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Abstract 

 Despite increasing reports of severe drought and heat impacts on forest ecosystems, 

community-level processes, which could potentially modulate tree responses to climatic 

stress, are rarely accounted for. While numerous studies indicate a positive effect of species 

diversity on a wide range of ecosystem functions and services, little is known about how 

species interactions influence tree responses to climatic variability. 

 We quantified the intraspecific variation in 16 leaf and wood physiological, morphological, 

and anatomical traits in mature beech trees (Fagus sylvatica L.) at six sites located along a 

climatic gradient in the French Alps. At each site, we studied pure beech and mixed stands 

with silver fir (Abies alba Mill.) or downy oak (Quercus pubescens Willd.). We tested how 

functional traits differed between the two species mixtures (pure vs. mixed stands) within 

each site and along the climatic gradient. A
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 We found significant changes in many traits along the climatic gradient as conditions 

progressively got drier and warmer. Independent of the mixture, reduced leaf-level CO2 

assimilation, stomatal size, and thicker leaf cuticles, consistent with a more conservative 

resource use strategy, were found. At the drier sites, higher foliar stable carbon isotopic 

composition (
13

C), thicker mesophyll tissues, and lower specific leaf area (SLA) in pure 

stands suggests that beech had more acquisitive traits there compared to mixed stands. At the 

wetter sites, trees in beech-silver fir mixtures had higher chlorophyll concentration, lower 


13

C, larger xylem vessels, and higher SLA, suggesting a more acquisitive resource use 

strategy in mixed stands than in pure stands.  

 Our work revealed that species interactions are significant modulators of functional traits, 

and that they can be just as important drivers of intraspecific trait variation as climatic 

conditions. We show that downy oak mixtures lead to an adaptive drought response by 

common beech in dry environments. In contrast, in milder climates, interactions with silver 

fir seem to increase beech’ resource acquisition and productivity. These findings highlight a 

strong context-dependency and imply that incorporating local interspecific interactions in 

research on climate impacts could improve our understanding and predictions of forest 

dynamics. 

 

Keywords: anatomy, climatic stress, functional traits, morphology, phenotypic plasticity, species 

composition.   
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Introduction 

Tree growth and survival largely depend on their capacity to exploit available resources in the 

ecosystem, which is ultimately controlled by the interactions and dynamics of the whole 

community. Species interactions can be either detrimental (i.e., competition) (e.g., Connoily & 

Wayne, 1996), neutral, or beneficial (i.e., complementarity and facilitation) (Hooper, 1998). For 

instance, trees can partition water resources in the soil when they have different rooting systems 

(e.g., beech and oak trees), leading potentially to reduced soil water competition and more stable 

productivity during drought events (e.g., Zapater et al., 2011). Similarly, evidence suggests that 

interaction among trees with distinct crown architectures (e.g., conifers and broadleaves) result 

in a more efficient occupation of the aboveground space, leading to improved productivity (e.g., 

Jucker et al., 2015).  

However, species interactions are not fixed and can be modified by local environmental 

conditions. In dry regions, mixed stands have been found to reduce water use, growth, and the 

overall tolerance of trees to drought (e.g., Grossiord, 2019) or enhance it (e.g., Lübbe et al., 

2017). In contrast, in moister regions, studies tend to find positive effects of species interactions 

and diversity on growth (e.g., Liang et al., 2016), suggesting higher water, carbon and nutrient 

use in mixed-species stands. Species interaction effects are also highly dependent on the identity 

of the species present with interspecific interactions being potentially beneficial for some species 

but detrimental to others (e.g., Forrester et al., 2016). Hence, species interaction effects are 

highly context-dependent, with positive interactions that enhance function potentially turning 

into negative interactions under different abiotic and biotic conditions (Ratcliffe et al., 2017). 

Yet, few studies have looked at how species interactions alter tree functional strategies along 

broad environmental conditions (Paquette et al., 2018), and no study to our knowledge has tried 

to disentangle the impact of species mixture vs. climatic conditions on leaf and wood functional 

traits.  

Tree physiological, morphological, and anatomical traits provide fundamental insights into trees' 

functional strategies, including, for instance, how trees respond to environmental constraints and 

the underlying processes driving tolerance to extreme events (Violle et al., 2007). Moreover, 

how trees adjust their traits in responses to a changing climate will affect their long-term 

persistence (Allen et al., 2015; Nicotra et al., 2010). Long-lived species that occur over broad A
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environmental conditions, such as trees, can show substantial genetic adaptation and phenotypic 

plasticity in their traits. Populations living in drier climates tend, for instance, to have smaller 

and thicker leaves with denser but smaller stomates (e.g., de Cárcer et al., 2017), which provide 

higher foliar hydraulic safety (i.e., a conservative resource use strategy; Reich, 2014). Inversely, 

populations from wetter regions tend to have larger and thinner leaves with bigger but fewer 

stomates (e.g., Abrams et al., 1994) to increase their maximum photosynthetic rates (i.e., an 

acquisitive resource use strategy). Thus, if interspecific interactions increase access to resources 

because of complementarity and facilitation processes, one may expect trees in mixed stands to 

shift their foliar and woody traits towards a more acquisitive resource use strategy (thinner and 

larger leaves, larger xylem vessels and denser wood), independently of the background climate. 

