
Analyzing the Galactic Pulsar Distribution with Machine Learning

M. Ronchi1,2 , V. Graber1,2 , A. Garcia-Garcia1,2,3 , N. Rea1,2 , and J. A. Pons3
1 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans s/n, E-08193, Barcelona, Spain; ronchi@ice.csic.es

2 Institut d’Estudis Espacials de Catalunya (IEEC), Carrer Gran Capità 2–4, E-08034 Barcelona, Spain
3 Departament de Física Aplicada, Universitat d’Alacant, E-03690 Alicante, Spain

Received 2021 March 22; revised 2021 May 20; accepted 2021 May 25; published 2021 August 3

Abstract

We explore the possibility of inferring the properties of the Galactic population of neutron stars through machine
learning. In particular, in this paper we focus on their dynamical characteristics and show that an artificial neural
network is able to estimate with high accuracy the parameters that control the current positions of a mock
population of pulsars. For this purpose, we implement a simplified population-synthesis framework (where
selection biases are neglected at this stage) and concentrate on the natal kick-velocity distribution and the
distribution of birth distances from the Galactic plane. By varying these and evolving the pulsar trajectories in time,
we generate a series of simulations that are used to train and validate a suitably structured convolutional neural
network. We demonstrate that our network is able to recover the parameters governing the distribution of kick
velocity and Galactic height with a mean relative error of about 10−2. We discuss the limitations of our idealized
approach and study a toy problem to introduce selection effects in a phenomenological way by incorporating the
observed proper motions of 216 isolated pulsars. Our analysis highlights that by increasing the sample of pulsars
with accurate proper-motion measurements by a factor of ∼10, one of the future breakthroughs of the Square
Kilometre Array, we might succeed in constraining the birth spatial and kick-velocity distribution of the neutron
stars in the Milky Way with high precision through machine learning.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Pulsars (1306); Convolutional neural networks
(1938); Proper motions (1295); Neural networks (1933)

Supporting material: machine-readable table

1. Introduction

Neutron stars have been observed to travel through the
Galaxy with typical velocities of around several hundreds
of kilometers per second, reaching more than a thousand
kilometers per second in some extreme cases (Chatterjee et al.
2005; Hobbs et al. 2005; Hui & Becker 2006; Pavan et al.
2014). Accurate information on neutron star positions and
velocities in the Milky Way usually comes from radio timing
and interferometric observations (see Chapters 8 and 9 in
Lorimer & Kramer 2004; Liu et al. 2020, and references
therein) or high-spatial-resolution X-ray observations with,
e.g., the Chandra X-ray observatory (Motch et al. 2009). These
observations provide measurements of the pulsars’ angular
positions in the sky and their proper motions projected onto the
celestial sphere. In some cases, the radio pulse dispersion
measure (DM) or the X-ray absorption density (NH) together
with models of Galactic free-electron density and hydrogen
density (Balucinska-Church & McCammon 1992; Taylor &
Cordes 1993; Cordes & Lazio 2002; Yao et al. 2017) can also
yield a rough distance estimate. Moreover, in a few cases, a
parallax measurement (Deller et al. 2009, 2019; Matthews et al.
2016; Wang et al. 2017) or the presence of a supernova
remnant (Yao et al. 2017) might provide better distance
measurements.

Such high proper velocities of the neutron star population as
a whole exceed those of their progenitors (typically massive
OB stars) (see Hansen & Phinney 1997; Lai et al. 2001, and
references therein), and cannot be explained by the neutron
stars’ motion in the Galactic gravitational potential alone. The
mechanisms providing such high velocities are still unclear but
are likely related to the underlying supernova explosion. One

possibility is that the central core of an exploding star receives
a kick due to an asymmetric ejection of material from the star’s
outer layers—a direct result of momentum conservation
(Shklovskii 1970; Dewey & Cordes 1987; Mandel & Müller
2020). Additionally, the anisotropic emission of neutrinos has
been suggested to impart kicks on compact remnants
(Bisnovatyi-Kogan 1993; Fryer & Kusenko 2006; Tamborra
et al. 2014; Nagakura et al. 2019).
However, constraining the neutron stars’ natal kick-velocity

distribution from current observational data is not straightfor-
ward. Most pulsars, especially those with very high velocities,
have moved far away from their birthplaces, and their proper
motions have been modified by the Galactic gravitational
potential. Thus, the current velocity of a pulsar may differ
substantially from its velocity at birth. Knowing the exact
pulsar age and its current 3D spatial velocity, we are in
principle able to recover the initial conditions by integrating the
pulsar’s orbit back in time. However, in general we lack
information about the pulsar’s line-of-sight velocity, and
accurate knowledge about its age, since the characteristic age
estimated from the pulsar period and its derivative can differ
significantly from the true age (see, e.g., Kaspi et al. 2001;
Viganò et al. 2013). Furthermore, estimates of pulsar distances
have typically large associated errors due to uncertainties in the
underlying density models used to convert pulsar DM or NH

into distance estimates (Lorimer et al. 2006; He et al. 2013;
Deller et al. 2019).
Reconstruction of the three-dimensional initial position and

velocity distribution of pulsars, and comparison with the
observed Galactic neutron star population, is therefore a
complicated task that requires careful simulations as well as
detailed estimates of the observational biases of multiband
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surveys. Several studies have performed statistical and
population-synthesis analyses to recover the distributions of
important neutron star parameters from the observed popula-
tion (see, e.g., Arzoumanian et al. 2002; Brisken et al. 2003;
Hobbs et al. 2005; Faucher-Giguère & Kaspi 2006; Gullón
et al. 2014; Verbunt et al. 2017; Cieślar et al. 2020). While
these models are broadly able to explain the observational data,
high degrees of degeneracy between the different input
parameters make it difficult to exactly pin down the distribu-
tions that control the pulsars’ birth properties, such as their
natal kick velocities. Nonetheless, disentangling the birth
properties of the isolated neutron star population in our Galaxy
is crucial because it has important implications for several lines
of research, including formation mechanisms of these compact
stars, the evolution of massive stars, as well as extreme events
such as gamma-ray bursts, fast radio bursts, and peculiar types
of supernovae.

Constraining the birth properties of isolated neutron stars
from observational data is the main motivator for our work.
Instead of following earlier approaches that have employed
standard statistical techniques, we focus on characterizing
initial pulsar properties using machine-learning techniques,
which have seen increasing interest in the astronomy and
astrophysics communities in recent years. This paper, which
will be the first in a series, is dedicated to the technical aspects
of these efforts and aims to show that a machine-learning (ML)
framework can be used to estimate parameters with high
accuracy. For this feasibility study, we restrict ourselves to a
simplified approach, where selection effects and observational
biases are neglected and reduced physical models are sufficient.
In particular, we focus on the dynamical properties of the
pulsar population and explore the possibility of inferring the
parameters that control a given distribution of Galactic pulsar
kick velocity and scale height at birth (the two quantities that
largely control the spatial distribution of pulsars in the Milky
Way) through neural networks. For this purpose, we implement
a basic population-synthesis code in Python and simulate the
dynamical evolution of a synthetic population of isolated
neutron stars for a variety of different birth-position and natal-
kick distributions. These evolved mock populations are then
fed into a suitably structured ML pipeline with the aim of
recovering the underlying parameters controlling the distribu-
tions. We show that this procedure is successful at estimating
birth characteristics. Additionally, we link our framework to the
observed sample of pulsars with measured proper motion in a
phenomenological way and discuss implications for future
pulsar survey efforts, i.e., with the Square Kilometre Array.

Our paper is structured as follows. In Section 2 we describe the
methods used to simulate and evolve a mock neutron star
population in time. Section 3 contains a description of the ML
framework, including the generation of our data sets (Section 3.1),
the employed network architectures (Section 3.2), as well as
details of the training process (Section 3.3). In Section 4 we
present our experiments, which are discussed in detail and
connected with observational data in Section 5. Finally, we
provide a summary and outlook in Section 6.

2. Population Synthesis

A widely used approach to investigate the properties of the
observed neutron star population is through population synthesis
(see, e.g., Narayan & Ostriker 1990; Faucher-Giguère & Kaspi
2006; Gonthier et al. 2007; Kiel et al. 2008; Kiel & Hurley 2009;

Osłowski et al. 2011; Levin et al. 2013; Bates et al. 2014; Gullón
et al. 2014; Cieślar et al. 2020). These frameworks aim to simulate
the evolution of a population of neutron stars from birth until
today. The resulting mock population is then compared with the
real observed population in order to constrain and validate the
physical model assumptions that entered the simulation. In
particular, the population-synthesis approach relies on assump-
tions about the distributions of the birth properties of the mock
neutron stars, and typically takes advantage of Monte Carlo
methods to construct the initial parameters of each simulated star.
Starting from these initial conditions the mock population is then
evolved over time according to some evolutionary prescriptions,
and eventually contrasted with real data. For the development of
our population-synthesis framework we largely follow Faucher-
Giguère & Kaspi (2006), Gullón et al. (2014), and Cieślar et al.
(2020). The necessary ingredients are briefly summarized in the
following.

2.1. Age

The age tage of each neutron star is randomly drawn from a
uniform probability distribution between 1 and 107 yr. By
choosing a uniform distribution, we assume that the birth rate
of neutron stars is constant in the chosen time range. For all
simulations of the synthetic neutron star population we choose
an average birth rate of one neutron star per century,
compatible with the core-collapse supernova rate in the Galaxy
(Rozwadowska et al. 2021). This yields a total of 105 simulated
neutron stars for each synthetic population, whose evolution we
can compute within reasonable timescales.

2.2. Birth Position

To define the initial positions we use both a Cartesian
reference frame (x, y, z) and a cylindrical reference frame
(r, f, z), whose origins are located at the center of the Galaxy.
Here r represents the distance in kiloparsecs from the Galactic
center, f is the azimuthal angle in radians, and z is the distance
from the Galactic plane. The two coordinate systems are related
by the transformation

f
f

=
=
=

x r
y r
z z

cos ,
sin ,

.
1

⎧
⎨
⎩

( )

We assume that the Sun is located at the coordinates x= 0 kpc,
y= Re, z= ze, where Re= 8.3 kpc and ze= 0.02 kpc (see
Pichardo et al. 2012, and references therein). We calculate the
initial position at birth of each neutron star in both cylindrical
and Cartesian galactocentric reference frames. To do so, we
execute the following steps.

