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Abstract: The current study evaluates the ability of the Weather Research and Forecasting Model
(WRF) to forecast surface energy fluxes over a region in Eastern Spain. Focusing on the sensitivity of
the model to Land Surface Model (LSM) parameterizations, we compare the simulations provided by
the original Noah LSM and the Noah LSM with multiple physics options (Noah-MP). Furthermore,
we assess the WRF sensitivity to different Noah-MP physics schemes, namely the calculation of
canopy stomatal resistance (OPT_CRS), the soil moisture factor for stomatal resistance (OPT_BTR),
and the surface layer drag coefficient (OPT_SFC). It has been found that these physics options
strongly affect the energy partitioning at the land surface in short-time scale simulations. Aside from
in situ observations, we use the Meteosat Second Generation (MSG) Spinning Enhanced Visible and
Infrared Imager (SEVIRI) sensor to assess the Land Surface Temperature (LST) field simulated by
WRF. Regarding multiple options in Noah-MP, WRF has been configured using three distinct soil
moisture factors to control stomatal resistance (β factor) available in Noah-MP (Noah, CLM, and
SSiB-types), two canopy stomatal resistance (Ball–Berry and Jarvis), and two options for surface
layer drag coefficients (Monin–Obukhov and Chen97 scheme). Considering the β factor schemes,
CLM and SSiB-type β factors simulate very low values of the latent heat flux while increasing the
sensible heat flux. This result has been obtained independently of the canopy stomatal resistance
scheme used. Additionally, the surface skin temperature simulated by Noah-MP is colder than
that obtained by the original Noah LSM. This result is also highlighted when the simulated surface
skin temperature is compared to the MSG-SEVIRI LST product. The largest differences between
the satellite data and the mesoscale simulations are produced using the Noah-MP configurations
run with the Monin–Obukhov parameterization for surface layer drag coefficients. In contrast, the
Chen97 scheme shows larger surface skin temperatures than Monin–Obukhov, but at the expense
of a decrease in the simulated sensible heat fluxes. In this regard, the ground heat flux and the net
radiation play a key role in the simulation results.

Keywords: WRF model; Noah; Noah-MP; land surface models; surface fluxes; land surface–atmosphere
interactions; numerical weather prediction
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1. Introduction

Accurate and reliable information of surface energy fluxes and atmospheric variables
is of critical importance for different application fields, not only for atmospheric and
climate modeling but also for agricultural, ecological, and hydrological purposes, among
others. One of the efforts focused on improving the simulation of surface energy fluxes and
atmospheric variables has been dedicated to an accurate simulation of land surface and
atmosphere interactions [1–7]. All these studies have shown essential synergies between
the land surface and the atmosphere. In fact, land surface has been found to be a key
component of the Earth’s climate system due to water and energy exchanges between these
components of the Earth environment. Partition of net radiation into latent and sensible
heat fluxes are determined by these exchanges [8]. Therefore, a key for this interaction
between the land surface and the atmosphere is the soil–vegetation–atmosphere (SVA)
feedback [1], since the parameterization of the land surface impacts a wide range of physical
processes, such as cloud formation, precipitation, and evaporation.

Interactions and feedbacks between the soil, vegetation, and the atmosphere are quan-
tified using Land Surface Models (LSMs). Parameterizations of land surface processes have
evolved in the last decades based on a close multidisciplinary cooperation in the fields
of hydrology, plant and soil physics, and meteorology [9]. As a result, a comprehensive
representation of ecosystem and water dynamics have been incorporated based on addi-
tional feedback processes between water, terrestrial ecosystems, and climate [10]. LSMs
can be applied both offline [8,11–18] and coupled to Numerical Weather Prediction (NWP)
and climate models. In this latter case, LSMs provide bottom boundary conditions for the
corresponding atmospheric model by means of the calculation of energy and mass transfer
at the ground interface [1,19].

The current study is focused on two LSMs available within the Weather Research and
Forecasting (WRF) mesoscale numerical model [20,21], namely, the Noah scheme [9,22,23]
and the Noah-MP scheme [12,13]. On the one hand, the Noah LSM is one of the most widely
used land surface schemes for research studies, as well as for weather and regional climate
modeling [24]. In this regard, Noah LSM has not only been coupled to the WRF model
but also to the operational North American Mesoscale (NAM) Forecast System, the Global
Forecast System (GFS), and other National Centers for Environmental Prediction (NCEP)
modeling systems [19,25,26]. On the other hand, the Noah-MP model is an evolutional
version of the original Noah LSM. Even though most of the schemes of the Noah LSM
have been retained, multiparameterization options are available for selected key processes,
introducing a large range of alternatives when using the corresponding LSM [12,13]. For
instance, the introduction of a simple groundwater model, the dynamic treatment of the
vegetation canopy, and the separation of vegetated and bare cell portions. In this regard,
Noah_MP represents an augmented version of the original Noah LSM. The interaction
between the land surface and the atmosphere, comparing the SVA feedbacks, are modeled
by the corresponding LSM models implemented within the WRF modeling system. Both
Noah and Noah-MP coupled to the Weather Research and Forecast model have been used
by atmospheric and hydrological researchers for different purposes [5,6,15,16,24,27–29]. In
addition, these LSMs have been compared to each other for a wide range of applications.
For instance, LSMs, and particularly Noah/Noah-MP LSMs, have been used to simulate
energy fluxes in response to near-surface atmospheric forcing based on their representation
of the land surface processes [5,6,28–34]. As such, it is of significant importance to accu-
rately document the model’s performance for the simulation of surface energy fluxes [15].
Furthermore, we should also consider the interplay between surface energy fluxes and
surface and near-surface magnitudes, such as temperature and moisture.

