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Abstract—A common assumption in embedding methodologies
is the availability of exact pairwise distances. In this paper, we
propose a 2D embedding that overcomes this limitation. It can
operate on distances that are represented as a range of lower and
upper bounds. Such bounds are typically available when objects
are compressed, whence our approach is highly applicable in the
case of big compressed datasets. We establish linear convergence
(i.e., exponential decay of distance to optimality) for the proposed
scheme, with a rate characterized by the topology of the data
graph. We compare with prevalent embedding methodologies
(ISOMAP, t-SNE, MDS) and illustrate that our approach can
provide fidelitous preservation of distances, correlations, and
object ranks, even in the presence of inexact distance information.

Index Terms—Dimensionality Reduction, Visualization

I. INTRODUCTION

Dimensionality reduction is instrumental for processing
large volumes of data. Embedding algorithms map high-
dimensional data into low-dimensional representations so as
to alleviate the run-time of machine learning operations, while
aiming to retain object relations between the original data. We
present a two-dimensional (2D) embedding, i.e., the mapping
of a high-dimensional dataset onto the Euclidean plane; a
notable application being data visualization. The literature
comprises a wide range of dimensionality reduction methods:
Multi-Dimensional Scaling (MDS) [1], ISOMAP [2], Locally
Linear Embedding (LLE) [3], t-distributed Stochastic Neighbor
Embedding (t-SNE) [4], random projections [5], and Uniform
Manifold Approximation and Projection (UMAP) [6] enlist
some of the most commonly used techniques. All of these
operate using exact distance information between data pairs.

A distinct trait of the proposed embedding method is that it
can accommodate inexact distance estimates between object
pairs, represented by lower and upper bounds. In specific, our
method has access only to distance ranges between pairs of
objects. Such distance estimates can be derived, for example,
when data are represented and compressed in a lossy manner
using orthonormal transforms (Fourier, wavelets, etc.) [7], or
compressed sensing methodologies [8]. In such scenarios, exact
distances between pairs of objects are no longer computable,
but upper/lower bounds can be estimated instead; cf. Fig. 1 for
a visual illustration.
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Fig. 1. The embedding proposed does not require exact distances but only
ranges of lower/upper distance estimates. One case where such estimates are
available is when compressing data using a lossy compression mechanism.

Our data embedding method, called Multi-objective 2D
Embedding (MoDE), can capture with high fidelity multiple
facets of the data relationships: correlations, distances, and
orders/importance rankings. MoDE may serve as an effective
big-data visualization tool in applications where the amount
of collected data is so large that it must be compressed in a
lossy manner, in which case only bounds on distances can be
deduced such as in [9]–[11]. MoDE organizes the dataset
as a graph, across the edges of which (i.e., between pairs of
data objects) lower/upper bounds on pairwise distances are
obtained. The method leverages these bounds to cast the 2D
embedding problem as a set of linear inequalities exploiting
also the (partial) ordering of objects. It solves the inequality
system in a least-squares sense to obtain the angular values of
the embedded data points.

Our contributions enlist: (1) an iterative, anytime [12] em-
bedding algorithm that operates on distance ranges; the anytime
nature provides early embeddings even before complete execu-
tion of the algorithm; (2) preservation of distance/correlation
relations with competitive accuracy to the state-of-the-art; (3)
preservation of (partial) orders present in the dataset, thus
promoting the interpretability of the embedding outcome; and
(4) theoretical analysis establishing linear convergence (i.e.,
exponential decay of the approximation error with the number
of iterations) despite lack of strong convexity in the objective.

To the best of our knowledge, this is the first embedding ap-
proach that can accommodate uncertain distance information
in the form of distance ranges.