(i) First, we draw a random distance r from the Galactic
center for each neutron star ranging between 10−4 and
20 kpc according to a pulsar radial density distribution
P(r). In particular, we follow the Milky Way’s pulsar
surface density ρ(r) defined by Equation (15) in Yusifov
& Küçük (2004) to determine the probability density
function for the radial distance:

p r=P r r r2 , 2( ) ( ) ( )
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where A= 37.6 kpc−2, a= 1.64, b= 4.0, R1= 0.55 kpc,
and ¢R= 8.5 kpc is the Sun’s distance from the Galactic
center. Although different from the Re value assumed
above, we keep ¢R= 8.5 kpc in this parameterization in
order to be consistent with the results of Yusifov &
Küçük (2004). We note that this is the distribution for
evolved pulsars rather than that of their progenitors, and
Yusifov & Küçük (2004) find small discrepancies
between this distribution and that of OB stars. However,
Faucher-Giguère & Kaspi (2006) show that the evolved
pulsar population is well described by birth positions
drawn from Equation (3) and argue that differences fall
within the current uncertainties of pulsar distance
measurements. Given the lack of a more realistic
description, we therefore adopt the above prescription.

(ii) Neutron stars are born mainly within the Galactic spiral
arms, as these regions are rich in massive OB stars (Chen
et al. 2019). We implement a model for the Galactic spiral
structure that includes four arms with a logarithmic shape
function that gives the azimuthal coordinate f as a
function of the distance from the Galactic center:

f f= +r k
r

r
ln . 4

0
0⎜ ⎟

⎛
⎝

⎞
⎠

( ) ( )

Our values of the model parameters, i.e., the winding
constant k, the inner radius r0, and the inner angle f0, are
reported in Table 1 and evaluated from Table 1 in Yao
et al. (2017) in order to match the same functional form as
defined in Equation (4). For our analysis, we follow
Faucher-Giguère & Kaspi (2006) and do not include the
Local arm, whose density is much smaller than that of the
four major arms (Cordes & Lazio 2002; Yao et al. 2017).
For each star we then randomly select one of the four spiral
arms with equal probability, and evaluate the angular
coordinate f for its given r according to Equation (4).

The spiral pattern of the Galaxy is not static and as a
first approximation can be considered as a rigid structure
that rotates with an approximated period T= 250Myr
(Vallée 2017; Skowron et al. 2019). Knowing the age of an
object and assuming a rotational angular velocity of
Ω= 2π/T for the spiral structure, we can derive the
angular position at birth of each neutron star. Note that the
Galaxy rotates in the clockwise direction, i.e., toward
decreasing f angles.

After obtaining the corresponding angular coordinate
for each birth position of a neutron star, we add noise to both
coordinates r and f to smear out the distribution and avoid
artificial features near the Galactic center. For this purpose
we add a correction f f= - -rexp 0.35 kpccorr rand

1( ) to
the f coordinate, where frand is randomly drawn from a
uniform distribution in the interval p0, 2[ ), and to the r
coordinate we add a correction rcorr randomly drawn from a
normal distribution centered at 0 with standard deviation
σ= 0.07r. Although this prescription was introduced by
Faucher-Giguère & Kaspi (2006) (see their Section 3.2.1) in
a somewhat arbitrary manner, the resulting stellar distribu-
tion broadly agrees with that observed for very young high-
mass stars as shown in Reid et al. (2019).

Then the birth position in polar coordinates of each
neutron star is given by (r+ rcorr, f(r)+Ωtage+ fcorr) with
units [kpc, rad].

(iii) To determine the height z in kiloparsecs from the Galactic
plane of each neutron star, we adopt an exponential disk
model as given by Wainscoat et al. (1992). It is shaped by
the characteristic scale-height parameter hc:

= -P z
h

z

h

1
exp . 5

c c

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ∣ ∣ ( )

For our ML experiments, we will vary the scale height
in the range [0.02, 2] kpc to simulate neutron star
populations with different spreads in Galactic height.
This range encompasses the value hc= 0.18 kpc, which
was adopted by Gullón et al. (2014) to match radio pulsar
observations and is also compatible with the population
of young massive stars in the Galactic disk (Li et al.
2019). We will consider hc= 0.18 kpc below, whenever a
fiducial scale height is required for our synthetic pulsar
population. The coordinate z of each neutron star is then
randomly drawn according to this height probability
distribution in the range from 10−4 to 5 kpc. We choose a
maximal distance of 5 kpc from the Galactic plane to
model a fixed Galactic volume for all of our simulation
runs, while also ensuring sufficient resolution for the
objects in the Galactic disk for those models with small
scale heights. Subsequently, for each star we randomly
choose whether z is positive or negative, determining in
this way a position above or below the Galactic plane.

2.3. Initial Velocity

We assume that the initial velocity of the neutron stars in the
Galaxy is given by two contributions: the progenitor velocity in
the Galactic gravitational potential and a kick speed imparted to
the neutron stars as a result of the supernova explosion. We
consider a circular orbital speed of the progenitor given by the
following relation:

=
¶F

¶
v r

r z

r

,
, 6orb

MW( ) ( )

where ΦMW is the Milky Way gravitational potential discussed
below. We assume that each neutron star has an initial kick
velocity vk, whose 3D magnitude vk is randomly drawn from a

Table 1
Parameters of the Milky Way Spiral Arm Structure: Winding Constant k, Inner

Radius r0, and Inner Angle f0

Arm Number Name k r0 f0
(rad) (kpc) (rad)

1 Norma 4.95 3.35 0.77
2 Carina–Sagittarius 5.46 3.56 3.82
3 Perseus 5.77 3.71 2.09
4 Crux–Scutum 5.37 3.67 5.76

Note. Adapted from Table 1 in Yao et al. (2017); see Section 2.2 for more
details.

3

The Astrophysical Journal, 916:100 (20pp), 2021 August 1 Ronchi et al.



Maxwell distribution, shaped by the dispersion parameter σk:

p s s
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For our ML purposes, we will vary σk in the range [1, 700] km s−1

and randomly draw 3D velocity magnitudes from the resulting
distribution in the range [0, 2500] km s−1. This spread allows us to
easily accommodate the fastest observed neutron stars, whose
velocities have been estimated to surpass 1000 km s−1 (see for
example Chatterjee et al. 2005; Hui & Becker 2006; Pavan et al.
2014). Based on pulsar timing measurements, Hobbs et al. (2005)
have suggested that σk= 265 km s−1 provides a viable explana-
tion for the proper motions of observed neutron stars. We will use
this as a fiducial value below. For a given kick velocity magnitude
we then associate a random direction to this velocity in order to
evaluate the three components (vk, r, vk, f, vk, z) in galactocentric
cylindrical coordinates. Therefore, the three components of the
total initial velocity of each neutron star in the galactocentric
reference frame are computed as (vk, r, vorb+ vk, f, vk, z).

2.4. Galactic Potential

As is typical for spiral galaxies like the Milky Way, we
assume an axisymmetric Galactic potential ΦMW (Carlberg &
Innanen 1987; Bovy 2015) that does not incorporate the impact
of the spiral arms themselves. We specifically consider a four-
component Galactic potential model consisting of a nucleus
(Φn), a bulge (Φb), a disk (Φd), and a halo (Φh) as discussed in
Marchetti et al. (2019):

F = F + F + F + F . 8MW n b d h ( )

The nucleus and the bulge are described by a Hernquist
potential (Hernquist 1990):

F = -
+

GM

r r
, 9n

n

n
( )

F = -
+

GM

r r
. 10b

b

b
( )

The disk has a Miyamoto–Nagai disk potential (Miyamoto &
Nagai 1975):

F = -
+

GM

K r
, 11d
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2 2
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where = + +K a z bd
2

d
2 is the shape parameter with ad as

the scale length and bd the scale height of the disk. The halo has
a Navarro–Frenk–White potential (Navarro et al. 1996):
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The parameters of this model are reported in Table 2 and were
derived by Bovy (2015) through a fit of the mass profile of the
Milky Way. We assume that these contributions to the Galactic
potential are stationary in time, i.e., they do not evolve over the
time span we consider for the dynamical evolution.

2.5. Dynamical Evolution

Given the initial conditions defined above, i.e., the initial
position, initial velocity, and the Galactic gravitational
potential, we can solve the equations of motion to determine
the neutron stars’ dynamical evolution. The system of
dynamical equations that requires solving to determine the
orbits of the neutron stars in the Galactic potential is given by
the Newtonian equations of motion: r ̈=−∇ΦMW. In cylind-
rical galactocentric coordinates the three components of this
vector equation take the form

f

f f
f
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For each neutron star we numerically integrate the above
equations in time from t= 0 yr to t= tage using a discrete time
step. We use the Python package scipy.integrate.
odeint, and to speed up the computational time we also
employ the module jit (“just in time”) from the Numba
package (https://numba.pydata.org/, Lam et al. 2015).4 To
asses the performance of our integration method we check that
both the total energy (i.e., the potential plus kinetic energy) and
the z-component of the total angular momentum of all the stars
in our simulation are conserved. For simplicity we assume that
all pulsars have the same mass and we find that both quantities
are conserved with a relative error of 10−7. The output of the
dynamical evolution consists of the position and velocity of
each neutron star computed in both galactocentric (GC) and
equatorial International Celestial Reference System (ICRS)
frames. To transform between different coordinate systems we
employed the method coordinates from the Python library
Astropy (Astropy Collaboration et al. 2013, 2018), where we
adopted a galactocentric distance of Re= 8.3 kpc and Galactic
height of ze= 0.02 kpc for the Sun.

3. Machine-learning Setup

In the past decade, the accumulation of extensive and heavy
data sets has been almost ubiquitous in astronomy and

Table 2
Parameters of the Milky Way Gravitational Potential Taken from Table 1 in

Marchetti et al. (2019); See Also Bovy (2015)

Component Parameters

Nucleus (n) Mn = 1.71 × 109 Me

rn = 0.07 kpc
Bulge (b) Mb = 5.0 × 109 Me

rb = 1.0 kpc
Disk (d) Md = 6.8 × 1010 Me

ad = 3.00 kpc
bd = 0.28 kpc

Halo (h) Mh = 5.4 × 1011 Me

rh = 15.62 kpc

4 Numba translates Python functions into optimized machine code at run-
time, which allows us to achieve a speed-up by about a factor of 6.
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astrophysics. In order to take full advantage of these data and
perform data-driven science that complements ongoing theor-
etical modeling efforts, new techniques and analysis pipelines
that can handle these large amounts of data (and do so in an
automated way) are required. ML has played an important role
in developing such new algorithms (Ball & Brunner 2010;
Allen et al. 2019; Baron 2019; Fluke & Jacobs 2020). For
science related to compact objects, ML algorithms have for
example been developed to classify new pulsar candidates
(Bethapudi & Desai 2018; Lin et al. 2020; Balakrishnan et al.
2021) as well as transient radio events such as fast radio bursts
(Agarwal et al. 2020). Other approaches have aimed at
forecasting and analyzing gravitational-wave signals in real
time (Cabero et al. 2020; Gerosa et al. 2020; Skliris et al. 2020;
Wei & Huerta 2020), interpreting gravitational-wave events in
light of population synthesis (Wong & Gerosa 2019), or
reconstructing the equation of state of a neutron star from
observed quantities (Morawski & Bejger 2020).

