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Abstract
Horizontal cooperation in logistics has gathered momentum in the last decade as 
a way to reach economic as well as environmental benefits. In the literature, these 
benefits are most often assessed by aggregating all demand and then optimizing the 
supply chain at the level of the coalition. However, such an approach ignores the 
individual preferences of the participating companies and forces them to agree on a 
unique coalition objective. Companies with different (potentially conflicting) prefer-
ences could improve their individual outcome by diverging from this joint solution. 
In order to prevent such individualistic behavior, we propose an optimization frame-
work that explicitly accounts for the individual partners’ interests. In the models 
presented in this paper, all partners are allowed to specify their preferences regard-
ing the decrease in logistical costs versus reduced CO

2
 emissions. Consequently, 

all stakeholders are more likely to accept the solution, and the long-term viability 
of the collaboration is improved. The contribution of our work is threefold. First, 
we formulate a multi-partner multi-objective location-inventory model. Second, we 
distinguish two approaches to solve such a multi-partner multi-objective optimiza-
tion problem, each focusing primarily on a single dimension. The result is a set of 
Pareto-optimal solutions that support the decision and negotiation process. Third, 
we propose and compare three different solution techniques to construct a unique 
solution which is fair and efficient for the coalition. Our numerical experiments not 
only confirm the potential of collaboration but—more importantly—also reveal 
valuable managerial insights on the effect of dissimilarities between partners with 
respect to size, geographical overlap and operational preferences.
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1  Research context and motivation

To remain competitive in today’s demanding markets, it is no longer sufficient to 
solely operate at minimum cost (Saad et al. 2016). Companies are under pressure 
to deliver high customer service levels while at the same time respecting environ-
mental sustainability. Encouraged by public incentives and the emergence of car-
bon taxes, more and more companies integrate emissions targets into all levels of 
decision-making (Hovelaque and Bironneau 2015). The low average vehicle load-
ing rates—currently between 57% and 68% in EU-28 countries (Creemers et al. 
2017; Vargas et al. 2018)—show huge potential for improving the sustainability 
of logistical networks. At the same time, maintaining high delivery frequencies is 
crucial to remain competitive.

A promising avenue to improve the efficiency as well as the sustainability of 
the logistical operations is to engage in a collaboration. In this paper, the focus is 
on horizontal cooperation, which is defined as “multiple companies (potentially 
competitors), operating at the same level of the supply chain, that join forces with 
the aim of improving their overall efficiency” (Cruijssen 2006). Through active 
sharing of vehicles and facilities, companies can achieve substantial economies 
of scale. This leads to more efficient vehicle loading rates and a reduction in total 
kilometers driven, which positively impacts the operational costs as well as the 
carbon footprint of the collaborating companies (Hacardiaux and Tancrez 2020).

A key challenge when modeling and analyzing collaborative environments is 
that companies often differ significantly in size, resulting in unbalanced coali-
tions, while remaining independent entities with different (potentially conflicting) 
preferences, in particular regarding the cost versus the carbon footprint of the 
logistical network and all joint operations. Surveys on companies wishing to col-
laborate show that they do not only focus on economic benefits but are also look-
ing for sustainability improvements, and that they do not give the same priority to 
the different benefits (Verstrepen et al. 2009; Aloui et al. 2021). Targets regarding 
CO2 emissions reductions vary substantially among companies (Hopkins et  al. 
2011). For instance, Coca-Cola aimed to reduce its emissions by one-fourth by 
2020, the same year by which Unilever aimed to cut them in half (Yang et  al. 
2017). In case of cooperation, such companies with dissimilar priorities would 
need to compromise and the joint logistical network would be impacted.

In the literature, this challenge is most often circumvented with two premises: 
authors focus on the improvement in one dimension and consider the coalition as 
a unanimous deciding entity. Existing research typically relies on the assumption 
that all partners agree on a unique objective. A minimization of the total logistics 
costs is typically assumed. Furthermore, customer demands and the preferences 
of the collaborating partners are aggregated and the identity and independence 
of the partnering companies are ignored (Defryn et al. 2019). Consequently, the 
optimal solution at the coalition level can be sub-optimal at the individual partner 
level. This discrepancy creates an incentive for the partners to behave opportun-
istically and diverge from the proposed solution to improve their individual out-
come. A partner with dominating influence might gear the collaborative solution 
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towards its priorities. For example, an environmentally conscious company might 
use its influence to push for opening more costly distributions centers to reduce 
distances and carbon emissions (such dynamics are discussed in Sect.  6). This 
potential mismatch between individual partner and coalition objectives jeopard-
izes the long-term stability, and thus success, of the collaboration, and needs to 
be understood and balanced.

In this context, this paper is the first that presents an extensive study on multi-
objective multi-partner logistics collaborations, as we look at collaborations with 
multiple objectives (costs and CO2 emissions reductions in this paper) while explic-
itly accounting for the influences of the coalition partners and for differences in 
their individual preferences. Our main contributions are in the exploration of this 
problem, in the proposition of a decision support system for this setting and in the 
derivation of managerial insights. Decision support is provided through a multi-
objective framework that introduces five different approaches to find a fair and effi-
cient solution both on a collaborative and individual partner level. Simple propor-
tional rules, that are commonly applied in practice, are used to allocate costs and 
emissions directly to the partners. The first two solution approaches generate a set 
of Pareto-optimal solutions that can support the negotiation and decision-making 
process. The other three approaches help companies to highlight a unique solution 
based on predefined criteria. To support the presentation and show the working of 
our framework, it is applied and validated on a multi-objective location-inventory 
problem that designs the joint supply network. Computational experiments compare 
the five approaches and allow us to derive valuable managerial insights for strategic 
and tactical decision support, particularly during the initialization phase (when the 
collaboration is set up), including partner selection.

The remainder of the paper is structured as follows. Section 2 contains a literature 
review and positions the contribution of our paper. In Sect. 3, the problem setting 
and the multi-objective and multi-partner collaborative location-inventory model are 
presented. The first two multi-objective solution approaches that rely on the con-
struction of a Pareto frontier are discussed in Sect. 4. The other three approaches, 
aimed at finding a unique solution, are introduced in Sect. 5. In Sect. 6, experimental 
results are presented and relevant managerial insights are derived. Finally, Sect. 7 
concludes our paper and presents ideas for future research.

2  Related literature

Due to its practical importance and promising benefits, collaboration in logistics 
has attracted the interest of the research community over the last decade. Existing 
studies mainly focus on collaborative transport or distribution systems, where the 
main motivation for companies to cooperate is an increased efficiency of the vehicle 
fleet operations and thus a lower logistical cost (Verdonck 2017; Gansterer and Hartl 
2018). Despite the potential environmental and economical benefits, the sharing of 
distribution centers or joint inventory management policies have not received much 
attention from the research community. While location-inventory problems have 
been explored and analyzed substantially (Melo et  al. 2009; Farahani et  al. 2015; 
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Daskin and Maass 2019), their application in a horizontal cooperation context is 
novel. Verdonck et  al. (2016) analyze the benefits of cooperative facility location 
in a horizontal carrier cooperation. Solving the joint location-allocation problem 
leads to an average reduction in facility opening and distribution costs of 9.1%. Tang 
et al. (2016) determine optimal locations for regional distribution centers in a col-
laborative distribution network. Makaci et al. (2017) empirically study the sharing 
of warehouses among different companies to identify, among others, the KPIs and 
uncertainty sources. Hacardiaux and Tancrez (2018) present a location-inventory 
model and demonstrate average savings of around 22% in terms of facility opening, 
transportation, cycle inventory, ordering and safety stock costs when setting up a 
collaboration.

A limited number of papers consider carbon footprint reductions associated with 
the collaborative location-inventory model. Hacardiaux and Tancrez (2020) ana-
lyze the impact of several market and partner characteristics (e.g., vehicle capacity, 
periodical facility opening cost, inventory holding cost, demand variability) on the 
reduction of cost and CO2 emissions when collaborating. Stellingwerf et al. (2018) 
analyze the economic and environmental benefits of joint route planning and ven-
dor-managed inventory in the context of collaborative food logistics. Results show 
significant savings in costs, emissions, distance and travel time and demonstrate 
the advantages of vendor-managed inventory in the case under study. Ouhader and 
El Kyal (2017) propose a multi-objective optimization model, including both facil-
ity location and routing decisions, that maximizes costs reduction and job creation 
subject to a constraint on CO2 emissions. Unlike the work presented in this paper, 
existing contributions focus exclusively on coalition objectives and the individual 
preferences of partners are ignored.

Despite its inherent multi-objective nature, horizontal logistics collaboration has 
mainly been studied from a single-objective perspective in the literature (Defryn 
et  al. 2019). Typically, the collaborative scenario is simulated by aggregating the 
customers’ demand of the different partners, and a single-objective optimization 
model is then solved at the level of the coalition. For the cooperation to be viable 
and ensure significant collaborative savings in the long run, the individual partner 
preferences need to be taken into account (Defryn et al. 2019).

