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Abstract
Aim: The abundant centre hypothesis (ACH) predicts a negative relationship be-
tween species abundance and the distance to the geographical range centre. Since 
its formulation, empirical tests of the ACH have involved different settings (e.g. the 
distance to the ecological niche or to the geographical range centre), but studies 
found contrasting support for this hypothesis. Here, we evaluate whether these dis-
crepancies might stem from differences regarding the context in which the ACH is 
tested (geographical or environmental), how distances are measured, how species 
envelopes are delineated, how the relationship is evaluated and which data are used.
Location: The Americas.
Time period: 1800– 2017.
Major taxa studied: Mammals, birds, fish, and tree seedlings.
Methods: Using published abundance data for 801 species, together with species 
range maps, we tested the ACH using three distance metrics in both environmental 
and geographical spaces with range and niche envelopes delineated using two dif-
ferent algorithms, totalling 12 different settings. We then evaluated the distance– 
abundance relationship using correlation coefficients (traditional approach) and 
mixed- effect models to reduce the effect of sampling noise on parameter estimates.
Results: Similar to previous studies, correlation coefficients indicated an absence of 
effect of distance on abundance for all taxonomic groups and settings. In contrast, 
mixed- effect models highlighted relationships of various strengths and shapes, with 
a tendency for more theoretically supported settings to provide stronger support for 
the ACH. The relationships were however not consistent across taxonomic groups 
and settings, and were sometimes even opposite to ACH expectations.
Main conclusions: We found mixed and inconclusive results regarding the ACH. 
These results corroborate recent findings, and suggest either that our ability to pre-
dict abundances from the location of populations within geographical or environ-
mental spaces is low, or that the data used here have a poor signal- to- noise- ratio.  
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1  | INTRODUC TION

The assumption that species are most abundant in the centre of their 
range and decline in abundance toward the range edges –  the so- 
called abundant centre hypothesis (ACH) –  has a long history in the 
ecological literature (Sagarin & Gaines, 2002; Sagarin et al., 2006). 
In recent years some studies found support for the ACH (Martínez- 
Meyer et al., 2013; Osorio- Olvera et al., 2020; Yañez- Arenas 
et al., 2012), but others (Dallas et al., 2017; Santini et al., 2019) found 
very low or no support, casting doubts about the generality of this 
hypothesis. The controversy was recently revived following the 
study published by Dallas et al. (2017) highlighting consistent near- 
zero correlation between population abundance and the distance to 
the climatic niche or the geographical range centre for more than 
1,400 species.

The ACH is implicitly grounded in the niche theory but was 
originally developed to explain distribution– abundance patterns 
within species geographical ranges (Brown, 1984). It relies on the 
main assumption that the range of a species is a geographical rep-
resentation of its ecological niche (sensu Hutchinson, 1957), so 
that environmental conditions are optimal near the centre of the 
range and harsher at the periphery (Brown, 1984). Since then, sev-
eral studies have shown that the centre of the geographical space 
does not necessarily correspond to the centre of the environmental 
space and that geographical and environmental gradients are not 
necessarily concordant (Hutchinson’s niche- biotope duality; Colwell 
& Rangel, 2009; Soberón & Nakamura, 2009). This suggests that a 
different assessment of the ACH can be obtained depending on the 
space considered.

In recent years, several studies found stronger support for an 
environmental declination of the ACH (Martínez- Meyer et al., 2013; 
Osorio- Olvera et al., 2020; Yañez- Arenas et al., 2012; but see Dallas, 
Pironon, et al., 2020). However, this assessment is often based on an 
unclear characterization of species envelopes (and thus niches). For 
instance, envelopes are often characterized by projecting the geo-
graphical coordinates of species’ observations (e.g. occurrence or 
abundance) in a two- dimensional environmental space characterizing 
variation in the global climate (Dallas et al., 2017; Santini et al., 2019). 
If these observational data were collected over the full species 
range, then envelopes could be considered as an estimate of the 
realized (also called ecological) niche, that is, the set of suitable abi-
otic conditions that are accessible to the species (Barve et al., 2011) 
constrained by biotic interactions (Jackson & Overpeck, 2000; 
Soberón & Nakamura, 2009). However, in many cases, observations 
only cover a subset of species ranges, implying that these realized 

niches are truncated (Chevalier et al., 2021; Dallas & Hastings, 2018; 
Osorio- Olvera et al., 2020; Yañez- Arenas et al., 2020). While this 
issue can be minimized by considering the full species range (Santini 
et al., 2019; Soberón et al., 2018), the ACH could more ideally be 
tested relative to the centre of the fundamental niche (Yañez- Arenas 
et al., 2020), which is defined in terms of population fitness as a func-
tion of abiotic conditions in the absence of biotic interactions and 
dispersal constraints (Austin, 1999; Hutchinson, 1957). Accordingly, 
and provided that abundance is an expression of fitness (which is not 
necessarily the case; see e.g. McGill, 2012; Samis & Eckert, 2009), 
then, a negative distance– abundance relationship should be ob-
served (Osorio- Olvera et al., 2019). However, although some evi-
dence suggests that species’ fundamental environmental niches are 
convex in shape (Peterson et al., 2011; Soberón & Peterson, 2019), 
obtaining robust estimates using correlative methods has proved 
challenging (Peterson et al., 2011).

Geographical range and climatic niche envelopes are often delin-
eated using the minimum convex polygon around sample points i.e. 
the convex hull (CH; Broennimann et al., 2007; Dallas et al., 2017). 
However, geographical ranges are usually irregular and fragmented, 
and thus potentially concave (Brown et al., 1996; Soberón & 
Nakamura, 2009), a type of shape that cannot be accommodated by 
the CH (Blonder et al., 2014). Delineating these complex geometries 
using more appropriate algorithms such as kernel density estimators 
(KDEs; Blonder et al., 2014; Broennimann et al., 2012) could yield new 
insights about the ACH. Furthermore, while convexity is theoreti-
cally expected for climatic niche envelopes (Soberon & Arroyo- Peña, 
2017), CHs are sensitive to outliers (Blonder et al., 2014; Soberón 
et al., 2018), implying that the volume and the shape of CH- based 
climatic envelopes can be biased. Minimum volume ellipsoids (MVEs 
Van- Aelst & Rousseeuw, 2009) have been recently proposed as pu-
tatively closer estimates of fundamental niches than CHs (Escobar 
et al., 2018; Osorio- Olvera et al., 2020; Qiao et al., 2016; Soberón, 
2019; Soberón & Peterson, 2019; Yañez- Arenas et al., 2018). Yet 
whether this assertion holds true remains difficult to test given the 
absence of data allowing the quantification of fundamental niches 
(Soberon & Arroyo- Peña, 2017).

