
Submitted 23 April 2021
Accepted 6 July 2021
Published 17 August 2021

Corresponding author
Diana Martinez-Mosquera,
diana.martinez@epn.edu.ec

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 30

DOI 10.7717/peerj-cs.652

Copyright
2021 Martinez-Mosquera et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Efficient processing of complex XSD
using Hive and Spark
Diana Martinez-Mosquera1, Rosa Navarrete1 and Sergio Luján-Mora2

1Department of Informatics and Computer Science, Escuela Politecnica Nacional, Quito, Ecuador
2Department of Software and Computing Systems, University of Alicante, Alicante, Spain

ABSTRACT
The eXtensible Markup Language (XML) files are widely used by the industry due to
their flexibility in representing numerous kinds of data. Multiple applications such as
financial records, social networks, and mobile networks use complex XML schemas
with nested types, contents, and/or extension bases on existing complex elements or
large real-world files. A great number of these files are generated each day and this has
influenced the development of Big Data tools for their parsing and reporting, such as
Apache Hive and Apache Spark. For these reasons, multiple studies have proposed new
techniques and evaluated the processing of XML files with Big Data systems. However,
a more usual approach in such works involves the simplest XML schemas, even though,
real data sets are composed of complex schemas. Therefore, to shed light on complex
XML schema processing for real-life applications with Big Data tools, we present an
approach that combines three techniques. This comprises three main methods for
parsing XML files: cataloging, deserialization, and positional explode. For cataloging,
the elements of the XML schema are mapped into root, arrays, structures, values,
and attributes. Based on these elements, the deserialization and positional explode
are straightforwardly implemented. To demonstrate the validity of our proposal, we
develop a case study by implementing a test environment to illustrate themethods using
real data sets provided from performancemanagement of twomobile network vendors.
Our main results state the validity of the proposed method for different versions of
Apache Hive and Apache Spark, obtain the query execution times for Apache Hive
internal and external tables and Apache Spark data frames, and compare the query
performance in Apache Hive with that of Apache Spark. Another contribution made is
a case study in which a novel solution is proposed for data analysis in the performance
management systems of mobile networks.

Subjects Algorithms and Analysis of Algorithms, Computer Architecture, Computer Networks
and Communications, Programming Languages
Keywords Hive, Spark, Performance management, Mobile network, Complex XSD, XML

INTRODUCTION
The eXtensible Markup Language (XML) is now widely used on the Internet for different
purposes. There are numerous XML-based applications that utilize tag-based and nested
data structures (Chituc, 2017; Debreceny & Gray, 2001; Hong & Song, 2007) due to greater
flexibility in the representation of different types of data: these can be customized by the
user. However, the main constraint is that XML representation is inefficient in terms of
processing and with respect to query times; for this reason, agile and intelligent search and

How to cite this article Martinez-Mosquera D, Navarrete R, Luján-Mora S. 2021. Efficient processing of complex XSD using Hive and
Spark. PeerJ Comput. Sci. 7:e652 http://doi.org/10.7717/peerj-cs.652

https://peerj.com/computer-science
mailto:diana.martinez@epn.edu.ec
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.652
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.652


query proposals are required (Hsu, Liao & Shih, 2012). XML streams represent an extremely
popular form of data exchange used for social networks, Really Simple Syndication (RSS)
feeds, financial records, and configuration files (Mozafari, Zeng & Zaniolo, 2012). It is
therefore important to focus on efficiently processing data for complex semi-structured
data such as XML.

The large amounts of XML data created daily have influenced the development of Big
Data solutions to handlemassiveXMLdata in a scalable and efficient environment (Boussaid
et al., 2006; Fan et al., 2018). Nowadays, a multitude of published studies have proposed
methodologies and solutions for processing these types of files using Big Data tools.
However, a more common approach in such works involves the simplest examples of XML
documents, with few attributes or with fragments of the complete XML file, even though
real data sets are composed of complex schemas that include nested arrays and structures.
As explained in the RelatedWork section, the proposals generally test simple XML schemas
or do not present the schema they are used for. Therefore, there is no proof they are useful
in the real world. Moreover, it is complicated to reproduce the proposals as no detailed
procedure is presented.

To address the lack of methods for processing XML files with complex schemas, we
present an approach in this study based on three main methods: (1) cataloging, (2)
deserialization, and (3) positional explode. In (1), we identify the main elements within an
XML Schema Definition (XSD) and map them in a complete list of items with a systematic
order: root, arrays, structures, values, and attributes. In (2), the XML file is converted into
a table with rows and columns. Finally, in (3), the elements of the arrays are placed in
multiples rows to improve the visualization for the final user.