A. Notation

For n ∈ Z+, we denote [n] := {1, . . . , n}. We use boldface
lower-case variables for vectors (represented as column vectors)
and denote matrices with upper-case variables. The standard
inner product in Cd is denoted by 〈·, ·〉, whereas ‖·‖ denotes the
Euclidean norm. For a matrix A, we use ai, A†, Range(A), and
‖A‖ = σmax(A) for the i−th column, Moore–Penrose pseu-
doinverse, range (column space), and maximum singular value,
respectively. For ` < u, we define (x)u` := min(max(x, `), u),
the projection of x to the interval [`, u]. We extend the notation
for vectors, with ` ≤ u, [`,u], and (x)u` :=

(
(xi)

ui

`i

)
meant

entry-wise.

II. PROBLEM FORMULATION

Given a dataset X ∈ Cd×n, where n is the number of data
points and d their dimension, a primary goal of the proposed
2D embedding is to generate X2d ∈ R2×n aiming to preserve
(as accurately as possible) the distance structure, that is:
• Objective 1: ‖xi − xj‖ ≈ ‖x2d,i − x2d,j‖.
In our setting, direct access to X is assumed unavailable,

and the only information accessible encompasses ranges of
distances (i.e., lower and upper bounds) between a subset
of object pairs; for example, this is the case when data are
lossily compressed using orthonormal transforms. Nonetheless,
norms of original points are assumed known–one scalar value
per object is stored–and MoDE is norm-preserving, in that it
satisfies ‖xi‖ = ‖x2d,i‖ for all i ∈ [n]. Then, we express the
embedding in polar coordinates using θi to denote the angle
of x2d,i, which are the decision variables in our method (one
scalar value per object).

In the following, we leverage pairwise correlations to
obtain linear constraints on angular values θ ∈ Rn. For
simplicity, we assume for now that exact pairwise distances are
known, and showcase how to utilize them for formulating the
embedding problem as a linear system. Next, we illustrate how
to incorporate bounds in obtaining a set of linear inequalities
(i.e., a linear system with ranges of distance values).

a) Relative angle from correlation.: From the basic
relation

‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2cxi,xj
‖xi‖ ‖xj‖ , (1)

where cxi,xj :=
Re〈xi,xj〉
‖xi‖‖xj‖ ∈ [−1, 1] is the correlation

(coefficient), and the fact that MoDE is norm-preserving it
becomes apparent that distance preservation is equivalent to
preservation of pairwise correlations, i.e.,
• Objective 2: cxi,xj ≈ cx2d,i,x2d,j

.
Note that for a single pair (xi,xj), objectives 1 & 2 can be
achieved perfectly when cxi,xj

is known, by setting:

θj − θi = ± arccos(cxi,xj
), (2)

where the sign indeterminacy is due the fact that cos(·) is an
even function. A distinctive attribute of MoDE, not present in
other embedding techniques, is that it further seeks to preserve
an order on data points.

Definition 1. (Partial order) A strict partial order is a binary
relation ≺ that is non-symmetric (x ≺ y implies y 6≺ x) and
transitive (x ≺ y and y ≺ z imply x ≺ z). This generalizes
the notion of (total) ordering because for x, y it may hold
that neither x ≺ y nor y ≺ x, i.e., two points may not be
comparable. A non-strict partial order � differs in that it does
not exclude both x � y and y � x for x 6= y. A set equipped
with a partial order is called a partially ordered set (poset).

Given a (strict) partial order on [n], the distinct objective of
MoDE is to plot points such that:
• Objective 3:

i ≺ j =⇒ θi < θj . (3)

MoDE embodies this objective by means of adopting θj −
θi = arccos(cxi,xj ) ∈ [0, π], when i ≺ j [13]. Our method
organizes the dataset as a (directed) data graph G = (V,E),
where V is the set of vertices (points) and E is the set of
edges. The ordered pair (i, j) ∈ E if and only if i ≺ j. We let
A ∈ Rm×n denote the incidence matrix (m = |E|, n = |V |),
where each row corresponds to a directed edge (i, j) ∈ E and
takes values −1, 1 at the i-th and j−th entry, respectively, and
is zero elsewhere. Consequently, it follows that (2), (3) can be
written compactly as a linear system y = Aθ, where y ∈ Rm
stacks the values {arccos(cxi,xj

)}(i,j)∈E computed across the
edges of the data graph G. The following remark discusses
means of constructing the data graph, when not defined a priori
alongside a strict partial order.

