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A B S T R A C T   

Parkinson’s disease (PD) is becoming a major public-health issue in an aging population. Available approaches to 
treat advanced PD still have limitations; new therapies are needed. The non-invasive brain stimulation (NIBS) 
may offer a complementary approach to treat advanced PD by personalized stimulation. Although NIBS is not as 
effective as the gold-standard levodopa, recent randomized controlled trials show promising outcomes in the 
treatment of PD symptoms. Nevertheless, only a few NIBS-stimulation paradigms have shown to improve PD’s 
symptoms. Current clinical recommendations based on the level of evidence are reported in Table 1 through 
Table 3. Furthermore, novel technological advances hold promise and may soon enable the non-invasive stim-
ulation of deeper brain structures for longer periods.    

Clinical evidence for the treatment of PD by means of rTMS 

Level Recommendation  

Effective 
Level B HF-rTMS of M1 for the treatment of overall motor symptoms in PD 
Level B HF-rTMS over DLPFC for the treatment of depression in PD 
Level B cTBS over cerebellum for the treatment of dyskinesia in PD 
Level C HF-rTMS over SMA for the treatment of overall motor symptoms in PD 
Level C LF-rTMS over SMA for the treatment of dyskinesia in PD  

Ineffective 
Level A HF-rTMS over SMA for the treatment of depression in PD 
Level B HF-rTMS of M1 for the treatment of gait performance in PD 
Level B HF-rTMS of M1 for the treatment of depression in PD 
Level B HF-rTMS over the DLPFC for the treatment of overall motor symptoms in 

PD 
Level B HF-rTMS of M1 + DLPFC for the treatment of overall motor symptoms in 

PD 
Level B LF-rTMS over the SMA for the treatment of overall motor symptoms in PD 
Level C LF-rTMS of M1 for the treatment of overall motor symptoms in PD 
Level C LF-rTMS of M1 for the treatment of depression in PD 
Level C LF-rTMS of M1 for the treatment of dyskinesia in PD   

Clinical evidence for the treatment of PD by means of tDCS 

Level Recommendation  

Effective 
Level B Anodal tDCS over M1 for the treatment of overall motor symptoms in PD 
Level B Anodal tDCS over M1 + DLPFC for the treatment of gait performance in PD 

(continued on next column)  

(continued ) 

Clinical evidence for the treatment of PD by means of tDCS 

Level Recommendation 

Level C Anodal tDCS over M1 for the treatment of gait performance in PD 
Level C Anodal tDCS + physical therapy for the treatment of cognitive function in 

PD  
Ineffective 

Level B Anodal tDCS + physical therapy for the treatment of overall motor 
symptoms in PD 

Level B Anodal tDCS + physical therapy for the treatment of gait performance in 
PD 

Level C Anodal tDCS + physical therapy for the treatment of bradykinesia in PD   

Clinical evidence for the treatment of PD by means of tACS 

Level Recommendation 

No recommendations are possible   

1. Background 

The brain adapts to internal or external demands with functional and 
structural changes (Sharma et al., 2013). Some changes may be adap-
tive, and others maladaptive, as it might be the case in Parkinson’s 
disease (PD) (Berardelli et al., 2001; Helmich et al., 2012; Caligiore 
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et al., 2016). In this review, we closely scrutinize current non-invasive 
brain stimulation techniques and their clinical use to treat PD. The 
rationale for clinical use of brain stimulation techniques aims to selec-
tively enhance adaptive or suppress mal-adaptive patterns of neural 
activity; their ultimate goal is to restore normal physiology in the 
affected brain networks, and, in so doing, to ameliorate symptoms’ 
manifestation. The use of specific biomarkers further empowers this 
strategy. Several attempts have been made to enhance human’s brain 
function by altering brain’s electrical processes; but stimulation devices 
for clinical practice, and also efficacious stimulation paradigms, 
emerged just recently (Zago et al., 2008). In this review, we will focus on 
non-invasive brain stimulation (NIBS) for treating PD. We will provide 
an overview of PD’s pathophysiology, the NIBS rationale, the current 
evidence supporting its therapeutic use in PD, and also possible future 
clinical and research applications. We put particular emphasis on the 
reported clinical efficacy. A comprehensive collection of tables sum-
marizes the types of stimulation, stimulation parameters, and clinical 
outcomes. We conclude this review with a discussion of the principal 
findings we consider particularly relevant to the future clinical and 
research practice. 

1.1. Parkinson’s disease 

PD has a prevalence of about 1 % in the general population and 
higher in the elderly, and is one of the most common neurodegenerative 
diseases (Lau and Breteler, 2006). With the aging of the world popula-
tion, the social burden and economic impact of PD will continuously 
increase. This calls for the search of effective, safe and ideally inex-
pensive treatments, suitable for the clinical practice, based on recent 
insights into the pathophysiology of PD. While dopaminergic replace-
ment therapy improves motor symptoms, the emergence of motor 
symptoms as the disease progresses refractory to dopamine replacement 
(e.g. postural instability and gait difficulties) poses a therapeutic chal-
lenge. Moreover, though the therapeutic effects endure, motor fluctua-
tions and levodopa-induced dyskinesia emerge and complicate the 
conventional medical treatment. The neurodegeneration primarily af-
fects the nigrostriatal dopaminergic system, but other non-dopaminergic 
neural circuits also degenerate progressively (Braak et al., 2003; Sur-
meier et al., 2017). This explains why these symptoms do not respond to 
dopaminergic therapy. 

This review focuses on the most used brain stimulation techniques, 
which can be divided into the invasive (e.g. deep brain stimulation 
(DBS) or direct cortical stimulation (DCS)), and the non-invasive tech-
niques, the most prominent being transcranial magnetic stimulation 
(TMS), transcranial direct current stimulation (tDCS), and transcranial 
alternative current stimulation (tACS) (Miniussi et al., 2012). 

1.2. Invasive stimulation 

Deep brain stimulation has proven its clinical efficacy to treat motor 
fluctuations, dyskinesia and refractory tremor, and has become an 
established therapeutic option for advanced PD (Sugiyama et al., 2015). 
This evidence provides a strong rationale for NIBS. However, this 
approach to treatment is available only to a limited number of patients, 
and bears the risk of surgical e.g. infections, hemorrhage, and neuro-
psychiatric complications (Fenoy and Simpson, 2014). Furthermore, 
axial symptoms –e.g. postural instability and gait difficulties including 
freezing– remain refractory to DBS and other invasive options, they 
underscore the need for therapeutic alternatives. 

Although promising for the treatment of PD, discussing recent 
technological developments would go beyond the scope of this review. 
For a review on direct (i.e. invasive) cortical stimulation see for example 
(Brittain and Cagnan, 2018); for new forms of DBS see for example 
(Bronstein et al., 2011; Lozano et al., 2019); for a review on MR-guided 
high-intensity focused ultrasound see for example (Krishna et al., 2018; 
Schlesinger et al., 2017). 

1.3. Non-invasive brain stimulation 

Analogous to the therapeutic success of DBS, non-invasive ap-
proaches such as rTMS, tDCS and tACS, achieved prominence (Fig. 2). 
Even if the evidence for their clinical efficacy is still largely insufficient, 
an increasing number of randomized controlled clinical studies have 
revealed that these approaches might improve PD symptoms, have only 
mild adverse effects, and are easy to use and inexpensive (Miniussi et al., 
2012). In addition, they might also act as adjuvant intervention in cur-
rent treatments, a potential combination that may increase their efficacy 
to treat PD. These approaches to treatment have reportedly the power to 
modulate brain plasticity processes and to foster, for example, 
long-lasting effects, making their use attractive (Fritsch et al., 2010). 
Additionally, the lightweight of handheld tDCS and tACS devices further 
facilitates their use in neurorehabilitation (Carvalho et al., 2018). 

2. Pathophysiology of Parkinson’s disease 

In PD, the neurodegeneration of the dopaminergic nigrostriatal 
pathway leads to widespread functional and structural changes in the 
motor network including the motor cortex-basal ganglia-thalamo-cere-
bellar circuit and associated motor cortical areas (Alexander et al., 
1991). There is an extensive literature on the pathophysiology of PD but 
it is difficult to distinguish whether the correlation found between motor 
deficits and neurophysiological biomarkers indicates causality or re-
flects a compensatory process. Furthermore, cardinal features of PD: 
tremor, bradykinesia, rigidity and axial signs arise from distinct patho-
geneses and their underlying pathophysiologies differ as suggested by 
the sequential response to DBS and their reappearance after cessation of 
DBS (Temperli et al., 2003; Caligiore et al., 2016; Bologna et al., 2019). 

2.1. Primary motor cortex 

Although the structural integrity of M1 and its corticospinal pro-
jections is preserved in PD, cortical excitability (Cantello et al., 2002; 
Lefaucheur, 2005) and cortical activity (Schoellmann et al., 2019) are 
altered. Summarizing an extensive literature on M1 cortical excitability 
–as assessed by motor threshold in PD– cortical excitability is increased 
during rest and fails to increase during action (Cantello et al., 1991; 
Ellaway et al., 1995; Valls-Solé et al., 1994). There appears no direct 
effect to either medication (Ni et al., 2013; Kačar et al., 2013) or 
STN-DBS (Cunic et al., 2002). 

2.1.1. Motor evoked potentials 
The recruitment (stimulus-response or input-output) curve plots the 

increase of MEP size as a function of stimulus intensity and offers 
another method to assess the corticospinal excitability. In PD, the 
recruitment curve shifts to the right as higher stimulus intensities are 
needed for the same responses (Valls-Solé et al., 1994), and its slope 
steepeness correlates with the stage of the disease (Bologna et al., 2018). 
Moreover, when assessed prior, during and after a voluntary movement, 
MEP amplitudes increase earlier and decrease later, with a slower rate of 
increase/decrease in comparison to healthy individuals (Chen et al., 
2001b). Therefore, in PD, there is an impairment in motor cortex acti-
vation and deactivation, which may correlate with bradykinesia. Some 
authors conclude that the increased excitability during rest may 
compensate for, and the impaired activation/deactivation during a 
movement may arise from a deficient thalamocortical drive (Berardelli 
et al., 2001). 

2.1.2. Short-interval, intra-cortical inhibition, facilitation and sensory 
afferent inhibition 

Short-interval, intra-cortical inhibition also shows some anomalies in 
PD. When a suprathreshold test stimulus –at inter-stimulus intervals 
(ISI) of 1− 6ms–follows a subthreshold conditioning stimulus (CI), a 
short-interval, intra-cortical inhibition (SICI) can be observed. In PD, the 
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short-interval, intra-cortical inhibition is reduced, while dopaminergic 
medication restores it (Ni et al., 2013). In addition, clinical improve-
ment after DBS correlates with the restoration of SICI (Cunic et al., 
2002). Furthermore, long- interval, intra-cortical inhibition (LICI) in-
hibits SICI in healthy subjects (i.e. triple stimulation TMS), this inhibi-
tory effect is absent in PD, and dopaminergic medication is ineffective in 
restoring it (Chu et al., 2009). 

When a suprathreshold test stimulus –at inter-stimulus intervals (ISI) 
of 6 to 100ms–follows a subthreshold conditioning stimulus (CI), a 
short-interval, intra-cortical facilitation (SICF) can be observed. 
Although some authors could not find differences between PD patients 
and controls in short interval facilitation (Strafella et al., 2000), others 
found that SICF was decreased in PD (Bares et al., 2003). Interestingly 
SICI and SICF form a sigmoidal curve, which amplitude is reduced in PD. 
This impaired interplay between inhibition and facilitation might be the 
key to explain the impaired sensorimotor integration of afferent inputs 
in PD. 

When the suprathreshold test stimulus is preceded by an electric 
stimulation of the contralateral peripheral hand nerve, a short-interval 
afferent inhibition (SAI) is observed (Tokimura et al., 2000). This phe-
nomenon is thought to represent the sensorimotor integration of afferent 
inputs mediated through central cholinergic activity (Martin-Rodriguez 
and Mir, 2020). Compared to healthy subjects, PD patients show a 
reduction in SAI. Furthermore, SAI severity seems to correlate with 
disease duration and cognitive impairment, even if it does not correlate 
with motor impairment (Martin-Rodriguez and Mir, 2020). 

SICI and SICF have also been studied in genetic forms of PD such as 
LRRK2 (Ponzo et al., 2017). For example, in LRRK2 SICI seemed to be 
reduced ON and OFF medication, whereas SICF seemed to be increased 
compared to idiopathic PD and healthy subjects (Ponzo et al., 2017). 
Each genetic PD form may have a specific SICI/SICF signature (Ponzo 
et al., 2017), possibly even each different mutation type: as it is seen in 
the G2019S vs R1441C mutation (Dubbioso et al., 2017; Di Lorenzo 
et al., 2017). 

Furthermore, specific SICI and SICF signatures may offer a compli-
mentary approach to discriminate between Lewy body dementia, pro-
gressive supranuclear palsy, corticobasal syndrome, Alzheimer’s disease 
and healthy subjects with high accuracy (Benussi et al., 2018): these 
findings need validation and may eventually form a future new diag-
nostic tool. 

2.1.3. The cortical silent period (CSP) 
In PD, the cortical silent period (CSP) that follows a supra-threshold 

TMS pulse of M1 is shortened in the off-medication or off-stimulation 
condition, normalized on-medication or on-stimulation, lengthened 
during the dyskinetic state (Chen et al., 2001b; Cantello et al., 2002), 
and it appears to correlate with the motor UPDRS score (Wu et al., 2007) 
and the dopaminergic effect (Wu et al., 2007). Furthermore, rTMS 
(Benninger et al., 2012; Lefaucheur et al., 2004) and tDCS (Lang et al., 
2004) modulate the CSP, suggesting a potential use as a biomarker in 
NIBS. 

GABA-A receptors mediate SICI and GABA-B receptors the CSP. 
Therefore, and since the inhibitory effect on SICI after the triple pulse 
stimulation is absent in PD, motor cortex inhibition may be impaired. 