A growing body of research exists on multi-objective optimization in various 
logistics domains. A general overview of the relevant literature can be found in Ehr-
gott (2005), Caramia and Dell’Olmo (2008) and Deb Kalyanmoy (2014). More spe-
cifically, multi-objective applications have been developed for vehicle routing prob-
lems (Jozefowiez et al. 2008), facility location problems (Farahani et al. 2010) and 
inventory management (Tsou 2008). The consideration of multiple objectives in a 
horizontal cooperation context, however, is a novel research domain. Kimms and 
Kozeletskyi (2017) develop a multi-objective optimization model for the traveling 
salesman problem (TSP) with horizontal cooperation. Their goal is to simultane-
ously minimize traveling costs and maximize the partner utility consequential to 
order assignment. In line with Kimms and Kozeletskyi (2017), Defryn and Sörensen 
(2018) solve a multi-objective collaborative TSP aimed at minimizing both the 
total distance traveled and the customer time window violations. Wang et al. (2018) 
present a vehicle routing model which minimizes both the operating costs and the 
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number of vehicles in the context of collaborative customer and vehicle sharing. 
Soysal et  al. (2018) model an inventory routing problem analyzing collaborative 
benefits in terms of multiple objectives, i.e., emissions, driving time and total logis-
tics cost. While all cited papers consider multiple objectives on the coalition level, 
none of them accounts for individual partner preferences.

To the best of our knowledge, Defryn et  al. (2019) are the only authors which 
describe and investigate the inclusion of individual partners preferences in collabo-
rative logistical planning. In their paper, they propose a framework that allows for 
differences in individual partner preferences while assuring maximal synergy crea-
tion through collaboration. Our research work differs from theirs by developing a 
multi-objective framework both at the coalition and at the individual partner level, 
accounting for preferences in both costs and CO2 emissions reductions, and account-
ing for the individual partners’ influence on the collaboration. Consequently, in this 
paper, there is no need for coalition partners to agree on a single coalition objective, 
contrary to the assumptions made by Defryn et al. (2019). Furthermore, our method-
ology is tested and validated on a collaborative location-inventory problem. Finally, 
we consider an a priori stated preference articulation with respect to the effect of the 
collaboration on both objectives. In other words, we analyze the current stand-alone 
situation for each individual partner to state their preferences in advance. Again, this 
approach differs from Defryn et al. (2019), in which an a posteriori preference artic-
ulation is assumed.

Based on our literature review, we conclude that multi-objective approaches 
in horizontal logistics cooperation research are scarce. Moreover, the focus is on 
cost-minimizing routing or distribution partnerships, and only the coalition level 
is typically considered. Since collaborating companies remain independent entities 
with potentially conflicting goals, there is a need for more multi-objective, multi-
partner models that account for the individuality of the partners and their prefer-
ences. Accounting for this research gap, this paper has the following academic and 
managerial contributions. We develop a multi-objective framework accounting for 
the individuality of partners in terms of their costs-emissions preferences and their 
influence weights. Applying one of our five solution approaches, we generate either 
a Pareto front or a unique solution depending on the preferences of the coalition 
partners. The proposed framework provides quantitative decision support and mana-
gerial insights for practitioners implementing and managing horizontal partnerships 
in terms of supply chain network design and partner selection.

3  The multi‑objective collaborative location‑inventory problem

In this section, we start by formally introducing the multi-objective collaborative 
location-inventory problem. We then formulate both objectives, the minimization of 
logistics costs and the minimization of CO2 emissions, and finally, we present our 
multi-objective collaborative location-inventory model. In Hacardiaux and Tancrez 
(2020), a first insight is provided on the environmental benefits of horizontal coop-
eration using a single-objective location-inventory model. In this paper, the model 
of Hacardiaux and Tancrez (2020) is significantly extended to a multi-objective 
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optimization framework that integrates the individual partner preferences and leads 
to very different solution approaches.

3.1  A formal problem definition

We are given a set of companies that are willing to engage in a horizontal collabo-
ration. Each company produces one specific product in their own central plant. As 
illustrated in Fig. 1(a), each company currently has their own (set of) distribution 
centers (DCs), from where they distribute their product to a group of retailers.

We assume that each individual company has independently optimized its distri-
bution network given its preferences regarding costs and CO2 emissions. Each com-
pany has opened an optimal number of DCs, chosen their location and allocated the 
retailers. Cycle inventory is also considered, in particular choosing the right ship-
ment sizes for each transport. To satisfy the uncertain demand during the lead time 
(which is proportional to the traveled distance), safety stocks are kept at every DC.

Motivated by potential reductions in logistics costs and CO2 emissions, the com-
panies consider setting up a joint supply network in which they share their DCs and 
vehicles, as illustrated in Fig. 1(b). The following advantages can be expected (Hac-
ardiaux and Tancrez 2020):

– As DCs are shared by the cooperating companies, the total number of DCs is 
likely to reduce (from 4 to 3 DCs in Fig. 1), while each company’s product will 
probably be delivered from more DCs (from 2 to 3 DCs in Fig. 1).

– The vehicle loading rates will improve due to the bundling of goods from multi-
ple companies for a shared customer.

– The total distance traveled will decrease for two reasons: retailers are delivered 
from a potentially closer DC, and the improvement of the loading rate will reduce 
the number of vehicles traveling (per time period).

Fig. 1  Illustration of the delivery networks of two independent stand-alone companies (a), and of the 
joint delivery network of these companies when they are cooperating (b)
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Although products from different companies are stored in the same facilities, com-
panies keep their own cycle inventory and safety stock. We assume direct deliveries 
and single sourcing, meaning that all the products delivered to a specific retailer 
come from a single DC, even if these products originate from different partners.

3.2  Logistics costs and CO
2
 emissions

The goal of the coalition is to design a supply chain network that balances the inter-
ests of all partners, relative to their two objectives: minimizing the logistics costs 
and the CO2 emissions. In this section, we formulate the costs and emissions of 
an individual partner in the coalition (using the mathematical notations listed in 
Table 1). Each individual partner aims to minimize its own share of costs and emis-
sions in the coalition. As detailed below, to share the total logistics costs as well as 
the total CO2 emissions of the cooperation among partners, we apply proportional 
rules based on the quantity of products shipped by each partner. In practice, pro-
portional allocation methods are most commonly used due to their simplicity and 
the fact that their transparent calculation and interpretation facilitate communication 
among partners (Guajardo 2018).

3.2.1  Objective 1: Minimizing logistics costs

The logistics costs are composed of facility opening costs, transportation costs and 
inventory costs. A detailed description of these cost components can be found in 
Hacardiaux and Tancrez (2018). To share the facility costs, a proportional volume-
based rule is used such that each partner pays for the fraction of the DC it is storing 
its products in. Regarding the transportation costs, we use a separate deliveries 
weighted allocation rule, where, in a similar manner, each partner pays for each 
vehicle proportionally to the volume its products occupy in it (Frisk et al. 2010). The 
transportation cost allocation is thus different for each retailer ( �

i
r

�r

 ). Finally, as each 
company has its own cycle inventory and safety stock, the inventory costs can be 
directly allocated to a specific partner. The share of the logistics costs for a partner i 
in the cooperation, noted Costi

CO
 , can thus be expressed as follows.

The terms of equation (1) represent, for company i, its share of periodical facil-
ity opening costs, its share of transportation costs ( �r∕Qdr gives the number 
of shipments per period to a retailer r), its cycle inventory and ordering costs at 
DCs (assuming an EOQ inventory structure), its cycle inventory costs at retailers, 

(1)
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=
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its safety stock costs at DCs and its safety stock costs at retailers (to reach ser-
vice level � ). The inventory-location models we present in this paper thus include 
strategic location decisions as well as tactical allocation and inventory decisions, 
as it has been shown in the literature that inventory decisions may impact location 
decisions (Melo et al. 2009; Farahani et al. 2015; Shen et al. 2003; Atamtürk et al. 
2012; Tancrez et al. 2012; Schuster Puga et al. 2019). Moreover, including shipment 

Table 1  Overview of mathematical notations

Sets and indices
D = {1,… , nD} Potential distribution center (DC) locations, indexed by d.
R = {1,… , nR} Retailers, indexed by r.
I = {1,… , nI} Companies, indexed by i.
Parameters
F Periodical fixed cost for opening a DC, in €/period.
T Transportation cost per km for a vehicle, in €/(km⋅vehicle).
Ddr Distance between DC d and retailer r, in km.
Hi

r
Unit inventory holding cost at retailer r for a product of company i, in €/(item⋅

period).
hi
d

Unit inventory holding cost at DC d for a product of company i, in €/(item⋅period).
C Vehicle capacity, in items/vehicle.
Ki
d

Fixed cost at DC d for placing an order to the plant of company i, in €/order.
zi
�

Standard normal deviation associated with service level �i at retailers, for company 
i.

