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Neuroinflammation is a process related to the onset of neurodegenerative diseases; one of the hallmarks of this process is microglial
reactivation and the secretion by these cells of proinflammatory cytokines such as TNFa. Numerous studies report the relationship
between neuroinflammatory processes and exposure to anthropogenic air pollutants, but few refer to natural pollutants. Volcanoes
are highly inhabited natural sources of environmental pollution that induce changes in the nervous system, such as reactive
astrogliosis or the blood-brain barrier breakdown in exposed individuals; however, no neuroinflammatory event has been yet
defined. To this purpose, we studied resting microglia, reactive microglia, and TNFa production in the brains of mice chronically
exposed to an active volcanic environment on the island of Sdo Miguel (Azores, Portugal). For the first time, we demonstrate a
proliferation of microglial cells and an increase in reactive microglia, as well an increase in TNFa secretion, in the central nervous
system of individuals exposed to volcanogenic pollutants.

1. Introduction

The role of microglial cells in neuroinflammatory events
currently represents one of the main research areas in neuro-
biology due to the potential therapeutic application. Microg-
lia is a population of resident immune cells in the central
nervous system (CNS) being a front-line defence against a
threat to the nervous tissue [1, 2]. Although these cells are
present throughout the nervous system, they predominate
in the grey matter [3], being abundant in areas such as the
hippocampus, olfactory telencephalon, basal ganglia, and
the substantia nigra [4]. Normally, in the mature health
brain, microglial cells are found in their resting form, exhi-
biting a rounded cell body, which generally remains fixed,
and long and highly branched prolongations. These ramifi-

cations undergo cycles of formation and retraction that give
the cells pronounced motility, thus enabling the monitoring
of the cellular neighbourhood [5], safeguarding the homeo-
stasis of the nervous system, and clearing the parenchyma
of accumulated metabolic products and debris from deterio-
rated tissues. In addition, microglial cells show another
peculiarity: upon an immune stimulus or CNS damage, they
are rapidly activated undergoing a dramatic morphological
transformation and exhibiting a set of surface molecules
[6-8] including CD68, a transmembrane protein on both
lysosomal [9] and plasma membrane [10] which is present
on monocytes and macrophages, acting as a modulator of
the immune response [8]. Furthermore, in response to dam-
age, reactive microglia secrete a wide range of trophic factors
and cytokines that can act in either beneficial or detrimental
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ways on the surrounding cells [11-15]. Microglia activation
is the hallmark of neuroinflammation.

Multiple neuroinflammatory processes are regulated by
these cytokines [16]. Tumour necrosis factor alpha (TNFw),
one of the best characterised proinflammatory cytokines, plays
both a homeostatic and pathologic role in the CNS [17]. In the
healthy nervous system, TNFa is involved in processes such as
synaptic plasticity [18, 19] or learning and memory [20, 21].
However, in face of damage or threat to the nervous system,
some glial cells, mostly astrocytes and microglia, and certain
neuronal populations can produce this cytokine in large quan-
tities. This released is considered a key component of neuroin-
flammation [22] that leads to a wide range of double-edged
sword responses: it has a protective role at acute levels but
can contribute to tissue damage and trigger disease when it
is a sustained response over time [23]. There are several
studies in the literature linking chronic neuroinflammation
to neuronal death [23-27] and thus to neurodegenerative dis-
eases such as Alzheimer’s disease [28-34], Parkinson’s disease
[35-37], or multiple sclerosis [38-41].

The occurrence of neuroinflammatory processes as well as
neurodegenerative diseases in relation to chronic exposure to
environmental pollution has been extensively studied [42-52].
However, all the literature refers to anthropogenic pollution,
and little is known about the effect of natural pollution on
health, even though there are large natural sources of pollution,
such as volcanoes, which can cause health problems.