Inversely, if competition is reducing access to resources in mixed stands, trees may develop more 

conservative traits compared to their counterparts in pure stands. 

To compare how tree functional strategies are influenced by climatic conditions and species 

interactions, we investigated the intraspecific variability of 16 physiological, morphological, and 

anatomical leaf and woody traits of common beech in pure and mixed stands along a climatic 

gradient in the French Alps. We determined how these two species mixtures, i.e., pure vs. mixed 

stands with silver fir or downy oak, influence beech traits along the climatic gradient. We 

expected (1) beech trees in drier sites to have traits associated with a conservative resource use 

strategy (e.g., lower maximum assimilation, higher water-use efficiency, lower stomatal size but 

higher density, and smaller xylem vessel area) compared to wetter sites where trees will show 

traits associated with an acquisitive resource use strategy (e.g., higher hydraulic diameter, 

maximum assimilation rates, and thinner and larger leaves), and (2) trees to have a less 

conservative and more acquisitive resource use strategy in mixed stands due to complementarity 

and/or facilitation between species (both when mixed with silver fir and downy oak), leading to 

enhanced resource availability, independently of the climatic conditions (i.e., all along the 

climatic gradient).  
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Material and methods 

Study sites 

The study was conducted at six sites along a climatic gradient in the French Alps (Fig. 1; Jourdan 

et al., 2020b). All sites are characterized by limestone bedrock, with a North to West orientation 

(Table S1). Minimum and maximum temperature and precipitation were recorded by 

meteorological stations at each site, and the gaps were filled by E-OBS gridded dataset (2005-

2019) (https://www.ecad.eu/download/ensembles/download.php).  

In the three Northern sites (BG, VC, VT), the forest is dominated by beech (Fagus sylvatica L.) 

and silver fir (Abies alba Mill.) trees, and in the three Southern sites (LA, LU, SB), the dominant 

trees species are beech and downy oak (Quercus pubescens Willd.) (Table 1). Other tree species 

growing at the sites are Acer pseudoplatanus L., Acer opalus Mill., Picea abies L., Sorbus 

aucuparia L., Ilex aquifolium L., but they represent a negligible part of the total basal area of 

each stand. To limit confounding effects, stands were selected within sites without management 

for at least one decade. Forest structure was homogenous among stands, except in LU which has 

coppice stands for more than 50 years, and SB which has old-growth forest and secondary 

stands. A stand was delimited by a 17.5 m radius circle, including a central area of 10 m radius 

and a 7.5 m buffer zone (total surface of 1000 m²). Stands contained between 14 and 46 trees in 

total (Table 1). Multiple characteristics were measured on all trees (i.e., species identity, location 

of the trees, height, and diameter at breast height (DBH)).  

Stands were separated into two groups based on their species mixture, i.e., beech pure stands, for 

assessing the impact of intraspecific interactions, and mixed stands, for impacts of interspecific 

interactions (beech-silver fir and beech-downy oak mixed stands in the three northern and 

southern sites, respectively, Fig. 1). Stands were determined as pure when at least 90% of the 

total basal area was represented by beech, while mixed stands were dominated by a mixture of 

the two species, with the relative basal area of each species representing at least 40% of the total 

basal area. In each site, four stands were selected with two subgroups at two different elevations, 

with one pure and one mixed stand at each elevation (Table 1), leading to a total of 24 stands. 

Elevation differences between the two subgroups were ranging from 50m to 250m among sites 

(Table 1). The stands were selected as subsets of a large experiment (GMAP plot network, 

https://oreme.org/observation/foret/gmap/). In each stand, five dominant beech trees were A
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randomly selected, leading to a total of 120 trees. Beech was present over the entire gradient 

allowing us to study the effect of climatic conditions (variation between sites), species 

interactions (variation between pure and mixed stands), and the interactive effect of climate and 

species interactions. However, as different interaction partners are present in mixed stands in the 

three northern and southern sites, the experimental design does not allow us to disentangle 

between climatic and forest type effects (mixtures with downy oak vs. silver fir).  

Sixteen physiological, morphological, and anatomical traits related to water and carbon transport, 

use and uptake (Table 2) were measured on all selected trees between mid-July and mid-August 

2019. The sampling started in the southern sites, proceeding northwards to account for 

differences in the growing season length and start (shorter in the northern sites) and ensure that 

measurements were conducted in the middle of the growing season at all sites. Samples were 

harvested in non-rainy conditions by tree climbers, except LU where the sampling was 

performed using a telescopic pole pruner. 