2.1.4. Synaptic plasticity 
The capacity for alterations of synaptic connections between neurons 

inducing a lasting effect over time is referred to as synaptic plasticity 
(Sweatt, 2016). The persistent effects after M1 stimulation with 
low-frequency rTMS (Buhmann et al., 2004), high-frequency rTMS (Mir 
et al., 2005), theta-burst stimulation (Koch et al., 2009) and 
paired-associative-stimulation (Morgante et al., 2006), suggest pre-
served plasticity in PD. Stimulation with low-frequency rTMS (Buhmann 
et al., 2004), high-frequency rTMS (Gilio et al., 2002; Mir et al., 2005) 
and paired-associative stimulation (Morgante et al., 2006; Ueki et al., 
2006) yielded effects, only during the medication ON-state. Therefore, 

plasticity appears to be dopamine-dependent (Nitsche et al., 2006). Also, 
tDCS effects are dopamine-dependent (Fresnoza et al., 2014; Mon-
te-Silva et al., 2010; Nitsche et al., 2006), pesumably with an inverted 
U-shape, dose-dependent relation (Monte-Silva et al., 2010). In sum-
mary, dopamine mediates synaptic plasticity and thereby modulates the 
effects of NIBS. However, no dopamine dependency has been shown 
when taking dopamine for the first time at disease onset (Kishore et al., 
2012a). Hence, probably a long-term L-DOPA intake is necessary to 
induce plasticity. Furthermore, plasticity may be impaired even prior 
onset of motor symptoms, suggesting that PD foremost deteriorates 
motor learning rather than direct motor execution (Kishore et al., 
2012a). The NIBS directional effect and its strength are both influenced 
by the physiological state of the brain (Miyaguchi et al., 2013) and the 
disease stage (Kishore et al., 2012b). Also, the plasticity may depend on 
chronic stimulation. DBS restores impaired short- and long-latency 
afferent inhibition –which correlates with clinical improvement (Shu-
kla et al., 2013)– after six months of chronic stimulation. It indicates a 
long-term plasticity process. Furthermore, levodopa and bilateral STN 
DBS may exert synergistic effects on plasticity as suggested by motor and 
gait improvement when both therapies are combined (Lubik et al., 
2006). 

Interestingly, in early asymetric PD, the less affected brain- 
hemisphere restructures its functional sensorimotor organization, 
probably in order to compensate for the more affected hemisphere 
(Kojovic et al., 2012). The less affected hemisphere shows an increased 
motor cortical plasticity –assessed by paired associative stimulation– 
compared with healthy subjects. Furthermore, the less affected hemi-
sphere preserved the intracortical inhibition whereas the more affected 
side had a decreased intracortical Inhibition. The negative correlation 
between the severity of motor symptoms and the amount of response to 
PAS in the less affected hemisphere supports the idea of early adaptive 
rather than maladaptive changes. (Kojovic et al., 2012). During a 12 
months follow-up, the heightened plasticity of the less affected side, 
which was present at disease onset, declined: it may reflect a failure of 
compensatory mechanisms, which maintained function in the preclini-
cal state (Kojovic et al., 2015). 

Furthermore, the response to the plasticity inducing protocols may 
not be strictly correlated to the clinical improvement induced by 
dopamine administration (Kishore et al., 2012a; Suppa et al., 2011). 

However, many studies investigating plasticity showed heterogenous 
results. Although some causes for heterogeneity –such as PAS dependent 
plasticity versus TBS dependent plasticity, or asymmetric results in early 
disease stages– are identified, most of them are not yet understood (for 
an excellent review on the topic see Koch, 2013). 

2.2. Functional connectivity 

Functional connectivity is the coordinated information exchange of 
spatially separated brain regions in order to allow integrative and 
higher-order functions. Connectivity studies suggest that PD affects the 
activation of extensive cortical networks, which mostly normalizes with 
dopaminergic medication (Buhmann et al., 2004; Mir et al., 2005). The 
network includes the SMA, the DLPFC and the mesial frontal area, the 
lateral pre-motor and parietal cortices. The SMA excitability increases 
with contralateral basal ganglia pathology (Casarotto et al., 2019); and 
the activation of DLPFC, SMA and mesial frontal areas are impaired 
during voluntary movements (Samuel et al., 2001). The hypoactive 
DLPFC may compromise motor reactions to external cues (Jahanshahi 
et al., 1995), while the hypoactive SMA and mesial frontal area may 
impair intentional movements (Jahanshahi et al., 1995; Playford et al., 
1992). DLPFC and SMA activity correlate positively with clinical 
improvement during DBS (Ceballos-Baumann et al., 1999; Limousin 
et al., 1997); SMA correlates positively with dopaminergic medication 
(Jenkins et al., 1992; Rascol et al., 1992), and negatively with the early 
component of the Bereitschaftspotential (Ikeda et al., 1997; Jahanshahi 
et al., 1995). In PD, the expanded activity in the lateral pre-motor and 
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parietal cortices is thought to be compensatory (Brooks, 1999) and 
normalizes with clinical improvement after dopaminergic medication 
(Haslinger et al., 2001).Thus, stimulating brain areas other than M1 or 
multiple cortex areas (Dagan et al., 2018; Lomarev et al., 2006; Rabey 
et al., 2013; Benninger et al., 2011) hold promise. 

2.3. The cerebellum: a new target 

The cerebellum may play an essential role in the pathophysiology of 
PD, levodopa-induced dyskinesia (Koch et al., 2009) and in tremor 
pathogenesis (Benninger et al., 2009a), and should, therefore, be further 
investigated (Martini et al., 2019). In PD, the cerebellum may be over-
active: 1 Hz rTMS decreased tremor and combined tDCS M1/cerebellum 
improved motor symptoms (Ferrucci and Priori, 2018). 

The primary motor cortex (M1) and the cerebellum are connected 
through the cerebello-thalamo-cortical circuit. When a suprathreshold 
test stimulus of M1 –at inter-stimulus intervals of 5− 7ms– follows a 
conditioning stimulus over the cerebellum, a cerebellar-brain inhibition 
(CBI) can be observed in healthy subjects. However, in PD patients, CBI 
seemed to be absent OFF medication and even ON medication (Carrillo 
et al., 2013). Similarly, cerebellar cTBS reduced MEP amplitude and SICI 
in controls but not in PD patients (ON and OFF medication) (Carrillo 
et al., 2013). Thus, PD patients may have a deficient 
cerebellar-thalamocortical inhibitory drive that cannot be restored by 
standard dopaminergic medication. 

However, another study showed reduced excitability after cTBS in 
healthy subjects and PD patients (Bologna et al., 2015); hence, results 
are still heterogeneous. 

Interestingly, a specific pathology such as scans-without-evidence- 
of-dopaminergic-deficit (SWEDD), show a specific signature of 
cerebello-thalamo-cortical impairment only during rest, compared with 
PD and dystonic patients (Schirinzi et al., 2016). 

For a detailed review on the role of the cerebellum in PD, we 
recommend Ferrucci et al. (2016a, 2016b) and França et al. (2018). 

2.4. Dyskinesia 

The pathogenesis of levodopa-induced dyskinesia (LID) remains 
poorly understood, yet some hypotheses have emerged. LID may be 
caused by maladaptive plasticity (Morgante et al., 2006), by a reduced 
inhibitory control of the inferior frontal cortex (Cerasa et al., 2015), by 
cerebellar dysfunction (Nimura et al., 2004) or by a narrow-band 
gamma oscillation (60− 90 Hz) in the motor cortex that could be used 
as a biomarker (Swann et al., 2018). In particular, LID seem to correlate 
with the overactivation of the contralateral frontal area (M1, SMA, IFC) 
probably mediated through direct cortico-cortical disinhibition (Ponzo 
et al., 2016). Furthermore, Ponzo et al. achieved to reduce the over-
active influence of the IFC on the contralateral M1 –whilst reducing LID 
symptoms– by applying a cTBS protocol over the IFC. Similarly, 
Wagle-Shukla et al. (2007) used a low-frequency rTMS protocol 
–stimulating the contralateral M1 area– to reduce LID Symptoms. These 
results may help to choose target areas for NIBS protocols. 

2.5. Oscillopathy in Parkinson’s disease 

Recently, neural oscillatory patterns in the brain have attracted the 
interest for studying the pathophysiology of PD. It seems possible that 
specific frequency patterns could gate communication and network 
resonance between brain regions, or that they could prevent activity 
perturbations by keeping the information flow in a status quo. However, 
since macroscopic oscillations of brain activity represent the sum of an 
important amount of microscopic events, interpreting those oscillations 
confronts us with the inverse inference problem (Nunez and Srinivasan, 
2006). The issue arises from the fact that multiple sources could explain 
the observed activity. Thus, the discrimination of epiphenomena is 
difficult – if not impossible – and conjectures on causality often 

inappropriate. 
EEG, Magnetoencephalography (MEG) and Stereo-EEG (SEEG) 

recording Local Field Potentials (LFP) allow to differrentiate oscillatory 
activity with presumed different significance. The activity may be 
classified according to its frequency range: delta (<4 Hz), theta 
(4− 8 Hz), alpha (8− 13 Hz), beta (13− 30 Hz), gamma (30− 100 Hz) and 
high-frequency oscillations (i.e. HFO, >100 Hz). 

2.5.1. Theta-band 
Although alpha and theta rhythms have been associated more with 

CNS diseases other than PD (i.e. Alzheimer), PD patients also show some 
anomalies in these frequency bands. In PD patients in OFF compared to 
ON medication, the theta power –recorded respectively by depth elec-
trodes or EEG– increases in the subthalamic nucleus (STN) (Zavala et al., 
2013) and in the medial Prefrontal Cortex (mPFC) (Cavanagh et al., 
2011) during conflicting tasks. PD patients with high-frequency STN 
DBS become more impulsive in the Stroop Task (Cavanagh et al., 2011). 
The Theta-power increase is probably linked to the interruption of the 
first behavioral response to handle an alternative one (Ghahremani 
et al., 2018). 

2.5.2. Alpha-band 
The motor cortex excitability correlates with the corticomuscular 

coherence in the alpha-frequency band (Schulz et al., 2014). Further-
more, in depth electrode recordings, alpha-activity increases in the 
pedunculopontine nucleus and the cortex during voluntary movement 
and with dopaminergic medication (Androulidakis et al., 2008). In 
addition, PD patients with freezing of gait (FOG) show a higher 
alpha-sample entropy– a measure of predictability in a time series– 
during FOG-episodes (Syrkin-Nikolau et al., 2017). 

2.5.3. Beta-band 
The Beta rhythm is predominant in the somatosensory and motor 

cortex-basal ganglia loop. In intact motor physiology, beta activity in-
creases (i.e. synchronizes = event-related synchronization [ERS]) dur-
ing rest and isometric contractions (Brown and Marsden, 1998; Engel 
and Fries, 2010); decreases (Pfurtscheller and Lopes Da Silva, 1999) (i.e 
desynchronizes = event-related desynchronization [ERD]) before 
movement initiation and during isotonic movement; and increases (i.e. 
resynchronizes), when movement ends. Thus, increased beta activity is 
associated with static motor control (Jenkinson and Brown, 2011; Engel 
and Fries, 2010). For instance, during an isometric muscle contraction, 
the motor cortex beta-band activity synchronizes with muscular activity 
(cortico-muscular coherence) (Gross et al., 2000). When 
cortico-muscular coherence in the beta-frequency band increases, 
motor-cortex excitability decreases (Schulz et al., 2014), and the amount 
of synchronization with the sensory cortex reflects performance (Cha-
karov et al., 2009). In the motor cortex, overall beta-frequency band 
power negatively correlates with movement acceleration (Gilbertson 
et al., 2005). 

In PD patients, there is an excessive beta-band activity in the motor 
cortex (Pollok et al., 2012; Stoffers et al., 2008) and the basal ganglia 
(Doyle Gaynor et al., 2008); during rest (Brown and Williams, 2005) and 
during movement (Devos et al., 2006; Florin et al., 2013). During 
off-medication, the cortex-basal ganglia loop synchronizes within the 
beta-band (Brown et al., 2001; Williams, 2002; Lofredi et al., 2019; 
Tinkhauser et al., 2017b); and on dopaminergic medication, it 
desynchronizes (Doyle et al., 2005; Kühn et al., 2009; Ray et al., 2008; 
Weinberger et al., 2006; Zaidel et al., 2010; Lofredi et al., 2019; Tink-
hauser et al., 2017b). In adequacy, the beta-band increase in the 
cortico-basal ganglia loop appears to correlate with bradykinesia (Chen 
et al., 2007; Jenkinson and Brown, 2011; Weinberger et al., 2009; 
Tinkhauser et al., 2018) and rigidity (Brown and Williams, 2005; Kühn 
et al., 2009; Priori et al., 2004). Moreover, FOG has been shown to 
specifically depend on excessive high-beta-frequency band activity 
(Toledo et al., 2014). 
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Furthermore, DBS STN in the beta-range leads to frequency syn-
chronization in the globus pallidus internus (GPi) and the STN (Brown 
et al., 2004), while bradykinesia and rigidity increase (Chen et al., 2011; 
Fogelson et al., 2005; Timmermann et al., 2004). However, therapeutic 
high-frequency (130− 180 Hz) DBS STN stimulation reduces beta-band 
oscillations along with an improvement in bradykinesia and rigidity 
(Ray et al., 2008). Sub-threshold, single-pulse TMS stimulation of M1 
and SMA induces transient beta activity suppression in PD (Doyle Gay-
nor et al., 2008), suggesting oscillatory STN modulation through 
cortico-basal ganglia networks. Since NIBS might be capable of briefly 
alleviating motor symptoms in PD (Zanjani et al., 2015), it possibly 
disrupts excessive beta-frequency in cortico-basal ganglia loops, as does 
STN-DBS. Thus, these results suggest an anti-kinetic effect of 
beta-frequency excess in the cortico-basal ganglia loops, and may point 
to beta activity as a biomarker for closed-loop stimulation systems. 

A primate PD-model study reported that a short burst of 130 Hz DBS 
in the GPi – 80 ms after cortical firing– yields better symptoms’ 
improvement than continuous stimulation (Rosin et al., 2011). Thus, 
intermittent stimulation may cause considerably more clinical 
improvement than the use of continuous stimulus delivery. Short beta 
activity may serve as a biomarker for brain stimulation, because this 
activity band appears to be intrinsic to the pyramidal and the 
extra-pyramidal motor systems, gating motor activity with a potential 
anti-kinetic effect. 