Remark 1 (Ordering the dataset). A typical embedding will
try to preserve only the pairwise distances in the lower
dimensionality. However, in many applications, the notion of
importance ranking of a data point is explicitly given by means
of a score function. For example, in a recommender system
application for movies, in addition to the movie similarities, it
is advantageous to also highlight the importance of the movie
(e.g., the average user rating can be used as a proxy for that).
Similarly, when visualizing similarities in financial time-series
data, one can use the market capitalization of a company, to
highlight its importance. The question that we address here,
is how to incorporate in our embedding this importance of a
data-point.

The score mechanism incurs a total ordering in V , i.e., a
non-strict partial order on V × V . MoDE aims to plot more
“important” points at higher angles (cf. (3)), thus yielding
an interpretable embedding outcome. In practice, it may be
beneficial to consider only a subset of relations, e.g., based on
the K−Nearest Neighbors (K-NN) of each point, for the sake
of computational savings (this is the option we adopt in our
experiments), which incurs a partial order. MoDE does not
require a score per object, but if available it is used to create a
more interpretable embedding. In the absence of scores, random
scores are used. Our experiments reveal that preservation of
the objectives of MoDE are not compromised in the absence
of object score values.

Operating on distance ranges. When the original dataset is
unavailable, exact distance/correlation information between a



pair of points in the original space is lost. We restrict our
attention to cases for which it is possible to infer lower/upper
bounds on pairwise distances/correlations between original
points. Besides, note that one may further use these in
constructing a K-NN graph (K-NNG), for example with respect
to the average of lower/upper distance bounds. This was the
case for our experiments, where we assumed that only the
compressed data are available.

Obtaining such lower and upper bounds can be regarded
as a pre-processing step, during which for every pair of
points (i, j) ∈ E, one deduces a correlation uncertainty
of the form cij ∈ [cij , c̄ij ], where cij ≡ cxi,xj

is the
correlation of original points xi,xj (this can be inferred
from distance bounds immediately from (1), given knowledge
of norms). These bounds directly yield lower/upper bounds
of uij and `ij on the angular difference θj − θi, namely
uij := arccos

(
cij
)

and `ij := arccos (c̄ij), in light of the
fact that arccos(·) : [−1, 1]→ [0, π] is a decreasing function.
To conclude, we stack the lower/upper bounds in vectors ` ≤ u
with `,u ∈ [0, π]m to capture the uncertainty in correlation
via a linear system of inequalities on the angular domain:

` ≤ Aθ ≤ u. (4)

Given that the embedding is from a high-dimensional space
Rd to the 2D plane, it is plausible that the inequality system
is infeasible, i.e., {θ|` ≤ Aθ ≤ u} = ∅. For this reason, we
consider a solution in the least-squares sense, that is:

minimize
θ

f(θ) :=
1

2

∥∥Aθ − (Aθ)
u
`

∥∥2 . (5)

This is equivalent to computing dist(Range(A); [`,u]), i.e., the
closest point to [`,u] that belongs in the range space (i.e., the
linear span of columns) of A. In the next section, we devise
an efficient algorithm to solve this problem.

