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Abstract—Classification of crop types using Earth Observation
(EO) data is a challenging task. The challenge increases many
folds when we have diverse crops within a resolution cell. In this
regard, optical and Synthetic Aperture Radar (SAR) data provide
complementary information to characterize a target. Therefore, we
propose to leverage the synergy between multispectral and Syn-
thetic Aperture Radar (SAR) data for crop classification. We aim
to use the newly developed model-free three-component scattering
power components to quantify changes in scattering mechanisms
at different phenological stages. By incorporating interferometric
coherence information, we consider the morphological character-
istics of the crops that are not available with only polarimetric
information. We also utilize the reflectance values from Landsat-
8 spectral bands as complementary biochemical information of
crops. The classification accuracy is enhanced by using these two
pieces of information combined using a neural network-based ar-
chitecture with an attention mechanism. We utilize the time series
dual co-polarimetric (i.e., HH–VV) TanDEM-X SAR data and the
multispectral Landsat-8 data acquired over an agricultural area
in Seville, Spain. The use of the proposed attention mechanism for
fusing SAR and optical data shows a significant improvement in
classification accuracy by 6.0% to 9.0% as compared to the sole use
of either the optical or SAR data. Besides, we also demonstrate that
the utilization of single-pass interferometric coherence maps in the
fusion framework enhances the overall classification accuracy by≈
3.0%. Therefore, the proposed synergistic approach will facilitate
accurate and robust crop mapping with high-resolution EO data
at larger scales.
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I. INTRODUCTION

THE rapid evolution of multiple sensors allows us to com-
bine information from different images providing more

meaningful and necessary information. Images captured by var-
ious sensors offer specific details. Therefore, the integration of
information is more valuable than individual information ob-
tained from a single sensor. This fused information is critical for
planning and decision-making. Various earth-orbiting satellites
capture data in diverse parts of the electromagnetic spectrum.
Several remote sensing data products are available for Earth
observation (EO), viz., multispectral (MS), hyperspectral (HS),
and synthetic aperture radar (SAR). These data products provide
specific information about the Earth’s surface under observation.

On the one hand, SAR imagery contains target geometrical
and dielectric information while capturing images in all weather
conditions. However, it fails to provide geochemical information
of targets. On the other hand, optical images provide biochemical
properties of targets perceived in terms of spectral signature.
Thus, SAR and optical imagery offer complementary informa-
tion about targets, and hence a combination of these images
would benefit enhance spatial and spectral information [1], [2].

In this context, the synergy between SAR and optical images
to enhance crop classification accuracy is presented by [3]. Their
study used single-channel SAR data (HH) and Landsat thematic
mapper (TM) bands to classify six different crop types in the
Saskatchewan region. They reported that the sole utilization of
HH polarized SAR data produced 31% to 45% accuracy using
the maximum likelihood classifier. In contrast, the combination
of SAR and TM data produced 77% classification accuracy.
Similarly, Sandholt [4] utilized the SMAP algorithm to combine
EMISAR and SPOT images to classify six different crop types.
The reported a classification accuracy of 95% which was due
to the high information content in the multipolarized SAR data.
In another study, Qi et al. [5] utilized Landsat and ERS data to
extract both soil and plant information. Thus, optical and SAR
data synergy has proven to be helpful in mapping and monitoring
crops.

Later, Blaes et al. [6] proposed a hierarchical parcel-based
classification strategy to classify many crop types using SAR
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and optical data. They implemented this hierarchical classifi-
cation strategy to consider the variability of the spectral sig-
natures within each crop type. Their study used fifteen ERS
and RADARSAT and three optical images to discriminate agri-
cultural crop types. This particular combination increased the
classification accuracy by ≈ 5%. McNairn et al. [7] produced
an operational crop inventory map using the Envisat ASAR and
optical images. They showed significant classification accuracy
over the diverse agricultural landscape in Canada. Within the
overall classification accuracy of 85%, they noted that the SAR-
optical combination was able to identify major crop types.

In another study, Torbick et al. [8] utilized a decision tree
framework to combine multitemporal and multiscale PALSAR,
MODIS, and Landsat images for mapping the extent of rice,
hydroperiod, crop calendar, and cropping intensity. This multi-
season crop data produced a classification accuracy of 89% over
the operational rice extent. In parallel, Hong et al. [9] attempted
to find the optimal approach to fuse SAR and optical data using
the wavelet-IHS (intensity, hue, and saturation) technique. A
multiresolution image segmentation technique followed this.
The overall classification of the fused product was 72%, which
was higher than the sole use of SacnSAR and MODIS images.

Alongside this, Seoran and Haack [10] utilized the L-band
ALOS PALSAR and TM data to classify four different crops.
The stack-based fusion method produced an overall accuracy
of 94.1%. Skakun et al. [11] employed a multilayer percep-
tron technique to combine multitemporal and multipolarized
RADARSAT-2 and Landsat-8 data. They observed that the
combination of SAR and optical data improved the overall
classification accuracy by 0.09% and 1.94%, as compared to the
use of SAR and optical data individually. They also reported that
the use of multitemporal dataset helped gain ≈ 25% accuracy.
Furthermore, the VV–VH combination performed better for
winter wheat and spring barley, while HH–HV for sugarbeet and
soybeans. Several other studies also pointed out the advantages
in the synergetic use of optical and SAR data in the domain of
agricultural crop mapping [12]–[14].

The time-series of dual-pol SAR images acquired by
TerraSAR-X and TanDEM-X have been successfully applied for
crop classification by exploiting either the backscattering coef-
ficient at the two copolarization channels [15]–[17] or extracted
sets of polarimetric features [18]–[20] as inputs to the classifier.
However, the best reported overall accuracy is ≈ 70–80% when
only backscattering coefficient features are utilized. However,
polarimetric scattering power components were shown to be
more effective in capturing the changes in the scattering mech-
anism with the advancement of crop phenological stages.

