus far, an association of tissue 

and circulating AGEs has only been observed with aortic stiffness100, which might 

provide an explanation for our contrasting findings regarding the structurally different 

aorta and carotid artery. Higher daily GV could also increase aortic stiffness by 

activating collagen-secreting fibroblasts101 or by inducing large-artery endothelial 

dysfunction83,102. Last, not only higher glucose peaks, but also hypoglycemic nadirs, 

although they are expected to rarely occur in the study populations used, could 

contribute to the development of CVD103,104. 

Generally, our findings are in line with the few studies on the associations of CGM-

based daily GV with arterial stiffness105, cIMT106, and ABI107. Since we observed a 

moderately strong correlation between CGM-assessed GV and the 1-hour OGTT value 

(Chapter 2), the studies that link the latter metric to arterial stiffness108,109 and CVD110 

could be considered further support for daily GV as a determinant of CVD. However, 

whether lowering of daily GV is able to prevent CVD is still insufficiently clear. In this 

regard, two insulin treatment strategy arms with participants of similar HbA1c but 

different daily GV were compared in a post-hoc analysis of the HEART2D study. 

Notably, the arm with lower daily GV was not observed to have less CVD events111. 

However, the daily GV indices were measured with seven-point self-measured blood 

glucose (SMBG) profiles. Furthermore, only one of the three daily GV indices that had 

been calculated was statistically significantly lower, which questions whether the 

difference in daily GV was large enough to achieve lower CVD events. 

Daily glucose variability as determinant of microvascular complications 

In this thesis, we used several outcome measures that are pertinent to microvascular 

complications. In Chapter 5, we used retinal microvascular dilation in response to 

flicker light, as measured with the Dynamic Vessel Analyzer112, and heat-induced skin 

hyperemic response, as assessed with a laser-Doppler system equipped with a 

thermostatic probe113, as measures of retinal and skin microvascular function, 

respectively. Microvascular dysfunction is considered to precede microvascular 

complications10. In Chapter 7, we measured retinal nerve fiber layer (RNFL) thickness 

with optical coherence tomography (OCT)114. RNFL thinning reflects a gradual loss of 

retinal ganglion cell axons115,116, and, as such, can be regarded as an index of 

neurodegeneration and precursor of retinopathy and neuropathy114.  

In Chapter 7, we found that more adverse GMS, greater glycemia (i.e., FPG, 2-hour 

post-load glucose, HbA1c, and skin autofluorescence), and greater daily GV (i.e., IGP and 

SD) are all linearly and—except for SD—statistically significantly associated with RNFL 

thickness. Notably, the strength of the associations for indices of daily GV was not 

materially different after additional adjustment for measures of average glycemia. The 

lack of statistical significance for the association of SD with RNFL thickness could result 

from insufficient statistical power92, analogous to the associations with cf-PWV and 
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ABI (Chapter 6). This is supported by the observation that the statistically significant 

association between IGP and RNFL thickness, which was studied in a fourfold larger 

population, was numerically equivalent to the association of SD with RNFL thickness.  

Contrarily, we did not observe independent associations between higher IGP and 

worse microvascular function in Chapter 5. Both the association with retinal arteriolar 

average dilatation and heat-induced skin hyperemia were strongly, but not completely, 

attenuated by adjustment for HbA1c. This contrasts with the RNFL thickness findings, 

although comparison is hindered by a different regression model sequence. While the 

associations with microvascular function were adjusted for HbA1c directly after 

adjustment for demographics, the association with RNFL thickness was adjusted for 

HbA1c as a final step. Consequently, the cardiovascular risk and lifestyle factors may 

have already provided most of the information that HbA1c otherwise would have. It 

should also be noted that the sample sizes for retinal arteriolar average dilatation 

(n=1,591) and heat-induced skin hyperemia (n=1,134) were relatively small compared to 

the other IGP study populations (n=1,849 to 3,380). Hence, although a case against 

daily GV as independent determinant of microvascular function could certainly be 

made, it may also be argued—primarily for retinal arteriolar average dilatation—that 

there was insufficient statistical power to detect such an association92,93. Further, 

compared to RNFL thickness, retinal arteriolar average dilatation and heat-induced skin 

hyperemia are expected to be less precisely measured (See Overall methodological 

considerations), which is known to negatively impact association precision44.  

The main pathways through which hyperglycemia is thought to cause 

microvascular damage (i.e., AGE, polyol, hexosamine, and protein kinase C) have been 

extensively reviewed99,117. In case of retinal ganglion cells, these pathways can be 

directly neurotoxic, but may also be harmful indirectly through impairment of 

microvascular function10,118. Greater daily GV can entail both hyperglycemic peaks and 

hypoglycemic nadirs. Hyperglycemic peaks may be harmful on top of average glycemia 

as they have been found to augment oxidative stress97,98, which is the unifying first 

step of the aforementioned pathways99,117. In case of retinal ganglion cells, 

hypoglycemic nadirs may be especially harmful because these cells are highly 

metabolically active and glucose is their key nutrient118. 

The findings on GMS, hyperglycemia and RNFL thickness (Chapter 7) are in line with 

current literature119-125 and extend previous work of The Maastricht Study on the 

microvascular and neuronal branch of the “ticking clock hypothesis”126-131, which 

postulates that hyperglycemia-induced damage is a continuous, gradual process that 

starts in prediabetes, progresses with the onset of type 2 diabetes, and continues 

during type 2 diabetes13,132. At present, no other studies have investigated the 

associations of daily GV with RNFL thickness or measures of microvascular function. 

Although numerous studies have reported that daily GV was associated with 

retinopathy133,134, neuropathy133,135,136, and nephropathy133,137,138, their relevance is limited 

by small sample sizes, inadequate adjustment for confounders, or both. The findings of 
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these studies are also contradictory to several post-hoc analyses of the Diabetes 

Control and Complications Trial (DCCT) that were not able to independently associate 

daily GV, which had been suboptimally assessed with seven-point SMBG profiles, to 

microvascular complications in individuals with type 1 diabetes28,139,140. 

Daily glucose variability as determinant of cognitive decline 

In Chapter 8, we used a concise neuropsychological test battery to assess performance 

on three individual cognitive domains (i.e., executive function and attention, memory 

function, and information processing speed)73. The individual domain scores were 

constructed in such a fashion that lower scores represent worse cognitive 

performance. We combined the scores on the three domains to reflect overall cognitive 

performance.  

In Chapter 8, we showed that higher IGP was linearly associated with worse overall 

cognitive performance, independent of demographics, cardiovascular risk factors, 

lifestyle factors and average glycemia (i.e., HbA1c or FPG). For reference, the strength of 

the association translated to ~5 months of cognitive aging for every 1 mmol/L higher 

IGP. Worse performance on executive function and attention primarily explained the 

association between IGP and overall cognitive performance, which is in line with 

previous findings on diabetes and other glycemic measures11. While higher IGP was 

also associated with worse performance on memory function and information 

processing speed, these associations did not retain statistical significance after 

complete adjustment for potential confounders. Although the results for CGM-

assessed daily GV are generally in agreement with the findings for IGP (i.e., the 

strongest associations were found with executive function and attention), the majority 

of the associations were not statistically significant. Of these, only TIR was 

independently associated with executive function and attention. Given the fourfold 

larger IGP sample size, this may again indicate concerns regarding statistical power92 

and effects of multicollinearity (See Overall methodological considerations)94. 

Our results are concordant with the few studies that have investigated the 

association between daily GV and cognitive outcomes41,42,68,141. Of these, the study that 

observed an independent association between greater GV142, as assessed with 

1,5-anhydroglucitol, and incident dementia in participants with diabetes and a HbA1c 

≥53 mmol/mol only141 specifically required corroboration because 1,5-anhydroglucitol 

has limited validity as GV proxy at elevated glucose concentrations25,142.  

Daily GV may impair cognitive performance in several ways. As cerebral glucose 

uptake is not insulin-dependent, hyperglycemic peaks will lead to elevated 

intraneuronal glucose concentrations99, which can activate multiple neurotoxic 

pathways (e.g., polyol pathway, methylglyoxal formation, and protein glycation)143-146. A 

role for direct neurotoxicity is supported by the observed association between daily GV 

and RNFL thickness (Chapter 7), especially in the light of studies that have linked this 

retinal index of neurodegeneration to cognitive decline and incident dementia147,148. 
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Daily GV could also indirectly affect cognitive performance through its effects on 

endothelial function102,149 or aortic stiffness (Chapters 5 and 6), which have both been 

associated with cognitive performance150,151. Last, repeated periods of hypoglycemia can 

also provoke cognitive decline152. 

Overall methodological considerations 

In this section, various methodological aspects of Chapters 2 through 8 will be 

comprehensively discussed. First, the three main threats to internal validity will be 

reviewed. Subsequently, causal inference, multiple testing adjustment, statistical 

power, and external validity will be addressed. 

Internal validity 

The internal validity of a study refers to the correctness of the inferences drawn for the 

members of the source population upon part of whom they were based43. The internal 

validity of any epidemiological study is always at risk of being jeopardized by 

systematic error, also known as bias, which distorts the ‘true’ association between the 

main determinant and outcome. The three overarching forms of systematic error are 

information bias, confounding, and selection bias. In the coming paragraphs, I will 

elaborate on these types of bias and will discuss them in the context of the performed 

studies. 

Information bias and random measurement error 

Information bias is caused by erroneous information—measurement error in case of 

continuous data and misclassification error in case of categorical data—on 

determinant, outcome, or both43. The impact of such error depends on whether it is 

systematic or random and whether it affects the main determinant or outcome44. 

