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Abstract: The accurate identification of crops is essential to help environmental sustainability and
support agricultural policies. This study presents the use of a Spanish radar mission, PAZ, to classify
agricultural areas with a very high spatial resolution. PAZ was recently launched, and it operates at X
band, joining the synthetic aperture radar (SAR) constellation along with TerraSAR-X and TanDEM-X
satellites. Owing to its novelty and its ability to classify crop areas (both taking individually its
time series and blending with the Sentinel-1 series), it has been tested in an agricultural area of the
central-western part of Spain during 2020. The random forest algorithm was selected to classify
the time series under five alternatives of standalone/fused data. The map accuracy resulting from
the PAZ series standalone was acceptable, but it highlighted the need for a denser time-series of
data. The overall accuracy provided by eight PAZ images or by eight Sentinel-1 images was below
60%. The fusion of both sets of eight images improved the overall accuracy by more than 10%. In
addition, the exploitation of the whole Sentinel-1 series, with many more observations (up to 40 in
the same temporal window) improved the results, reaching an overall accuracy around 76%. This
overall performance was similar to that obtained by the joint use of all the available images of the
two frequency bands (C and X).

Keywords: crop classification; synthetic aperture radar; fusion; time series

1. Introduction

The rapid growth of the world population, which is expected to reach 8.5 billion in
2030 according to the United Nations [1], along with the economic and social importance of
the agricultural sector and the uncertainty in the changes of production caused by climate
change [2,3], calls for the development of procedures and techniques to control and effi-
ciently manage natural resources. Within this context, the classification and identification
of agricultural crops is one of the research topics which help to manage the earth’s natural
vegetation cover. Mapping the crop present on each agricultural field has become an
important input for hydrological and ecological purposes, yield estimation [4,5] and water
resources management, and it has been the core for the design, implementation, and check
of the European Common Agricultural Policy (CAP) [6–9].

For crop classification, one of the most fruitful technologies is based on remote sensing
databases. Remote sensing imagery provides routinely large cover areas, collects a wide
range of observations in a timely manner, and is a cost-effective means to complement or
even replace field work. Optical remote sensing at high-resolution (e.g., Sentinel-2, World-
View, Landsat, etc.) has become one key data source to create crop-type maps [7,10–13].
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However, acquisitions by this type of sensor are limited to nearly cloud-free conditions. An
alternative to optical remote sensing is the synthetic aperture radar (SAR) remote sensing,
which has the ability of continually collecting data despite of light and weather condi-
tions, therefore providing gap-free time series data and information about the interactions
between microwaves and crop canopies [14,15].

Over the past few years, many SAR satellite missions such as Sentinel-1 [16], RADARSAT
constellation mission [17], SAOCOM (Satélite Argentino de Observación Con Microondas),
among others, have been launched at different frequencies and polarizations. From the
Spanish perspective, a milestone was the launch of the PAZ satellite in 2018, as a part of
the first generation of X-band SAR satellites, and fully compatible with TerraSAR-X and
TanDEM-X. PAZ is aimed to create a high-resolution constellation mission with them, which
will reduce the revisit time and increase the overall acquisition capacity [18].

To date, time series of SAR images have been successfully applied for crop classifica-
tion by applying different classification methods that include random forest (RF), decision
tree (DT), neural network (NN), support vector machine (SVMs), maximum likelihood
classification (MLC), and many others [19–25].

The use of time series for crop-type mapping exploits the sensitivity to the growth cycle
of crops and its calendar (dates of sowing, growth, and harvest), which is characteristic
of each crop type in the same geographical region. Therefore, the radar response of each
crop type changes with time and is different among crop types [6,19]. Regarding the
performances as a function of the number of images (time series), results in [26–28] show
that the improvement depends in many cases on the time separation of the images (to
provide independent information) and on the specific acquisition dates with respect to the
crop calendar, since differences among crop types are more evident at specific dates.

In this context of increasing availability of radar sensors operating at different fre-
quency bands, and given the improved classification methodologies, the combination of
data gathered at different frequency bands for enhancing crop-type mapping becomes a
relevant question. Multi-frequency data are expected to contribute to the identification of
responses from different crop types at different growth stages, thanks to the sensitivity of
the wavelength employed by the radar to the size of the scene elements and its structure.
For instance, fully developed corn or rapeseed may saturate the backscatter at X band but
can be separated at C band, whereas short crops can be separated at X band, but not at
C band.

The effective combination of radar data acquired at different bands for crop-type
mapping has been explored in the past by several groups, with first experiments carried
out back in the 1980s. The early study in [29] evaluates multi-frequency (L, C, and X
band) SAR data in form of backscattering coefficient for different polarimetric channels,
using the maximum likelihood classifier. Results show that using jointly all of the different
bands provides the best accuracy (on the average higher than 90%). Later, in [30], different
data configurations were compared and combined for crop-type mapping with a dynamic
learning NN, including multi-frequency (P, L, and C band) single-pol data, single-frequency
and multi-polarization data, and multi-frequency and multi-polarization data. Results
confirmed that multi-polarization and multi-frequency data produce the best accuracy,
which reached 95%, whereas the use of individual bands only provide up to 78%, the P
band being the best one. The same frequency bands were compared and combined in [31]
using full-pol data. Results show that C band performs better than L band, with overall
accuracy (OA) reaching 90.4% and 88.7% for C and L band, respectively. When multiple
frequencies are combined, the combination of C and L band provides an accuracy of 96.3%,
while the combination of P, L, and C bands yields reaches 97%. In contrast, the experiment
in [26] found that L band provided better results than C band (OA equal to 95.8% and
91.2%, respectively), and again confirmed that the joint use of both bands improved the
results, reaching a 98% OA.

To the best of the authors’ knowledge there are not examples in the literature in which
multi-temporal multi-frequency data are effectively combined for crop classification. The
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use of multi-temporal data at different frequency bands is limited to a comparison in [27,28],
but they are not merged.

In this work we aim at testing PAZ data for the first time for crop classification.
For this purpose, we show an experiment in which sets of images acquired by PAZ and
Sentinel-1 were employed, both separately and in combination, for crop classification over
an agricultural area in Spain. The experiment is designed to check the complementarity of
both sensors and the added value of the frequency fusion in this context.

Regarding the relatively low number of images employed (8 and 40 for PAZ and
Sentinel-1, respectively), in contrast to massive data sets exploited in other machine
learning-based classification problems, the classification approach can be considered as
an example of the so-called few-shot classification, for which specific methodologies are
described in the literature [32–34].

It is important to note that the focus of this work is not placed on the classification
methodology, but on the added value of the fusion of images acquired by satellites op-
erating at two different frequency bands. For this purpose, we have used a widely used
and well-known classification approach (random forest, RF), as with those based on NN,
including deep learning [32–34], could improve the final scores to some extent but the
contribution of the fusion of frequency bands can be equally assessed with only RF.

