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Abstract
The Kemeny rule is one of the well studied decision rules. In this paper we show
that the Kemeny rule is the only rule which is unbiased, monotone, strongly tie-
breaking, strongly gradual, and weighed tournamental. We show that these conditions
are logically independent.
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1 Introduction

Social choice rules are correspondences that assign sets of alternatives as collectively
chosen outcomes to preference profiles of linear orders over a set of alternatives,
while preference rules assign sets of linear orders as collectively chosen outcomes
to these profiles. In each of these settings, a unanimous agreement, i.e., everyone
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having the same preference, would lead to a trivial outcome (a unanimous consensus
alternative/preference) and any sensible choice/preference rulewould behave this way.

The difference in rules stem from decisions in non-trivial cases. Social choice/
preference rules can behave very differently in cases where unanimity is not observed
in the preference profiles. One way to still touch upon this unanimity idea is the
following: the rules can still try to find the alternative/preference which is “closest” to
being the unanimity winner1. When closeness is defined, for instance, by the Kemeny
distance,wenotice thatBorda choice rule andKemeny–Young (1959, 1978) preference
rule are very similar, i.e., Borda (as a choice rule) chooses the alternative which is the
“closest” to being the unanimity winner, while Kemeny (as a preference rule) chooses
the linear order which is the “closest” to being the unanimity preference.3

This paper shows that despite the aforementioned conceptual similarities between
Borda andKemeny, there are still important axiomatic differences between these rules.
One would expect that axiomatic similarities will carry over from Borda choice rule to
Kemeny preference rule. Borda choice rule is known to be consistent (Young 1974), so
is the Kemeny preference rule. However, as well-known, Borda fails Maskin (1999)
monotonicity and so do many other scoring rules [exceptions are characterized by
Doğan and Koray (2015)]. Despite this monotonicity failure in Borda choice rule,
Can and Storcken (2013) has shown a monotonic characterization of the Kemeny
preference rule. This paper proves that indeed monotonicity is a very concrete feature
of the Kemeny (as a preference) rule, despite it’s score-like algorithm and similarities
to Borda (as a choice rule). We provide some novel and normative conditions on
preference ruleswithwhichwe prove a newmonotonic characterization of theKemeny
preference rule. Thereafter, in Sect. 6 we re-visit some axiomatic features shared also
by Borda and Kemeny (both as preference rules).

The set of characterizing conditions used in this paper are being unbiased,
monotone, weighed tournamental, strongly tie-breaking, and strongly gradual. Being
unbiased requires that for profiles at which all possible preferences are reported the
same number of times, the outcomes must equal to all possible linear orders. Being
(update) monotone requires that if an update occurs in one of the agent’s preferences
towards one of the outcomes, then this update should change the result in such a way
that the new outcomes still contain this preference, and possibly more but no more
than what was present before the update.4 In Can et al. (2021), being tournamental is
defined as “outcomes should only depend on the tournament results on pairs of alter-
natives in the profiles”. We use a weaker version of this condition, i.e., being weighed
tournamental, which requires that outcomes depend also on the pairwise margins of
these tournaments.5 Being strongly tie-breaking requires that if there’s indecisiveness

1 In the domain of social choice rules, Nitzan (1981) introduced “Closeness to Unanimity Procedure” as a
first example to distance rationalizability. approach2 and showed that the Borda (1784) rule is the closest
to unanimity under the Kemeny (1959) distance.
3 Saari and Merlin (2000) characterize all single profile paradoxes and behavior of the Kemeny rule.
Klamler (2004) compares the Kemeny rule with other distance based rules such as the Slater (1961) and
the Dodgson (1876) rules. In terms of the computational efficiency of the Kemeny rule, see Endriss and
de Haan (2015) and Conitzer (2006).
4 See Can and Storcken (2013).
5 See Sect. 6.2 for a discussion on these two conditions.
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over two alternatives, e.g., the outcomes comprise preferences with alternatives a over
b, and also those with b over a, then any deviation in the profile concerning these alter-
natives should break this tie. Roughly speaking, being strongly tie-breaking captures
the tie-breaking-part of positive responsiveness as introduced by May (1952). Finally,
being strongly gradual requires that in case of an even number of agents, if the out-
comes were decisive over two alternatives, e.g., all of them ranked a over b, then no
minor deviation concerning a and b, can turn the outcomes into a decisive win for b
over a.

The paper is organized as follows. In Sect. 2 we formalize some basic notions and
the model. The characterizing conditions are treated in Sect. 3 and in Sect. 4 we show
how these translate to weighed tournament correspondences. Section 5 discusses that
the Kemeny rule satisfies these conditions and that it is the only rule which does so.
Section 6 discusses the independence of the conditions used and concludes the paper.

2 Model basics

LetN = {1, 2, . . . }, the set of positive integers, denote the set of potential individuals.
We take the first n elements of N = {1, . . . , n} as the set of (concerned) agents. Let
A be a finite set of m alternatives with m ≥ 3. Let |S| denote the cardinality of an
arbitrary (finite) set S.

LetL denote the set of all possible linear orders over A. That is, the set of all weakly
complete, irreflexive, asymmetric and transitive binary relations on A. For any R ∈ L

and any two alternatives a, b ∈ A we interpret (a, b) ∈ R as a is ordered above b at
R. In case there is no confusion, we suppress the parenthesis and write ab ∈ R instead
of (a, b) ∈ R. Similarly, R = abc denotes a linear order where R = {ab, ac, bc}.
Let −R denote the reverse of a linear order, formally −R = {yx : xy ∈ R}. For any
subset V of L, let Vab denote the set of linear orders in V in which a is ordered strictly
above b, formally Vab = {R ∈ V : ab ∈ R}. For instance, we write Lab to denote the
set of all linear orders ordering a above b.

Consider a set of agents N . A (preference) profile p ∈ L
N assigns to every agent

i ∈ N , a linear order ofL.We denote the preference of an agent i at a preference profile
p by p(i). Therewith, for two different alternatives a, b and an agent i , ab ∈ p(i)
means that agent i (strictly) prefers a to b at the profile p. Hence, a profile represents
a combination of individual preferences over the set of alternatives A, from all agents
in N .

Let N1 = {1, . . . , n1} and N2 = {1, . . . , n2} be two sets of agents. Let p ∈ L
N1

and q ∈ L
N2 be two profiles. Then p + q denotes the profile in L

N3 , where N3 =
{1, 2, . . . , n1 + n2}, defined for each agent i ∈ N3 by

(p + q)(i) =
{

p(i) if i ∈ {1, 2, . . . , n1}
q(i − n1) if i ∈ {n1 + 1, n1 + 2, . . . , n1 + n2} .