Systematic error in a determinant or outcome variable can cause both overestimation 

and underestimation of an effect size. Random measurement error in a determinant 

biases results towards the null (i.e., regression dilution bias), whereas such error in an 

outcome variable widens the confidence intervals (i.e., reduces estimate precision)44. 

The Maastricht Study has implemented well-designed, standardized protocols in order 

to minimize misclassification and measurement error during data collection, handling, 

and analysis73. At the moment of analysis, for example, the first 24 hours of all CGM 

recordings were excluded because of insufficient calibration with SMBG values. 

Information bias related to continuous glucose monitoring-derived indices 

CGM is the gold-standard method for daily GV quantification29,30. Nevertheless, 

information bias may have affected the analyses with CGM-based indices. First, in 9.3% 

of the participants, the CGM device either did not record the full 7-day period or it was 

not worn for this complete period of time. In Chapter 2, we evaluated the minimal 
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number of days to reliably assess daily GV, so that we could take this into 

consideration for the chapters of part II. Second, 7.8% of participants presented with 

data gaps in their CGM recording, which commonly lasted for several hours. Data gaps 

during the day would most probably result in underestimation of daily GV, while data 

gaps during the night would cause the opposite. Third, the ‘catch-up’ participants 

(29.8%) have undergone CGM, on average, 2 years later than all their other 

measurements. Although the participants’ body weight and use of glucose-lowering 

medication, if applicable, had not materially changed in these 2 years, the CGM-

derived indices of the ‘catch-up’ participants are more prone to random measurement 

error because the CGM-assessed indices are used as if they had been measured 2 years 

prior.  

All the limitations outlined above are expected to have led to bias towards the null 

in the associations reported in part II44. We, therefore, excluded participants based on 

these three limitations as part of sensitivity analyses. Although exclusion due to data 

gaps or insufficient recording days generally increased the regression coefficients (e.g., 

associations with cf-PWV and ABI in Chapter 6), statistical significance was seldom 

altered, which may reflect a balanced trade-off between information bias and 

statistical power. The results after exclusion of ‘catch-up’ participants were less 

consistent. In addition to the bigger decrease in sample size, this could stem from the 

difference in GMS distribution after exclusion of ‘catch-up’ participants (i.e., smaller 

percentage of individuals with prediabetes and type 2 diabetes). In Chapter 7, which 

was written after Chapter 8, we instead opted to adjust the main analyses for the time 

interval between the ‘catch-up visit’ and all other measurements. 

The high overall adherence to the CGM study protocol, which required SMBG four 

times daily in order to ensure adequate CGM calibration, is expected to have led to 

lower measurement error. However, the fact that participants were not blinded to the 

SMBG values may have led to altered behavior (e.g., healthier dietary choices or stricter 

glucose control) during the week of recording. This could have led to an 

underestimation of daily GV and, thus, cause bias, especially if individuals with worse 

GMS were more likely to alter their behavior. However, such bias is not very probable, 

since the CGM-derived indices of later days were not materially lower than those of 

earlier days, regardless of GMS (Chapter 2).  

Last, there is larger relative error in the estimation of SD and CV than in that of 

MSG as a direct consequence of how they are calculated26. As higher random 

measurement error in the determinant is known to bias the regression estimate 

towards zero44, one would expect to observe a stronger association with MSG, even if 

MSG and SD are of equal pathophysiological importance26. Since the standardized 

regression coefficients were relatively equal in magnitude for the fully adjusted 

associations of SD and MSG with cf-PWV (Chapter 6), this might suggest that the 

relevance of daily GV is greater in the development of aortic stiffness than that of 
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MSG. It would be interesting to explore how MSG and SD are related to different 

outcomes after the measurement error of MSG is artificially increased. 

Information bias related to incremental glucose peak 

The analyses in which IGP was used as main determinant may have also been 

negatively influenced by measurement error. First, while we only calculated IGP in 

individuals of whom all seven OGTT time points were available for analysis, the actual 

IGP value may have been underestimated in the individuals with a glucose peak not 

exactly at one of the sampled time points. The chance of underestimation would 

probably be larger in individuals with a glucose peak between 60 and 90 minutes or 90 

and 120 minutes. This systematic error is expected to predominantly affect participants 

with prediabetes or type 2 diabetes, in whom the chance of a glucose peak after 1 hour 

is larger (Chapter 2). Underestimation of the main determinant in these generally less 

healthy participants may have led to overestimated associations. Second, IGP was 

calculated based on a single OGTT, which is known to have moderate reproducibility 

for GMS classification153. If the fasting and 2-hour post-load glucose values are 

moderately reproducible, the same could hold true for IGP. Due to this random 

measurement error, the regression results with IGP as main determinant may have 

been underestimated. Unfortunately, it was not possible to quantify bias resulting 

from the points addressed above with use of specific sensitivity analyses. 

Information bias related to glucose metabolism status and measures of hyperglycemia 

In The Maastricht Study, GMS was assessed with use of the gold-standard method (i.e., 

a standardized OGTT)77. Nevertheless, as described above, a single OGTT may 

misclassify GMS. Individuals classified with prediabetes based on their first OGTT are 

relatively more likely to receive a NGM classification based on their second OGTT153. In 

the prediabetes group, this may have led to underestimated results on, for example, 

the distribution of CGM-derived indices in Chapter 2 or the association with RNFL 

thickness in Chapter 7.  

In Chapter 7, we also used multiple continuous measures of glycemia as main 

determinants. FPG and 2-hour post-load glucose were assessed with a standard 

enzymatic hexokinase reference method and HbA1c was measured with ion-exchange 

high performance liquid chromatography73. All were measured only once and are, thus, 

susceptible to some degree of biological and analytical variability154. Skin 

autofluorescence was assessed with use of AGE Reader, a validated and reproducible 

device that estimates AGE accumulation in the skin of the forearm155,156. In case of skin 

autofluorescence, we used the mean of three consecutive measurements to reduce 

random measurement error.  



Chapter 9 

282 

Information bias related to the investigated outcomes 

Measurement error in the outcome variables may have caused information bias as 

well, which, if random, would reduce estimate precision, and correspondingly would 

impede statistical significance44.  

In Chapters 5 and 6, we investigated the association of daily GV with several 

vascular measurements. Aortic stiffness was determined with use of the gold-standard 

method (i.e., cf-PWV)84. Local carotid characteristics (e.g., cIMT, lumen diameter, wall 

distension) were assessed with validated ultrasonography techniques157,158. Both cf-

PWV and carotid properties were measured in triplicate and the median measurement 

was used to reduce random measurement error. Local carotid stiffness was evaluated 

with the carDC formula. Mean and pulsatile circumferential wall stress were based on 

the Lamé equation90,91. CarDC and measures of circumferential wall stress could be 

more prone to measurement error than cf-PWV and cIMT, as their calculation is based 

on formulas that incorporate multiple variables, which are all per se susceptible to 

measurement error. ABI was automatically determined based on simultaneous blood 

pressure measurements at both ankles and upper arms. We used the lowest ABI in our 

analyses and excluded individuals with an ABI above 1.4, as recommended by the 

American Heart Association88. 

In Chapter 5, microvascular function was assessed at two sites. First, retinal 

microvascular dilation in response to flicker light was measured with the Dynamic 

Vessel Analyzer and calculated automatically by the appurtenant software. Second, 

heat-induced skin hyperemic response was assessed with a laser-Doppler system 

equipped with a thermostatic probe. Although both are reproducible and valid 

measures of the microcirculation112,113, they were only performed once due to time 

constraints, which prevented us from reducing the effect of biological variability by, for 

example, averaging repeated measurements.  

In Chapter 7, RNFL thickness was assessed with use of OCT. The OCT software is 

known for its high intra- and interindividual reliability in the quantification of RNFL 

thickness (i.e., ICCs of 0.97 and 0.96, respectively)159. In approximately half of the 

participants, data on both eyes were available, which allowed us to average RNFL 

thickness in order to further reduce measurement error.  

In Chapter 8, we calculated three cognitive domain composite scores based on 

several validated neuropsychological tests160-163. Moreover, these cognitive domains 

were used to construct an overall cognitive performance composite score. Composite 

scores are commonly employed to group variables with conceptual or statistical 

overlap164. By using a composite score outcome instead of multiple outcomes, type I 

error rate can be controlled. In addition, by grouping several variables into a composite 

score, the influence of biological variability and, thus, of random measurement error 

are reduced. Indeed, the estimate of the association between IGP and overall cognitive 

performance was slightly more precise compared to the estimates of the associations 

between IGP and individual cognitive domains.  
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Confounding, overadjustment bias, and multicollinearity 

Confounding occurs when the ‘true’ association between main determinant and 

outcome is distorted by one or more extraneous factors (i.e., confounders)43. By 

definition, a confounder is a variable that is associated with the main determinant, can 

cause the outcome, and does not lie on the causal path between both. In the context of 

observational research, certain statistical methods (e.g., multiple linear regression) can 

be used to correct for confounding. By virtue of the extensive phenotyping approach of 

The Maastricht Study73, we were able to correct for a large array of potential 

confounders, which generally included demographics (i.e., age, sex, and educational 

level), CVD risk factors (e.g., blood pressure, lipid profile, and smoking habits), lifestyle 

factors (e.g., alcohol use, diet, and physical activity), and an average glycemic index 

(e.g., HbA1c, FPG, or MSG).  