Hence, this study utilizes the newly developed three-
component model-free scattering power component for dual
copolarimetric (HH–VV) SAR data. The advantage of this
model-free decomposition technique is its three roll-invariant
scattering power components. Moreover, we resolved several
limitations of state-of-the-art model-based decomposition tech-
niques using this novel method. For example, the frequently
observed overestimation of the volume scattering power com-
ponent and the occurrence of negative power components in
several model-based decompositions are fixed in this model-free

technique. Moreover, the method is adaptive for any scattering
scenarios with high stability in the power components. These
scattering power components were shown to be effective in
monitoring and mapping different morphological characteristics
of crops [21]. This work also explored the added value of
the interferometric products derived over the agricultural crops
using TanDEM-X data along with the scattering power compo-
nents. We utilized the single-pass interferometry parameters that
combine two simultaneous images acquired over the same scene
to evaluate the performance of the interferometric products.
Besides, we also use the Landsat-8 reflectance features to capture
the biochemical changes inside the crop canopy. One of the most
critical approaches to effectively combining this information
is calculating a weighted map incorporating information from
different source images. These weighted combinations are esti-
mated by specific predefined or hand-crafted techniques devised
by the users in the existing literature. These methods are often
based on a nonlearning paradigm, and therefore, the estimates
are nonadaptive for each resolution cell [22]. Hence, we propose
a neural network-based adaptive learnable framework for calcu-
lating the weight map. The neural network architecture works as
a self-adaptive global function estimator. Also, we use a bilevel
attention module for self and cross-attention. The attention
mechanism enables the overall framework to focus more on
specific essential elements of the input feature space. Effectively,
it guides the network to find out the crucial constructs. Moreover,
the network architecture along with the attention mechanism
approximates complex functions more intuitively [23].

In the scope of this work, we are more interested in exploring
the causes for enhanced classification accuracies using both SAR
and optical data and their combinations. This study typically
does not emphasize the performance comparison of different
classification or fusion techniques available in the literature.
We have utilized network-based architectures due to their self-
adaptive capabilities based on the nature of the data.

1) We utilize the scattering power components derived from
the novel model-free decomposition technique for dual
copolarimetric (i.e., HH–VV) TanDEM-X SAR data [21],
[24]. Together, we also use the reflectance of distinct
Landsat-8 multispectral bands to analyze crop phenology
trends.

2) We also demonstrate the contribution of interferometric
coherence, in addition to the polarimetric and multispec-
tral features, for the enhancement of classification accu-
racy. Hence, we utilize all possible information about a
target in three dimensions.

3) We develop a pixel-wise self and cross attention-based
network architecture to effectively fuse SAR and opti-
cal time-series data to classify diverse crop types. In
this regard, our primary contribution lies in utilizing the
attention-based architecture for the pixel-level fusion of
polarimetric SAR, interferometric SAR, and optical data
to capture the overall characteristics of the agricultural
crops throughout the phenological stages.

This study uses the TanDEM-X (HH|VV) SAR data and
Landsat-8 multispectral data to classify diverse crop types over
Seville, Spain.
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Fig. 1. Landsat-8 image of the Seville test site over Spain obtained from the Google Earth engine platform. We took the samples used for crop-type analysis and
classification from the region marked in a red rectangle. The crop types are shown in seven different colors.

The rest of this article is organized as follows: Section II de-
tails the study area and dataset. Section III describes methodol-
ogy. In, Section IV we discuss the results with clear explanations.
Finally, Section V concludes this article.

II. STUDY AREA AND DATASET

The study area shown in Fig. 1 is located near Seville in Spain
(37◦;02’;29.45” N 6◦;02’;57.24” W). This area has a Mediter-
ranean climatic zone, with varying soil types of cambisol, cromic
luvisol, and rendsic leptosol [25]. The areal coverage of this test
site is ≈ 16× 8 km2.

The crops cultivated in this area mainly consist of: carrots,
corn, cotton, quinoa, rice, tomato, and wheat. The cultivation
takes place all around the year. The average size of each field is≈
300× 300 m2. Information about the crop types was recorded
during field campaigns carried out from May to August 2015 by
a local institution (FERAGUA). Crop types were assigned, and
field borders were confirmed or fixed using a GPS to position the
official land-parcel identification system as the initial database.
The Landsat-8 acquisition dates are 27-May, 26-Jun, 14-Jul, 30-
Jul, and 15-Aug, while the Tandem-X acquisition dates are: 30-
May, 02-Jul, 13-Jul, 04-Aug, 15-Aug.

We acquired all TD-X images in descending passes with an
incidence angle around 39◦ with a height of ambiguity of ≈
5.8 m. All images correspond to the dual-pol mode with the two
copolar channels: HH and VV. The original spatial resolution of
these images was 6.6 m in azimuth and 3.1 m in the ground range.
The pixel spacing (pixel size) was 2.4 m in both coordinates. We
radiometrically calibrated these images and applied a boxcar
filter to estimate the backscattering coefficients. Finally, we
geocoded all products to a grid of 5 m posting. Similarly, we
atmospherically corrected all L-8 images and calibrated them
to generate surface reflectance values. Later, we resampled the
pixels of L-8 to 5 by 5 m resolution and coregistered with the
TD-X data.