Considering all these mentioned points, the present study aims: (1) to compare
the original Noah LSM performance with the augmented Noah-MP and (2) to perform
sensitivity tests using different physical processes implemented in the Noah-MP model
in order to assess the ability of this model to properly simulate surface energy fluxes
and closely related variables. Based on these three research items, we try to identify
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patterns produced by distinct WRF configurations regarding Noah LSM schemes over
semi-arid locations and under different dominant summer atmospheric conditions over
the study area. It is important to evaluate these models over different surfaces as well
as at different scales [15]. In this regard, the current work highlights the strengths and
limitations of different Noah LSM configurations coupled to the WRF model under the
specific conditions mentioned above. WRF is a highly used model, extensively used to test
different parameterization schemes. The sensitivity experiments conducted in the current
study regarding Noah and Noah-MP LSMs parameterizations are designed with the aim of
improving previous errors detected using numerical mesoscale modeling over the area of
study as well as determining optimal options and configurations of these LSMs that could
be used as a reference in future studies.

The organization of the present paper is the following. Methodology and methods,
together with the experimental design, modeling framework, and evaluation procedure,
are presented in Section 2, whereas the simulation results are presented in Section 3.
Finally, a discussion of these results, as well as some final conclusions and remarks, are
drawn in Section 4.

2. Materials and Methods
2.1. WRF Model Configuration
2.1.1. Numerical Setup

The Advanced Research core of the WRF model (WRF-ARW) [20,21], version 3.6.1 (Boul-
der, CO, USA), was used to simulate the selected forecasting period: 6 to 11 July 2011. The
model setup is based on that used in previous studies [6,28] conducted over the study area.
WRF was set up using the Dudhia shortwave radiation [35] and the rapid radiative transfer
model (RRTM) longwave radiation [36] as radiation options, whereas the YSU scheme [37]
was used as the PBL parameterization. WRF used a nested grid configuration with an outer
domain of 48 km horizontal resolution and an inner grid of 3 km, as well as a 12 km grid
in between, as shown in Figure 1. Regarding the vertical structure, 45 vertical levels were
used, with 24 levels below 2000 m and 9 levels below 300 m.
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Figure 1. Location of the area of study and orography (m), together with the corresponding locations of BON and BRX in
the inner WRF domain.

In relation to the period of study, a western synoptic advection dominates on 6–8 July 2011,
with low atmospheric moisture and high wind speeds over the area of study. In contrast,
mesoscale circulations were well established during the 9 and 10 July 2011, favoring the
transition between day and nighttime winds. Finally, an eastern synoptic advection was
developed on 11 July 2011. Therefore, the simulation period covers the typical summer
meteorological conditions prevailing over the area of study. Independently of the dom-
inant atmospheric situation, clear skies were observed for the complete period of study.
We decided to simulate this period of study following the results obtained in previous
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works [2,6,28]. We selected the summer season with the aim of improving the simulation
of surface energy fluxes and meteorological parameters, considering some previous errors
detected using numerical mesoscale modeling over the area of study. Additionally, focusing
on clear sky conditions allows the study of situations where the incoming solar radiation
is important and to determine optimal configurations of the model that could be used as
a reference in future studies and applications. Although the description of the different
meteorological conditions is included here to highlight the whole picture, the analysis of
results will be conducted considering the whole simulation period. For each of these days,
a 36 h simulation was performed beginning the previous day at 12:00 UTC.NCEP FNL
dataset (1◦ × 1◦ horizontal resolution and 6 h temporal resolution) was used as boundary
and initial conditions. Hourly outputs are saved, leaving out the first 12 h as a spin-up
time. In this regard, only the remaining 24 h are considered in the analysis of results. This
approach is based on the one previously followed in [38,39].

2.1.2. Numerical Experiments

WRF sensitivity to LSM choices and simulated processes is investigated (Table 1). The
Noah LSM model [9,23] was used in the control WRF simulation (WRF_CON hereafter). In
addition to this control simulation, six sensitivity experiments were conducted, updating
the original Noah LSM with the more recent and advanced Noah LSM with multiparame-
terization options (Noah-MP) [12,13] (Table 1). Noah LSM was first implemented in WRF in
2004, corresponding to the early release WRF 2.0, whereas Noah-MP was first implemented
in the WRF version 3.4 (Boulder, CO, USA. 2012). Even though these LSMs are not the
only advanced schemes implemented in WRF, the Noah LSM has been comprehensively
developed, evaluated, and applied for more than three decades, and it is probably the most
widely used LSM among the WRF community; the Noah-MP model is an evolution of the
original Noah LSM that includes multiparameterization and different structural changes.

Table 1. WRF sensitivity experiments conducted using different Noah-MP parameterizations regard-
ing soil moisture factor for stomatal resistance (OPT_BTR), canopy stomatal resistance (OPT_CRS),
and surface layer drag coefficient (OPT_SFC).