2.5.4. Gamma-band 
Oscillatory activity in the gamma rhythm can be recorded in several 

cortical areas and in depth electrodes; it is thought to facilitate syn-
chronization and information transfer necessary for a wide range of 
neural processes (Vinck et al., 2013). Gamma rhythm activity occurs in 
the sensory-motor cortex-basal ganglia loop. In intact motor physiology, 
gamma rhythm activity decreases during resting (i.e. desynchronizes) 
and increases during movement (i.e. synchronizes) (Pfurtscheller et al., 
2003). The gamma frequency range can be subdivided into a 
low-gamma (35− 50 Hz) and a high-gamma range (75− 100 Hz): both 
ranges show different activity patterns during movement (Crone, 1998). 
Increased synchronization between M1 and the sensory cortex in the 
high-gamma band correlates with motor performance (Tecchio et al., 
2008). 

In PD off-medication, the gamma band has been shown to be 
decreased and to increase (>70 Hz) with dopaminergic medication 
(Brown et al., 2001; Williams, 2002), correlating with clinical 
improvement (Sharott et al., 2014). Also, high-frequency (130 Hz) 
STN-DBS suppresses beta-band oscillations in the GPi with clinical 
improvement (Brown et al., 2004). Thus, gamma-rhythm activity seems 
to be a pro-kinetic counterpart to the akinetic beta- rhythm in the motor 
system, enabling movement processing. 

2.5.5. High-Frequency Oscillations 
High-Frequency Oscillations (HFO) behave similarly to gamma 

rhythm in PD, whereas they are more challenging to record. During the 
medication off-state, no consistent HFO (Foffani et al., 2003) or only 
HFO with a small peak around 250 Hz (Özkurt et al., 2011) can be 
recorded. However, dopamine increases the HFO power significantly 
around 300− 350 Hz (Foffani et al., 2003; Özkurt et al., 2011). HFO from 
within this frequency range correlates with dopaminergic medication, 
voluntary movement (Foffani et al., 2003) and clinical improvement 
(Özkurt et al., 2011), suggesting HFO to be a pro-kinetic biomarker. 

2.5.6. Phase-amplitude coupling (PAC) in Parkinson’s disease 
Normal cortical function depends on the coupling between the phase 

of low-frequency rhythms and the amplitude of broadband activity 
–within and between distinct regions of the brain– coordinating the 
timing of neuronal activity: this phenomenon is called phase-amplitude 
coupling (PAC) (Canolty and Knight, 2010; de Hemptinne et al., 2015). 

Excessive phase-amplitude coupling (PAC) between the phase of beta 

oscillation and the amplitude of high-frequency oscillations (HFO) 
seems to play a crucial role in PD’s pathophysiology. Three PAC types 
have been identified to be pathological and could serve as biomarkers in 
future therapeutic approaches to treatment. 

In STN, the phase of beta frequency activity is coupled with HFO 
amplitude off-medication; on dopaminergic medication, the HFO 
amplitude decouples from the beta frequency activity and becomes 
movement-dependent (López-Azcárate et al., 2010). 

The STN phase of beta frequency activity has been found to be 
pathologically coupled with the amplitudes of HFO and gamma oscil-
lations in M1 (de Hemptinne et al., 2015). DBS STN decreases the 
STN-M1 PAC, which correlates with clinical improvement of rigidity and 
bradykinesia (de Hemptinne et al., 2015). 

Compared to healthy subjects, in PD off-medication, the M1 beta 
activity phase is coupled with M1 gamma oscillations amplitude. On 
dopaminergic therapy, the M1-M1 PAC decreases (Swann et al., 2015). 
Thus, the PAC paradigm may be a promising biomarker for closed-loop 
stimulation therapy. 

2.5.7. Natural frequency mapping 
TMS-induced natural-frequency EEG is an innovative way to inves-

tigate the inherent oscillatory activity of different cortical regions (i.e. 
endogenous rhythms) (Rosanova et al., 2009) and their interdependency 
with M1 excitability. The occipital cortex may resonate in the alpha 
range (Herring et al., 2015), the parietal cortex in the beta range, and the 
frontal cortex in the beta/gamma range (Rosanova et al., 2009). The 
excitability of M1 correlates positively with coupled, spontaneous, 
ipsilateral, prefrontal beta activity, with coupled bilateral 
centro-parieto-occipital delta activity (Ferreri et al., 2014), and with 
spontaneous sensorimotor gamma activity (Zarkowski et al., 2006). 
Conversely, M1 excitability correlates negatively with spontaneous 
sensorimotor alpha activity (Sauseng et al., 2009; Zarkowski et al., 
2006). 

Since NIBS of these areas in the natural frequency may interfere with 
the M1 excitability, it would be of interest to further map pathological 
cortex natural frequencies in PD. Pathologically altered natural fre-
quencies could outline the rationale for a therapeutic approach. 

2.6. Tremor in Parkinson’s disease 

Tremor does not correlate with bradykinesia and rigidity, and arises 
from a distinct pathophysiology (Kühn et al., 2009; Caligiore et al., 
2016). Rest tremor responds to anticholinergic drugs, which increase 
beta activity (Priori et al., 2004). In PD patients, a stable oscillating 
system underlying the tremor has been postulated (di Biase et al., 2017), 
but the evidence is still controversial. When investigating coherence in 
the cortico-basal ganglia-loops at tremor frequency, some researchers 
found synchronization during off-medication and partial desynchroni-
zation with dopaminergic medication (Brown et al., 2001; Lalo et al., 
2008), while others failed to find desynchronization (Priori et al., 2004; 
Tass et al., 2010). There is good evidence to suggest a 
cerebello-thalamo-cortical-loop pathogenesis of PD tremor (Helmich 
et al., 2012; Caligiore et al., 2016); while rest and postural tremor may 
have different pathogeneses (Ni et al., 2010). The cerebellum appears 
involved and may exert a compensatory role in PD (Wu and Hallett, 
2013). Also, cerebellar inhibition by 1 Hz rTMS has been shown to 
reduce PD rest tremor (Lefaivre et al., 2016). 

3. The rationale for non-invasive brain stimulation 

Considering the pathophysiology of PD, we will discuss how NIBS 
may interact with current PD models. 

3.1. Postulating causality between brain physiology and PD symptoms 

The rationale for NIBS draws from the concept that reversing 
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abnormalities in brain activity and physiology thought to cause the 
clinical deficits may restore normal functioning.There is also some evi-
dence suggesting that NIBS could be useful as an adjuvant to conven-
tional treatment, particularly for patients with refractory symptoms, or 
for those for whom surgical intervention is not possible. 

3.2. Deep brain stimulation 

Currently, the best evidence in support of the therapeutic potential of 
NIBS in PD comes from deep brain stimulation (DBS). The success of DBS 
paved the way for studies investigating novel approaches altering the 
(ab)normal neuronal circuitry: as it has been done by NIBS. In PD, DBS 
improves motor deficits, modulates basal ganglia activity and cortex 
physiology (Chen et al., 2001a; Cunic et al., 2002). Thus, DBS effects 
may be mediated transsynaptically through cortico-subcortical loops to 
distant areas within the central nervous system. It can be hypothesized 
that stimulating the cortex with NIBS may have widespread effects, and 
also would modulate the entire cortex-basal ganglia network through 
these cortico-subcortical loops. Those widespread effects of NIBS 
depend on an intact anatomical (Ruff et al., 2009) and functional con-
nectivity (Eimeren and Siebner, 2006). Prefrontal cortical stimulation 
triggers dopamine release in the striatum (Kanno et al., 2004; Strafella 
et al., 2001) and pallidal or subthalamic nucleus stimulation causes 
changes in motor cortex activity (Cunic et al., 2002). Moreover, stimu-
lating the cortex modulates neural oscillations in both the stimulated 
cortex and the associated structures (Fox et al., 2014; Zaghi et al., 2010). 
In PD, M1 is the prime target for stimulation and its stimulation leads to 
widespread activation of the motor circuit (Baudewig et al., 2001; Lang 
et al., 2005). 

3.3. Repetitive transcranial magnetic stimulation 

The direct stimulation effect of rTMS reaches only a depth of 
approximately 1.5− 3 cm beneath the skull (Gomez et al., 2018), but 
application to the motor or prefrontal cortex modulates the release of 
dopamine in the caudate (Strafella et al., 2001) and putamen (Strafella 
et al., 2003) – their cortico-striatal projections (Cho and Strafella, 2009). 
This release of dopamine is preserved in PD (Strafella et al., 2006) and 
may explain the immediate effects of rTMS on PD symptoms. Even sham 
rTMS triggers the dopamine release (Strafella et al., 2006), pointing also 
to a placebo effect. 

3.4. Transcranial direct current stimulation 

Transcranial direct current stimulation also triggers widespread 
activation (Lang et al., 2005) and dopamine release (Fregni et al., 
2006b). Moreover, when PD patients show cortical dysfunction 
(Lefaucheur, 2006), targeting specific cortical areas with tDCS might 
modify the cortico-cortical or the cortico-subcortical activity – 
improving PD functionally. 

3.5. Oscillopathies 

One of the key features of PD is the lock of neural networks in specific 
oscillatory patterns that reinforce synchronization and lead to motor 
impairment (Cagnan et al., 2015). Frequencies at which TMS (Bortoletto 
et al., 2015; Rosanova et al., 2009) or rTMS (Romei et al., 2016; Thut 
et al., 2011) can modulate transient oscillations are inherent to a specific 
brain network. Therefore, each functional network may have a specific 
natural frequency (Doyle Gaynor et al., 2008). The same mechanism 
probably underlies tACS but it is unclear, whether tACS drives the brain 
oscillation to adapt to the stimulation frequency – entrainment – or if 
functional networks have the same natural frequencies as the stimula-
tion frequency and resonate –resonance. These natural frequencies may 
gate the information exchange (e.g. for gamma tACS (Helfrich et al., 
2014a; Strüber et al., 2014). 

Oscillating brain structures often switch between specific fre-
quencies, regulating synchronization and desynchronization to 
communicate and to encode behavior (Cagnan et al., 2016, 2015; 
Womelsdorf et al., 2007). By changing patterns of coherent oscillatory 
activity, the brain may control the information flow among connected 
brain structures (Akam and Kullmann, 2010; Fries, 2005; Salinas and 
Sejnowski, 2001). 

Though the pathological oscillating patterns appear rather stable in 
PD (di Biase et al., 2017), different NIBS may interact with subcortical 
oscillating structures through transcranial stimulation (e.g. rTMS, tDCS 
(Fregni and Pascual-Leone, 2007; Giovanni et al., 2017; Fox et al., 
2014)). Indeed, there is evidence suggesting that specific stimulation 
patterns may modulate neural oscillators (Akam et al., 2012; Zlotnik 
et al., 2016; Witkowski et al., 2016). 

3.6. Long-term plasticity 

NIBS also induces medium- and long-term effects that are considered 
to be mediated by long-term potentiation (LTP)- and long-term 
depression (LTD)-like plasticity (Chervyakov et al., 2015; Hoogendam 
et al., 2010; Orban de Xivry and Shadmehr, 2014; Udupa and Chen, 
2013). LTP- and LTD-like plasticity can be elicited in different ways: 
intermittent theta-burst stimulation, high-frequency rTMS or anodal 
tDCS of M1 increases cortical excitability, and continuous TBS, 
low-frequency rTMS or cathodal tDCS decreases cortical excitability 
(Fox et al., 2014; Huang et al., 2005; Ridding and Ziemann, 2010). 

3.7. Repetitive transcranial magnetic stimulation techniques 

Different stimulation coils of different geometry and size can be used 
for rTMS. While most of the studies used a figure-of-eight coil or a cir-
cular coil, only a few studies used a double-cone coil. To target deeper 
brain structures (up to 5.5 cm (Zangen et al., 2005)), as for the stimu-
lation of the mesial prefrontal cortex (Lu and Ueno, 2017), an Hesed-coil 
(H-coil) has been used (Dagan et al., 2017). A ca. 100–300 μsec electric 
current of > 1000 V and up to 10,000 A flows through an induction coil, 
inducing a strong magnetic field –which variation, in turn– induces an 
electric current in the brain (Rothwell, 1997). Since the magnetic field 
intensity declines exponentially with the distance to its source, only the 
cortex and the superficial white matter are stimulated (Rothwell, 2011). 
There are a number of mechanisms through which rTMS may modulate 
plasticity, these being: the stimulation of glutamatergic prefrontal 
neurons (Michael et al., 2003), changes in neuronal ionic conductivity 
(Chervyakov et al., 2015), increased neurotrophic factors (Brunoni 
et al., 2008) and synaptic connectivity (LTP; LTD) (di Lazzaro et al., 
2011). New patterned forms of stimulation, which may act on other 
mechanisms –including theta-burst stimulation or quadripulse stim-
ulation– have emerged, but they need further investigation (di Lazzaro 
et al., 2011; Huang et al., 2005). 

3.8. Transcranial current stimulation techniques 

Transcranial direct current stimulation consists of applying a weak 
(1–2 mA) electrical current between an anode and a cathode. This 
transcranial stimulation changes the resting cortical excitability of the 
underlying tissue (Nitsche and Paulus, 2000). Electrode’s position, 
impedance, head size, scalp and skull thickness, they all influence the 
current flow (Thair et al., 2017). Since axonal orientation can determine 
the excitatory or inhibitory action of transcranial stimulation (Kabakov 
et al., 2012), the precise targeting through shaping of the elec-
tric/magnetic field and its polarity is essential. In tCS, increasing the 
number of electrodes generally allows shaping the stimulation field 
more precisely and, thereby, a higher target specificity (Ruffini et al., 
2014). A recent high-density stimulation protocol of tDCS uses multiple 
ring electrodes to enhance focality (DaSilva et al., 2015). 