Fig. 2 shows the crop calendar for wheat, tomato, rice, quinoa,
cotton, corn, and carrot. This calendar provides timely informa-
tion about phenology to promote local crop production. The
figure shows the acquisition window of both SAR and optical
data with red dotted vertical lines. During this period, one can see
that most of the crops are in the growing and harvesting stages.
Some of the crop fields were at the postharvest stage. Therefore,
specific transitions among the phenological stages for different
crop types are evident within the acquisition period. The crop
calendar aids the analysis and interpretation of changes in SAR
and optical observables corresponding to crop morphological
conditions at different phenological stages. Similarly, we also
infer the impact of crop phytomorphology in the classification
accuracies using this time-series information.

III. METHODOLOGY

In this section, we describe the proposed classification frame-
work. Then, we detail the Landsat-8 and TanDEM-X feature sets
that we utilize for fusion and classification purposes. Finally, we
describe the network architecture with different modules and
cost functions.

A. Architecture

The objective of this work is to perform pixel-based clas-
sification of diverse crop-types using TanDEM-X (TD-X) and
Landsat-8 (L-8) datasets. For this task, we have considered input
dataset, X = {xi

T ,x
i
L}ni=1 which are centered around ground-

truth pixels,Y = {yi}ni=1. Here,xi
T ∈ R1×F1 andxi

L ∈ R1×F2 .
F1 and F2 denote the number of features for TD-X and L-8,
respectively, and n denotes the number of sample points. The
ground-truth labels are denoted as y ∈ {1, 2, . . . , 7}. These
datasets are utlized in the proposed fusion architecture to dis-
criminate various crop types through different modules within
the network.
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Fig. 2. Crop calendar of carrot, corn, cotton, quinoa, rice, tomato, and wheat crops over Seville, Spain. Different colors indicate the preparation, seeding,
growing, harvesting, and post harvest stages. The red dotted lines represent the month of acquisitions of TanDEM-X and Landsat-8 data which are used for
crop-type classification.

Feature Set
The feature sets F1 consists of reflectance values from seven

bands, and F2 consists of polarimetric scattering power compo-
nents along with interferometric coherence information.

B. Landsat-8 (L-8)

The L-8 band reflectance features (F1) consists of 7 bands
with 30-m resolution. However, as these bands were resampled,
the final pixel resolution is 5 m. The wavelength of band-1 is 0.43
to 0.45 μm. This band gives information about the sediments,
particles, and organic matter within a resolution cell. Band-2
have a wavelength range of 0.45 to 0.51 μm. This band might
help discriminate between dry and moist soil conditions. Band-3
has a wavelength range of 0.53 to 0.59 μm and is useful in identi-
fying greenness within a resolution cell. Band-4 of wavelength
0.64 to 0.67 μm has absorption characteristics depending on
the chlorophyll content and health of vegetation. Band-5 has a
wavelength range of 0.85 to 0.88 μm. The characteristics of this
band directly depend on the chlorophyll content and the spongy
mesophyll cells. It is also helpful in distinguishing vegetated
surfaces from bare ground. Band-6 and Band-7 of wavelength
ranges 1.57 to 1.65 μm and 2.11 to 2.29 μm, respectively,
provide information on soil moisture and leaf water content [26].
Therefore, these bands have particular significance in inferring
information about crop fields and could be better suited for
classification.

C. TanDEM-X (TD-X)

We extract a set of seven features (F2) from the TD-X data.
We obtain the first three features from the model-free three-
component scattering power decomposition technique [21],
[24], and the following four features as the interferometric
coherence information.

Target decomposition using SAR data provides scattering in-
formation from a target. The state-of-the-art methods use model-
based decomposition techniques to obtain target information.
However, the hierarchical process and the branching conditions
lead to several stringent limitations. Moreover, the assumptions
of ad hoc scattering models within a radar resolution cell
make the computation of scattering power ambiguous. Common

concerns of these model-based techniques are associated with
the overestimation of the volume scattering power, the nonroll
invariant scattering power components, and the occurrence of
negative scattering power components, and instability.

In addition to this, croplands are usually considered homo-
geneous, and hence, the scattering from these targets is al-
most symmetric. Therefore, the existence of the helix power
component is negligible. Like the four-component Yamaguchi
decomposition, the fourth component in our proposed model-
free four-component scattering power decomposition [27] is the
insignificant helix power component. Due to this, we have re-
stricted ourselves to the model-free three-component scattering
power decomposition technique.

The scattering power components consist of even bounce, odd
bounce, and diffused powers [21]. We used the elements of the
Kennaugh matrix (k11 and k44) and the nD Barakat degree of
polarization [28] to compute the scattering power components.
Moreover, these scattering power components are unique and
unambiguous and adaptive to the morphological changes of the
crops. Also, within the decomposition framework, the target
characterization parameters and the scattering power compo-
nents are roll-invariant.

In addition to this, we have used a set of SAR observables
composed of the single-pass interferometric coherence at HH
and VV copolar channels and HH + VV (P1), HH − VV (P2)
Pauli channels. As the master and slave images of the slant range
products were already coregistered, we followed only four steps
in the processing chain: 1) Subset of the region of interest, 2)
removal of flat Earth and topographic phase components, 3)
computation of coherence using a 9× 9 boxcar filter, and 4)
geocoding.

Following this, we removed the Earth and topographic phase
terms from the interferograms. Hence, the leftover phase con-
tains the topographic information about the digital elevation
model utilized in the process. One should note that phase re-
moval is necessary for a better estimation of coherence in this
context.