To demonstrate the validity of our proposal in a Big Data environment, we present a
case study that uses 3G and 4G performance management files from two mobile network
vendors as real data sets. This is because 3G and 4G are now the most commonly used
mobile technologies in the world (Jabagi, Park & Kietzmann, 2020). Furthermore, the
mobile networks are growing at a rapid pace: according to the Global System for Mobile
Communications, there were around 8 billion connections worldwide in the year 2020 and
this is expected to reach 8.8 billion connections by 2025 (GSM, 2020). To provide mobile
services to these users, thousands of network elements have been deployed around the
world. These constantly generate performance management data to monitor the network
status close to real-time. For this reason, this large amount of data must be queried in the
shortest possible time to offer an excellent service to the end user and efficiently prevent
or detect outages (Martinez-Mosquera, Navarrete & Lujn-Mora, 2020). These data sets are
XML files composed of complex schemas with nested structures and arrays.

In this paper, we utilize an Apache Hadoop framework for the experiments as this is
an open source solution that has been widely deployed in several projects. Moreover, it
provides a distributed file system with the ability to process Big Data with both efficiency
and scalability (Lin, Wang & Wu, 2013). In addition, our research addresses the evaluation
of query execution times for complex XML schemas in different versions, with the aim of
validating the proposal for old and new software developments.

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 2/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


For the test environment, the Hadoop Distributed File System (HDFS) was used
as a data lake, as this is a powerful system that stores several types of data (Apache,
2021a). Additionally, we selected Apache Apache Hive due to its native support of XML
files (Apache, 2021b), and the existing parsing serializer/deserializer tool from IBM to
create the external and internal tables. Finally, we evaluate the execution of query times in
Apache Spark (Apache, 2021c) through the implementation of data frames from XML files
with complex schemas.

Using the proposed methods, tables and data frames can be created in a more intuitive
form. We present all the processes involved in creating Apache Hive internal and external
tables and Apache Spark data frames; the results of the evaluation of query execution times;
and, finally, a comparison of the results between Apache Hive and Apache Spark.

Our main research questions are as follows:
1. Using the proposed method, is it possible to automatically create Apache Hive external

and internal tables and Apache Spark data frames for complex schemas of XML files?
2. In terms of query execution time, what type of Apache Hive table is more efficient;

internal or external?
3. Which system, Apache Hive or Apache Spark, provides the shortest query response

times?
The remainder of this paper is organized as follows. In the next section, Related

Concepts, we review concepts related to our work to facilitate understanding of this area.
This section then presents existing relevant studies and the main contributions of our
research. The Methods section presents the methods proposed to identify the elements
of the catalog and the process to apply deserialization and positional explode methods in
Apache Hive and Apache Spark. The Case Study section presents the experimental results
of the query execution times for Apache Hive internal and external tables and Apache Spark
data frames using 3G and 4G performance management files from two mobile network
vendors. Finally, the Conclusions section draws final conclusions, answers the research
questions, and discusses possible future work.

RELATED CONCEPTS
To facilitate understanding, the following are brief descriptions of the main concepts
employed in this work.

XML
XML (W3C, 2016) is a flexible text format that was developed by the XMLworking group of
the World Wide Web Consortium (W3C) in 1996. It is based on the Standard Generalized
Markup Language (SGML) or ISO 8879. The XML language describes a class of data objects
called XML documents that are designed to carry data with a focus on what data are and
not how data look. XML has been widely adopted as the language has no predefined tags.
Thus, the author defines both the tags and the document structure. XML stores data in
plain text format, making it human-readable and machine-readable. This provides an
independent way of storing, transporting, and sharing data.

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 3/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


An XML schema describes the structure of an XML document and is also referred to
as XSD. Within an XSD, the elements of the XML document are defined. Elements can
be simple or complex. A simple element can contain only text, but they can be of several
different types, such as boolean, string, decimal, integer, date, time, and so on. By contrast,
a complex element contains other simple or complex types (W3C, 2016).

Complex XSD is considered in several studies (Krishnamurthy et al., 2004; Murthy
& Banerjee, 2003; Rahm, Do & Mamann, 2004): those that use complex types, complex
contents and/or extension bases on existing complex elements, or large real-world XSD.
The complex contents specify that the new type will havemore than one element. Extension
bases refer to the creation of new data types that extend the structure defined by other data
types (W3C, 2016). Large XSD is based on the number of namespaces, elements, and types
in the XML files. Appendix A presents an example of a complex XSD that follows the 3rd
Generation Partnership Project (2005) format used for performance management in mobile
networks. In this work, the files used for the case study are based on this XSD.