Most ACH studies mainly focused on the distance to centres 
with little attention to margins (Santini et al., 2019). While these 
two distance metrics convey the same information for circular en-
velopes, this is not the case for non- circular envelopes where pop-
ulations close to the centre are not necessarily far from margins 
(Blonder et al., 2014; Broennimann et al., 2021; Santini et al., 2019). 
In such cases, the distance to margins might be a better descriptor of 
the suitability gradient (Broennimann et al., 2021). The Mahalanobis 

The latter calls for further testing on other datasets using the same range of settings 
and methodological framework.
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distance, which unlike the Euclidean distance considers the variance 
and correlation between environmental variables, has also been pro-
posed to more accurately describe the distance to the centre of the 
environmental space (Soberón et al., 2018). These two distance met-
rics have however rarely been considered to test the ACH (Osorio- 
Olvera et al., 2020; Santini et al., 2019).

Abundances have traditionally been assumed to linearly decline 
as the distance from the centre increases (Brown, 1984), but recent 
evidence suggests that the relationship, although globally negative, 
may actually be nonlinear (Pironon et al., 2017; Santini et al., 2019). 
Such nonlinear effects have often been explained by a violation 
of another assumption of the ACH stating that environmental 
suitability is a continuously decreasing function of the distance 
to the centre (Brown, 1984). More recently, other factors have 
been advanced to explain these nonlinear relationships includ-
ing biotic interactions (e.g. ideal despotic distribution), threshold 
effects, Allee effects or a nonlinear spatial structure of the envi-
ronment (Osorio- Olvera et al., 2019; Pironon et al., 2017; Santini 
et al., 2019). Depending on the factor, different shapes, both con-
cave and convex, can be expected. To date, few studies (Dallas 
et al., 2017; Osorio- Olvera et al., 2020) have considered the po-
tential for a nonlinear distance– abundance relationship and most 
of them have used rank correlations (Spearman; but see Yancovitch 
Shalom et al., 2020), a measure that provides no information re-
garding the shape of the relationship.

The ACH has mostly been tested individually for multiple spe-
cies, with the overall trend and agreement across species assessed 
by taking the mean of species effect sizes, regardless of the number 
of populations per species (Dallas et al., 2017; Yancovitch Shalom 
et al., 2020; but see Santini et al., 2019). However, not all species 
are equally informative about the distance– abundance relationship. 
For instance, data collected for rare or difficult to sample species 
can present a considerable level of noise, which can blur the over-
all relationship (Brown, 1984). Hierarchical (mixed- effect) models 
are emerging as powerful tools to reduce the effect of sampling 
noise on parameter estimates, and have been shown to improve 
both inferences (Schaub & Kéry, 2012) and forecasts (Chevalier 
& Knape, 2019). Given the heterogeneity of the data usually con-
sidered in ACH assessments (Dallas et al., 2017; Osorio- Olvera 
et al., 2020), this framework is expected to provide more robust es-
timates of distance– abundance relationships.

Another argument that is often advanced to explain the mixed 
support for the ACH relates to the quality of the data (Dallas, 
Pironon, et al., 2020; Knouft, 2018; Soberón et al., 2018). Two as-
pects are notably discussed: (a) that the centre and the margins of 
geographical ranges and climatic niches are biased because they 
are often estimated using populations covering only a subset of 
geographical ranges and (b) that abundance data are inappropri-
ate owing to the use of non- standardized protocols or due to the 
special status of some species (e.g. invasive species that are not at 
equilibrium with their environment, migratory species). This aspect 
is particularly important as the use of different datasets could yield 
varying support for the ACH.

Here, we aim to re- analyse the dataset published by Dallas 
et al. (2017) for birds, mammals, fishes and trees, while accounting 
for the reported biases, to assess whether different conclusions 
could be obtained when using different methodological settings (see 
below). For birds, we also consider another dataset collected under 
a robust sampling protocol [North American Breeding Bird Survey 
(BBS) dataset; Osorio- Olvera et al., 2020] to evaluate the effect of 
the quality of abundance data on the distance– abundance relation-
ship. We evaluate the support for the ACH both globally and for each 
species at the same time, using two different statistical frameworks: 
the traditional one based on correlation coefficients and another 
one based on hierarchical Bayesian nonlinear mixed- effect mod-
els. Using abundance data for 801 species totalling 357,317 records 
(Dallas et al., 2017; Osorio- Olvera et al., 2020) together with spe-
cies range maps and related environmental information (Rocchini 
et al., 2011), we tested the ACH in both the geographical and the 
environmental space. In each space, we expressed the suitability 
gradient using three distance metrics (Euclidean and Mahalanobis 
distance to the centre, distance to margins), with two methods to 
delineate species envelopes in both geographical (CH and KDE) and 
environmental (CH and MVE) spaces. Overall, this led to the testing 
of the ACH under 12 different settings.

2  | MATERIAL AND METHODS

2.1 | Datasets

2.1.1 | Climatic data

Climatic data were obtained in the form of 19 bioclimatic variables 
from WorldClim (http://www.world clim.org/), at a spatial resolution 
of 10 minutes (c. 340 km²). From these variables, we performed a 
principal component analysis (PCA) from which we extracted the 
two first axes, which explained 55 and 19% of the total variance, 
respectively. PCA axes were then rasterized into climatic pixels with 
a spatial resolution of 10 minutes.

2.1.2 | Abundance data

We used the data described in Dallas et al. (2017), in which estimates 
of population density for mammals, birds, fish, and tree seedlings 
were extracted from different databases based on published work 
(Knouft & Anthony, 2016; Sullivan et al., 2009; Thibault et al., 2011; 
Woudenberg et al., 2010). For all groups, species abundance was 
estimated as the number of individuals within a sampling area, 
standardized by either sampling area or sampling intensity, thus 
representing a measure of population density. Owing to concerns 
expressed regarding the bird dataset (Soberón et al., 2018), which 
is based on a citizen science programme (eBird), we also tested the 
ACH using the BBS dataset, which follows a standardized survey pro-
tocol. This evaluation allowed us to assess the effect of the quality 

http://www.worldclim.org/
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of the sampling protocol on the estimated distance– abundance re-
lationship. The BBS dataset was extracted from Osorio- Olvera 
et al. (2020). For further details, see Dallas et al. (2017) and Osorio- 
Olvera et al. (2020). Similarly, because for trees, the measure of den-
sity only included one age class that may not be representative of 
the whole population density, we also report global results with tree 
seedlings excluded.