LTdr Lead time between DC d and retailer r, in periods.
LTi

d
Lead time between the central plant of company i and DC d, in periods.

�i
r

Mean demand for products of company i at retailer r, in items/period.
�r Mean demand for all products at retailer r, in items/period, i.e., �r =

∑
i �

i
r
.

�i Mean demand for products of company i for all retailers, in items/period, i.e., 
�i =

∑
r �

i
r
.

� Mean total demand for all companies and all retailers, in items/period, i.e., 
� =

∑
r �r.

�i
r

Standard deviation of the demand for products of company i at retailer r, in items/
period.

�e CO2 emissions emitted by an empty vehicle in kg/km.
�f CO2 emissions emitted by a fully loaded vehicle in kg/km.
Qdr Total shipment size (for all companies) from DC d to retailer r (decided a priori), in 

items/vehicle.
Decision variables
yd

{
1, if DC d is opened,

0, otherwise.

xdr
{

1, if DC d serves retailer r (for all products),

0, otherwise.

vi
1d
, vi

2d
Auxiliary variables for company i and DC d.
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size decisions (inventory-related decisions) are important to be able to reveal the 
improvement of the loading rate of vehicles when collaborating.

3.2.2  Objective 2: Minimizing CO
2
 emissions

To account for the CO2 emissions, we focus on transportation and use the formula 
proposed by Pan et al. (2013), which is commonly accepted in the literature (Dan-
loup et al. 2015; Moutaoukil et al. 2015; Ouhader and El Kyal 2017). This formula 
also has the advantage of accounting for the vehicle loading rate, which is an impor-
tant factor of improvement when cooperating. To allocate the CO2 emissions among 
partners, we apply the polluter-pays principle (Kellner and Otto 2012). CO2 emis-
sions are divided proportionally to the usage of the vehicles. (It is also a volume-
based rule, as expressed by the fraction �

i
r

�r

 .) This method for the allocation of emis-
sions is frequently applied by practitioners as it is efficient and easy to understand 
(Leenders et al. 2017). The share of CO2 emissions produced by a partner i in the 
cooperation, noted Emisi

CO
 , can be expressed as follows.

The share of CO2 emissions for company i, due to deliveries to its retailers, is com-
posed of baseline emissions from an empty vehicle, to which emissions proportional 
to the vehicle load are added. In the first part of equation (2), the CO2 emissions 
emitted by an empty vehicle per km ( �e ) are simply multiplied by the number of 
trips. Then, the CO2 emissions related to the vehicle load ( �f − �e ) are multiplied by 
the volume of products expressed in full vehicles. To get the total CO2 emissions of 
the supply chain, these emissions per km are multiplied by the distance and summed 
for all deliveries to retailers.

3.3  Multi‑objective collaborative location‑inventory model

In this section, we present our multi-objective collaborative location-inventory 
model. Equations (1) and (2) provide two criteria, Costi

CO
 and Emisi

CO
 , that need to 

be minimized for each partner in the cooperation, leading to a multi-objective and 
multi-partner optimization model with 2 nI objectives. The model aims to determine 
the number and locations of the joint DCs, the allocation of the flows, as well as 
inventory decisions regarding the shipment sizes and the safety stocks. Moreover, 
the model directly allocates the costs and the CO2 emissions to the specific partners. 
It is formulated as a conic quadratic mixed integer program, which has the  
advantage to be solvable by commercial optimization softwares. Similarly to 
Atamtürk et al. (2012) and Hacardiaux and Tancrez (2020), the non-linearity in the 
logistics costs is moved to the constraints using auxiliary variables vi

1d
 and vi

2d
 .  

Specifically, in Costi
CO

 (equation (1)), the term 
∑

d,r

�
2Ki

d
hi
d
�i
r
xdr is replaced by 

∑
d,r

�
2Ki

d
hi
d
vi
1d

 , and the term 
∑

d h
i
d
zi
�

�
LTi

d

�∑
r(�

i
r
)2xdr is replaced by 

(2)Emisi
CO

=
∑
r

�i
r

�r

∑
d

[
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Qdr
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∑
d h

i
d
zi
�

�
LTi

d
vi
2d

 , while constraints (5) and (6) are added. In the final model, the 
objectives are linear and the constraints are either linear or conic quadratic. Our 
multi-objective multi-partner collaborative location-inventory model is formulated 
as follows.

Equations (3) minimize the share of logistics costs of each partner and equations (4) 
minimize the share of CO2 emissions of each partner in the cooperation ( 2 nI objec-
tives). Constraints (5) and (6) define the auxiliary variables vi

1d
 and vi

2d
 , giving the 

model its conic quadratic mixed integer program form (using xdr = x2
dr

 and yd = y2
d
 ). 

Constraints (7) ensure that each retailer is assigned to exactly one DC (single sourc-
ing). Constraints (8) ensure that a retailer can be served by a DC only if the latter 
is opened. Constraints (9) impose non-negativity on the auxiliary variables, while 
constraints (10) enforce the binary nature of decision variables xdr and yd . Note that 
the shipment size decision, Qdr , is not treated as a variable when solving our model, 
but rather as a parameter. We will show in Sect. 4 that Qdr can be computed a priori, 
before solving the model, in a way that depends on the approach used to solve model 
(3)–(10).

4  Multi‑objective optimization frameworks

Our multi-objective collaborative location-inventory model is challenging to solve due 
to the number of objectives, which is equal to the number of partners in the cooperation 
times two, 2 nI . In this way, the objectives are multiple in two dimensions: the logistics 

(3)min Costi
CO

∀i

(4)min Emisi
CO

∀i

(5)s.t.
∑
r

�i
r
(xdr)

2
≤ (vi

1d
)2 ∀d, i

(6)
∑
r

(�i
r
)2 (xdr)

2
≤ (vi

2d
)2 ∀d, i

(7)
∑
d

xdr = 1 ∀r

(8)xdr ≤ yd ∀d, r

(9)vi
1d
, vi

2d
≥ 0 ∀d, i
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costs vs. the CO2 emissions on one hand, the multiple partners on the other hand. In 
this section, we present two approaches to solve our multi-objective model, where each 
approach tackles the problem starting from one of the two dimensions in order to gen-
erate a specific Pareto frontier.

Even though only one solution is chosen in practice, generating these Pareto fronts 
provides useful insights into the trade-off between costs and emissions on the one hand 
and between the partners interests on the other hand. The cost effect of striving for 
a particular emissions level (and vice versa) can be analyzed, next to the balance of 
the partners benefits in various collaborative network solutions. Ultimately, this allows 
collaborative partners to reflect on their preferences and engage in negotiations on the 
costs-emissions strategy of the collaboration.

4.1  Articulation at the coalition level

In the first approach, we tackle the multi-objective problem by aggregating the individ-
ual partners, considering the coalition as a whole. In other words, we look at the prob-
lem as if the coalition was one homogeneous decision entity (Tang et al. 2016; Ver-
donck et al. 2016; Hacardiaux and Tancrez 2020). The shares of all partners are added 
up, leading to two objectives: the total coalition costs and the total coalition emissions. 
Compared to (3)–(4), ∀i is replaced by 

∑
i (and the equation is simplified), leading to 

the following objectives.

4.1.1  Solution method

As part of our framework, various solution techniques for multi-objective optimiza-
tion (e.g., an �-constraint method) could be used to tackle the remaining bi-objective 
model and construct the Pareto frontier. When applying our framework to the coopera-
tive inventory-location model, we chose the weighted sum method for reasons that will 
appear at the end of this subsection (a priori computation of Qdr ), with a varying weight 
� , which reflects the relative importance of logistics costs versus CO2 emissions for 
the cooperation (Kim and de Weck 2005; Marler and Arora 2010). Both objectives are 
combined, and the following model is obtained.

The weight � is referred to as the costs-emissions weight and reveals how impor-
tant CO2 emissions are compared to logistics costs for the collaboration. A small 

(11)min
∑
i

Costi
CO

(12)min
∑
i

Emisi
CO

(13)min
∑
i

Costi
CO

+ �
∑
i

Emisi
CO

s.t. (5)−(10)
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� means that the cooperation is mainly focused on costs, while a large � reveals a 
higher environmental attention. The parameter � can be interpreted as the monetary 
cost of CO2 emissions. It can, for example, be related to carbon taxes or company 
reputation. The use of this weight solves the problems of nature and proportionality 
between both objectives, as they were originally expressed in euros and kilograms of 
CO2.

As noted in Sect. 3.3, the shipment size Qdr can be computed prior to solving the 
model. Differentiating expression (13) (using equations (1) and (2) for Costi

CO
 and 

Emisi
CO

 ) with respect to Qdr , equaling the resulting expressions to zero, and account-
ing for the vehicle capacity, we find the following closed-form formula for the ship-
ment size.

