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Decoding Mental Workload in Virtual Environments:
A fNIRS Study using an Immersive n-back Task

Felix Putze1, Christian Herff2, Christoph Tremmel3, Tanja Schultz1 and Dean J. Krusienski4

Abstract— Virtual Reality (VR) has emerged as a novel
paradigm for immersive applications in training, entertain-
ment, rehabilitation, and other domains. In this paper, we
investigate the automatic classification of mental workload
from brain activity measured through functional near-infrared
spectroscopy (fNIRS) in VR. We present results from a study
which implements the established n-back task in an immersive
visual scene, including physical interaction. Our results show
that user workload can be detected from fNIRS signals in
immersive VR tasks both person-dependently and -adaptively.

I. INTRODUCTION

Virtual reality (VR) is a technology that allows the creation
of highly immersive scenarios, which can be experiences
through multiple senses - including depth vision and spatial
sound - and physical interaction to create a feeling of
presence in a scene. Usually VR employs a head-mounted
display as output device, combined with motion controllers
and tracking technology to situate the user in the virtual
scene and allow for interaction. Through its unique ca-
pabilities, VR has been successfully applied in training,
entertainment, rehabilitation, and many other domains. While
VR technology has been around for several decades, a recent
surge of affordable, high-performance VR headsets has lead
to a sharp increase in such applications.

However, the high level of immersion does not come
without downsides: First, a VR experience can be stressful
and workload-intense to the user (e.g. during a virtual
training episode [1]) and avoidance of the responsible scene
is often not possible, except for exiting the VR completely.
Thus, an adaptation of the VR scene is necessary to ensure
the user’s well-being and optimal productivity. Second, the
communication bandwidth between the user and the VR
environment is limited. As available input modalities are
often occupied with an ongoing task, they are unavailable
for the user to communicate their needs regarding interface
adaptations.

An established method to provide such adaptation to the
users’ needs are brain computer interfaces (BCI) that are
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used to monitor a person’s workload [2]. A BCI records
and processes brain activity in real-time, usually based on
machine learning technology. Several studies have shown
that such a workload measurement can be successfully inte-
grated into a closed-loop system that adapts to the measured
workload level: For example, Putze et al. [3] showed how an
information presentation system can be adapted in speaking
style and content to optimize user error rate and throughput,
while Afergan et al. [4] presented similar results for a
simulated navigation task. Yuksel et al. [5] demonstrated
that a workload-adaptive interface can help piano learners to
improve their progress compared to a non-adaptive baseline.

The most viable sensor technologies for measuring brain
activity for user interfaces are electroencephalography (EEG)
and functional near-infrared spectroscopy (fNIRS). While the
early literature on workload classification has been domi-
nated by works on EEG, fNIRS has emerged in the last
years as a serious alternative [6]. Benefits of fNIRS include
a higher spatial resolution compared to EEG and a higher
robustness to certain artifacts, such as eye movement or
typing [7]. Additionally, as fNIRS optodes do not require
the use of gel, an fNIRS headset can usually be mounted
quickly. One of the drawbacks of fNIRS is its slow response
to changes in the user state, which makes it more suited
for detecting of slowly-evolving user states. fNIRS has been
successfully used to create passive BCIs classifying user
states such as emotions [8] and drowsiness [9]. Some studies
also combine both EEG and fNIRS for the classification of
workload level [10], [11] or workload type [12].

Numerous fNIRS studies have investigated the classifi-
cation of mental workload. In recent years, more studies
have emerged that move away from highly-controlled and
abstracted scenarios, towards more complex and uncontrolled
conditions. Examples of such applications involve the detec-
tion of workload for pilots [13], car drivers [14], or users of
mobile Augmented Reality interfaces [15].

The use of fNIRS-based BCI technology in VR applica-
tions has been successfully demonstrated in several studies.
Most of these studies concentrate on BCI for use in therapy
and rehabilitation of patients. Example applications include
the use of BCI using motor imagery for purposes of reha-
bilitation [16] or neurofeedback for patients with disorders
of attention and impulse control [17], [18]. The application
of BCI technology for user state monitoring has not been
explored much in the literature.

In this paper, we investigate whether methods for workload
estimation based on fNIRS during performance of an n-back
task can be transferred to complex, immersive VR settings
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Fig. 1. Binocular first-person view of the n-back task, showing a participant
hold a red ball to be placed in the “target” container.

involving physical interaction and visual distraction, which
can lead to movement artifacts and other interfering cognitive
processes. We investigate both person-dependent and person-
adaptive classification modes.