The main novelty of this work consists in the evaluation of the fusion of two series
of SAR images acquired at C and X band for crop-type mapping. As a key contribution,
it was shown that the fusion is clearly beneficial when the number and the dates of the
images at both bands were similar. In contrast, a denser time series composed of more
images at a single band provided better results, hence demonstrating the crucial role of the
time coordinate in crop classification.

2. Materials and Methods
2.1. Test Site and Ground Campaign

The study area is located in the Iberian Peninsula (Spain), in the Castilla y León region,
20 km away from the city of Salamanca (Figure 1). It is a cropland mosaic mainly devoted
to rainfed and irrigated crops mixed with several patches of sparse trees, pastures, and
fallow plots. The climate is continental Mediterranean, characterized by scarce rainfall
(from 300 to 400 mm/year), hot summers (mean maxima 30 ◦C in July) and cold winters
(mean minima −1 ◦C in January) (Data from the Spanish Meteorological Agency, http:
//www.aemet.es/en/, accessed on 19 September 2021).

The long cycle of rainfed crops, from fallow to late spring, is well adapted to the hard
climatic conditions, therefore the yield and consequent economic performance of these
crops are low. Among this group, the most popular crops are cereals and legumes. Search-
ing for more productive alternatives, the irrigated crops have been raising dramatically
in the last decades. The use of the deep aquifers has led to the availability of water in the
spring-summer short growing cycle of crops such as corn, sugar beet, and potato.

The crops (n = 12) considered in this classification, together with their growing cycle
duration and regime are depicted in Table 1. To train and validate the classification, several
reference plots have been collected, i.e., a number of samples of each crop considered in
the classification legend geolocated with a GPS receiver (Table 1). The number of plots
registered is commensurate with the importance of the crop, in order to make the samples
representative of the area. Due to the pandemic lockdown during the spring of 2020
in Spain, the field campaign was only possible at the end of June. However, this date
was convenient to identify the rainfed crops at the end of their growing cycle together
with the development phase of the irrigated ones (Table 1). A total number of 323 plots
were recorded.

http://www.aemet.es/en/
http://www.aemet.es/en/
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Figure 1. Location map of the study area and ground-truth dataset.

Table 1. Ground-truth dataset for classification purposes.

Crop Type Number of
Fields Area (ha) Regime Growing Cycle

Potato 31 59.38 Irrigated April to September

Rape 10 30.43 Rainfed
September (long cycle)

or February (short cycle)
to June

Wasteland 27 85.22 None None
Sunflower 20 92.46 Rainfed/Irrigated April to September

Alfalfa 4 2.70 Irrigated Pluriannual
Rye 21 71.63 Rainfed September to June

Chickpea 6 15.43 Rainfed February to June
Beet 7 23.27 Irrigated February to October
Corn 66 217.19 Irrigated April to November

Wheat 64 176.94 Rainfed September to June
Fallow 30 113.37 None None
Barley 37 129.39 Rainfed September to June

2.2. Satellite Data and Pre-Processing

The satellite data employed in this study came from two different sensors: PAZ and
Sentinel-1 (S1). The main characteristics of the images are shown in Table 2. In both cases,
single-look complex (SLC) images were used as input products. The SLC images from
PAZ were acquired in stripmap mode with the dual-pol HHVV combination. The images
from the S1 constellation correspond to orbit 154, acquired at interferometric wide swath
mode (IW) with the standard dual-pol VV-VH combination. For this work, only the IW2
subswath was used since it comprises completely the study area.
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Table 2. Details of the input SAR images.

Sensor Centre
Frequency

Polarization
Channels

Incidence
Angle

Spatial
Resolution

PAZ 9.65 GHz HH, VV 41 deg. 2.66 m × 6.6 m
Sentinel 1-A & B 5.405 GHz VV, VH 39 deg. 2.98 m × 13.92 m

The data set of PAZ images is composed of 8 images, acquired from March to October
2020. The acquisition dates are shown in Figure 2. Regarding the S1 images, they are
routinely acquired since 2016 with a six-day revisit period. For this study we restricted
the observation interval to the same interval provided by PAZ, i.e., from March to October
2020. Therefore, 40 S1 images are considered, whose acquisition dates are also shown in
Figure 2. In that figure we have also depicted in a special manner (in green color) the
S1 images closest to the PAZ images, since they will be analyzed separately in some of the
classification tests described in Section 3.

Figure 2. Acquisition dates of the PAZ and Sentinel-1 products.

All the PAZ images were pre-processed with the following steps: (1) co-registration
with respect to a reference image, (2) calibration, (3) formation of 2 × 2 polarimetric covari-
ance matrices, (4) speckle filtering using a 7 × 7 boxcar, (5) geocoding, and (6) generation
of products. The geocoded products were obtained on a uniform grid in UTM coordinates
with 5 m posting. In this study, the products employed as input features for classification
purposes were the backscatter coefficient (in dB) at the two available channels (HH and
VV) and the normalized correlation between both channels. The use of these input features,
directly derived from the polarimetric covariance matrices has demonstrated an excellent
performance for crop-type mapping with TerraSAR-X data [35], and specifically better
than using just the backscatter coefficient [36]. The pre-processing was carried out with a
dedicated software developed at University of Alicante, but it could have been performed
equivalently by means of the ESA SNAP platform.

As for the S1 images, the SLC images were pre-processed using the ESA SNAP
software with the following steps: (1) TOPSAR split, (2) apply orbit file, (3) calibration,
(4) TOPSAR deburst, (5) subset of the region of interest, (6) speckle filtering using a
10 × 2 boxcar, (7) conversion to dB, and (8) geocoding. In this case, due to the lower spatial
resolution of the input data, the geocoding was carried out in an UTM grid with 10 m pixel
spacing in both coordinates. The products employed as input features for the classifier
were the backscatter coefficient (in dB) at the two available channels (VV and VH).

All S1 images are public and freely accessible. Regarding the images from PAZ,
they can be accessed by request to the Spanish Centre for the Development of Industrial
Technology (CDTI) in the framework of an approved research project.

2.3. Classification Methodology and Evaluation

The purpose of this work is to analyze the performance of the two available data sets
from PAZ and S1 in crop-type mapping, both separately and combined. Therefore, the
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strategy for both standalone classification and merged classification will be explained in
the following subsections. An overall scheme of the classification approach is shown in
Figure 3.
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2.3.1. Standalone Methodology

The classification process was carried out at pixel level by the random forest al-
gorithm [37], a popular machine learning method available in many different software
platforms. It is a supervised classifier well known by its good performance in crop clas-
sification. The implementation employed here is provided by the scikit-learn package in
Python [38] and was run mainly with default hyperparameters. The number of decision
trees was set to 1000, and the number of features considered when looking for the best
split was left to the default case (i.e., the square root of the total number of features). The
specific strategy followed for the training and the application of the classifier is explained
in the next paragraphs.