For our analysis, we will focus on artificial neural networks
(ANNs). ANNs are algorithms inspired by the structure of
biological brains that can be thought of as nets of inter-
connected neurons that exchange information from one to
another. When the network receives an input, it is able to
process it to produce an output, like a biological brain responds
to external stimulation. In ANNs, neurons are usually
organized in a stack of layers. Each neuron in a layer receives
input signals (typically real numbers) from the neurons in the
previous layer and produces an output signal by applying a
nonlinear activation function to a linear combination of the
input signals according to certain weights and a bias. The
output is then passed to the neurons in the following layer, and
so on until the final layer is reached and the output is generated.
In our particular case, we will focus on supervised learning,
where training the neural network consists of making it produce
a specific target output when a particular input is passed
through it. This is achieved by (i) labeling the input samples in
the training data set with a label indicating the property that the
network has to learn (the so-called ground truth) and (ii)
iteratively adjusting the values of weights and biases, also
called network parameters, in order to minimize a specific loss
function which measures the distance between the network
output prediction and the target ground truth.

Among their numerous applications, ANNs have been
employed in regression problems where the network is trained
to infer the values of continuous variables for the given input
data. This is the kind of problem we are after since we want our
network to infer certain parameter values given the evolved
neutron star population. In the remainder of this section, we
first discuss the simulation data we create for our ML
experiments, then focus on the specific network architecture
employed, and finally describe the details of our training
process.

3.1. Data Set Creation and Processing

The goal of our ML approach is to predict the parameters
that control the dynamical properties of an evolved neutron star
population. In particular, we focus on predicting the kick-
velocity parameter σk and the scale-height parameter hc, which
predominantly affect the distribution of pulsars in the Milky
Way. To extract these from an evolved population, and follow
a supervised learning approach, we first need to train a neural
network on a series of simulated populations (created by

exploring the ranges for σk and hc). Following the prescription
described in Section 2, we perform the following simula-
tion runs:

1. We generate 10 data sets with an increasing number of
samples (specifically 4, 8, 16, 32, 64, 128, 256, 512,
1024, and 20,000 simulated populations) by uniformly
varying the parameter σk of the kick-velocity distribution
in the range [1, 700] km s−1.5 We also generate a test data
set with 1000 samples, each one simulated with σk
randomly drawn from a uniform distribution in the same
range of values. For these simulations, we keep the
characteristic scale of the z-distribution fixed to its
fiducial value hc= 0.18 kpc.

2. We fix the kick-velocity parameter to its fiducial value
σk= 265 km s−1 and generate a data set of 20,000
samples of simulated populations by uniformly varying
the scale-height parameter hc in the range [0.02, 2] kpc.
We also generate a test data set with 1000 samples, each
one simulated with hc randomly drawn from a uniform
distribution in the same range of values.

3. We generate six data sets, where we uniformly vary the
kick-velocity parameter σk in the range [1, 700] km s−1

as well as the characteristic scale of the z-distribution hc
in the range [0.02, 2] kpc. We choose the data set sizes
16= 4× 4, 64= 8× 8, 256= 16× 16, 1024= 32× 32,
4096= 64× 64, and 16,384= 128× 128 given by all the
combinations of σk and hc values. As an example, the 16
populations in the first set are obtained by combining
each of the four values of the σk parameter with all four
values of the hc parameter. We also generate a test data
set with 1000 samples, each one simulated with both σk
and hc randomly drawn from uniform distributions in
their respective parameter ranges specified above.

As addressed in detail in Section 4, the smaller simulation data
sets will be used to explore the network behavior. The largest
data sets containing 20,000 and 16,384 samples, respectively,
and the test data sets with 1000 samples will be used to perform
the final training experiments and assess the actual network
accuracy in generalization scenarios.
After the runs have been performed, we transform the output

of the simulation into a representation that can be interpreted by
an ML pipeline. Since ANNs require the use of structured data,
we represent the position and velocity output of the simulations
in the form of 2D binned density and velocity maps in both the
galactocentric and ICRS reference frames. The density maps
give information about the density of neutron stars in the
Galaxy by providing the number count of stars in each spatial
bin. On the other hand, velocity maps contain information
about the kinematic properties of the neutron stars by providing
the average magnitude of the stellar velocity components in
each spatial bin. In the galactocentric maps the Galaxy is
represented face-on and projected onto the xy-plane of the
Cartesian galactocentric frame, extending from −20 kpc to
20 kpc in x and y directions. The ICRS maps instead extend
from 0° to 360° in R.A. and from −90° to 90° in decl. To each
map we apply a smoothing Gaussian filter (with radius
4.0σ+ 0.5 and σ= 1) in order to add some blurring and avoid
sharp features. By doing so, we reduce noisy high-frequency

5 To generate our simulation data, we partially employ the package Hydra
(https://hydra.cc/, Yadan 2019), which allows us to easily sweep entire
parameter ranges.
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features and thus make the training more stable, presumably
resulting in better generalization capabilities. Therefore, for
each simulated population we have

1. one density map in the galactocentric frame;
2. three velocity maps, one for each component of the

velocity in cylindrical galactocentric coordinates vr, vf,
and vz in km s−1;

3. one density map in ICRS coordinates;
4. two proper-motion maps, one for each component of

the angular proper motion projected on the celestial
sphere μR.A. and μdecl. in mas yr−1.

This set of maps for each population is labeled with the
corresponding values of the parameters σk and hc used to
simulate that specific population.

We will test the ML performance on three different map
resolutions. Thus, we generate each of the above data sets with
resolutions 32× 32, 128× 128, and 512× 512 square bins.
Note that in the ICRS maps the range of the decl. coordinate axis
is half that of the R.A. coordinate axis. Hence, these maps have
half as many bins along the decl. coordinate and their resolutions
are 32× 16, 128× 64, and 512× 256 square bins. For brevity
hereafter we will refer to the three resolutions as 32, 128, and
512 resolutions for both galactocentric and ICRS maps. An
example of the maps with resolution 128 for a simulation with
fiducial values hc= 0.18 kpc and σk= 265 km s−1 is shown in
Figures 1 and 2.

Before loading the maps into our ML pipeline, they are
normalized so that each bin contains a continuous value
between 0 and 1. The same applies to the related labels so that
their values range continuously between 0 and 1. The aim of

normalization is to speed up the training process and make
convergence easier since all inputs will provide signals of
similar magnitude to the loss-function minimization. This is
useful especially for multiparameter and multichannel training,
that is when we train a network to predict more than one
parameter or use channels that have different absolute
magnitudes. In these cases, training without normalization
might lead to slower, worse, or even no convergence at all.
Apart from the blurring and normalization described above, we
do not apply any additional preprocessing steps to our
input data.

3.2. Network Architecture

For the implementation of our ML pipeline we use
PyTorch (Paszke et al. 2019), an optimized tensor library
for deep learning using GPUs and CPUs, which is written in
Python. The simplest neural network that can be used for this
task is a fully connected neural network also referred to as a
multilayer perceptron (MLP) with only two layers of neurons,
which are referred to as the input and output layers. As this is
the starting point to develop models with more complicated and
advanced architecture, we first test how this simple configura-
tion behaves. The number of neurons for the input layer is
equal to the total number of input features, i.e., C×W×H.
Here, C is the number of input channels (corresponding to the
total number of maps used), while W and H are the number of
bins in width and height, respectively. The number of neurons
in the output layer is equal to the number of regression
parameters that we would like to predict, i.e., one or two in our
experiments. For the activation function we use the rectified

Figure 1. Examples of 128 × 128 resolution maps in the galactocentric xy-plane extending from −20 to 20 kpc in both x and y directions and showing (in order from
left to right) the density of simulated neutron stars and the distribution of average values of the vr, vf, and vz velocity components for a population of neutron stars
simulated with hc = 0.18 kpc and σk = 265 km s−1. For visualization purposes, we represent the data using a color map to highlight the resulting structures; red
regions are characterized by a higher density of stars or higher average magnitude of the velocity components, while blue areas correspond to lower densities and
lower velocity magnitudes. We note that the spiral-arm pattern is still recognizable in the position–density map although high kick velocities tend to blur and disperse
the stellar density distribution. In the vr map, the interarm regions are visible as high-velocity areas, because during the dynamic evolution the space between the spiral
arms is progressively filled with high-velocity stars that have escaped from their birthplaces. The other two velocity components exhibit smoother behavior because
the spiral-arm structure is smeared out.

Figure 2. Examples of 128 × 64 resolution maps in the equatorial ICRS frame extending from 0° to 360° in R.A. and from −90° to 90° in decl. and showing (in order
from left to right) the density of simulated neutron stars and the distribution of average values for the μR.A. and μdecl. proper-motion components for a population of
neutron stars simulated with hc = 0.18 kpc and σk = 265 km s−1. For visualization purposes, we represent the data using a color map to highlight the resulting
structures; red regions are characterized by a higher density of stars or a higher average magnitude of the velocity components, while blue areas correspond to lower
densities and lower velocity magnitudes. Note that the Galactic silhouette is visible as a stream in the position map with an enhanced stellar density close to the
Galactic center. Due to low-number statistics, the regions outside the Galactic stream in the proper-motion maps are dominated by statistical fluctuations, i.e., the
corresponding high-velocity regions are attributed to a small number of high proper-motion stars that have escaped the disk. As a result, the disk itself is dominated by
stars with lower proper motion.

6

The Astrophysical Journal, 916:100 (20pp), 2021 August 1 Ronchi et al.



linear unit (ReLU) defined as ReLU(x)=max(0, x). To obtain
the output values, the ReLU activation function is applied to a
linear combination of the input features with weights and
a bias.

A more sophisticated model architecture is represented by a
convolutional neural network (CNN). CNNs are a particular
type of deep neural network that have proven to be very
successful in regression and classification tasks when applied to
structured and matrix-like 2D inputs (see Rawat & Wang 2017,
for a review). The basic structure of CNNs consists of
convolutional, pooling, and fully connected layers. Convolu-
tional layers are multichannel filters that slide along the 2D
input maps and are able to extract feature maps. The role of the
pooling layer is to downsample the output of a convolutional
layer. This inevitably causes a loss of information but in
general helps to improve the training efficiency by increasing
the size of the receptive field (i.e., the region of the input that
produces the feature for each neuron) and reducing the number
of trainable parameters. The fully connected layers collect all
the output features from the convolution layers into a 1D input
and return the final output prediction.