For all species, when several populations fell within the same cli-
matic pixel (c. 340 km²), we averaged abundances across populations 
so that only one population was considered per pixel (i.e. we thinned 
the data; Knouft, 2018; Soberón et al., 2018). After this thinning pro-
cedure, we only retained species presenting at least 10 populations. 
Our analyses are thus based on 801 species, including 626 species 
of birds (599 species for the eBird dataset, 389 species for the BBS 
dataset –  362 species in common between the two datasets), 28 
species of fish, 27 species of mammals and 120 species of trees. In 
our final dataset, the number of populations varied from 10 to 4,444 
depending on species.

2.1.3 | Geographical range maps

The above- mentioned abundance data (including the BBS dataset) 
do not encompass the full geographical range for most species, 
potentially leading to niche truncation issues and biased loca-
tion of both the centres and the margins of geographical and en-
vironmental spaces (Dallas, Pironon, et al., 2020; Knouft, 2018; 
Soberón et al., 2018). Thus, contrary to previous studies that built 
envelopes using the location of observed populations, we here 
delineated species envelopes using the entire distribution of spe-
cies. For birds, mammals and fish, we used International Union for 
Conservation of Nature (IUCN) range maps (https://www.iucnr 
edlist.org/), only considering the resident range for mammals and 
fish, but also including the breeding range for birds owing to the 
presence of migratory species in both the eBird (n = 246 species; 
41% of the original number) and the BBS (n = 196 species; 50% 
of the original number) datasets. However, since the migratory 
status has been shown to have an influence on ACH assessment 
(Osorio- Olvera et al., 2020; but see Dallas et al., 2017), we also re-
port results without migratory species. For trees, we used Little’s 
distribution maps (Prasad & Iverson, 2003). In all cases, range 
maps were rasterized at the same spatial resolution as climatic 
data (i.e. 10 minutes).

2.2 | Defining geographical range and climatic 
niche envelopes

To obtain envelopes in the geographical space, we extracted the co-
ordinates of pixels falling within distribution ranges. Following the 
traditional framework, we delineated species envelopes using the 
CH around the range coordinates (Figure 1). To account for the ir-
regular and fragmented shapes of distribution ranges, we further 

delineated envelopes using a multidimensional KDE procedure 
(Blonder et al., 2014; Figure 1). The bandwidth of the KDE was 
estimated from the data using a multivariate generalization of the 
univariate plug- in bandwidth selector (Wand & Jones, 1994) and 
species envelopes were defined as the minimum threshold of proba-
bility density that included 99% of populations. To obtain envelopes 
in the environmental space, we extracted the two- dimensional co-
ordinates (niche values) corresponding to the location of population 
estimates. Species envelopes were delineated using the CH and the 
MVE that included 99% of the coordinates (Figure 1). The MVE is ex-
pected to provide an estimate potentially closer to the fundamental 
niche than the CH.

For each envelope, we computed its centroid as the mean of the 
vertices and considered it as the centre of the geographical range or 
of the climatic niche. Note that because disjunctions in the hyper-
volume are possible with the KDE, envelopes can be characterized 
by multiple centroids.

2.3 | Distance metrics

To calculate distances, we projected observed populations within 
the estimated species envelopes. For CH envelopes, the distance to 
the geographical centre was calculated using the Haversine distance 
(i.e. Euclidean distance accounting for the curvature of the Earth), 
while the distance to the climatic niche centre was calculated using 
the Euclidean distance. We also used Euclidean distances to com-
pute the distance to the centre of the MVE. For KDE envelopes, we 
computed distances similarly but in cases where species envelopes 
were composed of several polygons, using the centroid of the poly-
gon in which the focal population was located. For all envelopes, we 
also computed the distance to the geographical and the climatic cen-
tre using the Mahalanobis distance, while the distance to the mar-
gins was calculated for each population as the orthogonal distance 
to the closest margin.

In all cases, distances were standardized by the maximum ob-
served distance to ensure comparability across species and settings. 
Hence, values close to one indicate populations far from the centre 
(or from the margins depending on the type of distance considered) 
and values close to zero populations close to the centre (or to the 
margins).

2.4 | Distance– abundance relationship

We evaluated the distance– abundance relationship both glob-
ally and individually for each species using two different statistical 
frameworks.

For the traditional framework, we computed Spearman (to 
account for nonlinear effects) correlation coefficients for each 
species and then averaged the coefficients across species to ob-
tain a global estimate of the relationship at the scale of the tax-
onomic group for each setting (Dallas et al., 2017; Osorio- Olvera 

https://www.iucnredlist.org/
https://www.iucnredlist.org/
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et al., 2020). We then tested whether averaged values differed 
from zero using Wilcoxon one- sample signed- rank tests. While this 
approach is expected to produce better species- specific estimates 
than a hierarchical approach when using sound datasets (e.g. stan-
dardized sampling protocol; Chevalier & Knape, 2019), this is not 
the case when using heterogeneous and noisy datasets that are 

prone to small sample sizes and measurement errors. By consid-
ering that species are not independent and potentially share some 
commonalities, for example due to large- scale ecological determi-
nants such as climate, the hierarchical approach is less sensitive to 
noise and is expected to provide more robust estimates (Harrison 
et al., 2018).

F I G U R E  1   Illustration of the differences between the two envelopes in the geographical (a) and the environmental (c) space for the 
species Dipodomys merriami along with a measure of the correlation between the three distance metrics (across all species) in both spaces (b, 
d). In (a) and (c), grey dots represent the coordinates of pixels falling within species ranges and that were used to delineate species envelopes, 
whereas black dots represent the location of observed populations within each envelope with size proportional to the estimated population 
density. For all envelopes, centres are denoted with a cross. CH, convex hull; KDE, kernel density estimator; MVE, minimum volume ellipsoid
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The second framework is based on hierarchical mixed- effect 
models (Burnham & Anderson, 2002; Gelman et al., 2013). Mixed- 
effect models are composed of both fixed and random effects and are 
commonly used when measurements are made on clusters (e.g. taxo-
nomic group) of related statistical units (e.g. species). This approach is 
particularly useful in settings with noisy data because it makes it pos-
sible to reduce the effect of sampling noise and to refine individual 
estimates by borrowing information across statistical units (Gelman 
et al., 2013; Harrison et al., 2018; Kruschke, 2014). This borrowing 
of information is made possible by using higher- level distributions 
with means representing commonalities shared by all species (fixed 
effects) and standard deviations representing departures from the 
means (random effects) that allow the model to partly adapt to fea-
tures specific to the species. Thus, while each species is characterized 
by its own set of parameters (providing species- specific relationships), 
the relationships are assumed to come from the same higher- level 
distribution and therefore mutually inform each other. This hierar-
chical structure implies that species with a large number of obser-
vations have a stronger influence on the estimation of fixed effects 
and that species estimates tend to be pulled toward the fixed effect, 
a process known as shrinkage (Gelman et al., 2013; Kruschke, 2014). 
In general, the shrinkage is strongest for species with small sample 
sizes, as the paucity of within- species information to estimate fixed- 
effects is counteracted by the model using data from other species 
to improve the precision of the estimate. For each group, we inves-
tigated the distance– abundance relationship under the 12 different 
settings using Bayesian nonlinear mixed- effect models including 
species- specific effects (denoted s) on intercepts (αs), slopes (βs) and 
quadratic terms (γs). These three sets of species- specific parameters 
were assumed to follow normal distributions with hyper- parameters 
µα, µβ and µγ representing the average value of the three parameters 
at the group scale (fixed effects) and hyper- parameters σα, σβ and σγ 
representing among- species variation in parameter values (random 
effects). Our model thus includes fixed and random effects on inter-
cepts, slopes and quadratic terms. A formal description of the model 
is provided in Supporting Information Text S1.