Notwithstanding our efforts to address this form of bias by including the 

aforementioned potential confounders in the regression analyses, we cannot fully 

eliminate the presence of residual confounding. At the moment of analysis, certain 

potential confounders (e.g., markers of inflammation, therapy adherence, 

environmental factors) were not available in the study populations and could, thus, 

not be included in the regression models. Residual confounding may also have 

occurred due to misclassified or imperfectly measured confounders (i.e., information 

bias). Dietary intake, assessed by food frequency questionnaire, and physical activity, 

quantified with the CHAMPS questionnaire, may be more prone to inaccurate recall or 

even recall bias165-167. This could, in part, explain why the regression coefficients were, in 

general, not materially altered by additional adjustment for these lifestyle factors. 

Although adjustment for an extensive number of potential confounders is intended 

to reduce confounding bias, it may conversely cause overadjustment bias if the 

included variables are mediators or descendants of the outcome168. For example, 

urinary albumin excretion, as a proxy of generalized endothelial dysfunction, may both 

confound and mediate the association between daily GV and cognition169. Likewise, 

history of CVD and retinopathy might be viewed as confounders but should also be 

regarded as descendants of the outcome in the associations of daily GV with cf-PWV 

and RNFL thickness, respectively. To prevent overadjustment bias, we avoided inclusion 

of such variables in the main regression models and instead opted for exploring their 

effect in additional analyses. 

In specific situations, multivariable linear regression, which is an established 

method to correct for confounding, can cause statistical concern. Namely, 

multicollinearity can arise if a strong correlation is present between the main 

determinant and one or more confounders94,170,171. The statistical phenomenon follows 

from the fact that strongly correlated variables provide little unique information. 

Consequently, the regression coefficients for these variables are based on limited 

information as well. This can lead to unreliable regression estimates with regard to 

association strength, direction and precision. Research on consequences of CGM-based 
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daily GV is susceptible to negative effects of multicollinearity due to the well-known 

strong correlation between the main determinant (i.e., SD) and key confounder (i.e., 

MSG)26. Multicollinearity can be especially concerning in analyses with a small sample 

size, which generally holds true for studies with CGM because of its costliness and 

relative invasiveness26,172, or in case of a weak association between main determinant 

and outcome171, which is increasingly common for modern epidemiological research on 

more subtle risk factors173. Figure 9.2 illustrates the impact of these three conditions 

according to the conceptual depiction of the associations of daily GV indices with two 

cognitive domains (Chapter 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 9.2 Conceptual depiction of the associations of SD and MSG or IGP and HbA1c with 

executive function and attention (EFA, panels a and c) or information processing 
speed (IPS, panels b and d). More overlap between explanatory variables depicts a 
stronger correlation (panel ab vs. cd). More overlap of the explanatory variables with the 
outcome variable depicts a stronger association in the models before the other 
explanatory variable was added (panel ac vs. bd). Larger circles illustrate a larger sample 
size. Dark grey depicts the shared contribution of explanatory variables. Light grey 
represents the unique contribution of either explanatory variable upon which the 
regression coefficients are based. The larger the light grey areas are, the smaller the 
negative effects of multicollinearity. While in case of panel c, concern for multicollinearity 
would, thus, be the lowest (i.e., less strong correlation between explanatory variables, 
stronger association with outcome measure, and larger sample size), concern would be 
the greatest in case of panel b. Abbreviations: SD, standard deviation; MSG, mean sensor 
glucose; IGP, incremental glucose peak. 
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Although specific multicollinearity diagnostics, such as variance inflation factor (VIF), 

were not strikingly abnormal according to traditional cut-off values (i.e., VIF >5 or 10), 

previous studies have shown them to be insufficiently reliable94. In light of the 

aforementioned conditions, the opposite coefficient directions for SD and MSG with 

several outcome variables (e.g., ABI in Chapter 6, information processing speed in 

Chapter 8) indeed indicate the effects of multicollinearity. Hence, it is vital to report 

both the associations of SD and MSG with an outcome, as inspection of one only of the 

estimates can lead to very different conclusions. In Chapter 8, for example, prior to 

adjustment of the model with SD as main determinant for MSG, or vice versa, neither 

were associated with information processing speed. However, when added together, 

the associations of SD and MSG with information processing speed turned positive and 

negative, respectively. Furthermore, the regression estimates were, as could be 

predicted logically, almost exact opposites, which is biologically implausible. The larger 

measurement error of SD compared to MSG26, and the consequently larger relative 

regression dilution bias44, may explain why the regression estimate of SD turned 

negative in most instances. 

Common solutions to multicollinearity (e.g., leaving out strongly correlated 

variables, constructing a composite score)94,170 were not feasible in the context of our 

research questions. Although the construction of a ratio variable (i.e., coefficient of 

variation; CV) was, on the one hand, a viable strategy, it could, on the other hand, have 

intrinsically biased results174,175. CV was still moderately correlated with FPG and HbA1c 

(Chapter 2), which calls into question whether CV is fully MSG-adjusted. Hence, we 

investigated associations with CV as part of secondary or additional analyses. In 

addition, we repeated the main analyses using ridge regression. This L2-regularized 

form of linear regression is, amongst others, a valid statistical method to counter a 

degree of model instability caused by multicollinearity176. Ridge regression estimates 

are computed by combining the residual sum of squares and predefined coefficient 

penalization. By slightly biasing the regression coefficients, this method can strongly 

reduce inflated variances that arise when high multicollinearity exists. However, ridge 

regression was no panacea for the effects of multicollinearity either. The method is 

limited by the lack of consensus on the degree of penalization. Our levels of 

penalization were chosen pragmatically on the lambda required to reduce the VIF of 

the model with adjustment for MSG back to the VIF of the model without such 

adjustment (or halfway back). In some instances (e.g., ABI; Chapter 6), more 

pronounced penalization resulted in consistent association directions, which led us to 

believe that the effects of multicollinearity were indeed (partially) countered. However, 

in most situations the coefficients derived from ridge regression differed little from 

those derived from regular multiple linear regression. In these cases, it is unclear 

whether multicollinearity had little effect on the associations or whether it was 

insufficiently addressed, for example, because of too little penalization. 
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Selection bias and range restriction 

Our results may have been biased as a result of the procedures used for participant 

selection or due to non-random factors that affect study participation (i.e., selection 

bias)43. All main analyses were performed according to the complete-case analysis 

principle, which entails that participants were excluded from analysis if at least one 

variable (determinant, outcome, or confounder) is missing177. This method has the 

advantage of making the comparison of consecutive regression models clearer, since 

their sample sizes are the same. However, it, in addition to reducing statistical power 

of earlier models, may introduce selection bias in these models if participant exclusion 

due to missing confounders is non-random. We, therefore, consistently compared 

characteristics of in- and excluded individuals in order to establish whether missing 

values were random or systematic.  

Based on the aforementioned comparisons, missing values on most key variables 

were regarded as random. However, selection bias is probable in certain instances. 

First, several OGTT-derived indices –most importantly IGP– were systematically 

missing in participants with an OGTT contraindication (i.e., elevated plasma glucose, 

insulin use, or both). Use of IGP, thus, inherently caused range restriction because it 

could not be assessed in participants who are expected to have the greatest daily GV 

(i.e., those with an OGTT contraindication)178. These excluded individuals are also 

generally less healthy, which implicates that an important part of the outermost 

spectrum of determinant and outcome data is missing. This form of range restriction is 

expected to lead to underestimated associations between IGP and all investigated 

outcome variables178. The use of IGP as determinant also causes range restriction for 

HbA1c or FPG, which were used to adjust the associations of IGP with outcome 

measures. If the range restriction would be relatively larger for HbA1c and FPG, this 

could be to the advantage of IGP. 

The effects of range restriction were also observed in Part I of this thesis. In Chapter 

2, correlation coefficients of CGM-assessed glycemic indices with OGTT-derived indices 

and HbA1c were investigated for the total CGM study population and for different GMS 

strata. The stratified correlations were much weaker than the overall correlation for 

the total study population. In Chapter 3, we presented correlation coefficients between 

the actual and predicted glucose concentrations for the total study population and the 

individuals with type 2 diabetes of the validation dataset. As expected, the correlations 

were stronger in the total study population. 

In addition to causing a degree of measurement error (see above), the ‘catch-up’ 

visit procedure could have caused selection bias if, for example, less healthy individuals 

were less likely to return to The Maastricht Study to undergo CGM. Indeed, overall 

cognitive performance, memory function, and information processing speed were 

slightly worse in participants who were invited for but did not attend a ‘catch-up’ visit 

(Chapter 8). 
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Causal inference 

A cause can be defined as an antecedent event, condition or characteristic that was 

required for the disease to occur at the moment it did, given that all other conditions 

are fixed80. The temporality criterion of this definition can aid in establishing whether 

the determinant can indeed be the cause of the outcome or whether, in fact, the 

opposite (or both) is true. Since all studies in this thesis were cross-sectional by design, 

we were unable to rule out reverse causality for our findings on the potential 

consequences of daily GV (Part II). In Chapters 5 and 6, we theorize that greater daily GV 

causes aortic stiffening, which is consistent with prospective findings on type 2 

diabetes and measures of glycemia81,82. However, as greater arterial stiffness has been 

associated with a higher incidence of type 2 diabetes179, it could increase daily GV as 

well. In Chapters 7, we posit that both greater average glycaemia and daily GV provoke 

RNFL thinning. In addition, we believe that these associations may be bidirectional, as 

neurodegeneration can impair microvascular function and thus can lead to or 

aggravate hyperglycemia10. In Chapter 8, we presume that daily GV impairs cognitive 

performance. Conversely, worse cognitive performance may influence behavior (e.g., 

therapy adherence) and, thereby, could increase daily GV. Prospective studies on these 

potential consequences are needed to gain more insight into the causality of the 

associations of daily GV with aortic stiffness, neurodegeneration, and cognitive 

performance. 