The XSD can also define attributes that contain data related to a specific element. As
best practice, attributes are used to store metadata of the elements and the data itself
are stored as the value of the elements (W3C, 2016). The XML syntax below presents an
example of the use of attributes and values in the elements: an attribute is used to store the
identification number of the element and a value is used to store the data.

<root >
<element attribute_id ="01">
value_of_element_01
</element >
<element attribute_id ="02">
value_of_element_02
</element >
</root >

Apache Hive
Apache Hive (Apache, 2021b) is a data warehouse software that incorporates its own query
language based on SQL, named Apache HiveQL, to read and write data sets that reside
in a distributed storage such as HDFS. Apache Hive also makes use of a Java Database
Connectivity (JDBC) driver to allow queries from clients such as the ApacheHive command
line interface, Beeline, and Hue. Apache Hive fundamentally works with two different types
of tables: internal (managed) and external.

With the use of internal tables, Apache Hive assumes that the data and its properties are
owned by Apache Hive and can only be changed via Apache Hive command; however, the
data reside in a normal file system (Francke, 2021).

Conversely, Apache Hive external tables are created using external storage of the data,;
for instance, the HDFS directory where the XML files are stored. The external tables are
created in Apache Hive but the data are kept in HDFS. Thus, when the external table is
dropped, only the schema in the database is dropped, not the data (Francke, 2021).

Apache Spark
Apache Spark (Apache, 2021c) is an engine for large data processing. It can work with a set
of libraries such as SQL, Data Frames, MLlib for machine learning, GraphX, and Apache

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 4/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


Spark Streaming. These libraries can be combined in the same application. Apache Spark
can be used from Scala, Python, R, and SQL shells. This tool also runs on HDFS.

An Apache Spark data frame is a data set organized into named columns, similar to a
table in a relational database. Data frames can be constructed from structured data files,
tables in ApacheHive, external databases, or existing Resilient Distributed Data sets (RDD).
An RDD is a collection of elements partitioned across the nodes of the cluster that can be
operated in parallel. In general, RDD is created by starting with a file in the Hadoop file
system (Apache, 2021c).

Performance management files in mobile networks
The mobile network sector is one of the fastest-growing industries around the world.
Everybody has witnessed the rapid evolution of its technologies over the last few
decades (Martinez-Mosquera, Navarrete & Lujn-Mora, 2020).

A mobile network is composed of Network Elements (NEs) that produce correlated
Performance Measurement (PM) data managed by a Network Manager (NM) (3rd
Generation Partnership Project, 2005). PM data are used to monitor the operator’s network,
generate alarms in case of failures, and support decision-making in the area of planning
and optimization. In summary, PM data check the behavior of network traffic, almost in
real time, through the values of the measurements transmitted in every file. PM files are
based on the XSD proposed in the Technical Specification 32.401 version 5.5.0 from 3rd
Generation Partnership Project, 2005 which is presented in Appendix A. Each vendor then
adapts and personalizes them according to their needs.

RELATED WORK
A review of the literature identified research related to querying XML documents
that involves numerous methods and algorithms. Most of these publications test their
approaches using simple XSD, only a few are related to Apache Hive and Apache Spark. In
the following section, we review the research most closely related and relevant to our study
and explain how these studies differ from our approach. This comparison highlights some
of the contributions of our work.

Hricov et al. (2017) evaluate the computation times to query XML documents stored in
a distributed system using Apache Spark SQL and XML Path (XPath) query language to
test three different data sets. The XML files contain only four attributes. They perform SQL
queries to evaluate XPath queries and the Apache Spark SQL API. Themain difference from
our study is that we evaluate the query execution times for XML documents of complex
types from real-life mobile networks in Apache Hive and Apache Spark. Furthermore, we
explain in detail how to apply our proposed method to facilitate its replication in other
studies, whereas Hricov et al. (2017) only summarize their proposal.

Luo, Liu & Watfa (2014) propose a schema to store XML documents in Apache Hive
named open Apache Hive schema. The proposal consists of defining three columns:
markup, content, and Uniform Resource Identifier (URI). Every tag is stored in the
markup column, content refers to the value of the attribute and URI the data location. In
contrast to our research, the cited study does not present examples for XSD with complex

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 5/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


types, neither the results of the computation times in Apache Hive and Apache Spark.
Moreover, the cited study only presents an approach for external tables, whereas our study
includes internal tables and data frames for Apache Spark.