To evaluate the strength and the shape of the distance– 
abundance relationship at the scale of each taxonomic group along 
with its uncertainty, we extracted posterior samples of model pa-
rameters and computed the medians and the 95% highest posterior 
density (HPD95) intervals of fixed parameters (µβ for the slope and µγ 
for the quadratic term). For each setting and taxonomic group, the 
confidence about the estimated relationship (and thus the support 
for the ACH) was assessed by computing the posterior probability 
for a negative relationship (or positive if the distance to margins is 
considered). Since the model is nonlinear, the direction of the rela-
tionship must be evaluated by considering the sign of both the linear 
and the quadratic term. Given that the range of distance values is 
comprised between 0 and 1, then, when µβ < 0, the relationship is 
negative if µγ < |µβ| but positive if µγ > (– µβ). In contrast, if µβ > 0 the 
relationship is negative if µγ < (– µβ) but positive if µγ > |µβ|. In practice, 
we computed the posterior probability for expected relationships 
(i.e. negative if the distance to the centre is considered, positive 

otherwise) depending on the sign of the posterior median of the lin-
ear term (µβ). For instance, when considering the distance to the cen-
tre (Mahalanobis or Euclidean), we computed the posterior 
probability for the expected relationship (i.e. negative) as P [µγ < (– 
µβ)] = 

N
samp

𝜇𝛾 < ( − 𝜇𝛽)
Nsamp

 (where N
samp

𝜇𝛾 < ( − 𝜇𝛽) represents the number of Markov 
Chain Monte Carlo (MCMC) samples with µγ < (– µβ) and where Nsamp 
represents the total number of MCMC samples) if the posterior me-
dian of µβ was positive and as P[µγ < |µβ|] = 

N
samp

𝜇𝛾 < |𝜇𝛽|
Nsamp

 (where N
samp

𝜇𝛾 < |𝜇𝛽|
Nsamp

 rep-
resents the number of MCMC samples with µγ < |µβ|) if the posterior 
median of µβ was negative. If the distance to the margins is consid-
ered, the posterior probability for the expected relationship (i.e. pos-
itive) is thus equal to P[µγ > |µβ|] = 1 –  P[µγ < |µβ|] if µβ < 0 and 
P[µγ > (– µβ)] = 1 –  P[µγ < (– µβ)] if µβ > 0. Regardless of the type of 
distance considered, if the posterior probability for the expected re-
lationship had a value above .9 (meaning a 90% probability), we con-
sidered this has strong support for the ACH. In contrast, if this 
probability had a value below .1 (meaning a 10% probability) this 
would indicate a strong support for an unexpected relationship 
(since Ppositive = 1 –  Pnegative; then Punexpected = 1 –  Pexpected = 90% 
probability for the opposite trend) and therefore a low support for 
the ACH. We conducted a similar analysis using the posterior distri-
bution of species- specific coefficients (βs and γs) to estimate the pro-
portion of species presenting the expected relationship under the 
different settings.

For each model, we used posterior predictive checks (Gelman 
et al., 1996) to assess their goodness of fit. Specifically, we calcu-
lated the sum of squared standardized Pearson residuals for both 
the observed data and a replicated dataset derived from model es-
timates. From this χ² discrepancy metric, we computed the Byesian 
p- value, which quantifies the proportion of posterior samples in 
which the distance of observed data to the model is greater than the 
distance of replicated data to the model. Values close to .5 suggest 
a good model fit, whereas values close to 0 or 1 indicate a lack of 
fit. These Bayesian p- values provide information about the plausi-
bility of a model given the data. To obtain information regarding the 
proportion of variance explained we computed the marginal (vari-
ance explained by fixed effects only) and the conditional (variance 
explained by fixed and random effects) R² of each model (Nakagawa 
& Schielzeth, 2013).

To investigate the potential for higher- order terms (i.e. higher de-
gree of nonlinearity) in the distance– abundance relationship we also 
evaluated the distance– abundance relationship using generalized 
additive mixed- effect models (Hastie & Tibshirani, 1986), allowing 
up to three degrees of freedom for smoothing terms.

3  | RESULTS

3.1 | Influence of methodological settings on 
distance measures

The three distance metrics were only moderately correlated under 
the different settings, confirming that they do not convey the same 



     |  7CHEVALIER Et AL.

information in either the geographical or the environmental space 
(Figure 1). Our results further confirm that the method used to de-
lineate species envelopes (CH or KDE in the geographical space; CH 
or MVE in the environmental space) yields distinct estimates of the 
relative position of populations to both the centre and the margins 
(Figure 1).

3.2 | Influence of the statistical framework on 
ACH evaluation

Using the traditional framework (i.e. correlation coefficients averaged 
across species), we found little support for the ACH, regardless of 
the methodological setting or the taxonomic group (�mammals = .015, 
�eBird = −.01, �fish = .03 and �trees = .005; Figure 2 –  note that the signs 
of coefficients for margins were reversed before averaging in order 
to be comparable to the two other measures of distance). While the 
correlations were larger for the BBS dataset and were all statistically 
different from zero, they were still weak (�BBSbirds = −.09; Figure 2). 
Regarding the alternative framework (i.e. mixed effect models), all 
models fitted the data well (Bayesian p- values close to .5), thus sug-
gesting that the data are equally plausible under the different settings 
(Supporting Information Table S1). Importantly, we found strong evi-
dence for non- null relationships under most settings with this frame-
work. For all groups, the proportion of variance explained was rather 
high (conditional R2

mammals
=.23, R2

eBird
= .41, R2

fish
= .61, R2

trees
= .54, 

R2

BBSbirds
= .86) and was comparable across models (except for the tree 

and the eBird dataset), indicating that all models performed well in ex-
plaining abundance variations across species (Supporting Information 
Table S1). However, the models greatly differed regarding their sup-
port for the ACH. Similar results were obtained with generalized ad-
ditive mixed- effect models (Supporting Information Figure S1).