Volcanoes are attractive for human settlements due to the
fertility of their soils and their touristic interest [53-55], but
they are also dangerous due to the geochemical processes that
take place during both eruptive and noneruptive periods. Con-
sidering that volcanoes are a major source of natural pollution,
with emissions of certain gases comparable to anthropogenic
emissions [56], and that an estimated 44 million people live
within 10km of an active volcano [57], it is very interesting
to study the effect of such exposure on health.

The island of Sdo Miguel (Azores archipelago, Portugal)
has three active volcanoes: Sete Cidades, Fogo, and Furnas.
The latter, considered one of the most active in the archipelago
due to its very marked volcanic activity, exhibits different
hydrothermal manifestations such as strong ground degas-
sing, thermal and cold CO, springs, and fumarolic fields.
Although it is estimated that Furnas volcano emits 1000 tons
of CO, per day [58], the village of Furnas, with about 1700
inhabitants, is located inside the volcano crater. Numerous
studies have shown that people chronically exposed to such
volcanic manifestations can develop chronic bronchitis and
other respiratory diseases [55, 59] and certain types of cancer
such as lip, oral cavity, or pharyngeal cancer [60]. However,
the respiratory system is not the only one that reacts to expo-
sure to such a hostile environment; changes in the CNS have
already been reported, such as the accumulation of inorganic
mercury in different areas of the brain parenchyma [61],
which suggests a breakdown in the blood-brain barrier, as well
as astrocyte reactivity and dysfunction in important areas of
the brain such as the hippocampus [62].

Since, as mentioned above, the literature focuses on
neuroinflammation as one of the main events following
long-term exposure to air pollutants and as a trigger for
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future neurodegenerative diseases, our work is aimed at
detecting a neuroinflammatory response in individuals chron-
ically exposed to volcanic pollutants by studying microglia
(resting and reactive form) and the proinflammatory cytokine
TNFa.

2. Material and Methods

2.1. Study Areas and Animal Capture. Two groups of feral
mice, Mus musculus, were captured alive in two different
areas of the island of Sao Miguel: the village of Furnas and
Rabo de Peixe. The Furnas village, built on the degassing soil
of the crater of the homonymous volcano, presents impor-
tant manifestations of volcanic activity such as soil degas-
sing. This phenomenon is responsible for the release of
hazardous gases such as radon (***Rn), hydrogen sulphide
(H,S), and carbon dioxide (CO,) among others, as well as
volatile metals into the atmosphere [63-65]. On the other
hand, Rabo de Peixe village, used as a control site, is located
20km from the exposed area and shows no evidence of
active volcanism or sources of anthropogenic contamina-
tion. In addition, this area is placed near the coast, present-
ing a high air renewal rate.

The selection of Mus musculus as a surrogate species is due
to several important reasons: on the one hand, the fact that it
shares habitat with humans, being sometimes captured even
inside inhabited houses, both in the volcanically active area
and in the reference area. On the other hand, different authors
have reported the robustness of research using feral specimens
in the evaluation of the effects of contaminant exposure on
individuals, compared to laboratory studies, since the latter
may present discrepancies with reality in terms of diet, animal
behaviour, and even the mixture of contaminants [66, 67].

Mus musculus individuals (Furnas, N =5 and Rabo de
Peixe, N = 5) were captured by trapping at different points in
the study areas and transferred to the laboratory in the short-
est possible time for processing. To avoid any animal distress,
mice were anaesthetised with isofluorane until an optimal level
of anaesthesia was reached and then transcardially perfused
with phosphate buffered saline followed by 4% paraformalde-
hyde solution (PFA). After perfusion, the animals were
necropsied by surgical extraction of the brain, which was fixed
by immersion in 4% PFA overnight at 4°C. Sex, body weight,
and age were recorded for each individual; the latter was esti-
mated using the dry weight of the crystalline lens according to
the methodology of Quere and Vincent [68]. Individuals
weighing less than 10 g were discarded for this study.