One of the issues when working with radar data is the effect of the speckle filtering.
The spatial averaging performed by the filtering makes the values of the features for every
pixel to be correlated with the adjacent ones. Thus, to prevent the classifier from being
influenced by this pixel correlation, we carried out an initial split at field level: 50% of the
fields of each crop type were selected for training and the remaining 50% for testing.

Another important aspect we need to address is the strong imbalance that exists in the
number of pixels for each class in the training dataset. As the amount of ground truth areas
(number of fields as well as their surface) devoted for each crop is different, the number of
pixels (i.e., samples) will be very different among classes. If not counteracted, the crops
with more pixels would be benefited by the classifier over the ones with less pixels. To solve
this issue, we performed over the training data what we call an ‘equal random sampling’.
This consists in a random selection of pixels for each class but restricting its number to the
total value of the class with least pixels in the dataset. By doing so, all pixels of the smallest
class are selected in the training dataset, whereas the pixels of the other classes are present
in the same amount, but randomly selected.

Once this selection is carried out, the corresponding input features are introduced in
the classifier to start the training phase. Then, the trained classifier is applied to all the
pixels present in the testing data (50% of the fields for each class from the whole dataset).
The output of the classification is a vector for each pixel, whose size is the number of
classes, which indicates the likelihood of that pixel to belong to each possible class. As a
final decision in the standalone classification methodology, the highest likelihood present
in the vector of each pixel defines the final class assigned to it.
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The whole classification procedure is repeated 10 times (iterations) in order to avoid
biased accuracy metrics resulting from a specific split of the reference data. By shuffling
the reference data 10 times we ensure having different combinations of training and testing
fields which guarantees stability in the final metrics. In all experiments, the maximum
standard deviations of overall accuracy (OA) and kappa coefficient, were 3.3% and 0.036,
respectively. At the 10th iteration, the average OA and kappa coefficient changed less than
0.25% and 0.002, respectively.

2.3.2. Fusion Methodology

The fusion methodology employed in this work has been recently used in [39] for
combining Sentinel-1 and 2 data for crop-type mapping. The approach is based on exploit-
ing the results of the two independent classifications (i.e., the vectors for each pixel) with
the likelihood of belonging to every possible class. These two vectors (one for PAZ and
another for S1) are combined, for each pixel, at the end of the process. However, as the two
spatial grids employed for the PAZ and S1 features do not coincide, we have devised a
specific strategy to make that combination possible, which is detailed in the following.

First, we perform the same field-level 50/50 splitting for both sensors. While we
have stated that the splitting is performed randomly, that randomness is the same for both
datasets, so the same polygons will be selected for each crop to form the training and
testing data for the classification of the data from both satellites. In this manner, we achieve
an equivalence in the training data and a direct correspondence between the testing pixels
coming from both sensors.

Once this division was finished, we perform independently the equal random sam-
pling over the training data of each dataset. Then, the classification process was run by
entering the testing data of each sensor at the input of the two trained classifiers. However,
the final selection of the testing data is slightly different for the data coming from both
sensors. As the spatial grids defined in the pre-processing step are different, their pixels
are not geographically equivalent, so there is a mismatch between them that makes unable
to directly compare and fuse their results.

The grid of S1 has a coarser spatial resolution than the one of PAZ, hence for S1 we
make use of all the pixels to be classified. However, when it comes to the testing data of
PAZ, we select only those pixels which are located within the same geographical position
of the ones used in the testing dataset of S1. In this way, one testing pixel of S1 will be
equivalent to several ones in the PAZ case. This strategy serves to keep the finer spatial
resolution of PAZ since we will have several different likelihood vectors in those pixels
which are geographically coincident to one single S1 pixel.

After having finished the classification processes of both classifiers we calculate the
fusion of both results by means of the product of experts [39]:

PS1, PAZ
ci

(x) =
PS1

ci
(x)PPAZ

ci
(x)

∑N
i=1 PS1

ci (x)PPAZ
ci

(x)
(1)

where Py
ci (x) denotes the probability of pixel i to belong to class ci according to the result of

classifier y, being y either PAZ or S1. This expression makes use of the class probability
vectors given by each classifier, and the result is a combined probability vector whose
maximum defines the final class assigned to the pixel. Consequently, we have three
different classification results available: two obtained independently for each sensor, and
one originated from the fusion of both.

2.3.3. Evaluation

Confusion matrices are computed from the results, and several accuracy metrics are
obtained [40]: overall accuracy (OA), kappa coefficient, producer’s accuracy (PA), and
user’s accuracy (UA).
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OA shows the relation of correctly classified pixels out of the total, and kappa, which
is also a global metric, is a more conservative variable since it takes into account also results
that occur by chance.

PA and UA are two common metrics used for assessing the individual performance of
each class. Although they both offer a percentage of accuracy at class level, their value and
interpretation differ due to the way in which PA and UA are formulated. PA computes, for
each class, the amount of well-classified pixels with respect to the total number of pixels
which pertain to that class in the ground truth. In short, it indicates how well pixels of
the ground truth are classified in the product map. On the other hand, UA measures the
number of correct classified pixels with respect to the total number of pixels that have been
classified as the observed class. Therefore, UA indicates how reliable the product map is.

3. Results

In order to test the performance of different data sets and their combination, the
classification has been carried out in five different situations considering the different
number of total data in each series (8 for PAZ vs. 40 of S1), which are detailed in the
following subsections.

3.1. Results with 8 PAZ Images

The results obtained classifying the series of eight PAZ images alone (sparsely acquired
from the beginning of March to the end of October) were assessed in first place. The scores
of the results from this experiment are summarised in Table 3.

Table 3. Classification scores at pixel level with eight PAZ images.

Overall Accuracy & Kappa Score

Features OA Kappa
PAZ 59.8 0.54

Producer’s Accuracy (%)

Crop Potato Rape Wasteland Sunflower Alfalfa Rye Chickpea Beet Corn Wheat Fallow Barley
PAZ 49.9 77.4 73.8 59.0 58.7 30.2 42.0 94.4 79.6 61.0 18.5 60.6

User’s Accuracy (%)

Crop Potato Rape Wasteland Sunflower Alfalfa Rye Chickpea Beet Corn Wheat Fallow Barley
PAZ 44.5 56.9 53.9 49.0 10.7 28.3 23.4 72.3 84.7 74.6 40.3 59.1

The overall results are not good, with OA and Kappa equal to 59.8 and 0.54, respec-
tively. These low global values are the consequence of having only very few images and of
their acquisition dates, which are very irregular over the season.