The detailed structure of the CNN we built for our case study
can be found in Table 3. A schematic representation of its
structure for a four-channel input with galactocentric maps is
also shown in Figure 3 as an example. It consists of the
following layers:

1. a 2D convolution layer with kernel size 3× 3, C input
channels, 32 output channels, stride 1, and no padding;

2. a 2D max pooling layer of size 2× 2 with stride 2 and no
padding;

3. a 2D convolution filter with kernel size 3× 3, 32 input
channels, 64 output channels, stride 1, and no padding;

4. a 2D max pooling layer of size 2× 2 with stride 2 and no
padding;

5. a fully connected linear layer with flattened input from
the output of the convolutional modules and 64 output
neurons;

6. a fully connected linear layer with 64 input neurons and
one or two output neurons (depending on the number of
parameters we would like to predict).

For the convolutional and pooling layers the stride parameter
regulates the amount of displacement in bins that the filter
moves over the map at each step. Padding adds one or more
bins at the border of the 2D maps, so that the filters can move
and cover the whole map without leaving any bins out. We use
a padding of 0 because the borders of the maps do not contain
relevant information.
The choice of this architecture was found by trial-and-error

experiments where we started from a very simple structure and
progressively increased the complexity, adding more and more
layers to acquire the desired accuracy in predicting the input
parameters.

3.3. Training Process

For the training of the network, we use the rms error (RMSE)
for both the loss function and validation metric, i.e., to compute
the distance between the network predictions and the ground
truths of the hc and σk parameters. In general, validation occurs
at the same time as training and consists of testing the network
over a data set different from the training set. This is needed to
assess the ability of the network to generalize what it is learning
to an unknown data set. The minimization of the loss
function occurs through gradient descent and backpropagation
(Kelley 1960; Ruder 2017), i.e., computation of the loss-
function gradients with respect to all network parameters
(weights and biases). These gradients taken with a negative
sign indicate the directions toward which the network
parameters should be updated so that the loss is reduced, and
hence the network predictions move closer to the true, expected
labels. In this regard, a crucial aspect to ensure the best
performance of a neural network is to properly initialize the
weights and biases. For this purpose we use the Kaiming
initialization method (He et al. 2015) in order to avoid
exploding or vanishing gradients during the training.
The training process itself is regulated by several hyperpara-

meters. The first one is the learning rate, which is a coefficient
for the weight updates. In general, a larger learning rate results
in updates of larger magnitude, which could in turn lead to
faster convergence, but might also reduce the stability of the
training process and thus increase the risk of overshooting the

Figure 3. Schematic representation of our CNN architecture for an input of galactocentric maps with resolution 128 × 128 and four channels (one density map plus
three velocity maps). A module formed by two blocks that each contain a convolution layer and max pooling layer is followed by a fully connected linear network
with one hidden layer. The final network output is either a single parameter or two parameters depending on the experiment specifics.

Table 3
CNN Architecture

Layer Input Output

Conv2d
+ ReLU

C × W × H 32 × (W − 2) × (H − 2)

MaxPool2d 32 × (W − 2) × (H − 2) ´ - ´ -32 1 1W H

2 2( ) ( )
Conv2d

+ ReLU
´ - ´ -32 1 1W H

2 2( ) ( ) ´ - ´ -64 3 3W H

2 2( ) ( )
MaxPool2d ´ - ´ -64 3 3W H

2 2( ) ( ) ´ - ´ -64 W H

4

3

2 4

3

2( ) ( )
Linear

+ ReLU
´ - ´ -64 W H

4

3

2 4

3

2( ) ( ) 64

Linear 64 1 (2)

Note. The total number of input and output features is reported. C is the
number of channels used, while W and H represent the numbers of bins (i.e.,
the resolution) in width and height of the density and velocity maps,
respectively. Input and output feature numbers have been rounded down to the
lower integer.

7

The Astrophysical Journal, 916:100 (20pp), 2021 August 1 Ronchi et al.



minima of the loss landscape. A second hyperparameter is the
batch size, which defines the number of samples that are
packed together and passed through the network before an
optimization step is performed. In general, for bigger training
data sets, a larger batch size helps to increase the efficiency and
stability of the training process, since the gradient-descent steps
are averaged over many samples and noise is reduced. For the
gradient-descent optimizer we use the adaptive moment
estimation (Adam) (Kingma & Ba 2014). As its name suggests,
Adam adds an adaptive momentum term to the gradient descent
to automatically modify the learning rate and accelerate
convergence. When using the Adam optimizer the chosen
initial value of the learning rate represents only an upper limit.

We fix the maximum number of learning epochs to 1024. At
every epoch the network performs a series of optimization steps
by going through the whole training data set once. Then epoch-
averaged loss and validation metric values are computed. If the
validation metric value has improved with respect to the
previous epoch the current status of the optimized network is
saved. We set an early stop of 128 epochs, so that if the
validation metric does not improve over this epoch span, the
training process automatically stops and the weights of the best
epoch are stored. This prevents the network from overfitting the
training samples, which would reduce its ability to generalize
over unknown data.

4. Experiments

As a first step we perform several tests to analyze which
configuration of the input feature maps provides the best
training experience and which proposed neural network
architecture, either the MLP or the CNN, behaves better.
Regarding the input configuration, we would like to understand
(i) what the best type of map is (galactocentric versus
equatorial ICRS); (ii) how many input channels are needed to
obtain good results (do density maps provide enough
information alone or does the addition of velocity maps
improve the results?); (iii) which resolution of the input maps
provides the best result. To do so, we first compare the
behavior of the MLP and the CNN when trained to predict a
single parameter. We explore different types of input signals by
varying the resolution of the density and velocity maps as well
as the number of input channels. Once we find the optimal
configuration for the input maps and the best performing
network, we proceed to test its generalization power. A similar
strategy is then followed for the two-parameter prediction.

4.1. Single-parameter Predictions

4.1.1. Comparison of Data Representation and Architecture

We focus on predicting the parameter σk of the Maxwell
kick-velocity function and employ the density and velocity
maps generated from simulation run S1. We keep aside the data
set with 20,000 samples because it will be used to assess the
generalization power of the best performing network (see
Section 4.1.2). Thus, we have training sets with an increasing
number of samples (from 4 to 1024) and increasing map
resolution (32, 128, 512). For each of these training sets we
compare the performance on four different kinds of input
information:

1. galactocentric position information: one density map in
galactocentric coordinates (one channel);

2. galactocentric position and velocity information: one
density map plus three velocity maps in galactocentric
coordinates (four channels);

3. ICRS position information: one density map in equatorial
ICRS coordinates (one channel);

4. ICRS position and velocity information: one density map
plus two proper-motion maps in equatorial ICRS
coordinates (three channels).

We fix the network architectures and the training setup as
described in Section 3.2 and Section 3.3. For these initial
experiments we do not incorporate validation but only focus on
the training results for different types of data sets, because we
are not yet interested in evaluating the generalization power of
the networks. To assess the convergence of the training runs we
set a threshold for the σk RMSE training loss to 10 km s−1. If
the final RMSE value is higher than this threshold the training
is repeated up to a maximum of eight times. If convergence is
not reached after eight trials we take the trained model with the
lowest final RMSE. For each training experiment we also
monitor the computational time needed to perform a single
optimization step on a single data batch (see Appendix B for
more details).
Initially we perform a search for the starting value of the

learning rate that provides the best results. In particular for the
MLP we find that, to ensure a decaying RMSE value during
training, the initial learning rate needs to be decreased as the
input-map resolution increases. Therefore, after several tests
we set the initial learning rate to 10−4, 10−5, and 10−6,
respectively, for the 32, 128, and 512 resolution maps. The
CNN, in contrast, is more flexible and stable and all three initial
learning rates are suitable for every resolution. In this case we
set it to 10−4 to obtain training convergence in the smallest
number of epochs.
Next, we tune the batch size to make the learning process

more stable and efficient as the number of training samples
increases. In general, we keep the batch size to 1 for the data set
sizes 4, 8, 16, and 32 and progressively increase it to 4, 8, 16,
32, and 64 as the data set size increases to 64, 128, 256, 512,
and 1024, respectively. Only when testing the performance of
the MLP on the T2 input configuration do we need to further
fine-tune the batch size in order to reach acceptable values of
the RMSE. In all other cases the batch sizes mentioned above
work well.
The results of our experiments using the MLP and the CNN

on the training data sets from S1 with configuration T1, T2, T3,
and T4 are shown in Figures 4 and 5, respectively (see
Appendix B for the timing results), highlighting the best
converged RMSE values as a function of the training data set
size and the resolution.
First of all, we note that for both model architectures, ICRS

maps allow us to obtain slightly better results in terms of the
best RMSE values. An explanation for this could be that only
the ICRS maps contain 3D information on the Galaxy, i.e., they
encode the stellar height distribution with respect to the
Galactic disk, which correlates with the kick-velocity magni-
tude. In fact the higher the kick velocity of newborn neutron
stars the more spread out their distribution in Galactic height z
at the end of the dynamical evolution. On the other hand
galactocentric maps show the Galaxy represented face-on, and
the information on the stars’ height z with respect to the
Galactic plane is hidden. Therefore, it is likely easier for the
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networks to distinguish populations with different σk by
processing the ICRS maps.

We also note that the addition of the velocity or proper-
motion information has opposite effects on the two model
architectures. In particular, on one side it worsens the MLP
performance, as the best RMSE almost doubles. On the other
side, it helps the CNN in reducing the overall RMSE. We
interpret this as an indication that, as the complexity of the
input data increases, a deeper (with more layers) and more
sophisticated model architecture like the CNN is more suitable
to process the input data and extract meaningful features to
perform the regression task. However, the improvement is not
dramatic, which could suggest that the density maps already
provide enough information to distinguish, with sufficient
precision, populations simulated with different σk values.

Concerning the resolution, we observe that higher resolu-
tions allow us to reach slightly lower RMSE values with both
the MLP and the CNN but at the expense of longer
computation time (see Figures 13 and 14 in Appendix B).
We therefore consider the small differences between the best
RMSE values obtained with 128 and 512 resolutions not
sufficient to justify the choice of the higher resolution. Hence,
the use of the 128 resolution appears to be a good compromise
to ensure good accuracy and reasonably fast training.

In light of these results for the single-parameter estimation, we
conclude that the optimal representation to be used for training is
composed of the ICRS density plus proper-motion maps with
128 resolution. Moreover, as the CNN obtains the best results
and appears more stable and flexible when compared to the
simple MLP (especially for the multichannel input features), we

employ our CNN architecture in the following experiments,
which should also be less prone to overfitting.