A stimulation session usually lasts for about 20 min (Lefaucheur 
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et al., 2017). Anodal tDCS increases, whereas cathodal tDCS decreases 
the excitability of the resting brain (Molaee-Ardekani et al., 2013; Nit-
sche et al., 2008). While tDCS does not induce an action potential, it 
modulates the spontaneous activity of brain cells (Fritsch et al., 2010). 

Anodal stimulation depolarizes the cell membranes, thereby 
increasing the neuronal firing (Nitsche et al., 2008). Anodal tDCS may 
reduce GABAergic activity and facilitate NMDA receptors (Liebetanz, 
2002; Nitsche et al., 2004a), lead to an accumulation of myoinositol in 
the phospholipid membrane (Rango et al., 2008), and increase the ce-
rebral blood flow (Merzagora et al., 2010; Takai et al., 2016). 

Cathodal stimulation hyperpolarizes the cell membranes, decreasing 
neuronal firing (Nitsche et al., 2008). In addition, it may reduce the 
excitability of the glutamatergic system (Stagg et al., 2009). 

MEP changes after 10 min of tDCS can last for one hour beyond 
stimulation (Nitsche and Paulus, 2001). The duration of longer-lasting 
effects depends on stimulation length and intensity (Fritsch et al., 
2010). They are probably mediated by NMDA receptor-dependent pro-
cesses (Nitsche et al., 2004a), by LTP- and LTD-like mechanisms (Flöel, 
2014; Nitsche et al., 2003a), and by gabaergic and glutamatergic ac-
tivity (Kim et al., 2014; Nitsche et al., 2004b; Stagg and Nitsche, 2011). 
TDCS presumably also induces changes in glial cells, microvessels and 
inflammatory processes (Woods et al., 2016). 

The transcranial alternating current stimulation (tACS), transcranial 
random noise stimulation (tRNS) and pulsed current stimulation (PCS) 
are newer electrical stimulation methods (Tavakoli and Yun, 2017). 

The transcranial alternating current stimulation uses biphasic and 
sinusoidal current and aims to entrain neuronal populations into specific 
oscillatory patterns. Whether extrinsic tACS rhythms entrain neurons, or 
whether entrainment is only possible at a specific endogenous rhythm (i. 
e. natural frequencies), remains yet undetermined. However, it seems 
that if the stimulation frequency approaches the natural frequency of 
neural networks, spontaneous oscillations can be more easily entrained 
(Guerra et al., 2016; Helfrich et al., 2014b). Since the temporal rela-
tionship between oscillation patterns of specific brain regions de-
termines their degree of information exchange (Fries, 2005), modulating 
oscillation patterns by tACS seems a promising approach. The tACS ef-
fects seem to be frequency- and area-dependent (Feurra et al., 2011). 
Natural frequencies of the cortico-basal loop seem to lie in the beta 
(Pogosyan et al., 2009; Hari and Salmelin, 1997) and the gamma band 
(Brown, 2003). Furthermore, temporal alignment – phase-dependency – 
plays a decisive role in modulating the membrane’s potential (Thut 
et al., 2017) and short- and long-term plasticity (Fries, 2005). While 
gamma tACS provokes local GABA-A inhibition (Nowak et al., 2017), 
beta tACS provokes cholinergic short-latency afferent inhibition (Guerra 
et al., 2016). Overall, tACS produces long-lasting plastic changes (Vos-
sen et al., 2015). 

The transcranial random noise stimulation is a method in which 
stimulation frequency continuously changes – ranging from 0.1 to 
640 Hz –increasing cortical excitability (Terney et al., 2008). 

The pulsed current stimulation consists of an unidirectional pulsat-
ing current (Jaberzadeh et al., 2015). 

Although both tRNS and PCS techniques are relatively new, they 
have been investigated in a small number of studies in PD. 

Combining NIBS with other therapies may potentiate the efficacy of 
rehabilitative (Benninger and Hallett, 2015; Lefaucheur et al., 2017), 
pharmacological (Stagg and Nitsche, 2011) or even stem cell in-
terventions (Winkler et al., 2017) and offer a promising venue. Recently, 
mainly the combination of NIBS with rehabilitation therapies has been 
investigated. Three forms of stimulation protocols are discernible: 
stimulation before intervention (i.e. offline) in order to prime brain 
physiology (meta-plasticity), simultaneously to the intervention (i.e. 
online), and, rarely, after the intervention to consolidate its effects. 
Either NIBS method can be applied before or after a therapeutic inter-
vention, but for practical reasons, it is easier to apply tCS than TMS 
simultaneously (online) to the intervention. 

A single session NIBS induces a relatively short-lasting effect (i.e. 

hours) (Maeda et al., 2000; Nitsche et al., 2008) and repetitive sessions 
may induce longer-lasting effects (Rossini and Rossi, 2007). Therefore, 
combining NIBS and rehabilitative procedures may enhance LTP-like 
plasticity and clinical efficacy. There are various presumed mecha-
nisms which may mediate the consolidation of longer-term plasticity 
induced by NIBS including catecholaminergic transmitters (Nitsche 
et al., 2004a), NMDA receptors modulation (Nitsche et al., 2004a), and 
brain-derived neurotrophic factor (BDNF)-dependent synaptic plasticity 
(Filho et al., 2016; Fritsch et al., 2010). 

3.9. Parkinson’s disease: a good model for neurophysiologic brain 
exploration 

Since objective biomarkers (MEP, SICI, ect…) are available when 
studying the motor system, investigating how NIBS interacts with motor 
impairment in PD offers a unique opportunity to gain more in-depth 
knowledge on its pathophysiology – in order to discover new specific 
biomarkers that could be used for individualized NIBS, and to improve 
clinical symptoms refractory to conventional therapy. 

4. Clinical evidence update for the treatment of Parkinson’s 
disease by means of non-invasive brain stimulation 

This review aims to update the evidence for the clinical recomman-
dations of NIBS in PD. In this section, we will review the current liter-
ature and evaluate the evidence for the clinical use of rTMS, tDCS and 
tACS. 

We compare our results with the established European guidelines for 
the clinical use of rTMS (Lefaucheur et al., 2014, 2020) and tDCS in PD 
(Lefaucheur et al., 2017) and apply the same methodology based on the 
EFNS Task Force criteria and recommendations for the preparation of 
research reviews (Brainin et al., 2004). 

We performed a search in PubMed, Embase and Cochrane (CEN-
TRAL). For rTMS, we used the keywords “repetitive transcranial mag-
netic stimulation OR theta burst stimulation AND Parkinson’s disease”; 
for tDCS “transcranial direct current stimulation AND Parkinson’s dis-
ease”; for tACS “transcranial alternating current stimulation OR trans-
cranial pulsed current stimulation AND Parkinson’s disease”. We 
screened all references since the beginning of NIBS, without limiting the 
time-period. Two reviewers independently screened all references; dis-
agreements were resolved by discussion. In a first step, all titles and 
abstracts were screened, and ineligible references excluded. In a second 
step, the full text was read to determine eligibility, and to analyze the 
methodological quality of the studies (see Fig. 1, Flowchart). All 
controlled studies were analyzed and summarized in Tables 1–3. 
Studies, which investigated multiple stimulation paradigms and, thus, 
appeared under different subsections, were highlighted in purple. To 
assess the level of evidence, we applied the revised Brainin criteria 
(Brainin et al., 2004) and included only studies, which fitted criteria for 
class I, II or III (controlled trials). 

The outcomes of interest were derived from the main categories of 
PD symptoms: overall motor symptoms, bradykinesia, rigidity, tremor, 
gait, FOG, dyskinesia, depression and cognition. In the corresponding 
table, high-quality studies (Class I and II) were highlighted in green. 
Studies using an active sham group as a control condition, or superiority 
studies, were highlighted with a hash, because they were rather difficult 
to compare. 

For each stimulation paradigm, we first extensively discuss the 
studies with the highest evidence class (i.e. class I and II). Thereafter, we 
will succinctly discuss class III studies. The tables containing all the 
gathered data are accessible through the Supplementary material; for 
simplicity, in the main document, we will only present tables containing 
high-quality studies. 
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4.1. The EFNS task force classifies therapeutic studies as follows (Brainin 
et al., 2004) 

4.1.1. Class I studies 
A class I study has to fulfil the following criteria: 1) includes more 

than 25 patients in each group or is an adequately powered study 2) is 
prospective and controlled 3) has a parallel or a cross over design 4) is a 
randomized, double-blind study 5) has clearly defined primary outcome 
6) has clearly defined exclusion/inclusion criteria 7) accounted 
adequately for dropouts and crossovers, with numbers sufficiently low 
to have minimal potential for biases 8) has a relevant baseline charac-
teristic, substantially equivalent among treatment groups or appropriate 
statistical adjustment for differences. 

4.1.2. Class II studies 
A class II study included more than ten patients in each group, and 

only one criterion of the criteria 1–8 of a Class I study could be missed. 

4.1.3. Class III studies 
A class III study has to be a prospective, controlled, parallel or cross- 

over design study (criteria 2 and 3 of a class I study). 

4.1.4. Class IV studies 
Class IV studies are non-controlled, retrospective, case series or case 

reports. 

4.2. The level of evidence 

Level of evidence was defined as follow: 

4.2.1. Level A 
Definitely effective or ineffective: 
At least two Class I or one Class I study, and at least two Class II 

studies. 

4.2.2. Level B 
Probably effective or ineffective: 
One Class I study and less than two Class II studies; alternatively, at 

least two Class II studies; alternatively, one Class II study and at least two 
Class III studies. 

4.2.3. Level C 
Possibly effective or ineffective: 
One Class II study, and less than two Class III studies; alternatively, at 

least two Class III studies. 
Recently, the EFNS adhered to the GRADE methodology (Leone 

et al., 2013) – probably the currently most recognized system to perform 
a structured evaluation of evidence’s quality, particularly when the re-
ported results are controversial. This is often the case in studies inves-
tigating NIBS. However, GRADE ‘s validity has not been thoroughly 
tested yet (Leone et al., 2013). 

The Grading of Recommendations Assessment, Development, and 
Evaluation (GRADE) system (Balshem et al., 2011; Guyatt et al., 2011; 
Leone et al., 2013) integrates multiple qualitative and methodological 
characteristics of studies and outcomes into a critical rating of the 
quality of the evidence. In the GRADE system, the evidence for studies’ 
outcome is categorized as high, moderate, low, or very low, based on 
five quality criteria. For each quality criterium, the expert evaluates 
his/her confidence in the effect’s estimate in order to be able to upgrade 
or downgrade the quality of the evidence. 

The five quality criteria to be evaluated are qualitative (1− 3) and 

Fig. 1. Flow-chart selection adapted from Moher et al. (2009).  
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quantitative (4–5): 
1) Limitations in the design and implementation (e.g. biased 

assessment of the intervention effect, lack of allocation concealment, 
lack of blinding, substantial loss to follow-up, selective reporting out-
comes…); 2) indirectness (i.e. indirect comparisons differences in pop-
ulation definition, interventions and comparators); 3) inconsistency (i.e. 
heterogeneity of results across studies); 4) imprecision (i.e. small sample 
size, wide confidence intervals); 5) publication and selective outcome 
reporting bias (i.e. over-publication of positive studies or positive 
outcomes). 

Here, we used the Brainin-EFNS criteria (Brainin et al., 2004) and 
took into account some of the GRADE criteria: 1) The risk of bias related 
to study limitations in the design and implementation was evaluated to 
downgrade randomized trials from Class I to Class II and III. 2) The risk 
of bias related to indirectness was evaluated while determining the level 
of evidence (i.e. A, B or C). 3) The risk of bias related to the inconsistency 
of results was evaluated while determining the level of evidence (i.e. A, 
B, C). 4) The risk of bias related to imprecision was only partially 
evaluated. On the one hand, the sample size contributed to building the 
class of evidence. On the other hand, we did not account for wide con-
fidence intervals, since we did not do a meta-analysis. 5) The risk related 

to publication and selective outcome reporting bias was not taken into 
account, since we did not do a meta-analysis. 

Meta-analysis: Due to the high heterogeneity of the study designs, we 
chose to perform a systematic qualitative review. Running a systematic 
quantitative review (meta-analysis) would be inevitably biased via un-
justifiable comparisons of very different study designs. Furthermore, the 
most established European guidelines for the use of NIBS were system-
atic qualitative reviews (Lefaucheur et al., 2017, 2014, 2020). More-
over, most meta-analyses do not account for the reproducibility of 
results across different laboratories, and overweight large studies – even 
if there is only one large study. Therefore, we put strong emphasis on the 
replication of similar studies across independent laboratories – in 
qualitative analysis – to improve the reliability of research outcomes 
(Ioannidis, 2014). 

4.3. Approaches to treatment 

A discussion of the effectiveness of NIBS for the treatment of PD 
demands a differentiation of the procedures used in the stimulation 
protocols. 

The stimulation protocols can be differentiated according to the kind 

Fig. 2. Non-invasive brain stimulation techniques.  
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Table 1 
Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Kim et al., 2015; Benninger et al., 2012; Brys et al., 2016; Makkos et al., 2016; Khedr et al., 2019b; Khedr et al., 2019a). (For 
interpretation of the references to colour in this table legend, the reader is referred to the web version of this article.)  
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of stimulus delivery: intermittent stimulation, chronic stimulation, and 
stimulation concomitant to a parallel intervention. Intermittent stimu-
lation aims to achieve long-term plasticity changes: the critical outcome 
is the long-term clinical benefit. In chronic stimulation, the goal is to 
induce immediate effects, even if they do not persist beyond the stim-
ulation period. The critical clinical outcome is assessed during stimu-
lation. This approach refers only to tDCS and tACS for which portable 
devices are available. In concomitant stimulation, NIBS is delivered 
simultaneously to other clinical procedure(s), as an adjuvant treatment. 
The critical outcome is the additional effect compared to the standard 
treatment alone. 

The heterogeneity of NIBS studies, regarding stimulation duration, 
stimulation intensity, coil or electrode type, frequency of stimulation 
and outcome measures precludes direct comparisons; targeted areas 
vary. The patient populations are also heterogeneous. Moreover, while 
some studies used only one stimulation session, other studies used 
several stimulation sessions; some studies used a parallel, and some 
others a cross-over design. The duration of NIBS after-effects is still 
unknown, and the interval –wash-out period– in cross-over studies dif-
fers, ranging from 24 h to several months. 