3.3 | Influence of methodological settings on 
ACH evaluation

Over the 60 relationships tested (5 datasets × 12 settings), 23 (38%) 
showed support for the ACH (expected relationships, Figure 3a), 18 
of which were related to the two bird datasets. In contrast, seven 
relationships (11.6%) presented trends opposite to ACH expecta-
tions (i.e. unexpected relationships, Figure 3a). When excluding tree 
seedlings, the percentage of expected relationships increased to 
45.8% whereas the percentage of unexpected relationships dropped 
to 6.2% (Supporting Information Figure S2a). A similar pattern was 
observed when removing migratory birds (Supporting Information 
Figure S3a). Overall, the proportion of expected relationships was 
larger in the geographical space (46%) than in the environmental 
space (30%) while the proportion of unexpected relationships was 
lower in the former (10%) than in the latter (13%) (Figure 3b). These 
trends were reinforced when excluding migratory birds (Supporting 
Information Figure S3b) or tree seedlings (Supporting Information 
Figure S2b). Regarding envelopes, the proportion of expected 

relationships was higher with the MVE (33%) than with the CH 
(26%) in the environmental space whereas the same proportions 
were obtained with the CH and the KDE in the geographical space 
(46%; Figure 3c). However, a much higher proportion of unexpected 
relationships was obtained with the CH (13% in the geographical 
space, 26% in the environmental space) than with the KDE (6.6%) 
or the MVE (0%). In both spaces, we found a larger proportion of 
expected relationships with the Mahalanobis distance (45%) and 
the distance to the margins (55%) than with the Euclidean distance 
(15%; Figure 3d). The proportion of unexpected relationships was 
also larger with the Euclidean distance (15%) than with the two other 
measures of distance (10% each). Similar patterns were obtained 
when excluding tree seedlings or migratory birds for both envelopes 
(Supporting Information Figures S2c and S3c) and distance measures 
(Supporting Information Figures S2d and S3d).

3.4 | Influence of the dataset (taxonomic group) on 
ACH evaluation

All taxonomic groups showed support for the ACH under some set-
tings. However, the relationships were not always consistent and 
were sometimes unexpected (Figure 3e). For mammals, we found 
support for the ACH for three out of the twelve settings but also 
found evidence for one unexpected relationship (Figures 3e, 4, 
Supporting Information Table S1). The number of expected (unex-
pected) relationships were one (two) for the fish dataset, one (four) 
for the tree dataset, ten (zero) for the eBird dataset and eight (zero) 
for the BBS dataset (Figures 3e, 4, Supporting Information Table S1). 
For the two bird datasets, removing migratory species yielded 
stronger support for the ACH under most settings (Supporting 
Information Figures S3e and S4, Table S2).

3.5 | Among- species variation in distance– 
abundance relationships

Despite evidence for global patterns, large variations were visible 
across species (Figure 5a, Supporting Information Figures S5– S9). 
Over the 60 relationships tested, 33% of species displayed expected 
relationships whereas 8.4% displayed unexpected relationships 
and 58.6% presented undetermined relationships. These propor-
tions greatly varied across settings and datasets but confirmed the 
observed trends. Only marginal changes were observed when ex-
cluding tree seedlings (Supporting Information Figure S10a). Larger 
changes were detected after removing migratory birds with, for 
example, the proportion of expected and unexpected relationships 
increasing to 40.5 and 9.7%, respectively (Supporting Information 
Figure S11a). On average (considering all settings), 52% of the birds 
displayed the expected relationship with the BBS dataset (8% of un-
expected relationships), whereas this proportion only reached 26% 
for the eBird dataset (3.3% of unexpected relationships; Figure 5b). 
When excluding migratory species, the proportion of expected 
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relationships strongly increased for both the BBS (59%) and the 
eBird (43.8%) datasets whereas the proportion of unexpected relation-
ships remained similar (8% for the BSS dataset and 2.3% for the eBird 

dataset) (Supporting Information Figure S11b). For mammals, fish 
and trees, these proportions were 17 (5.8), 12 (12.8) and 12% (35%), 
respectively. A higher proportion of species presented expected 

F I G U R E  2   Violin plots showing the probability density of Spearman’s correlation coefficients computed between distance and 
population density for mammals, fish, birds [both eBird and North American Breeding Bird Survey (BBS) data] and trees under the 12 
different settings. The horizontal dashed lines point to the zero value. Note that the coefficients are expected to be positive when 
considering the distance to margins but negative for the two other distance metrics (Mahalanobis and Euclidean). For each setting 
and taxonomic group, we tested whether the average value differed from zero using Wilcoxon tests (ns: p > .05. *p < .05. **p < .01. 
***p < .001. ****p < .0001). CH, convex hull; KDE, kernel density estimator; MVE, minimum volume ellipsoid
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relationships (and a lower proportion of unexpected relationships) 
under some settings than others in both the geographical (e.g. dis-
tance to the margins of the KDE) and the environmental (Euclidean 
distance to the centre of the MVE) space (Figure 5c), particularly 
after removing tree seedlings (Supporting Information Figure S10c) 
or migratory birds (Supporting Information Figure S11c).

4  | DISCUSSION

We investigated how sensitive the testing of the abundant centre 
hypothesis (Sagarin & Gaines, 2002; Sagarin et al., 2006), a central 
theory in biogeography (Brown, 1984), was to different contextual 
and methodological choices. For this, we investigated the strength 

F I G U R E  4   Predicted distance– abundance relationships estimated from Bayesian nonlinear mixed- effect models for mammals, fish, birds 
[both eBird and North American Breeding Bird Survey (BBS) data] and trees under the 12 different settings. Lines represent the median of 
the posterior predictive distribution of log- scaled abundances as a function of distance (standardized between 0 and 1) while the shaded 
area shows the corresponding 95% highest posterior density interval. Following the abundant centre hypothesis (ACH), the relationship 
is expected to be negative when distances are computed relative to the centre but positive when distances are computed relative to the 
margins. The top row gives an overview of the expected relationships depending on the distance metric considered with dotted lines 
representing nonlinear relationships (we here provide two examples of such relationships but different shapes can occur in real settings). For 
predicted distance– abundance relationships estimated with generalized additive models (GAMs), see Supporting Information Figure S1. CH, 
convex hull; KDE, kernel density estimator; MVE, minimum volume ellipsoid
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and support of distance– abundance relationships calculated under 
12 different settings. Using published datasets (Dallas et al., 2017; 
Osorio- Olvera et al., 2020), we specifically explored whether the 
support for the ACH varied with respect to the context in which 
the distance– abundance relationship is evaluated (environmental 
or geographical), how species envelopes are delineated (CH or KDE 
in the geographical space, CH or MVE in the environmental space), 
how distances are measured (relative to the centre using Euclidean 
and Mahalanobis distances or to the margins), and the soundness of 
the data used (e.g. use of a standardized sampling protocol; measure 
of density/abundance at the population level instead of at a particu-
lar age class), using two different statistical frameworks (correlation 
coefficients and mixed- effect models).