4.1.2. Generalization Results

As the next step we separately train the CNN to predict the
σk and hc parameters by using the two big data sets with 20,000
simulations each (see S1 and S2). As input features we use the
three-channel ICRS representation with one density map and
two proper-motion maps with 128 resolution that ensure the
best results as suggested by our earlier experiments. We
randomly split both data sets into training and validation
subsets with relative percentages of 80%/20%, respectively.
Therefore, training is performed over 16,000 simulations,
randomly sampled from the entire data sets, while validation is
performed over the remaining 4000 simulations. We adopt an
initial learning rate of 10−4, a batch size of 64, a total of 1024
learning epochs, and an early stop at 128 epochs to avoid
overfitting. The evolution of the training and validation losses
is shown in the left panels of Figure 6.
The predictions of the trained network on the validation set

for σk and hc are summarized in Figure 6 and Table 4. In the
first case, the network is able to predict the value of the kick-
velocity parameter σk for the simulations in the validation data
set with an RMSE uncertainty of 4.4 km s−1, computed over
the whole range [1, 700] km s−1. This is indicated by the red
dashed lines in the residuals plot (see top central panel of
Figure 6), which delimit the 68% uncertainty region. In the
second case, the network is able to predict the value of the
scale-height parameter hc for the simulations in the validation
data set with an RMSE uncertainty of 0.017 kpc, computed

Figure 4. MLP best training RMSE values for the training process on the single parameter σk of the Maxwell kick-velocity distribution, as a function of the training
data set size and the resolution (red, blue, and orange curves for 32, 128, and 512 respectively) using the four different input configurations T1 (GC position), T2 (GC
position + velocity), T3 (ICRS position), and T4 (ICRS position + velocity).

Figure 5. CNN best training RMSE values for the training process on the single parameter σk of the Maxwell kick-velocity distribution, as a function of the training
data set size and the resolution (red, blue, and orange curves for 32, 128, and 512 respectively) using the four different input configurations T1 (GC position), T2 (GC
position + velocity), T3 (ICRS position), and T4 (ICRS position + velocity).
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over the whole range [0.02, 2] kpc (see bottom central panel of
Figure 6). Note that in both experiments, the residuals spread
out as the target values increase. We visualize this by
computing a running RMSE with increasing target values. As
is shown by the orange regions in the residuals plots, the
running RMSE increases from 1.4 to 7.1 km s−1 for σk and
from 0.013 to 0.028 kpc for hc. However, the average residuals
are consistent with 0 over the entire ranges of target value as
marked by the blue line in the residual plots, showing no
anomalous trends in the predicted values.

In the right panels of Figure 6 we also show the relative error
to highlight the precision with which the network is able to
predict the σk and hc parameters for a given target value. We
observe that the precision of the predictions improves with
increasing σk and hc and eventually stabilizes to a relative error

of around 0.01. This is highlighted by the blue lines, which
show the trend of the mean relative error (MRE) as a function
of the target parameters. The red dashed lines correspond
instead to the MRE computed on the whole parameter ranges
and are equal to 0.014 and 0.024 for σk and hc, respectively.
The fact that the precision of the predictions decreases at the
lower end of the target ranges suggests that (for our chosen
network setup) the input maps become harder to distinguish as
the neutron stars’ initial kick velocities and their Galactic birth
heights decrease in magnitude.
We then evaluate the generalization capability of the two

trained networks on the corresponding test sets with 1000
samples each. We find RMSEs of 4.8 km s−1 and 0.019 kpc
and MREs of 0.018 and 0.029 for σk and hc, respectively. To
further assess the confidence intervals of both estimators, we
evaluate the RMSE and the MRE of the parameter values
predicted by the two networks over 1000 bootstrapped sets of
the related test sets. We find that the RMSE variation is around
3%, while the MRE variation is around 11% for both predicted
parameters. These results indicate that the trained networks are
able to generalize well over unseen data sets.

4.2. Two-parameter Predictions

4.2.1. Data Representation Comparison

To see how the CNN behaves when two parameters, i.e., the
kick-velocity parameter σk and the characteristic scale height

Figure 6. Results of the CNN single-parameter prediction for the kick-velocity parameter σk and scale height hc for the corresponding validation sets. Top (bottom)
left panel: evolution of the RMSE training (red) and validation (blue) losses as a function of the training/validation epoch for the σk (hc) parameters. Top (bottom)
central panel: residuals of the prediction as a function of the target σk (hc) value; the subscripts P and T refer to the predicted and target values, respectively. The red
dashed lines delimit the 68% uncertainty region corresponding to RMSE = 4.4 km s−1 (0.017 kpc) computed over the whole range [1, 700] km s−1 ([0.02, 2] kpc).
The orange region delimits the 68% uncertainty region computed as a running RMSE, for which we have divided the full σk (hc) range into 50 bins of equal size. The
blue line shows the trend of the average residuals, which are well centered around the value 0. Top (bottom) right panel: relative error of the prediction as a function of
the target σk (hc) value. The red dashed line corresponds to MRE = 0.014 (0.024) computed over the whole range [1, 700] km s−1 ([0.02, 2] kpc). The blue line shows
the trend of the running MRE computed over 50 bins of equal size. into which we have divided the full σk (hc) range.

Table 4
Summary of the CNN Generalization Results on the Validation and Test (in
Parenthesis) Data Sets for the Single-parameter and Two-parameter Cases

1-par. Generalization 2-par. Generalization

Parameter RMSE MRE RMSE MRE

σk 4.4 (4.8) km s−1 0.014
(0.018)

8.8 (9.1) km s−1 0.039
(0.033)

hc 0.017
(0.019) kpc

0.024
(0.029)

0.038
(0.041) kpc

0.061
(0.057)
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hc, are inferred simultaneously, we use the data set of maps
generated from simulation run S3 (see Section 3.1). In this
case, we have training sets with an increasing number of
samples, 16= 4 ⨯ 4, 64= 8 ⨯ 8, 256= 16 ⨯ 16, 1024= 32 ⨯
32, and 4096= 64 ⨯ 64. We leave aside the largest data set
with 16,384= 128 ⨯ 128 simulations for our final general-
ization experiment. Given the results of the single-parameter
training experiments, we choose the 128 resolution maps and
compare the CNNʼs performance on the four kinds of input
information T1, T2, T3, and T4 as we did for the single-
parameter case (see Section 4.1.1). We fix the CNN
architecture and the training setup as described in Section 3.2
and Section 3.3, respectively. As for the single-parameter
comparison, we only focus on the training behavior for this
initial comparison. We keep track of the RMSE training losses
for both parameters separately, but training proceeds by
minimizing the total loss computed on both parameters. We
set the convergence threshold for σk to 10 km s−1 and that for
hc to 0.5 kpc; if convergence is not reached for both parameters
after eight training trials we quote the experiment with the best
performance. As before, we also keep track of the computa-
tional time for a single optimization step (see Appendix B). The
initial learning rate is set to 10−4, while the batch size is
changed according to the data set size. In particular, we use
batch sizes of 1, 4, 16, 64, and 128 for the data set sizes 16, 64,
256, 1024, and 4096, respectively.

The results of our experiments using the CNN for the two-
parameter prediction on the training data sets from S3, with
configurations T1, T2, T3, and T4, are summarized in Figure 7
(see Appendix B for the timing results). As in the single-
parameter case, we find that the best results are provided by
the ICRS maps, which allow us to reach the lowest training
RMSE losses for both parameters. In particular, for the ICRS
three-channel input, the CNN is able to reach a training RMSE
loss 5 km s−1 for the σk parameter, comparable with the
single-parameter case. For hc, the CNN reaches a training
RMSE 0.1 kpc. However, we note a drop in accuracy for the
σk parameter when only the ICRS density maps are used. As
already mentioned in Section 4.1.1, information on the stars’ z-
coordinates is encoded in the ICRS maps. As we simulta-
neously vary the initial kick velocities and the Galactic heights
of the pulsars’ birthplaces, the degeneracy between the effects
of these two parameters becomes relevant. This makes a
distinction of the impact of one parameter over the other more
difficult for the network when only ICRS density maps are
provided. Adding two extra channels that contain information

about the stars’ proper motions thus helps to improve the
accuracy on the estimation of kick-velocity parameter. The
results of these initial explorations are promising and indicate
that our simple CNN architecture has good predictive power for
both parameters, if provided with all three input channels in the
ICRS representation.

4.2.2. Generalization Results

As for the single-parameter analysis, we assess the actual
performance of the network when simultaneously predicting σk
and hc by training the CNN on the biggest data set with
16,384= 128× 128 simulations (see run S3). As discussed
above, we use the three-channel ICRS representation with one
density map and two proper-motion maps with 128 resolution
as input features. We split the entire data set into training and
validation subsets with relative percentages of 80%/20%,
respectively, leading to 13,107 samples in the training data set
and 3277 samples in the validation one, and use the same
configuration as in Section 4.1.2. The evolution of the
individual training and validation losses is shown in the left
panels of Figure 8.
The results for the trained network’s prediction on the

validation set for both parameters are shown in Figure 8 and
summarized in Table 4. The network is able to predict σk and
hc with average RMSE uncertainties of 8.8 km s−1 and
0.038 kpc, respectively, which are approximately double those
of the single-parameter experiment. These RMSE values are
computed over the full target ranges and represented by the red
dashed lines in the residuals plots (see central panels of
Figure 8). As in the single-parameter case, we observe that the
RMSE uncertainties increase with increasing target parameters,
as indicated by the orange regions in the residuals plots. The
relative errors represented in the right panels of Figure 8 show
the same decreasing trend with the target value as for the
single-parameter predictions, albeit with larger relative errors.
When computing the MRE over the whole range of the two
target parameters, we obtain 0.039 and 0.061 for σk and hc,
respectively. These values are highlighted by the red dashed
lines in the right panels of Figure 8.
We then evaluate the generalization capability of the trained

network on the test set with 1000 samples. We find RMSEs of
9.1 km s−1 and 0.041 kpc and MREs of 0.041 and 0.057 for σk
and hc, respectively. As before, we evaluate the confidence
intervals of the two estimators over 1000 bootstrapped sets of
the test set and find that the RMSE and MRE variations are
around 3% and 8%, respectively, for both predicted parameters.
This indicates that the trained network is also stable in the two-
parameter prediction and guarantees a good level of general-
ization power.
However, we find that the CNN trained to simultaneously

predict σk and hc is not able to reach the same level of accuracy
as in the experiments where a single parameter was predicted at
a time. This could be due to one of three distinct causes: (i) our
neural network is not sophisticated enough to discern between
the effects of the two parameters on the simulation outcomes
represented in the ICRS maps, (ii) our choice of ICRS maps as
input does not provide sufficient information for the network to
distinguish between the two parameters, or (iii) this is a
physical (real) degeneracy, and there is a limit to what we can
measure. To investigate this issue we train the CNN to predict
only the parameter hc using the same two-parameter data set
used above where both σk and hc are varied. After predicting on