Hsu, Liao & Shih (2012) propose a system based on Apache Hadoop cloud computing
framework for indexing and querying a large number of XML documents. They test the
result times for streaming and batched query. They stated that the XML files need to be
parsed and then indexes are produced to be stored as HDFS files; however, no details about
the method employed to process the data is described, nor the XSD used in the research.
They present the execution times obtained for the index construction and query evaluation.
However, we explain in detail how to implement our approach using real data sets from
mobile networks for Apache Hive and Apache Spark.

Hong & Song (2007) propose a method for permanently storing XML files into a
relational databaseMS SQL Server. For tests, they employ a web-based virtual collaboration
tool called VCEI. For each session, an XML format file is generated with four main entities:
identification, opinion, location in the image, and related symbols. In this file, the opinions
of the users are associated with digital images. A single table is created with the generated
XML document. In contrast to our work, the authors do not focus on Big Data tools such
as Apache Hive or Apache Spark, and they only use an XSD with simple types.

Madhavrao & Moosakhanian (2018) propose a method for combining weather services
to provide digital air traffic data in standardized formats including XML and Network
Common Data Form (NetCDF) using a Big Data framework. This work presents an
example with an XML document. The reporting tool used is Apache Spark SQL, but no
details about its implementation are presented. This approach focuses on providing a query
interface for flight and weather data integration, but unlike our study does not evaluate
query time execution in Apache Hive and Apache Spark.

Zhang & Mahadevan (2019) present a deep learning-based model to predict the
trajectory of an ongoing flight using massive raw flight tracking messages in XML
format. They cite the need to parse the raw flight XML files using the package
’com.databricks.Apache Spark.xml’ in Apache Spark to extract attributes such as arrival
airport, departure airport, timestamp, flight ID, position, altitude, velocity, target position,
and so on. However, no detail about the implementation is provided nor is there any
information on the XSD used and the behavior for Apache Hive and Apache Spark that we
consider in our study.

Vasilenko & Kurapati (2015) discuss the use of complex XML in the enterprise and the
constraints in Big Data processing with these types of files. They thus propose a detailed
procedure to design XML schemas. They state that the Apache Hive XML serializer-
deserializer and explode techniques are suitable for dealing with complex XML and present
an example of the creation of a table with a fragment of a complex XML file. By contrast,
in our work, we propose the cataloging procedure and also evaluate our approach for
Apache Spark data frames. We additionally present the query execution times obtained
after applying our proposal.

Other studies also utilize XML documents to evaluate the processing time with HDFS
and the Apache Spark engine; however, the files used for the tests contain simple types,

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 6/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


Figure 1 Hadoop architecture to evaluate the query execution times of complex XSD in Apache Hive
and Apache Spark.

Full-size DOI: 10.7717/peerjcs.652/fig-1

with a few attributes, or do not present schemas (Hai, Quix & Zhou, 2018; Kunfang, 2016;
Zhang & Lu, 2021).

Finally, our research explains how to use cataloging, deserialization and positional
explode to process complex XSD in Apache Hive internal and external tables and Apache
Spark data frames; moreover, we demonstrate the validity of our proposal in a test Big Data
environment with real PM XML files from two mobile network vendors.

METHODS
The solution we propose for querying complex XML schemas is based on Big Data systems
such as HDFS for storing, and Apache Hive and Apache Spark for reporting. Figure 1
sketches the architecture employed to evaluate the query execution times for Apache Hive
and Apache Spark. HDFS provides a unified data repository to store raw XML files and
external tables. In the reporting layer, Apache Hive and Apache Spark are connected to
HDFS to perform the queries through Apache Hive Query Language (HQL) (Cook, 2018),
and XPath expressions for Apache Hive (Tevosya, 2011) and Scala shell for Apache Spark
(Apache, 2021c).

In general, Big Data architectures use the Extract Load and Transform (ELT) process
(Marín-Ortega, Abilov & Gmez, 2014), which transforms the data into a compatible form, at
the end of the process. The ELT process differs from the Extract Transform and Load(ETL)
process, used for traditional data warehouse operations, where the transformation of the
data is conducted immediately after the extraction (Mukherjee & Kar, 2017).

In the extract phase presented in Fig. 1, it is assumed that a cluster-based approach
assigns a system to manage the collection of the XML files from the sources. Then, in the
load phase, these data are stored in a repository such as HDFS. No changes in the format
of the XML files are made in the load process; therefore the transformation process is not
comprised.

Once the data are available on the HDFS, we identify three main vectors: (1) vector
A={Ai}; i= 1,...,N whereN relates to the total number of XML files, (2) vector X ={Xi};
i= 1,...,M whereM relates to the set of distinct XSD, and (3) vector E ={Ei}; i= 1,...,P

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 7/33

https://peerj.com
https://doi.org/10.7717/peerjcs.652/fig-1
http://dx.doi.org/10.7717/peerj-cs.652


Table 1 Catalog to identify and depict element types from complex XSD.