Experimental procedures were approved by the Ethics
Committee of the University of Azores (REF: 10/2020). All pro-
cedures were performed conformed with the recommendations
of the European Convention for the Protection of Vertebrate
Animals used for Experimental and Other Scientific Purposes
(ETS 123), directive 2010/63EU and Portuguese law decree
(DL 113/2013).

2.2. Tissue Processing and Immunofluorescence Assay. After
overnight fixation in 4% PFA, the brains were processed for
paraffin embedding, and once included, serial sagittal 4 yum
thickness sections were cut using a microtome (Microm HM
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340E). The slides were dewaxed using xylol and hydrated in
decreasing concentration of ethanol until PBS 0.1 M, and after
hydration, the immunofluorescence assay was performed as
follows. Briefly, brain sections containing the hippocampus
were subjected to heat-induced epitope retrieval and blocked
with 10% BSA for 90 minutes at room temperature. Then,
samples were immunolabeled at 4°C overnight using the
following primary antibodies at 1:100 dilution: anti-Ibal
(GTX101495, Genetex), anti-CD68 (GTX37743, Genetex),
and anti-TNFa (GTX110520, Genetex). The next day, the
slides were washed and incubated with the secondary antibody
(SAB4600310, Sigma Aldrich Co.) diluted at 1:500 during 3
hours at room temperature. Then, sections were washed
repeatedly and covered with Vectashield medium (Vector
Laboratories, Burlingame CA) containing DAPI to counter-
stain nuclei.

2.3. Quantitative Analysis. Confocal images of the hippo-
campus were taken using Zeiss confocal scanning micro-
scope (LSM 800), and the immunofluorescence assessment
was carried out following the methodology reported by
Navarro et al. [61]. Altogether, from each individual, three
coronal sections every 150 ym were taken and analysed
keeping constant pinhole, contrast, and brightness. From
each section, photographs were obtained at 20x magnifica-
tion, every 0.5um z-step and assembled in an orthogonal
projection through the Zen Blue software.

The region of interest (ROI) of our experiments was a
specific hippocampal formation (Figure 1), the dentate
gyrus. In this brain circumvolution, two subareas were ana-
lysed: the polymorphic layer (PL) and the granular layer
(GL). The total number of immunopositive cells per um”
in both subareas was counted and expressed in cells/mm?
using the Image ] software. For this count, three different
researchers performed blindly these quantifications and the
results were averaged.

2.4. Statistical Analysis. Data regarding the density of Ibal”
and CD68" cells in mouse dentate gyrus from both study
locations was compared using Student’s ¢-test, and a p value
of less than 0.05 was considered as statistically significant.
The software Graph Pad Prism (Graph Pad Software Inc.,
La Jolla, CA, USA) was used to conduct all the statistical
analysis.

3. Results

All samples used in this study correspond to male individ-
uals. No statistical differences were found between both
study groups in age (Furnas: 204 + 9 days old and Rabo de
Peixe: 213 +13 days old; p=0.193, Student’s t-test) and
weight (Furnas: 13.55 +2.42¢g and Rabo de Peixe: 14.10 +
0.90g; p=0.728, Student’s t-test).

3.1. Ibal Expression Is Increased in Individuals Chronically
Exposed to Volcanic Environments. Microglial cells were con-
firmed in this study by staining with the anti-Ibal antibody
(ionizing calcium-binding adaptor molecule 1) in the dentate
gyrus from Furnas and Rabo de Peixe mice. It is a protein that
consistently is expressed on all microglial subtypes.

FIGURE 1: Region of interest (ROI) for the different analyses. The
hippocampal dentate gyrus is divided in two areas: granular layer
(GL) and polymorphic layer (PL). Scale bar: 50 ym.

Qualitative comparison from immunofluorescence anal-
ysis of Ibal revealed that the staining pattern for Ibal was
much higher in samples from mice living in the Furnas
region, both in the polymorphic layer and in the granular
layer of the dentate gyrus (Figure 2).