III. ALGORITHM

We invoke the gradient method for solving (5); The iterates
(k ∈ Z+) are:

θ(k+1) = θ(k) − γA>
(
Aθ(k) −

(
Aθ(k)

)u
`

)
. (6)

Algorithm 1 Multi-objective 2D Embedding (MoDE)

Input: X̃, s,K . X̃: ‘inexact’ dataset; s: scores; K: # NNs
1: Construct G (incidence matrix A)
2: Obtain `,u in (4) . Lower/Upper correlation bounds
3: θ ← DAE(A, `,u, ε) . Compute angular values
4: for i = 1, . . . , n do
5: x2d,i ← (‖xi‖ cos θi, ‖xi‖ sin θi) . Embedding
6: end for

Output: X2d

The algorithmic description of MoDE is illustrated in Alg. 1.
In Steps 1 & 2, respectively, the algorithm constructs a data
graph G and computes the relevant lower/upper correlation

Algorithm 2 Distributed Angle Estimator (DAE)
Input: A, `,u, ε . A : incidence matrix; `,u: lower/upper
bounds; ε: tolerance

1: θ(0) ← 0; k ← 0 . Initialization
2: d← diag(A>A) . Degrees
3: dmax ← maxi∈[n] di . Maximum degree
4: γ ← 1

2dmax
. Step size

5: repeat
6: k ← k + 1
7: for i = 1, . . . , n do . Updates
8:

φ
(k+1)
i ←

∑
j∈N in

i

[
θ
(k)
j +

(
θ
(k)
i − θ

(k)
j

)uij

`ij

]

+
∑

j∈Nout
i

[
θ
(k)
j −

(
θ
(k)
j − θ

(k)
i

)uij

`ij

]

9: θ
(k+1)
i ← (1− γdi)θ(k)i + γφ

(k+1)
i

10: end for
11: until

∥∥∥θ(k+1) − θ(k)
∥∥∥ ≤ ε . Termination criterion

Output: θ(k+1)

bounds (in case the data graph is available step 1 is omitted).
In accordance with our experiments, we focus on the special
case when the dataset is not organized a priori as a strict poset;
in such case, one may compute lower/upper distance bounds
for each pair of points and use the average of these bounds to
construct a K-NNG.

The direction of each edge is then determined based on a
partial order, e.g., score values, that also constitute an input
to the algorithm. If no score exists for the dataset objects, a
random score is used. Step 3 uses gradient descent (Alg. 2)
to compute the angular values, while Steps 4–6 produce the
(norm-preserving) embedding outcome.

The gradient method translates to Alg. 2, referred to as
Distributed Angle Estimator (DAE). The update equations for
each point’s angular value are distributed in the sense that a
point uses solely angular values pertaining to its neighbors to
update its own, cf. Steps 8-9 (we define N in

i := {j|(j, i) ∈
E},N out

i := {j|(i, j) ∈ E} and di = |N in
i | + |N out

i | as the
in-/out neighborhood, respectively, and (total) degree of point i).
We deem this a favorable attribute of MoDE, in that updating
a single point’s angular estimate does not require processing
the entire dataset, but rather a subset of neighboring points.
The algorithm terminates when the norm of the gradient of the
objective in (5) falls below a given tolerance (Step 11).

Because of its iterative implementation, MoDE is an anytime
algorithm that provides an embedding of all the points (which
progressively improves), even before the full execution of
the algorithm when the termination criterion is reached. The
following theorem establishes linear convergence for Alg. 2
(the proof is omitted for length considerations.).

Theorem 1 (Convergence of Alg. 2). For tolerance ε > 0,



Alg. 2 takes O
(
d2maxη

2 log
(
1
ε′

))
iterations and outputs an

ε′−optimal solution where η > 0 is the metric subregularity
constant of ∇f [14], dmax is the maximum degree of the graph,
and ε′ := 2dmax · η · ε.

IV. EXPERIMENTS

We compare the quality of our embedding methodology with
several widely used embedding techniques, namely ISOMAP,
MDS, and t-SNE. The comparisons are in terms of:

1) Quality of embedding
2) Classification accuracy

Moreover, we highlight solely for MoDE its ability to pro-
vide an accurate embedding even in the absence of object
orders/scores in the dataset, and its linear scalability. The code
and datasets used are available at: https://github.com/ahmadajal/
MoDE. All experiments have been conducted on a 2.5 GHz
14-Core Intel Xeon W with 256 GB of RAM.