 

Wood anatomical traits  

We cut a 20 cm-long twig sample (70 cm from the apex, diameter between 2-3 cm) from the top 

of the canopy of each tree to determine wood properties. The samples were stored in plastic vials 

with a 50% ethanol solution. Transversal sections of each sample (12 µm thick) were made with 

a Leica rotation microtome and stained with Safranin-O and astra blue (1% and 0.5% in distilled 

water, respectively). The sections were mounted with Canada balsam on glass slides with a cover 

slip (von Arx et al., 2016). Microscopic digital images were captured at 40x magnification with a 

compound microscope (BX51, Olympus, Germany) interfaced with a Canon camera (Canon 

EOS 1200D, Switzerland). Digital images were taken on a radial path (Fig. S1a). Image analyses 

were performed with the ImageJ software. The total number of vessels and the lumen area 

(ALumen, µm
2
) were measured on the last two growth rings, as these vessels are responsible for 

the majority of water transport (Domec & Gartner, 2002). Vessel density (VD, vessels cm
-2

) was 

calculated by dividing the number of vessels by the area measured. The hydraulically weighted 

diameter (DH, µm) was calculated on the last two growth rings, following the Hagen-Poiseuille 

law as described by Tyree et al. (1983):  A
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𝐷ℎ = 2(
∑𝑟5

∑𝑟4
) 

where r is the vessel radius. Wood density (WD, mg cm
-3

) was measured as the ratio of xylem 

dry mass to xylem wet volume (Wright et al., 2010). 

 

Leaf physiological traits 

We measured predawn leaf water potential (ΨPD, MPa) on one leaf per tree by sampling one twig 

from the top of the canopy before sunrise. Measurements were conducted in the field with a 

Scholander-type pressure chamber (PMS Instruments, Albany, OR, USA).  

Maximum CO2 assimilation (Amax, μmol m
-2

 s
-1

) and stomatal conductance (gs, mmol m
-2

 s
-1

) 

were measured on sunlit leaves of all trees using a LI-COR 6400 infrared gas analyzer system 

(LI-COR, Lincoln, USA). We sampled 1.5m-long branches from the top of the canopy, placed 

them in a water bucket and recut them twice to remove potential cavitation (Bachofen et al., 

2020). The measurements were carried out between 10am and 1pm when the highest gas 

exchange rates is expected. Measurements were conducted with the following setting: 400 ppm 

of reference CO2 concentration, 1500 μmol m
-2

 s
-1 

light-saturating photosynthetic photon flux 

density, block temperature at 20°C or 30°C to match ambient air temperature at each site (i.e., 

BG, VC, VT = 20°C, LA, LU, SB = 30°C), and relative air humidity set at 50% to reflect 

ambient conditions. Leaf temperature was estimated using the instrument energy balance 

calculation in the system software. Measurements were recorded after steady-state gas exchange 

rates had been maintained for at least 5 min. Intrinsic water-use efficiency (WUEi, µmol
-1

) was 

calculated by dividing Amax by gs (Fischer & Turner, 1978). Chlorophyll concentration (Chl, 

µmol m
-2

) was measured on the same leaves with a chlorophyll concentration meter (MC-100, 

Apogee Instruments, Inc., USA).  

Foliar carbon isotopic composition (δ
13

C, ‰) was measured on sunlit leaves taken from the same 

branches used for the gas exchange measurements. Leaves were stored in paper bags with a dry 

environment until further drying at 65°C for 48h in the laboratory, and dry samples were ground 

to powder. About 1 mg of the powdered material was placed into tin capsules (Säntis, Teufen, 

Switzerland). δ
13

C measurements were conducted with an elemental analyzer interfaced to a A
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DeltaPlusXP isotope ratio mass spectrometer (EA-IRMS; Thermo EA 1100 Deltaplus XL; 

0.01‰ precision) at the stable isotope research center (SIRC) of WSL in Birmensdorf. δ
13

C 

values are reported in the standard delta notation relative to the Vienna Pee Dee Belemnite 

standard (VPDB).  

 

Leaf morphological traits 

Leaf morphological traits were assessed by sampling ten leaves from long terminal shoots on one 

branch from the top canopy (Cornelissen et al., 2003). The mean leaf surface (LS, cm
2
) was 

determined using scanned fresh leaves (EPSON Perfection V800 Photo, EPSON, Amsterdam) 

and the Silver Fast 8 software (Laser soft imagine AG, Germany). After drying for 48h at 65°C, 

the leaves were weighed, and the specific leaf area calculated (SLA, m² kg
-1

).  