Note that, as � is part of this equation, the ability to compute Qdr a priori is thus tied 
to the use of the weighted sum method. This is the reason why it is the preferred 
method to tackle the cooperative location-inventory model with the two objectives 
(11)–(12).

4.1.2  Pareto front

Varying the value of � in model (13), the Pareto front balancing costs and CO2 emis-
sions at the coalition level can be computed. Figure 2 (black squares) represents this 
Pareto front for an illustrative case with two partner companies. The first solution 
on the left of the frontier is obtained by only minimizing the total logistics costs 
( � = 0 ). For increasing values of � , we observe a reduction in CO2 emissions caused 
at first by changes in the inventory policy. More specifically, the shipment size, and 

(14)Qdr = min

�
C,

�
2 (T + � �e)Ddr �r∑

i H
i
r
�i
r
∕�r

�
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Fig. 2  Balancing the logistics costs and the CO
2
 emissions on an illustrative case with two companies p1 

and p2: optimal solutions for the stand-alone companies ( × and ⋆ ) and sum of these two (dashed circle); 
Pareto front for the cooperation, varying � ( ▪ ); and allocated shares for both companies of each Pareto 
front solution ( 

⨂
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thus the vehicles’ loading rate, is progressively increased, reducing the number of 
shipments and the CO2 emissions, but increasing the inventory costs. Then, the CO2 
emissions are further decreased by opening additional DCs, which have a major 
impact on costs (additional facility opening costs) and CO2 emissions (reduced 
traveled distances).

For each solution of the Pareto front at the coalition level, the costs and CO2 
emissions can be shared among the partners using volume-based allocation rules (as 
described in Sect. 3.2). For each partner, the resulting trade-off between the costs 
and emissions share is illustrated in Fig.  2 (empty circles). This allows to assess 
the solutions at the individual partner level. In particular, a partner could decide to 
reject a given solution because it violates rationality principles (Zolezzi and Rudnick 
2002). Two rationality principles are discussed in the following.

Individual rationality means that a partner will not accept a solution that is worse 
than its stand-alone situation. In other words, a partner will not accept to enter a 
cooperation that causes him to increase its costs or its CO2 emissions. Only solutions 
that dominate all stand-alone solutions will be accepted by all partners. If no such 
solution exists, we can conclude that the collaboration will not be viable in the long 
run. In Fig. 2, allocated individual shares above or on the right of the stand-alone 
solutions are deemed unacceptable and crossed. If a cooperative solution is rejected 
by at least one of the partners, this solution is inaccessible to the other partners even 
if acceptable for them individually (see crossed solutions 

⨂
 in the acceptable area 

in Fig.  2). Since only individually rational solutions are considered, we can con-
clude, by definition, that collective rationality is also satisfied for the cooperation 
setting investigated here.

4.2  Articulation at the partner level

In the second approach, we tackle the multi-objective problem starting with the bal-
ance between the logistics costs and the CO2 emissions. For each partner i in the 
coalition, these two objectives are added, accounting for its preferences regarding 
costs versus emissions using � i . Similar to the � introduced in Sect. 4.1, � i can be 
interpreted as the monetary cost for company i of emitting one kilogram of CO2 and 
denotes the importance according to partner i of reducing the CO2 emissions com-
pared to reducing the logistics costs. It is referred to as the individual costs-emis-
sions weight. The resulting sum, which aggregates the direct logistics costs and the 
indirect costs coming from CO2 emissions, is referred to as the augmented cost (and 
noted AugC). Each partner i in the coalition aims to minimize its own augmented 
cost, leading to the following objectives.

In our approach, the individual costs-emissions weights � i are supposed to be 
known. On the one hand, partnering companies might decide on any weight they 
see fit, either independently from their partners or within the context of a coopera-
tive negotiation. On the other hand, these weights could be inferred from the stand-
alone situation (before cooperation) if we suppose that each company has optimally 

(15)min Costi
CO

+ � i Emisi
CO

∀i
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designed its supply chain according to its individual preferences. Using this concept 
of revealed preference articulation, it is not necessary to ask the decision-makers to 
explicitly express their individual preferences and avoids the use of untruthful infor-
mation (Veldhuizen and Lamont 2000).

4.2.1  Solution method

As in Sect.  4.1.1, in the context of our framework, the resulting multi-objective 
model can be solved with various techniques. When looking at our cooperative 
inventory-location model, we again apply a weighted sum approach. This time, the 
weights � i are used. They are referred to as the partner influence weights, as they 
reflect the relative influence of each partner in the coalition, i.e., how important the 
reduction of the augmented cost of company i is compared to the reduction of the 
augmented cost of its partners. The resulting model is the following.

As previously noted, the shipment size Qdr can be computed a priori. Differentiating 
expression (16) (using equations (1) and (2) for Costi

CO
 and Emisi

CO
 ), equaling the 

resulting expressions to zero, and accounting for the vehicle capacity, we find the 
following closed-form formula.

Similarly to Sect. 4.1.1, the ability to compute Qdr a priori is tied to the use of the 
weighted sum approach, which determines � i (as noted earlier, the individual costs-
emissions weights � i are supposed to be decided by the company).

4.2.2  Pareto front

Varying the partner influence weights ( � i ), single-objective optimization models can 
be solved to generate the Pareto front, showing the trade-offs between the compa-
nies’ augmented costs. Figure 3 shows the Pareto front for an illustrative case with 
two cooperating companies, where the first company gives priority to costs, while 
the second company has a higher preference for CO2 emissions ( 𝛽2 > 𝛽1 ). The first 
solution on the left of the frontier is obtained by only minimizing the augmented cost 
of the cost-focused partner ( 𝛾1 > 0 and �2 = 0 ), i.e., supposing that the first com-
pany has all the decision power in the cooperation. When the ratio �2∕�1 increases, 
the emissions-focused company gets more power in the decision process. The loca-
tions of the DCs will be modified to get closer to its large customers. Moreover, as 
𝛽2 > 𝛽1 , the cooperation will become more environmentally friendly, and more DCs 
will be opened to reduce traveled distances. Finally, the last solution on the right of 

(16)min
∑
i

� i
[
Costi

CO
+ � i Emisi

CO

]

s.t. (5)−(10)

(17)Qdr = min
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r
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Fig. 3 is the one that best accommodates the preferences of the emissions-focused 
company (with �1 = 0 and 𝛾2 > 0).

5  Identifying unique solutions

In Sect. 4, we proposed two approaches to reduce the multi-dimensionality of our 
model (3)–(10), leading to Pareto fronts that help decision-makers in designing a 
collaborative supply chain. The Pareto fronts balance the logistics costs and CO2 
emissions of the coalition (Sect. 4.1) or compromise the partners’ augmented costs 
(Sect. 4.2).

In this section, as a complement to these results, we propose three different 
approaches to identify a unique solution that would be considered fair and efficient 
by every partner. The first two approaches use a value for either � or � i in order to 
generate a unique solution from the models provided in Sect. 4.1.1 and Sect. 4.2.1, 
respectively. The third approach aims to find a fair balance between the individual 
benefits that horizontal cooperation generates for the partners. For each of these 
three approaches, two methods are suggested, differing in terms of the way � and 
� i are calculated and in the viewpoint on fairness of individual partner benefits, 
respectively. These three approaches, with two calculation methods each, are pre-
sented in Sects. 5.1, 5.2 and 5.3, respectively. They can be applied as a complement 
to the analysis of the Pareto fronts (Sects.  4.1.2 and 4.2.2) to highlight solutions 
that are particularly relevant, and serve as a starting point for collaborative negotia-
tions. Moreover, they have the advantage of being less computationally expensive 
in case the decision-makers prefer to bypass the Pareto fronts generation altogether. 
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Fig. 3  Pareto front balancing the augmented costs of two cooperating companies (with 𝛽2 > 𝛽1 ). Each 
point represents a different value for � i
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Furthermore, they can be scaled easily to settings with more than two companies, 
whereas the complexity of the Pareto fronts representation increases significantly 
with the number of partners. Finally, in the context of a company looking to select a 
partner, unique solutions (rather than Pareto fronts) make it easier to compare poten-
tial partners and assess potential fit and benefits.

5.1  Costs‑emissions weight ˇ approach

In order to determine a unique solution for the model proposed in Sect.  4.1.1, 
without generating the Pareto front, the value of the costs-emissions preference 
weight � has to be fixed. For this, we rely on the known preferences of each part-
ner, � i , which can be inferred from their stand-alone supply chain (see Sect. 4.2). 
In order for � to be acceptable by all partners, each � i is accounted for in pro-
portion to the company’s “importance”. Two methods are presented here, which 
define importance based on the demand volumes of the partners or on their aug-
mented costs, respectively. As discussed before, proportional techniques are the 
most commonly used in practice as they are simple, support communication pur-
poses and do not require a substantial amount of data (Guajardo 2018).