Element types Notation

Root <>

Array []
Structure {}
Attribute @
Value #

where P relates to the different element types in the XSD according to the catalog defined
in Table 1.

The catalog in Table 1 allows us to map the main element types present in an XML file
with a possible notation through symbols such as <>, [], {}, @, and #. Our main goal is to
facilitate the acknowledgment of XML element types to create tables and perform queries
in both Apache Hive and Apache Spark. These symbols conform to the JavaScript Object
Notation (JSON) (W3C, 2020) to avoid new syntax. Root type corresponds to the main tag
used to initiate and terminate the XML file. Array and Structure types relate to the types
of elements or children-elements array and structure, respectively. Attribute refers to the
attributes and Value denotes the values of elements that can be of different types, such
as strings, char, short, int, float, among others. For clarity, we present an example of the
identification of vectors and its respective catalog for the XSD in Fig. 2.

Figure 2 presents an example of a complex XSD. This contains the following complex
types: element1, element11, element111, element112, and element12. Furthermore,
element11 extends element111, and element111 extends element112.

For Fig. 2, there is an XML file only, thus vector A is identified with one element A1:
A={A1}.
A1 is composed of one schema; thus vector X is composed by one element X1:
X ={X1}

Inside the X1 schema, the element types from Table 1 must be identified; therefore,
vector E is composed of five vectors: (1) root E <>, (2) arrays E[], (3) structures E{}, (4)
attributes E@, and (5) values E#.

E ={E <>,E[],E{},E@,E#};
For Fig. 2, the five vectors contain the following elements:

1. E <>={root }; //The main tag is the root.
2. E[] = {element1,element11}; //Two structures with elements of different data types.
3. E{} = {element111,element112,element12}; //Three arrays with elements of

homogeneous data types.
4. E@={attribute111,attribute112,attribute12}; //Three attributes.
5. E#= {values_of _element111,values_of _element112,values_of _element12}; //Three

elements with simple content.

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 8/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


Figure 2 Example of an XSDwith complex types and extension base.
Full-size DOI: 10.7717/peerjcs.652/fig-2

After the XML element types are mapped with the proposed catalog in Table 1, tables
for Apache Hive or data frames for Apache Spark can be created. Figure 3 summarizes the
workflow for the three main methods: (1) cataloging, (2) deserialization, and (3) positional
explode. For (1), the E <> vector identifies the root of the used XSD, while E[] and E{}
vectors allow easy identification of the indexes. An index is identified for each array. It is
also important to state whether a structure is placed before an array; this structure also has
an index. Without an index, internal queries to arrays load all the rows belonging to the
array. But, with an index, only the specific record in a table is loaded.

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 9/33

https://peerj.com
https://doi.org/10.7717/peerjcs.652/fig-2
http://dx.doi.org/10.7717/peerj-cs.652


Figure 3 Workflow to create tables and data frames for complex XSD.
Full-size DOI: 10.7717/peerjcs.652/fig-3

Finally, the XPath queries to the nodes are determined for each element of the E@ and
E# vectors. The indexes mapped also supply the expressions of XPath queries. The number
of queries corresponds to the number of the columns in an Apache Hive column-separated
table or Apache Spark data frame. The detailed procedure to create Apache Hive internal
and external tables, and also Apache Spark data frames, is explained in the following
sections.

Creation of Apache Hive tables for complex XSD
First, the input is the XML file denoted by Ai stored into HDFS. The XSD that belongs to Ai

is named vector Xi. Vector E is composed of the elements root, array, structure, attribute,
and value elements, identified after performing the map with the catalog proposed in
Table 1.

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 10/33

https://peerj.com
https://doi.org/10.7717/peerjcs.652/fig-3
http://dx.doi.org/10.7717/peerj-cs.652


Algorithm 1: Creation of Apache Hive Tables for Complex XSD
Input: XML documents Ai

Output: Apache Hive Table
1 Create Xi← Ai;
2 Create E← catalog;
3 while X do
4 if internal table then
5 Create RawTable;
6 for Xi do
7 xmlinput.start=<>"← E <>;
8 xmlinput.end=</>"← E <> ;
9 location=/hdfs;
10 Deserialization ;
11 load data into table;
12 end
13 return RawTable;
14 Create ColumnSeparatedInternalTable;
15 for RawTable do
16 XPATH strings← E@, E#;
17 Positional Explode← E[], E{};
18 return ColumnSeparatedInternalTable;
19 end
20 else
21 Create ExternalRawTable;
22 for Xi do
23 xmlinput.start=<>"← E <>;
24 xmlinput.end=</>"← E <>;
25 location=/hdfs;
26 Deserialization ;
27 end
28 return ExternalRawTable;
29 Create ColumnSeparatedExternalTable;
30 for ExternalRawTable do
31 XPATH strings← E@, E#;
32 Positional Explode← E[], E{};
33 return ColumnSeparatedExternalTable;
34 end
35 end
36 end