 

Leaf anatomical traits 

Leaf anatomical traits were measured using leaf material sampled next to the samples collected 

for morphological assessments (de Cárcer et al., 2017). Stomatal density (SD, mm
-2

) and size 

(Astomates, µm²) were determined using nail varnish imprints realized at mid-leaf location apart 

from the leaf central vein, on two leaves. Stomata were observed and imaged in diascopic light 

using the 20x objective of a Leica Leitz DMRB microscope interfaced with the INFINITY 2 

ANALYZE camera. The camera software was used to assess selected stomata count and size 

(Lumenera Corporation, Canada, Fig. S1b). The thickness of the leaf mesophyll (M, µm) and the 

lower cuticle (LC, µm) (Fig. S1c, d) were measured using 1 cm leaf disks excised at middle leaf 

position, just after harvesting the branch, and immediately fixed using 2.5% glutaraldehyde 

buffered at pH 7.0 using 0.067 M Soerensen phosphate buffer. In the laboratory, the samples 

were further infiltrated by evacuation and the solution renewed before storing at 4°C until further 

processing. Leaf sections (50 µm thick) were trimmed from the central disk part using a custom-

made hand microtome and mounted in 80% glycerin either directly or after 25 min staining in 

0.5% Alcian blue (Arend et al., 2008) for assessing cuticles. Mesophyll tissues and cuticles were 

observed, imaged, and measured using the aforementioned DMRB microscope, 20x and 100x 

objectives, the Infinity 2 camera and its software's measurement module. A
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Data analysis 

A climatic index considering the long-term variation in mean annual temperature and 

precipitation along the gradient was calculated by dividing the precipitation by the potential 

evapotranspiration (P/PET). PET at each site was calculated using the Thornthwaite equation 

(Kolka, 1998), which takes into account the average daily temperature, the number of days per 

year (i.e., 365), the average day length, and a heat index estimated using monthly mean 

temperature. P/PET ranged between 3.31 and 1.39 over the last 20 years (from 2005 to 2019) and 

between 0.61 and 0.08 over the measurement period (from July to August 2019) for the wettest 

and the driest site, respectively (Table 1).  

We determined the effect of P/PET (average from 2005 to 2019), species mixture (pure vs. 

mixed stands), and the interactive effect of P/PET and species mixture all along the gradient on 

each functional trait using linear mixed models (lme4 and lmerTest function). P/PET and species 

mixture were fixed effects, and the subgroup of stands (high vs. low elevation) were treated as a 

random effect nested in each site to account for differences in elevation within each site. This is 

particularly important knowing the potential impact of elevation on some functional traits (e.g., 

δ
13

C). 

We evaluated the effect of the forest type (three northern sites where beech and silver fir co-

occur vs. three southern sites where beech and downy oak co-occur) and the interaction between 

the forest type and species mixture on each functional trait in a separate linear mixed model. 

P/PET was not included in this test to better capture the isolated effect of the forest type and 

species mixture. Forest type and species mixture were included as fixed effects, and the 

subgroups of stands nested in each site were treated as random effects. Tukey type post hoc tests 

were used to reveal significant differences between forest type and species mixture groups 

(multcomp function). 

All analyses were performed using the R v.3.6.1 statistical platform (R Development Core Team, 

2019).   A
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Results 

Impact of the climatic gradient on functional traits 

Climatic conditions significantly impacted four leaf traits and only one woody trait. Maximum 

CO2 assimilation (Amax), predawn leaf water potential (ΨPD), chlorophyll concentration (Chl), 

and stomatal area (Astomates) were significantly decreasing in response to lower P/PET (Table 3). 

Inversely, leaf cuticles (LC) were increasing in response to lower P/PET (Table 3). No effect of 

P/PET was found on stomatal conductance (gs), leaf carbon isotopic composition (δ
13

C), intrinsic 

water-use efficiency (WUEi), lumen area (ALumen), vessel density (VD), theoretical hydraulic 

diameter (DH), wood density (WD), leaf surface (LS), specific leaf area (SLA), stomatal density 

(SD), and mesophyll thickness (M) (Table 3). 

 

Interactive impacts of species mixture and climate on functional traits  

Species mixture (i.e., pure vs. mixed stands) significantly modified ΨPD, Chl, δ
13

C, ALumen, SLA 

and M and this effect depended on P/PET except for M, which was consistently smaller in mixed 

stands (Figs. 2, 3 & 4, Table 3). Mixed stands had more negative ΨPD, less negative δ
13

C, smaller 

SLA and higher M compared to pure stands as conditions progressively got drier and warmer 

(Figs. 2, 3 & 4, Table 3), consistent with a more conservative resource use strategy. In contrast, 

mixed stands had less negative ΨPD, more negative δ
13

C, higher Chl, ALumen, SLA, and lower M 

thickness compared to pure stands as conditions got wetter and colder (Figs. 2, 3 & 4, Table 3), 

suggesting a more acquisitive resource use strategy. No impact of species mixture or of the 

interaction between species mixture and P/PET was found for the other traits (Table 3). 

