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EEG Movement Artifact Suppression in Interactive Virtual Reality

Christoph Tremmel1, Christian Herff2, and Dean J. Krusienski3

Abstract— The integration of electroencephalogram (EEG)
sensors into virtual reality (VR) headsets can provide the
capability of tracking the user’s cognitive state and eventually
be used to increase the sense of immersion. Recent developments
in wireless, room-scale VR tracking allow users to move freely
in the physical and virtual spaces. Such motion can create
significant movement artifacts in EEG sensors mounted to the
VR headset. This study explores the removal of EEG movement
artifacts caused by repetitive, stereotyped movements during an
interactive VR task.

I. INTRODUCTION

As virtual reality (VR) technology continues to gain
prominence in commercial, educational, recreational and
research applications, there is increasing interest in incorpo-
rating physiological sensors in VR devices in order to track
the user’s physiological and/or cognitive state and eventually
increase the sense of immersion. The electroencephalogram
(EEG) is one promising sensor modality for this application
since current VR headsets provide a logical, convenient, and
unobtrusive framework for mounting EEG sensors. Recent
developments in wireless, room-scale VR tracking allow
users to move freely in the physical and virtual spaces.
Such motion, combined with the inertia of the VR headset,
can create significant movement artifacts in EEG sensors
mounted to the VR headset.

Often in interactive VR applications there are a limited
set of expected physical movements used to interact in the
virtual environment, thus resulting in movements that can
be stereotyped. By using the gyroscope and tracking data
available in modern VR headsets and hand controllers, it
is possible to model and suppress the artifacts created by
stereotyped movements, similar to what has been shown in
treadmill studies [1], [2], [3], [4].

The EEG and motion data used for this analysis were
collected during performance of a cognitive task in an inter-
active VR environment. For the task, participants performed
a classical n-back task [5], [6] where they virtually moved a
sequence of colored balls using a single hand controller to
receptacles on their left or right according to the current ball’s
color in the sequence [7]. Thus, the physical movements and
associated artifacts can be stereotyped into reaching with
left or right lateral movements. The stereotyped movement

1Christoph Tremmel is with the Biomedical Engineering
Program, Old Dominion University (ODU), Norfolk (VA), USA
ctrem003@odu.edu

2Christian Herff is with the School for Mental Health
and Neuroscience, Maastricht University, The Netherlands
c.herff@maastrichtuniversity.nl

3Dean Krusienski is with the Biomedical Engineering Department,
Virginia Commonwealth University (VCU), Richmond (VA), USA
djkrusienski@vcu.edu

data were used to design a warp correlation filter (WCF)
that estimates and removes the movement artifact from each
motion trial. The approach was evaluated by correlating the
EEG signals before and after artifact suppression with the
movement data, and the impact of the artifact suppression
on task classification performance was assessed.

II. MATERIAL AND METHODS
A. Participants and Experimental Setup

Fifteen participants (ages 18-35 (mean 24.73), 4 female)
were recruited to participate in the experiment, which was
approved by the Institutional Review Board of Old Domin-
ion University. The HTC VIVE hardware system primarily
consists of a motion-tracked headset display, two motion-
tracked hand controllers, and two “lighthouse” base stations
that are capable of providing 6 Degree of Freedom (6DOF)
tracking.

The EEG cap was placed on the participant’s head and the
EEG electrodes were filled with electrolyte gel. The electrode
cap was then covered with a protective plastic hair dressing
cap to insure that the gel did not seep onto the VR headset,
and the VR headset was positioned over the EEG cap. The
wireless EEG amplifier was placed in a shoulder strap on
the participant’s back. The configuration of the experimental
equipment on a participant (excluding the protective plastic
hair dressing cap) is shown in Figure 1.

Fig. 1. Configuration of the experimental equipment on a participant
(excluding the protective plastic hair dressing cap).