This formulation we call an addition of p and q. Here the order in this “addition”
matters as in general p + q �= q + p. For a sequence of profiles, say p1 up to pk , the
profile p1 + · · · + pk is denoted by

∑k
t=1 p

t . Similarly, for a sequence of identical
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profiles such that for for all t , and for all agents i ∈ Nt , p1(i) = p2(i) = . . . = pk(i),
the profile p1 + · · · + pk is denoted by k · p instead of

∑k
t=1 p

t .
Let p be a preference profile over a set of m alternatives. The m × m weighed

tournament (matrix) p corresponding to profile p is defined at an arbitrary entry ab,
where a and b are alternatives, by

pab = max{|{i : ab ∈ p(i)}| − |{i : ba ∈ p(i)}|, 0}.

Hence, at entry ab, the value of pab is either strictly positive or zero. In the former
case it indicates the numerical surplus of agents preferring a to b compared to those
who prefer b to a. In the latter case there is a (weak) majority preferring b to a in this
binary comparison. Let W denote the set of all such m ×m matrices. That is a m ×m
matrix where all cells have non-negative integers as entries and we have pab = 0 or
pba = 0 for all ab. Givenm, let 0 denote the weighed tournament where all the entries
are zero. Let Tw denote the (partial pairwise majority) tournament associated with the
weighed tournament w ∈ W and is defined by Tw = {ab ∈ A × A : wab > 0}. That
is, Tw is the set of all distinct a, b ∈ A such that a beats b by a strict majority in the
weighed tournament w. When we consider the weighed tournament p̄ corresponding
to a profile p, we simply write Tp instead of Tp̄.

TheKemeny distance between two linear orders, R and R′, is defined by δ(R, R′) =
|R \ R′| + |R′ \ R|. It is well-known that δ satisfies the regular conditions of being a
metric. The extension of the Kemeny distance between a linear order R and a profile
p in L

N is defined by δ(p, R) = ∑
i∈N δ(p(i), R).

We consider preference rule, e.g., ϕ, which assign a non-empty subset of linear
orders ϕ(p) to every profile p ∈ L

N for every set of agents N . A rule aggregates
the preferences of the agents into a set of linear orders ϕ(p), as the collective set of
outcomes at profile p. At any profile p, the Kemeny rule ϕK (p) assigns the linear
orders which minimizes the Kemeny distance to the preference profile. Formally,

ϕK (p) = {R ∈ L : δ(p, R) ≤ δ(p, R′) for all R′ ∈ L}.

Can and Storcken (2013) andYoung and Levenglick (1978) also show an equivalent
formulation. In this interpretation, the Kemeny rule ϕK (p) assigns the linear orders
which minimize the weighed majority disagreements. Formally,

ϕK (p) = {R ∈ L :
∑
xy∈R

pyx ≤
∑
xy∈R′

pyx for all R
′ ∈ L}.

Remark 1 In what follows, we will use both formulations of the Kemeny rule without
further reference. Moreover, we introduce κ(R, p) = ∑

xy∈R pyx . It can be seen as
the sum of “disagreement surpluses” with R at profile p. We extend this definition of
κ to a weighed tournament w and linear order R as follows κ(R, w) = ∑

xy∈R wyx .
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2.1 Elementary changes

We define the notion of the elementary change in linear orders, profiles and weighed
tournaments. In words an elementary change is a “slightest” possible change in the
domain.

Let a and b be two distinct alternatives in A. Let R, R′ be two linear orders in L.
We say (R, R′) forms an elementary change from ab to ba whenever R \ {ab} =
R′ \ {ba}. Note that in that case a is consecutively ordered above b at R and b
is so above a at R′, where going from R to R′ only the positions of a and b are
swapped. Further, δ(R, R′) = 2 which is the minimum distance for two different
linear orders. For two profiles p and q, both in L

N , we say that (p, q) forms an
elementary change from ab to ba whenever there exist an agent i such that p(i) and
q(i) form an elementary change from ab to ba and p( j) = q( j) for all j ∈ N \ {i}.
So, at profiles elementary changes occur precisely when one agent swaps the ranking
of two consecutively ordered alternatives and all other agents do not change their
preferences. It therewith is the “slightest” possible change between different profile.

Let v andw be weighed tournaments inW. We say that (v,w) forms an elementary
change from ab to ba whenever one of the following three holds

1. vab = wab + 2 and wxy = vxy for all entries xy �= ab, or
2. vba + 2 = wba and wxy = vxy for all entries xy �= ba, or
3. vab = 1, wba = 1, vba = wab = 0, and vxy = wxy for all other entries xy �= ba

and xy �= ab.

That is, the only difference between the two matrices is that either vab is decreased
by two, or vba is increased by two, or vab is decreased by one and vba is increased by
one when going from v to w. Note that whenever profiles (p, q) forms an elementary
change form ab to ba then either

1. pab = qab + 2 and pxy = qxy for all other entries xy �= ab, or
2. pba + 2 = qba and pxy = qxy for all other entries xy �= ba, or
3. pab = 1, qba = 1, pba = qab = 0, and pxy = qxy for all other entries xy �= ba

and xy �= ab.

Note that in case, the number of agents is even then all entries in p are even the third
case does not apply.

2.2 Building blocks profiles

McGarvey (1953), introduced the following two agent profiles, denoted by rab,R ∈
L

{1,2}. Let a and b be two distinct alternatives and R be a linear order such that at R, a is
consecutively ordered above b. Let rab,R(1) = R and rab,R(2) = (−R \ {ba})∪{ab}.
That is at such profiles agent 1 and 2 only agree on pair ab. As an example, for
linear order R = abc1c2 . . . ck , we have rab,R(1) = abc1c2 . . . ck and rab,R(2) =
ck . . . c2c1ab. Note that, for such profiles the associated weighed tournament is
rab,Rxy = 0 if xy �= ab and rab,Rab = 2, and the corresponding tournament is
Trab,R = {ab}. In case the choice of R is not important we may write rab instead of
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rab,R . Let w be an arbitrary weighed tournament. Then we can associate a profile rw

defined by rw = ∑
xy∈A×A,x �=y wxy · r xy , to w. Clearly rw = 2 · w.

Example 1 Consider the set of alternatives A = {a, b, c} and N = {1, 2, 3, 4, 5, 6}
with the preference profile p = (abc, abc, bca, bca, cab, cab). Now, Tp = {ab, bc,
ca} and p is as follows

p =
a b c( )a 0 2 0

b 0 0 2
c 2 0 0

Let w be the following weighed tournament:

w =
a b c( )a 0 3 0

b 0 0 0
c 0 0 0

Note that 2·w = rw. Then an associated profile rw = (abc, cab, abc, cab, abc, cab).