Figure 7. CNN best training RMSE values for the training process on the two
parameters σk of the Maxwell kick-velocity distribution (left panel) and
characteristic scale height hc (right panel) as a function of the training data set
size for the four different input configurations T1 (GC position), T2 (GC
position + velocity), T3 (ICRS position), and T4 (ICRS position + velocity).
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the validation data set we obtain a RMSE accuracy of
0.038 kpc, which is equal to the result obtained above for the
two-parameter prediction. This suggests that the network
complexity is suitable to predict either one parameter or two
simultaneously. Limitations in performance are therefore due to
either an inadequate input representation or a physical
degeneracy that imposes a natural accuracy threshold. While
we cannot distinguish these two with our current simulation
and ML pipeline, we can illustrate the underlying problem in
the following way: Figure 9 shows the residuals of the scale-
height parameter hc versus the residuals of the kick-velocity
parameter σk for the predictions over the validation set. The
overall negative slope indicates that the network tends to
overpredict hc in those simulations where σk is underestimated
and vice versa; i.e., large (small) hc values have the same
overall effect on the phenomenology of the pulsar population
as large (small) σk values, and the network struggles to
distinguish these cases. This highlights the degeneracy between
the two parameters already discussed above, which might be
broken if the data itself were represented in a different way or
additional input information about each neutron star (beyond
position and velocity) were provided.

5. Discussion

In this paper we have studied the potential of an artificial
neural network to estimate with high accuracy the dynamical
characteristics of a mock population of isolated pulsars.

Implementing a simplified population-synthesis framework
we focused on the pulsar natal kick-velocity distribution and
the distribution of birth distances from the Galactic plane.
Taking into account the Galaxy’s gravitational potential and
evolving the pulsar motions in time, we generate a series of
simulations that are used to train and validate a suitably
structured CNN.

Figure 8. Results of the CNN two-parameter prediction for the kick-velocity parameter σk and scale height hc for the corresponding validation sets. Top (bottom) left
panel: evolution of the RMSE training (red) and validation (blue) losses as a function of the training/validation epoch for the σk (hc) parameters. Top (bottom) central
panel: residuals of the prediction as a function of the target σk (hc) value; the subscripts P and T refer to the predicted and target values, respectively. The red dashed
lines delimit the 68% uncertainty region corresponding to RMSE = 8.8 km s−1 (0.038 kpc) computed over the whole range [1, 700] km s−1 ([0.02, 2] kpc). The
orange region delimits the 68% uncertainty region computed as a running RMSE for which we have divided the full σk (hc) range into 50 bins of equal size. The blue
line shows the trend of the average residuals, which are well centered around the value 0. Top (bottom) right panel: relative error of the prediction as a function of the
target σk (hc) value. The red dashed line corresponds to MRE = 0.039 (0.061) computed over the whole range [1, 700] km s−1 ([0.02, 2] kpc). The blue line shows the
trend of the running MRE computed over 50 bins of equal size, into which we have divided the full σk (hc) range.

Figure 9. Scatter plot of residuals of the predicted scale-height parameter hc vs.
residuals of the predicted kick-velocity parameter σk for the validation data set
of our two-parameter generalization experiment. An anticorrelation can be
observed.
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The generalized results presented in the previous sections are
obtained in a very idealized and simplified scenario, implying
that caution is required when the uncertainties for the
prediction of the kick-velocity dispersion σk and birth scale
height hc are taken at face value and conclusions for the real
pulsar population are drawn. In particular, our simulations
assume that the distribution in Galactic height of neutron star
progenitors is represented by the exponential thin-disk model,
and that the kick-velocity magnitudes follow a Maxwellian
distribution. While the choice of an exponentially thin disk is
commonly adopted (Wainscoat et al. 1992; Polido et al. 2013;
Li et al. 2019) and can be justified theoretically as the outcome
of a self-gravitating isothermal disk (Spitzer 1942), the choice
of a Maxwellian model for the kick-velocity distribution is
difficult to motivate from a theoretical standpoint. The
Maxwellian model has found empirical support because it
has been shown to describe the proper motions of observed
pulsars well (Hobbs et al. 2005). It is for this reason, and its
rather simple mathematical form, that the Maxwell kick-
velocity distribution is often adopted in population-synthesis
studies of compact stars (Sartore et al. 2010; Cieślar et al.
2020). However, the real functional form of the kick-velocity
distribution is still unknown and debated. Several authors have
studied the kick-velocity problem and concluded that other
models explain observed proper motions of neutron stars
equally well. For example, by using maximum-likelihood
methods Arzoumanian et al. (2002) found that a bimodal
Gaussian distribution with a low-velocity component and a
high-velocity one is the preferred model to describe the
observed proper motion of a sample of 79 radio pulsars.
Faucher-Giguère & Kaspi (2006) studied the variation of the
velocity component with Galactic longitude for a sample of 34
pulsars observed with interferometric techniques (Brisken et al.
2002, 2003). After testing a two-component Gaussian model as
well as a variety of single-component models, they opted for a
single-component description with an exponential shape,
although a two-component model could not be ruled out due
to the poor statistics of their sample. More recently, Verbunt
et al. (2017) and Igoshev (2020) analyzed a sample of isolated
young pulsars and found that a two-component Maxwellian
model explained the observed sample best.

In general, the presence of a low-velocity component and a
high-velocity one could indicate different progenitor properties
as well as birth scenarios for the pulsar population. Numerical
simulations of supernova explosions, for example, have
suggested that neutron stars with lower kick velocities could
be generated in the core-collapse supernovae of progenitors
with small iron cores or in electron-capture supernovae
(Podsiadlowski et al. 2004; Mandel & Müller 2020). While
also possible scenarios for isolated systems (Janka 2017), such
conditions might generally affect those neutron stars born in
binaries (Giacobbo & Mapelli 2020), where mass-loss episodes
could strip their progenitors of their hydrogen envelopes. This
might favor the formation of small iron cores or accretion-
induced electron-capture supernovae, resulting in weaker natal
kicks (Schwab et al. 2010; Tauris et al. 2013). Only for the
strongest kicks can the binaries be disrupted by the supernova
and both companions expelled; otherwise the two stars remain
gravitationally bound. Such effects are neglected in our model
but could in principle generate an imprint on the observed
neutron star population. The ability of ML algorithms to
recognize features and patterns in the processed data could help

to better constrain the bimodality of the kick-velocity
distribution. In future work, we will investigate these aspects
in more detail and explore ways to implement an ML
framework to reconstruct the shape of the kick-velocity
distribution underlying an evolved population of pulsars.
Up to this point, we have not considered any kind of

selection effects or observational biases and effectively
assumed that all the neutron stars in our simulation are
detectable. While this provides direct insight into how various
initial conditions affect the evolved population of neutron stars,
a direct comparison with observational data in principle
requires a careful treatment of biases. For example, due to
beaming effects not all Galactic radio pulsars are visible from
Earth (Tauris & Manchester 1998; Melrose 2017), while survey
sensitivity thresholds and instrumental limitations might
hamper the detection of faint or distant sources (Manchester
et al. 2001; Johnston et al. 2008; Coenen et al. 2014; Stovall
et al. 2014; Good et al. 2020). Additionally, timing noise can
significantly limit the sensitivity and precision in the detection
of pulsar proper motions via timing analysis techniques (Hobbs
et al. 2004; Lentati et al. 2016; Parthasarathy et al. 2019). With
the aim of obtaining a rough idea of how selection effects and
biases could potentially influence a future comparison with
observation, we perform the following experiment. We first
collect those neutron stars that have measured proper motions.
As the main resource we use the pulsar catalog of the Australia
Telescope National Facility (ATNF)6 (Manchester et al. 2005),
but in some cases we provide proper-motion results from more
recent analyses (see Appendix C for details). We find a total of
417 neutron stars whose angular positions, proper motions in
ICRS coordinates, spin periods, spin-period derivatives, DM
values, and distance estimates are reported in Table 5. Out of
these objects, we remove those stars that belong to the
Magellanic Clouds, are associated with globular clusters, or
have a binary companion. We further select only those neutron
stars with a spin-period derivative > -P 10 17 to exclude those
that have potentially been recycled. Finally, we consider only
those for which an estimate of the heliocentric distance de is
available; in the case of radio pulsars we quote values that are
derived from their respective DMs using the free-electron
density model of Yao et al. (2017) (YMW16 model hereafter).
As some neutron stars have a DM that exceeds the maximum
Galactic DM allowed by the YMW16 model, these cases are
assigned a default distance of 25 kpc. We exclude those cases
unless an alternative distance measurement is available.
Applying these filters, we obtain a sample of 216 Galactic,
likely isolated neutron stars, whose positions and proper
motions are illustrated in Figure 10.
In the left panel of Figure 11, the gray histogram shows the

distribution of their heliocentric distances. Even if subject to
some uncertainties due to imprecisions in the YMW16 model,
the distance distribution peaks around 1 kpc and is followed by a
sharp exponential decrease. For a realistic pulsar distribution and
in the absence of selection effects, we would expect the number
of neutron stars to increase with distance due to an increase in the
explored volume, until a maximum is reached at a distance of
about 10 kpc, which comprises the region around the Galactic
center (see the red histogram in the left panel of Figure 11).
Thus, the shape of the gray distribution in Figure 11, as expected,
indicates that our observed sample of neutron stars with

6 https://www.atnf.csiro.au/research/pulsar/psrcat/

13

The Astrophysical Journal, 916:100 (20pp), 2021 August 1 Ronchi et al.

https://www.atnf.csiro.au/research/pulsar/psrcat/


Table 5
Up-to-date List of 417 Neutron Stars with Measured Proper Motions in R.A. and Decl.