 

Impact of species mixture on functional traits within each forest type  

Species mixture significantly modified Amax, ΨPD, Chl, and ALumen within both forest types (i.e., 

beech mixed with downy oak or beech mixed with silver fir) (Fig. 2, 3 & 4, Table 3) but the 

effects were opposite. Mixed stands had more negative ΨPD in the sites where beech is mixed 

with downy oak compared to pure stands (Fig. 2, Table 3). On the contrary, mixed stands had 

less negative ΨPD, higher Chl, and ALumen compared to pure stands in the sites where beech is A
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mixed with silver fir (Figs. 2 & 3, Table 3). We found no impact of species mixture within the 

two forest types on all remaining traits (Figs. 2, 3 & 4, Table 3).  
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Discussion 

Impact of the climatic gradient on functional traits 

As we initially expected, our study demonstrates that beech has more conservative foliar traits 

(i.e., lower maximum photosynthesis, leaf water potential, chlorophyll concentration, stomatal 

area, and thicker cuticle; Figs. 2 & 4) as conditions get warmer and drier along the climatic 

gradient. This result agrees with previous work reporting strong variation in beech foliar traits in 

response to climate (Bussotti, 1995; de Cárcer et al., 2017; Martin-Blangy et al., 2021). Although 

our number of replicates could have impacted these findings, it is important pointing out that 

many leaf anatomical traits showed low variability along the gradient (e.g., leaf surface, SLA, 

stomatal density, mesophyll thickness). These results contrast work conducted on other species 

(McLean et al., 2013; Warren et al., 2005 but see Binks et al., 2016) and suggest that beech 

responds to reduction in soil water by adjusting its physiology rather than by producing leaves 

with more xeromorphic characteristics (e.g., smaller leaves, higher stomatal density, thinner 

mesophyll tissues). Similarly, wood morphological and anatomical traits also showed a 

homeostatic response to the climatic gradient (Fig. 3). These results contradict previous studies 

that showed a strong intraspecific variation in beech woody traits along environmental gradients, 

with often a reduction of hydraulic conductivity linked to smaller and denser vessels as 

conditions get drier (e.g., Schuldt et al., 2016; Tognetti et al., 1995). A limitation in our work is 

that we bundled the effects of different climatic drivers (temperature, VPD and soil drought) into 

one index, P/PET, which does not allow us to associate trait shifts to specific environmental 

constraints. Yet, because of potential local changes in soil characteristics, the relative importance 

of atmospheric vs. soil moisture stress can vary substantially under a similar P/PET. Using a 

similar approach, Martínez-Vilalta et al. (2009) also reported a lack of woody trait variability 

along an even larger environmental gradient for Pinus sylvestris. To better understand the 

underlying drivers of intraspecific trait variability, future work should disentangle the effects of 

individual climatic variables (temperature and VPD vs. soil moisture), particularly as their 

trajectories could differ under future climate. Moreover, apart from abiotic conditions, genetic-

based assessments demonstrated that the trees studied here had a gradual genetic differentiation 

along the gradient, but that they still belonged to the same population (Capblancq et al., 2020), 

suggesting that plasticity to changing conditions could explain the observed trait variability. A
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Nevertheless, independently of the underlying processes leading to changes in traits, our findings 

could suggest that while beech is able to adjust to drought and heat by shifting to more 

conservative physiological leaf traits, the absence of leaf anatomical and woody trait plasticity 

points towards high vulnerability during upcoming extreme events. These findings are supported 

by the high drought-induced mortality rates found for beech throughout central Europe in recent 

years, including in our study region (e.g., Archambeau et al., 2020; Etzold et al., 2019).  

 

Interactive impacts of species mixture and climate on functional traits 

Our results indicate that species interactions exacerbate competition for water in the driest 

conditions as trees had more conservative strategies in mixed stands with downy oak (i.e., more 

negative leaf water potential, thicker M, lower SLA, and more positive δ
13

C; Figs. 2 & 4). These 

responses contradict previous studies suggesting improved water availability and water use 

efficiency of beech during drought in mixed stands (de Andrés et al., 2017; Pretzsch et al., 2013). 