Regarding the PA, the best results are given by beet (94.4%), and then corn and rape,
which also achieve accuracies above 75%. However, very low PA values are obtained by
classes such as rye and fallow, which do not exceed clearly 30%. Specifically, rye and fallow
show 30.2 and an 18.5% which in comparison with the scores achieved by other crops are
quite low. In the case of chickpea and potato, they also stand out for their low accuracy as
their PA is below 50%.

A similar behavior is found in the UA, for which beet, corn, and rape are also the
best classified classes whilst chickpea, rye and fallow remain among the worst ones. In
quantitative terms, the best UA is found for corn (84.7%) and wheat (74.6%), while beet
and rape get average values above a 70 and a 55%. For this analysis, alfalfa is the crop type
with the worst UA (10.7%).

Alfalfa is a special case as there is a large difference between the values obtained by
PA and UA. Alfalfa’s PA is around 60%, however, its UA is below 11%. This low UA means
that there are many pixels belonging to other classes which are being wrongly classified as
alfalfa in the resulting map.
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3.2. Results with 8 Sentinel-1 Images

In this test we limited the input data set to the 8 S1 images acquired in the dates
closest to the PAZ acquisitions in order to perform a fair comparison between sensors, so
that the influence of the frequency band (i.e., C band for S1 vs. X band for PAZ) upon the
classification would be studied. Still, there is a slight dissimilarity in the acquisition dates
of both sensors. The scores of the results for this experiment are included in Table 4.

Table 4. Classification scores at pixel level with eight Sentinel-1 images.

Overall Accuracy & Kappa Score

Features OA Kappa
S1 59.7 0.54

Producer’s Accuracy (%)

Crop Potato Rape Wasteland Sunflower Alfalfa Rye Chickpea Beet Corn Wheat Fallow Barley
S1 80.3 68.2 68.0 60.3 37.0 37.0 52.0 90.9 68.8 55.8 28.2 60.3

User’s Accuracy (%)

Crop Potato Rape Wasteland Sunflower Alfalfa Rye Chickpea Beet Corn Wheat Fallow Barley
S1 58.4 69.8 45.3 57.0 6.6 33.7 30.7 69.9 84.5 66.4 48.3 59.3

The overall scores in Table 4 are as poor as they were for PAZ, then there are not
many differences between them: 0 in Kappa and 0.1% in OA. This means that the overall
performance of both frequency bands in crop-type mapping is very similar, provided that
both time series are irregular and there are only eight images in eight months. Therefore,
the bad results of the classification should be attributed to the lack of data rather than to
the influence of a given band.

As for PA and UA, they also show mixed results. For PA, beet is also the crop with
highest accuracy (90.9%). However, in this case potato is the second-best class since it
reaches 80.3%, i.e., a notable improvement in comparison with the 49.9% obtained with
the PAZ images. With regard the worst classes, the PA of fallow is the lowest by using S1
images (28.2%), whilst alfalfa and rye are only slightly better (37%).

The rank of UA scores does not change much when compared to PA, but there are
clear exceptions. As in the case of PAZ images, the best UA is for corn (84.5%), followed by
rape and beet. Alfalfa and chickpea are also worst classified classes, showing UA values of
6.6% and 30.7%.

3.3. Results with 40 Sentinel-1 Images

In the previous case we restricted the S1 time series to coincide with the available
PAZ images. Instead, in this case we considered the same observation period (March to
October) but all the S1 images available in that interval (n = 40, acquired every six days).
The resulting scores are listed in Table 5.

As expected, results exhibit a clear improvement when the length of the time series is
increased. OA and Kappa now reach 76.1% and 0.72, respectively, which means an increase
of 16.4% and 0.18 points for these two global scores when compared to the results with
only 8 S1 images. This improvement demonstrates the importance of the time dimension
for crop classification.
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Table 5. Classification scores at pixel level with 40 Sentinel-1 images.

Overall Accuracy & Kappa Score

Features OA Kappa
S1 76.1 0.72

Producer’s Accuracy (%)

Crop Potato Rape Wasteland Sunflower Alfalfa Rye Chickpea Beet Corn Wheat Fallow Barley
S1 94.8 86.3 75.5 82.3 53.7 36.2 72.2 97.6 92.9 83.2 29.9 72.4

User’s Accuracy (%)

Crop Potato Rape Wasteland Sunflower Alfalfa Rye Chickpea Beet Corn Wheat Fallow Barley
S1 81.6 84.5 50.4 77.3 24.1 45.4 62.5 87.2 95.1 79.0 60.4 78.9

In comparison with the previous experiment, all the crops obtain better classification
accuracies (PA and UA) using 40 images. In fact, the PA of 9 out of the 12 classes is above
70%, with 3 of them (beet, corn, and potato) above 90%. The worst classified class is rye
(PA and UA around 40%). On the other hand, we may highlight the improvement achieved
by alfalfa, as now reaches a PA of a 53.7% which contrasts with the 37% obtained in the
eight images experiment. Regarding UA, 7 classes show values above 70%, and the highest
accuracies correspond to corn, rape, beet and potato.

3.4. Fusion Results with 8 Sentinel-1 Images and 8 PAZ Images

The following experiments evaluate the fusion of the data from both sensors to get the
final combined classification. The first of such fusion scenarios consists in selecting the same
number of images for S1 and PAZ (eight for each sensor) using the closest S1 images to the
acquisition date of PAZ series. Consequently, this alternative combines the results described
in Sections 3.1 and 3.2. This combination is expected to exploit the complementarity of the
two frequency bands, without favoring any of them in terms of number of images. The
classification scores obtained in this test are shown in Table 6. In Figure 4 we compare the
fused results with the ones obtained by each dataset independently.

Table 6. Classification scores with eight Sentinel-1 images and eight PAZ images.

Overall Accuracy & Kappa Score

Features OA Kappa
Merge 70.2 0.66

Producer’s Accuracy (%)

Crop Potato Rape Wasteland Sunflower Alfalfa Rye Chickpea Beet Corn Wheat Fallow Barley
Merge 81.4 82.6 81.0 74.0 50.6 39.0 56.0 96.7 86.8 67.3 30.8 71.3

User’s Accuracy (%)

Crop Potato Rape Wasteland Sunflower Alfalfa Rye Chickpea Beet Corn Wheat Fallow Barley
Merge 69.5 83.9 57.2 64.3 20.4 39.1 47.8 81.9 88.0 77.6 60.5 65.5

OA and Kappa present a notable improvement with respect to the results obtained
with the individual datasets, achieving 70.2% and 0.66, respectively, which is an increase of
more than 10% for OA and 0.1 for Kappa (see Tables 3 and 4). Therefore, the two frequency
bands altogether provide complementary information for crop-type mapping.

This complementarity is better understood by inspecting the PA and UA values for
the individual crops, which can be visualized in Figure 4 together with the PA and UA
values of the individual experiments.
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The most relevant aspect of the PA and UA bars shown in Figure 4 is that 11 of the
12 crops for PA and all crops for UA show better accuracies in the fused case (blue bar)
than the results coming from both independent cases (grey and orange).