We sorted out studies according to their level of evidence and 
concluded according to treatment recommendations. 

For each stimulation paradigm, we assess the overall effect of NIBS 
on motor symptoms with the UPDRS-III. Thereafter, we focus on the 
effects of NIBS in bradykinesia, gait, tremor, FOG, dyskinesia, depres-
sion and non-motor symptoms. Because rigidity has been poorly inves-
tigated yet, no discussion will be offered. All results we discuss were 
significant in comparison to a sham stimulation (i.e. placebo) group. 

4.4. Repetitive transcranial magnetic stimulation (rTMS) 

4.4.1. Low-frequency (LF) rTMS of M1 (for a full table see supplementary 
information) 

No Class I or II studies for LF rTMS of M1 were found. In class III 

studies: only one out of eight studies improved the motor UPDRS-III. 
Two out of three studies reported an improvement in Bradykinesia. 
Two studies assessed gait, but only one reported improvement. No ef-
fects on tremor were found. Three studies investigated depression in PD 
but did not find any effect. Overall, LF rTMS of M1 appears to be inef-
fective for overall motor symptoms (Level C) and depression (Level C) in 
PD. 

4.4.2. High-Frequency (HF) rTMS of M1 (for class I and II see Table 1; for 
a full table see supplementary information) 

One class I study reported that 50 Hz M1 rTMS had no better effect 
than sham stimulation on motor symptoms (UPDRS-III), bradykinesia, 
gait or depression, neither at post-intervention nor at follow-ups (Ben-
ninger et al., 2012). Nevertheless, several studies reported improved 
motor symptoms. A class I study reported a significant reduction of the 
motor UPDRS-III (36 %) after ten sessions of 20 Hz stimulation. The 
effect persisted for at least three months. However, five boosters were 
given during the follow-up period (Khedr et al., 2019b). Another class II 
study – including ten sessions of 10 Hz rTMS – also reported a significant 
decrease of 15 % in the motor UPDRS-III, whereas no significant effect 
on depression was found (Brys et al., 2016). In contrast to the other 
studies, results did not persist at six months follow-up. A large class II 
study including 46 PD patients tested 5 Hz stimulation of M1 (Makkos 
et al., 2016) and reported a significant improvement (12 %) of motor 
UPDRS-III and depression (MADRS 65 %; BDI 60 %); all effects were 
maintained for at least one month. A cross-over study that tested 10 Hz 
stimulation of M1 during five sessions reported UPDRS-III improvement 
of 31 % compared to baseline, and the effect persisted for at least one 
week. While there was no effect on gait – number of steps during turning 
and especially the FOG-Q questionnaire improved by 13 % after treat-
ment (Kim et al., 2015). Another large class I study assessed the supe-
riority of HF rTMS over LF rTMS (Khedr et al., 2019a). This study was a 
superiority study and did not include a sham stimulation, precluding 
conlusions regarding their efficacy in comparison to other studies. The 

Short_final_rTMS: Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_rTMS: Randomized rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 

Table 2 
Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Li et al., 2015). (For interpretation of the references to colour in this table legend, the reader is referred to the web version of this 
article.)  

Short_final_rTMS: Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_rTMS: Randomized rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
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study reported no difference between HF rTMS and LF rTMS on motor 
symptoms. When summarizing all class III studies, seven out of nine 
showed improvement in the motor UPDRS-III, all six studies improved 
bradykinesia and three out of six improved gait performance. Two out of 
nine studies couldn’t show an effect of rTMS on UPDRS-III. Three out of 
six studies on gait and all three studies on depression, none of them were 
able to demonstrate any significant effects. 

Overall, one class I study did not find clinical effects of 50 Hz rTMS of 
M1 on motor symptoms. One class I study (20 Hz), three class II studies, 
and several class III studies (20 Hz/10 Hz) reported a significant 
improvement after rTMS. Two class I studies found divergent results and 
preclude further conclusions; three clear class II studies remained. We 
conclude that 10 / 20 Hz rTMS, but not 50 Hz rTMS, of M1 is probably 
effective (Level B) for the treatment of motor symptoms in PD. 

The evidence for the effect of HF rTMS on bradykinesia is ambiguous, 
6 positive class III studies contrast with one negative class I study. The 
current level of evidence precludes further conclusions. HF rTMS of M1 
alone seems ineffective in gait (Level B) and in depression (Level B). For 
the other outcome measures, the evidence is insufficient to evaluate 
their efficacy. However, even if the evidence for the efficacy of rTMS on 
motor symptoms accumulates, we emphasize that the clinical effect of 
rTMS on UPDRS-III remain small (12 %–36 %) compared to the clinical 

effect of levodopa on UPDRS-III (41 % of baseline) and the placebo effect 
on UPDRS-III (~16 % of baseline) (Espay et al., 2015). Nevertheless, 
additional effects, beyond the optimal on-medication state, suggest 
non-dopaminergic effects of NIBS. 

4.4.3. Low frequency (LF) rTMS over DLPFC (for class I and II see Table 2; 
for a full table see supplementary information) 

One large class I study included 132 patients and assessed the effect 
of LF (1 Hz) rTMS over DLPFC on motor symptoms, in comparison to the 
effect of istradefylline – a caffeine analogue and selective adenosine A2A 
receptor antagonist. There was no significant difference between groups 
(Li et al., 2015). As previously discussed, superiority studies are difficult 
to interpret. However, LF rTMS over DLPFC seems to be similarly 
effective as the recently FDA-approved adjuvant for motor fluctuations 
–istradefylline. This needs to be confirmed in further studies. 

4.4.4. High frequency rTMS over DLPFC (for class I and II see Tables 3 & 
10; for a full table see supplementary information) 

Only one large class-I study assessed the effect of 10 Hz rTMS over 
DLPFC (Li et al., 2015), but this study was a superiority study comparing 
LF rTMS, HF rTMS and Istradefillyne combined with sham stimulation. 
The study reported no differences on motor symptoms between any of 

Table 3 
Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Brys et al., 2016; Li et al., 2015; Pal et al., 2010). (For interpretation of the references to colour in this table legend, the reader is 
referred to the web version of this article.)  

Short_final_rTMS: Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_rTMS: Randomized rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
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these interventions. Comparison of these results with those of other 
studies is difficult. However, HF rTMS over DLPFC seems to be similarly 
effective as the recently FDA-approved adjuvant for motor fluctuations 
–istradefylline. 

A class II study with10 Hz stimulation over the DLPFC (Brys et al., 
2016) couldn’t show neither an effect on motor UPDRS-III nor on 
depression. Another class II study stimulated the left-DLPFC at 5 Hz (Pal 
et al., 2010) and improved depression (BDI -44 %; MADRS -13 %), gait 
(TUG 12 %) and stroop-test performance (15 %); there was no effect on 
UPDRS-III. Except for gait (TUG), those effects persisted at one-month 
follow-up. To sum-up the results of the class III studies, consistent re-
sults of all seven studies neither show an effect of HF-rTMS on 
UPDRS-III, nor on bradykinesia (1/1), nor on gait (2/2). However, five 
out of six studies reported improvement of depression’s symptoms. 

Overall HF rTMS over DLPFC seems to be ineffective in improving 
motor symptoms (Level B) but effective in improving depression in PD 
(Level B). As shown in four studies (Boggio et al., 2005; Cardoso et al., 
2008; Fregni et al., 2006a, 2004), rTMS and fluoxetine have comparable 
clinical efficacy on depression – a rather significant clinical relevance. 
No further evaluations are possible due to lack of studies or to ambig-
uous results. For further insights into the efficacy of HF rTMS over 
DLPFC on depression in PD, see the Supplementary material. 

4.4.5. Excitatory stimulation protocols: HF rTMS and iTBS of M1 and 
DLPFC (for class I and II see Tables 4 & 10 ; for a full table see 
supplementary information) 

Combining multiple stimulation targets such as M1 and DLPFC can 
be another approach to improve PD symptoms. The effects of iTBS of 
M1 +DLPFC was assessed in a class I study (Benninger et al., 2011): 
iTBS did not improve motor UPDRS-III, neither timed testing of 

bradykinesia or gait, nor FOG. However, a significant improvement on 
the Beck’s Depression Inventory (19 %) was found, which is congruent 
with the approved HF rTMS DLPFC stimulation protocol for depression 
and this effect persisted at one-month follow-up. A small improvement 
in the total UPDRS (13 %) was noticed compared to sham in the off-state. 

In a class II study Brys et al. did not find any effect of combined 
M1 +DLPFC HF rTMS on motor symptoms or bradykinesia (Brys et al., 
2016). Interestingly, in the same study, the authors found an effect on 
motor symptoms with HF rTMS M1 stimulation alone. Thus, the lesser 
effects of the combined stimulation protocol compared to M1 stimula-
tion alone may indicate an interference when combining multiple 
stimulation targets. A class III study reported improvements of brady-
kinesia, gait performance but not motor UPDRS-III. These few studies 
preclude further conclusions, though the class I iTBS study further 
strengthens the evidence for HF rTMS DLPFC stimulation in treating 
depression in PD, and combined HF M1 +DLPFC rTMS seems ineffective 
for motor symptoms (Level B). 

4.4.6. Low-Frequency rTMS over SMA (for class I and II see Table 5; for a 
full table see supplementary information) 

In a large class I multicenter study, Shirota and colleagues (Shirota 
et al., 2013) included 102 patients and investigated the effects of LF 
SMA- or HF SMA-stimulation compared to sham, on motor symptoms, 
non-motor symptoms and depression. After eight stimulation sessions, 
both groups showed comparable improvements to those observed in the 
sham group; however, at three months follow-up the improvement 
persisted only after LF SMA-stimulation, and only for the motor 
UPDRS-III and the UPDRS-total score. The remaining studies were all 
class III studies and failed to show any improvement compared to sham 
stimulation (3/3). Therefore, we conclude that LF rTMS SMA is 

Table 4 
Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies. (Brys et al., 2016; Benninger et al., 2011). (For interpretation of the references to colour in this table legend, the reader is referred to 
the web version of this article.)  

Short_final_rTMS: Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_rTMS: Randomized rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
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ineffective for improving motor symptoms in PD (Level B). 

4.4.7. High-Frequency rTMS over SMA (for class I and II see Table 6; for a 
full table see supplementary information) 

As discussed above, a class I study did not find an effect of 10 Hz 
rTMS SMA on motor symptoms, non-motor symptoms or depression 
(Shirota et al., 2013). However, in another large multicenter class I 
study including 98 patients, Hamada et al. reported improvement of 
UPDRS-III (20 %), and in the sub-item for bradykinesia (23 %) after 5 Hz 
rTMS SMA, which persisted at one-month follow-up, but not for 
depression. These two studies are high-quality studies with a similar 
design, yet their results are contradictory. However, in the one study, 
the stimulation frequency was 5 Hz (Hamada et al., 2009) and in the 
other, 10 Hz (Shirota et al., 2013). This difference might explain the 
contradiction. Surprisingly, another class II study stimulated at 10 Hz 
during ten sessions to show an improvement in UPDRS-III (17 %), 
walking time (20 %), and the self-reporting FOG-Q (18 %). These effects 
persisted even at the one-month follow-up (Ma et al., 2019). 

Summarizing class III studies, one out of three studies showed 
improvement in motor UPDRS-III after stimulation. One study (1/1) did 
not find any effect of stimulation on gait and depression, and another 
study (1/1) found that bradykinesia even worsened. Although two high- 
quality studies show ambiguous results, class III studies support the ef-
ficacy of HF-rTMS over the SMA for treating motor symptoms in PD 
(Level C). All studies are consistent regarding the ineffectivity of HF- 
rTMS SMA for depression (Level A). 

4.4.8. rTMS over the cerebellum (for class I and II see Table 7; for a full 
table see supplementary information) 

A single class II study reported reduction of dyskinesia (CAPSIT-LID 
30 %) after cTBS of both cerebellar hemispheres, but no change in motor 
UPDRS-III which persisted at one-month follow-up (Koch et al., 2009). 
Another class III study used a similar study design and found a reduction 
of dyskinesia, which persisted at one-month follow-up (Kishore et al., 
2014). Therefore, cerebellar cTBS may be effective to reduce dyskinesia 
(Level B). 

4.4.9. Other stimulation paradigms (for class I and II see Table 8; for a full 
table see supplementary information) 

Few studies evaluated the efficacy of frontal cortex rTMS. A single 

class III study reported benefits of LF rTMS over the frontal area on 
motor symptoms and depression (Shimamoto et al., 2001). On the other 
hand, a class II study did not find any effect of LF M1 + PMd rTMS on 
motor symptoms, bradykinesia or tremor (Fricke et al., 2019). 

4.4.10. rTMS and dyskinesia (for class I and II see Table 9; for a full table 
see supplementary information) 

Different protocols have been tested to treat levodopa-induced 
dyskinesia. All studies used inhibitory stimulation protocols (i.e. LF 
rTMS or cTBS) targeting different brain areas, including M1, SMA, 
DLPFC, the inferior frontal cortex and the lateral cerebellum. One single 
high-quality class II study investigated the effect of cTBS over the cer-
ebellum on dyskinesia (Koch et al., 2009) (see also the section rTMS over 
the cerebellum). All the other studies were class III studies. Summarizing 
results for each brain region, the following picture emerges: one 
LF-rTMS of M1 out of four studies found reduction of dyskinesia, the 
other three did not. All three SMA LF-rTMS studies found significant 
reduction of dyskinesia as did a single study performing cTBS of the right 
inferior frontal cortex. 

Overall, LF-rTMS over SMA and cTBS over both cerebellar hemi-
spheres may reduce dyskinesia in PD (Level C and B, respectively), 
whereas LF-rTMS of M1 may not have any effect on dyskinesia (Level C). 