3 Characterizing conditions

The characterization of Kemeny rule is based on five conditions we impose on any
preference rule ϕ. First, let us consider a profile in which all linear orders in L are
reported an equal number of times. We call such profiles uniform, i.e., p ∈ L

N is
uniform, if for all R, R′ ∈ L, we have |i ∈ N : p(i) = R| = |i ∈ N : p(i) = R′|.
The first condition we introduce, is a very mild one which ensures that in extreme
cases where all linear orders are reported by an equal number of agents, the rule is not
biased towards any outcome and assigns every linear order.

• Unbiased: ϕ is unbiased (at uniform profiles), if for all sets of agents N , and all
uniform profiles p ∈ L

N ,
ϕ(p) = L.

The following (update) monotone condition is introduced by Can and Storcken
(2013) as one of the characterizing conditions of the Kemeny rule.

• Monotone: ϕ is (update) monotone, if for all pairs of profiles (p, q) forming an
elementary change from ab to ba , with ϕ(p)ba �= ∅,

ϕ(p)ba ⊆ ϕ(q) ⊆ ϕ(p).

That is, if an agent swaps a pair of two consecutively ordered alternatives in line
with one of the rankings in the outcome then this ranking should be in the outcome
also at the new profile. Furthermore, the new outcome of the new profile must be
a subset of the outcome of the old profile.
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In regular tournaments, we only consider whether an alternative wins over another
by a majority. In weighed tournaments, however, we also consider the net margin of
this majority winning. The following condition requires that the rule behaves identical
for profiles having the same “weighed tournaments” or a scalar of one another.

• Weighed tournamental: ϕ isweighed tournamental, if for all profiles p and q, with
p = kq for some positive integer k,

ϕ(p) = ϕ(q).

The next condition ensures that existing ties over two alternatives are immediately
broken when there is a single elementary change concerning these two alternatives in
the profile. This is a slight variation of the tie-breaking condition introduced in Can
et al. (2021) for characterizing the Slater rule. Formally:

• Strongly tie-breaking: ϕ is strongly tie-breaking, if for all pairs of profiles (p, q)

forming an elementary change from ab to ba in L
N ,

if ϕ(p)ab �= ∅ and ϕ(p)ba �= ∅, then either ϕ(q)ab = ∅ or ϕ(q)ba = ∅.

The final condition ensures that in case of an even number of agents, if all outcomes
decisively put an alternative over another, a single elementary change reversing these
two alternatives in the profile, cannot reverse the ordering of these alternative in all
outcomes. This is a slight variation of the graduality condition introduced in Can et al.
(2021) for characterizing the Slater rule. Formally:

• Strongly gradual: ϕ is strongly gradual, if for all pairs of profiles (p, q) forming
an elementary change from ab to ba in L

N , with |N | even,

if ϕ(p)ba = ∅, then ϕ(q)ab �= ∅.

In case |N | is odd, we can face situations in which elementary changes can lead
to swings in the majority winnings between two alternatives. Therefore, this may
lead to drastic changes in the outcomes, instead of “gradual” changes. Hence the
condition is restricted to even number of agents, wherein such swings cannot occur.

Lemma 1 Kemeny rule ϕK is unbiased, monotone, weighed tournamental, strongly
tie-breaking, and strongly gradual.

Proof In the followingwe show that theKemeny rule satisfies each of these conditions.
Unbiased: To prove that the Kemeny rule is unbiased, let p be a uniform profile. It is
sufficient to prove that ϕK (p) = L. Since p is a uniform profile, all entries in p are
zero. So, for all linear orders R we have that κ(R, p) = 0, which implies ϕK (p) = L,
by Remark 1.
Monotone: In Can and Storcken (2013) it is shown that the Kemeny rule is monotone.
Weighed tournamental: It follows from the definition of the Kemeny rule and Remark
1, that the Kemeny rule is weighed tournamental.
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Strongly tie-breaking: To show that the Kemeny rule is strongly tie-breaking, for some
distinct alternatives a and b let (p, q) form an elementary change from ab to ba in
L
N . Furthermore, suppose ϕK (p)ba is non-empty. Let R ∈ ϕK (p) with ba ∈ R.

It is sufficient to prove that ϕK (q)ab is empty. To the contrary let R′ ∈ ϕK (q) with
ab ∈ R′. We deduce a contradiction. As (q, p) forms an elementary change from ba to
ab and R′ ∈ ϕK (q)ab, being monotone implies R′ ∈ ϕK (p). So, κ(R, p) = κ(R′, p).
As (p, q) forms an elementary change in L

N from ab to ba it follows that either
q̄ab < p̄ab or p̄ba < q̄ba and q̄xy = p̄xy for all entries xy other than ab and ba.
Therefore,

κ(R, q) = qab +
∑

xy∈R\{ab,ba}
qyx

≤ pab +
∑

xy∈R\{ab,ba}
pyx

= κ(R, p)

= κ(R′, p)
= pba +

∑
xy∈R′\{ab,ba}

pyx

≤ qab +
∑

xy∈R′\{ab,ba}
qyx

= κ(R′, q).

As at least one of these latter two weak inequalities is strict, κ(R, q) < κ(R′, q). But
this contradicts that R′ ∈ ϕK (q). This contradiction proves that ϕK (q)ab is empty.
Strongly gradual: To show that the Kemeny rule is strongly gradual, let a and b be
distinct alternatives and let p and q be profiles in L

N , such that |N | is even and (p, q)

forms an elementary change from ab to ba. Suppose ϕK (p)ba = ∅. It is sufficient
to prove that ϕK (q)ab �= ∅. As ϕK (q) is the union of disjoint subsets ϕK (q)ab and
ϕK (q)ba, it is sufficient to prove that ϕK (q)ba is empty. Let R1 ∈ ϕK (p), and to the
contrary suppose R2 ∈ ϕK (q)ba . As ϕK (p)ba = ∅, we have R1 ∈ ϕK (p)ab. Because
(p, q) forms an elementary change from ab to ba, we have pxy = qxy for all xy other
than ab or ba. So,

α1 =
∑

xy∈R1\{ab,ba}
pyx =

∑
xy∈R1\{ab,ba}

qyx ,

α2 =
∑

xy∈R2\{ab,ba}
pyx =

∑
xy∈R2\{ab,ba}

qyx .

As |N | is even all the entries pxy and qxy are even and so are α1 and α2. Because
(p, q) forms an elementary change from ab to ba, we have pab = qab + 2 and pba =
qba = 0 or pba + 2 = qab and pab = qab = 0. We distinguish two cases accordingly.

Case 1 pab = qab + 2 and pba = qba = 0. Now κ(R1, p) = α1 and κ(R2, p) =
α2 + pab, κ(R1, q) = α1 and κ(R2, q) = α2 + qab. As R1 ∈ ϕK (p)\ϕK (q) and
R2 ∈ ϕK (q)\ϕK (p) we have κ(R1, p) < κ(R2, p) and κ(R2, q) < κ(R1, q). So,
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α1 < α2 + pab and α2 + qab < α1.