Experimental setup. Our method assumes as input lower and
upper bounds on the Euclidean distance for a given pair of
objects. Any methodology that provides such bounds can be
used. Here, we derive such bounds by lossily compressing
time series using the approach of [7], which has been proven
to compute optimally tight bounds. Therefore, for each pair
of objects, we do not compute the exact distance (as this
information is lost in compression) but rather a lower bound `
and an upper bound u. Our methodology uses both of these
bounds, cf. (5). The techniques with which we compare our
methodology assume an exact distance, and for those we use
the mid-point 1

2 (`+u) as a surrogate. For techniques that work
on the K-NN graph (all except MDS), K = 20 was chosen.
MDS, which is equivalent to Principal Component Analysis
(PCA), is a global technique and uses all pairwise distances.

A. Embedding Quality

Comparison Metrics. We evaluate the embedding quality
on 2D of various techniques across a variety of metrics
that highlight the quality in distance, correlation, and score
order preservation. We define and evaluate metrics on the
K-NNG with respect to original distances on uncompressed
data so as to simultaneously assess the impact of both
compression and embedding on a lower-dimensional space
(2D) on the retention of relations. We define the generic
formula R := 1 − 1

m

∑
(i,j)∈E Cij , where Cij is the cost

of preservation accuracy on the pair (i, j) ∈ E. In all cases, a
higher metric value implies a more accurate preservation, with
1 corresponding to perfect preservation. Specifically, we intro-
duce: (1) Rd ∈ [0, 1] for distance, by setting Cij ≡ |dij−d̂ij |dij+d̂ij

,
where dij := ‖xi − xj‖ denotes the original distance on the
high-dimensional data, and d̂ij := ‖x2d,i − x2d,j‖ denotes
the distance between corresponding embeddings in 2D; (2)
Rc ∈ [−1, 1] for correlation, by setting Cij ≡ |cij−ĉij |, where
cij := cxi,xj

, ĉij := cx2d,i,x2d,j
refer to the correlation between

original and embedded points, respectively; (3) Ro ∈ [0, 1]
for order by setting Cij ≡ 1 when i ≺ j and θi > θj ,
i.e., when order is not preserved, and 0 otherwise; in other

words, we compute the fraction of preserved order relations.
Finally, for tests involving scored datasets (i.e., a total ordering)
we further assess the Spearman correlation metric [15, p. 508]
Rs ∈ [−1, 1], which assesses how well the total order is
preserved in the K-nearest neighborhoods of data points.

Understandably, metrics involving order preservation are
mainly used to capture the additional objective of our method-
ology and are meant to highlight that our approach can
indeed satisfy its multi-objective desiderata. To this end,
the corresponding values for the baseline methods are only
presented for the sake of completeness.
Quality of embedding. For the first set of experiments,
we have used two time-series datasets that we compiled
ourselves: Small-Stock (436 stocks of length 128) and
Big-Stock (2252 stocks of length 1024). The nature of
these datasets allows us to try small and large compression
ratios using Fourier coefficients (by dropping low-energy
coefficients). The datasets were created using historical prices
from equities in the NASDAQ stock index, from which
data were extracted using the Investors Exchange (IEX) API
(https://iextrading.com/developer/docs), and were compressed
in the Fourier basis by storing the highest magnitude Fourier
coefficients. As score, to order the data objects, we use the
market capitalization of each stock. Therefore, in our method,
stocks with greater capitalization are aimed to be placed at
a “greater” angle on a 2D plot, which provides an additional
attribute of interpretability not present in any of the other
baseline methods. We compress the Small-Stock dataset
using a 16:1 compression ratio, and the Big-Stock dataset
using a 128:1 compression ratio.

Fig. 2. Comparison of MoDE with other embedding techniques.