Physical Processes
Numerical Experiments

WRF_MP1 WRF_MP2 WRF_MP3 WRF_MP4 WRF_MP5 WRF_MP6

OPT_BTR Noah CLM SSiB Noah CLM CLM
OPT_CRS Jarvis Jarvis Jarvis Ball-Berry Ball-Berry Ball-Berry
OPT_SFC M-O M-O M-O M-O M-O Chen97

A full description of the Noah LSM parameterization is included in [9,23], whereas
a full description of the Noah-MP scheme may be found in [12]. The Noah LSM surface
layer is a combination of the soil and vegetation surfaces, where energy fluxes are resolved.
This configuration does not permit explicitly calculating the canopy temperature, water,
carbon and energy fluxes, and photosynthetically active radiation (PAR). Surface skin
temperature plays a key role in computing the energy fluxes, which are calculated sep-
arately over the bare ground and the vegetation. As a result, the net flux considers the
fluxes over the canopy and bare ground, weighted by the vegetation fraction. Noah-MP
presents a framework where multiple options can be selected in order to parameterize
diverse physical processes [12], such as stomatal resistance, runoff and groundwater, soil
permeability, precipitation partitioning between snow and rain, as well as ground surface
albedo. Augmentations to the Noah LSM (Noah-MP) include a separate computation of the
canopy temperature and the ground surface temperature. This is accomplished through
a canopy layer for vegetation. Additionally, in order to calculate shaded and sunlit leaves
fractions and related parameters, a modified two-stream scheme has been incorporated.

Three distinct physical processes implemented in Noah-MP are evaluated in the
current study: the soil moisture threshold for transpiration (OPT_BTR), canopy stomatal
resistance (OPT_CRS), and surface layer exchange (OPT_SFC). These three surface physical
processes coupled in Noah-MP were found to be the most sensitive in the study conducted
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by [18], and in this order starting from the highest. That is, the soil moisture factor for
stomatal resistance (OPT_BTR) has been shown to be the most sensible physical process
in Noah-MP. Additionally, these process parameterizations were chosen based on their
significant importance [13,17,40–43]. We adopted the other multiparameterization options
as the default option sets suggested for Noah-MP. WRF_MP1 in the current study is the
same as the EXP4 configuration in Niu et al. (2011) [11] and Yang et al. (2011) [13], whereas
WRF_MP4 is the same as EXP5 in these previous studies, as well as [29,30]. WRF_MP1
has also been used by different authors [15,19,44,45]. Furthermore, WRF_MP6 is similar to
the configuration used by Milovac et al. (2016) [1], in terms of OPT_CRS, OPT_CRS and
OPT_SFC, while Pilotto et al. (2015) [8] used a similar configuration to WRF_MP1 but with
the scheme used in earlier versions of Noah [45] for the surface exchange coefficients.

The first experiment performed in the current work using the Noah-MP LSM (Table 1)
WRF_MP1 is based on the combination of the following schemes: a canopy stomatal resis-
tance following the Jarvis scheme and a soil moisture factor for stomatal resistance (also
known as the β factor) based on the Noah scheme, TOPMODEL with groundwater for
groundwater and runoff, and the Monin–Obukhov (M-O) parameterization for the surface
layer drag coefficient calculation. TOPMODEL simulates downslope lateral transport
of water both on the surface and subsurface within saturated regions of the soil, that is,
a groundwater redistribution provoked by the gravity-driven downslope flow. Two addi-
tional sensitivity experiments, WRF_MP2 and WRF_MP3, are focused on evaluating the
impact of soil moisture limitation on transpiration in the WRF model results (β factor). The
soil moisture threshold for transpiration determines the efficiency of plant transpiration
for a given soil moisture amount. Therefore, the β factor, also known as the drought stress
factor, is critical for terrestrial ecosystem dynamics and its interactions with climatic and
hydrological processes [11]. There are three options for this soil-water stress function in
Noah-MP (OPT_BTR): Noah LMS’s version (WRF_MP1), the Community Land Model
(CLM), and the Simplified Simple Biosphere (SSiB) β factor. The Noah-type β (WRF_MP1)
factor is essentially a liquid volumetric capacity model, calculated as a function of the soil
moisture at wilting point of the corresponding soil layer and reference soil moisture param-
eters [21]. WRF_MP2 and WRF_MP3 were set up similarly to the WRF_MP1 configuration,
but with the CLM and SSiB-type factor scheme instead of the Noah-type factor scheme,
respectively. CLM (WRF_MP2) is defined as a function of the soil layer matric potential, the
wilting matric potential and the saturated matric potential. SSiB (WRF_MP3) computes the
β factor using the wilting matric potential and the soil layer matric potential. Both β-type
approaches use liquid soil moisture to calculate water potential. More information about
the CLM-type β factor may be consulted in [46], whereas the SSiB-type β factor scheme
may be consulted in [47]. Noah-type β factor soil moisture depends on soil type while
SSiB includes, in the OPT_BTR formulation, a slope factor that depends on the vegetation
type. In the study conducted by [18], they found that Noah-type β factor parameterization
was their best option for the corresponding physical process in comparison to CLM and
SSiB parameterizations. In this regard, the Noah β-type showed larger variations with
soil moisture than the CLM and SSiB β-types [12], due to the soil moisture overestimation
produced by CLM and SSiB. A better simulation of latent heat fluxes (LH) and sensible heat
fluxes (SH) is produced by Noah β-type because higher transpiration values implemented
in the corresponding schemes could result in the over evaluation of LH [18].