The only exception is alfalfa in the PA case which in all cases shows a poor accuracy.
Comparing the results of each sensor independently, PAZ performs better than S1 in 7 out
of 12 classes for PA, whilst looking at the UA from both sensors, they behave in a similar
fashion. Notably, there are clear examples in which one of the sensors outperforms the
other in UA and/or PA by more than 10%, but the fused results are even better than the
individual ones. Moreover, in some cases the performance of PAZ and S1 is similar, but
then the fused results are much better than them.

We can highlight several crops to assess the contribution of the fused results from both
classifiers. In terms of PA, sunflower and barley obtain the greatest improvements after
fusing both independent results with respect to the individual sensors. The most noticeable
crop type is sunflower, which gets 74% of PA in the fused case, in comparison with S1 and
PAZ with PA’s of only 60.3 and 59%, respectively.
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UA behaves similarly to PA according to the results displayed in Figure 4. An approxi-
mate 10% of accuracy improvement is achieved, on average, when comparing the fused UA
with the other independent cases. Comparing with PAZ standalone, the most noticeable
cases correspond to potato and rape which display a much better performance after the re-
sults fusion than for PAZ alone, with UA increments of more than 20%. Similarly, chickpea
and sunflower stand out for getting the greatest improvements in the fused scenario when
compared to S1 alone, as they both get UA values of 47.8% and 64.3%, respectively (i.e.,
with improvements of 24.4% and 15.2%).

3.5. Fusion Results with 40 Sentinel-1 Images and 8 PAZ Images

As a final experiment we tested the usage of the 8 available PAZ images in conjunction
with all the 40 available S1 images. In this test, we exploit the rich time resolution of
the S1 data, which by itself has achieved the best results so far (see Section 3.3), and the
complementarity of the X-band data, which has been evidenced in Section 3.4. The accuracy
scores obtained for this test are displayed in Table 7.

Table 7. Classification scores with 40 Sentinel-1 images and 8 PAZ images.

Overall Accuracy & Kappa Score

Features OA Kappa
Merge 76.3 0.73

Producer’s Accuracy (%)

Crop Potato Rape Wasteland Sunflower Alfalfa Rye Chickpea Beet Corn Wheat Fallow Barley
Merge 91.5 88.5 83.3 83.6 64.2 35.0 66.9 98.1 93.7 77.7 37.0 72.2

User’s Accuracy (%)

Crop Potato Rape Wasteland Sunflower Alfalfa Rye Chickpea Beet Corn Wheat Fallow Barley
Merge 84.6 88.6 57.6 73.9 36.1 44.1 66.1 87.8 92.2 79.3 67.4 71.2

The use of this complete dataset allows to obtain the best overall accuracies among
the five alternatives of data combination. OA and Kappa are 76.3% and 0.73, respectively.
These values are clearly higher than the values found with 8 S1 and 8 PAZ images (70.2%
and 0.66), but only slightly higher than the 76.1% and the 0.72 obtained by using only 40 S1
images. In short, the addition of the 8 PAZ images contributes to an 0.2% improvement of
the OA achieved with the 40 images from S1.

To discuss the PA and UA of the individual classes we make use of the bar charts
shown in Figure 5. As in the case analyzed in Section 3.4, after the fusion the trend is
to improve the accuracy of all the individual crops, but in this case the improvement
with respect to S1 alone (with 40 images) is not that notable, and there are some cases
without improvement.

Alfalfa, wasteland and corn are among the classes that get an increase in PA after
using the fusion, whereas chickpea, rye, and potato are among those that are not. For
instance, alfalfa achieves a 64.2% percent of accuracy with the fusion of the results whilst
it gets just a 53.7 and 59.1% when using S1 and PAZ independently. Likewise, wasteland
stands out for getting 83.3% of PA which means 7.8 points of improvement with respect to
the 75.5% of the second-best result which was given by S1.

In the UA bar chart, we observe some classes, such as rape and wasteland, which
improve their accuracy and others, e.g., sunflower and barley, which do not. In the fused
case, rape increases UA in 4.1% with respect to S1 alone, reaching 88.6%. Wasteland which
in the PAZ case obtained only a UA equal to 53.9%, now increases up to 57.6%. On the
other hand, S1 alone is the best dataset for sunflower and barley, providing UA values of
77.3 and 78.9%, in contrast to the fused case: 73.9 and 71.2%, respectively.
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4. Discussion

When comparing examples of crops classifications using X-band and C-band SAR data,
it should be first mentioned that each study has unique features, including the SAR data
available and the number and type of crops present. In this study, and in terms of overall
accuracy, the results obtained from the experiments using only eight PAZ and eight S1
images were not as good as expected with regard to previous results found in the literature
with time series of X- and C-band SAR data [23,41–44]. For comparison purposes, the OA
and kappa values obtained in all five experiments are depicted in Figure 6. The difference
in accuracy between their results and our findings could be related to the scarcity of images.
With a large number of images (40 S1), the accuracy (76.1%) increased compared with the
use of only 8 S1 images (59.7%). This finding is in agreement with [45], in which an OA of
76% was achieved with 60 S1 images. This is particularly relevant for the rainfed crops,
whose growing cycle is longer than the irrigated ones, and therefore need a longer temporal
coverage to be characterized. So not surprisingly, the rainfed categories (rye, chickpea,
wheat, barley, fallow and wasteland) afforded worse results than those of the irrigated
ones (potato, rape, beet, and corn), as seen especially in the standalone experiments with
eight images.
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Some reasons may also explain this worse behavior of wheat, barley, and rye. One
caveat regarding cereals is that normally they show a similar spectral signature during the
growing season due to their similar plant structure and phenology [46], which makes them
difficult to classify. Worse still, new hybrid varieties of winter cereals such as triticale (a
hybrid of wheat and rye) make the separability between winter cereal species difficult [46].
Finally, cereals have lower biomass, and thus greater penetration of the signal through the
crop canopy, resulting in greater contributions from the underlying soil as well as from
vegetation to soil interactions [47]. Then, scattering contributions from the soil appear to
contribute to class confusion [47] as also occurred for wasteland and chickpeas.

The PA and UA for winter cereals showed low results as those found in previous
studies [6,35]. However, the fusion experiments clearly improved the results in terms of
PA and UA for wheat and barley when compared with the results achieved in [48].