Adjustment for multiple testing 

Adjustment for multiple testing refers to correction of the statistical significance 

threshold (i.e., alpha) based on the number of statistical comparisons made180. Because 

multiple main (primary and secondary) determinants were used per chapter (Part II), 

one could argue that adjustment for multiple testing would be required180. However, 

since the different indices of daily GV are conceptually and statistically related34,35, it 

would be overly strict to enforce a multiple testing adjustment based on this180. As 

multiple outcomes were used per chapter (Part II), it could again be argued that 

multiple testing adjustment is needed. However, the reflex to always correct for 

multiple comparisons is not per definition desirable180,181. Namely, it can lead to more 

mistakes in interpretation if data are actual observations on nature, which commonly 

holds true, rather than random numbers181. Furthermore, adjustment for multiple 

testing will increase the chance that possibly important findings will be missed (i.e., 

type 2 error). Especially in a more explorative setting, it is more preferable to risk 

examining leads that turn out to be untrue if that ensures that possibly important 

findings are not overlooked181. Because we have not adjusted for multiple comparisons 

in any of the chapters, we consistently underscore the importance of confirming our 

results (e.g., in prospective studies) in order to discriminate between bona fide and 

spurious findings.  
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Statistical power 

Statistical power, which refers to the number of participants that are required to avoid 

falsely rejecting the null hypothesis (i.e., type ΙΙ error)92, may have been an issue in part 

II of this thesis. Namely, in case of relatively modest effect sizes, which are particularly 

common in modern epidemiology173, large samples sizes are needed to provide 

sufficient statistical power92. However, due to costliness of CGM devices26 our study 

was limited to nearly 900 inclusions. Although this presently makes this 

subpopulation of The Maastricht Study one of the largest observational cohorts on 

CGM, statistical power may still have been inadequate. Namely, in multiple chapters, 

regression estimates were indicative of an association but failed to reach statistical 

significance (e.g., between SD and ABI in Chapter 6 and SD and RNFL thickness in 

Chapter 7). Although a power calculation is based on several simplifying assumptions, 

it can grant more insight into whether statistical power was sufficient92. For the 

purpose of this Summary and general discussion, I performed a post-hoc power 

calculation for the association between SD and RNFL thickness. Given the modest 

effect size (Cohen’s f2=0.0046), alpha of 0.05, and beta of 0.20, a sample size of just 

over 1,700 participants would be required to reach sufficient statistical power. As such, 

the current sample size of 622 participants only provided 39% power to avoid type II 

error. The CGM-based findings of this thesis are nevertheless useful, as regression 

estimates and confidence intervals provide valuable information, regardless of 

statistical significance182. 

External validity 

External validity reflects the applicability or generalizability of our findings to 

individuals who are not part of the study or source population43. All our findings were 

based on a relatively large, well-characterized population of 40- to 75-year-old, mostly 

Caucasian individuals who all had access to high-quality health care and were 

predominately classified with either NGM, prediabetes, or type 2 diabetes. Strictly 

speaking, the generalizability of our results to other ethnicities, age groups, or other 

types of diabetes –most importantly type 1 diabetes– would require further study. 

However, based on the general pathophysiology of hyperglycemia and its 

complications99, we expect our findings on the potential consequences of daily GV to 

be largely applicable to other populations43. Indeed, daily GV was also observed to be 

associated with, for example, cognitive performance in Chinese elderly individuals42.  

Conclusions and future directions 

In conclusion, this thesis provides means to improve daily GV measurement and CGM, 

both in clinical practice and scientific studies, by assessing recording period reliability, 

exploring machine-learning based glucose prediction, establishing reference values for 

CGM-derived indices, and evaluating the legitimacy of novel indices. This thesis also 



 Summary and general discussion 

289 

9 

grants more insight into whether daily GV should be regarded as an independent 

determinant of diabetes-associated complications. Such a role is most convincing for 

greater aortic stiffness (i.e., higher cf-PWV), neurodegeneration (i.e., lower RNFL 

thickness), and worse overall cognitive performance (specifically executive function 

and attention), as the associations with these measures persisted after adjustment for 

all potential confounders, including average glycemia, and were consistent for OGTT- 

and CGM-based indices of daily GV. The impact of this thesis’ findings is more 

extensively discussed in the next chapter (See Scientific and societal impact). 

While this thesis aimed to fully address the methodological limitations of prior 

studies in the field, certain aspects could still be improved in future studies. As the 

performed studies were all cross-sectional by design, prospective studies are required 

in order to rule out reverse causality. Further, although the study populations used in 

this thesis were relatively large compared to most previous studies, insufficient 

statistical power may still have affected the associations. Especially in light of the 

observed effects of multicollinearity on estimate strength, direction and precision, 

larger sample sizes of approximately 2,000 participants are needed to draw more 

definitive conclusions on whether daily GV could also be an independent determinant 

of microvascular dysfunction, atherosclerosis, and worse performance on other 

cognitive domains. 

Prospective confirmation of our findings would further justify studying whether 

targeted lowering of daily GV can improve clinical outcomes. In that regard, it would be 

important to comprehensively examine the determinants of daily GV as well as their 

relative contribution. Beta cell function, and—to a lesser extent—diet and physical 

activity are expected to be key determinants78,183. Further, certain types of glucose-

lowering drugs or specific therapeutic regimens may have different effects on daily GV. 

For example, medication that predominantly reduces postprandial glucose excursions 

(e.g., incretin-modulating drugs) may improve daily GV more than those that mainly 

improve insulin sensitivity78. In addition, increased usage of CGM, in particular of flash 

glucose monitoring devices, in combination with reporting of intuitive metrics such as 

TIR are expected to further optimize therapy and adherence31,36. In case of near or 

complete loss of beta cell function, closed-loop insulin delivery systems are probably 

the most effective way to safely reduce daily GV184.  
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This chapter reflects on the scientific and societal impact of this thesis by identifying—

 in the context of the research field and current clinical practice—the different short- 

and long-term contributions of its findings. 

Research field and main objectives of this thesis 
Diabetes mellitus is a metabolic disease that is characterized by elevated blood glucose 

values1. At present, approximately 463 million individuals are affected by diabetes 

worldwide; a figure that is expected to rise to 700 million by 20452,3. This is problematic 

because diabetes lowers life expectancy4-6 and strongly increases the chances of 

several diseases, including cardiovascular disease7, eye, kidney, and nerve disease8,9, 

and dementia10. More and more studies show that having prediabetes, which is the 

stage between normal glucose metabolism and diabetes, is also unhealthy9-12. This is 

concerning because the number of individuals with prediabetes is increasing 

worldwide as well13,14. 

Diabetes and its related diseases have a negative effect on quality of life15 and 

represent a large share of the global health spending16,17. Prevention of these diseases 

will, thus, benefit the individual as well as society. However, this requires knowledge of 

the ways through which diabetes and prediabetes can cause disease. While decades of 

stellar research have led to great insights, and consequently have improved treatment 

and prevention18, much is still unclear. Relatively recently, daily glucose fluctuations, 

also known as daily glucose variability, were suggested to be harmful19. Hence, a main 

objective of this thesis was to study whether daily glucose variability is indeed related 

to cardiovascular disease, eye, kidney, and nerve disease, and cognitive decline. 

At the start of this century, a new device was introduced to improve diabetes care20. 

This device enables continuous glucose monitoring (CGM) and, thus, is able to record 

hundreds of glucose values per day. This allows for detailed study of daily glucose 

patterns. Hence, it is a device that is particularly suited to assess the degree of daily 

glucose variability21. Partly because of this, it is increasingly being used in scientific 

research and clinical practice. Studies have shown that use of CGM can improve 

diabetes care20, and that the specific values calculated with CGM, in particular the 

intuitive index time in range, are important to individuals with diabetes22. However, 

several important aspects of CGM and the measurement of daily glucose variability 

have been insufficiently studied. Therefore, a main objective of this thesis was to do so 

in order to improve both future studies and clinical practice. 

Relevance of the key findings 

Continuous glucose monitoring and daily glucose variability measurement 

In this thesis, we studied how many days are needed to get a reliable CGM recording. 

This is relevant because CGM is quite expensive and undergoing it can be a burden23, 
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especially when daily fingerpricks are required to calibrate the device20. Regarding 

short-term scientific value, knowledge of the minimum number of days needed can 

prevent both too short or too long recording periods, which would enhance 

measurement quality and limit participant strain in future studies, respectively. This 

information may also be used to reduce such burden in the clinical care of individuals 

with diabetes who intermittently wear a CGM. We believe that these findings can be 

used to improve the next International Consensus Report on Clinical Targets for CGM 

Data Interpretation21. 

CGM is also used in closed-loop insulin delivery systems, which can dose insulin 

based on the glucose values measured with CGM24,25. These systems are a very 

promising option to improve diabetes care in the near future26-29. These devices may be 

improved by addressing certain inherent shortcomings related to CGM, such as sensor 

delay and brief periods of sensor malfunction24, 30, 31. In this thesis, we developed a 

model to predict future glucose values in order to improve the CGM part of closed-loop 

insulin delivery systems.  Our model was able to accurately and safely predict glucose 

values at 15- and 60-minute intervals, which could be useful in case of short periods of 

CGM malfunction. Our aim is to explore the possibility of further optimizing these 

prediction models in cooperation with companies that are specialized in diabetes care. 