4.4.11. rTMS and non-motor symptoms (for class I and II see Table 11; for 
a full table see supplementary information) 

Several studies assessed the effect of rTMS on different non-motor 
symptoms in PD. A class I study, reported a beneficial effect of 20 Hz 
rTMS of M1 on dysphagia (Khedr et al., 2019b). Another class I study, 
did not find any effect of rTMS on the non-motor symptoms question-
naire, neither after 1 Hz nor after 10 Hz SMA stimulation (Shirota et al., 
2013). A class II study showed, that 25 Hz rTMS improved executive 
function, but only after stimulation of the right DLPFC (Srovnalova 
et al., 2012). However, stimulation frequencies, targeted brain areas and 
outcomes were all heterogeneous. The limited number of studies pre-
cludes further conclusions on the efficacy of rTMS on non-motor 
symptoms (please note that class III studies have been included in the 
supplementary tables). 

Table 5 
Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Shirota et al., 2013). (For interpretation of the references to colour in this table legend, the reader is referred to the web version of 
this article.)  

Short_final_rTMS: Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_rTMS: Randomized rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
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4.4.12. H-coil rTMS (for class I and II see Table 12; for a full table see 
supplementary information) 

An H-coil (Hesed-coil) is presumed to stimulate deeper (up to 5.5 cm 
(Zangen et al., 2005)) and less focally than other coil types, and deserves 
a separate discussion. A class II study including 42 patients showed a 
small improvement of UPDRS-III (10 %) with H-coil rTMS over M1 
(1 Hz) + PFC (10 Hz). However, no effect could be found for bradyki-
nesia, gait or depression (Cohen et al., 2018). A class III study found an 
improvement of UPDRS-III and less FOG in a FOG- provoking test with 
10 Hz medial PFC stimulation; the regularity of gait kinematic param-
eters was improved. However, the study was interrupted because of pain 
– which may be a limiting side effect of the H-coil. The heterogeneity 
and low number of studies preclude further conclusions on the level of 
evidence as regards the efficacy of deep rTMS. 

4.4.13. Meta-analyses on rTMS effects in PD 
There are a few meta-analyses that investigated the effects of rTMS 

on PD symptoms. However, these results should be interpreted 
cautiously, because the studies performing stimulation at different fre-
quencies and of different brain areas were pooled together. While some 
authors found an improvement of motor symptoms after LF rTMS over 
several brain areas (Zhu et al., 2015), others did not (Elahi et al., 2009). 
Furthermore, a study showed an improvement of motor symptoms after 
LF rTMS, but only when the stimulation occurred over brain areas other 
than M1 (Chou et al., 2015). When studies stimulating different brain 
areas were merged in the analysis, HF rTMS improved motor symptoms 
(Elahi et al., 2009). Moreover, studies stimulating M1 with HF rTMS 

improved motor symptoms the most (Chou et al., 2015; Yang et al., 
2018). In addition, these studies showed that a higher number of pulses 
correlated with a more significant effect on motor symptoms. 

When LF rTMS and HF rTMS studies were merged in the analysis, 
rTMS improved motor symptoms but had no effect on cognition 
(Goodwill et al., 2017), and rTMS of M1 had the largest effect (Zanjani 
et al., 2015). Some authors did not confirm the antidepressant effect of 
prefrontal cortex rTMS (Zhou et al., 2019). A meta-analysis merging all 
tDCS and rTMS studies concluded that NIBS improved the motor 
UPDRS-III and FOG, the most efficacious being M1 stimulation (Kim 
et al., 2019). 

4.5. Transcranial direct current stimulation (tDCS) 

4.5.1. Anodal tDCS over M1 (for class I and II see Table 13; for a full table 
see supplementary information) 

One class I study including 60 PD patients compared the effect of 6 
sessions anodal M1 tDCS alone to physical therapy combined with sham 
stimulation (Yotnuengnit et al., 2018). Though no difference was found 
in motor UPDRS-III and gait performance, the effects of tDCS are com-
parable to physical therapy – a well-established therapy for PD motor 
symptoms and gait performance (Tomlinson et al., 2012; Rutz and 
Benninger, 2020). A class II study found that 5 sessions of anodal M1 
tDCS reduced the FOG episodes (50 %), FOG duration (75 %), the 
number of steps (30 %), and the time to complete a stand-walk-sit test 
(45 %). The improvement included the UPDRS-III, the FOG-Q, the gait 
and falls questionnaire and effects lasted for one month (Valentino et al., 

Table 6 
Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Hamada et al., 2009; Shirota et al., 2013; Ma et al., 2019). (For interpretation of the references to colour in this table legend, the 
reader is referred to the web version of this article.)  

Short_final_rTMS: Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_rTMS: Randomized rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
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2014). However, a class II study failed to find any effect of anodal M1 
tDCS on FOG-provoking test, gait performance and executive functions 
(Dagan et al., 2018a). Summarizing the class III studies: one study found 
a beneficial effect of tDCS on UPDRS-III (1/1), bradykinesia (1/3) and 
FOG (1/1); however, two studies (2/3) found no effect on bradykinesia, 
and one study none on working memory. Overall, anodal tDCS over M1 
may improve motor symptoms (Level B) and possibly gait performance 
(Level C). Considering some contradictory results among studies, the 
efficacy of tDCS on gait performance reached only a level C evidence. 
The current studies preclude further recommendations. 

4.5.2. Anodal tDCS over DLPFC (for class I and II see Table 16; for a full 
table see supplementary information) 

While there were only class III studies investigating the effect of 
anodal tDCS over DLPFC on motor symptoms, two class II studies 
investigated the effect of tDCS on non-motor symptoms. A study 
including 38 demented PD patients did not find any effect of tDCS on 
vigilance and reaction time (Elder et al., 2017). Another study including 
60 patients tested the effect of tDCS on impulsivity in PD (Benussi et al., 
2017). Cathodal, but not anodal tDCS reduced the impulsivity in the 
Iowa Gambling Task. When summarizing the class III studies, two out of 
four studies improved gait, one out of two improved executive function 
and one study improved verbal fluency and working memory (1/1). 

Table 7 
Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Koch et al., 2009). (For interpretation of the references to colour in this table legend, the reader is referred to the web version of this 
article.)  

Short_final_rTMS: Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_rTMS: Randomized rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 

Table 8 
Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Fricke et al., 2019). (For interpretation of the references to colour in this table legend, the reader is referred to the web version of this 
article.)  

Short_final_rTMS: Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_rTMS: Randomized rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 

J. Madrid and D.H. Benninger                                                                                                                                                                                                               



Journal of Neuroscience Methods 347 (2021) 108957

17

These heterogenous results do not allow recommending the use of 
anodal tDCS over the DLPFC in PD. 

4.5.3. Anodal tDCS over SMA (for a full table see supplementary 
information) 

Only two class III studies investigated the effect of anodal tDCS over 
SMA. One study improved UPDRS-III while the other did not improve 
gait, and symptoms even worsened. This contradiction in the two studies 
does not allow for any recommendation. 

4.5.4. Anodal tDCS over M1 +DLPFC (for class I and II see Table 14; for a 
full table see supplementary information) 

In a class II study with 25 PD patients, we investigated the effect of 
eigth sessions of bilateral tDCS of alternating M1 and PFC (Benninger 
et al., 2010). We found improvement in timed testing of bradykinesia 
(ON 31 % and OFF 39 %) –consisting of ten repetitive hand and arm 
movements– and in a 10 m walking test (23 % only in the off-condition), 
but no effect on motor UPDRS-III, depression or working memory. The 
beneficial effect on bradykinesia persisted for at least three months, and 
also reflected enhanced motor learning. This potential enhancement of 
motor learning with anodal stimulation may be beneficial to a combined 
physical therapy currently under investigation in a study on FOG. 
Another class II study reported a beneficial effect of anodal tDCS over 
M1 +DLPFC on FOG (FOG provoking test: 20 %), gait (TUG 21 %; speed 
80 m 4.2 %) and the Stroop test (11 %). The study also showed the su-
periority of the combined M1 +DLPFC stimulation compared to M1 
stimulation alone (Dagan et al., 2018a). Based on these two class II 
studies, we conclude that anodal tDCS over M1 +DLPFC seems benefi-
cial for gait difficulties in PD (Level B). 

4.5.5. Physical therapy and anodal tDCS (for class I and II see Table 15; 
for a full table see supplementary information) 

A few studies tested whether combining tDCS with physical therapy 
(PT) would enhance motor learning and, thereby, potentiate the efficacy 
of PT (Tomlinson et al., 2012; Rutz and Benninger, 2020). One class I 
study of combined anodal M1 tDCS with PT failed to find a comple-
mentary effect on UPDRS-III and gait (Yotnuengnit et al., 2018). 

However, tDCS alone had a comparabale effect to PT + sham stimula-
tion. This could indicate a “ceiling” effect or response saturation to 
either intervention without further benefit by combining them. Another 
class II study confirmed no additional effect of anodal stimulation on 
UPDRS-III, gait or bradykinesia (Costa-Ribeiro et al., 2017). However, 
although the improvement in the 10 m walking test and the 
timed-up-and-go test was similar immediately after the ten stimulation 
sessions, the effect tended to manifest within fewer days and persisted 
for longer time periods (i.e. for at least one month, in the tDCS group). 
Summing-up the class III studies, one out of three studies improved the 
UPDRS-III, one out of three improved bradykinesia, and two studies 
improved the cognitive outcome (2/2) (i.e. PD-CRS and correct response 
rate); four studies (4/4) didn’t show a benefit on gait performance, and 
one study (1/1) failed to show any effect on depression. Overall, anodal 
tDCS + rehabilitation may not have an additional effect as compared to 
rehabilitation + sham stimulation on motor symptoms (Level B), bra-
dykinesia (Level C) and gait performance (Level B). However, an addi-
tional effect may exist on the cognitive outcome (Level C). 

4.5.6. Anodal tDCS of the medial frontal cortex (for a full table see 
supplementary information) 

Only one class III study in 20 PD patients suffering from mild 
cognitive impairment reported an improvement of the cognitive 
outcome (i.e. attribution of intention task assessing comprehension of 
displayed stories) after anodal tDCS over the medial frontal cortex. This 
single study precludes further conclusion. 

4.5.7. Anodal tDCS + cognitive training (for class I and II see Table 17; for 
a full table see supplementary information) 

The presumed enhancement of learning by anodal tDCS provides the 
rationale to combine it with cognitive training. So far, there are a few 
studies. A class I study tested whether tDCS would enhance the effect of 
computerized cognitive training (Manenti et al., 2018). After ten ses-
sions of anodal tDCS over the left-DLPFC + computerized cognitive 
training, the authors found an additional effect of the combined therapy 
on depression (BDI 25 %) compared to computerized cognitive training 
alone (+ sham tDCS), and this effect lasted for three months. However, 

Table 9 
Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Koch et al., 2009). (For interpretation of the references to colour in this table legend, the reader is referred to the web version of this 
article.)  
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no additional effect was found for cognition, UPDRS-III, memory, lan-
guage, executive functions or attention. A RCT class II study investigated 
the additional effect of anodal tDCS of left-DLPFC with an occupational 
therapy on fatigue (Forogh et al., 2017). The study reported an addi-
tional effect in the fatigue severity index (17 %), which did not persist at 
the three months follow-up, but none in the Epworth sleepiness scale. 
One class III study found an additional effect of DLPFC anodal tDCS on 
memory, language, attention and executive function, but none on vi-
suospatial abilities and global cognitive functions. The inconsistency of 
these results, their heterogeneity and the lack of class I RCT preclude a 
conclusion as to whether or not tDCS provides the additional efficacy of 
tDCS + cognitive training. 

4.5.8. Cathodal tDCS (for class I and II see Table 18; for a full table see 
supplementary information) 

Although –in most studies– the anodal tDCS targeted the region of 
interest without giving importance to cathode’s position, some studies 
investigated the effect of cathodal in comparison to anodal stimulation. 
One class II study reported that cathodal tDCS over the DLPFC can 
reduce the impulsivity of PD patients while anodal tDCS cannot (Benussi 
et al., 2017). Investigators of a class II study placed the anode over the 
ipsilateral DLPFC and the cathode over the contralateral DLPFC: they 
could improve the fatigue severity index (Forogh et al., 2017). Another 

class III study with the same experimental design neither improved gait 
nor cognition (Swank et al., 2016). However, in a class III study, the 
cathode was placed over the more affected and the anode over the less 
affected M1: a 50 % improvement of the UPDRS-III baseline motor score 
was obtained. When reversing the electrode polarity, they found no 
improvement (Salimpour et al., 2015). In a class III study, the more 
affected M1 was stimulated first with the anode and then the cathode, 
followed by stimulation of the less affected M1. Each corresponding 
electrode was placed over the contralateral orbital frontal region. The 
authors found that anodal stimulation of the more affected M1, and 
cathodal stimulation of the less affected M1 improved motor symptoms; 
anodal stimulation of the less affected M1, and cathodal stimulation of 
the more affected M1 didn’t improve motor symptoms – or even wors-
ened them (Cosentino et al., 2017). The authors interpreted these 
findings to result from a presumed pathological imbalance of excitability 
between the brain hemispheres (Cosentino et al., 2017). The rationale 
for the placement of the depolarizing anodal and the hyperpolarizing 
cathodal stimulation would be to remediate this imbalance. The het-
erogeneity of these studies precludes further conclusion regarding the 
efficacy of cathodal stimulation; but underlines the importance of 
electrode placement and the direction of current flow. 

Table 10 
Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Pal et al., 2010; Brys et al., 2016; Benninger et al., 2011). (For interpretation of the references to colour in this table legend, the 
reader is referred to the web version of this article.)  

Short_final_rTMS: Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_rTMS: Randomized rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
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Table 11 
Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Srovnalova et al., 2012; Khedr et al., 2019b; Shirota et al., 2013). (For interpretation of the references to colour in this table legend, 
the reader is referred to the web version of this article.)  

Short_final_rTMS: Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_rTMS: Randomized rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 

Table 12 
Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Cohen et al., 2018). (For interpretation of the references to colour in this table legend, the reader is referred to the web version of 
this article.)  