After that, the images went through a common-band spec-
tral range filter. Finally, the interferometric coherence at both
HH, VV, HH + VV, and HH − VV channels were computed.
In this study, the height of ambiguity (HoA) for each TD-X
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Fig. 3. Proposed fusion network architecture for crop-type classification. Here, “FC” denotes fully connected layer. Initially, we extract features from TanDEM-X
and Landsat-8 data, represented as FT and FL, respectively. Simultaneously, the attention masks are generated through the attention modules, AT and AL, respectively.
The attention masks are individually multiplied with the extracted features to get MT and ML. Thereafter, the common important feature, MC is extracted using
MT and ML. The concatenated features of MT, ML, and MC are passed to the classification module for crop-type classification. Here, “softmax” represents the
softmax activation layer and “CL” represents the classified output layer.

acquisition was around 5.8 m, which is considerably smaller than
conventional TD-X data (> 30 m). This is because they were
acquired as a part of the science phase (April–September 2015).
Therefore, it allowed us to perceive variations in the coherence
values for taller crops.

D. Model Overview and Network Architecture

The work intends to explore the spectral property from L-8
and the scattering property from TD-X data synergistically using
the “attention framework.” The essential aspect of the attention
framework is to highlight important features in a dataset to
increase the class variance while enhancing the overall classifi-
cation accuracy. We perform this classification enhancement by
providing the TD-X and L-8 data points through two individual
feature extractors and two individual self-attention modules.
After that, we compute the characteristic features among the
extracted features from TD-X and L-8 in a cross-attention man-
ner. Following this process, all these features are transferred
to a weighted fusion layer to enhance the information of the
latent feature space. Subsequently, the resultant fused features
are given to the classification module.

It is well known that optical sensors provide biochemical char-
acteristics of a target whereas, SAR sensors provide geophysi-
cal features of a target. This proposed methodology combines
these two pieces of information to provide valuable information

to classify diverse crop types. The overall architecture of the
proposed fusion network is illustrated in Fig. 3. The proposed
architecture consists of four modules. The first two modules are
the attention modules of TD-X and L-8, AT, and AL, respectively.
The second module is a cross attention module, MC among TD-X
and L-8 features, and the last module is the classification process.
These modules are discussed as follows.

TD-X Feature Extractor, FT and L-8 Feature Extractor, FL:
Both FT and FL consists of three dense hidden layers for the
extraction of spectral feature from L8 and TD-X. The output
of each dense layer is nonlinearly transformed using a scaled
exponential linear unit (Selu) activation function

Selu :

{
scale × p if p > 0
scale × alpha × (ep − 1) if p < 0

(1)

where, scale and alpha are predefined constant: scale =
1.67 326 324 and alpha = 1.05 070 098. Therefore, these
modules can be represented as follows: FT = f(wFT ,x

i
T ) and

FL = f(wLT ,x
i
L). wFT and wLT represent the weights of FT

and FL, respectively. The outputs of FT and FL are 6D vectors.
Self Attention Modules, AT and AL: From the two input data,

we also derive an attention module. A self-attention network
helps in highlighting the salient features to appear in the forefront
as required dynamically. Effectively, it reweighs the features
according to some externally or internally assigned weights.
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In this work, we use a soft-attention network wherein we give
continuous weights using a sigmoid activation function.

AT draws its attention mask from TD-X data and AL draws
its attention mask from L-8 data. These modules consists of
two individual dense hidden layers with a sigmoid activation
function. These modules are denoted as, AT = f(wAT ,x

i
T ) and

AL = f(wAL,x
i
L). Here, wAT and wAL are the weights of the

modules. The output of these modules are 6D vectors. These
outputs are multiplied with FT and FL to provide highlighted fea-
tures, expressed as, MT = FT ⊗ AT and ML = FL ⊗ AL. Here,
⊗ represent the broadcasted element-wise matrix multiplication
operation, such that the resultant product retains the size of the
matrix with higher dimension. Therefore, the outputs from MT

and ML are again 6D vectors.
Cross Attention Layer, MC: Following this procedure, we ex-

ploit the two self-attended data and design a cross-attention mod-
ule. In the cross-attention network, we provide the TanDEM-X
derived attended feature map to accentuate the spectral features
of the Landsat-8 attended feature map. In effect, this aligns
the SAR and the optical features while highlighting the salient
features common to both the data streams. In this layer, the
common highlighted features in MT and ML are enhanced. This
module can be expressed as, MC = ML ⊗ MT. Similarly, the
outputs from MC is again a 6D vector.

Fusion Layer: In this layer, all the features from MT, ML, and
MC are staked. The weighted fusion technique is then applied to
generate a total of 12 output features. This layer is represented
as, Fus = f(wFUS, [MT,ML,MC]). Here, wFUS is the weight of
the fusion layer.

Classification Module: The input to the classification module
is the final fused features from the fusion layer. This module
consists of four dense hidden layers. All the layers are treated
by the Selu activation function except the last layer. We utilized
the softmax activation in the last layer that is intended for classi-
fication purposes. This layer is represented as, C = f(wc,Fus),
where wc are the weights of classification module. The output
of the classification module is 1× Z, where Z is the number of
crop types.

Loss Function: We utilized the sparse categorical cross-
entropy loss function to calculate the loss between the output
and actual labels. This loss is then backpropagated to train the
network architecture in an end-to-end fashion. The represen-
tation is the same for the sparse categorical cross-entropy and
categorical cross-entropy loss functions. This loss function is
defined as

L = − 1

N

N∑
i=1

C∑
c=1

1yi∈Cc
log (pmodel[yi ∈ Cc]) (2)

where, N is number of observations, C indicates classes, 1
is the indicator function and pmodel[yi ∈ Cc] is the predicted
probability of observation i belonging to class c.