4.1 | Mixed- effect models to unravel distance– 
abundance relationships

As an alternative to correlation coefficients used in previous studies, 
we introduced here the use of mixed- effect models to assess the 
distance– abundance relationship both globally and for each species 
at the same time. A key difference is that while simple correlations 
assume all species to be both equal and independent (statistically 
speaking), mixed- effect models use the commonalities (e.g. common 
response to climatic factors or anthropogenic pressures) shared be-
tween species to reduce the effect of sampling noise on parameter 
estimates (Gelman et al., 2013; Kruschke, 2014). Using correlation 
coefficients, we found very low support for the ACH, regardless of 
the settings and the taxonomic group considered, a result in line with 
recent studies (Dallas et al., 2017; Santini et al., 2019) but contradict-
ing others (Martínez- Meyer et al., 2013; Osorio- Olvera et al., 2020; 
Yañez- Arenas et al., 2012). Only when considering the BBS dataset 
did we find a tendency toward support for the ACH, but the cor-
relations were still weak. This low support can either be explained 
by all species showing no signal (scenario 1) or by large variations 
across species where positive trends are cancelled out by negative 
trends, resulting in a low signal after averaging coefficients (scenario 
2). In the first scenario, we would not expect results to show any dif-
ference between correlation coefficients and mixed- effect models 
because all species are showing no signal, regardless of how much 
they are affected by sampling noise. Differences between methods 
are however expected in the second scenario owing to the shrinkage 
procedure where the estimate of species affected by sampling noise 
is pulled toward the main effects (Gelman et al., 2013). The fact that 
we found support for distance– abundance relationships of various 
shapes and strengths when using Bayesian mixed- effect models 
supports the second scenario, that is, that the low signal found when 
averaging correlation coefficients is partly due to the effect of sam-
pling noise. Thus, our results suggest that mixed- effect models are 
a promising alternative to unravel common biogeographical patterns 
(either expected or not) and should be more routinely used in ACH 
studies (see also Chevalier & Knape, 2019; Schaub & Kéry, 2012). 
However, although using this statistical framework made it possible 

to unravel patterns that were undetected with correlations, we still 
found large variations in distance– abundance relationships across 
settings, taxonomic groups and species, highlighting the difficulty in 
finding a universal trend for the ACH.

4.2 | The ACH is sensitive to methodological 
settings: robust settings are needed

Overall, we found a tendency for some settings to provide stronger 
support for the ACH than others. Yet, no settings provided unam-
biguous support for the ACH, confirming the ongoing controversy 
(Dallas et al., 2017; Dallas, Pironon, et al., 2020; Knouft, 2018; Santini 
et al., 2019; Soberón et al., 2018). The ACH has traditionally been 
tested by measuring the distance of populations to the centre of the 
CH in the geographical space but empirical tests of this idea yielded 
mixed results (Sagarin & Gaines, 2002; Sagarin et al., 2006). More 
recently, the ACH shifted toward an environmentally based para-
digm following the publication of results showing stronger support 
for the theory when considering the distance to the environmental 
niche centre instead of the geographical centre (Martínez- Meyer 
et al., 2013; Osorio- Olvera et al., 2020; Yañez- Arenas et al., 2012). 
However, other studies found no support for either of the two ver-
sions of the ACH –  geographical or environmental –  using the tradi-
tional CH/Euclidean setting (Dallas et al., 2017; Pironon et al., 2015; 
Santini et al., 2019). Following the study of Dallas et al. (2017), sev-
eral authors called for alternative tests of the ACH using more theo-
retically/statistically supported settings (Knouft, 2018; Soberón 
et al., 2018). Osorio- Olvera et al. (2020) recently tested the ACH 
in the environmental space using the Mahalanobis distance to the 
centre of the MVE and found strong support for the theory. This 
study was however criticized on statistical grounds undermining the 
credibility of their results (Dallas, Pironon, et al., 2020). Overall, it 
appears that the distance– abundance relationship is highly sensitive 
to methodological and conceptual choices, which may explain why it 
is so difficult to find general evidence for the ACH in the literature. 
Our results clearly support this view and further suggest that the 
classical setting where distances are measured relative to the cen-
tre of the CH in either the geographical or the environmental space 
is not the most appropriate to describe the suitability gradient and 
that stronger support for the theory can be obtained by considering 
other settings such as the distance to the margins of the KDE and 
MVE.

4.2.1 | Stronger support for the ACH in the 
geographical space: the difficulty to characterize 
environmental niches