Opposite to the rainfed crops, the irrigated crops showed higher accuracies, owing
their higher and denser biomass. Beet achieved the best PA scores (>90%), followed by corn
with PA ranging from 68.8% to 93.7%, which also showed the best UA of the experiments
performed. The scores reported in this study for beet and corn improved those found
by [24]. Rape reached high PA (>82%) in three experiments (40 S1, 8 PAZ and 8 S1, 8 PAZ
and 40 S1), while UA was also high for the same experiments. The PA and UA results
obtained for potato in this study were high, obtaining its highest PA score (94.8%) when
the whole S1 dataset was used to classify. The accuracy reported in this study with S1 data
is higher than the accuracy provided by [24,49]. Moreover, the PA and UA from the fusion
experiments also improve the results found by [48].
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Special mention should be made of the alfalfa. This is, together with rye, the worst
classified crop in all of the alternatives, even though it is an irrigated crop with a very dense
canopy. The explanation of this behavior is purely agronomic. Alfalfa is an annual crop
that is harvested three or even four times a year, mainly in summer [50,51]. Therefore, the
backscattering response must have changed dramatically during the observation period,
since the coverage suddenly shifted from a dense cover to an almost bare soil several times
in season, leading to a failed classification.

Regarding the multi-frequency SAR data fusion for crop classification, the two fre-
quency bands provide complementary information, since their combination improves the
OA of the standalone experiments by more than 10%. The use of the complete dataset from
S1 provided the best overall accuracy, improving the classification by 6% with regard to the
use of 8 S1 and 8 PAZ images. The improvement that a multi-frequency fusion approach
provides for crop classification was also found by [48]. They achieved an overall accuracy
of 77.1% in one of their experiments from a decision level fusion of S1 and TerraSAR-X. The
fusion of C-band radar satellites such as Sentinel-1 and Radarsat-2 with operational X-band
satellites such as TerraSAR-X, TanDEM-X, and the new PAZ, makes an ideal scenario
recognized in some works [52].

5. Conclusions

The present study has investigated the suitability of images acquired by the first
Spanish radar satellite, PAZ, and S1, both separately and in a fusion scheme, for crop classi-
fication. In this way, the added value of the fusion of frequency bands has been assessed.

In the case of PAZ data, which has been tested for the first time in this work for crop
classification, the classification accuracy was the same obtained by S1 for an equal number
of images. However, when using the enlarged dataset of S1 images, the accuracy improved
(16.9%) with respect to the results provided with only eight S1 or PAZ images. Therefore,
the importance of time dimension in crop classification applications was clear.

This experiment with PAZ data gathered during 2020 (the mission was launched
in 2018) offered acceptable results when used standalone. In the second part of this
study, we presented a fusion approach by combining PAZ and S1. With this approach,
crop types can be effectively mapped, achieving overall accuracy scores higher than the
standalone experiments, except when comparing the accuracy of the whole S1 dataset
standalone with the fusion of 8 PAZ and 8 S1. The whole S1 dataset provided a better
overall accuracy. Again, the need of dense time series was highlighted. The short series
favour the classification of summer irrigated crops, along with their clearer backscattering
signal. On the contrary, the winter cereals, and the rainfed categories in general, although
well classified, showed more confusion between classes.

One of the limitations of this work is the small number of images available for PAZ
when compared to S1, which does not allow us to evaluate the fusion of bands in an ideal
case of long and dense time series from both sensors. In addition, the acquisition dates of
the satellite data should be better adapted to the crop calendar (i.e., gathering information
earlier in the year). This was not possible with PAZ in this campaign, hence limiting the
comparation of alternatives.

Based on the results achieved in this study, it would be interesting to perform further
multi-frequency exploiting data collected from recent (e.g., SAOCOM 1A/1B, L-band) or
future (e.g., Tandem-L, L-band; NISAR, L- and S-band) SAR sensors. This would help to
increase the value of multi-frequency fusion approach for crop classification.

Author Contributions: Conceptualization, N.S. and J.M.L.-S.; methodology, M.B. and J.M.L.-S.;
software, M.B.; validation, N.S., B.A.-P. and R.V.-D.; data curation, N.S. and B.A.-P.; writing—original
draft preparation, M.B., R.V.-D., J.P. and J.M.L.-S.; writing—review and editing, all. All authors have
read and agreed to the published version of the manuscript.



Remote Sens. 2021, 13, 3915 16 of 18

Funding: This work was funded by the Spanish Ministry of Science and Innovation, the State
Agency of Research (AEI) and the European Funds for Regional Development (EFRD) under Project
TEC2017-85244-C2-1-P.

Acknowledgments: The authors would like to thank to INTA-PAZ Science Team for providing the
PAZ data in the framework of AO-001-015 project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. UNDESA. Population 2030: Demographic Challenges and Opportunities for Sustainable Development Planning; United Nations: New

York, NY, USA, 2015.
2. Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate Change Has Likely Already Affected Global

Food Production. PLoS ONE 2019, 14, e0217148. [CrossRef] [PubMed]
3. Van Meijl, H.; Havlik, P.; Lotze-Campen, H.; Stehfest, E.; Witzke, P.; Domínguez, I.P.; Bodirsky, B.L.; Van Dijk, M.; Doelman, J.;

Fellmann, T.; et al. Comparing Impacts of Climate Change and Mitigation on Global Agriculture by 2050. Environ. Res. Lett. 2018,
13, 064021. [CrossRef]

4. Luciani, R.; Laneve, G.; Jahjah, M. Agricultural Monitoring, an Automatic Procedure for Crop Mapping and Yield Estimation:
The Great Rift Valley of Kenya Case. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2196–2208. [CrossRef]

5. Skakun, S.; Vermote, E.; Franch, B.; Roger, J.C.; Kussul, N.; Ju, J.; Masek, J. Winter Wheat Yield Assessment from Landsat 8 and
Sentinel-2 Data: Incorporating Surface Reflectance, through Phenological Fitting, into Regression Yield Models. Remote Sens.
2019, 11, 1768. [CrossRef]

6. Arias, M.; Campo-Bescós, M.Á.; Álvarez-Mozos, J. Crop Classification Based on Temporal Signatures of Sentinel-1 Observations
over Navarre Province, Spain. Remote Sens. 2020, 12, 278. [CrossRef]

7. Palchowdhuri, Y.; Valcarce-Diñeiro, R.; King, P.; Sanabria-Soto, M. Classification of Multi-Temporal Spectral Indices for Crop
Type Mapping: A Case Study in Coalville, UK. J. Agric. Sci. 2018, 156, 24–36. [CrossRef]

8. Schmedtmann, J.; Campagnolo, M.L. Reliable Crop Identification with Satellite Imagery in the Context of Common Agriculture
Policy Subsidy Control. Remote Sens. 2015, 7, 9325–9346. [CrossRef]

9. Sitokonstantinou, V.; Papoutsis, I.; Kontoes, C.; Arnal, A.L.; Andrés, A.P.A.; Zurbano, J.A.G. Scalable Parcel-Based Crop
Identification Scheme Using Sentinel-2 Data Time-Series for the Monitoring of the Common Agricultural Policy. Remote Sens.
2018, 10, 911. [CrossRef]