IV. RESULTS AND DISCUSSION

We utilize a temporal stack of TanDEM-X (TD-X) and
Landsat-8 (L-8) data to classify crop fields over Seville, Spain.
The temporal stack consists of five scenes of each sensor (TD-X

and L-8). In the case of L-8 data, we used the band reflectance
values of coastal aerosol, blue, green, red, near-infrared, short
wave infrared-1 (SWIR-1), and short wave infrared-2 (SWIR-2)
while for TD-X data, we used the novel three decomposed
power components: Odd bounce (Ps), even bounce (Pd), and
diffused (Pv) and the coherence information in HH, VV po-
larization channels (CohHH , CohV V ), as well as the Pauli
channels (i.e., HH + VV (CohP1) and HH − VV (CohP2)). The
band reflectance values are generated using the ENVI software,
whereas, the model-free decomposed power components are
generated using the PolSAR tools plugin [29]. The cropping
calendar is shown in Fig. 2. The temporal variations of spectral
and scattering properties over the crop fields are shown in
Figs. 4– 7, respectively.

A. Temporal Analysis of Optical and SAR Descriptors

We can observe that during the acquisition time frame, all crop
fields completed their preparation stage. Rice field was in the
transition stage from land preparation to seeding stages. The car-
rot and wheat fields were subjected to early and mid-harvesting
stages. Hence, depending on the different growth stages, changes
in the reflectance values (for optical data), the scattering power
components, and the interferometric coherence components are
apparent from the plot. One can note from Fig. 4 that the trend of
variations of coastal blue (CB), blue (B), green (G), and red (R)
bands are pretty similar for most crops. However, comparatively
the changes in R and G bands are more prominent than CB and
B, which might be due to the sensitivity of these bands to leaf
pigments.

For the majority of the crops, high reflectance in R is evident
during the vegetation growth phase. However, rice shows a
decreasing trend in the R reflectance. This lower trend might
be due to the existence of the underneath water column, which
might have absorbed this wavelength. Besides, the sensitivity in
R and G for cotton is less than other crops, which might be due
to the sparse canopy structure and the compound pinnate type
leave structure.

Similarly, a clear distinction among growing, harvesting, and
postharvest stages of wheat is evident from the plot. On 30-
May, wheat was at the late growing stage. Hence, leaf pigments
and the photosynthesis phenomenon absorbed most of the high-
frequency wavelengths. Following this, the commencement of
the harvesting stage increased the reflectance in R, G, B, and CB
bands. Similar reflectance values in R, G, B, and CB continue
throughout the postharvest stage of wheat.

In Fig. 5 we show the variations of near-infrared (NIR), short
wave infrared-1 (SWIR-1), and short wave infrared-2 (SWIR-2).
We know that NIR reflectance is highly dependent on the chloro-
phyll content and the mesophyll structure. Hence, for all the
crops, the reflectance in NIR is high at peak vegetative phases.
In particular, for corn, cotton, rice, and tomato, the dynamic
ranges are also high. However, especially for cotton, the NIR
reflectance follows a monotonically increasing trend due to its
rapid vegetative growth within the observation window.

The NIR reflectance of corn and tomato is also high during
02-Jul as they have attained their peak vegetative stage. However,
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Fig. 4. Temporal variations of Coastal blue (CB), Blue (B), Green (G) and Red (R) bands for (a) Carrot, (b) Corn, (c) Cotton, (d) Quinoa, (e) Rice, (f) Tomato,
and (g) Wheat crops.

toward the end of the observation period, the harvesting of
these crops started. Hence, a decrease in the NIR reflectance is
prominent from the plots. On the contrary, SWIR-1 and SWIR-2
are sensitive to soil moisture and crop water content. Therefore,
we observe a marginal change in the dynamic range of the
reflectance for all crops that depends on these two parameters.

In Fig. 6 the variation of scattering power components ob-
tained from the dual co-polarimetric decomposition techniques
is shown. It is interesting to note the variations of Pd, Pv and
Ps for different crops. We can see that Pd is not sensitive for the
carrot fields and its values are almost close to zero. However,
Ps is marginally sensitive to the carrot fields. This might be
due to the sparse canopy distribution of carrot crops. Due to the
canopy structure, the backscatter values are highly affected by
the underlying soil. Hence, Ps values are high throughout the
season.

A similar trend inPd is also evident for cotton, quinoa, tomato,
and wheat crops. For the cotton crop, the observation window
covers the progress of the vegetative stage. Hence, as the crop
cover increased, the leaves of the top canopy layer generated a
high amount of Ps power compared to Pv . However, depending
on the randomness in the canopy structure, an increasing trend
of Pv is also evident.

We observe a notable change in all the power components
(Pd, Pv , and Ps) for rice. During the initial period, all the
power components have similar values. However, depending on
the field roughness, the Pv scattering power dominates. During
02-Jul, the advanced tillering stage of rice started. Hence, we
observe an increase in the Pd power and an increase in the Pv

scattering power due to increased scattering complexity from
the random canopy structure of rice. We can further observe that
the leaf structure also generated a significant Ps power in the
time series.

We present the time series of single-pass interferometric
coherence in Fig. 7. In the absence of temporal decorrelation,
volume decorrelation [30] provides high sensitivity to vegetation
height, i.e., with the increase in vegetation height, coherence
decreases. This volume decorrelation information has been ex-
ploited in forests and crop studies to estimate vegetation height
and recently for crop classification purposes [31]. Regarding
the differences between polarimetric channels, they offer infor-
mation about vegetation structure. However, they may also be
affected by the signal-to-noise ratio (SNR), i.e., the lower the
SNR, the lower the coherence. For example, in the time-series
shown in Fig. 7, the lowest coherence is the one obtained from the
2nd Pauli channel (HH − VV) for all crop types except for rice.
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Fig. 5. Temporal variations of Near infrared (NIR), Short wave infrared-1 (SWIR-1), and Short wave infrared-2 (SWIR-2) bands for (a) Carrot, (b) Corn,
(c) Cotton, (d) Quinoa, (e) Rice, (f) Tomato and (g) Wheat crops.