A large number of values can be measured with CGM, such as the average glucose 

and degree of daily glucose variability23. In this thesis, we studied, using data of 

participants with normal glucose metabolism, what the normal ranges of these values 

are. Interestingly, the daily glucose variability target that is currently recommended by 

the International Consensus Report lies much higher than the normal values found21. 

Future research should assess whether the target values should be lowered to more 

reflect the normal values by establishing whether daily glucose variability is harmful, 

and if so, at what point it becomes too damaging of unsafe. 

In this thesis, we also investigated new ways to measure the amount of daily 

glucose variability. First, we found that the ‘glucotype’32, which garnered substantial 

scientific attention33-36, did not live up to the expectation when used in other studies 

than the original one. Critical assessment of reproducibility is an important but often 

overlooked aspect of science37. Second, we showed that the incremental glucose peak 

during an oral glucose tolerance test (OGTT) as well as the 1-hour OGTT values can be 

used as measures of daily glucose variability, albeit predominantly in a research 

setting. This has short-term scientific value because studies that have such data 

available can immediately start contributing to the study of daily glucose variability. In 

addition, it puts the results of previous studies on the 1-hour OGTT value in a new 

light38. 

In this thesis, we also extensively reflected on the methods and statistics used in all 

of its chapters with the aim of providing insights that can help improve future 

research. For example, we showed that researchers should be especially on their guard 

for the statistical phenomenon called multicollinearity, which occurs due to a strong 
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relationship between two or more measures39, when studying the consequences of 

daily glucose variability. 

The consequences of daily glucose variability 

In this thesis, we have studied whether daily glucose variability is associated with 

several measures that precede actual diseases. We show that higher glucose variability 

is related to higher stiffness of the aorta, which reflects cardiovascular disease and 

mortality, to lower thickness of the nerves in the eye, which reflects 

neurodegeneration, and to worse cognitive performance, which reflects cognitive 

decline. Our findings thereby add to growing evidence that lowering of daily glucose 

variability (e.g., through lifestyle interventions or specific therapeutic regimens) could 

be important to prevent disease40,41. However, it is too early to reach such definite 

conclusions based on our findings. Namely, we assessed precursors of disease rather 

than actual diseases. In addition, we studied the relationships at one point in time, 

which makes it difficult to establish cause and effect42. As such, the short-term merit of 

our research lies in the fact that we provide directions for future research on the 

consequences of daily glucose variability. In the long run—especially if studies 

convincingly show that daily glucose variability causes future disease and that its 

treatment can prevent such disease—we hope to be able to state that we have made a 

meaningful contribution to diabetes care with our initial studies on the effects of daily 

glucose variability. 

Other key findings 

In this thesis, we additionally found that prediabetes, diabetes, and measures of 

average glucose are also related to thickness of the nerves in the eye. This can have 

several implications for clinical practice. Measurement of the nerves in the eye could 

help select individuals who are at risk for developing eye or nerve disease. This would 

be feasible clinically because such measurement is non-invasive, inexpensive, and 

easy43. In addition, it further indicates early lowering of blood glucose values, possibly 

already in prediabetes, is key in the early prevention of eye and nerve disease. 

Knowledge dissemination to target groups 
The impact of this thesis is primarily scientific. Namely, we report multiple ways to 

improve the quality of scientific research into CGM and daily glucose variability. As 

such, the scientific community is the main target group of this thesis. Publication of 

the results in scientific journals is one of the main ways to inform this community. In 

addition, the results of this thesis have been presented at several national and 

international conferences (see Curriculum vitae). As a result, it seems that these 

findings are starting to get noticed. For example, the incremental glucose peak has 
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recently received attention from one of the experts in the glucose variability field40. 

Further, our findings on CGM recording period reliability have been used by other 

authors to justify their recording period length44. In the end, the aim of scientific 

research is to improve society. If this thesis’ suggestions on research quality continue 

to be applied in the coming years, this thesis will indirectly, positively impact society in 

the near future. 

To a lesser extent, this thesis also has a direct societal impact, predominantly 

related to healthcare. Namely, certain key findings can have short- and long-term 

impact on diabetes care, such as reducing CGM burden and altering future therapy. As 

such, individuals with diabetes and prediabetes, as well as their relatives, are a target 

group of this thesis. While most of the findings of the current thesis are insufficient to 

alter the diabetes care of tomorrow, they do make a contribution to a field that can 

potentially improve the lives of a very large group of people (approximately 700 million 

in 2045)3. At present, it is debatable whether this target group would profit from being 

extensively updated on the current results. Regardless, the findings of this thesis have 

been presented in layman’s terms on two separate occasions as part of the popular 

public symposium that is organized annually for the interested participants of The 

Maastricht Study. 
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De methodologie en gevolgen van dagelijkse 

glucosevariabiliteit 

Een zinvolle aanvulling op het gemiddelde? 

Introductie 

Diabetes mellitus, ook wel bekend als suikerziekte, treft op dit moment wereldwijd 

circa 463 miljoen mensen. Aangezien voorspeld wordt dat dit aantal de komende jaren 

nog sterk zal toenemen, gaat men ervan uit dat suikerziekte een nog groter 

gezondheidsprobleem zal gaan vormen. Onder diabetes worden verschillende 

stofwisselingsziekten geschaard die allen gekenmerkt worden door verhoogde 

suikerwaarden in het bloed, waarvan diabetes type 1 (5-10%) en diabetes type 2 

(90-95%) het vaakst voorkomen. Diabetes verhoogt niet alleen het risico op vroegtijdig 

overlijden, maar maakt aangedane personen ook vatbaarder voor verscheidene 

chronische aandoeningen, waaronder hart- en vaatziekten, dementie en de klassieke 

complicaties aan het netvlies (retinopathie), de zenuwen (neuropathie) en nieren 

(nefropathie). Toenemend bewijs laat zien dat zelfs al het hebben van licht verhoogde 

bloedsuikerconcentraties (prediabetes) een verhoogd risico op dergelijke ziekten geeft. 

Diabetes an sich heeft, evenals de daaraan gerelateerde aandoeningen, duidelijke 

negatieve gevolgen op individueel niveau door verlies van kwaliteit van leven. 

Bovendien ondervindt de maatschappij schade, onder meer door de grote economische 

effecten van diabetes. De behandeling van diabetes, die doorgaans zowel 

leefstijlinterventies als medicatie omvat, is in het bijzonderder gericht op preventie van 

het optreden of verergeren van complicaties. Het verlagen van bloedsuikerwaarden is 

een van de belangrijkste manieren om dit te bereiken. Het HbA1c-gehalte in het bloed is 

al tientallen jaren de eerste keus om een indruk te krijgen van de gemiddelde 

bloedsuikerspiegel van de afgelopen twaalf weken. Het geeft echter onvoldoende 

informatie over de schommelingen in bloedsuiker (glucose) over de dag. 

Deze bloedsuikerschommelingen, ook wel dagelijkse glucosevariabiliteit genoemd, 

zouden een beïnvloedbare risicofactor kunnen zijn voor bovengenoemde complicaties, 

onafhankelijk van de gemiddelde bloedsuikerwaarde. Aangezien het nauwkeurig 

meten van dagelijkse glucosevariabiliteit tot voor kort op grote schaal zeer beperkt 

mogelijk was, is er op dit moment een gebrek aan grote en degelijk uitgevoerde studies 

die de mogelijke gevolgen van dagelijkse glucosevariabiliteit onderzocht hebben. Met 

dit proefschrift streef ik ernaar om het onderzoek naar de mogelijke gevolgen van 

glucosevariabiliteit uit te breiden en aspireer ik om specifieke methodologische 

aspecten van het meten van dagelijkse glucosevariabiliteit en het middel dat daar 

normaliter voor gebruikt wordt, continue glucosemonitoring (CGM), onder de loep te 

nemen. Dit met het doel om op het gebied van diabeteszorg zowel de huidige klinische 

praktijk als toekomstig onderzoek te verbeteren.  
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Belangrijkste bevindingen 

Methodologie van continue glucosemonitoring en het meten van dagelijkse 

glucosevariabiliteit 

In de diabeteszorg wordt CGM in toenemende mate toegepast. De meeste van zulke 

monitors zijn in staat om minstens één week lang om de vijf minuten glucosewaardes 

te meten, waardoor een grote hoeveelheid gegevens over dagelijkse 

bloedsuikerprofielen verzameld kan worden. Deze bloedsuikergegevens kunnen 

vervolgens gebruikt worden om een aanzienlijk aantal indices te berekenen. In dit 

proefschrift is vooral gewerkt met de volgende indices: gemiddelde sensorglucose, 

standaarddeviatie, variatiecoëfficiënt en ‘time in range’ (TIR). Van deze indices zijn 

standaarddeviatie en variatiecoëfficiënt de meest gebruikte maten om dagelijkse 

glucosevariabiliteit uit de drukken. TIR is een relatief nieuwe index die het percentage 

van glucosewaarden binnen het streefgebied van 3,9 en 10 mmol/l weergeeft. TIR 

wordt bepaald door de gemiddelde glucosewaardes en de mate van dagelijkse 

glucosevariabiliteit. 