Given that all the variables in the foregoing two inequalities are even these two inequal-
ities can be rewritten as

α1 + 2 ≤ α2 + pab and α2 + qab + 2 ≤ α1.

Adding these two inequalities and simplification yields

qab + 4 ≤ pab.

This yields a contradiction with the case assumption.
Case 2 pba + 2 = qab and pab = qab = 0. This case is similar to the previous

case. 
�

4 Weighed tournament correspondences

In Sect. 5 we show that the Kemeny rule is the only rule which satisfies the conditions
laid out in the previous section. To do this, we use “weighed tournament correspon-
dences” which assign a non-empty set of linear orders to every weighed tournament.

Take any preference rule that is weighed tournamental. Then by construction, we
can find an associated weighed tournament correspondence such that the outcome
of the preference rule equals the outcome of this tournament correspondence. Since
the weighed tournament correspondence is associated with the preference rule, it also
inherits some of its properties. Therefore, we can abstract from profiles and base our
analysis on weighed tournaments.

Let 2W denote the set of all weighed tournaments having all entries even, i.e.,
2W = {2w : w ∈ W}. A weighed tournament correspondence, say �, assigns a
non-empty subset of L to every weighed tournament w in 2W.

Correspondingly, let ϕ be a preference rule which is weighed tournamental. With
the construction laid out in Sect. 2.2, we can associate a weighed tournament corre-
spondence�ϕ such that�ϕ assigns a subset ofL to any arbitrary weighed tournament
w in 2W as follows:

�ϕ(w) = ϕ(p), where p is a profile such that p = αw for some integer α ≥ 1

Next, we introduce some conditions on weighed tournament correspondences,
inspired by those on preference rules discussed in Sect. 3. Then, in Lemma 2, we
that given a weighed tournamental preference rule ϕ, any associated weighed tourna-
ment correspondence, say �ϕ , will “inherit” these conditions.

• W-unbiased: � is W-unbiased if �(0) = L.
• W-monotone: � is W-monotone, if for all weighed tournament pairs (w,w′)

forming an elementary change in 2W from ab to ba, with �(w)ba �= ∅,

�(w)ba ⊆ �(w′) ⊆ �(w).

123



B. Can et al.

• W-tie-breaking: � is W-tie-breaking, if for all weighed tournament pairs (w,w′)
forming an elementary change in 2W from ab to ba,

if �(w)ab �= ∅ and �(w)ba �= ∅, then either �(w′)ab = ∅ or �(w′)ba = ∅.

•W-graduality:� isW-gradual, if for allweighed tournament pairs (w,w′) forming
an elementary change in 2W from ab to ba,

if �(w)ba = ∅, then �(w′)ab �= ∅.

The following lemma shows that theweighed tournament correspondence�ϕ inher-
its these “W " properties from the weighed tournamental preference rule ϕ.

Lemma 2 (Inheritance Lemma) Let ϕ be a weighed tournamental rule. Let ϕ be unbi-
ased, monotone, strongly tie-breaking and strongly gradual. Then �ϕ is W-unbiased,
W-monotone, W-tie-breaking and W-gradual.

Proof In the following we show that the associated weighed tournament rule �ϕ

satisfies these four conditions.
W-unbiased: Let p be a uniform profile. Then, p = 0.As ϕ is unbiased, ϕ(p) = L.

Therefore by the definition of �ϕ we have �ϕ (0) = L. This proves that �ϕ is W-
unbiased.

The proof that �ϕ is W-monotone, W-tie-breaking and W-gradual involves an
elementary change, say (w,w′), from ab to ba for some distinct alternatives a and
b and for some weighed tournaments w and w′ in 2W. Define profiles p′ and q ′ as
follows

p′ =
⎛
⎝ ∑
xy∈A×A,x �=y,xy /∈{ab,ba}

1

2
wxy · r xy,Rxy

⎞
⎠ +

(
1

2
wab · rab,Rab

)
+

(
1

2
wba · rba,Rba

)
and

q ′ =
⎛
⎝ ∑
xy∈A×A,x �=y,xy /∈{ab,ba}

1

2
w′
xy · r xy,Rxy

⎞
⎠ +

(
1

2
w′
ab · rab,Rab

)
+

(
1

2
w′
ba · rba,Rba

)
.

Here for every xy ∈ A × A, with x �= y, Rxy is a fixed linear order in both the
expressions and taken such that x is consecutively ordered above y. As w and w′ are
in 2W and (w,w′) is an elementary change from ab to ba, we have either

1. wab = w′
ab + 2 and wxy = w′

xy for all entries xy �= ab, or
2. w′

ab = wab + 2 and wxy = w′
xy for all entries xy �= ab.

Consider profiles uab and uba in L
{1,2}, where uab(1) = Rab, uab(2) = −Rab,

uba(1) = Rba, and uba(2) = −Rba . In case 1 take p = p′ and q = q ′ + uab and in
case 2 take p = p′ + uba and q = q ′. By construction p and q are profiles in, say
L
N , with |N | is even. Also by construction (p, q) forms an elementary change from

ab to ba, p = w, and q = w′. So, �ϕ(w) = ϕ(p) and �ϕ(w′) = ϕ(q).

W-monotone: Take a, b, w,w′, p, and q as above. Suppose�ϕ(w)ba �= ∅. In order
to prove that �ϕ is W-monotone it is sufficient to prove

�ϕ(w)ba ⊆ �ϕ(w′) ⊆ �ϕ(w).
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As �ϕ(w) = ϕ(p) we have ϕ(p)ab �= ∅. Because ϕ is monotone this implies

ϕ(p)ba ⊆ ϕ(q) ⊆ ϕ(p).

But�ϕ(w) = ϕ(p) and�ϕ(w′) = ϕ(q) the former two inclusions follow by the latter
two.

W-tie-breaking: Take a, b, w,w′, p, and q as above. Suppose �ϕ(w)ab �= ∅ and
�ϕ(w)ba �= ∅. In order to prove that �ϕ satisfies W-tie-breaking, it is sufficient to
prove

�ϕ(w′)ab = ∅ or �ϕ(w′)ba = ∅.

Because �ϕ(w) = ϕ(p) it follows that both ϕ(p)ab and ϕ(p)ba are non-empty. As
ϕ is strongly tie-breaking this yields that either ϕ(q)ab = ∅ or ϕ(q)ba = ∅. Using
�ϕ(w′) = ϕ(q) we have either �ϕ(w′)ab = ∅ or �ϕ(w′)ba = ∅.