– Volume-weighted method ( �Vol ) 
In the literature on collaborative transportation, allocation and aggregation tech-
niques often rely on demand volumes (Guajardo and Rönnqvist 2016). Following 
this common practice, in this first method, � is computed as the weighted average 
of the partner preferences ( � i ), weighted by their demand volume, as follows. 

– Augmented cost-weighted method ( �AugC ) 
Next to demand volumes, stand-alone costs are also often used as a crite-
rion for collaborative aggregation or allocation purposes (Guajardo and Rön-
nqvist 2016). Accordingly, our second method computes � as the weighted 
average of the preferences � i weighted by the stand-alone augmented cost. 
With Costi

SA
 being the stand-alone cost of partner i and Emisi

SA
 its CO2 emis-

sions, the stand-alone augmented cost of partner i can be computed as 
AugCi

SA
= Costi

SA
+ � i Emisi

SA
 . The cooperation’s preference weight � can then 

be derived as follows. 

While the volume-weighted method ( �Vol ) naturally favors the largest company, 
the augmented cost-weighted method ( �AugC ) favors companies with a larger 
stand-alone augmented cost, thus accounting for both logistics costs and CO2 
emissions.

(18)�Vol =
∑
i

� i
�i

�

(19)�AugC =
�
i

� i
AugCi

SA∑
j AugC

j

SA
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5.2  Partner influence weight 
i approach

To find a unique solution using the model provided in Sect. 4.2.1, without generat-
ing the Pareto front, the value of every partner’s influence weight � i has to be fixed. 
These weights characterize the influence of the companies on the final coopera-
tive solution. To define them, we rely again on proportional techniques, using the 
demand volumes or the stand-alone augmented costs, similar to the computation of 
� described in Sect. 5.1.

– Volume-weighted method ( � i
Vol

 ) 
Demand volumes can be used to reflect the size and negotiation power of a com-
pany in the partnership (Cruijssen et al. 2007b). In this way, a larger company 
will have higher impact on collaborative decisions. Based on this idea, the influ-
ence weight � i

Vol
 of partner i is computed as the ratio of its demand to the total 

demand of all partners. 

– Augmented cost-weighted method ( � i
AugC

 ) 
In this second method, the augmented cost in the stand-alone case is used to 
reveal the influence of a partner. The partner influence weights, � i

AugC
 , are com-

puted as the ratio of their stand-alone augmented cost to the total augmented cost 
of all partners. 

The volume-weighted method ( � i
Vol

 ) gives larger companies a higher impact on col-
laborative decisions, but does not account for the fact that economies of scale can be 
achieved through higher volumes, contrary to the augmented cost-weighted method 
( � i

AugC
 ) which accounts for it but may be less straightforward to apply as augmented 

costs may be uneasy to assess.

5.3  Partners benefits approach

The two previous approaches are based directly on the multi-objective models 
proposed in Sect.  4, balancing costs versus CO2 emissions (Sect.  4.1) or balanc-
ing the augmented costs of the partners (Sect.  4.2). In this Section, we present a 
final approach that accounts for the benefits that collaboration generates for each 
individual partner. The relative benefit of cooperation for a partner i is computed 
as (AugCi

SA
− AugCi

CO
)∕AugCi

SA
 , where AugCi

SA
 is the stand-alone augmented cost 

of partner i and AugCi
CO

 is its share of the cooperative augmented cost. The main 
motivation for a company to engage in a horizontal cooperation is to reduce its own 

(20)� i
Vol

=
�i

�
∀i

(21)� i
AugC

=
AugCi

SA∑
j AugC

j

SA

∀i
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costs and CO2 emissions, i.e., decrease its individual augmented cost. In practice, a 
cooperation that leads to vastly different benefits among partners may be considered 
unfair, at least by those that benefit less. In the same vein, a collaborative supply 
network that is far from the ideal network for one company will likely result in dis-
satisfaction and threaten the long-term stability of the collaboration.

Figure 4 displays the relative benefits of each partner in an illustrative two com-
pany collaboration, for the solutions of the Pareto fronts as computed in Sect.  4, 
using articulation at the coalition level (see Sect. 4.1.1) or articulation at the partner 
level (see Sect. 4.2.1). We observe a range of potential benefits for both companies. 
In isolation, the companies would choose very different collaborative networks, i.e., 
the two extreme points, leading to their ideal benefits. In what follows, we introduce 
two methods for selecting one solution from these solution sets, in order to guide 
decision-makers. Both methods do not require the Pareto fronts to be known.

– Maximizing the minimal partner benefit (MmBenefit) 
 The first method aims at maximizing the lowest individual benefit a partner gets 

from cooperating. It will thus lead to a solution in which the company gaining 
the least gets as much as possible, and in which the benefits received by the dif-
ferent partners are as similar as possible. In Fig. 4, this solution (represented by a 
triangle) is the one closest to the line with identical benefits for the partners. To 
find this solution, the following model is solved, maximizing the smallest benefit 
among partners (with Benefit and AugCi

CO
 being variables and AugCi

SA
 being a 

parameter, computed a priori). 
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Fig. 4  Relative benefits from cooperation, in augmented costs, that can be achieved by two companies 
collaborating, for the solutions found applying the articulation at the coalition level and the articulation 
at the partner level 
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 Since this method leads to similar benefits among partners, it supports accept-
ance among partners and is in line with the premise of the equal profit method 
(Frisk et al. 2010). As such, it may be helpful in the early phases of a growing 
horizontal cooperation for communication and negotiation purposes (Verdonck 
et  al. 2016). However, especially if partner characteristics and/or contributions 
are very dissimilar, it can be questioned whether an equal distribution of the ben-
efits is desirable. Moreover, given its strive for more equal partner benefits, this 
method generally affects the average savings of the solution in a negative way. 
These specific cases will be numerically explored in detail in Sect. 6.

– Minimizing the maximal partner loss (mMLoss) 
 This last method is based on the statement that partners ultimately desire coop-

erative solutions which are as close as possible to their ideal cooperative solu-
tion from an individual perspective, i.e., the solution that maximizes their own 
benefit. Note that these solutions could be unacceptable as they might not com-
ply with the individual rationality principle. The method aims at minimizing 
the maximum loss (dissatisfaction) of each partner, accounting for the coop-
erative solution that would be chosen individually, similarly to the idea behind 
the Nucleolus (Schmeidler 1969). The solution that company i would select if it 
could decide alone for the cooperation (with an augmented cost noted AugCi∗

CO
 ) 

is computed a priori (solving model (16) with � i = 1 and zero weights for other 
companies). The corresponding solutions for all partners are highlighted with 
the dashed lines in Fig.  4. The method then finds the solution that minimizes 
the maximum difference in benefits with these previously computed solutions, as 
illustrated by the black square in Fig. 4. The following model is solved, with Loss 
and AugCi

CO
 being variables. 

(22)max Benefit

(23)s.t. Benefit ≤
AugCi

SA
− AugCi

CO

AugCi
SA

∀i

(24)AugCi
CO

= Costi
CO

+ � i Emisi
CO

∀i

(25)Benefit ≥ 0

(26)AugCi
CO

≥ 0 ∀i

(5)−(10)

(27)min Loss

(28)s.t. Loss ≥
AugCi

CO
− AugCi∗

CO

AugCi
SA

∀i
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 As the difference between the individually desirable solution and the coopera-
tive solution is minimized, this approach will reduce the partners’ willingness to 
leave the cooperation and thus support the long-term stability of the cooperation.

6  Computational experiments

In this section, we present and discuss our experimental results in order to compare 
and validate all the approaches introduced in the previous sections. First, we intro-
duce the experimental setting in Sect. 6.1. In Sect. 6.2, we discuss the working of 
both approaches presented in Sect. 4, that lead to Pareto fronts, relying on preference 
articulation at the coalition and at the partner level. In Sect. 6.3, we analyze the three 
approaches for finding unique solutions presented in Sect. 5. Finally, Sects. 6.4 and 
6.5 study collaborations among companies that are dissimilar in size (and therefore 
power) or have a different geographical demand distribution in order to derive some 
valuable managerial insights.

6.1  Experimental setting

In our experiments, we focus on a cooperation between two companies (see Sect. 6.4 
for cases with three companies notably), operating in the U.S. market. The retailer’s 
locations are taken from the 49-node data set by Daskin (2011), which includes the 
48 continental U.S. state capitals plus Washington DC. This data set is commonly 
used in the facility location literature (Jeon et al. 2006; Santiváñez and Carlo 2018). 
All retailers’ locations are considered to be possible locations for the DCs. This 
assumption is common and well-accepted in the facility location literature (see, e.g., 
Shen et al. (2003); Atamtürk et al. (2012)). The 49 cities and the joint supply net-
work for a specific collaboration are illustrated in Fig. 5.