Another Noah-MP physical parameterization scheme investigated in the current study
is the canopy stomatal resistance (OPT_CRS). Two options of this parameter are available
in Noah-MP, namely Jarvis [48] and Ball_Berry [49]. Regarding these options, the Jarvis
scheme proposes a parameterization of the canopy resistance based on different parameters:
the minimal stomatal resistance, the Leaf Areas Index (LAI), and different stress functions
that account for the effects of air temperature, vapor pressure deficit, soil moisture stress,
and solar radiation, [24,48]. In contrast, the Ball–Berry type scheme links stomatal resistance
to rates of photosynthesis per unit LAI of sunlit and shaded leaves [49]. In the current
study, two sensitivity experiments were performed using the Ball–Berry canopy resistance
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parameterization. On the one hand, this scheme is selected together with the Noah β-
type option (WRF_MP4) and the CLM β-type option (WRF_MP5). Finally, an additional
experiment (WRF_MP6) was conducted using the Chen97 option for exchange in the
surface layer (OPT_SFC). Noah-MP implements two different computations of the surface
exchange coefficient of water and heat. The first one is that used in Noah version 3.0
(Boulder, CO, USA) [45]. This scheme uses a different roughness length for momentum
and heat. Another option implemented in Noah-MP for the parameterizations of heat
surface exchange coefficient uses the M-O similarity theory [44], where the same roughness
length for momentum and heat is used, but a zero-displacement height is included when
computing the surface exchange coefficient for heat. Chen97 and the more general M-O
scheme take the same stability correction functions under unstable and stable conditions.
However, the zero-displacement height used in [44] is not considered in Noah version 3.0 [45].

2.2. Observational Datasets

WRF-simulated LH and SH were assessed using observational datasets of these
magnitudes over an anchor FLUXNET station (Figure 1) located over El Bonillo (BON). The
FLUXNET observations over BON are sampled every ten minutes. However, instantaneous
hourly data are used in the current study to match the WRF time output resolution.
Two-meter temperature and relative humidity measured over this weather station are used,
as well in the model assessment. The BON site covers 12,872 ha. This area is one of the main
semi-arid juniper woodlands in Spain. J. thurifera is found in the more unfavorable soils,
whereas Quercus ilex is found in the best soils. Lithic leptosol is the dominant soil type,
according to FAO (1988). The USGS (United States Geological Survey) 30-second global
24-category vegetation (land-use) data is used in the WRF simulations. In this regard, the
dominant land-use category within the WRF grid cell where the simulation results are
compared to the observations over BON corresponds to the Cropland/Woodland Mosaic.

Additionally, WRF-simulated LH and SH are also presented over the portable weather
station located in Barrax (BRX; Figure 1). The soil in the BRX study area has a silty-clay loam
texture (13.4% sand, 48.9% silt, and 37.7% clay) and is cataloged as Petrocalcic Calcixerepts.
Additionally, this is a flat agricultural plot with different croplands. The dominant land-use
category used in WRF for the corresponding BRX grid cell is the same as that over BON
(Cropland/Woodland Mosaic).

Even though no LH and SH observations are available over this latter weather station,
measures of 2-m relative humidity and temperature are used as a reference as well. Based
on these magnitudes, the specific humidity is computed as well. Additionally, measures
of shortwave and longwave downward radiation, as well as net radiation recorded over
BON and BRX, are also used in the current study. BON observed net radiation together
with LH and SH are used to compute the ground energy flux over this anchor FLUXNET
station. Finally, besides in situ observations, Meteosat Second Generation (MSG) Spinning
Enhanced Visible and Infrared Imager (SEVIRI) (MSG-SEVIRI) Land Surface Temperatures
(LSTs) are also used [50,51]. MSG-SEVIRI is characterized by an approximate 3 × 4.5 km
footprint of the region. The MSG-SEVIRI LST product used in the current study presents
a 15 min temporal resolution and is generated by the EUMETSAT LSA SAF (available at
landsaf.ipma.pt). With the aim of extracting the corresponding LST for BON and BRX
locations, the spatial “nearest point” interpolation method is used to compare the MSG-
SEVIRI LST with the simulation outcomes. The model results are validated over BON and
BRX using different statistical metrics, taking into account the whole simulation period
(Tables 2–4). These statistical measures include the Mean Bias Error (MBE) and the Root
Mean Square Error (RMSE), as defined by the following equations:

MBE =
1
N

N

∑
i=1

(Fi − Oi) (1)
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RMSE =

√√√√ 1
N

N

∑
i=1

(Fi − Oi)
2 (2)

Table 2. Statistical scores for the simulated SH and LH over BON weather station.

WRF WRF_MP1 WRF_MP2 WRF_MP3 WRF_MP4 WRF_MP5 WRF_MP6

MBE (W m−2)/RMSE (W m−2)

H 14/40 10/50 50/90 50/90 19/60 40/80 −12/33
LE −5/18 20/30 −20/30 −20/30 10/20 −11/20 −3/18

R/IoA

H 0.981/0.983 0.976/0.979 0.981/0.947 0.981/0.947 0.976/0.971 0.980/0.956 0.981/0.988
LE 0.782/0.821 0.813/0.797 0.622/0.457 0.621/0.457 0.753/0.834 0.700/0.603 0.766/0.837

Table 3. Statistical scores for the simulated shortwave downward radiation (Rs), longwave downward
radiation (RL), net radiation (Rn), and ground energy flux (G) over the BON weather station.