The number of Ibal positive cells in the immunofluores-
cence assay was quantified in each layer of the dentate gyrus:
granular and polymorphic layer, from individuals captured
in the two study areas. An increase in the number of these
cells was observed in those animals chronically exposed to
volcanogenic pollutants compared to individuals from Rabo
de Peixe, in both the granular layer (448.71+33.41
cells/mm? vs. 258.45+9.42 cells/mm* ***p>0.001) and
the polymorphic layer (535.67 +31.47 vs. 341.84 + 13.08;
***p <0.001) (Figure 3).

3.2. Expression of CD68, a Marker of Active Microglia. CD68
(macrosialin in mice) is one of the most helpful and descrip-
tive markers of microglial function. This protein is localised
to the lysosomal membrane of microglia and is upregulated
in active phagocytic cells [69]. It is, therefore, a marker of
microglial activation with phagocytic activity.
Immunofluorescence evaluation of CD68" positive cells
in both layers of the hippocampal dentate gyrus revealed
that chronic exposure to an active volcanic environment
induces the increment of these cells in the assessed tissue
(Figure 4). Likewise, an important CD68" immunofluores-
cent staining was observed in the choroid plexus and the
area surrounding it in individuals from Furnas village; such
staining was less evident in rodents from Rabo de Peixe.

3.3. Immunofluorescence and Localisation of TNF« in the
Dentate Gyrus of the Hippocampus of Exposed Mice. TNFa
was used as a proinflammatory marker. TNFa expression
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FIGURE 2: Expression of the microglial marker Ibal in the dentate gyrus of mice from (a, b) Furnas and (¢, d) Rabo de Peixe. Scale bar:
50 ym. Magnification of a section of the total microglia in the dentate gyrus of (c) Furnas and (d) Rabo de Peixe. GL: granular layer; PL:

polymorphic layer. Scale bar: 20 ym.
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FIGURE 3: Quantification of Tbal® cells/mm? in both dentate gyrus layers: (a) granular and (b) polymorphic layers of mice from the two
study locations. Data reported in the bar graph is represented as mean + SEM. The statistical analysis was performed using Student’s ¢

-test, ***p < 0.001.

was evaluated in mouse dentate gyrus cells from both loca-
tions by immunofluorescence staining. The immunoreactiv-
ity is localised in the intracellular spaces around the nucleus
of neurons in both polymorphic and granular layers of the
dentate gyrus of mice chronically exposed to a volcanic envi-
ronment. In contrast, no reaction was detected in the peri-

karyon of the dentate gyrus neurons of the Rabo de Peixe
samples.

In the samples from the animals inhabiting Furnas, the
immunoreactive cells are found in the subgranular zone
(SGZ) located on the inner surface of the granule cell layer.
These cells could be compatible with neural stem cells
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FIGURE 4: Analysis of active microglia in GL and PL of mice chronically exposed to (a, b) volcanogenic pollutants and from the (c, d) control
site. CD68 (green) is expressed in both dentate gyrus layers only in those animals inhabiting (b) active volcanic environments; no
immunofluorescence signal is observed in the dentate gyrus of mice from (d) Rabo de Peixe. Note a higher number of CD68" cells in the
surrounding area of the choroid plexus in Furnas’ mice (white arrows) were compared to a few cells observed in the vicinity of the
plexus in control site mice (asterisk). GL: granular layer; PL: polymorphic layer. Scale bar: 50 ym.

(Figure 5). As for the polymorphic layer, in the image, we can
observe a minor marking, consistent with the mossy cells of
this layer.

4. Discussion

Air pollution is a major public health concern due to the
large number of studies that have linked long-term exposure
to various health effects. Although some studies have shown
a link between chronic exposure to anthropogenic pollution
and effects on the nervous system, only a few have focused
on studying these effects regarding volcanic pollution [61,
62]. The Azores archipelago is a volcanic area with several
manifestations of active volcanism, making it an ideal place
to study environmental health problems [70]. Previous
research has shown that volcanic areas are associated with
an increased incidence of a wide range of diseases [55, 59,
60, 71-74]. However, very little is known about the conse-
quences on the nervous system of people inhabiting volcanic
environments.