We assess the performance of the embedding methods using
the aforementioned quality metrics. Fig. 2 depicts the values for
each of those metrics for the four techniques we compared. For
t-SNE, because of its randomized implementation, we report
results averaged over 10 runs. We observe that MoDE (darkest
bar) depicts the highest preservation across all metrics and
across all techniques, with the singular exception of ISOMAP
which features more accurate distance preservation (Rd metric),
but lags behind MoDE for all other metrics. It should be noted
that ISOMAP incurs a higher computational cost than all other



techniques, because after the K-NN graph computation it builds
a minimum spanning tree based on distances. The metrics Ro
and Rs are depicted for other methods only for the sake of
completeness; they are not meant to claim any superiority of
MoDE, as it is the only method with an objective of maintaining
partial orders. Indeed, note that for baseline methods Ro and Rs
take values very close to 0.5 and 0, respectively, which reveals
no order preservation, in full agreement with the fact that all
techniques except MoDE do not consider score information in
their embedding process. This fact is further illustrated on the
comparative visualization plot for the Big-Stock dataset in
Fig. 3. The two-dimensional plot reveals that MoDE succeeds
in preserving score orders very accurately, as captured by the
smooth transition of color-coded points. In this example, the
scores/colors encode the market capitalization for each stock.
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MoDE
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Fig. 3. [Big-Stock dataset] Comparative visualization of our method
(MoDE) with ISOMAP, t-SNE, and MDS. Color coding demonstrates objects’
score values.

B. Classification Accuracy
We evaluate the embedding quality of MoDE in the context

of classification tasks. We assess the prediction accuracy
when using MoDE as a pre-processing step to reduce the
dimensionality of the data. We compare with t-SNE, ISOMAP,
and parametric t-SNE (an extension to t-SNE that learns a
parametric mapping between the high-dimensional data space
and the latent space [16]). In this experiment, all techniques
use the exact distances between the object and not approximate
distance information. We note that this is possible to achieve in
MoDE by simply providing the same lower and upper bound
with value equal to the distance between any two objects.

To conduct this experiment, we split the dataset into training
and test (80-20 split). We map the training points onto
2D using the previously mentioned techniques and build a
classifier on 2D using the dimensionality-reduced training
dataset. Subsequently, we map the test points on 2D and use
the classifier built to predict their class. We evaluate on two
classification methods:

• Multinomial Logistic Regression (LR), that generalizes
logistic regression to multi-class problems. We used the
implementation of scikit-learn [17]. The regularization
hyper-parameter was tuned for each dataset and for each
of the embedding methods separately.

• K-Nearest Neighbors classifier (KNN), which classifies an
object by majority vote across its nearest neighbors, i.e,
the object is assigned to the class most common among its
K-nearest neighbors. We used the implementation of scikit-
learn for this task [17]. In the voting phase, we weight
the nearest neighbor points by their inverse distance to
the query point in order to give more importance to closer
points. The number of neighbors for this method is set
equal to the number of nearest neighbors used for the
embedding methods (MoDE, t-SNE, parametric t-SNE,
and ISOMAP).

For each of the datasets and embedding methods, we report
the classification accuracy, i.e, the number of correctly classified
data points divided by the total number of data points. These
datasets do not come with inherent scores, so for MoDE we
use the actual class labels as score values for each of the
data points. This does not make unfair the comparison to the
other methods, because the scores are only used to embed the
training set. The test set uses only the original object features.

For MoDE and t-SNE, we embed the test data points in the
2D space by considering the nearest neighbors in the original
space and using their location in the new space to map the new
points. We take the weighted average of their nearest neighbor
embeddings with weights set proportional to the inverse of the
distance to these neighbors, that is, given a point i in the test
data, we compute its embedding x2d,i as follows:

x2d,i =
1∑

j∈Ni

1
dij

∑
j∈Ni

1

dij
x2d,j , (7)

where Ni is the set of K-nearest neighbors of i in the training
set and dij is the distance between points i and j. For ISOMAP,
given that it depends on geodesic neighbors, we first find the
nearest neighbors with respect to geodesic distance of each test
data point in the training set. Then, we construct a kernel by
computing the shortest geodesic distances from each test point
to another in the training set. To conclude, the embedding of
the test set is taken using this kernel on the embedded vectors
of the training set [17].