This observation is in agreement with the relative magnitude of
the scattering components analyzed in Fig. 6.

We observe the largest excursion of single-pass interferomet-
ric coherence in Fig. 7 for rice, including an initial date with
very low coherence due to the flooded condition of the fields.
Cotton, carrot, and tomato fields exhibit high coherence all along
the cultivation cycle. In contrast, corn and quinoa, which are
tall crops at the observation period, are characterized by low
coherence. Finally, winter wheat, which is harvested around
the first acquisition date, also shows high coherence. We could
attribute this observation due to the bare soil condition of the
fields.

B. Classification Assessment

We base our classification results on several input features,
with or without the attention module in the network architecture.
In this regard, we first show the classification accuracy using
the classification module individually for SAR and optical data.
Following this, we use the fusion module and the classification
module without any attention mechanisms. Later, we use the
attention module with the fusion of optical and SAR scatter-
ing power component data. Finally, we show the classification
accuracy using the fusion of optical, SAR scattering power
components, interferometric coherence data, and the attention

TABLE I
OVERALL CLASSIFICATION ASSESSMENT OVER THE STUDY AREA

mechanism. In addition to this, we present the standard deviation
of the classification accuracy with 20 repeated execution of the
network architectures.

The classification results obtained from the abovementioned
parameters are shown in Tables I– III. Table I shows the general
assessment of the classification result using overall accuracy
(OA), kappa coefficient (κ), and F1-score. Tables II and III
presents the producer’s and user’s accuracy which provided
detailed classification performance for each crop type.
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Fig. 6. Temporal variations of Pd, Pv and Ps bands for (a) Carrot, (b) Corn, (c) Cotton, (d) Quinoa, (e) Rice, (f) Tomato, and (g) Wheat crops.

TABLE II
PRODUCER’S ACCURACY FOR DIFFERENT CROP USING DIFFERENT INPUT PARAMETERS AND ATTENTION LAYER

Table I shows the OA for different classification processes.
We can see that the OA using only SAR is 83.41% and the κ
is 0.82. This classification accuracy is the lowest among all the
other processes shown in the table. One possible reason might be
the crop structural conditions. Most of the crop types were at the
advanced vegetative to the preharvest stage. Hence, the vertical
structure with random branch orientation is common for all crop
types. Also, depending on the crop height, the penetration of
the SAR signal through the crop canopy is evident. This signal

has high interaction with the underlying soil layer, increasing
the Ps value for carrot, cotton, quinoa, and tomato. Besides,
the random crop structure also generated a significant amount
of Pv power for all the crop types. On the other hand, the
classification accuracy using the only optical data is 87.36%.
This might be due to the added separation capability of the
crop biochemical characteristics. For example, the carrot field at
the advanced phenology stage appears highly greenish, and the
density increases. In contrast, reddish flowers appear for quinoa
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Fig. 7. Temporal variations of coherence in HH channel (CohHH ), coherence in VV channel (CohV V ), coherence in HH + VV Pauli channel (CohP1),
and coherence in HH − VV Pauli channel (CohP2) bands for (a) Carrot, (b) Corn, (c) Cotton, (d) Quinoa, (e) Rice, (f) Tomato, and (g) Wheat crops.

TABLE III
USER’S ACCURACY FOR DIFFERENT CROP USING DIFFERENT INPUT PARAMETERS AND ATTENTION LAYER

at the flowering stage. Hence, the marginal change in the PA
and significant change in UA for optical data than SAR data is
evident in Tables II and III. Similarly, at the advanced growth
stage, the corn fields possess yellow fruit, and the fields have
high reflectance in all the R, G, and B channels. Similar changes
in the reflectance values occur with the appearance of fruits and
flowers for tomato and wheat crops. Notably, the crop water
content also changes significantly from one crop to another.

Therefore, depending on this factor, the reflectance values for
NIR and SWIR regions also vary considerably. Due to these
reasons, a 4% higher accuracy is evident with only the optical
data.

Subsequently, the weighted fusion of optical and SAR data
increased the classification accuracy by approximately 6% as
compared to only SAR data. This is due to the consideration
of both biophysical and biochemical changes that appear with
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TABLE IV
COMPARISON WITH OTHER EXISTING FUSION TECHNIQUES AND CLASSIFIERS

crop phenology advancement. The weighted fusion technique
essentially embeds the crop structural and dielectric information
with the scattering power components. In contrast, the crop
chlorophyll content, vegetation water content, and mineral com-
position of crop canopy are captured by the reflectance values of
optical data. Hence, the weighted fusion technique transforms
the optical and SAR data to more meaningful target information
content than only SAR or optical data. As a result, the κ score
has also increased to 0.91 with the F1 score to 0.93, along with
the increase of OA for the weighted fused product.

The comparison with other existing fusion technique and
classifiers are shown in Table IV. We can observe that OA
is higher when we used the weighted fusion technique. Also,
the classification accuracy is higher for the proposed classifi-
cation layer. Amongst the examined classifiers, Support vector
machines (SVM) provide the least classification accuracies of
86.97% for additive fusion and 89.60% for weighted fusion.
The classification accuracies using random forest with 500
trees are intermediate. The OAs are 89.62% for additive fu-
sion and 92.21% for weighted fusion. We observe the highest
classification accuracies for weighted fusion and the proposed
classification layer.