WRF WRF_MP1 WRF_MP2 WRF_MP3 WRF_MP4 WRF_MP5 WRF_MP6

MBE (W m−2)/RMSE (W m−2)

Rs 5/40 4/40 5/40 5/40 4/40 5/40 5/40
RL −10/13 −11/13 −10/13 −10/13 −11/13 −11/13 −11/14
Rn −8/50 11/50 4/50 5/50 9/50 6/50 −50/70
G −30/60 −60/80 −50/80 −50/80 −50/80 −50/80 −40/60

R/IoA

Rs 0.995/0.998 0.995/0.998 0.995/0.997 0.995/0.997 0.995/0.997 0.995/0.997 0.995/0.998
RL 0.929/0.911 0.961/0.926 0.952/0.925 0.958/0.925 0.961/0.924 0.959/0.924 0.938/0.911
Rn 0.976/0.988 0.977/0.985 0.977/0.986 0.977/0.986 0.976/0.985 0.977/0.986 0.984/0.973
G 0.849/0.767 0.801/0.677 0.808/0.690 0.805/0.689 0.799/0.682 0.806/0.687 0.796/0.796

Table 4. Statistical scores for the simulated shortwave downward radiation (Rs), longwave downward
radiation (RL), and net radiation (Rn) over the BRX weather station.

WRF WRF_MP1 WRF_MP2 WRF_MP3 WRF_MP4 WRF_MP5 WRF_MP6

MBE (W m−2)/RMSE (W m−2)

Rs 20/40 13/40 19/50 18/50 16/50 18/50 20/40
RL −30/30 −20/30 −30/30 −30/30 −30/30 −30/30 −30/30
Rn −20/60 −7 /50 −13/50 −14/50 −10/50 −13/50 −60/100

R/IoA

Rs 0.995/0.997 0.994/0.997 0.995/0.997 0.994/0.996 0.994/0.997 0.994/0.997 0.996/0.997
RL 0.756/0.718 0.720/0.756 0.754/0.733 0.745/0.735 0.778/0.755 0.775/0.746 0.769/0.730
Rn 0.985/0.983 0.983/0.991 0.983/0.989 0.983/0.989 0.983/0.991 0.983/0.990 0.978/0.956

Additionally, we use the Correlation Coefficient (R) and the Index of Agreement (IoA)
in the evaluation procedure:

R =
∑N

i=1
(

Fi − F
)(

Oi − O
)√

∑N
i=1
(

Fi − F
)2

∑N
i=1
(
Oi − O

)2
(3)

IoA =1 − N(RMSE)2

∑N
i=1
(∣∣Fi − O

∣∣+ ∣∣Oi − O
∣∣)2 (4)

where F and O represent time average simulated and observed values, respectively, while F
represents the simulated value, O the observation value, and N the number of observations
included in the calculation [52,53].

MBE is defined as the average of the simulated value minus the observed value and
quantifies the systematic error of the model, while RMSE is the square root of the individual
differences between the simulated and observed values; it quantifies the accuracy of
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the model. R measures the correlation between forecasts and observations. The model
correlates with observations if the value of R is near 1. Finally, the IoA is a modified
correlation coefficient that measures the degree to which a model’s prediction is free of error.
A value of 0 means complete disagreement, whereas a value of 1 implies a perfect score.

3. Results
3.1. Observations versus Model Comparison

Figure 2 shows the SH and LH results over BON and BRX, whereas the statistical
scores for these parameters over the BON FLUXNET station are presented in Table 2.
WRF_CON produces the lowest MBE scores for LH over BON, with a value of −5 W m−2,
an RMSE of 18 W m−2 and a correlation coefficient and IoA of 0.782 and 0.821, respectively
(Table 2). WRF_MP1 produces an overestimation of the observed LH, as shown in Figure 2c.
In general, WRF_CON tends to underestimate the observations of this magnitude, while
WRF_MP1 shows the opposite trend. WRF_MP2 shows a clear overestimation of the observed
SH, as shown by an MBE of 50 W m−2 (Table 2). These results obtained for SH are related to
a significant underestimation of the observed LH (Figure 2c), with an MBE of −20 W m−2. In
addition, the highest LH simulated by WRF_MP2 over BON is around 6 W m−2.
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Figure 2. WRF-simulated SH (W m−2), over BON (a) and BRX (b), and LH (W m−2), over BON
(c) and BRX (d), during the whole simulation period. SH and LH observations are included for
BON (OBS). In addition, the observations minus simulation outcomes are presented for BON as well
(two dashed lines on (a,b)).

Confronting WRF_MP3 with WRF_MP2, no significant differences are obtained for LH
(Table 2). The negative MBE of −20 W m−2 produced by both WRF_MP2 and WRF_MP3
is related to a more positive SH MBE (50 W m−2). This MBE score is larger than those
found using other WRF-MP configurations, such as WRF_MP1 or WRF_MP4, but similar
to that produced by WRF_MP5 (Table 2). The β factor represents the effect of soil moisture
limitation on surface humidity and controls the evapotranspiration term. In this sense,
Noah-type (WRF_MP1) increases the transpiration rate, leading to a moister environment
than that simulated by the CLM-type formulation (WRF_MP2).

Additionally, Figure 2c also highlights a relevant similarity between WRF_CON and
WRF_MP6 in terms of LH, which is also reflected in Table 2 by means of similar statistical
scores. In terms of SH, however, WRF_MP6 tends to underestimate the observed field, with
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an MBE of −12 W m−2, instead of the positive MBE of 14 W m−2 found in the WRF_CON
simulation (Table 2). WRF_MP6 produces the lowest SH (Figure 2a), while still reproducing
a similar LH pattern to the one produced by WRF_CON.