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 11/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


Apache Spark data frames for complex XSD
The first phase in the creation of the Apache Hive table relies on XmlInputFormat from the
Apache Mahout project (Holmes, 2014) to shred the input file into XML fragments based
on specific start and end tags, determined in the vector E <>. The XMLDeserializer queries
the XML fragments with an XPath Processor to populate column-separated Apache Hive
tables, where the number of columns correspond to the element numbers of the vector E@
plus E#. However, method (3) may be needed to explode the array data into multiple rows
with the help of the elements identified in the vectors E[] and E{}.

The entire process is summarized in Algorithm 1. The input is the XML file denoted
by Ai, in which the XML Schema and the vector E are identified. Create RawTable
or Create ExternalRawTable are applied using the deserialization method, the output
of which serves as the input to the Create ColumnSeparatedInternalTable or Create
ColumnSeparatedExternalTable functions, respectively. In these functions, positional
explode methods are applied. Once the workflow is completed, the data from the XML
files are stored in rows and columns in Apache Hive tables and queries through HQL can
be performed. This process is useful for internal and external tables.

As stated in the Related Concepts section, Apache Spark can work with a set of libraries.
In this work, we select Data Frames as it is similar to the column-separated Apache Hive
tables and is independent of other database engines such as Apache Hive.

According to the methods proposed in Fig. 3, the use of the catalog, deserialization, and
explode methods are also suitable for the Apache Spark engine. The difference in Apache
Spark, is that there are no internal and external table concepts; therefore, the XML is stored
in a data frame variable and the queries are performed over these data frames. Similar
to Apache Hive, arrays must be exploded, and values and attributes are the fields to be
queried.

The entire process for creating data frames in Apache Spark is summarized in Algorithm
2. The input is the XML file denoted by Ai stored previously in HDFS, and the XSD
that belongs to Ai is named vector Xi. Vector E is composed of the root, array, structure,
attribute, and value elements, identified after performing themapwith the catalog proposed
in Table 1.

The function CreateDataFrame is applied to vector Xi using the deserialization
method to return the data frame. The output of CreateDataFrame is the input of the
CreateColumnSeparatedDataFrame function, where the number of elements in vectors E@
and E# correspond to the number of columns and elements in vectors E[] and E{} for
the positional explode method. Finally, the data frame with column-separated values is
returned.

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 12/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


Algorithm 2: Creation of Apache Spark Data Frames for Complex XSD
Input: XML documents Ai

Output: Apache Spark Data Frame
1 Create Xi← Ai;
2 Create E← catalog;
3 while X do
4 CreateDataFrame;
5 for Xi do
6 rowTag=<>"← E <>;
7 location=/hdfs;
8 Deserialization ;
9 end
10 return DataFrame;
11 Create ColumnSeparatedDataFrame;
12 for DataFrame do
13 Select Expression← E@, E#;
14 Positional Explode← E[], E{};
15 return ColumnSeparatedDataFrame;
16 end
17 end

Appendices B and C present examples of the Apache Hive tables and Apache Spark data
frames created for the example file in Appendix A.

CASE STUDY
The implementation of the Big Data framework was performed using a cloud computing
solution composed of a virtual machine VM.Standard 2.2 with the following hardware
features:

• 200 GB of storage.
• Two VCPU cores and two threads per core with 4 GHz in total.
• 30 GB of RAM.

At software level, we tested our proposal in two environments. It was important to
evaluate two versions to verify that the proposal is applicable in any version and that the
query times improve in recent versions. Furthermore, not all potential users always have
access to the latest versions of the software.

Version 1. ApacheHadoopHDFS version 2.6.0, ApacheHive version 1.1.0, Apache Spark
version 1.6.0, Java version 1.7.0_67 and Scala version 2.10.5.

Version 3. ApacheHadoopHDFS version 3.2.1, ApacheHive version 3.1.2, Apache Spark
version 3.0.1, Java version 1.8.0_271, and Scala version 2.12.10.