This classification accuracy further increases with the inclu-
sion of the attention module. A 9% increase in OA is evident as
compared to only SAR data. The κ score is also increased by
0.12, while F1-score by 0.10. This enhancement in the accuracy
might be because attention usually provides an insight into the
complete feature vector and creates connections among each
feature attribute within the entire feature vector. Alternatively,
it can be described as the contribution of each feature attribute
to the overall feature context. The attributes which are more
descriptive for an input instance are granted more weight. Hence,
it helps in highlighting the most relevant/important information.
Since the attention network helps boost these essential feature
constructs, we obtain improved overall discernibility amongst
the classes. This procedure leads to an increase in the accuracy
of the framework. Although there is an overall increase in the
OA, UA, and PA for different crops, we observe an anomaly
in the PA and UA for corn and rice as seen in Tables II and
III. The decrease in the UA and PA could be due to comparable
SAR and optical signature patterns after employing the attention
mechanism.

Finally, the addition of the interferometric coherence infor-
mation in the weighted fusion of SAR and optical data achieves
the highest classification accuracy with 94.62% and κ = 0.96.
The increase in OA with respect to only SAR is approximately

11%. This is due to the inclusion of changes in all three dimen-
sions. The polarimetric scattering power information and optical
data provide relevance in the variation in the spatial context.
In contrast, the coherence information captures the changes
in height. A significant difference in the heights of different
crop types is evident from the in situ data. Some of the crops
are erectophile, and some are planophile in nature. Moreover,
the changes in the height throughout the phenology period are
significant. Hence, this additional information is gained through
the fusion of interferometric data with polarimetric and optical
data. Furthermore, the overall variation in the classification
accuracy for each execution appeared stable, with a standard
deviation of 0.92. Therefore, a difference of 11.21 is evident for
the mean OA of the weighted fusion (attention + interferometric
coherence map) and only SAR data. Assuming a significance
level of 0.05, we can neglect the null hypothesis as the Z-value
is 4.96 (>1.96). Similarly, Z-value between the weighted fusion
and optical data is 3.66 (>1.96). We can also interpret the
significance of the changes in terms of κ mean and standard
deviation. We observe a Z-value of 5.29 between only SAR and
weighted fusion and a Z-value of 4.87 between only optical and
weighted fusion techniques. Hence, we can conclude that there
is a significant change in classification accuracy after the fusion
of interferometric, polarimetric, and optical data. The inclusion
of the coherence elements at HH, VV, HH + VV, and HH − VV
channels provides information about each crop’s differential
height, which might have improved the overall classification
accuracy.

Concerning the values of PA and UA obtained for each crop
type, the best classified crops are corn, cotton, rice, and tomato,
with values above 90%. The lowest accuracy is obtained for the
carrot crop. This observation is expected because the acquisition
period of the TanDEM-X data is toward the end of its pheno-
logical cycle. During the acquisition period, the crop was in the
late harvest stage. Hence variation in the temporal pattern might
not be distinguishable in the classification process.

The first set of the process includes computing the scattering
power components from the MF3CD technique [21] and the
coherence information from HH, VV, HH + VV, and HH − VV
channels. For corn, cotton, rice, and tomato, PA and UA are
≥ 80% as most phenological changes are captured by the SAR
backscatter coefficients within the observation window. In con-
trast, the PA and UA of wheat are 49.71% and 69.61%, which
might be low because of the saturation in the scattering power
components during the harvesting and postharvest preparation
stages.
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Fig. 8. Classification error map for different input parameters from SAR and optical data. The “red” color represents misclassified labels and “green” color
represents the correctly classified labels.

The second processing step includes obtaining reflectance
values from the optical bands of the Landsat-8 sensor. In this
case, the UA and PA for all the crops have marginally increased,
except for the carrot fields. As stated earlier, this field was in the
period of late harvesting. Hence, it might have been restricted
to low classification accuracy. The PA and UA of wheat have
also increased. This might be due to the anomaly of the spectral
signature from harvest to the postharvest stage that was likely
missed by SAR backscatter coefficients.

The third and fourth sets include the classification using fused
SAR and optical data without an attention mechanism. Please
note that using the fusion framework, the PA and UA for all crops
have increased significantly. This observation might be due to
the embedding of biophysical and biochemical information in
the fused products. As such, we observe an average increase of

approximately 6% to 10% for all crops. Interestingly, the use
of the attention mechanism has also improved the classification
accuracy of the fused product by 3% to 4%. Therefore, it is
noteworthy that the attention mechanism can significantly focus
on the input feature space within the network architecture.
As a result, the accuracy of the fused product is considerably
enhanced.

The last set of the process includes the fusion of the optical
bands with SAR scattering components and the four coherence
maps of HH, VV, HH + VV, and HH − VV channels with
the attention mechanism. This particular set increased the UA
and PA of corn, cotton, quinoa, rice, and tomato by ≈ 2%
to 3%. We observe an interesting increase for the carrot and
wheat crops. The UA and PA of carrot is 79.46% and 68.23%,
respectively. Besides, the UA and PA of wheat is 89.08% and
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Fig. 9. Visualization of the data clusters obtained for different crop fields for
(a) Tandem-X data and (b) Landsat-8 data using t-SNE plot.

91.87%, respectively. This increase in UA and PA might be due
to the difference in crop height before and after harvesting. The
coherence information well captures the accumulation of stubble
in the fields after harvesting that.

Therefore, it is shown that OA, PA, and UA increased sig-
nificantly when we fused optical and SAR (scattering power
components + interferometric coherence map) data along with
an attention mechanism than using only SAR (scattering power
components + interferometric coherence map) and optical data.
We have also shown the classification error map in Fig. 8. We can
observe that the fusion technique has reduced the error pixels
significantly. To visualize the separation of the data points using
optical and SAR (scattering power components + interferomet-
ric coherence map) data, we have presented the t-distributed
stochastic neighborhood embedding (t-SNE) plots in Figs. 9 and
10. Fig. 9 shows the t-SNE plot of SAR and optical data points
for different crops, respectively. Fig. 10 shows the t-SNE plot of
optical and SAR (scattering power components + interferometric
coherence map) fused data points for the same crop types.

t-SNE is a nonlinear dimensionality reduction technique to
embed high dimensional space into lower dimensions for effi-
cient visualization of data points [32]. The feature distribution

Fig. 10. Visualization of the data clusters obtained for different crop fields
using t-SNE plot for optical and SAR (scattering power components + interfer-
ometric coherence map) fused product with attention module.