Both volcanoes and geothermal areas are associated with
emissions of a variety of gases that classically include carbon
dioxide (CO,), sulphur dioxide (SO,), hydrogen chloride
(HCI), hydrogen fluoride (HF), hydrogen sulphide (H,S),

carbon monoxide (CO), radon (Rn), and some heavy metals
such as lead and mercury, among others [56]. Therefore,
volcanoes are considered an important source of pollutants,
including air pollutants, that can damage the health of indi-
viduals living in these natural spaces.

Air pollution is a prevalent proinflammatory stimulus
for the CNS, which until a few decades ago was not known
to be involved as a risk factor for neurodegenerative diseases
[45, 49]. For this reason, the rationale of this work has been
to relate volcanic contamination to proinflammatory events
in the CNS individuals chronically exposed to volcanic
contamination. For this purpose, we have studied microglial
cells.

As mentioned above, microglia are immunoregulatory
cells that play an important role in the healthy and diseased
CNS. They help maintain the homeostasis of the brain envi-
ronment under normal conditions but show a strong reac-
tion in response to adverse conditions, becoming activated
microglia and adopting an amoeboid phenotype. These
microglia proliferate and migrate to the site of injury or
damage, where they perform a protective function, removing
cellular debris [75-77]. On the other hand, overactivation of
microglia, with excess production of inflammatory media-
tors, can have neurotoxic consequences. Whether microglial
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F1Gure 5: Immunofluorescence assay of TNFa« in the dentate gyrus of rodents inhabiting (a) Furnas village and (b) Rabo de Peixe.
Accumulation of TNF« is evident inside some cells located in the subgranular zone, compatible with neural stem cells (inset, white
arrows) and in the hilum, compatible with mossy cells (inset, arrowhead). GL: granular layer; PL: polymorphic layer. Scale bar: 50 ym.

function in neurodegenerative diseases is beneficial but
insufficient or whether microglia are only effective in the
early stages of the disease but become detrimental in later
stages is still unknown.

The intense reaction of microglia is collectively termed
“microgliosis.” As revealed by Li and Zhang [78], this may
exist at least three sources for microgliosis in the adult
CNS: local proliferation of reactive microglia, infiltration of
blood-derived cells, and mobilization of latent progenitors
within the CNS. Each or all of these sources may play a role
in microgliosis in different pathological conditions. Alter-
ations in microglia functionality are therefore implicated in
brain neurodegeneration.

Our results show several proinflammatory events in the
dentate gyrus of animals chronically exposed to an active
volcanic environment. These events are the proliferation of
the microglial population, the presence of activated micro-
glial cells with phagocytic activity, and intracellular accumu-
lation of TNFa. The dentate gyrus is a very relevant area of
the hippocampal formation, not only because it has been
described as highly sensitive to oxidative stress [79], but
because it is where the adult neurogenesis takes place [80].

Proinflammatory mediators produced in epithelial and
olfactory tissue as a result of chronic exposure to volcanic
pollutants can induce systemic inflammation and reach the
brain parenchyma through the breakdown of the blood-
brain barrier. This inflammation is accompanied by the
production of different proinflammatory cytokines, such as
IL18, IL6, or TNFa, for which brain vessel endothelial cells
exhibit constitutive and induced receptors. Endothelial
cytokine-receptor binding activates endothelial cells thereby
disrupting the blood-brain barrier. Our study focused on the
proinflammatory cytokine TNF« revealed its increase in
mice from Furnas. Camarinho et al. [71] also observed its