JName R.A. Decl. μR.A. μdecl. Parallax Pos. Epoch P P DM de Class(Assoc.) Ref.
(h:m:s) (°:′:ʺ) (mas yr−1) (mas yr−1) (mas) (MJD) (s) (s s−1) (pc cm−3) (kpc)

J0014+4746 00:14:17.75(4) +47:46:33.4(3) 19.3 ± 1.8 −19.7 ± 1.5 L 49,664 1.24070 5.6446 × 10−16 30.405 (13) 1.776 PSR
J0023+0923 00:23:16.87910(2) +09:23:23.8689(8) −12.4 ± 0.5 −6.1 ± 0.1 0.4 ± 0.3 56,567 0.00305 1.14234 × 10−20 14.32810 (4) 1.248 PSR [6]
J0024-7204ab 00:24:08.1615(5) −72:04:47.602(2) 4.2 ± 0.6 −2.9 ± 0.5 L 51,600 0.00370 9.820 × 10−21 24.37 (2) 2.54 PSR(GC)
J0024-7204C 00:23:50.3546(1) −72:04:31.5048(4) 5.2 ± 0.1 −3.1 ± 0.1 L 51,600 0.00576 −4.98503 × 10−20 24.5955 (8) 2.594 PSR(GC)
J0024-7204D 00:24:13.88092(6) −72:04:43.8524(2) 4.24 ± 0.07 −2.24 ± 0.05 L 51,600 0.00536 −3.4220 × 10−21 24.7432 (9) 2.631 PSR(GC)
J0024-7204E 00:24:11.10528(5) −72:05:20.1492(2) 6.15 ± 0.03 −2.35 ± 0.06 L 51,600 0.00354 9.85103 × 10−20 24.236 (2) 2.509 PSR(GC)
J0024-7204F 00:24:03.85547(10) −72:04:42.8183(2) 4.52 ± 0.08 −2.5 ± 0.05 L 51,600 0.00262 6.45029 × 10−20 24.382 (5) 2.543 PSR(GC)
J0024-7204G 00:24:07.9603(1) −72:04:39.7030(5) 4.5 ± 0.1 −2.9 ± 0.1 L 51,600 0.00404 −4.21584 × 10−20 24.436 (4) 2.556 PSR(GC)
J0024-7204H 00:24:06.7032(2) −72:04:06.8067(6) 5.1 ± 0.2 −2.8 ± 0.2 L 51,600 0.00321 −1.8294 × 10−21 24.369 (8) 2.541 PSR(GC)
J0024-7204I 00:24:07.9347(2) −72:04:39.6815(7) 5 ± 0.2 −2.1 ± 0.2 L 51,600 0.00348 −4.5874 × 10−20 24.43 (1) 2.555 PSR(GC)
J0024-7204J 00:23:59.4077(1) −72:03:58.7908(5) 5.27 ± 0.06 −3.59 ± 0.09 L 51,600 0.00210 −9.7917 × 10−21 24.5932 (1) 2.594 PSR(GC)
J0024-7204L 00:24:03.7721(3) −72:04:56.923(2) 4.4 ± 0.2 −2.4 ± 0.2 L 51,600 0.00435 −1.22045 × 10−19 24.40 (1) 2.547 PSR(GC)
J0024-7204M 00:23:54.4899(3) −72:05:30.756(2) 5 ± 0.3 −2 ± 0.4 L 51,600 0.00368 −3.8419 × 10−20 24.43 (2) 2.553 PSR(GC)
J0024-7204N 00:24:09.1880(2) −72:04:28.8907(7) 6.3 ± 0.2 −2.8 ± 0.2 L 51,600 0.00305 −2.18570 × 10−20 24.574 (9) 2.589 PSR(GC)
J0024-7204O 00:24:04.65254(6) −72:04:53.7670(2) 5.01 ± 0.05 −2.58 ± 0.08 L 51,600 0.00264 3.03493 × 10−20 24.356 (2) 2.537 PSR(GC)
J0024-7204Q 00:24:16.4909(1) −72:04:25.1644(6) 5.2 ± 0.1 −2.6 ± 0.1 L 51,600 0.00403 3.4008 × 10−20 24.265 (4) 2.517 PSR(GC)
J0024-7204R 00:24:07.5851(2) −72:04:50.3954(5) 4.8 ± 0.1 −3.3 ± 0.2 L 51,600 0.00348 1.48352 × 10−19 24.361 (7) 2.538 PSR(GC)
J0024-7204S 00:24:03.9794(1) −72:04:42.3530(4) 4.5 ± 0.1 −2.5 ± 0.1 L 51,600 0.00283 −1.205413 × 10−19 24.376 (4) 2.542 PSR(GC)
J0024-7204T 00:24:08.5491(5) −72:04:38.932(3) 5.1 ± 0.6 −2.6 ± 0.7 L 51,600 0.00759 2.93805 × 10−19 24.41 (2) 2.55 PSR(GC)
J0024-7204U 00:24:09.8366(1) −72:03:59.6882(4) 4.6 ± 0.2 −3.8 ± 0.1 L 51,600 0.00434 9.52279 × 10−20 24.337 (4) 2.534 PSR(GC)
J0024-7204W 00:24:06.058(1) −72:04:49.088(2) 6.1 ± 0.5 −2.6 ± 0.3 L 50,000 0.00235 −8.65526 × 10−20 24.367 (3) 2.539 PSR(GC)
J0024-7204X 00:24:22.38565(9) −72:01:17.4414(7) 5.8 ± 0.1 −3.3 ± 0.2 L 54,000 0.00477 1.83610 × 10−20 24.539 (5) 2.587 PSR(GC)
J0024-7204Y 00:24:01.4026(1) −72:04:41.8363(4) 4.4 ± 0.1 −3.4 ± 0.1 L 51,600 0.00220 −3.51721 × 10−20 24.468 (4) 2.563 PSR(GC)
J0024-7204Z 00:24:06.041(2) −72:05:01.480(6) 4 ± 2 1 ± 2 L 51,600 0.00455 −4.54 × 10−21 24.45 (4) 2.559 PSR(GC)

Note. Table 5 is published in its entirety in machine-readable format. A portion is shown here for guidance regarding its form and content.

(This table is available in its entirety in machine-readable form.)
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measured proper motions is incomplete in distance and subject to
selection biases. By looking at the right panel of Figure 11, we
also note that a selection bias on distance is also reflected in the
distribution of the total proper-motion magnitudes (gray
histogram), computed as m m mº +tot R.A.

2
decl.
2 . Indeed, since

the nearest stars are also characterized by larger angular proper
motions, there is a higher probability of detecting stars with high
proper-motion.

In this first empirical approach, instead of attempting to
identify these underlying biases (which will be the subject of a
subsequent paper in preparation), we follow a more agnostic
approach to introduce a comparable selection effect in our
simulated populations. Specifically, we use a weighted random-
sampling routine to select n pulsars from our mock populations,
where each simulated star is assigned a weight according to a

function f (de) of its heliocentric distance. This weight function
has to assign larger weights to closer neutron stars in order
to ensure their higher detection probabilities and has to be
chosen such that we recover the observed distance distribution
with sufficient accuracy. To find f (de) we simulate a mock
population with the fiducial values of the kick velocity
and scale height, that is σk= 265 km s−1 and hc= 0.18 kpc,
respectively. After using a given f (de) to weight the simulated
neutron stars we sample 216 mock stars and compare their distance
and proper-motion distributions (shown as blue histograms in
Figure 11) with those of the observed sample by performing two-
sample Kolmogorov–Smirnov (KS) tests. After testing various
functional forms we find that = --f d d dexp 0.51( ) ( )   is able
to reproduce the observed distributions with a good level of
accuracy. More precisely, for this choice of f (de), the KS tests

Figure 10. Proper motions of the selected 216 neutron stars in the sky represented in the ICRS reference frame. The current locations of the neutron stars are indicated
by the colored circles, whereas the tracks indicate their motion for the past 0.5 Myr, assuming no radial velocity and neglecting the effects of the Galactic potential.
The color encodes the heliocentric distance de of the neutron stars. The corresponding data are provided in Table 5. In the background, we show in gray all non-binary
pulsars in the ATNF catalog (those in the Small and Large Magellanic Clouds as well as those in globular clusters are included). The red star highlights the position of
the Galactic center.

Figure 11. Distribution of heliocentric distances de (left panel) and proper-motion magnitudes μtot (right panel) for the 216 neutron stars with measured proper motion
(gray histograms). For comparison, we also show the distances and proper-motion magnitudes for 216 simulated neutron stars (blue histograms) randomly sampled
from a mock population generated with the fiducial parameters σk = 265 km s−1 and hc = 0.18 kpc (red histograms). For the weighted sampling, we use the weight
function = --f d d dexp 0.51( ) ( )   .
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performed over 1000 distinct comparisons give average p-values of
∼0.3 and ∼0.6 for the distance and proper-motion comparisons,
respectively. This means that at 95% confidence level, we cannot
reject the null hypothesis that the simulated and observed samples
are drawn from the same underlying distribution. We have also
verified that for this weight function, the KS tests always provide p-
values >0.05 when comparing the observed sample with the
simulated populations for reasonable values of σk and hc. Only in
the cases where σk and hc assume extreme values (near the edges of
their respective ranges) might the p-values drop below 0.05.
However, these cases are associated with simulations with extreme
initial conditions that are unlikely to reproduce the observations.
For our basic experiment, we further make the simplified
assumptions that f (de) emulates all selection biases and that it is
the same for every number n of sampled neutron stars. We stress
that for the purpose of this initial analysis we do not aim to
accurately constrain the selection function that affects the observed
population of neutron stars. Instead we study how the introduction
of realistic selection biases will alter the predictive power of our
machine learning framework. Although one might intuitively
attribute the exponential factor in f (de) to scattering in the
interstellar medium at large distances, the underlying nature and the
precise form of the true selection function are certainly more
complicated. We expect it to encompass a series of effects due to
the physics of the interstellar medium and the pulsar emission itself,
as well as selection effects of pulsar surveys and pulsar searches.
We postpone a more accurate study disentangling the different
effects that contribute to f (de) to future work.