Short_final_rTMS: Randomized controlled studies of rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_rTMS: Randomized rTMS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
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4.5.9. Dual stimulation: tDCS + rTMS (for class I and II see Table 19; for a 
full table see supplementary information) 

Dual stimulation refers here to simultaneous stimulation or to 
priming with tDCS followed by rTMS. One class I study investigated 
whether anodal tDCS over the left-DLPFC would have an additional ef-
fect on PD symptoms when combined with subsequent HF M1 rTMS 
(Chang et al., 2017). The study showed a significant additional 
improvement of gait (TUG 11 %; turn steps 11 %), cognition (MoCA 6 %) 
and executive function (TMT-B 18 %), whereas no additional effect was 
found for UPDRS-III, depression or FOG. The improvement in the TMT-B 
persisted even at one-week follow-up. This single study precludes 
further conclusion. 

4.5.10. Meta-analyses on tDCS effects in PD 
Two meta-analyses investigated the effect of tDCS on motor symp-

toms, cognition and gait function in PD. When tDCS studies were merged 
in the analysis, tDCS improved motor symptoms but not cognition 
(Goodwill et al., 2017). The tDCS induced a short-lasting beneficial ef-
fect on gait function without any longer-term effect. Targeting multiple 
brain areas (multifocal stimulation) may also be beneficial (Lee et al., 
2019a). In a meta-analysis, merging results of both rTMS and tDCS 
studies, NIBS improved FOG and the UPDRS-III; when targeting M1, the 
effect was even stronger. However, the heterogeneity of studies preclude 
a comparison, and merging all the data may lead to biased results, which 
should be interpreted cautiously. 

4.6. Transcranial Alternating Current Stimulation (tACS) (for class I and 
II see Table 20; for a full table see supplementary information) 

In a class II study with 15 PD patients and 15 healthy subjects, the 
investigators chose a personalized stimulation protocol based on a dis-
ease model related to the excess or deficiency in EEG-power maps. The 
rationale of placing the electrode targetting the brain region with the 
largest difference in EEG-power maps is to counterbalance the prevalent 
beta excess in PD (found in two thirds of their sample) with 4 Hz tACS 
and conversely the theta excess with 30 Hz tACS. The Random Noise 
Stimulation (RNS) was used in a control group of PD patients; in both 
conditions, stimulation was followed by physical therapy (10 sessions). 
The personalized tACS protocol did not cause an additional effect 
regarding motor symptoms, gait, depression, cognition, executive 
functions or language. However, there was an improvement with tACS 
in the Montreal cognitive assessement (MoCA) compared to RNS, which 
persisted at one-month follow-up. Theta stimulation reduced beta- 
power and increased theta-power in PD patients; the beta-power in-
crease persisted even at one-month follow-up. No power-spectrum 
changes were found after 30 Hz stimulation (del Felice et al., 2019). 
Since they studied an active control condition and no sham stimulation, 
it is difficult to compare these results with those of other studies. 
Moreover, 4 Hz and 30 Hz are relatively low-frequency stimulations and 
low frequencies are increased in PD pathophysiology. Therefore, stim-
ulating with higher frequencies appears more promising. 

Table 13 
Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Valentino et al., 2014; Yotnuengnit et al., 2018; Dagan et al., 2018a). (For interpretation of the references to colour in this table 
legend, the reader is referred to the web version of this article.)  

Short_final_tDCS: Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_tDCS: Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
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Table 14 
Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Dagan et al., 2018; Benninger et al., 2010). (For interpretation of the references to colour in this table legend, the reader is referred 
to the web version of this article.)  

Short_final_tDCS: Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_tDCS: Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 

Table 15 
Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Yotnuengnit et al., 2018; Costa-Ribeiro et al., 2017). (For interpretation of the references to colour in this table legend, the reader is 
referred to the web version of this article.)  

Short_final_tDCS: Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_tDCS: Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
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A class II tACS study found no effects on motor symptoms, depression 
and sleepiness after 77.5 Hz stimulation over the frontal area (Shill et al., 
2011). A class III study failed to show an effect of 10 Hz tACS on dia-
dochokinesia, fast-finger tapping, EEG-power maps and 
cortico-muscular coherence. However, 20 Hz stimulation paradoxically 
reduced beta cortico-muscular-coherence and increased fast-finger tap-
ping regularity (Krause et al., 2014). The study assessments were done 
after the stimulation, i.e. offline, which may have missed the immediate 
effect of stimulation. 

In two studies, Brittain et al. investigated the online effect of tACS on 
tremor. In an exploratory class III study, the investigators reported that 
stimulating M1 with the tremor’s frequency – out of phase and in a 
closed-loop manner – enabled a tremor reduction of 42 % baseline value 
(Brittain et al., 2013). In another exploratory class IV study, they showed 
that stimulating the cerebellum with the tremor frequency enabled 
real-time tremor entrainment, with no effect on tremor amplitude 
(Brittain et al., 2015). This last study underscores the importance of 
personalized, closed-loop, real-time stimulation systems able to adapt to 
the underlying physiopathology. Although these tACS studies in PD 
patients need to be confirmed, tACS studies in healthy subjects are 
promising. Gamma tACS of M1 improves (Santarnecchi et al., 2017) and 
beta tACS impairs motor performance by presumed entrainment of the 
cortical circuit (Pogosyan et al., 2009). When stimulating the medial 
frontal cortex at the individual theta frequency, tACS modulated the 
frontal-midline theta-oscillation phase, disrupted the working-memory 
task-related frontal-midline power increase, and the working-memory 
performance (Chander et al., 2016). These results are promising for 
further investigations in PD patients. 

4.7. Transcranial pulsed current stimulation (tPCS) (for a full table see 
supplementary information) 

A single pilot, class III study compared the effects of tPCS of M1 
alone, tPCS combined with treadmill walking and walking on a treadmill 
alone (Alon et al., 2012). The results suggested that tPCS alone had a 
greater impact on gait function than treadmill walking alone or 

combined with tPCS. However, results of a single class III study should 
be interpreted wih caution. 

4.8. Some review limitations 

Because the Brainin criteria (Brainin et al., 2004) assess the meth-
odological value of a whole study, no distinction is made to give weight 
to primary and secondary outcomes during the analysis. However, 
differentiating between primary and secondary outcome measures 
protects against the multiple comparisons problem. Consequently, a new 
methodology for future systematical reviews is still needed and should 
be developed. 

4.9. Conclusions 

LF-rTMS of M1 appears to be ineffective for motor symptoms (Level 
C) and depression (Level C) in PD. HF-rTMS of M1 is probably effective 
to treat motor symptoms (Level B). Conversely, it seems ineffective to 
treat gait (Level B) and depression (Level B) in PD. HF-rTMS over DLPFC 
may be ineffective to improve motor symptoms (Level B), but effective to 
improve depression in PD (Level B). Combined HF M1 +DLPFC rTMS 
may be ineffective to treat motor symptoms (Level B). All studies being 
consistent, we conclude that LF-rTMS of SMA is ineffective for the 
improvement of motor symptoms in PD (Level B). HF-rTMS SMA may be 
effective on motor symptoms (Level C), but results are ambiguous. All 
studies being consistent, we conclude that HF-rTMS over SMA is inef-
fective to treat depression in PD (Level A). Furthermore, LF-rTMS over 
SMA and cTBS over cerebellum may reduce dyskinesia (Level C and 
Level B, respectively), whereas LF-rTMS of M1 may not be effective for 
dyskinesia (Level C) (See also Table 1). 

Anodal tDCS of M1 may improve motor symptoms in PD (Level B) 
and gait (Level C). Anodal tDCS of M1 +DLPFC may be beneficial for 
gait (Level B). Combined anodal tDCS + rehabilitation may not have an 
additional effect compared to rehabilitation (+ sham stimulation) alone 
on motor symptoms (Level B), bradykinesia (Level C) and gait (Level B). 
However, combined with a cognitive training an additional effect on 

Table 16 
Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Elder et al., 2017; Benussi et al., 2017). (For interpretation of the references to colour in this table legend, the reader is referred to 
the web version of this article.)  

Short_final_tDCS: Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_tDCS: Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
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cognitive outcome is possible (Level C) (See also Table 2). 
Although the current data is insufficient for recommending the 

clinical use of tACS, the promising results call for further investigations 
(See also Table 3). 

In total, we reviewed 92 studies (class I, II and III), but only 29 
qualify as high-quality studies (class I and II). 

In total, 1411 PD-patients participated in the 52 rTMS studies: six 
studies with less than ten, 29 studies had between 10 and 25, and 17 
studies more than 25 participants. Forty trials had balanced groups in a 
parallel design or were cross-over studies and 12 trials had imbalanced 
groups in a parallel design. 

In total, 616 PD-patients participated in the 28 tDCS studies: one 
study had less than ten, 21 studies between 10 and 25, and six studies 
more than 25 participants. Twenty-eight trials had balanced groups in a 
parallel design or were cross-over studies and none had imbalanced 
groups. 

53 PD-patients participated in the four tACS studies: one study had 
less than ten, three studies between 10 and 25, and none more than 25 
participants. Three trials had balanced groups in a parallel design or 
were cross-over studies and one had imbalanced groups. 

There is a recent increase in high-quality, class I RCT to complement 
the current state of evidence. More multi-center, phase 3 studies are 
needed to confirm the efficacy of these promising stimulation protocols 
before they can be approved for clinical practice. 

There are a number of methodological issues to resolve: the choice of 

whether to compare an intervention to a control sham condition or 
another active intervention in a superiority study. In the current state of 
evidence, a sham stimulation controlled study design is preferable. 
Another potential shortcoming of many RCT is their rather small number 
of participants even when assuming a substantial effect size. 

A great challenge is the selection of the best stimulation protocol 
among a practically unlimited number of possible stimulation parame-
ters. The choice is difficult: also for the limited comparability between 
the current studies considering the heterogeneity of study designs. 
Promising stimulation protocols of ideally class I studies could provide 
the evidence for larger multi-center RCT. 

5. Outlook and new technologies 

The current state of evidence suggests a potential efficacy of NIBS for 
the treatment of Parkinson symptoms, but the mostly modest effects 
remain to be confirmed in large multicenter RCTs. In addition, more 
powerful stimulation protocols are needed for clinical practice since the 
effect sizes are small and insufficient to considerably improve the pa-
tients’ quality of life. 

The current concept of NIBS stipulates three possible modes of 
clinical applicability: 1) given the effects persist beyond the stimulation 
period, the intermittent application of NIBS remains the standard 
approach; 2) given plasticity promoting effects, the NIBS may potentiate 
the efficacy of combined interventions; 3) given immediate effects 

Table 17 
Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Manenti et al., 2018; Forogh et al., 2017). (For interpretation of the references to colour in this table legend, the reader is referred to 
the web version of this article.)  

Final_tDCS: Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
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–which do not persist beyond the stimulation period– the 3rd option 
may be chronic stimulation as with DBS, but this is only feasible with tCS 
and not rTMS. 

Resuming the current state of knowledge: First, the long-term 
improvement after stimulation seems to be rather modest. Second, the 
NIBS’ adjuvant effect on other therapies –e.g. physiotherapy, cognitive 
training– may be overlaid by a ceiling effect (i.e. saturation of response). 
Third, the online improvement may be the most promising, but has been 

poorly studied so far. 
Considering the risks of current invasive therapies –therefore many 

patients are not eligible– searching for alternative therapies seems 
essential: NIBS is secure, inexpensive and portable (i.e. tCS). Also 
–paralleling the insights into pathophysiology– stimulation techniques 
are becoming more personalized and precise, and some novel techno-
logical advances hold promise. 

Respecting the safety guidelines and the limitations of the 

Table 18 
Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Benussi et al., 2017; Forogh et al., 2017). (For interpretation of the references to colour in this table legend, the reader is referred to 
the web version of this article.)  

Short_final_tDCS: Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_tDCS: Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 

Table 19 
Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: 
primary outcomes; Written in purple: studies testing different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an 
active sham or superiority studies (Chang et al., 2017). (For interpretation of the references to colour in this table legend, the reader is referred to the web version of 
this article.)  

Short_final_tDCS: Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_tDCS: Randomized controlled studies of tDCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
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Table 20 
Randomized controlled studies of tACS or tPCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). Written in bold: primary outcomes; Written in purple: studies testing 
different stimulation paradigms; highlighted in green: high-quality studies class I and II; Hash: studies using an active sham or superiority studies (Del Felice et al., 2019; Shill et al., 2011). (For interpretation of the 
references to colour in this table legend, the reader is referred to the web version of this article.)  

Short_final_tACS: Randomized controlled studies of tACS or tPCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
Final_tACS: Randomized controlled studies of tACS or tPCS for the treatment of Parkinson’s disease (i.e. only statistically significant results of stimulation vs sham). 
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applicability of NIBS –in particular rTMS (see Rossi et al., 2009 for IFCN 
consensus paper)– NIBS techniques are considered safe (Rossini et al., 
2015; Krishnan et al., 2015; Nitsche et al., 2003b; Wassermann, 1998). 
Although NIBS studies had only few side effects, a deep rTMS study 
using the H-coil over the prefrontal cortex had to be interrupted because 
of pain (Dagan et al., 2017). In another study, cutaneous nociception 
limited the intensity of tCS (Khatoun et al., 2017). Nevertheless, some 
strategies have emerged to counter these side effects. For instance, 
topical anaesthetics on the scalp (Khatoun et al., 2017) or the use of 
high-frequency amplitude-modulated stimulation (Witkowski et al., 
2016) –which stimulates beyond the response range of cutaneous 
receptors– are two effective ways to make the techniques more tolerable. 

Most of the clinical studies investigated the cortical excitability, 
using MEPs as the only parameter to assess the neurophysiological ef-
fects of NIBS. But, understanding the cortical functionality just as 
‘excitability improvement or impairment’ is obviously too simplistic. 
However, new paradigms are emerging – and biomarkers uncovered – 
that provide a new rationale for future assessment and treatment ap-
proaches (Benninger et Hallett, 2015; Benninger et al., 2020). For this 
reason, the role of oscillatory activity in the cortico-basal ganglia loops 
in information gating, coupling, and decoupling of distant brain areas 
has raised interest. The search for new biomarkers that may correlate 
with clinical outcome is underway. New studies based on computational 
simulations suggest that oscillations might be modulated by enhance-
ment of natural frequencies (i.e. resonance), entrainment to a specific 
external rhythm or subharmonic frequency (i.e. entrainment), or 
non-linear acceleration – when stimulating at high frequencies (Herr-
mann et al., 2016). Especially, the non-linearity of brain interactions has 
been poorly investigated so far, and might be a promising research focus 
(Syrkin-Nikolau et al., 2017). 