overproduction in the respiratory tissue of mice living in
the same location as our study (Furnas village). It is not
unreasonable to think that this same cytokine could be pres-
ent in the CNS from two sources: either by entry from the
systemic circulation or by being produced in the CNS itself.
Within the central nervous system, microglia, astrocytes,
and neurons are major sources of TNF« [81-86]. In fact,
we have detected immunoreactivity in cells located in the
subgranular zone of the dentate gyrus in chronically exposed
animals. These cells, whose location and size are compatible
with neural stem cells (NSCs), must have received a proin-
flammatory signal of environmental origin that led them to
activate the NFkb transcription machinery, which regulates
numerous genes, including those coding for proinflamma-
tory cytokines [87-90]. Therefore, the presence of cytokines
in the extracellular milieu may be a stimulus for these cells to
initiate TNFa production and thus enter a proinflammatory
loop. It is important to note that this staining was not
observed in individuals living in Rabo de Peixe, our control
population.

As demonstrated by Widera et al. [91], following CNS
injury, TNFa plays a critical role in the development of
pathology and inflammation, as well as activating NSC pro-
liferation, triggering a neuroprotective mechanism. In this
regard, Pluchino et al. [92] demonstrated that during CNS
inflammation, NSCs were able to secrete neuroprotective
cytokines. Neuroinflammation may be beneficial as a tissue
protector process; however, if this is sustained over the time
can lead to a chronic neuroinflammation cycle essential for
the pathogenesis and progression of neurodegenerative
diseases, such as Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease, and multiple sclerosis [93, 94]. In addi-
tion, a chronic neuroinflammation condition contributes to
both cognitive impairment [95] and memory formation,
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disrupting the acquisition and impairing the consolidation/re-
consolidation process [96, 97].

The proliferation of microglia, quantified by the marker
Ibal, and its morphological change towards a phagocytic
form, in which CD68 expression increases, as observed in
the dentate gyrus of exposed animals compared to those cap-
tured in Rabo de Peixe, suggest that an innate immune
response of the CNS to volcanic contamination is taking
place. This type of response by microglial cells is consistent
with that reported by numerous papers focusing on anthro-
pogenic pollution [43, 45, 98-101]. Importantly, microglial
activation is necessary to repair the injured microenviron-
ment by removing cellular debris. However, as a conse-
quence of this activation, these microglial cells can damage
living neurons through their phagocytic capacity or by
releasing cytokines [102].

Moreover, in addition to the existence of CD68" cells in
the hippocampal dentate gyrus, immunofluorescence has
also been observed in the ventricles and areas adjacent to
them. This finding indicates that systemic macrophage infil-
tration of the brain parenchyma may be occurring, preceded
by a loss of BBB integrity. Again, it is important to note that,
in mice captured in Rabo de Peixe, no immunofluorescence
signal was observed in the vicinity of the ventricles. This
agrees with the results obtained by Navarro-Sempere et al.
[61] in which they reported accumulations of heavy metals,
such as mercury, in different areas of the brain, supporting
the premise that the aetiology of mercury toxicity in the
brain is the breakdown of the blood-brain barrier.

On the other hand, according to our previous research
data [62] regarding the long-term exposure of animals to
volcanic contaminants, not only the microglial cells have
undergone changes but also differences in astrocytes were
recorded between the studied populations: Mice from Fur-
nas showed reactive astrogliosis, marked by an increase in
GFAP (glial fibrillary acidic protein) and morphological
transformation, as well as astrocyte dysfunction, with lower
expression of the enzyme glutamine synthetase, when com-
pared to individuals from Rabo de Peixe. Such events already
indicated a possible proinflammatory response of the CNS
to exposure to volcanic pollutants.

In this context, our previous studies and the present work
have provided evidence for the existence of different inflam-
matory events in the brains of mice living in active volcanic
environments, raising awareness about possible neurological
health hazards in individuals inhabiting volcanically active
areas. However, it should be noted that this neuroinflamma-
tory process may not have a detrimental effect, as neuroin-
flammation may be playing a beneficial role.
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