Oak and beech exhibit important physiological and structural differences that should lead to 

complementarity and facilitation mechanisms. For instance, beech has a rather extended 

horizontal rooting system compared to oak that have a deeper pivoting rooting system allowing 

them to maintain higher transpiration rates during drought (Bréda et al., 1993; Čermák & Fér, 

2007). Beech is also more isohydric compared to oak, by closing its stomata at less negative 

water potential (Pretzsch et al., 2013; Roman et al., 2015), thereby limiting the competition for 

soil moisture for oak during dry conditions. However, previous work has shown that while deep-

rooted oak trees benefit from interspecific interactions during drought, species with shallower 

roots, like beech, have an exacerbated response to soil moisture stress in mixtures (Grossiord et 

al., 2014b, 2015). We could therefore hypothesize that in our mixed stands, downy oak roots 

outcompete beech roots in the deeper and wetter soil horizons, leading to higher drought stress 

for beech compared to pure stands. These results are supported by findings of Jourdan et al. 

(2020) who showed lower productivity of beech when mixed with downy oak compared to pure 

stands in the same sites. 

In contrast, at moister sites, we found that beech had a more acquisitive strategy in mixtures 

compared to pure stands (i.e., higher chlorophyll concentration, more negative carbon isotopic 

composition, larger xylem vessels, higher SLA and thinner mesophyll; Figs. 2, 3 & 4). In these 
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sites, beech is competing with silver fir. These two species also exhibit fundamental differences, 

such as a different crown architecture (height, shape, and shade tolerance; Mauri et al., 2016) and 

the foliar type and habit (broadleaved vs. conifer, deciduous vs. evergreen). Interaction between 

species with these different structures could support complementarity processes such as a better 

utilization of the aboveground space because of a more diversified vertical structure (e.g., Jucker 

et al., 2015) and/or facilitation processes such as the enrichment of litter by more diverse soil 

microbial communities (Zak et al., 2003). Furthermore, these findings confirm previous work 

conducted in the same sites, where beech was found to be more productive in mixed stands with 

silver fir than in pure stands (Jourdan et al., 2020; Toïgo et al., 2021). Future work would be 

needed to identify the exact underlying physical and biological mechanisms driving these 

differential interaction effects along the gradient, including assessing the rooting depth of 

species, the soil nutritional status, and its microbial composition. 

Overall, our work revealed that species interactions are significant modulators of leaf and woody 

traits. Moreover, the same number of functional traits where altered by climate and species 

interactions (Table 3), with some traits showing larger variation in response to species 

interactions than to climate (e.g., Fig. 3). This finding suggests that species interactions are just 

as important drivers of intraspecific trait variation as climatic conditions. This result is especially 

striking for woody traits for which no variability was found along the gradient but where clear 

differences emerged between mixed and pure stands in the moister sites (Fig. 3). These findings 

are the first to demonstrate the high plasticity of beech’ hydraulic strategies and the adjustments 

of the efficiency to transport water in response to complementarity, facilitation and competition 

between species. However, our results need to be interpreted with care considering the few 

interactions included (interactions only with downy oak and silver fir). Future work should 

consider broader gradients where the same tree species are present along the entire gradient, 

which, however, might prove difficult due to the different climatic niches of different species. 

Nevertheless, these findings still highlight the importance of species interactions on the 

functional strategies of trees and further accentuates the need to include species interaction and 

identity in trait and climate-vegetation research.  A
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Conclusions 

Our study highlights that adjustments of Fagus sylvatica L. to a broad range of climatic 

conditions occurs mainly in the leaf, with trees developing more conservative traits as conditions 

get drier and warmer. No change in woody hydraulic traits was found, which could point towards 

a high hydraulic vulnerability with the projected decline in moisture within beech’s distribution 

range. Our work further revealed that intraspecific trait variation heavily depends on species 

interactions, and that these interactions can have stronger impacts than climatic conditions. 

However, these effects varied with the climate and the forest type. While the mixture with a 

more drought resistant species in drier and hotter regions seem to increase moisture constrains, 

beech seem to benefit from the mixture with a conifer in moister and cooler climates. Which 

underlying processes are driving these differences remains an open question for future work. 

Disentangling the impacts of atmospheric and soil drivers on trait variation would deserve 

further studies to fully decipher the significance of species interactions under a changing climate.  
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Table 1: Characteristics of the study sites.  

Location 
Site 

code 

Forest 

type 

Mean tree 

height (m) 

Mean 

basal area 

(cm²) 

Mean 

tree 

number 

Latitude  

(°N) 

Longitude  

(°E) 

High 

elevation  

(m a.s.l) 

Low 

elevation 

(m a.s.l) 

MAP* 

(mm) 

MAT* 

(°C) 