5.1. Innovative concepts 

There are innovative information-theory concepts being examined in 
PD. 

For instance, functional connectivity –assessed through the imagi-
nary part of cortico-cortical coherence (Nolte et al., 2004)– showed to be 
impaired in PD (Schoellmann et al., 2019). 

Neural entropy – which quantifies the disorder in terms of patterns of 
neuronal activity – has also been found to be altered; being elevated in 
the basal ganglia, it alleviates after STN DBS in a rat (Dorval and Grill, 
2014) and primate model (Dorval et al., 2008), and it inversely corre-
lates with clinical outcome. Although neural entropy usually correlates 
with information transmission in the healthy brain – higher entropy 
enables increased information encoding – it inversely correlates with it 
in the Parkinsonian basal ganglia; probably encoding unusable infor-
mation (Dorval and Grill, 2014). Furthermore, PD patients with FOG 
show a beta-band entropy excess during walking, when compared to 
those without FOG, and an alpha-band entropy excess during FOG epi-
sodes (Syrkin-Nikolau et al., 2017). 

Another non-linear strategy the brain may use to encode information 
in the motor system is noise variation, also called stochastic resonance 
(McDonnell and Abbott, 2009). Although still little is known, the new 
concepts may offer new venues to understand dynamic neural signalling 
through non-linear processing. 

Natural-frequency mapping of different cortical areas becomes 
feasible with simultaneous TMS/EEG recordings (Rosanova et al., 2009; 
Casarotto et al., 2019), enabling the development of novel and poten-
tially more specific stimulation patterns. With this methodology, stim-
ulation could be better targeted, and the frequency and phase of 
stimulation fine-tuned based on excitability and natural-frequency 
mapping. 

The cortical silent period (CSP) seems a reliable biomarker (Ben-
ninger et al., 2012) and other new biomarkers hold promise. As previ-
ously discussed, MEP, the MEP recruitment curve, the short-interval 
intra-cortical inhibition, the CSP, short- and long-latency afferent 

inhibition, oscillatory activity (theta/alpha/beta/gamma/HFO), 
phase-amplitude coupling, as well as tremor and other movement 
measures, all are possible biomarkers. They all will improve NIBS 
through better targeting, personalized stimulation, closed-loop stimu-
lation and better post-intervention effect evaluation. 

5.2. Fine-tuning NIBS parameters 

In NIBS, a vast number of parameters have to be be adjusted and 
these adjustments lead to several challenges. For obvious reasons, it 
would be difficult to test all possible parameters’ combinations on pa-
tients. Rather than a one-design-fits-all approach, further knowledge 
about pathophysiology will enable to adjust the stimulation intensity, 
the frequency, the oscillation phase, the amplitude and the target region 
to specific symptoms and patients (Chung and Mak, 2016; Fröhlich, 
2015). 

NIBS effects seem to be more easily obtained in PD patients than in 
healthy controls (Krause et al., 2014). Regularly administered, 
long-term stimulation (several years Málly et al., 2018) may improve the 
clinical outcome, and may also have a disease-modifying effect. 

In PD mice models, a disease-modifying treatment effect of tDCS (Lee 
et al., 2018, 2019b) and rTMS (Ba et al., 2019) has been shown; as for 
DBS in PD patients (Hacker et al., 2018), although the latter remains a 
topic of controversy. 

5.3. Personalized targeting 

Heading towards a more personalized medicine, specific symptoms 
of PD and the side effects of medication could be targeted more precisely 
(Benussi et al., 2017; Koch et al., 2009). The efficacy of NIBS in clinical 
trials is variable, most probably due to the heterogeneity of NIBS pro-
tocols and study populations. There may be subgroups such as 
akinetic-rigid PD patients (Khedr et al., 2019a), patients with severe 
FOG (Broeder et al., 2019), or more affected PD patients (Cohen et al., 
2018) that seem to respond particularly well to NIBS treatment. More-
over, the intra-subject variability appears to be also important and needs 
to be considered. For instance, there has been a recent discussion on the 
individual asymmetry of PD, which might define which hemisphere 
should be excited or suppressed (Cosentino et al., 2017; Simpson and 
Mak, 2019). Because of the heterogeneous patients’ characteristics –as 
regards the presence of tremor, postural instability, gait difficulties 
including freezing, motor fluctuations and dyskinesia, and also 
non-motor features such as depression and pain– a personalized 
approach may improve NIBS’ benefits. For instance, TMS (Ferreri and 
Rossini, 2013) or tACS (Witkowski et al., 2016) combined with EEG/-
MEG or bayesian optimization –an iterative approach to select adequatly 
stimulation parameters in order to maximize the personalized effect– 
could be used to characterize individual traits for a personalized medi-
cine. To personalize the stimulation rhythm, the stimulation frequency 
could be determined by assessing bradykinesia or with EEG maps (del 
Felice et al., 2019). For instance, when needed, patients could trigger the 
stimulation as an intermittent add-on therapy adapted to the underlying 
pathophysiology of the particular event such as FOG. Such a 
self-triggered therapy has already been approved for migraine with vi-
sual aura, which is presumed to result from the spreading depression. 
Two single TMS pulses (within 30 s) during the aura may interrupt this 
processus and prevent the subsequent migraine attack (Lipton et al., 
2010). 

5.4. Closed-loop systems 

Closed-loop systems that combine online processing of ongoing sig-
nals or other biomarkers with specific detection algorithms (Bergmann 
et al., 2016; Fox et al., 2014) can personalize the stimulation and 
enhance its potency. A closed-loop system which could consist of a 
high-temporal resolution recording (EEG/MEG) of cerebral activity 
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combined with tACS or rTMS may adjust the stimulation pattern to the 
specific brain state and modulate the cerebral oscillations through phase 
(Keil et al., 2014; Sauseng et al., 2019), frequency and amplitude (Allali 
et al., 2018; Thut et al., 2017). For instance, the timing of NIBS stimu-
lation could be locked to power values such as the desynchronization of 
the beta band; similar attempts have been successful using DBS and LFP 
in a closed-loop system (Little et al., 2013; Tinkhauser et al., 2017a). 
NIBS could also be phase-locked to a specific frequency range in order to 
enhance it (in-phase) or decrease it (out-of-phase). Attempts to 
phase-lock NIBS to a specific frequency range have been already made 
using EEG/MEG signals (Helfrich et al., 2014a; Saturnino et al., 2017; 
Strüber et al., 2014; Thut et al., 2017; Zrenner et al., 2018). 

Wearable devices such as inertial monitors (accelerometers, gyro-
scopes, magneto- and barometers) can detect episodic events such as 
FOG or the onset of resting tremor, in order to trigger or to change the 
stimulation protocol (Chen and Chen, 2019); or record tremor for 
phase-locked coupling of tACS with the tremor frequency (Brittain et al., 
2013). Complex algorithms based on signal processing concepts (i.e. 
Fourier transformation, wavelet spectrum, entropy, and recurrence rate) 
enable to predict tremor recurrence (Basu et al., 2013). 

5.5. NIBS as an adjuvant to other approaches to treatment 

NIBS is also promising as add-on therapy. Evidence suggests that it 
could enhance plasticity and promote learning, which is at work in 
rehabilitation, treadmill training, mirror visual feedback and cognitive 
training. However, a ceiling effect (i.e. saturation of response) may exist. 

The idea of combining virtual reality with NIBS and neuroimaging (i. 
e EEG; MEG) is also interesting (for a review see Teo et al., 2016). 

Since the pharmacological state of patients may determine the pos-
itive or negative effect of NIBS on the outcome (McLaren et al., 2018), it 
will be crucial to gain more insights on the interactions between NIBS 
and medication (i.e. dopaminergic and other CNS-active medication). 
Rehabilitative interventions, NIBS and medication may interact –e. g. 
dopamine mediates mechanisms underlying plasticity– in complex ways 
not well understood yet (Ghosh, 2019). 

Further promising add-on effects of NIBS have been reported after 
cell transplantation, where anodal tDCS has improved the integration 
and survival of dopaminergic cells in a rat model of PD (Winkler et al., 
2017). 

Combining DBS and cortical stimulation might be a novel method to 
explore the interaction within the network connecting the cortex and 
deep brain nuclei. Single-pulse STN DBS generates cortical evoked po-
tentials at an early phase (ca. 3 ms), probably through the hyper-direct 
pathway (Ashby et al., 2001), and, at a later phase (ca. 23 ms), 
through the indirect pathway (Kuriakose et al., 2010); combined 
DBS-TMS with an ISI of 3 and 23 ms are facilitated at both phases 
(Kuriakose et al., 2010). Since DBS affects the cortical excitability, 
combined therapeutic DBS/NIBS has been suggested as a new approach 
to treatment (Fox et al., 2014; Udupa et al., 2016), with the expectation 
that NIBS and DBS will interact to improve the clinical outcome of DBS 
alone. 

5.6. New technologies 

Technological innovations bring a number of novel promising ap-
proaches to treatment and that will – undoubtedly – transform NIBS 
procedures. For instance, the availability of smaller and light-weight tCS 
devices (Kouzani et al., 2016) allows NIBS application outside the 
clinical environment (i.e. at home). Some studies have investigated the 
feasibility of remotely supervised tDCS and this approach appeared to be 
safe (Cucca et al., 2019), effective (Dobbs et al., 2018) and could 
enhance patients’ compliance. Furthermore, remotely supervised tCS 
will facilitate more ambitious study designs by making study recruit-
ment easier, by enabling longer protocols, and by facilitating specific 
day-time stimulation (Agarwal et al., 2018). This could prove useful, 

when circadian variability of cortical plasticity is considered (Dinse 
et al., 2017; Nader et al., 2010). 

Chronic stimulation is a DBS requirement and this may also apply to 
direct current stimulation and NIBS in general. Although not available 
for the other NIBS methods yet, this kind of current stimulation could 
become available in the near future. Prolonged tACS, tPCS or tRNS are 
already possible, and even if long-term NIBS presents some disadvan-
tages, it could precede the minimal-invasive implantation of subdural 
cortical stimulation electrodes. 

Still other new approaches to treatment, such as combining anodal 
tDCS of M1 and exergaming (Harris et al., 2018) are emerging. 

5.7. New stimulation patterns 

New stimulation patterns are promising. Coupling different types of 
rhythms such as gamma and theta rhythms in TBS (Schulz et al., 2014; 
Huang et al., 2005), randomly varying the stimulation frequency in 
tRNS (Stephani et al., 2011), delivering pulsed current unidirectionally 
in tPCS (Alon et al., 2012), or stimulating with higher frequencies (i.e. 
50 Hz and beyond) (Benninger et al., 2012, 2009b) are all promising 
possibilities. However, safety limits have not been explored yet beyond 
50 Hz at higher intensities and for longer periods (Rossi et al., 2009). 
Concerns about stimulation and technological limitations include the 
energy supply for the maintenance of a high-frequency stimulation and 
coil overheating. Nevertheless, a stimulation device with multiple con-
densators and a liquid-helium-coil cooling system would be a possible 
solution. 

Additionally, triangular stimulation waveforms may be stronger 
brain-activity modulators than sine-waves (Dowsett and Herrmann, 
2016), although their seizure-inducing potential should be cautiously 
investigated first. 

A further focus of research is the shape of the magnetic or electric 
field used for stimulation. Apart from conventional coils, coils such as 
the H-coil enable deeper stimulation (i.e. 2 cm–5.5 cm) through mag-
netic field shaping (Gomez et al., 2018; Zangen et al., 2005). Also, 
high-density tDCS improves the precision of electric fields. While the 
electric field magnitude lacks directly underneath the conventional 
rectangular electrode, it is observed underneath the ring electrode of 
high-density tDCS (HD-tDCS), increasing its focality and intensity (Datta 
et al., 2009). The 4 × 1 ring electrode configuration enables an indi-
vidual distribution of cathode and anode over the electrodes. The design 
of an adequate sham has been problematic, because of the increased 
tingling – but the issue has been resolved by stimulating only the scalp 
(Garnett and den Ouden, 2015). One further advantage is the simulta-
neous use of EEG/MEG (Roy et al., 2014) and tDCS, which is a 
requirement for future closed-loop stimulation. The increased effect of 
HD-tDCS compared to conventional tDCS on cortical excitability has 
been already reported (Kuo et al., 2013). 

Two new technologies hold promise to make stimulation deeper and 
preciser, enabling – perhaps – non-invasive deep brain stimulation in the 
near future. Nevertheless, these techniques have been used only in 
animals. 

Perhaps the most innovative of both innovations is the temporal 
interference paradigm (Grossman et al., 2017). In this multi-focal 
alternating electric current stimulation, frequencies are delivered in 
the kHz range, far beyond frequencies stimulating pain receptors or the 
cortical territory. The different electrodes stimulate with slightly 
different frequency and intensity, so that interference patterns rise at the 
intersection of the electric fields. This enables selective stimulation of 
deep brain regions with specific frequencies (e. g. 50 Hz) and ampli-
tudes. The technique must be combined with neuroimaging to target 
deeper brain regions. Even if it has only been investigated in mice, it 
appears also feasible in humans. 

The second technique is the so-called transcranial magneto- 
acoustical stimulation, which consists of focused ultrasound stimula-
tion within a static magnetic field. It enables the modulation of neural 
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activity in deep brain areas (Yuan et al., 2016) and has been tested in a 
mice model, with promising results (Wang et al., 2019). 

5.8. A future outlook: enhancing physiopathological knowledge 

Non-invasive brain stimulation studies will contribute to gain better 
insights into the pathophysiology. Combined NIBS-DBS studies will help 
to elucidate functional connectivity in the motor circuit. Technological 
progress will offer novel approaches in the stimulation protocols that 
could become personalized, operating within a closed-loop system. 
Wearable devices would define the indication to stimulation, which 
could be delivered via implanted electrodes –for longer stimulation 
periods of time– if needed. 
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