W-graduality: Take a, b, w,w′, p, and q as above. Suppose�ϕ(w)ba = ∅. In order
to prove that�ϕ isW-gradual it is sufficient to prove�ϕ(w′)ab �= ∅.As�ϕ(w)ba = ∅
and �ϕ(w) = ϕ(p), it follows that ϕ(p)ba = ∅. Because ϕ is strongly gradual this
implies ϕ(q)ab �= ∅. As ϕ(q) = �ϕ(w′) we have �ϕ(w′)ab �= ∅. 
�

The following two lemmas relate outcomes of W-monotone, W-tie-breaking and
W-gradual weighed tournament correspondence at an elementary change of weighed
tournaments (w,w′) from ab to ba. Lemma 3 shows that there are no outcome at w

ordering b above a precisely when there are outcomes at w′ ordering a above b and
vice versa. In Lemma 4 it is shown that if there are outcomes at w ordering b above
a, then these form the outcomes at w′.

Lemma 3 Let � be a W-monotone, W-tie-breaking, and W-gradual weighed tourna-
ment correspondence. Let tournament pair (w,w′) form an elementary change in 2W

from ab to ba. Then, either �(w)ba �= ∅ or �(w′)ab �= ∅.

Proof Consider a tournament correspondence�,weighed tournamentsw andw′, and
alternatives a and b as in the formulation of the Lemma. We first show that not both
�(w)ba �= ∅ and �(w′)ab �= ∅. On the contrary suppose both �(w)ba �= ∅ and
�(w′)ab �= ∅. We deduce a contradiction. As (w,w′) forms an elementary change
from ab to ba and�(w)ba �= ∅, W-monotonocity implies�(w)ba ⊆ �(w′) ⊆ �(w).
So, �(w′)ba �= ∅. Also, (w′, w) forms an elementary change from ba to ab and
�(w′)ab �= ∅. Therefore, W-monotonocity implies �(w′)ab ⊆ �(w) ⊆ �(w′). So,
�(w)ab �= ∅. All in all we have that all four �(w)ba , �(w′)ba , �(w′)ab, and �(w)ab
are non-empty which contradicts the W-tie-breaking.

Next we show that �(w)ba �= ∅ or �(w′)ab �= ∅. Suppose �(w)ba = ∅. It is
sufficient to show that �(w′)ab �= ∅. Since (w,w′) forms an elementary change from
ab to ba and �(w)ba = ∅, W-graduality implies �(w′)ab �= ∅. 
�

Lemma 4 Let � be a W-monotone, W-tie-breaking, and W-gradual weighed tour-
nament correspondence. Let weighed tournament pair (w,w′) form an elementary
change in 2W from ab to ba . Then �(w)ba �= ∅ implies �(w)ba = �(w′).
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Proof Consider a tournament correspondence �, weighed tournaments w and w′,
and alternatives a and b as in the formulation of the Lemma. Let �(w)ba �= ∅. It is
sufficient to show that (i) �(w)ba ⊆ �(w′), and (ii) �(w′) ⊆ �(w)ba . As (w,w′)
forms an elementary change from ab to ba, W-monotone implies

�(w)ba ⊆ �(w′) ⊆ �(w).

The former inclusion proves (i). To prove the inclusion at (ii), note that because of
�(w)ba �= ∅, Lemma 3 implies �(w′)ab = ∅. So, �(w′) = �(w′)ba . Above we
already deduced that �(w′) ⊆ �(w). So, �(w′)ba ⊆ �(w)ba . Hence, �(w′) =
�(w′)ba ⊆ �(w)ba . This proves the inclusion at (ii). 
�
Lemma 5 Let � be a W-unbiased, W-monotone, W-tie-breaking tournament, and W-
gradual weighed tournament correspondence. Letw be a weighed tournament in 2W,
such that its associated tournament, say Tw, is contained in some linear order. Then

�(w) =
⋂

xy∈Tw

Lxy = {R ∈ L : Tw ⊆ R}.

Proof First we prove the second equation. For all xy in Tw and all linear orders R such
that Tw ⊆ Rwehave xy is in R.Therefore, all R,with Tw ⊆ R, are inLxy .This proves
that {R ∈ L : Tw ⊆ R} ⊆ ⋂

xy∈Tw
Lxy . To prove

⋂
xy∈Tw

Lxy ⊆ {R ∈ L : Tw ⊆ R},
let R′ be in

⋂
xy∈Tw

Lxy . It is sufficient to prove that Tw ⊆ R′. But by the choice of R′
we have that R′ contains all xy which are in Tw. So, obviously Tw ⊆ R′. This proves
the second equation.

To prove the first equation for integers k ≥ 0 let P(k) denote the following state-
ment:

For weighed tournaments v ∈ 2W, with associated tournament Tv , such that
|Tv| ≤ k and Tv ⊆ R for some linear orders R, �(v) = ⋂

xy∈Tv
Lxy .

It is sufficient to prove P(k) for all integers k ≥ 0. The proof is done by induction
on k.

Basis: k = 0 Let v be a weighed tournament in 2W such that its associated tourna-
ment Tv has cardinality zero. Thismeans Tv is empty. So,

⋂
xy∈Tv

Lxy = ⋂
xy∈∅ Lxy =

L. As Tv is empty, v = 0. As � is unbiased then �(v) = �(0) = L, which proves
the basis.

Induction step Let P(k), and v be a weighed tournament in 2W, such that its
associated tournament Tv is contained in a linear order Rv , and |Tv| = k + 1. It is
sufficient to prove that

�(v) =
⋂

xy∈Tv

Lxy .

Let ab ∈ Tv and vab = 2 · l for some integer l ≥ 1. For some linear order Rab,

at which a is consecutively ordered above b, and for some weighed tournament w0

we have w = w0 + l · rab,Rab
. For all t ∈ {0, 1, ..., l} let vt = w0 + t · rab,Rab

.

Then vl = v and (vt+1, vt ) form an elementary change from ba to ab in 2W for all

123



An axiomatic re-characterization of the Kemeny rule

t ∈ {0, 1, ...l−1}.Also for t ∈ {0, 1, ...l−1} the associated tournaments to vt we have
Tvt ⊆ Tvt+1 ⊆ Tv ⊆ Rv. In particular Tv0 ⊆ Rv. As by construction Tv0 = Tv\{ab}
it follows that |Tv0 | = k. Hence, the induction hypothesis P(k) implies

�(v0) =
⋂

xy∈T
v0

Lxy .

Using the second equation we have

�(v0) = {R ∈ L : Tv0 ⊆ R}.

As Tv0 ⊆ Tv ⊆ Rv, this means that Rv ∈ �(v0). As ab ∈ Tv we have �(v0)ab �= ∅.