Focusing on the BRX weather station (Figure 2b,d), the WRF_CON and WRF_MP
outcomes show similar patterns for both SH and LH to those simulated over BON.
A characteristic that appears comparing WRF_MP1 and WRF_MP2 (similar for WRF_MP3;
not shown) is a difference of around 50 W m−2 for SH and around 100 W m−2 for LH,
producing a significant reduction of the simulated LH over the two weather stations. More-
over, the maximum LH is produced around 12 UTC by WRF_MP1, while the maximum LH
simulated by WRF_MP2 is simulated at 14 UTC, thus delaying this magnitude for about
2 h (Figure 2c,d).

Considering the net radiation (Figure 3a,b), similar results are found between the
distinct WRF configurations over BON and BRX (Tables 3 and 4), with the exception of
WRF_MP6. WRF_MP6 produces the lowest net radiation, with an MBE related to the
observations of −50 and −60 W m−2 and an RMSE of 70 and 100 W m−2 over BON and
BRX, respectively. The other WRF-MP simulations produce similar results among them,
with an RMSE of 50 W m−2 and an MBE ranging from 4 to 11 W m−2 (Table 3; Figure 3a);
thus, producing a slight overestimation of the observed net radiation over BON. In contrast,
this trend is reversed over BRX, where the model underestimates the observations with
MBE values ranging from −7 to −14 W m−2 (Table 4; Figure 3b). Figure 3c,d also shows
that the ground energy flux is larger in WRF_CON and WRF_MP6 than in the other WRF-
MP configurations. However, all model simulations underestimate the observations over
BON (Figure 3c), with MBE values of −30 and −40 W m−2 in the case of WRF_CON and
WRF_MP6, respectively. In terms of the RMSE, values of 60 W m−2 are produced by these
two model simulations. Nevertheless, differences in the MBE statistical score between
−10 and −30 W m−2 are found among the different experiments, whereas differences of
20 W m−2 are obtained in terms of the RMSE error.
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partitioned into sensible, latent, and ground heat fluxes than the other WRF-MP 
experiments. WRF_MP6 produces around 50 and 350 W m−2 for LH and SH, respectively 
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and the other WRF-MP simulations could be related to both the available net radiation 
and the part of this magnitude partitioned into ground heat flux. In this regard, the main 
difference in the selection of physical options is the application of the surface exchange 
coefficient for heat proposed by Chen et al. (1997) [45] in WRF_MP6 (the Chen97 

Figure 3. WRF-simulated net radiation (W m−2), over BON (a) and BRX (b), and ground heat flux
(W m−2), over BON (c) and BRX (d), during the whole simulation period. Net radiation observations
are included for BON and BRX, whereas computed ground energy flux is included for BON (OBS).
In addition, the observations minus simulation outcomes are presented as two dashed lines.

Based on these results, WRF_MP6 provides the lowest net radiation to be parti-
tioned into sensible, latent, and ground heat fluxes than the other WRF-MP experiments.
WRF_MP6 produces around 50 and 350 W m−2 for LH and SH, respectively (Figure 2).
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Therefore, plausible reasons for the differences found between WRF_MP6 and the other
WRF-MP simulations could be related to both the available net radiation and the part of
this magnitude partitioned into ground heat flux. In this regard, the main difference in the
selection of physical options is the application of the surface exchange coefficient for heat
proposed by Chen et al., (1997) [45] in WRF_MP6 (the Chen97 scheme). In contrast, the
other WRF-MP simulations use the more general M-O similarity theory [44].

No significant differences arise comparing the shortwave and longwave downward
radiation simulated by WRF experiments (Figure 4), as shown by the Mann–Whitney–
Wilcoxon test (p-value > 0.5). An MBE of 4–5 W m−2 with a RMSE of 40 W m−2 is
simulated by WRF_CON and WRF-MP for the shortwave downward radiation over BON
(Table 3). In addition, an MBE around −10 W m−2, as well as a RMSE of 13–14 W m−2,
are simulated by WRF_CON and WRF-MP for the longwave downward radiation over
BON. Higher errors of both the shortwave and longwave downward radiation are sim-
ulated over BRX (Table 4). Still, the model tends to underestimate the observations of
these two magnitudes both over BON and BRX. Considering these results, the simulated
differences for the surface energy fluxes among the WRF configurations do not seem to be
related to these radiation magnitudes.
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Figure 4. Observed and WRF-simulated incoming shortwave radiation (W m−2), for BON (a) and
BRX (b), and incoming longwave radiation (W m−2), for BON (c) and BRX (d), during the whole
simulation period. In addition, the observations minus simulation outcomes are presented as
two dashed lines.