For clarity, we present a case study using PM XML files taken from two mobile network
vendors. As stated in the Introduction section, these data are selected because mobile

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 13/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


networks generate a high volume of these files every second. For instance, in the United
States of America in 2019, there were 395,562 cell sites (Statista, 2020). Therefore, taking
a PM file with 20 KB as reference, the total file size is analyzed to be approximately 8 GB
per second. These samples are based on the XSD presented in Appendix A according to
the 3GPP standard. The 3GPP standard maps the tags defined in the file format definition
to those used in the XML file (3rd Generation Partnership Project, 2005). The data sets used
for the tests are the following:
1. An PM XML file from a real 3G mobile network from a vendor named A with the

schema presented below:

mdc
|-- md: array
| |-- element: struct
| | |-- mi: struct
| | | |-- gp: long
| | | |-- mt: array
| | | | |-- element: string
| | | |-- mts: string
| | | |-- mv: array
| | | | |-- element: struct
| | | | | |-- moid: string
| | | | | |-- r: array
| | | | | | |-- element: string
| | |-- neid: struct
| | | |-- nedn: string
| | | |-- nesw: string
| | | |-- neun: string
|-- mff: struct
| |-- ts: string
|-- mfh: struct
| |-- cbt: string
| |-- ffv: string
| |-- sn: string
| |-- st: string
| |-- vn: string

2. An PM XML file from a real 4G mobile network from a vendor named B with the
schema presented below:

measCollecFile
|-- fileFooter: struct
| |-- measCollec: struct
| | |-- #VALUE: string
| | |-- __endTime: string
|-- fileHeader: struct
| |-- __fileFormatVersion: string
| |-- __vendorName: string
| |-- fileSender: struct
| | |-- #VALUE: string
| | |-- __elementType: string
| |-- measCollec: struct
| | |-- #VALUE: string
| | |-- __beginTime: string
|-- measData: struct
| |-- managedElement: struct
| | |-- #VALUE: string
| | |-- __userLabel: string
| |-- measInfo: array
| | |-- element: struct
| | | |-- __measInfoId: long
| | | |-- granPeriod: struct
| | | | |-- #VALUE: string
| | | | |-- __duration: string
| | | | |-- __endTime: string
| | | |-- measTypes: string

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 14/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


| | | |-- measValue: array
| | | | |-- element: struct
| | | | | |-- __measObjLdn: string
| | | | | |-- measResults: string
| | | | | |-- suspect: boolean
| | | |-- repPeriod: struct
| | | | |-- #VALUE: string
| | | | |-- __duration: string

In this research, we evaluate the query execution times for Apache Hive and Apache
Spark after applying the workflow proposed in Fig. 3. As described in the Method section,
we utilized the XSD of two PM XML files from mobile network vendors named A and B.
Table 2 presents the catalog mapping of the XSD elements for the A and B mobile network
vendors. The Root column identifies the roots of the used XSD, Arrays identifies all the
tags with arrays, Structures identifies all the tags with structures, and Attributes and Values
presents all the attributes and values of the XML files.

Once the arrays in theXSDare identified inTable 2, this column allows easy identification
of the indexes. Thus, an index is identified for each array; however, asmentioned previously,
it is important to observe whether a structure is placed before an array; this structure will
also have an index. For instance, Table 3 presents the indexes identification for the XSD
frommobile network vendors A and B. For the second array identified in Table 3 for vendor
A, mt array belongs to the mi structure; therefore, mt .index and mi.index are mapped.
Similarly, for the first array identified in Table 3 for vendor B, measInfo array belongs to
the measData structure; therefore, measInfo.index and measData.index are mapped.

Finally, the XPath queries are determined for each attribute and value identified in
Table 2. The indexes mapped in Table 3 also supply the expressions of the XPath queries.
For instance, in the first row of Table 4, the XPath expression should be mdc/md/mi/gp;
however, to query only the gp, the XPath expression uses the md.index and mi.index
indexes.

The number of queries corresponds to the number of the columns in a column-separated
table or data frame. Table 4 presents the identification of 14 queries for mobile network
vendors A and B, where the column-separated table or data frame will contain 14 columns
for each vendor. It is a simple coincidence that they both have 14 queries as this can vary
from file to file. The results obtained are presented in the following subsections.

Results
Apache Hive
XML files with 4,668 rows and 8,461 rows were used for the tests of mobile network vendors
A and B, respectively. Preliminary experiments were conducted to determine the average
query execution time for a complete table. Versions 1 and 3 were tested in four different
scenarios:
1. Creating an Apache Hive external raw table and then an Apache Hive view table with

the positional explode method.
2. Creating an Apache Hive internal raw table and then an Apache Hive view table with

the positional explode method.
3. Creating an Apache Hive external raw table and then a new Apache Hive table with the

positional explode method.

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 15/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


Table 2 Cataloging and deserialization for XSD frommobile network vendors A and B.