We then analyze how the predictive power of the CNN
evolves as a function of the number n of neutron stars, sampled
with the above weight function f (de). To do so, we vary n from
200 to 2000 in steps of 200, and in each case resample the
16,384 simulated populations from run S3, where both σk and
hc are varied. After applying an 80%/20% training-validation
split, we retrain the CNN on each of the downsampled
simulations. As before, we use the three-channel ICRS input
maps (i.e., information on density plus proper motion) but
instead opt for a resolution of 32× 16 bins to accommodate the
smaller number of stars represented in our maps. We have
verified that a higher resolution of 128× 64 bins does not

affect the training results significantly, but it slows down the
training process; we therefore choose the lower resolution. We
use the same training hyperparameters as in Section 4.1.2, that
is an initial learning rate of 10−4, a batch size of 64, and an
early stop at 128 epochs. Once trained for each n value, we
apply the CNN to the validation sets and compute the RMSE
and mean MRE for the σk and hc predictions as a function of n.
In the left panel of Figure 12, we show how the RMSE

uncertainties for the predictions of the two parameters σk (blue)
and hc (red) diminish with increasing number of neutron stars n
sampled from the simulations. We observe that the two curves
(with the appropriate rescaling) follow very similar trends. On
the right, we show instead how the MREs evolve with n,
indicating how the precision of the two-parameter prediction
improves with the number of detected neutron stars. This plot
shows that, under the assumptions that selection effects are
unaltered and the underlying kick-velocity and birth-height
distributions have Maxwellian and exponential shapes, respec-
tively, our trained CNN is able to predict σk and hc with a
relative error of ∼0.35 for a sample of 2000 stars.
These results highlight that the number of neutron stars plays

a crucial role in the level of accuracy that the CNN can reach.
As expected, a larger number of stars provides more
information, which allows the CNN to pinpoint differences
between populations evolved from different initial conditions,
and also when selection effects are introduced. Future
observational efforts aimed at detecting and characterizing
new pulsars will thus play an important role in constraining the
birth properties of neutron stars. Specifically, the advent of the
Square Kilometre Array (SKA) will represent an important step
forward in this direction. Due to its high sensitivity (a factor of
10 better than other radio telescopes) and its long baseline (up
to 3000 km), SKA has the potential to increase the number of
discovered pulsars by a factor of 10 (Smits et al. 2009, 2011).
This will allow more precise timing and astrometric measure-
ments of pulsar positions as well as distances and proper
motions. A larger and more precise data set could also help to
better constrain the shape of the kick-velocity distribution and
differentiate between models that try to explain the origin of the
natal kicks (Tauris et al. 2015).

Figure 12. Trend of the RMSE (left panel) and MRE (right panel) uncertainties on the prediction of the two parameters σk (blue) and hc (red) as a function of the
number of neutron stars n in the resampled simulations in the validation sets. To train and validate the CNN we use the 16,384 simulated populations from simulation
run S3 (with an 80%/20% training/validation split), where both σk and hc are varied, and which are resampled with an increasing number of stars n according to the
weight function = --f d d dexp 0.51( ) ( )   .
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6. Summary

In this work we have analyzed the possibility of using ML
techniques to reconstruct the dynamical birth properties of an
evolved population of isolated neutron stars. For this purpose,
we developed a simplistic population-synthesis pipeline to
simulate the dynamical evolution of Galactic neutron stars and
subsequently used these simulations to train and validate two
different neural networks. We specifically focused on their
ability to predict two parameters that strongly impact on the
phenomenology of the evolved population: the dispersion σk of
a Maxwell kick-velocity distribution and the scale height hc of
an exponential distribution for the Galactic birth heights. This
was achieved by providing the networks with two-dimensional
maps of stellar density and velocity in galactocentric and
equatorial ICRS coordinate frames. We found that a CNN is
able to estimate the physical parameters with high accuracy
when multiple input channels, i.e., position and velocity
information, are provided. In particular, when simultaneously
predicting σk and hc from ICRS maps, the network is able to
reach absolute uncertainties lower than 10 km s−1 and 0.05 kpc,
respectively, corresponding to a relative error of around 10−2

for both parameters. Although obtained under simplified
assumptions, our feasibility study—the main focus of this
paper—has thus demonstrated that ML techniques are indeed
suitable to infer information about the pulsar population. Our
phenomenological analysis incorporating proper-motion mea-
surements (an attempt at including observational biases in an
agnostic way) has further highlighted that increasing the
sample of known pulsars and accurately measuring their
current characteristics with future telescopes is crucial to tightly
constraining the birth properties of the neutron stars in the
Milky Way. In particular, our trained CNN is able to predict σk
and hc with a relative error of ∼0.35 for a sample of 2000
pulsars with measured proper motions.

We also demonstrated that one of the main factors limiting
the accuracy of the CNNʼs predictions in our setup is the
degeneracy between σk and hc; as they both affect the evolved
populations in a similar way, the network struggles to
disentangle their effects. This limitation is a direct consequence
of our simplified population-synthesis framework. In future
works, we will go beyond modeling the dynamical evolution
and focus on incorporating additional physics such as
magnetothermal and spin-period evolution. We will further
model their emission in different electromagnetic bands and
study corresponding detectability limits by addressing selection
effects as well as observational survey biases. Such additional
input information could potentially break the degeneracy
between the kick-velocity and Galactic height distributions
and provide more accurate model constraints on σk and hc as
well as other input parameters.

The ultimate goal will be to use multiwavelength observa-
tions of the Galactic neutron star population and take advantage
of ML, combined with population synthesis, to recover their
birth properties, such as the distribution of natal kick velocity,
spin period, or magnetic field. The potential to learn complex
patterns from multidimensional data and the power of
generalizing to unseen data sets make ML algorithms a
powerful tool to tackle such multiparameter optimization
studies.
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Software

Astropy (Astropy Collaboration et al. 2013, 2018), Hydra
(Yadan 2019), IPython (Perez & Granger 2007), Matplotlib
(Hunter 2007), Numba (Lam et al. 2015), NumPy (Oli-
phant 2006; van der Walt et al. 2011; Harris et al. 2020),
Pandas (McKinney 2010), PyTorch (Paszke et al. 2019), and
SciPy (Jones et al. 2001; Virtanen et al. 2020).

Appendix A
Hardware and Software

Our test machine features an Intel(R) Xeon(R) Gold 6230R
CPU at 2.10 GHz with a single NVIDIA GTX 2080 Ti GPU,
16 GB RAM, and SSD drives. The system is running CentOS
Linux release 7.8.2003 (Core) with PyTorch 1.2.0, CUDA
toolkit 10.0.130, and GPU driver 455.32.00.

Appendix B
Timing Tests

B.1. Timing for Single-parameter Predictions

We report here the timing benchmarks for the MLP and
CNN during the single-parameter training experiments dis-
cussed in Section 4.1.1. We run our experiments on the test
machine and individually record the forward pass time (the
time needed to go through the samples in a batch and compute
a prediction) and the backward pass time (the time to compute
all the gradients and perform a single optimization step) as a
function of the batch size and resolution. Our benchmarks for
the training data sets from simulation run S1 using the four
training configurations T1, T2, T3, and T4 are shown in
Figures 13 (MLP) and 14 (CNN).
The timing benchmark shows that the MLP is slightly faster

in performing an optimization step. This is expected because it
has fewer trainable parameters than the more complex CNN.
We can also see that the forward and backward pass times per
sample decrease with increasing batch size for both the MLP
and CNN. For a larger batch size, several input samples are
transferred from the CPU to the GPU in one step, reducing the
overall number of calls between the two. Thus, on average, the
processing time for an individual sample reduces when the
batch size is increased. Moreover, a higher resolution generally
implies an increase in computational cost, albeit being more

17

The Astrophysical Journal, 916:100 (20pp), 2021 August 1 Ronchi et al.



pronounced in the case of the CNN than the MLP. The number
of input channels itself has very little effect on our timings.
Finally, we note that ICRS maps are slightly faster to process
(in particular for the higher resolutions), because they are
smaller than the galactocentric maps (their bins are half
as high).

B.2. Timing for Two-parameter Predictions

Following the results for the single-parameter experiments,
we restrict our two-parameter predictions to the CNN model
only and fix the resolution of the input maps to 128. The results

of our timing benchmarks using the training data sets from
simulation run S3 with the four configurations T1, T2, T3, and
T4 are shown in Figure 15. We again report the timings for the
forward and backward passes per sample as a function of the
batch size and the type of input channels provided. As for the
single-parameter case, we conclude that using ICRS maps
ensures the shortest forward and backward pass times.

Appendix C
Neutron Stars with Measured Proper Motion

In Table 5, we report the properties of 417 neutron stars with
measured proper motions in R.A. and decl. Data for these
neutron stars are primarily collected from the ATNF catalog7

(Manchester et al. 2005). In some cases, updated estimates are
available and those values quoted and the corresponding
references specified. Note that in those cases where multiple
proper-motion estimates are available, we choose the ones with
the lowest absolute error. The columns report in order: (i) the
object name based on J2000 coordinates; (ii) the R.A. in hour
angle and (iii) decl. in degrees with the last-digit uncertainty
given in parentheses; the proper motion in (iv) R.A. and (v)
decl. in milliarcseconds per year with corresponding uncertain-
ties; (vi) the parallax measured in milliarcseconds with
uncertainty where available; (vii) the position epoch in
modified Julian days; (viii) the spin period in seconds; (ix)
the spin-period derivative in seconds per second; (x) the
dispersion measure in [pc cm−3] with the last-digit uncertainty
given in parentheses; (xi) the heliocentric distance derived from
the DM using the YMW16 free-electron density model (for

Figure 13. MLP forward (solid lines) and backward (dashed lines) pass times per sample in milliseconds for the training process on the single parameter σk of the
Maxwell kick-velocity distribution, as a function of the batch size and the resolution (red, blue, and orange curves for 32, 128, and 512 respectively) using the four
different input configurations T1 (GC position), T2 (GC position + velocity), T3 (ICRS position), and T4 (ICRS position + velocity).

Figure 14. CNN forward (solid lines) and backward (dashed lines) pass times per sample in milliseconds for the training process on the single parameter σk of the
Maxwell kick-velocity distribution, as a function of the batch size and the resolution (red, blue, and orange curves for 32, 128, and 512 respectively) using the four
different input configurations T1 (GC position), T2 (GC position + velocity), T3 (ICRS position), and T4 (ICRS position + velocity).

Figure 15. CNN forward (solid line) and backward (dashed line) pass times per
sample for the two-parameter experiments as a function of the batch size for the
four different input configurations T1 (GC position), T2 (GC position +
velocity), T3 (ICRS position), and T4 (ICRS position + velocity).

7 https://www.atnf.csiro.au/research/pulsar/psrcat/
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some objects the DM exceeds the maximum Galactic DM
allowed by the YMW16 model, which assigns a default value
of 25 kpc; when available, we quote other distance estimates; *

indicates a distance derived from other techniques, especially
for X-ray and gamma-ray sources, which have no measured
DM); (xii) the classification of the object, i.e., radio pulsar
(PSR), binary pulsar (binary PSR), gamma-/X-ray pulsar
(Gamma-/X-ray PSR), magnetar (MAG), X-ray-dim isolated
neutron star (XDINS); if the object is associated with a globular
cluster (GC) or the Small Magellanic Cloud (SMC) this is
reported in brackets; and (xiii) the reference for the proper-
motion measurements, indicated only if different from the
ATNF catalog, i.e., [1] Motch et al. (2009), [2] Eisenbeiss et al.
(2010), [3] Walter et al. (2010), [4] Stovall et al. (2014), [5]
Jennings et al. (2018), [6] Perera et al. (2019), [7] Dang et al.
(2020), [8] Danilenko et al. (2020).
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