P/PET* 

2005 – 

2019 

P/PET* 

July-August 

2019 

Vercors VC 
beech – 

silver fir 
13.8 2.81 25 44.90 5.33 1403 1164 888 9.6 3.31 0.61 

Bauges BG 
beech – 

silver fir 
20.9 7.59 17 45.71 6.21 1222 1009 1001 9.3 2.64 0.51 

Mont 

Ventoux 
VT 

beech – 

silver fir 
13.8 3.13 33 44.19 5.24 1350 1201 647 13.6 2.20 0.18 

Sainte-

Baume 
SB 

beech – 

downy oak 
19.6 5.66 29 43.33 5.76 772 752 629 14.4 1.76 0.11 

Lagarde 

d’Apt 
LA 

beech – 

downy oak 
11.6 1.70 27 43.97 5.48 1116 1080 622 13.4 1.41 0.10 

Grand 

Luberon 
LU 

beech – 

downy oak 
9.3 1.36 38 43.82 5.53 974 925 589 13.1 1.39 0.08 

* MAP = mean annual precipitation, MAT = mean annual temperature, P/PET = precipitation divided by potential evapotranspiration  
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Table 2: List of leaf and wood traits measured. 

Trait Symbol Unit Organ Type Function 

Lumen area ALumen µm
2 

Wood Anatomical Water transport (Sperry et al., 2006) 

Theoretical hydraulic diameter DH µm Wood Anatomical Water transport (Tyree & Zimmermann, 2002) 

Vessels density VD vessels cm
-2 

Wood Anatomical Water transport (Nardini et al., 2014) 

Wood density WD mg cm
-3

 Wood Morphological Water transport (Santiago et al., 2004) 

Maximum CO2 assimilation Amax µmol m
-2

 s
-1

 Leaf Physiological Carbon uptake (Farquhar & Sharkey, 1982) 

Stomatal conductance gs mol m
-2

 s
-1

 Leaf Physiological Water loss and carbon capture (Farquhar & Sharkey, 1982) 

Leaf water potential ΨPD MPa Leaf Physiological Water status (Williams & Araujo, 2002) 

Chlorophyll concentration Chl µmol m
-2

 Leaf Physiological Carbon  uptake (Tognetti et al., 1995) 

Carbon isotopic composition δ
13

C ‰ Leaf Physiological Water-use efficiency (Farquhar & Richards, 1984) 

Intrinsic water-use efficiency WUEi µmol
-1

 Leaf Physiological Water-use efficiency (Fischer & Turner, 1978) 

Leaf surface LS cm² Leaf Morphological Water loss and carbon capture (McCulloh et al., 2010) 

Specific leaf area SLA m² kg
-1 

Leaf Morphological Water loss and carbon capture (Poorter & Rozendaal, 2008) 

Stomatal density SD stomata mm
-2 

Leaf Anatomical Water loss and carbon capture (Henry et al., 2019) 

Stomatal area Astomates µm² Leaf Anatomical Water loss and carbon capture (Henry et al., 2019) 

Mesophyll thickness M % Leaf Anatomical Carbon uptake and transport (Turrell, 1936) 

Lower cuticle thickness LC % Leaf Anatomical Water loss (Fernandez et al., 1997) 
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Table 3: Summary of the two linear mixed models (F- and p-value) on all functional traits, i.e., maximum CO2 assimilation (Amax), 

stomatal conductance (gs), predawn leaf water potential (ΨPD), chlorophyll concentration (Chl), stable carbon isotopic composition 

(δ
13

C), intrinsic water-use efficiency (WUEi), lumen area (ALumen), hydraulic diameter (DH), vessels density (VD), wood density 

(WD), leaf surface (LS), specific leaf area (SLA), stomatal density (SD), stomatal area (Astomates), mesophyll thickness (M), and lower 

cuticle thickness (LC). The first model evaluates the effects of P/PET, species mixture (pure vs. mixed stands), and their interaction. 

The second model evaluates the effects of species mixture, forest type (beech mixed with fir vs. oak), and their interaction. Significant 

effects (p ≤ 0.05) are highlighted in bold. 

Sources of 

variation 
P/PET Sp. mixture 

P/PET *  

sp. mixture 
Sp. mixture Forest type 

Sp. mixture * forest 

type 

Amax 6.05 (0.034) 0.18 (0.675) 1.09 (0.299) 3.37 (0.069) 14.09 (0.004) 5.51 (0.021) 

gs 3.27 (0.101) 0.29 (0.594) 1.12 (0.293) 2.23 (0.138) 5.19 (0.046) 2.47 (0.119) 

ΨPD 8.61 (0.015) 9.24 (0.003) 9.29 (0.003) 0.24 (0.625) 27.48 (<0.001) 11.51 (<0.001) 

Chl 13.90 (0.004) 2.03 (0.144) 5.07 (0.023) 5.32 (0.022) 12.53 (0.005) 7.28 (0.007) 

δ13C 2.91 (0.119) 9.87 (0.002) 7.92 (0.006) 2.21 (0.140) 2.55 (0.141) 2.81 (0.097) 

WUEi 1.36 (0.270) 0.00 (0.971) 0.23 (0.635) 2.59 (0.110) 0.61 (0.452) 0.57 (0.451) 