Now by Lemma 4

�(v1) = �(v0)ab =
⎛
⎝ ⋂

xy∈T
v0

Lxy

⎞
⎠

ab

=
⎛
⎝ ⋂

xy∈T
v0

Lxy

⎞
⎠ ∩ Lab

=
⋂

xy∈T
v1

Lxy

As �(v1) = �(v0)ab, it follows that �(v1)ab �= ∅. Hence, by Lemma 4 we have

�(v2) = �(v1)ab =
⎛
⎝ ⋂

xy∈T
v1

Lxy

⎞
⎠

ab

=
⋂

xy∈T
v2

Lxy .

Repeating this reasoning yields that �(vl) = ⋂
xy∈T

vl
Lxy and as v = vl we have

�(v) = ⋂
xy∈Tv

Lxy . 
�

5 Characterization

Lemma 1 shows that Kemeny rule is unbiased, monotone, weighed tournamental,
strongly tie-breaking, and strongly gradual. Theorem 1 shows that it is the only rule
which satisfies these conditions.

Theorem 1 Kemeny rule is the only rule that is unbiased, monotone, weighed tourna-
mental, strongly tie-breaking, and strongly gradual.
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Proof By Lemma 1 the Kemeny rule satisfies these five conditions. In order to prove
that it is the only rule, it is sufficient to prove that any two rules satisfying these
five conditions are equal. To that end, let ϕ1 and ϕ2 denote rules satisfying these
five conditions. It is sufficient to show that ϕ1 = ϕ2. Let �1 and �2 represent the
weighed tournament correspondences associated toϕ1 andϕ2 respectively. ByLemma
2 we have that �1 and �2 are both W-unbiased, W-monotone, W-tie-breaking andW-
gradual. Note that it is sufficient to prove that �1 = �2. Therefore, for all integers
k ≥ 0 it is sufficient to prove statement Q(k):

�1(w) = �2(W ) for all weighed tournaments w ∈ 2W,with
∑

xy∈A×A

wxy ≤ 2k.

We prove this by induction on k.
Basis: k = 0. Then all entrieswxy inw are zero. So,w = 0 and byW-unbiasedness

of �1 and �2 it follows that �1(w) = �2(w) = L.
Induction step: Assume the induction hypothesisQ(k). In order to proveQ(k + 1)

let w be a weighed tournament in 2W such that
∑

xy∈A×A wxy = 2(k + 1). For

reasons of symmetry it is sufficient to prove �1(w) ⊆ �2(W ). Take R ∈ �1(w). It
is sufficient to prove that R ∈ �2(W ). Consider Tw the tournament associated to w.

We distinguish the following two cases.
Case 1 Tw ⊆ R. Then by Lemma 5 �1(w) = �2(w) = ⋂

xy∈Tw
Lxy .

Case 2 There are ab ∈ Tw with ba ∈ R. So, wab > 0. Consider w′ ∈ 2W, with
wxy = w′

xy for all xy �= ab, and w′
ab = wab − 2. Then (w,w′) is an elementary

change from ab to ba and
∑

xy∈A×A w′
xy = 2k. The induction hypothesis therefore

implies that
�1(w′) = �2(w′).

As R ∈ �1(w)ba Lemma 4 implies

�1(w)ba = �1(w′).

Combining the latter two equations yields

�2(w′) = �1(w′) = �1(w)ba .

Therefore, �2(w′)ab = ∅. Applying Lemma 3 to �2 implies �2(w)ba �= ∅. So, by
Lemma 4 this yields

�2(w)ba = �2(w′).

Using the four latter exposed equations yields R ∈ �1(w)ba = �1(w′) = �2(w′) =
�2(w)ba . Hence, R ∈ �2(w). 
�

6 Discussion

This paper provides a new characterization of the Kemeny preference rule with log-
ically independent conditions including monotonicity. In relation to the previous
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characterization, i.e., Can and Storcken (2013), the Kemeny rule is shown to be update
monotone, Pareto optimal, consistent andpairwise,while this paper proves theKemeny
rule to be unbiased, update monotone, weighed tournamental, strongly tie-breaking
and strongly gradual. It should be noted that being unbiased follows from being neu-
tral. On the other hand, being neutral, consistent, and pairwise together imply being
weighed tournamental. In addition this result enables a comparison between Borda
and Kemeny rules, which we dwell upon in Sect. 6.1.

As discussed in the introduction, despite being closely related to the Borda choice
rule (and in general scoring rules), the Kemeny rule has distinct features, e.g., mono-
tonicity. In fact, as laid out in the section below, Borda (as a preference rule) shares
all the features discussed in our paper, except the monotonicity condition. Therefore,
our result exposes how closely related these two concepts are, which opens up further
questions on how to extend the results of Doğan and Koray (2015) for domains on
which scoring (preference) rules can also be monotonic.

Our results also differ from Can and Storcken (2013) by proposing two new con-
ditions, i.e., being strongly tie-breaking and strongly gradual, which also enables a
comparison with the characterization of the Slater rule Can et al. (2021). This paper
shows that the Kemeny rule is the only rule that is unbiased, monotone, weighed
tournamental, strongly tie-breaking, strongly gradual. Can et al. (2021) shows that
Slater rule is the only rule that is unbiased, monotone, tournamental, tie-breaking
and gradual. Therefore, we also strengthened their result by imposing being strongly
gradual. Hence, we catch the similarities between the two well-known rules, the Slater
and the Kemeny rules, while reducing the difference between the two to a matter of
tie-breaking and weighing the tournaments.

Inwhat follows, we first showhow these two preference rules, i.e., the Borda and the
Kemeny preference rules relate to one another axiomatically. Thereafter, we show how
our results relate to those of Can et al. (2021) regarding the Slater preference rule.
We conclude the paper by showing the logical independence of the characterizing
conditions laid out in Sect. 6.3.

6.1 Relation to the Borda preference rule

We define the Borda preference rule as follows: given a profile p, let ϕB(p) assign all
the linear orders which are the transitive closures of the partial order induced by the
Borda score of alternatives in p. That is, the Borda rule ranks the alternatives based
on the number of alternatives that they beat in each individual preference in total.
Formally:

ϕB(p) = {R ∈ L : B(p) ⊆ R},

where the partial order B(p) = {ab ∈ A × A : Bscore(a, p) > Bscore(b, p)} and
Bscore(a, p) = ∑

i∈N |{x ∈ A : ax ∈ p(i)}|.
Borda preferene rule seems to share many features with those of the Kemeny rule’s.

In fact it only fails monotonicity among the characterizing conditions of the Kemeny
rule. Below we provide an example.
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Example 2 To show that ϕB is not monotone, consider the preference profile p =
(abc, bca, cab) and q = (bac, bca, cab). It can be verified that Bscore(x, p) = 3
for all x ∈ A and Bscore(a, q) = 2, Score(b, q) = 4, and Score(c, q) = 3.
Therefore, ϕB(p) = L and ϕB(q) = {bca}. Note that (p, q) forms an elementary
change from ab to ba, however ϕB(p)ba � ϕB(q), which violates being monotone.