Overall, using these data, we surprisingly found stronger support 
for the ACH in the geographical space than in the environmental 
space. This result, which contrasts with previous studies support-
ing an environmentally based ACH (Martínez- Meyer et al., 2013; 
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Osorio- Olvera et al., 2020; Yañez- Arenas et al., 2012), could 
be due to several factors. In particular, most previous studies 
were delimiting the ecological (i.e. realized environmental) niche 
(Guisan et al., 2017; Peterson et al., 2011), which is constrained 
by the effect of biotic interactions, geographical barriers and 
the limited availability of environmental conditions. In contrast, 
we here attempted to focus on an estimate of the putative fun-
damental niche, whose properties (e.g. shape and volume) can 
be different from the ones of the ecological niche (Soberon & 
Arroyo- Peña, 2017). We made this choice because there is less 
theoretical underpinning for the ACH to hold in the ecological 
niche where the centre and the margins can be biased (i.e. they 
do not necessarily correspond to an optimum or a limit; Yañez- 
Arenas et al., 2020) owing to the constraints listed above (e.g. the 
margin can reflect a geographical barrier). Indeed, while ecological 
niches can match ACH expectations in some cases (e.g. species 
not affected by dispersal limitations or by the availability of the 
environment), it remains unclear whether abundances should de-
crease from the centre of the ecological niche toward the margins, 
notably because the link between abundance, fitness and habitat 
suitability is not clearly established and even controversial (Dallas 
& Hastings, 2018; McGill, 2012; Samis & Eckert, 2009) but also 
because marginal populations can be strongly affected by various 
factors including source– sink dynamics, climate change and evo-
lutionary processes (Angert, 2009; Pironon et al., 2017). Further 
tests would nevertheless be welcome to determine under which 
circumstances the ACH could hold for ecological niches. Ideally, 
this would require disentangling the effects of biotic and abiotic 
factors to provide a comprehensive understanding of the fac-
tors involved in abundance- distribution patterns within ecologi-
cal niches (see e.g. Pironon et al., 2018 for a similar approach). 
Another factor that could explain the low support for the ACH in 
the environmental space relates to the use of IUCN range maps 
to delimit species envelopes. Indeed, while considering the whole 
distribution of the species is important (Dallas, Pironon, et al., 
2020; Knouft, 2018; Soberón et al., 2018), range maps are known 
to suffer from rough approximations (Rocchini et al., 2011) and to 
be derived based on distributions that may be strongly affected by 
human influences (Faurby & Svenning, 2015; Pacifici et al., 2020) 
with potential consequences for the location of populations rela-
tive to both the centre and the margins. Furthermore, although 
the use of a coarse resolution to extract climatic information from 
range maps (c. 340 km²) is warranted to prevent misleading in-
ferences (Hurlbert & Jetz, 2007), the drawback is that ecologi-
cal niches are likely to be poorly resolved as well, regardless of 
the method used to delineate them. Finally, we note that –  unlike 
for the geographical space –  the climatic niche can contain much 
more dimensions (Hutchinson, 1957). Similar to most studies (e.g. 
Dallas et al., 2017; Santini et al., 2019), we here only considered 
two dimensions of the niche. Further studies are needed to test 
whether considering more dimensions (e.g. three; Osorio- Olvera 
et al., 2020) could help better characterize the distance of popula-
tions to the centre or the margins of the climatic niche.

4.2.2 | Reflecting the complex shape of species 
envelopes and using appropriate distance measures

Regardless of the space (geographical or environmental) in which the 
ACH is tested, most previous studies delineated species envelopes 
using the CH. This choice has strong implications on subsequent 
analyses owing to its influence regarding the location of populations 
relative to the centre and the margins of the envelope and therefore 
on the distance measured (Soberón et al., 2018). In general, we found 
lower support for the ACH when envelopes were delineated using 
the CH than with alternative methods (KDE and MVE). Ultimately, 
the choice of the method should be motivated by the objective of 
the study and particularly the space in which the ACH is tested. For 
the geographical space, we recommend using the KDE (Blonder 
et al., 2014) to account for the complex geometry of geographical 
ranges (Brown, 1984). For the environmental space, the choice of 
the envelope will depend on the type of niche one wants to consider. 
For instance, if the focus is on trying to estimate the fundamental 
niche, we recommend using the MVE because this algorithm is theo-
retically better suited to reproduce the shape of the fundamental 
niche than the CH (Soberón & Peterson, 2019). We note however 
that while the MVE is expected to provide a closer estimate than the 
CH (Qiao et al., 2016; Soberón, 2019; Soberón & Peterson, 2019; 
Yañez- Arenas et al., 2020), a formal test of the efficiency of MVE 
to estimate fundamental niches is still lacking. Alternatively, if the 
focus is on the ecological niche, we recommend using the KDE to 
account for the irregular and potentially fragmented shape of this 
type of niche (Soberón & Nakamura, 2009). Indeed, while ecologi-
cal niches may not necessarily conform to the ACH (Yañez- Arenas 
et al., 2020), studying abundance- distribution patterns within this 
niche can shed lights on interesting biogeographical and ecological 
processes (Pironon et al., 2017).

The choice of the envelope ultimately has implications regarding 
how distances are measured. For instance, the complex geometry 
of the KDE implies that the Euclidean distance to the centre is not a 
good descriptor of the suitability gradient because populations can 
be close to the centre without necessarily being far from margins 
(Santini et al., 2019). Accordingly, we found stronger support for the 
theory when using alternative measures of distance (Mahalanobis 
distance to the centre, distance to margins).

4.2.3 | Accounting for nonlinear effects in distance– 
abundance relationships

Importantly, our results suggest that the distance– abundance re-
lationship is nonlinear. Several factors have been advanced to ex-
plain this pattern including Allee effects, a nonlinear structure of 
the environment, threshold effects, demographic stochasticity, 
metapopulation dynamics, environmental heterogeneity, and biotic 
interactions (Dallas et al., 2017; Dallas & Santini, 2020; Holt, 2020; 
Osorio- Olvera et al., 2019; Pironon et al., 2017; Santini et al., 2019). 
Depending on the factor responsible, different shapes both concave 
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and convex can be expected. For instance, previous studies have 
shown that birds and mammals seldom adhere to an ideal- free distri-
bution because social interactions such as dominance and territorial-
ity play a major role in habitat use (Boyce et al., 2016). As a result, 
abundances in highly productive habitats (i.e. toward the centre) can 
be lower than in less productive habitats, which can materialize as 
a hump- shape relationship with a peak closer to the centre, and an 
abundance higher at the centre than at the margin. Such a pattern 
matches well with the expectation of an ideal despotic distribution 
of individuals (Pironon et al., 2017; Santini et al., 2019) and we found 
evidence for such a pattern for some taxonomic groups under some 
settings (see e.g. mammals and birds considering the distance to the 
margins of the KDE in the geographical space). Assessing the shape 
of the distance– abundance relationship can thus not only help us un-
derstand why a particular species or taxonomic group does not con-
form well to the ACH; it can also shed light on processes that could 
help explain abundance- distribution patterns across geographical 
ranges or climatic niches and ultimately propose hypotheses to ex-
plain departures from the theory.

4.3 | The ACH strongly varies across taxonomic 
groups and species: true pattern or inappropriate 
data?

Despite some commonalities, we found considerable variation 
among species and taxonomic groups. This result has classically 
been interpreted as evidence that the distance– abundance relation-
ship does not hold in natural populations and thus that the ACH can-
not be considered a biogeographical rule (Dallas et al., 2017; Dallas 
& Hastings, 2018; Santini et al., 2019). Several factors have been 
advanced to explain such an inconsistent pattern including biotic 
interactions, the presence of geographical barriers, metapopulation 
dynamics, a weak link between abundance and fitness, and many 
others (Dallas et al., 2017; Dallas & Santini, 2020; Dallas, Santini, 
et al., 2020; Holt, 2020; McGill, 2012; Osorio- Olvera et al., 2019; 
Sagarin et al., 2006).