10. Azar, R.; Villa, P.; Stroppiana, D.; Crema, A.; Boschetti, M.; Brivio, P.A. Assessing In-Season Crop Classification Performance
Using Satellite Data: A Test Case in Northern Italy. Eur. J. Remote Sens. 2016, 49, 361–380. [CrossRef]

11. Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al.
Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite
Optical Imagery. Remote Sens. 2015, 7, 12356–12379. [CrossRef]

12. Kobayashi, N.; Tani, H.; Wang, X.; Sonobe, R. Crop Classification Using Spectral Indices Derived from Sentinel-2A Imagery. J. Inf.
Telecommun. 2020, 4, 67–90. [CrossRef]

13. Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K. Crop Classification from Sentinel-2-Derived Vegetation
Indices Using Ensemble Learning. J. Appl. Remote Sens. 2018, 12, 026019. [CrossRef]

14. Liu, C.A.; Chen, Z.X.; Shao, Y.; Chen, J.S.; Hasi, T.; Pan, H. Research Advances of SAR Remote Sensing for Agriculture Applications:
A Review. J. Integr. Agric. 2019, 18, 506–525. [CrossRef]

15. Steele-Dunne, S.C.; McNairn, H.; Monsivais-Huertero, A.; Judge, J.; Liu, P.W.; Papathanassiou, K. Radar Remote Sensing of
Agricultural Canopies: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273. [CrossRef]

16. Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES
Sentinel-1 Mission. Remote Sens. Environ. 2012, 120, 9–24. [CrossRef]

17. Thompson, A.A. Overview of the RADARSAT Constellation Mission. Can. J. Remote Sens. 2015, 41, 401–407. [CrossRef]
18. Bach, K.; Kahabka, H.; Fernando, C.; Perez, J.C. The TerraSAR-X / PAZ Constellation: Post-Launch Update. In Proceedings

of the EUSAR 2018, 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018; VDE: Aachen,
Germany, 2018.

19. Bargiel, D. A New Method for Crop Classification Combining Time Series of Radar Images and Crop Phenology Information.
Remote Sens. Environ. 2017, 198, 369–383. [CrossRef]

20. Busquier, M.; Lopez-Sanchez, J.M.; Mestre-Quereda, A.; Navarro, E.; González-Dugo, M.P.; Mateos, L. Exploring TanDEM-X
Interferometric Products for Crop-Type Mapping. Remote Sens. 2020, 12, 1774. [CrossRef]

21. Denize, J.; Hubert-Moy, L.; Pottier, E. Polarimetric SAR Time-Series for Identification of Winter Land Use. Sensors 2019, 19, 5574.
[CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0217148
http://www.ncbi.nlm.nih.gov/pubmed/31150427
http://doi.org/10.1088/1748-9326/aabdc4
http://doi.org/10.1109/JSTARS.2019.2921437
http://doi.org/10.3390/rs11151768
http://doi.org/10.3390/rs12020278
http://doi.org/10.1017/S0021859617000879
http://doi.org/10.3390/rs70709325
http://doi.org/10.3390/rs10060911
http://doi.org/10.5721/EuJRS20164920
http://doi.org/10.3390/rs70912356
http://doi.org/10.1080/24751839.2019.1694765
http://doi.org/10.1117/1.JRS.12.026019
http://doi.org/10.1016/S2095-3119(18)62016-7
http://doi.org/10.1109/JSTARS.2016.2639043
http://doi.org/10.1016/j.rse.2011.05.028
http://doi.org/10.1080/07038992.2015.1104633
http://doi.org/10.1016/j.rse.2017.06.022
http://doi.org/10.3390/rs12111774
http://doi.org/10.3390/s19245574
http://www.ncbi.nlm.nih.gov/pubmed/31861133


Remote Sens. 2021, 13, 3915 17 of 18

22. Dey, S.; Mandal, D.; Robertson, L.D.; Banerjee, B.; Kumar, V.; McNairn, H.; Bhattacharya, A.; Rao, Y.S. In-Season Crop Classification
Using Elements of the Kennaugh Matrix Derived from Polarimetric RADARSAT-2 SAR Data. Int. J. Appl. Earth Obs. Geoinf. 2020,
88, 102059. [CrossRef]

23. Sonobe, R. Parcel-Based Crop Classification Using Multi-Temporal TerraSAR-X Dual Polarimetric Data. Remote Sens. 2019,
11, 1148. [CrossRef]

24. Valcarce-Diñeiro, R.; Arias-Pérez, B.; Lopez-Sanchez, J.M.; Sánchez, N. Multi-Temporal Dual- and Quad-Polarimetric Synthetic
Aperture Radar Data for Crop-Type Mapping. Remote Sens. 2019, 11, 1518. [CrossRef]

25. Zhao, H.; Chen, Z.; Jiang, H.; Jing, W.; Sun, L.; Feng, M. Evaluation of Three Deep Learning Models for Early Crop Classification
Using Sentinel-1A Imagery Time Series—A Case Study in Zhanjiang, China. Remote Sens. 2019, 11, 2673. [CrossRef]

26. Hoekman, D.H.; Vissers, M.A.M.; Tran, T.N. Unsupervised Full-Polarimetric SAR Data Segmentation as a Tool for Classification
of Agricultural Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 402–411. [CrossRef]

27. Skriver, H.; Mattia, F.; Satalino, G.; Balenzano, A.; Pauwels, V.R.N.; Verhoest, N.E.C.; Davidson, M. Crop Classification Using
Short-Revisit Multitemporal SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 423–431. [CrossRef]

28. Skriver, H. Crop Classification by Multitemporal C- and L-Band Single- and Dual-Polarization and Fully Polarimetric SAR. IEEE
Trans. Geosci. Remote Sens. 2012, 50, 2138–2149. [CrossRef]

29. Guindon, B.; Teillet, P.M.; Goodenough, D.G.; Palimaka, J.J.; Sieber, A. Evaluation of the Crop Classification Performance of X, L
and C-Band Sar Imagery. Can. J. Remote Sens. 1984, 10, 4–16. [CrossRef]

30. Chen, K.S.; Huang, W.P.; Tsay, D.H.; Amar, F. Classification of Multifrequency Polarimetric SAR Imagery Using a Dynamic
Learning Neural Network. IEEE Trans. Geosci. Remote Sens. 1996, 34, 814–820. [CrossRef]

31. Hoekman, D.H.; Vissers, M.A.M. A New Polarimetric Classification Approach Evaluated for Agricultural Crops. IEEE Trans.
Geosci. Remote Sens. 2003, 41, 2881–2889. [CrossRef]

32. Li, Y.; Nie, J.; Chao, X. Do we really need deep CNN for plant diseases identification? Comput. Electron. Agric. 2020, 178, 105803.
[CrossRef]

33. Argüeso, D.; Picon, A.; Irusta, U.; Medela, A.; San-Emeterio, M.G.; Bereciartua, A.; Álvarez-Gila, A. Few-Shot Learning approach
for plant disease classification using images taken in the field. Comput. Electron. Agric. 2020, 175, 105542. [CrossRef]

34. Li, Y.; Chao, X. Semi-supervised few-shot learning approach for plant diseases recognition. Plant Methods 2021, 17, 68. [CrossRef]
35. Busquier, M.; Lopez-Sanchez, J.M.; Bargiel, D. Added Value of Coherent Copolar Polarimetry at X-Band for Crop-Type Mapping.