After the EEG and VR equipment was positioned, partici-
pants grasped a VIVE hand controller in the dominant hand.
Participants were placed in a standing position approximately
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Fig. 2. Screen captures of the n-back task using colored balls in a virtual environment developed for the pilot study. Each frame represents the binocular
view as observed through the VR headset.

1 meter in front of the recording computer, within the VR
workspace.

B. Experimental Task

Stimuli are a series of colored balls presented on a virtual
podium in the VR environment. Following [7], each ball is
colored red, blue, purple, green, or yellow. A ball receptacle
is placed to the right and left of the participant in the virtual
environment. The target receptacle was shaped as treasure
chest for placement of the target balls. For a particular run,
the participants task was to pick up a the virtual ball from the
podium directly in front of them using the hand controller
and move it to the target receptacle if the current ball color
matched the color of the ball presented N trials before and to
the opposite receptacle otherwise. Screen captures illustrating
one trial of the task are shown in Figure 2.

Participants completed a practice block to familiarize
themselves with the VR system and the n-back task. Fol-
lowing the practice block, participants performed a series
of three experimental blocks in randomized order: 0-back,
1-back, and 2-back blocks consisting of 4 runs each.

Each experimental run consisted of a random sequence
of 20 balls, each of them remaining visible for 4 seconds,
immediately followed by the onset of the next ball. Only a
single ball is displayed at any given time and an auditory
tone is presented with the appearance of each new ball.
Participants were required to respond to all balls in each run.
The order of the experimental blocks were counterbalanced
across participants. For each participant, the target receptacle
locations were counterbalanced to avoid biases that may
be due to lateral movements. The software to reproduce
the experiment is available in an Open Science Framework
repository (https://osf.io/yhtz8/).

C. Data Collection

Each participant wore an 8-channel electrode cap
(g.LADYBIRD, Guger Technologies) with active electrodes
positioned based on the international 10-20 system [8].
Specifically, electrode positions F3, Fz, F4, C3, C4, P3,

Pz, P4 were used based on neural activations from prior
EEG and fMRI studies [9], [6]. EEG was collected using an
8-channel wireless biosignal amplifier (g.MOBIlab, Guger
Technologies), grounded and referenced to linked earlobes,
and digitized at a 256 Hz.

The position of the VR headset and the controller were
also tracked and digitized at 32 Hz. Communication between
the VR software (developed in Unity [10]) and the BCI2000
EEG recording software was performed via UDP communi-
cation using the application connector in BCI2000 [11].

D. Data Analysis

The EEG data were segmented by 4-second ball-
presentation intervals (i.e., trials), yielding 240 total trials (4
runs X 3 conditions X 20 balls per run) per participant. The
last trial of each run was excluded from the analysis due to
a software issue that prematurely terminated data collection,
which resulted in 228 total trials per participant for analysis.

Inspired by [2], a technique referred to as a warp correla-
tion filter (WCF) was applied to suppress the stereotyped
EEG movement artifacts. Because individual movements
can vary slightly compared to the stereotyped movement,
this approach applies time warping to best represent the
movement time-course. Specifically, for each 4-second trial
interval, a single dimension of movement data (x, y, z, or
resultant direction) from the headset was time warped so
that the start, end, and either maximum or minimum position
(depending on the receptacle location) would be aligned in
time. The resulting time warping was then applied to the
EEG data for the corresponding trial.

Pearson’s correlation between the movement data from
each ball-presentation interval was computed and ordered
from highest to lowest. The EEG data corresponding to the
6 highest-correlated movements were averaged to create the
stereotyped artifact for each movement. This threshold was
empirically determined to be optimal after evaluating up
to the 20 most-correlated movements in the average. The
resulting stereotyped artifact was subtracted from from the
warped EEG data and the result was then de-warped to the
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original timescale by inversely applying the warping time
vector. This process was repeated for the remaining move-
ment dimensions of both the headset and hand controller.
The flow diagram for this procedure is shown in Figure 3.

Fig. 3. Flow diagram of the movement artifact suppression procedure.