Proposition 1 Borda preference rule is unbiased, weighed tournamental, strongly tie-
breaking, and strongly gradual.

Proof It is straightforward to see that the Borda preference rule is unbiased.
To show that it is weighed tournamental, consider any two profiles p ∈ LN1 and

q ∈ LN2 such that p = kq for some k. Note that, the Borda score of an alternative x
at a profile p ∈ L(A)N is defined by

Bscore(a, p) =
∑
i∈N

|{x ∈ A : ax ∈ p(i)}|.

which is equvalent to,

Bscore(a, p) =
∑
x∈A

|{i ∈ N : ax ∈ p(i)}|.

and that

|{i ∈ N : ax ∈ p(i)}| = pax + 1

2
(|N | − max{pax , pxa})

Therefore,

Bscore(a, p) =
∑
x∈A

|{i ∈ N : ax ∈ p(i)}|

=
∑
x∈A

(
pax + 1

2
(|N | − max{pax , pxa})

)

= 1

2
|N | · |A| +

∑
x∈A

(
pax − 1

2
max{pax , pxa}

)
.

By the latter equality it follows that the relative Bscores will not change if p = kq
for p ∈ L(A)N1 and q ∈ L(A)N2 as

Bscore(a, q) > Bscore(b, q)

⇐⇒ 1

2
|N2| · |A| +

∑
x∈A

(
qax − 1

2
max{qax , qxa}

)

>
1

2
|N2| · |A| +

∑
x∈A

(
qax − 1

2
max{qax , qxa}

)
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⇐⇒ 1

2
|N1| · |A| + k ·

∑
x∈A

(
qax − 1

2
max{qax , qxa}

)

>
1

2
|N1| · |A| + k ·

∑
x∈A

(
qax − 1

2
max{qax , qxa}

)

⇐⇒ 1

2
|N1| · |A| +

∑
x∈A

(
pax − 1

2
max{pax , pxa}

)

>
1

2
|N1| · |A| +

∑
x∈A

(
pax − 1

2
max{pax , xa}

)

⇐⇒ Bscore(a, p) > Bscore(b, p).

In words Bscores at p are obtained from those at q by a monotone transformation.
This proves that Borda preference rule is weighed tournamental.

To show that ϕB is strongly tie-breaking, let (p, q) forms an elementary change
from ab to ba. The only effect of an elementary change is that theBscore of a is reduced
by one and the Bscore of b is increased by one. Since ϕB(p)ab �= ∅ and ϕB(p)ba �= ∅,
then it must be the case that Bscore(a, p) = Bscore(b, p), therefore at q we have
Bscore(a, q) < Bscore(b, q), this imples that ϕB(q)ba �= ∅ and ϕB(q)ab = ∅.

To show that ϕB is strongly gradual, let (p, q) forms an elementary change from
ab to ba, with |N | even. The only effect of an elementary change is that the Bscore
of a is reduced by one and the Bscore of b is increased by one. Since ϕB(p)ba = ∅,
then it must be the case that Bscore(a, p) > Bscore(b, p), therefore (as the number
of agents are even) at q we have Bscore(a, q) ≥ Bscore(b, q), this imples that
ϕB(q)ab �= ∅. 
�

6.2 Relation to the Slater rule

TheSlater rule assigns to every profile p the linear orders that are closest to the pairwise
strict majority tournament. Formally, for any profile p the Slater rule is defined by,

ϕS(p) = {R ∈ L : δ(Tp, R) ≤ δ(Tp, R
′) for all R′ ∈ L}.

In Can et al. (2021) the Slater is characterized by five conditions. Two of these
conditions, i.e., being unbiased and monotone, are defined in the same way as in this
paper. The other three conditions are as follows:

• Tournamental: ϕ is tournamental if for all profiles p and q, with Tp = Tq ,

ϕ(p) = ϕ(q).

• Tie-breaking: ϕ is tie-breaking if for all pairs of profiles (p, q) forming an ele-
mentary change from ab to ba in L

N , with pab = pba = 0,

if ϕ(p)ba �= ∅, then ϕ(q)ab = ∅.
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• Gradual: ϕ is gradual if for all pairs of profiles (p, q) forming an elementary
change from ab to ba in L

N , with pab = pba = 0,

if ϕ(q)ab = ∅, then ϕ(p)ba �= ∅.

The first two conditions in these results are the same, i.e., being unbiased and
monotone. For the other conditions, note that if twoprofiles p, q have the sameweighed
tournaments p = q , then they also have the same pairwise majority tournaments
Tp = Tq (and not the other way around). Therefore, being tournamental implies being
weighed tournamental. While the Slater rule satisfies both, the Kemeny rule is only
weighed tournamental. On the other hand, Kemeny rule is strongly tie-breaking, while
Slater is not (see the example below). Finally, being strongly gradual is a condition
satisfied by both rules (see proposition below).

Example 3 Let A = {a, b, c} be the set of alternatives and N = {1, . . . , 12} be the set
of agents. Consider the preference profile p = (abc, bca, cab, abc, bca, cab, abc,
bca, cab, abc, bca, cab). Let q = (bac, bca, cab, abc, bca, cab, abc, bca, cab,
abc, bca, cab). Note that (p, q) forms an elementary change from ab to ba, and
Tp = Tq = {ab, bc, ca}. Therefore the outcomes of the Slater rule at both p and q
are ϕS(p) = ϕS(q) = {abc, bca, cab}. This violates being strongly tie-breaking.

Proposition 2 The Slater satisfies being strongly gradual.

Proof Let (p, q) forms an elementary change from ab to ba in L
N , with |N | even.

We show that if ϕS(p)ba = ∅, then ϕS(q)ab �= ∅.
As (p, q) forms an elementary change from ab to ba, three cases are possible:

• Tp = Tq . As ϕS(p)ba = ∅, then ϕS(p)ab �= ∅. As Slater is tournamental, then
ϕS(q)ab �= ∅.

• Tp = Tq − {ba} with ba ∈ Tq . As the number of agents are even, this implies
that at p we have pab = pba = 0. Then as Slater is gradual, (the contraposition)
implies if ϕS(p)ba = ∅, then ϕS(q)ab �= ∅.

• Tq = Tp −{ab} with ab ∈ Tp. As the number of agents are even, this implies that
at q we have qab = qba = 0. Note that (q, p) forms an elementary change from
ba to ab, with qab = qba = 0. Hence, being gradual implies if ϕ(p)ba = ∅, then
ϕ(q)ab �= ∅.

Therefore, in each case if ϕS(p)ba = ∅, then ϕ(q)ab �= ∅, which completes the proof.