The parameter values, reflecting the characteristics of the two cooperating 
companies, are detailed in Table  2. These parameter values are used for both 
companies in all our experiments except for the companies’ size and geograph-
ical distribution which differ in Sects. 6.4 and  6.4 (i.e., demands �i

r
 differ). In 

order to highlight relevant insights, we assume that the companies share simi-
lar cost structures, but do not necessarily share the same costs versus emissions 
preferences ( � i = 1, 3 or 5 depending on the experiments). These three values are 
chosen to reflect a cost-focused company ( � i = 1 ), an emissions-focused com-
pany ( � i = 5 ), and a neutral company ( � i = 3 ). To illustrate, in our setting and for 

(29)AugCi
CO

= Costi
CO

+ � i Emisi
CO

∀i

(30)Loss ≥ 0

(31)AugCi
CO

≥ 0 ∀i

(5)−(10)
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the stand-alone companies, these � i parameter choices lead to the cost-focused 
company having a 20% lower cost but 35% more emissions than the emissions-
focused company. Following Atamtürk et al. (2012); Schuster Puga et al. (2019), 
we use the city’s population size divided by 1000 (noted �r ) as the baseline for 
the retailer’s daily demand. To allow for variance in the dataset, a deviation of 
25% is considered. For each company, the expected daily demand at a retailer, �i

r
 , 

is randomly generated within the intervals [0.75�r;1.25�r] . The standard deviation 
of the demand is found applying a CV of 0.5. (Normal distributions are assumed.) 
The service level is set at 97.5%. A transportation cost of 1€/km is considered per 
vehicle. The vehicle capacity is fixed at a maximum of 2500 items per vehicle. 
The use of a DC involves a periodical facility opening cost of €1000. The order 
cost and the holding costs are €500 per order and €0.05 per item, respectively (as 
in Atamtürk et al. (2012); Schuster Puga et al. (2019)). Lead times between DCs 
and retailers are directly proportional to the distance (assuming an average speed 
of 50 km/h). The order lead time from all DCs to all plants is fixed to the average 
lead time from all potential DCs to all retailers. The CO2 emissions emitted by 
a vehicle are set to 0.857 kg/km for an empty vehicle ( �e ) and 1.209 kg/km for 
a full vehicle ( �f  ). These values are obtained applying the formula proposed by 

Fig. 5  Joint supply network for two collaborating companies with similar demand structures and costs-
emissions preferences ( �1 = �2 = 3 ), using the volume weighted �

Vol
 method (equation (18)). The dashed 

line distinguishes the eastern and the western cities (see Sect. 6.4)

Table 2  Parameters values for 
the numerical experiments �i

r
[0.75�r;1.25�r] 

items/day
Fd 1000 €/day

CV 0.5 Ki
d

500 €/order
�i 97.5% hi

d
= Hi

r
0.05 €/item⋅day

zi
�

1.96 �e 0.857 kg/km
T 1 €/km �f 1.209 kg/km
C 2500 items
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Hickman et  al. (1999), considering a heavy-duty vehicle (maximum load of 25 
tons) driving at a speed of 50 km/h, and ignoring the gradient of the road (Pan 
et al. 2013). Models are implemented in CPLEX and run on a 3.2 GHz computer 
with 8 GB of RAM. Problems are solved to optimality both for the stand-alone 
and the cooperation cases.

6.2  Pareto fronts analysis

To help decision-makers negotiate on the operational scope of the collaboration, 
our methods first display the alternative joint supply networks in the form of Pareto 
fronts. They can be computed using a preference articulation at the coalition level 
(Sect. 4.1) or at the partner level (Sect. 4.2). To illustrate these methods, the two col-
laborating companies, with similar demand structures, are supposed to have opposite 
costs-emissions preferences. (Otherwise, the two companies would easily agree on 

(a) Total coalition costs versus total coalition CO2
emissions.

(b) Augmented costs for both partners.

(c) Relative benefits in augmented costs from cooperating, for both partners.

Fig. 6  Pareto fronts obtained using the articulation at the coalition level ( □ ) and the articulation at the 
partner level ( + ) for companies with different costs-emissions preferences
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their joint supply network.) One company is focused on costs minimization ( �1 = 1 ), 
while its partner is focused on emissions reduction ( �2 = 5).

Figure 6 shows the resulting Pareto fronts for both preference articulations, at the 
coalition level and at the partner level, as well as the balance of the benefits in aug-
mented cost that the partners get from cooperating (see Sect. 5.3). We observe that 
companies first have to decide whether to open 3, 4 or 5 DCs. Then, the decisions 
regarding the locations of these DCs as well as the loading rates of the vehicles 
will have an additional impact on the costs-emissions balance and on the individual 
augmented costs. Unsurprisingly, the results obtained with both preference articula-
tions are not drastically different. They rather offer variations and a wider choice of 
alternative supply networks.

In Fig. 6(c), we observe that no solution leads to perfectly equal relative benefits 
for both companies. This is not an exception related to this specific instance and may 
be an impediment during the negotiation process. In this case, visualizing all pos-
sible alternative supply networks (and thus also the non-existing ones), in the form 
of Pareto fronts, may definitely be valuable. Interestingly, although collaboration is 
clearly beneficial for both partners, we see that benefits can vary between 20% and 
29% for the cost-focused company and between 22% and 27% for the emissions-
focused company. This disparity is a direct consequence of the difference in costs-
emissions preferences for both partners.

In conclusion, using a preference articulation at the coalition level or at the part-
ner level results in Pareto fronts offering a choice of optimal collaboration supply 
networks. These multiple collaboration solutions are valuable in the negotiation pro-
cess and represent a first contribution of our paper.

6.3  Impact of the individual costs‑emissions preferences

To explore the impact of individual costs-emissions preferences (weight � i ), we per-
form additional experiments in which company 1 is set as a cost-focused company 
( �1 = 1 ), while the other company’s preference is altered. First, both companies are 
similar, being both cost-focused ( �2 = 1 ). Second, company 2 focuses more on CO2 
emissions ( �2 = 3 ). Third, company 2 is very environmentally conscious ( �2 = 5 ). 
For each scenario, we compare the unique solutions returned by each of the three 
approaches (six computation methods) introduced in Sect. 5. Note that, for the two 
methods of the partners benefits approach (MmBenefit and mMLoss, Sect. 5.3), the 
shipment size Qdr is computed using equations (17) and (20).

The results are summarized in Fig. 7, showing the impact of the costs-emissions 
preference of the second company on the collaborative benefits for both companies. 
When the costs-emissions weights are the same for both companies ( �1 = �2 = 1 , 
first bar for each method), both companies are similar in all respects: cost param-
eters, demands and preferences. As a consequence, their costs and CO2 emissions 
reductions from cooperating are very similar. The joint supply network is easily 
found, and the various methods lead to nearly the same results.

With the increase in the second company’s weight ( �2 = 3 then 5, second and 
third bar for each method), the relative benefit of the collaboration decreases as 
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the companies have to compromise, accounting for different preferences. The 
cooperative solution becomes more environmentally friendly, with higher vehicle 
loading rates and in some cases the opening of additional DCs (with �2 = 5 and 
the three methods �AugC , � i

AugC
 and MmBenefit). Overall, the benefit decreases 

weakly for company 1 and more severely for company 2. For the cost-focused 
company 1, the decrease in the costs benefit (black bars) is compensated by an 
increase in the CO2 emissions benefit (grey bars). In other words, the cost-focused 
company also benefits significantly from the reduction in CO2 emissions enforced 
by the other partner. The notable exception to that are the instances where an 
additional DC is opened to satisfy the emissions-focused company 2 ( �2 = 5 ). 
The benefit for the cost-focused company drops significantly as the additional DC 
largely increases the cost of the network. (And the CO2 emissions reduction does 
not compensate for this loss.)

Looking at the second company, for which the costs-emissions weight increases, 
its benefits are decreasing more severely, deviating more and more from those of its 
partner. Moreover, the share of profits actually linked to CO2 emissions reductions 
(grey bars) is decreasing when the costs-emissions weight increases. Although this 
might seem counter-intuitive, it can easily be explained by the fact that we make 
use of stated preference articulation to determine the individual partner preferences. 

Fig. 7  Relative benefits in augmented cost from cooperating for cost-focused company 1 (first line) and 
company 2 with a changing costs-emissions preference (second line). Groups of three bars show the 
benefits obtained by each company when the costs-emissions weight increases for the second company 
( �2 = 1, 3, 5 ). The weight does not change for company 1 ( �1 = 1 ). Each group of three bars, in the six 
columns, is for one of the six methods to propose a unique solution. Each bar is decomposed in terms of 
costs and CO

2
 emissions reductions
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In other words, a company that prioritizes CO2 emissions will already have low 
CO2 emissions when operating alone. The opportunities for decreasing the emis-
sions even further when collaborating are thus limited, especially if the other part-
ner (company 1 in this case) does not value CO2 emissions reduction. In the special 
cases, where the second company’s strong preference for emissions reduction leads 
to the opening of an additional DC, the emissions indeed drastically decrease, but 
the benefit is canceled out by the cost increase.