IEEE Geosci. Remote Sens. Lett. 2020, 17, 819–823. [CrossRef]
36. Bargiel, D.; Herrmann, S. Multi-Temporal Land-Cover Classification of Agricultural Areas in Two European Regions with High

Resolution Spotlight TerraSAR-X Data. Remote Sens. 2011, 3, 859–877. [CrossRef]
37. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
38. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [CrossRef]
39. Valero, S.; Arnaud, L.; Planells, M.; Ceschia, E.; Dedieu, G. Sentinel’s Classifier Fusion System for Seasonal Crop Mapping. In

Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August
2019; pp. 6243–6246. [CrossRef]

40. Stehman, S.V. Selecting and Interpreting Measures of Thematic Classification Accuracy. Remote Sens. Environ. 1997, 62, 77–89.
[CrossRef]

41. Luo, C.; Qi, B.; Liu, H.; Guo, D.; Lu, L.; Fu, Q.; Shao, Y. Using Time Series Sentinel-1 Images for Object-Oriented Crop Classification
in Google Earth Engine. Remote Sens. 2021, 13, 561. [CrossRef]

42. Ndikumana, E.; Minh, D.H.T.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural
Classification Using Multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [CrossRef]

43. Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Random Forest Classification of Crop Type Using Multi-Temporal
TerraSAR-X Dual-Polarimetric Data. Remote Sens. Lett. 2014, 5, 157–164. [CrossRef]

44. Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Discrimination of Crop Types with TerraSAR-X-Derived Information.
Phys. Chem. Earth 2015, 83–84, 2–13. [CrossRef]

45. Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop
Mapping: A Case Study for Belgium. Remote Sens. 2018, 10, 1642. [CrossRef]

46. Kyere, I.; Astor, T.; Graß, R.; Wachendorf, M. Agricultural Crop Discrimination in a Heterogeneous Low-Mountain Range Region
Based on Multi-Temporal and Multi-Sensor Satellite Data. Comput. Electron. Agric. 2020, 179, 105864. [CrossRef]

47. Jiao, X.; Kovacs, J.M.; Shang, J.; McNairn, H.; Walters, D.; Ma, B.; Geng, X. Object-Oriented Crop Mapping and Monitoring Using
Multi-Temporal Polarimetric RADARSAT-2 Data. ISPRS J. Photogramm. Remote Sens. 2014, 96, 38–46. [CrossRef]

48. Gella, G.W.; Bijker, W.; Belgiu, M. Mapping Crop Types in Complex Farming Areas Using SAR Imagery with Dynamic Time
Warping. ISPRS J. Photogramm. Remote Sens. 2021, 175, 171–183. [CrossRef]

49. Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K. ichiro Assessing the Suitability of Data from Sentinel-1A
and 2A for Crop Classification. GIScience Remote Sens. 2017, 54, 918–938. [CrossRef]

http://doi.org/10.1016/j.jag.2020.102059
http://doi.org/10.3390/rs11101148
http://doi.org/10.3390/rs11131518
http://doi.org/10.3390/rs11222673
http://doi.org/10.1109/JSTARS.2010.2042280
http://doi.org/10.1109/JSTARS.2011.2106198
http://doi.org/10.1109/TGRS.2011.2172994
http://doi.org/10.1080/07038992.1984.10855051
http://doi.org/10.1109/36.499786
http://doi.org/10.1109/TGRS.2003.817795
http://doi.org/10.1016/j.compag.2020.105803
http://doi.org/10.1016/j.compag.2020.105542
http://doi.org/10.1186/s13007-021-00770-1
http://doi.org/10.1109/LGRS.2019.2933738
http://doi.org/10.3390/rs3050859
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1007/s13398-014-0173-7.2
http://doi.org/10.1109/IGARSS.2019.8898011
http://doi.org/10.1016/S0034-4257(97)00083-7
http://doi.org/10.3390/rs13040561
http://doi.org/10.3390/rs10081217
http://doi.org/10.1080/2150704X.2014.889863
http://doi.org/10.1016/j.pce.2014.11.001
http://doi.org/10.3390/rs10101642
http://doi.org/10.1016/j.compag.2020.105864
http://doi.org/10.1016/j.isprsjprs.2014.06.014
http://doi.org/10.1016/j.isprsjprs.2021.03.004
http://doi.org/10.1080/15481603.2017.1351149


Remote Sens. 2021, 13, 3915 18 of 18

50. Guo, G.; Shen, C.; Liu, Q.; Zhang, S.L.; Wang, C.; Chen, L.; Xu, Q.F.; Wang, Y.X.; Huo, W.J. Fermentation Quality and in Vitro
Digestibility of First and Second Cut Alfalfa (Medicago Sativa L.) Silages Harvested at Three Stages of Maturity. Anim. Feed Sci.
Technol. 2019, 257, 114274. [CrossRef]

51. Chandel, A.K.; Khot, L.R.; Yu, L.X. Alfalfa (Medicago Sativa L.) Crop Vigor and Yield Characterization Using High-Resolution
Aerial Multispectral and Thermal Infrared Imaging Technique. Comput. Electron. Agric. 2021, 182, 105999. [CrossRef]

52. Hütt, C.; Koppe, W.; Miao, Y.; Bareth, G. Best Accuracy Land Use/Land Cover (LULC) Classification to Derive Crop Types Using
Multitemporal, Multisensor, and Multi-Polarization SAR Satellite Images. Remote Sens. 2016, 8, 684. [CrossRef]

http://doi.org/10.1016/j.anifeedsci.2019.114274
http://doi.org/10.1016/j.compag.2021.105999
http://doi.org/10.3390/rs8080684

	Introduction 
	Materials and Methods 
	Test Site and Ground Campaign 
	Satellite Data and Pre-Processing 
	Classification Methodology and Evaluation 
	Standalone Methodology 
	Fusion Methodology 
	Evaluation 


	Results 
	Results with 8 PAZ Images 
	Results with 8 Sentinel-1 Images 
	Results with 40 Sentinel-1 Images 
	Fusion Results with 8 Sentinel-1 Images and 8 PAZ Images 
	Fusion Results with 40 Sentinel-1 Images and 8 PAZ Images 

	Discussion 
	Conclusions 
	References