However, an alternative explanation for this inconsistent pat-
tern could be that the data used here and in previous studies (Dallas 
et al., 2017; Osorio- Olvera et al., 2020) are inappropriate to test the 
ACH (Dallas, Pironon, et al., 2020; Knouft, 2018; Santini et al., 2019; 
Soberón et al., 2018; Yañez- Arenas et al., 2020). Five features of 
the data seem worth further assessment. First, abundance data col-
lected under a standardized sampling protocol should be favoured. 
We here tested the ACH using two different datasets for birds: eBird 
data, which does not follow any sampling protocol, and BBS data, 
which follows a standardized sampling protocol (Sauer et al., 2005). 
Using BBS data increased the overall support of the ACH under 
most settings owing to a larger proportion of variance explained 
and a larger number of species displaying the expected relationship. 
Second, considering larger sample sizes (i.e. species with a large num-
ber of populations) should help reduce the effect of sampling noise 
and yield more robust estimates of parameters. Indeed, although 

mixed- effect models made it possible to unravel undetected pat-
terns for all taxonomic groups, relationships were still uncertain for 
fish and mammals, the groups with the lowest sample sizes, preclud-
ing us from drawing any firm conclusions for these groups. Third, the 
ACH should be tested using data that reflect abundance (and pre-
sumably fitness) at the population level and not at particular size or 
age classes. For instance, for trees, we found strong signals for unex-
pected relationships under a number of settings. While these results 
can be explained by the sampling protocol or by a weak relation-
ship between fitness and abundance (McGill, 2012), they may also 
be explained by the fact that inferences were based on the abun-
dance of seedlings, which can rather be regarded as a demographic 
parameter (e.g. recruitment success; Pironon et al., 2018). Indeed, 
species can present opposite geographical trends in individual vital 
rates, through different responses to environmental gradients; a 
process known as demographic compensation (Csergő et al., 2017; 
Kunstler et al., 2020; Pironon et al., 2018; Thuiller et al., 2014). 
Accordingly, recruitment (i.e. the number of seedlings) can be higher 
at the margins than at the centre of the geographical range where 
another demographic rate (e.g. adult survival) could be higher. For 
instance, because seedlings have low competitive abilities, it is likely 
that the most productive areas, where the abundance is expected 
to be higher, are dominated by mature individuals presenting high 
survival rates. If adult survival is decreasing toward range margins, 
the release of the intraspecific competition pressure may allow 
seedlings to thrive; a process that can ultimately promote species 
range expansion (Hampe & Petit, 2005). For plants, although con-
sidering abundance at the population level could be more appropri-
ate, a more robust assessment of the ACH would likely be obtained 
using a measure of biomass density, which has proved to be a good 
proxy of individual fitness (e.g. the average diameter at breast height 
within a given area; Younginger et al., 2017). Fourth, abundance data 
should be collected over the whole species range (Dallas, Pironon, 
et al., 2020; Knouft, 2018; Soberón et al., 2018). This was not the 
case for any of the datasets considered in this study. We attempted 
to cope with this problem by estimating species envelopes based 
on IUCN range maps instead of the pool of populations for which 
abundance data were available but these range maps are not ideal 
(Herkt et al., 2017). Fifth, a robust estimation of species envelopes 
in both spaces is paramount since all inferences are based on this 
assessment. The fact that we found lower support for the ACH when 
including migratory birds supports this view. Indeed, because the 
geographical range of migratory species is divided into breeding and 
non- breeding areas, the definition of a unique geographical or en-
vironmental space is challenging (Santini et al., 2019). This problem 
is even more acute regarding the definition of the niche because a 
different treatment should be applied depending on the breeding 
(environmental conditions during the breeding period) and the non- 
breeding range (environmental conditions during the whole year). 
This is far from trivial given that species can have different breeding 
periods. Unless one can account for these specificities, these species 
should be considered separately (Dallas et al., 2017; Osorio- Olvera 
et al., 2020).
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4.4 | A multi- setting inference framework to 
test the ACH?

We considered various settings to provide a comparative overview 
of their impact on the estimated distance– abundance relation-
ship. For most taxonomic groups, mixed- effect models displayed 
a similar explanatory power, despite providing varying support for 
the ACH, thus suggesting that standard evaluation metrics (R² and 
Bayesian p- values in our case) can hardly discriminate between ro-
bust and bad settings. This similar performance arose because all 
models performed well in capturing among- species variations in 
the distance– abundance relationship (i.e. most of the variance was 
captured by the random effects), a pattern that was expected given 
the variations observed in previous studies (e.g. Dallas et al., 2017). 
This does not mean that differences between models cannot emerge 
with other datasets (e.g. the tree dataset) or with other measures 
of model performance [e.g. Akaike’s information criterion (AIC), 
Bayesian information criterion (BIC)]. In theory, this would make it 
possible to run various models with distances computed under dif-
ferent settings and to select the model that best fits the data (Bolker 
et al., 2009). Using this approach, only settings supported by the 
theory and based on robust estimators (e.g. KDE instead of CH) 
should be considered. Otherwise, there is a risk of false inference 
because (a) multiple- testing could increase the probability of finding 
spurious relationships (type- I error rate) and (b) bad settings (or bad 
predictors; see e.g. Fourcade et al., 2018) can sometimes fit the data 
just as well or even better than more robust settings, for example 
because the data or the performance measures are inappropriate. 
In line with studies that advise choosing predictors based on the 
known ecology or physiology of species (instead of using a model 
selection procedure based on a large set of predictors; Burnham & 
Anderson, 2002), an alternative approach would be to choose the 
settings beforehand based on the theory, the availability of robust 
statistical tools and the purpose of the study (e.g. using the KDE and 
a measure of distance to margins if the focus is to test the ACH in the 
geographical space; Dallas, Santini, et al., 2020).

5  | CONCLUSIONS

Many ecological and evolutionary assumptions have been derived 
based on the abundant centre hypothesis (ACH) but several studies 
conducted across a range of taxa and locations failed to find general 
evidence for abundant centre patterns (Dallas et al., 2017; Sagarin & 
Gaines, 2002; Sagarin et al., 2006; Santini et al., 2019). Importantly, 
our results suggest that the noise inherent to ecological data can 
strongly hamper our ability to detect theory- based biogeographical 
patterns. Mixed- effect models can help in this regard and we advise 
future ACH studies to more regularly use this framework. Here, it 
yielded mixed and inconclusive results, even though we found a ten-
dency for more theoretically supported settings (e.g. the distance to 
the margins of an MVE) to provide stronger support for the ACH. We 
nonetheless propose that a way to help resolve the debate would 

be to test the ACH using (a) robust abundance datasets to limit the 
effect of sampling noise on parameter estimates and increase the 
statistical power of models and (b) settings that have stronger theo-
retical support.
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