When the individual costs-emissions preferences differ, and companies become 
dissimilar, we also see in Fig. 7 that the outcomes of the six computation methods 
of Sect. 5 diverge. To study this in more detail, we refer to Table 3, which presents, 
for each method, the benefits in augmented cost obtained in a cooperation between 
a cost-focused company 1 ( �1 = 1 ) and a very environmentally conscious company 
2 ( �2 = 5 ). To underline the fact that the methods tend to have different strengths 
and weaknesses, Table 3 shows the benefits for each company, the average benefit 
revealing the global efficiency of the cooperation, the difference between the ben-
efits unveiling the equity of the cooperation, and the difference with the ideal solu-
tion of a company (if it would decide alone for the cooperation). We see that the 
volume weighted methods ( �Vol and � i

Vol
 ) lead to solutions with a high average ben-

efit ( 25.9% ), in which the cooperation as a whole benefit the most. However, these 
methods lead to a high disparity between partners ( 4.1% ), clearly favoring the cost-
focused company.

As touched upon earlier, the augmented cost weighted computation methods 
( �AugC and � i

AugC
 ) lead to the opening of an additional DC when the second company 

is very environmentally conscious ( �2 = 5 ). In general, these methods favor the 
emissions-focused company, leading to greener supply networks and larger CO2 
emissions reduction. However, as the emissions-focused company tends to have 
lower profits than its cost-focused partner, these methods counterbalance this nega-
tive impact, obtaining a lower average for the benefits but a lower gap between aug-
mented costs reductions. In Table 3, we see that these methods, �AugC and � i

AugC
 , lead 

to the higher benefit for the emissions-focused company 2 ( 25.6% ), with a low dif-
ference with the benefit of company 1 ( 1.5%).

Table 3  Relative benefits (in %) in augmented costs from cooperating for cost-focused company 1 
( �1 = 1 ) and emissions-focused company 2 ( �2 = 5 ), their average and their difference, as well as the 
highest difference with the ideal cooperative solution of each partner, as found by the six computation 
methods

Method Costs-emissions 
weight

Partner influence 
weight

Partners Benefits Average

�Vol �AugC � i
Vol

� i
AugC

MmBenefit mMLoss

Benef. Comp. 1 −27.9 −24.1 −28.0 −24.1 −24.4 −28.0 −26.1
Benef. Comp. 2 −23.8 −25.6 −23.8 −25.6 −24.9 −23.8 −25.0
Average −25.9 −24.8 −25.9 −24.8 −24.7 −25.9 −25.3
Difference 4.1 1.5 4.2 1.5 0.5 4.2 2.7
Highest Diff. Ideal 3.2 4.4 3.2 4.4 4.1 3.2 3.7
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The method maximizing the minimal partner benefit (MmBenefit) further reduces 
the difference between the benefits of the partners ( 0.5% ). As such, it allows to reach 
a solution where neither partner feels aggrieved. This is also the method that pro-
vides the highest minimum individual benefit ( 24.4% ). To reach a sufficient benefit 
for the emissions-focused company 2, an additional DC is opened (as mentioned 
earlier). The main drawback of this method is that it leads to a degradation of the 
average global savings level ( 24.7% ). In short, MmBenefit tends to prioritize partner 
equity at the cost of global efficiency. On the opposite, the method minimizing the 
maximal partner loss (mMLoss) leads to very different benefits ( 4.2% ) but a more 
efficient supply network for the cooperation as a whole ( 25.9% ). However, it mini-
mizes the gap with the ideal solutions that companies would choose if they could 
decide alone for the cooperation ( 3.2% ), and thus better guarantees that no partner is 
willing to leave the cooperation.

In conclusion, companies which are similar in terms of costs-emissions prefer-
ences have higher average benefits, while dissimilar preferences lead to lower and 
more disparate benefits. In addition, individual benefits from cooperation are mainly 
coming from an improvement of the objective which was less favored by the cor-
responding company. As such, a cost-focused company collaborating with an emis-
sions-focused company will mainly enjoy significant CO2 emissions reductions. This 
highlights again the importance of analyzing results (also) at an individual partner 
level. Finally, the choice of the solution method noticeably impacts the collaborative 
solution, the characteristics of the joint supply network, its costs and emissions. The 
various methods could favor a reduction in costs or in CO2 emissions, one partner 
or the other, the reduction of the augmented cost of the cooperation as a whole or 
a smaller difference between individual benefits, or even a lower gap with the ideal 
cooperative solution of each partner. This gives a large set of options with clear fea-
tures during the negotiation process of the collaboration.

6.4  Companies with different sizes

A significant part of the literature on horizontal cooperation considers coalitions of 
companies of a similar size (i.e., with similar demand). The reasons put forward 
to justify this assumption are an easier benefit distribution among partners and the 
elimination of power influence in the decision-making process (Cruijssen et  al. 
2007a; Vanovermeire 2014; Hacardiaux and Tancrez 2020). As our models consider 
the benefits distribution and the influence weights of the coalition partners, we can 
use them to analyze the impact on both coalition performance and individual ben-
efits of having partners of different sizes in the coalition. For this, we run a new set 
of experiments where the first company is twice the size of the second company, 
while maintaining a similar total demand for the cooperation as previously. The 
demand rate �i

r
 is computed using the formula in Table 2, with �r being the city’s 

population size divided by 750 for the large company 1, and 1500 for the small com-
pany 2 (compared to 1000 for both companies previously). Three combinations of 
individual costs-emissions weights are tested, �1∕�2 = 3∕3, 1∕5 or 5/1, to illustrate 
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companies with similar (3/3) or opposite (1/5 and 5/1) costs-emissions preferences. 
These new instances have been solved with the six computation methods proposed 
in Sect. 5, to get unique solutions for the collaboration. Table 4 provides the average 
results over the six methods, allowing us to focus on the insights related to the coop-
erative and individual benefits.

Analyzing Table 4, it directly appears that the relative benefits of both partners 
are very different, around 16% in augmented cost for the large company and between 
37% and 40% for the small company. This is due to the fact that the large partner 
already has a more effective supply network before cooperating, thanks to better 
economies of scale. With equal costs-emissions weights ( �1∕�2 = 3∕3 ), the costs 
and emissions of the large company are only 35% and 45% larger, respectively, while 
its demand volume is twice the volume of the small company. In particular, the aver-
age vehicle loading rate for the large company in the stand-alone case is already 
close to 90% (for the various costs-emissions weights combinations �1∕�2 ). On the 
other hands, the small company, when cooperating, gets access to a larger number 
of DCs (for which they share the costs), better-filled trucks (from 79% utilization 
rate in the stand-alone case to around 96% in the collaborative solutions) and more 
frequent deliveries (reducing inventory costs). Cooperation is therefore more ben-
eficial, relatively, for the small company than for its larger partner. Companies thus 
best join forces with larger partners in order to fully exploit cooperation opportuni-
ties (as also stated in Verdonck et al. (2019)).

However, the large company still benefits from a significant reduction of its costs 
and CO2 emissions (around 16% in augmented cost). Even more, interestingly, the 
large company is close to reaching the full potential of the collaboration, i.e., the 
maximum possible benefit, that a company would get deciding alone for the cooper-
ation (for all �1∕�2 combinations and with most methods). For example, with costs-
emissions weights �1∕�2 = 1∕5 , the results obtained with five of the six computa-
tion methods are very similar, with a relative benefit in augmented costs of 17.2% 
for the large company ( 37.4% for the small one), which is very close to its ideal 
cooperative solution (decided alone) with a benefit of 17.4% . The sixth computation 
method, which leads to other results, is the augmented cost weighted �AugC method. 
It favors the small company even more, leading to a benefit of 39% for the small 

Table 4  Relative benefits (in %) from cooperating for a large company 1 and a small company 2, in aug-
mented cost, logistics costs and CO

2
 emissions, depending on their costs-emissions preferences �1 and �2

∗ For the partner influence weight and partners benefits approaches, �
Vol

 (equation (18)) is used to com-
pute the cooperative augmented cost

�1∕�2 = 3∕3 �1∕�2 = 1∕5 �1∕�2 = 5∕1

Coop. Large C1 Small C2 Coop. Large C1 Small C2 Coop. Large C1 Small C2

Augm. costs −26.8* −16.8 −40.5 −26.6* −16.5 −37.6 −22.8* −16.2 −37.1
Logistics costs −26.5 −16.3 −40.3 −32.3 −13.0 −52.3 −26.3 −21.5 −33.9
CO2 emissions −27.2 −17.7 −40.8 −24.3 −30.7 −6.6 −30.8 −7.2 −54.1



 T. Hacardiaux et al.

1 3

company and 13.3% for the large one. The high costs-emissions weight of the small 
company (artificially) skews the solution to favor it (even opening an additional 
DC). This �AugC method should thus be avoided when companies are very dissimilar 
in terms of customer demand.