II. MATERIAL AND METHODS
As there is little work on workload recognition from

fNIRS in VR and no available data sets, we employed a
custom VR scenario to induce different levels of workload
in which we record fNIRS data.

A. Experiment Design & Data Acquisition

To induce different levels of workload, we employ the
n-back paradigm with three levels of task difficulty. In the
classic n-back task, participants are presented with a series of
symbols and are asked to respond when the current symbol
matched the symbol presented n symbols ago in the sequence
[19]. Difficulty is modulated by adjusting the parameter n,
in our study from 1 to 3. From previous research it is already
established that different difficulty levels induce differences
in experienced workload [20].

To transfer the n-back task to a VR setting, we ported it to
a factory mock-up scene (Fig. 1). The participant was asked
to pick up balls of different colors with the standard VIVE
controller at a central “dispenser”. Depending on whether a
given ball is a “hit” (i.e. its color matches the color of the
ball n steps ago) or a miss, the participant must physically
turn 90◦ left or right while holding the ball and place it
into the corresponding container. In case a ball was dropped
or not placed in a container over the course of a trial,
the trial was reset to its initial state. One trial consisted
of 10 successfully-placed balls and lasted approximately
46 seconds. As fNIRS workload classification requires a
minimum window length of 10 seconds due to the latency of
the underlying physiological processes [21], we will regard
each complete trial as one sample for classification. The
same paradigm was previously used in a workload study
with EEG, which demonstrates the general feasibility to
induce measurable workload differences [22]. The software
to reproduce the experiment is available in an Open Science
Framework repository1.

1https://osf.io/yhtz8/

The task was implemented using the Unity framework.
For synchronization, we employed the Lab Streaming Layer2

middleware, with a custom data source for the employed
fNIRS device and the LSL4Unity3 plugin.

Each participant completed a training trial, followed by
24 actual trials, 8 of each difficulty level. The order of the
different n-back conditions was pseudo-randomized. Due to
a technical error in the first six recordings, 2 of these trials
were not transmitted and are thus discarded from analysis.

For the VR hardware, we employed the HTC VIVE. For
capturing fNIRS signal, we employed an Oxymon Mark III
by Artinis Medical Systems. The recording device used two
wavelength of 765 and 856 nm and outputs concentration
changes of HbO and HbR. To measure hemodynamic activity
in the prefrontal cortex, we attached four transmitter and
four receiver optodes to the forehead (Fig. 2). Each detector
measures time-multiplexed from two sources, located at a
distance of 3.5 cm, resulting in a total of 8 channels each of
HbO and HbR. Our signals were sampled at 50 Hz and were
downsampled to 10 Hz for processing.

Fig. 2. fNIRS montage at the participant’s forehead.

The recording setup on the forehead is very simple and
needs less than 3 minutes to be fixed in place and to assess
data quality. The VR device setup is then placed on top of
the fNIRS headset. Slight individual adjustments of the setup
were necessary to accommodate for the placement of the VR
headset, which is also placed on the participant’s forehead.
This usually resulted in the fNIRS optodes being placed
slightly above their standard position (Fig. 3). Participants
were seated at a fixed position with respect to the VR
tracking space to ensure a comparable perspective on the
scene. We calibrated the VR tracking before each session.
For calibration of the fNIRS device, we adjusted position
and pressure of each optode until a minimum device-specific
photon count was reached and a clear heart-beat was visible
in the unfiltered signal.

Ten students (4 female/6 male, average age 34.6 with a
span from 17 to 65 years) participated voluntarily in this
study. All participants had normal or corrected to normal vi-
sion. The participants were informed prior to the experiment
and gave written consent. The total duration of one session
was 36 minutes. We chose not to further extend the session
duration as multiple pilot participants found donning head-
mounted equipment to be fatiguing. The recordings were

2https://github.com/sccn/labstreaminglayer
3https://github.com/xfleckx/LSL4Unity
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Fig. 3. Combined fNIRS and VR montage.

performed at the Biosignal Lab of the Cognitive Systems
Lab in Bremen, Germany.