Fig. 11. Confusion matrix of optical and SAR (scattering power components
+ interferometric coherence map) fused product with attention module.

divergence is measured using the cost function in t-SNE. Within
the high dimensional space, the objective of t-SNE is to pick
similar points with high probability and dissimilar points with
low probability. Therefore, t-SNE helps to visualize the mixing
of high-dimensional representation of data points for different
crop types.

We can see from Fig. 9 that the data points are highly
cluttered for SAR features, while marginal separation among
some crops is seen in the optical t-SNE plot. Hence, the OA is
higher for optical features as compared to SAR features. On the
other hand, in the case of fused products, i.e., optical and SAR
(scattering power components + interferometric coherence map)
with attention module, significant separation among the data
points for different crops can be observed (Fig. 10). This is why
classification accuracies are higher for the fused product than
using only SAR and optical data. Besides, we observe a mixture
of carrot and cotton, tomato, quinoa, and wheat. We also witness
this mixing in the confusion matrix, shown in Fig. 11.
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TABLE V
DAY-WISE CLASSIFICATION REPORT USING OPTICAL AND SAR (SCATTERING POWER COMPONENTS + INTERFEROMETRIC COHERENCE MAP) FUSED PRODUCT

WITH ATTENTION MODULE OVER THE STUDY AREA

Here, PA: Producer’s accuracy; UA: User’s accuracy.

Fig. 12. Analysis ready classified crop-type map on different dates using optical and SAR (scattering power components + interferometric coherence map) fused
product with attention module
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TABLE VI
DAY-WISE CLASSIFICATION REPORT USING OPTICAL AND SAR (SCATTERING POWER COMPONENTS + INTERFEROMETRIC COHERENCE MAP)

FUSED PRODUCT WITH ATTENTION MODULE OVER THE STUDY AREA

Here, PA: Producer’s accuracy; UA: User’s accuracy.

TABLE VII
DAY-WISE CLASSIFICATION REPORT USING OPTICAL AND SAR (SCATTERING

POWER COMPONENTS + INTERFEROMETRIC COHERENCE MAP) FUSED

PRODUCT WITH ATTENTION MODULE OVER THE STUDY AREA

We have also shown the day-wise UA, PA, and OA using the
weighted fused optical and SAR (scattering power components
+ interferometric coherence map) with attention module in
Tables V –VII. Besides, an analysis-ready classification map for
each day is provided in Fig. 12. The analysis-ready map shows
good agreement with the in situ data. The day-wise accuracies
show an increasing trend in OA from 30-May to 04-Aug due
to crop morphological changes at different phenological stages.
However, on 15-Aug, OA is reduced as compared to previous
dates. This lower value of OA might be due to the similar
response of most crops during their harvest or postharvest stages.
Therefore, the weighted fusion technique with optical and SAR
(scattering power components + interferometric coherence map)
data may constitute a perfect complement to all the efforts
performed so far with time-series data.

V. CONCLUSION

This article proposes a novel fusion technique using an
attention-based network architecture for optical and SAR data.
The optical dataset includes the reflectance of seven bands of the
Landsat-8 sensor. The seven optical bands are coastal blue (CB),
blue (B), green (G), red (R), near-infrared (NIR), short wave
infrared-1 (SWIR-1), and short wave infrared-2 (SWIR-2). The
SAR data include the three scattering power components from
the novel model-free three-component dual copolarimetric de-
composition (MF3CD) technique and the single-pass coherence
map of HH, VV, HH + VV (P1), and HH − VV (P2) channels.

The results show that the scattering power components, co-
herence information, and the reflectance of optical bands are
sensitive to the changes in the crop phenological stages in

time series. Depending on the crop geometry and structural
properties, variations in the response of SAR observable are
prominent. For example, rice shows a wider variation in the
Pd scattering power due to the flooded ground. Similarly, NIR,
R, and Ps power changes are evident toward the end of the
season due to the harvest stage. Moreover, it is also exciting to
observe crop height differences and variations in the coherence
information. However, a few crops were nearing their harvest
stage within the acquisition window, due to which a marginal
variation of these parameters is evident from the plots.

For the classification accuracy, the fusion of SAR and optical
data outperforms the accuracy obtained using SAR or optical
data individually. Furthermore, an additional ≈ 3% overall ac-
curacy is achieved while we included interferometric coherence
information in the fused product. Moreover, the use of the atten-
tion mechanism can focus on the essential features within the
network architecture. As a result, the network is stable in terms
of standard deviation and improves the classification accuracy.
Therefore, the attention mechanism in the fusion of SAR and
optical data shows a promising improvement in the classification
result.

Although the results are very promising, a denser and wider
time series of SAR and optical data might reduce confusion
among certain crop types, particularly for low height and narrow
cultivation time crops. Moreover, dense temporal data can in-
form cultivation practices and short revisit times to monitor and
map diverse crop types throughout the season. Future studies
might also include radar images acquired at C- and L-band,
such as RADARSAT-2 and ALOS-2 satellites. C-band could
discriminate the initial growth stages from advanced growth
stages, while L-band might effectively discriminate the crop
types at advanced phenological stages. These multifrequency
analyses might provide better understanding of crop phenology
and crop-type map to the end-user community.
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