Table I shows the test accuracy for datasets from the UCR
time series archive and the UCI machine learning repository
[18]. These results highlight that training machine learning
models on the embeddings provided by MoDE typically yields
very favorable results than when using t-SNE or ISOMAP for
dimensionality reduction.

C. Additional experiments for MoDE

Here, we present experiments to highlight several desirable
traits of MoDE .

Scalability. We test the scalability of MoDE under inexact
distance information by considering increasing data sizes



TABLE I
CLASSIFICATION ACCURACY USING LOGISTIC REGRESSION (LR) AND K-NEAREST NEIGHBORS (KNN).

original data MoDE t-SNE parametric t-SNE ISOMAP
Dataset (# classes) n dim LR KNN LR KNN LR KNN LR KNN LR KNN

Arrow (5) 500 1024 0.93 0.87 0.48 0.51 0.72 0.79 0.22 0.37 0.69 0.71
Wafer (2) 1000 128 0.955 0.985 0.915 0.93 0.905 0.985 0.905 0.945 0.905 0.99

Breast Cancer (2) 569 30 0.982 0.982 0.719 0.807 0.964 0.964 0.964 0.956 0.947 0.956
Heart Beat (2) 14545 188 1.0 0.996 0.92 0.932 0.81 0.958 1.0 1.0 0.867 0.898

Madelon (2) 2600 500 0.561 0.586 0.586 0.526 0.463 0.501 0.592 0.613 0.517 0.532
EEG eye state (2) 11853 14 0.682 0.925 0.822 0.839 0.536 0.742 0.545 0.587 0.569 0.581

Wine quality (3) 3961 11 0.606 0.602 0.523 0.537 0.484 0.499 0.442 0.496 0.479 0.503
Phishing websites (2) 5425 30 0.938 0.941 0.748 0.757 0.712 0.884 0.727 0.84 0.536 0.682

cifar-10 (10) 10000 3072 0.392 0.278 0.106 0.111 0.208 0.189 0.224 0.213 0.221 0.205

CV: Rd=0.705, Ro=0.961, Rc=0.854
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Same plot with color-coding using the original Market Cap to 
show that the data scores are shuffled.
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Fig. 4. [Small-Stock dataset] MoDE operates effectively even without object scores. In their absence, random scores can be used without affecting the
embedding quality.

(number of data objects). For this experiment, we use the EEG
eye state dataset, with dataset sizes ranging between 1,000 and
11,000 objects. Figure 5 shows the number of iterations for
MoDE needed to reach the termination criterion (step 11 in Alg.
2). We have set ε =

√
n×10−4, where n is the number of data

points (this is done to ascertain a fair comparison of run-time
by maintaining a common RMSE (Rooted-Mean-Square-Error)
value across n). The linear relation between the number of
objects and the iteration counts further supports the scalable
nature of MoDE for large datasets. 5.
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Fig. 5. Scalability of MoDE: Iterations of MoDE until convergence on
increasingly larger dataset sizes (EEG eye state dataset).

Embedding without object scores. One might be prompt
to consider a limitation of MoDE the fact that it asserts the

existence of a score function, but this is not the case. In
the absence of scores that dictate a partial order of points,
random orders can be used without affecting the preservation
of the given objectives. This is because the points will still be
mapped so that distances and correlations are (approximately)
preserved, by using random orders. Fig. 4 depicts this for the
Small-Stock dataset, where we use both the original and
shuffled market capitalization of the stocks, without observing
any deterioration in the metrics qualified.

V. CONCLUSION

We presented the first embedding method that operates on
inexact distance information, a scenario encountered when
dealing with compressed data. Hence, our method can be
instrumental for visualization of very large (compressed)
datasets. Moreover, interpretability is enhanced by presenting to
the user an ordered and also consistent outcome of visualization,
typically in the shape of a ‘crescent moon‘.
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