In hoofdstuk 2 hebben we in De Maastricht Studie onderzocht hoeveel dagen er 

nodig zijn om met CGM voldoende betrouwbaar de gemiddelde sensorglucose, 

standaarddeviatie en variatiecoëfficiënt te meten bij mensen met een normale 

suikerstofwisseling, prediabetes of diabetes type 2. Voorheen was dit namelijk alleen 

voor personen met diabetes type 1 onderzocht. Wij hebben gevonden dat afhankelijk 

van de gekozen index en de suikerstofwisselingstatus het benodigde aantal dagen 

neerkomt op één tot drie. Dit is een relevante bevinding vanuit het specifieke oogpunt 

van wetenschappelijke studies, omdat het laat zien dat het valide is om de 

meetperiode voor personen met een normale suikerstofwisseling, prediabetes of 

diabetes type 2 te verkorten tot drie functionele dagen om zo de last van 

studiedeelname te verlichten zonder afbreuk te doen aan de betrouwbaarheid van de 

meting. 

In hoofdstuk 2 hebben we tevens referentiewaarden vastgesteld voor de 

gemiddelde sensorglucose (5,03 - 6,69 mmol/l), standaarddeviatie (0,44 - 1,37 mmol/l) 

en variatiecoëfficiënt (7,74 - 22,45%) aan de hand van een groep deelnemers van De 

Maastricht Studie die allen een normale suikerstofwisseling hadden. De 

referentiewaarden voor deze indices waren tot nu toe zeer beperkt onderzocht bij 

personen zonder diabetes. 

In hoofdstuk 2 hebben we verder onderzocht of indices die het bloedsuikerprofiel 

tijdens een orale glucosetolerantietest (OGTT) beschrijven kunnen worden gebruikt om 

dagelijkse glucosevariabiliteit te kwantificeren. We hebben laten zien dat de 

incrementele glucosepiek (IGP), die wordt berekend door de nuchtere glucosewaarde 

af te trekken van de hoogste bloedsuikerwaarde tijdens de OGTT, een valide index van 

dagelijkse glucosevariabiliteit is en tevens de voorkeur verdient boven de absolute 

glucosepiekwaarde en de 1-uursglucosewaarde. Deze bevinding is met name relevant 
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voor onderzoeken die wel over OGTT- maar niet over CGM-data beschikken. Hoewel er 

in het geval van De Maastricht Studie wel CGM-gegevens verzameld zijn, heeft IGP als 

duidelijk voordeel dat deze waarden beschikbaar zijn voor een aanzienlijk groter aantal 

deelnemers (zie De gevolgen van dagelijkse glucosevariabiliteit).  

In hoofdstuk 3 hebben we onderzocht of op machine learning gebaseerde 

glucosewaardevoorspellingsmodellen gebruikt kunnen worden om bepaalde aspecten 

van de kunstmatige alvleesklier te verbeteren. De kunstmatige alvleesklier is een 

medisch hulpmiddel dat CGM, insulinepomp en controlealgoritme combineert om 

automatisch de bloedglucosespiegels te reguleren. De verbeterpunten die wij 

streefden aan te pakken zijn de circa 10 minuten die de glucosesensor op de 

suikerwaarden in het bloed achterloopt en de korte perioden van sensorstoring. We 

hebben 1,4 miljoen glucosedatapunten van deelnemers van De Maastricht Studie 

benut om te laten zien dat een met machine learning getraind model dat slechts 30 

minuten aan voorafgaande CGM-gegevens gebruikt in staat is om nauwkeurig 15 en 60 

minuten vooruit te voorspellen. Zo was meer dan 98% van de voorspellingen bij 

personen met diabetes type 2 klinisch zeer veilig. Ons voorspellingsmodel presteerde 

bovendien beter dan het model op basis van de grootste studie bij personen met 

diabetes type 2 tot nu toe.  

In hoofdstuk 3 hebben we verder onderzocht of ons voorspellingsmodel tevens 

bruikbaar was voor personen met diabetes type 1, aangezien zij op dit moment de 

voornaamste doelgroep voor de kunstmatige alvleesklier zijn en in het algemeen 

grotere, minder voorspelbare dagelijkse bloedsuikerschommelingen hebben. Hiervoor 

hebben we de openbaar beschikbare OhioT1DM-dataset gebruikt, die vaak wordt 

aangewend voor de evaluatie van modelprestaties. Hoewel we zagen dat onze 

modellen goed presteerden in mensen met diabetes type 1, was de prestatie wel 

minder goed dan voor de studiepopulatie van De Maastricht Studie. Desalniettemin 

hadden de modellen voldoende klinische veiligheid en presteerden ze net zo goed als 

de meest recente onderzoeken in het veld. We verwachten dat verdere technische 

optimalisatie van onze modellen in combinatie met een grotere populatie van 

individuen met diabetes type 1 de nauwkeurigheid en veiligheid nog verder zal 

verbeteren.  

In hoofdstuk 3 hebben we aanvullend onderzocht of de bloedsuikervoorspelling kan 

worden verbeterd door bewegingssensorgegevens aan de CGM-data toe te voegen. 

Het is namelijk bekend dat fysieke activiteit de bloedsuikerwaarden kan beïnvloeden. 

Onze modellen werden slechts in zeer geringe mate verbeterd door de informatie die 

de bewegingssensor bijdroeg, wat voor een deel verklaard kan worden door de reeds 

hoge accuratesse van de basale modellen. 

In hoofdstuk 4 hebben we, gebruik makende van gegevens van deelnemers uit De 

Maastricht Studie en de Deense PRE-D Trial, geëvalueerd wat de validiteit en 

generaliseerbaarheid zijn van het recent gepropageerde ‘glucotype’ als een CGM-index 

van dagelijkse glucosevariabiliteit. We toonden aan dat de verdeling van de drie 
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glucotypes (lage, matige of ernstige variabiliteit) waargenomen in de originele studie 

slecht generaliseert naar andere studiepopulaties. Bovendien hebben we aangetoond 

dat de meeste deelnemers een groot deel van de tijd doorbrengen in andere 

glucotypes dan het glucotype dat hun primair is toegewezen. Het belangrijkste is dat 

we, met behulp van gegevens van de bovengenoemde cohorten en de originele studie, 

hebben vastgesteld dat de classificatie van glucotypes bijna volledig wordt bepaald 

door gemiddelde sensorglucose. Daarmee betwisten we de bewering van de originele 

auteurs dat het glucotype een 'allesomvattendere maat is voor het patroon van 

bloedsuikerfluctuaties dan de standaard methoden die momenteel worden gebruikt'. 

De mogelijke gevolgen van dagelijkse glucosevariabiliteit 

Dagelijkse glucosevariabiliteit werd vijftien jaar geleden geopperd als een 

onafhankelijke en potentieel beïnvloedbare risicofactor voor met diabetes 

samenhangende complicaties. Sindsdien heeft een relatief klein aantal onderzoeken 

onderzocht of dit het geval is voor hart- en vaatziekten, cognitieve achteruitgang en 

schade aan de allerkleinste bloedvaten en zenuwen. Het merendeel van deze 

onderzoeken heeft qua studieopzet duidelijk verbeterpunten. Deze betreffen onder 

meer de grootte van de onderzoekspopulaties (kleinere studies geven grotere kans op 

toevalstreffers, maar ook op het missen van relevante verbanden), het meenemen van 

specifieke risicofactoren in de analyses (het weglaten van belangrijke risicofactoren 

kan het onderzochte verband verstoren) en het meten van dagelijkse 

glucosevariabiliteit (weinig precies meten geeft zwakkere verbanden). De hiervoor 

genoemde beperkingen zijn overigens wel begrijpelijk als men bedenkt dat het tot voor 

kort een uitdaging was om op grote schaal CGM-metingen uit te voeren, gedeeltelijk 

vanwege de apparatuurskosten en deelnemerbelasting. Logischerwijs volgt hieruit dat 

studies die deelnemers niet op één vast moment bestudeerd hebben (cross-sectioneel 

onderzoek), maar over langere tijd opgevolgd hebben (prospectief onderzoek) nog 

schaarser zijn. 

In dit proefschrift hebben we, in een grote, goed gekarakteriseerde onderzoeks-

populatie (De Maastricht Studie), de cross-sectionele verbanden van dagelijkse 

glucosevariabiliteit, gemeten met CGM en OGTT, met meerdere ‘voorlopers’ van de 

bovengenoemde ziekten bestudeerd. Stijfheid van de grote lichaamsslagader (aorta) 

wordt bijvoorbeeld als een relevante voorloper van hart- en vaatziekten gezien en 

eerdere onderzoeken hebben laten zien dat de mate ervan ook samenhangt met de 

kans op overlijden. De hiervoor beschreven benadering heeft bepaalde voordelen. Zo 

worden verbanden eerder aangetoond als gebruik wordt gemaakt van continue (bijv. 

mate van aortastijfheid) in plaats van dichotome (bijv. hartinfarct) uitkomstmaten. 

Ook kan de benadering inzicht verschaffen in de onderliggende biologische processen. 

Het heeft echter ook bepaalde nadelen. Zo is het klinische belang veel duidelijker voor 

de verbanden met een ongunstige uitkomstmaat (bijv. hartinfarct) dan met voorlopers 
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ervan (bijv. mate van aortastijfheid). Aanvullend belemmert het cross-sectionele 

ontwerp van onze studies het inzicht in de oorzakelijkheid van de verbanden. 