Figure 5 shows similar 2-m temperatures for WRF_CON and WRF_MP1, although
slightly lower in the latter case. This result is related to the moister field presented in
Figure 6 in terms of both the specific and relative humidities. However, notable differences,
up to 10 ◦C, are obtained between WRF_CON and WRF_MP1 considering the skin tem-
perature (Figure 5c,d). Regarding the LST parameter, the current study shows significant
differences between WRF_CON, WRF_MP6, and WRF_MP1–5. In this regard, WRF_CON
really captures the evolution of the SEVIRI LST product over BRX, whereas WRF_MP6
matches the LST field provided by SEVIRI over BON. The other WRF_MP simulations
(1–5) show a clear tendency to underestimate the LST parameter derived from the SEVIRI
instrument. If we focus on the ground energy flux simulated by WRF_CON and WRF_MP1
(Figure 3c,d), WRF produces ground values around 20–30 W m−2 larger than WRF_MP1.
The increased skin temperature simulated by WRF_CON compared to that simulated
by WRF-MP seems to be related to this larger ground heat flux produced by WRF_CON
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(Figure 3c,d). Additionally, there is a shift in the hour where the maximum ground flux is
reached. In this regard, WRF_CON presents the steepest curve for this magnitude, reaching
its maximum peak earlier in time and with larger values than WRF-MP. These issues could
be related to the different schemes used for the surface exchange coefficient for heat. While
the M-O parameterization for the surface exchange coefficient is used by WRF-MP (with
the exception of WRF_MP6), WRF_CON used the original parameterization implemented
in Noah (Chen97). According to Niu et al., (2011) [12], Noah-MP produced a larger diurnal
amplitude than Noah for the ground heat flux, better capturing the observations. The
results found in [12] contrast with those found here over the region of study compar-
ing Noah-MP (WRF_MP1) and Noah (WRF_CON). Nevertheless, Niu et al., (2011) [12]
highlighted that “the better simulations may not hold for all combinations of uncertain
parameters” and that evaluation of models’ performance should continue in the future, as
pointed out by Gulden et al., (2008) [54], and it is performed in the current study.
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Figure 5. WRF-simulated 2-m air temperature (◦C), over BON (a) and BRX (b), and surface skin
temperature (◦C), over BON (c) and BRX (d), during the whole simulation period. OBS here refers to
the observed 2-m air temperature (a,b), whereas OBS in (c,d) refers to the MSG-SEVIRI LST product.
In addition, the observations minus simulation outcomes are presented as two dashed lines.

The relation between the ground heat flux and the skin temperature is observed,
as well, comparing the WRF_CON and WRF_MP6 simulations. Larger ground fluxes,
simulated by WRF_MP6 (Figure 3c,d), produce higher skin temperatures (Figure 4c,d) than
WRF_CON, both over BON and BRX. Furthermore, WRF_MP6 significantly increases the
simulated 2-m temperatures compared to the other six experiments (Figure 5a,b), while
WRF_CON produces similar 2-m temperatures to WRF-MP, running with the M-O surface
layer drag coefficient parameterization. The WRF_MP6 2-m temperature overestimation
may be caused by errors in the initial soil moisture. However, no information on this
parameter is available over the area of study and the simulation period. Therefore, and
according to the results found using WRF_MP6, the corresponding daytime 2-m temper-
ature biases obtained here should be investigated in the future, including suitable soil
moisture measurements. Higher differences between skin temperatures and 2-m temper-
atures, such as in the case of WRF_CON or WRF_MP6, should be related to larger SH
values. However, this is not the case here. In contrast, WRF_MP6 produces the lowest
SH (Figure 2a,b) compared to the other WRF-MP experiments, with differences up to
200 W m−2. Therefore, there should be another reason for these low SHs. Figure 7 shows
the surface exchange coefficient simulated by WRF-MP. Even though similar values are
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obtained for this magnitude for all WRF-MP simulations, WRF_MP6 is an exception that
leads to significantly low Ch values. This seems to be the most plausible reason for the
lowest SH simulated by WRF_MP6 in comparison to those simulated by the other WRF-MP
configurations. In the current study, the M-O scheme produces cold biases in terms of
the skin temperature (Figure 5c,d). In contrast, the Chen97 scheme (WRF and WRF_MP6)
improves the simulation of this magnitude over the area and period of study by means of
lower surface exchange coefficients (Figure 7), which reduces ventilation and increases the
land surface heating during the daytime summer period.
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3.2. Different Additional Parameters Investigated

Looking for a plausible explanation regarding the differences found between WRF_MP1–
5, we have also investigated different additional parameters. It seems that WRF_MP2
and WRF_MP3 find more resistance to the release of LH than WRF_MP1. The range of
variation of LH simulated by WRF-MP (Figure 2c,d) shows decreasing values starting
from WRF_MP1, WRF_MP4, WRF_MP5, and WRF_MP2 (as well as WRF_MP3). The
transpiration field shows a similar distribution to that found for LH (not shown). Focusing
on the soil moisture content (Figure 8), the reversed trend as that found for LH and
transpiration is produced by WRF_MP. Therefore, the lowest LH is related to the highest
soil moisture content, as expected. The Ball–Berry scheme links sunlit and shaded leaves
stomatal resistance to photosynthesis [49]. Using this physical parameter, Noah-MP takes
into account the stomatal resistance per unit LAI of shaded and sunlit leaves [12]. Both
resistances are included in the parameterization of LH due to vegetation (vegetation
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canopy). The values of both stomatal resistances are significantly greater for WRF_MP2
and WRF_MP3 than for the other WRF-MP simulations (Figure 9). Therefore, WRF_MP2
and WRF_MP3 produce, in fact, more resistance to the release of LH, which is compatible
with larger soil moisture contents (Figure 8).
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(d) during the whole simulation period.

Still, the lowest soil moisture content is simulated by WRF_MP5. However, according
to LH and the transpiration fluxes, it should be expected that this simulation produced a soil
moisture content in between WRF_MP2 and WRF_MP4. Examining the stomatal resistance
to photosynthesis of sunlit and shaded leaves, WRF_MP5 produces greater resistances
than WRF_MP1 and WRF_MP4 during the daytime. Figure 9 shows that WRF_MP1 and
WRF_MP4 configurations produce a similar pattern in terms of stomatal resistance. The
highest resistance simulated by WRF_MP5 in comparison to WRF_MP1 and WRF_MP4
leads to lower LH and transpiration.