Finally, the observation provided in Sect. 6.3 is even stronger with companies of 
different sizes: when the partners have different costs-emissions preferences, each 
company benefits most in the non-priority objective. With costs-emissions weights 
�1∕�2 = 1∕5 , for example, the large cost-focused company decreases its CO2 emis-
sions the most ( 30.7% vs. 13% ), while the small emissions-focused company reduces 
its costs the most ( 52.3% vs. 6.6% ). As a whole, the cooperation reduces its costs 
by 32.3% and its emissions by 24.3% , showing that the priority of the larger com-
pany for costs still clearly bends the cooperative solution. When both companies 
have similar sizes (configuration of Sect. 6.3 and Table 3, �1∕�2 = 1∕5 ), the benefits 
are more balanced, as the cooperation reduces its costs by 28.6% and its emissions 
by 29.3%.

In conclusion, the cooperation between a small and a large company leads to dis-
similar benefits between them. The small partner has more incentive to cooperate 
as economies of scale due to the collaboration are larger, while the company with a 
higher demand has more efficient supply network before cooperating. However, for 
the large partner, the costs and emissions reductions stay significant and are close to 
the maximum benefits reachable by the collaboration (i.e., full vehicles and an opti-
mal number of DCs).

6.5  Three companies with different geographical demand distributions

In this section, we present the results of new experiments with three collaborat-
ing partners. Using those experiments, we discuss the impact of the geographical 
demand distribution. We assume that the demand for each company is no longer uni-
formly spread over all cities (while maintaining a similar total demand for the com-
panies as previously). In the following experiments, the first company is based in the 
West, the second company in the Center and the third company in the East (see the 
dashed lines in Fig. 8 for the limits of those regions). Each company gets half of its 
demand from its core region and one quarter from each other region. We consider 
companies with similar ( �1∕�2∕�3 = 3∕3∕3 ) or opposite ( �1∕�2∕�3 = 1∕3∕5 or 
5/3/1) costs-emissions preferences and apply the six computation methods proposed 
in Sect. 5.

In these experiments with three partners, the individual benefits in augmented 
cost vary from 34.5% to 40% (depending on the partner, the computation method 
and the costs-emissions preferences). In comparison, a configuration with two part-
ners and an East-West demand distribution leads to individual benefits going from 
23% to 26% in augmented cost. As expected, increasing the number of partners in 
the collaboration raises the potential benefits (but the collaboration management 
complexity too). The cooperation is clearly attractive to a new entrant which profits 
from the totality of the augmented cost reduction. In contrast, the augmented cost 
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reduction for previously existing partners adding a new partner equals the marginal 
gain, which tends to decrease with each newcomer.

The costs-emissions weight � approach (Sect. 5.1) leads for each preferences 
configuration ( �1∕�2∕�3 = 1/3/5 or 3/3/3 or 5/3/1) to a very similar costs-emis-
sions weight � value, close to 3, as the partners are very similar in size. The same 
supply network and the same locations for 5 DCs are then found for the coali-
tion, overlooking the difference in costs-emissions preferences � i among partners 
(see Fig.  8.a). On the opposite, the partner influence weight � i (Sect.  5.2) and 
partners benefits approaches (Sect. 5.3) account for this difference, leading to dis-
similar supply networks, as illustrated in the three following examples. With pref-
erences �1∕�2∕�3 = 3/3/3, the � i

Vol
 method leads also to a solution with 5 DCs in 

slightly different locations compared to the costs-emissions weight � approach 
(Fig. 8.b). The augmented cost of the western company (which is favored in the 
� approach as its main customers are more spread, while those of other compa-
nies are mainly clustered) is increasing, while it is decreasing for the center and 
the eastern companies. In conclusion, when companies have different geographi-
cal demand distributions, companies with a higher demand dispersion obtain 
higher benefits, as increased geographical coverage provides more cooperation 
opportunities (in accordance with Cruijssen et  al. (2007a), Guajardo and Rön-
nqvist (2015) and Verdonck et  al. (2019)). With preferences �1∕�2∕�3 = 1/3/5, 
the MmBenefit method proposes a solution with 4 DCs, and their locations are 

Fig. 8  Collaborative supply networks and DCs locations for three companies found with the costs-emis-
sions weight � approach in every individual preferences combinations (a); with the � i

Vol
 method in a 3/3/3 

preferences combination (b); with the MmBenefit method in a 1/3/5 preferences combination (c); and 
with the mMLoss method in a 5/3/1 preferences combination (d)
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skewed towards the east (Fig.  8.c). The difference between partners benefits is 
reduced to less than 1.7%, compared to 5.1% with the partner costs-emissions 
weight � approach. Using the mMLoss method in a 5/3/1 preferences combina-
tion (Fig.  8.d), the solution dominates, in terms of augmented costs, the solu-
tion found with the costs-emissions weight � approach. In this specific case, the 
increase in CO2 emissions due to the opening of only 4 DCs is counterbalanced 
by the decrease in opening costs, leading to a smaller augmented cost for each 
partner and increasing the individual benefit between 0.5 and 1%.

In conclusion, when geographical spread and individual preferences differ, com-
panies should prefer applying approaches that conserve these individual preferences 
as they allow to design a network that has different priorities (costs versus CO2 
emissions) in different regions.

7  Conclusions

Horizontal collaboration is considered to be a promising avenue to improve the effi-
ciency and sustainability of logistics services. Despite partners being independent 
entities, likely with different preferences, the majority of current research assumes 
that partners agree on a unique collaborative goal (most often the minimization of 
transportation costs). Our main goal in this research is to study how to navigate mul-
tiple objectives in collaborative logistics, how to help finding a joint supply network 
that is agreeable for all partners, and how it impacts collaboration benefits. For this, 
in Sect. 4, we develop a multi-objective multi-partner framework accounting for the 
influence weights of partners and for their individuality in terms of costs-emissions 
preferences. In order to inform the negotiation process, Pareto fronts can be gener-
ated to reveal the trade-offs between costs and emissions for the cooperation on the 
one hand (Sect. 4.1), and the augmented costs of the different partners on the other 
hands (Sect. 4.2). In Sect. 5, we propose three additional approaches to identify a 
unique, fair and efficient, solution: adding up the coalition’s costs-emissions prefer-
ence (Sect. 5.1), evaluating the partner influence weights (Sect. 5.2), or balancing 
the individual partner benefits (Sect. 5.3).

The proposed framework provides quantitative decision support for practition-
ers implementing and managing horizontal partnerships. Furthermore, it allowed 
us to various insight through numerical experiments (Sect. 6.1). First, collaboration 
remains beneficial for partners in all cases, even if their preferences, sizes or geo-
graphical demand distribution are different. Preference weight combinations do, how-
ever, impact the individual benefits of the partners, with dissimilar weights reduc-
ing the potential benefits (Sect. 6.2). Furthermore, when the partners have different 
costs-emissions preferences, they tend to benefit the most in the non-priority objec-
tive (Sect. 6.3). Second, the choice of the solution approach impacts the collaborative 
solution, rewarding either the partnership or a specific partner, favoring a reduction 
in costs or in emissions, and affecting the gap between individual benefits or with the 
ideal solution of each partner. Overall, the desirability of the solution reached by each 
approach depends on the context of the collaboration, the demand characteristics, the 
partners’ preferences and influence (Sect. 6.3). Third, the importance of partner size 
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is confirmed in Sect. 6.4. Comparatively smaller companies will tend to benefit more 
than larger companies which have better economies of scale when operating indi-
vidually. Small companies thus best attract a large partner in order to enjoy savings 
associated with large volumes. However, the larger company may still bend the col-
laboration towards its costs-emissions preference and reach a cooperative set-up that 
is close to its ideal solution. Finally, broad geographical coverage increases the poten-
tial benefits of cooperation as observed in Sect. 6.4. When the geographical demand 
distributions and partners preferences are dissimilar, solution approaches accounting 
for the individual costs-emissions weights should be preferred.

To conclude, the following suggestions for further research can be made. One 
natural avenue is to include more complex allocation techniques from the literature 
(e.g., Shapley value) within our framework. Second, the multi-objective multi-part-
ner approach could be applied to other collaborative settings besides the location-
inventory model. According to Pan et al. (2019), research on intermodal collabora-
tions should be enhanced, for example. Finally, it would be interesting to validate 
our framework with the use of real-life data. In practice, our work can be used to 
incentivize companies to consider the opportunity of collaborating with others, to 
foresee the collaborative benefits of a potential partner, or to support companies that 
are already engaged in a partnership to improve their synergy value.
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