In hoofdstukken 5 en 6 hebben wij dit onderzocht voor verschillende uitkomst-

maten die als voorlopers van hart- en vaatziekten worden beschouwd. Wij hebben 

laten zien dat grotere dagelijkse glucosevariabiliteit (uitgedrukt als standaarddeviatie, 

variatiecoëfficiënt en IGP) en lagere TIR consistent samenhangen zijn met grotere 

aortastijfheid, onafhankelijk van demografische aspecten, cardiovasculaire 

risicofactoren en levensstijlfactoren. Dit kan erop wijzen dat dagelijkse glucose-

variabiliteit een onafhankelijke risicofactor is voor hart- en vaatziekten. In tegenstelling 

tot de aortastijfheidsbevindingen, werden er geen consistente verbanden gevonden 

tussen dagelijkse glucosevariabiliteit en stijfheid, wanddikte en wandstress van de 

halsslagader. In hoofdstuk 6 worden mogelijk aanwijzingen gezien voor een verband 

tussen hogere dagelijkse glucosevariabiliteit en een lagere enkel-arm-index (slechtere 

slagaderlijke doorbloeding van de benen ten gevolge van slagaderverkalking). Het 

deelnemersaantal van ca. 800 personen was echter niet hoog genoeg om een toevallig 

verband te verwerpen. 

In hoofdstukken 5 en 7 hebben wij de verbanden onderzocht tussen dagelijkse 

glucosevariabiliteit en de allerkleinste bloedvaten en zenuwen. In hoofdstuk 5 hebben 

wij geen verbanden gevonden tussen dagelijkse glucosevariabiliteit en de functie van 

de allerkleinste bloedvaten in het oog en in de huid. In hoofdstuk 7 hebben wij wel een 

consistent en onafhankelijk verband gevonden tussen hogere dagelijkse 

glucosevariabiliteit en lagere zenuwlaagdikte in het netvlies. Dit laatste kan erop 

wijzen dat dagelijkse glucosevariabiliteit een risicofactor is voor neurodegeneratie en 

daarmee ook voor retinopathie en neuropathie. In hoofdstuk 7 is tevens gevonden dat 

suikerstofwisselingsstatus en maten van gemiddelde glykemie samenhangen met de 

zenuwlaagdikte in het netvlies. 

In hoofdstuk 8 hebben wij het verband onderzocht tussen dagelijkse 

glucosevariabiliteit en het denkvermogen, beoordeeld met verschillende 

neuropsychologische testen. In dit hoofdstuk hebben wij in een groep van ruim 3000 

deelnemers consistente verbanden gevonden tussen hogere IGP-waarden en lagere 

score op het algehele denkvermogen en het specifieke domein ‘executief functioneren 

en aandacht’ (de hogere controlefuncties van de hersenen), maar niet op de domeinen 

‘geheugen’ en ‘informatieverwerkingssnelheid’. Dit kan erop wijzen dat dagelijkse 

glucosevariabiliteit een onafhankelijke risicofactor is voor dementie. In de kleinere 

CGM-onderzoeksgroep (ca. 800 deelnemers) zijn er echter geen duidelijk verbanden 

gevonden tussen dagelijkse glucosevariabiliteit en denkvermogen, hoewel er wel een 

onafhankelijk verband werd gevonden voor lagere TIR en slechtere scores op ‘executief 

functioneren en aandacht’. 
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Conclusie 

Concluderend biedt dit proefschrift verschillende aangrijpingspunten om het meten 

van dagelijkse glucosevariabiliteit (bij voorkeur met CGM) te verbeteren, niet alleen in 

wetenschappelijke studies, maar ook in de klinische praktijk. Dit door de 

betrouwbaarheid van registratieperiodes te evalueren, door op machinaal leren 

gebaseerde glucosevoorspellingsmodellen te onderzoeken, referentiewaarden voor 

CGM-afgeleide indices vast te stellen en de legitimiteit van nieuwe glucose-

variabiliteitsmaten te beoordelen. Dit proefschrift geeft ook meer inzicht in de vraag of 

dagelijkse glucosevariabiliteit als onafhankelijke risicofactor van diabetescomplicaties 

kan worden beschouwd. Een dergelijke rol is het meest overtuigend voor grotere 

aortastijfheid, neurodegeneratie en slechtere cognitieve prestaties, aangezien de 

verbanden met deze uitkomsten overeind bleven na het meenemen van verscheidene 

potentieel verstorende factoren, waaronder leeftijd, geslacht, cardiovasculaire 

risicofactoren en gemiddelde glykemie, en consistent waren voor verschillende indices 

van dagelijkse glucosevariabiliteit.  

Hoewel dit proefschrift erop gericht was om methodologische beperkingen van 

eerdere studies in het veld te ondervangen, kunnen bepaalde aspecten in de toekomst 

nog verder verbeterd worden. Aangezien de uitgevoerde onderzoeken allemaal cross-

sectioneel waren, zijn prospectieve onderzoeken nodig om meer inzicht te krijgen in 

oorzaak en gevolg. Hoewel de deelnemersaantallen relatief groot waren in vergelijking 

met de meeste eerdere onderzoeken, zijn er toch nog grotere aantallen nodig om 

definitievere conclusies te trekken over de vraag of dagelijkse glucosevariabiliteit ook 

een onafhankelijke determinant zou kunnen zijn van onder andere slagaderverkalking 

en slechtere prestaties op andere domeinen van het denkvermogen. 

Als onze bevindingen met prospectief onderzoek bevestigd worden, zou dit studies 

die zich richten op de gunstige effecten van gerichte verlaging van dagelijkse 

glucosevariabiliteit verder rechtvaardigen. In dat opzicht zou het relevant zijn om te 

onderzoeken welke factoren dagelijkse glucosevariabiliteit bepalen en wat hun 

relatieve bijdrage is. Alvleesklierfunctie, voeding en fysieke activiteit zullen naar 

verwachting belangrijke factoren zijn. Verder kunnen bepaalde soorten 

bloedsuikerverlagende medicijnen of specifieke therapeutische regimes verschillende 

effecten hebben op dagelijkse glucosevariabiliteit. Bovendien wordt verwacht dat een 

toenemend gebruik van CGM, met name van apparaten die de patiënt in een 

oogopslag de glucosewaarde tonen (flash glucose monitoring), en rapportage van 

intuïtieve indices als TIR, de behandeling en therapietrouw verder zullen optimaliseren. 

In het geval van bijna of volledig verlies van alvleesklierfunctie, is de kunstmatige 

alvleesklier waarschijnlijk de effectiefste manier om dagelijkse glucosevariabiliteit 

veilig te verminderen. 
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Dankwoord 

Het is volbracht, mijn proefschrift is klaar! Alle hoofdstukken staan in inkt op papier, 

omgeven door een strak ontworpen cover. Mijn promotietraject was een leerzame, 

vormende en veelbewogen periode die gekenmerkt werd door hard werken en erg fijne 

collegialiteit. Als allerlaatste heb ik dit dankwoord, misschien wel het vitaalste 

onderdeel van het proefschrift, geschreven. Met het zetten van deze afsluitende 

punten en komma’s wil ik graag mijn collega’s, vrienden en familie hartelijk bedanken 

voor hun belangrijke bijdrages aan de totstandkoming van dit proefschrift. 

 

Om te beginnen wil ik mijn grote dank uitspreken aan de duizenden deelnemers van 

De Maastricht Studie, in het bijzonder aan de 900 proefpersonen die de continue 

glucosemonitor hebben willen dragen. Zonder de wetenschappelijke inzet en interesse 

van de studieparticipanten had dit proefschrift niet kunnen bestaan. 

 

Vervolgens wil ik mijn promotieteam hartelijk bedanken voor het van begin af aan in 

mij gestelde vertrouwen en voor de zeer fijne en persoonlijke begeleiding van mijn 

onderzoek.  

 Mijn eerste promotor, prof.dr. C.D.A. Stehouwer, beste Coen. Er is al veel geschreven 

over je kritische blik, scherpe analytische vaardigheden en streven naar perfectie, 

karakterkenmerken die ik alleen maar beamen kan. Ook ik ben zeer onder de indruk 

van de snelheid waarmee je op mails en manuscripten reageert. Tijdens 

voortgangsgesprekken en schrijfsessies, maar zeker ook op basis van je geschreven 

commentaar, heb ik veel van je geleerd, zowel over de algehele structuur van een 

manuscript alsook over de specifieke grammaticale regels en taalnuances die het 

geheel naar een hoger niveau kunnen tillen. Ik wil afsluitend een paar aspecten 

benoemen die ik in andere dankwoorden onderbelicht zie: je gevoel voor humor en het 

grote verantwoordelijkheidsgevoel voor je werknemers. 

 Mijn tweede promotor, prof.dr. M.C.G.J. Brouwers, beste Martijn. Mijn eerste 

onderzoekservaringen heb ik bij jou opgedaan toen ik met mijn wetenschapsstage 

aansloot bij de HFI-studie van Nynke. Tijdens deze stage bood je me de gouden kans 

om te solliciteren op een nieuwe promotieplek bij De Maastricht Studie. Toen ik 

hiermee in 2016 begon, ontbrak de welverdiende ‘prof.’ nog in je rij met titels en was je 

dus nog ‘slechts’ mijn copromotor. Onze wekelijkse werkbesprekingen vormden de 

eerste instructieve gelegenheden om nieuwe projecten, data-aanvragen, analyses, 

resultaten en manuscripten te bediscussiëren. Ik heb veel respect voor je ambitie, 

inhoudelijke kennis en wetenschappelijke nieuwsgierigheid. Ondanks dat mijn 

onderzoek minder in jouw onderzoekslijn paste dan dat van je andere promovendi, heb 

ik daar qua begeleiding nooit iets van gemerkt. Ik kijk zeer uit naar je inauguratie. 