E. Validation

Pearson’s correlation between the pre- and post-WCF EEG
data and the hand-controller position data for the x, y, z, and
the x-y-z resultant position, respectively. To assess the impact
of the WCF on the classification of workload level from
EEG, a feed-forward artificial neural network (ANN) with 1
hidden layer and 100 hidden nodes was trained on pre- and
post-WCF EEG data, respectively. To further reduce high-
frequency artifacts (> 30 Hz) for classification, a bipolar
reference was computed using each adjacent electrode pair,
resulting in 8 bipolar channels. For each 4-second trial,
spectral features were computed from all channels using
Welch’s method with 1-second windows and 60% overlap.
To remove occasional artifacts that were not produced by
stereotyped movements, a Hampel outlier filter was applied
to the spectral features. If a given feature observation was
greater than 9 standard deviations from the surrounding
features within a 4-second window, the feature observation
was replaced by the mean of the 6 surrounding temporal
feature observations. The resulting frequency bins from 0 to
30 Hz were applied to the classifier.

III. RESULTS

A. Stereotyped Movements

Figure 4A shows the stereotyped movement paths for 4
representative participants. While the movement paths are
markedly different for each participant, the respective left and
right paths are highly-consistent for each participant. Figure
4B shows the left/right hand movement trials from a repre-
sentative participant. The upper traces show all movement
trials aligned by movement onset. The lower traces show the

corresponding movement trials after time-warping, further
illustrating that the movements are highly-stereotyped.

A

B

Fig. 4. (A) Density plots representing the x-y hand controller and headset
positions during the task for 4 representative participants. The focal density
at the bottom center represents the headset location; the upper focal density
represents the location of the podium. (B) All data left/right hand movement
trials from a representative participant. The upper traces show all movement
trials aligned by movement onset. The lower traces show the corresponding
movement trials after time-warping.

B. Warp Correlation Filter

Figure 5 shows representative time traces of the hand-
controller position data and the pre- and post-WCF EEG. It
is observed that transient EEG events visually correlate with
the hand movements and the WCF is effective at suppressing
the movement artifact at each movement interval.

Figure 6 shows the Pearson’s correlation between the
resultant movement data and the EEG from each bipolar
channel, pre- and post-WCF. It is observed that the pre-WCF
correlations are larger in the frontal channels and that the
WCF effectively minimizes correlation with the movement
data for all channels.
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Fig. 5. Representative traces of the resultant movement vector, pre-WCF
EEG from a single channel, and post-WCF from a single channel. The
movement data is scaled to arbitrary units for visualization.

Fig. 6. Boxplots across participants of the Pearson’s correlation between
the resultant movement data and the EEG from each bipolar channel, pre-
and post-WCF.

C. Workload Classification

Figure 7 Shows the ANN workload-level classifier per-
formance using pre- and post-WCF EEG. It is observed
that the suppression of the movement artifacts using the
WCF approach does not have a drastic effect on the overall
classification performance.

IV. DISCUSSION

In order for EEG to be considered as a viable sens-
ing option in VR headsets, it is imperative to effectively
counteract the movement artifacts that traditionally plague
EEG recordings. The proposed approach exploits the fact
that many interactive VR applications (e.g., for task training
or gaming) inherently generate highly-stereotyped move-
ments, and thus predictable EEG artifacts corresponding to
these movements. The results indicate that this relatively
straightforward approach is highly effective at suppressing
movement-related artifacts in EEG.

As with any artifact suppression approach, care must be
taken to ensure the result is not adversely affecting the

Fig. 7. Boxplots of the ANN classification accuracy across participants
for each combination of workload levels, pre- and post-WCF.

desired signal features. While these results were produced
in an offline analysis, a similar approach could be applied in
an online scenario using calibration data and/or unsupervised
learning. However, the classification results suggest that it
may be possible to forgo active suppression of such low-
frequency movement artifacts if the task-related EEG activity
is sufficiently outside the spectral range of the offending
movement artifacts.
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