ALumen 0.00 (0.968) 1.92 (0.169) 6.92 (0.010) 12.71 (<0.001) 0.32 (0.582) 6.73 (0.011) 

VD 0.69 (0.409) 0.00 (0.989) 0.56 (0.454) 5.46 (0.021) 0.06 (0.810) 0.47 (0.494) 

DH 0.04 (0.850) 0.34 (0.561) 2.12 (0.148) 6.60 (0.012) 0.06 (0.803) 1.10 (0.296) 

WD 0.41 (0.538) 1.23 (0.269) 0.59 (0.443) 1.51 (0.222) 0.14 (0.717) 0.39 (0.532) 

LS 0.29 (0.599) 0.18 (0.673) 0.38 (0.541) 0.26 (0.611) 0.03 (0.865) 0.61 (0.438) 

SLA 1.15 (0.308) 7.15 (0.009) 5.70 (0.019) 1.67 (0.199) 0.59 (0.461) 1.37 (0.244) 

SD 3.17 (0.106) 0.91 (0.342) 0.64 (0.424) 0.39(0.533) 1.89 (0.199) 0.15 (0.696) 

Astomates 5.22 (0.024) 1.04 (0.310) 0.59 (0.443) 0.90 (0.346) 3.77 (0.081) 1.71 (0.194) 

M 0.17 (0.693) 5.35 (0.023) 3.75 (0.056) 2.28 (0.134) 0.01 (0.942) 0.31 (0.580) 

LC 13.36 (0.005) 0.44 (0.508) 0.43 (0.513) 0.01 (0.904) 17.63 (0.002) 0.01 (0.920) A
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Note: full model: 
lmer (functional traits ~ P/PET + sp. mixture + P/PET * sp. 

mixture + (1|Site:subgroups)) 

lmer(functional traits ~ sp. mixture + forest type + sp. mixture * 

forest type + (1|Site:subgroups)) 
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Figure 1: Geographical locations of the study sites. All three northern sites (BG, VC, VT) are 

composed of beech pure stands and mixed stands where beech is co-occurring with silver fir. The 

southern sites (LA, LU, SB) are also composed of beech pure stands and mixed stands where 

beech is co-occurring with downy oak. The color gradient corresponds to the climatic gradient 

where the dark and light-blue represents the higher and lower P/PET, respectively.  
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Figure 2: Maximum CO2 assimilation (Amax), stomatal conductance (gs), predawn leaf water 

potential (ΨPD), chlorophyll concentration (Chl), stable carbon isotopic composition (δ
13

C), and 

intrinsic water-use efficiency (WUEi) as a function of P/PET (mean ± SE, n=10 trees) and forest 

type (three northern sites where beech and silver fir co-occurs vs. three southern sites where 

beech and downy oak co-occurs, mean ± SE, n=30 trees). The color gradient corresponds to the 

climatic gradient where the dark and light-blue represents the higher and lower P/PET, 

respectively. The triangles and circles stand for the pure and mixed stands, respectively. Shown 

are the regression lines for the overall model (in black) or for each species mixture (light and 

dark grey for pure and mixed stands, respectively) when significant. P-values are given is the 

lower right corner when significant.   
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Figure 3: Lumen area (ALumen), hydraulic diameter (DH), vessels density (VD), and wood density 

(WD) as a function of P/PET (mean ± SE, n=10 trees) and forest type (three northern sites where 

beech and silver fir co-occurs vs. three southern sites where beech and downy oak co-occurs, 

mean ± SE, n=30 trees). The color gradient corresponds to the climatic gradient where the dark 

and light-blue represents the higher and lower P/PET, respectively. The triangles and circles 

stand for the pure and mixed stands, respectively. Shown are the regression lines for the overall 

model (in black) or for each species mixture (light and dark grey for pure and mixed stands, 

respectively) when significant. P-values are given is the lower left corner when significant.  
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Figure 4: Leaf surface (LS), specific leaf area (SLA), stomatal density (SD), stomatal area 

(Astomates), mesophyll thickness (M), and lower cuticle thickness (LC) as a function of P/PET 

(mean ± SE, n=10 trees) and forest type (three northern sites where beech and silver fir co-occurs 

vs. three southern sites where beech and downy oak co-occurs, mean ± SE, n=30 trees). The 

color gradient corresponds to the climatic gradient where the dark and light-blue represents the 

higher and lower P/PET, respectively. The triangles and circles stand for the pure and mixed 

stands, respectively. Shown are the regression lines for the overall model (in black) or for each 

species mixture (light and dark grey for pure and mixed stands, respectively) when significant. P-

values are given is the right corner when significant.  
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Supporting information 

Table S1: Shallow soil characteristics of the studied sites from 0 to 15 cm depth. 

Figure S1: Picture of measurements made on the woody and leaf tissues. 
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