B. Data Processing, Feature Extraction & Classification

Before classification, the fNIRS data were segmented
based on the logged timestamps from the n-back task.
Windows were 12 s long and locked at the last onset of a
trial, to ensure that no further restarts (due to loss of the ball)
were included during the window duration. As the workload
effects for different values of n begin after the initial trials
(i.e., ball presentations), the window was extracted at an
offset of two seconds after the start of an experimental run.

The fNIRS signal is contaminated with biological and
technical artifacts [23]. To attenuate slow signal trends, we
used a moving average filter, which subtracted the mean
of the 20 s before and after every sample from every HbO
and HbR datapoint. Heart-beat and faster frequency signals
are attenuated using an Butterworth IIR low-pass filter with
cutoff frequency of 0.5 Hz and filter order of 6. It should
be noted that the chosen preprocessing imposes a minimum
classification latency of 40 s after the beginning of the trial.

A prototypical hemodynamic response to an increase of
mental workload is an increase for HbO in the prefrontal
cortex and a return to baseline afterwards. The HbR signals
responds inversely and decreases upon stimulus onset and
increase back to baseline after the end of the stimulus.
To exploit this behavior as features for classification, we
calculate the signal mean for all HbO and HbR channels.
Additionally, we approximate the signal via linear regression
and use the resulting slope and coefficient of determination
as features for each channel. As classifier, we employed
shrinkage LDA with least squares solver, using empirically-
optimized shrinkage coefficients.

III. RESULTS

For evaluation, we investigated two different modes,
person-dependent and person-adaptive classification of dif-
ferent workload levels. In each mode, we compare the two

binary conditions n = 1 vs. n = 2 and n = 1 vs.
n = 3 as well as the three-class task (note that the accuracy
baseline is different for different classification tasks). For
person-dependent classification, we perform a 10-fold cross-
validation on the data of each participant individually. This
is a challenging setup as in the three-class task, only 22
to 24 trials are available for each person (even less in the
two binary tasks), i.e. this analysis gives an estimate of
how well workload classification works with little training
data. In Figure 5, we report classification accuracy for each
participant of the three-class task. The plot shows that for
eight of ten participants, the classification accuracy is above
the majority baseline of 1

3 (although in some cases only
slightly). The average classification accuracy is 41%. For
the binary conditions, mean classification accuracy is 62%
(n = 1 vs. n = 2) and 49% (n = 1 vs. n = 3), respectively.

Fig. 4. Mean accuracy (whiskers denote standard deviation) for person-
dependent 10-fold cross-validation for all individual participants.

For person-adaptive classification, we pooled the data of
all participants together and again performed 10-fold cross-
validation. This approach can be applied when a multi-person
data set is available and then adapted by a number of person-
dependent training trials. In this case, training data fits less
well to the specific testing data but may offset this with
a larger overall training data set. Figure 5 summarizes the
results for the three different classification tasks: For all three
tasks, the classifier outperforms the baseline, although stan-
dard deviation is relatively high. This observation is in line
with the results of the person-dependent classification which
shows similar differences between the performance scores
for different participants. The average classification accuracy
for the three conditions is 66%, 64%, and 42%, respectively.
This score is significantly better than the majority baseline
for the n = 1 vs. n = 3 task (p = 0.029, t = 2.58 for
a 1-sample t-test), but not for the other two, likely due to
the small sample size. The performance is higher than the
corresponding results for the person-dependent classification
(on average as well as for 80% of individual participants),
indicating that the additional number of training samples
offsets the individual differences.
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Fig. 5. Mean accuracy (whiskers denote standard deviation) for person-
adaptive 10-fold cross-validation for three different classification tasks.

IV. CONCLUSION
In this study, we showed that person-adaptive fNIRS work-

load classification can be applied to immersive VR tasks, de-
spite the involved physical interaction and visual distraction.
This result can act as a baseline for further experiments on
adaptive VR environments or classification of other cognitive
and affective states. It should be noted that this initial study is
limited in a number of ways: First, the number of participants
and the number of trials per participant is low. The result that
person-adaptive classification outperforms person-dependent
classification indicates that more trials per participant could
translate to better individual performance. Second, while the
study showed promising results for most participants, high
standard deviation for person-adaptive classification hint at
the possibility of sub-optimal signal acquisition for the low-
performing sessions. For future studies, we will thus explore
additional optode placements which minimize the interaction
between the VR and fNIRS headsets.
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