�

6.3 Logical independence

In this section we show the characterizing conditions are logically independent. That
is, we find rules satisfying all characterizing conditions but one. Consider the following
rules at any profile p in L

N :

• Constant R rule: Given a fixed R ∈ L, this rule assigns R to all profiles:

ϕR(p) = {R}.
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• Borda rule: Defined in Sect. 6.1.
• Combination rule: Given a dictator in N , e.g., agent 1, the combination rule
becomes dictatorial when there are odd number of agents, and equals the Kemeny
rule otherwise.

ϕD&K (p) =
{ {p(1)}, if |N | is odd,

ϕK (p), if |N | is even.
• Indecisive rule: This rule assigns all the linear to all profile,

ϕL(p) = L.

• Weighed Kemeny rule: Given a fixedweight distribution on all pairs of alternatives,
this rule assigns the linear orders that are closest to the profile in terms of weighed
Kemeny distance.

ϕW (p) = {R ∈ L : W (R, p) ≤ W (R′, p) for all R′ ∈ L},

where W (R, p) = ∑
xy∈R

ω(yx) · pyx and ω(xy) are strictly positive real numbers

for all pairs xy of distinct alternatives x and y. Note that the Kemeny rule is a
weighed Kemeny rule where all weights ω(xy) are equal to each other. For a
discussion on weighted Kemeny distances see Can (2014).

Example 4 Let A = {a, b, c}. Let ω(ab) = ω(ba) = 2 and ω(xy) = 1 for all xy
other than ab and ba. Let N = {1, . . . , 6}. Consider the following profiles:

p = (abc, abc, bca, bca, cab, cab),

q = (bac, abc, bca, bca, cab, cab).

Then,W (cba, p) = ω(ab) · pab+ω(bc) · pbc+ω(ac) · pac = 2 ·4+1 ·4+1 ·0 = 12.
Similarlywe haveW (abc, p) = 4,W (acb, p) = 8,W (cab, p) = 4,W (bca, p) = 8,
and W (bac, p) = 12. For profile q we have W (cba, q) = 4, W (abc, q) = 4,
W (acb, q) = 8, W (cab, q) = 4, W (bca, q) = 0, and W (bac, q) = 4. Therefore,
ϕW (p) = {abc, cab} and ϕW (q) = {bca}.

The rules we have defined above complete the logical independence of the charac-
terizing conditions in Sect. 3. The constant R rule (ϕR) satisfies all, but being unbiased.
The Borda rule (ϕB) satisfies all, but being monotone. The combination rule (ϕD&K )

satisfies all, but being weighed tournamental. The indecisive rule (ϕL) satisfies all,
but being strongly tie-breaking. The weighed Kemeny rule (ϕW ) satisfies all, but
being strongly gradual. Table 1 summarizes these results and shows the conditions are
independent.

In the following list of explanations, the list number corresponds to the superscripts
in Table 1.

1. These are obvious or by construction of the rule.
2. In Example 2 we showed that ϕB is not monotone.
3. In Sect. 6.1 we showed that ϕB is weighed tournamental.
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Table 1 Logical independence of the conditions

Condition ϕR ϕB ϕD&K ϕL ϕW

Unbiased −1 +1 +1 +1 +1

Monotone +1 −2 +6 +1 +8

Weighed tournamental +1 +3 −7 +1 +1

Strongly tie-breaking +1 +4 +1 −1 +9

Strongly gradual +1 +5 +1 +1 −10

+: satisfied, −: unsatisfied

4. In Sect. 6.1 we showed that ϕB is strongly tie-breaking.
5. In Sect. 6.1 we showed that ϕB is strongly gradual.
6. In case the number of agents is even being monotone follows as the Kemeny rule

is monotone by Lemma 1. In case the number of agents is odd, let ϕD&K (p)ba
be non-empty. It is sufficient to prove ϕD&K (p)ba ⊆ ϕD&K (q) ⊆ ϕD&K (p). As
ϕD&K (p)ba is non-empty, ϕD&K (p)ba = {p(1)} and ba ∈ p(1). So, the agent
that does change the preference going to profile q is not agent 1. So, ϕD&K (p)ba =
ϕD&K (q) = ϕD&K (p) = {p(1)} , which proves the inclusions.

7. At the profile p = (bac, acb, cba) there are three agents. So, ϕD&K (p) = {bac}.
At the profile p + p, we have an even number of agents. So, ϕD&K (p + p) =
ϕK (p + p) = {bac, acb, cba}. As 2 · p = p + p this difference in outcomes
shows that the combination rule is not weighed tournamental.

8. Let (p, q) form an elementary change from ab to ba, then for all distinct x and y
in A\{a, b} pxy = qxy and we have one of the following three

(a) pab ≥ 2, qab = pab − 2, and pba = qba = 0,
(b) pab = 1, qba = 1, and pba = qab = 0,
(c) pab = qab = 0, and pba + 2 = qba .

Take any R ∈ L. Then based on whether R ∈ Lab or R ∈ Lba , and the above three
cases the value of W (R, p) − W (R, q) is as in the following table:

Case R ∈ Lab R ∈ Lba

(a) 0 −2 · ω(ab)
(b) ω(ba) −ω(ab)
(c) 2 · ω(ba) 0

By this table we see that W (R, p) increases by the same value when compared to
W (R, q) for all R ∈ Lab, orW (R, p) = W (R, q) for all R ∈ Lab. Further, we see
that W (R, p) decreases by by the same value when compared to W (R, q) for all
R ∈ Lba , or W (R, p) = W (R, q) for all R ∈ Lba . As there is either an increase
or a decrease we may conclude that if ϕW (p)ba �= ∅, then ϕW (q) = ϕW (p)ba .
By this it follows that the weighed Kemeny rule is monotone.
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9. At 7 we proved ϕW (q) = ϕW (p)ba for elementary changes (p, q) from ab to ba
at which ϕW (p)ba �= ∅. This implies that the weighed Kemeny rule is strongly
tie-breaking.

10. The profiles presented in Example 4 forms an elementary change from ab to ba.
However,ϕW (p) = {abc, cab} andϕW (q) = {bca}, which violates being strongly
gradual.

References

Borda Jd (1784) Mémoire sur les élections au scrutin. Histoire de l’Academie Royale des Sciences pour
1781 (Paris, 1784)

Can B (2014) Weighted distances between preferences. J Math Econ 51:109–115
Can B, Pourpouneh M, Storcken T (2021) An axiomatic characterization of the Slater rule. Soc Choice

Welfare 56(4):835–853
Can B, Storcken T (2013) Update monotone preference rules. Math Soc Sci 65(2):136–149
Conitzer V (2006) Computing Slater rankings using similarities among candidates. In: Proceedings of

the National Conference on artificial intelligence, pp 613–619. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999

DodgsonC (1876) Amethod of taking votes onmore than two issues: the theory of committees and elections
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