4. Summary and Discussion

Surface exchange coefficients play a key role in controlling the land surface tempera-
ture. In fact, the experiments conducted by Yang et al. (2011) [13] indicated that the surface
exchange coefficient is a key parameter for modeling LST. In this regard, larger surface ex-
change coefficients, such as those obtained using the M-O scheme, mean more effective land
surface ventilation and larger cooling during the summer season daytime [12]. A previous
study [7], conducted over the same area of study and the same simulation period as in the
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current one, supports the results found here. This previous work showed that the M-O
scheme has the potential to additionally improve the simulation when parameterizing
a different roughness length for momentum and heat, similarly to the Chen97 scheme.
Using a different treatment for the roughness length for momentum and heat corrected the
original cold skin temperature bias produced by the M-O scheme over the area of study
and produced similar temperatures to that provided by the SEVIRI LST product. These
results were achieved by means of the significantly reduced surface exchange coefficient
compared to that simulated by the M-O scheme using the same roughness length for heat
and momentum.

Soil moisture has an effect on the volumetric heat capacity, as well as the surface
soil thermal conductivity. It appears that the Noah-MP β factor parameterized with the
CLM-type formulation produces a drier environment than that simulated by the Noah-
type scheme. This statement agrees with the results presented by Niu et al., (2011) [11],
comparing the β factor produced by distinct formulations as a function of soil moisture,
where CLM-type β factor presents a sharper and narrower variation with soil moisture
than the Noah-type.

The results found in the current study in terms of Noah and Noah-MP suggest that
Noah-MP and, therefore, this model coupled to WRF, are very sensitive to distinct physics
processes, such as the surface layer drag coefficient (OPT_SFC), the soil moisture fac-
tor for stomatal resistance (OPT_BTR), and the calculation of canopy stomatal resistance
(OPT_CRS). Considering the results obtained regarding surface energy fluxes, the original
Noah produces good skill scores considering the area and period of study. Likewise, Noah-
MP configured using the Chen97 surface layer drag coefficient scheme yields similar LH
results to those obtained by Noah, but at the expense of a decrease in the SH. Nevertheless,
Noah-MP configured using the Chen97 surface layer drag coefficient is a skillful config-
uration to simulate surface energy fluxes, both LH and SH, producing in general better
SH results than the original Noah LSM over BON. However, both the original Noah and
Noah-MP configured using the Chen97 surface layer drag coefficient underestimated LH
observations, which is translated in an underestimation of the observed surface energy flux.
The current study has shown that adjusting model parameters or changing schemes for
different processes may correct the mismatch between the model and the observations [12].
Considering the different combinations of the canopy stomatal resistance (OPT_CRS) and
the soil moisture factor controlling the stomatal resistance (OPT_BTR) parameterizations,
the following results arise. On the one hand, the combination of the Jarvis scheme for
the stomatal resistance and the Noah β factor type using soil moisture (WRF_MP1) pro-
duces a similar SH to the original Noah scheme (WRF_CON) while producing the largest
simulated LH. On the other hand, the combination of the Jarvis scheme for the stomatal
resistance and the CLM (WRF_MP2) or the SSiB β (WRF_MP3) factor using matric po-
tential leads to larger SH and to an important decrease in the simulated LH. Moreover,
the combination of the Noah β factor and the Ball–Berry scheme for stomatal resistance
(WRF_MP4) leads to slightly higher SH and lower LH than the combination of the Jarvis
scheme and the Noah β factor (WRF_MP1). However, the combination of the CLM β
factor and the Ball–Berry parameterization (WRF_MP5) leads to slightly lower SH and
higher LH than the Jarvis stomatal resistance and the CLM β factor type using matric
potential (WRF_MP2). Focusing only on the β factor controlling the stomatal resistance, the
Noah-type produces lower SH and higher LH than the CLM-type scheme, independently
of the stomatal resistance parameterization used. Finally, fixing the β factor to the CLM
type, the Ball–Berry (WRF_MP5) scheme for stomatal resistance increases LH in compari-
son to the results obtained using the Jarvis scheme (WRF_MP2) while slightly reducing
SH. In contrast, fixing the β factor to the Noah type, the Ball–Berry scheme for stomatal
resistance (WRF_MP4) decreases LH simulated by the Jarvis scheme (WRF_MP1) while
slightly raising SH. Therefore, Ball–Berry coupled to the Noah β factor type shows just the
opposite trend than Ball–Berry coupled to the CLM β factor type in relation to the results
found using Jarvis stomatal resistance. Additionally, WRF_MP2 and WRF_MP3 produce
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the largest MBE and RMSE statistics in terms of both SH and LH over the area of study
and the period of study.

Based on the differences found in the current study among the experiments performed
using the WRF modeling framework, we have tried to identify plausible explanations for
these differences. Stomatal resistance to photosynthesis of sunlit and shaded leaves has
provided some insight in this sense.

To conclude, we must highlight that the results obtained here in relation to land-
atmosphere coupling have shown that both WRF_CON and WRF_MP6 configurations
could be very useful for modeling surface energy fluxes considering the conditions tested.
Even though further experiments should be performed considering longer time periods,
the outcomes of the current study encourage us to continue testing LSM parameterizations
bearing in mind the production of valuable operational meteorological parameters where
modeling surface–atmosphere exchanges play an essential role. In this regard, the sensitiv-
ity experiments conducted in the present study have shown their significant importance
and helpfulness in order to determine optimal configurations of a specific model, in this
case, the WRF modeling environment. Therefore, the outcomes found in this work may
serve as a reference for future studies and different applications using the WRF model.
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