 Mijn derde promotor, prof.dr. N.C. Schaper, beste Nicolaas. Tijdens onze vaste 

overleggen over mijn onderzoek, maar zeker ook gedurende de vergaderingen van het 
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managementteam van De Maastricht Studie, heb ik je sterke creatieve, 

communicatieve en managementvaardigheden van dichtbij mee mogen maken. Je 

bent een verbinder, maar zeker ook iemand die kritisch en bekwaam doorpakt. Dit heb 

ik ook duidelijk meegekregen bij mijn participatiestage op afdeling B5 terwijl we de 

rondes liepen langs patiënten met een diabetische voet. Het is heel fijn dat je na je 

emeritaat als voorheen bij mijn onderzoek betrokken bent gebleven. 

 

Geachte leden van de beoordelingscommissie, prof.dr. M.H. Prins, prof.dr.ir. E.E. Blaak, 

prof.dr. C.J.J. Tack, prof.dr. J.H. de Vries en dr. T.T. van Sloten, veel dank voor het lezen en 

beoordelen van mijn proefschrift, alsook voor uw aanwezigheid tijdens mijn 

verdediging. 

 

De afgelopen jaren heb ik het genoegen gehad om onderdeel te zijn van een groot en 

hecht team. Een team dat ervoor zorgde dat ik iedere dag met veel plezier naar mijn 

werk ging. Graag wil ik jullie—in de volgorde vanaf mijn vaste bureau—bedanken.  

 

Om te beginnen mijn eerste kamergenoten, Sytze en Tan Lai, allebei ‘PhD 

extraordinaire’. Het is uitermate fijn dat ik altijd een beroep heb mogen doen op jullie 

extra jaar aan onderzoekservaring ten aanzien van data-aanvragen, statistiek en alle 

andere zaken die nodig zijn om uiteindelijk tot een fatsoenlijk manuscript te komen. 

Maar toegegeven, op onze werkkamer werd niet louter hard aan onze proefschriften 

gewerkt. Op scherpe taalgrappen, obscure verwijzingen en allerhande inside jokes 

deden we minstens net zo hard onze best. Ik wil jullie enorm bedanken voor alle 

gezellige momenten binnen en buiten De Maastricht Studie en niet in de minste plaats 

voor het feit dat jullie mij weer sportief hebben weten te activeren. 

 Sytze, dankzij onze sterk overlappende muzieksmaken hebben we, onder het noeste 

schrijf- en analysewerk, vele uren naar elkaars favoriete artiesten geluisterd, wat 

culmineerde in het gezamenlijk bezoek aan een explosief Rammsteinconcert. Je 

sportiviteit en fanatisme maken je een geduchte squashtegenstander. Ik heb er het 

volste vertrouwen in dat je dankzij je rustige, weloverwogen karakter en doelgerichte 

instelling een uitstekende radioloog zult worden. 

 Tan Lai, achter je ontspannen voorkomen gaat een zeer harde en slimme werker 

schuil. Desondanks ben je absoluut geen solist, je zet je in voor het collectief en bent 

altijd bereid om iemand te helpen. Ik heb ontzag voor wat je bereikt en vind het 

uitermate fijn om ook klinisch weer met je samen te kunnen werken. En dat is zeker 

niet alleen maar zo, omdat ik daarmee wederom een beroep kan doen op je extra jaar 

aan wijsheid en ervaring. 

 

Tijdens het laatste jaar onderzoek deelden Sara en ik de werkkamer. Helaas moest er 

noodgedwongen een aanzienlijk deel van de tijd thuis worden gewerkt.  
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 Sara, ik heb veel respect voor je arbeidsethos, optimisme en vermogen om werk en 

privé te combineren. Ik vond het heel prettig om met je samen te werken en hoop een 

vraagbaak voor je te hebben kunnen zijn, zoals mijn vorige kamergenoten dat voor mij 

waren. 

 

Vervolgens is de aangrenzende promovendikamer aan de beurt. 

 Frank, je tomeloze energie en enthousiasme werken aanstekelijk. Ik vind het 

indrukwekkend dat het je gelukt is om, ondanks je vele activiteiten buiten De 

Maastricht Studie, een enorm en gedegen boekwerk af te leveren. Eén van onze 

hoofdstukken is hetzelfde. Ik heb onwijs genoten en veel geleerd van onze 

synergistische samenwerking en ben uiterst tevreden over het eindresultaat. Met nog 

meer plezier denk ik terug aan onze muzikale repetities en optredens.  

 Rianneke, als ik dit dankwoord na mijn eerste jaar had geschreven, was je pas in de 

volgende alinea aan bod gekomen. Echter heb je later de excellente keuze gemaakt om 

ook promotieonderzoek te gaan doen. Het was erg gezellig om op het werk vele 

koppen thee met je te delen en om buiten De Maastricht Studie samen met onze 

wederhelften danslessen bij Bernaards te volgen en tijdens spelletjesavonden elkaar te 

slim af te zijn. 

 April, hoewel je pas later onderdeel van De Maastricht Studie werd, voelt het alsof 

we gedurende mijn hele onderzoek samen hebben werkt. Je bent een collega op wie je 

kunt bouwen en het lijkt me een genoegen om in de kliniek ook met je samen te 

werken. 

 

Het was altijd aangenaam om naar rechts te kijken, richting de kamers van de fameuze 

LOC (‘leiding onderzoekscentrum’; een alternatieve uitleg van het acroniem is ook 

beschreven). 

 Carla, bedankt voor je betrokkenheid bij mijn manuscripten, maar bovenal voor de 

prettige en persoonlijke manier waarop je leidinggeeft aan het onderzoekscentrum. Als 

ik ergens vragen over had, klopte ik nooit tevergeefs bij je aan. Verder moet ik 

terugdenken aan de vele autoritten naar Brabant, de gezamenlijke wandelingen van en 

naar de MT-overleggen en het verzamelen van balen hooi (eerst maaien, schudden en 

duinen uiteraard).  

 Yvette, zonder jou zou De Maastricht Studie De Maastricht Studie niet zijn. 

Enerzijds heeft dit te maken met de uitstekende wijze waarop je het 

onderzoekscentrum draaiende houdt. Anderzijds ligt dit natuurlijk aan onze goede 

persoonlijke klik. Ik heb enorm genoten van je directe humor, onze gedeelde voorliefde 

voor schoenen en de vele donderdagmiddagborrels. 

 Nadine, bedankt voor je snelle en altijd degelijke regel- en planwerk. 

 

De omvangrijkste werkkamer in de kantoorruimte van De Maastricht Studie huisvest 

niet voor niets de datamanagers.  
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 Marion, Lisanne, Michiel en Anouk, zonder jullie zorgvuldige, ijverige en 

professionele werk zouden wij simpele promovendi niks kunnen beginnen. Het is 

enorm fijn dat jullie ‘dataset iPro’ meegenomen hebben bij het opschonen en 

opleveren van ‘dataset 3’.  

 

Tot slot, kom ik uit bij de vele onderzoekskamers, waar de onderzoeksassistenten het 

overgrote deel van het meetwerk verrichten. 

 Mijn V1-collega’s, Ank, Brigitte, Carine, Else, Hannah, Ingeborg, Jos, Joséphine, 

Kayleigh, Laura, Niels, Regien en Roel, bedankt voor jullie hulp bij het aansluiten van de 

continue glucosemonitoren en voor de aangename gesprekken tussen de vele 

honderden bloedafnames door. 

 Niki, dank voor alle hulp tijdens mijn promotieonderzoek en voor je grote 

positivisme en oprechte interesse. 

 Ramona, enorm veel dank voor je hulp met het uploaden van de iPro-gegevens. Het 

is ons samen toch maar mooi gelukt om 900 sensoren onder de kraan schoon te 

schrobben. 

 Barbara, Brenda, Chantalle, Daniel, Eline, Evelien, Ineke, Iris, Jeroen, Lieke, Lina, 

Manon, Manuela, Mitch, Myrthe, Nikki, Paul, Paula, Robin en Veerle, dank voor de fijne 

collegialiteit. 

 Demi, Lisanne, Emma, Sadé, Rutger en Anne, bedankt dat jullie ervoor hebben 

gekozen om tijdens jullie studie bij te dragen aan mijn promotieonderzoek. Ik heb er 

veel van geleerd om jullie te begeleiden. 

 

Aan de andere promovendi van De Maastricht Studie, Anouk, Ben, Charlotte, Cindy, 

Ellis, Jennifer, Jeroen, Jerremy, Laura, Marja, Marnix, Nathan, Shunxin, Steffi, Veronica 

en Wenjie, en de collega-promovendi van de zogeheten ‘overkant’, Amée, Armand, 

Evelien, Kim, Mathias, Mitchell, Myrthe, Nynke, Pomme en Ying, veel dank voor de 

gezelligheid en interessante discussies, zij het gewoon in Maastricht of tijdens één van 

de vele geslaagde congresbezoeken. Omar, many thanks for your enthusiastic and 

fruitful research stay at The Maastricht Study. 

 

William, bedankt voor de fijne samenwerking bij ons gedeelde manuscript. Ook veel 

dank voor je hulp bij het vinden van oplossingen voor het multicollineariteitsprobleem. 

Ik heb enorm veel van je geleerd en zal immer onder de indruk zijn van je brede kennis 
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