Vendor Root Arrays Structures Attributes and values

A mdc<> md[] mff{} mi{}gp#
md[]mi{}mt[] mfh{} mi{}mts#
md[]mi{}mv[] md[]mi{} element{}moid#
md[]mi{}mv[]r[] mv[]element{} r[]element#

md[]neid{} neid{}nedn#
neid{}nesw#
neid{}neun#
mff{}ts#
mfh{}cbt#
mfh{}ffv#
mfh{}sn#
mfh{}st#
mfh{}vn#
mt[]element@

B measCollecFile<> measData{}measInfo[] fileFooter{} fileHeader{}_fileFormatVersion#
measInfo[]measValue[] fileFooter{}measCollec{} fileHeader{}_vendorName#

fileHeader{} measInfo[]measTypes#
fileHeader{}fileSender{} measInfo[]_measInfoID#
fileHeader{}measCollec{} measValue[]_measObjLdn#
measData{} measValue[]measResults#
measData{}managedElement{} measValue[]suspect#
measInfo[]grandPeriod{} measCollec{}_endTime@
measInfo[]repPeriod{} measCollec{}_beginTime@

fileSender{}_elementType@
measData{}_userLabel@
grandPeriod{}_duration@
grandPeriod{}_endTime@
repPeriod{}_duration@

Table 3 Identification of indexes for XSD frommobile network vendors A and B.

Vendor Array Index

A md[] md.index
md[]mi{}mt[] mi.index

mt.index
md[]mi{}mv[] mv.index
md[]mi{}mv[]r[] r.index

B measData{}measInfo[] measData.index
measInfo.index

measInfo[]measValue[] measValue.index

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 16/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


Table 4 Positional explode and query identification for XSD frommobile network vendors A and B.

Vendor Attributes and
values

XPath Query

A mi{}gp# /mdc/md.index/mi.index/gp Q1
mi{}mts# /mdc/ md.index/mi.index/mts Q2
element{}moid# /mdc/md.index/mi.index/mv.index/moid Q3
r[]element# /mdc/md.index/mi.index/mv.index/r.index/element Q4
neid{}nedn# /mdc/md.index/neid/nedn Q5
neid{}nesw# /mdc/md.index/neid/nesw Q6
neid{}neun# /mdc/md.index/neid/neun Q7
mff{}ts# /mdc/mff/ts Q8
mfh{}cbt# /mdc/mfh/cbt Q9
mfh{}ffv# /mdc/mfh/ffv Q10
mfh{}sn# /mdc/mfh/sn Q11
mfh{}st# /mdc/mfh/st Q12
mfh{}vn# /mdc/mfh/vn Q13
mt[]element@ /mdc/md.index/mi.index/mt.index/element Q14

B fileHeader{}_fileFormatVersion# /measCollecFile/fileHeader/_fileFormatVersion Q1
fileHeader{}_vendorName# /measCollecFile/fileHeader/_vendorName Q2
measInfo[]measTypes# /measCollecFile/measData.index/measInfo.index/measTypes Q3
measInfo[]_measInfoID# /measCollecFile/measData.index/measInfo.index/_measInfoId Q4
measValue[]_measObjLdn# /measCollecFile/measData.index/measInfo.index/measValue.index/

_measObjLdn
Q5

measValue[]measResults# /measCollecFile/measData.index/measInfo.index/measValue.index/
measResults

Q6

measValue[]suspect# /measCollecFile/measData.index/measInfo.index/measValue.index/suspect Q7
fileFooter{}_endTime /measCollecFile/fileFooter/measCollec/_endTime Q8
measCollec{}_beginTime /measCollecFile/fileHeader/measCollec/_beginTime Q9
fileSender{}_elementType /measCollecFile/fileHeader/fileSender_elementType Q10
measData{}_userLabel /measCollecFile/measData.index/managedElement/_userLabel Q11
grandPeriod{}_duration /measCollecFile/measData.index/measInfo.index/granPeriod/_duration Q12
grandPeriod{}_endTime /measCollecFile/measData.index/measInfo.index/granPeriod/_endTime Q13
repPeriod{}_duration /measCollecFile/measData.index/measInfo.index/repPeriod/_duration Q14

4. Creating an Apache Hive internal raw table and then a new Apache Hive table with the
positional explode method.
It is important to highlight that it is necessary to create the raw table to deal only

with parent labels of the XML file as we are parsing complex schemas (Intel, 2013), and,
furthermore, positional explode is only available for SELECT sentences (Microsoft, 2021;
Databricks, 2021). For these preliminary experiments, we utilized the Data Query Language
(DQL) type from HQL for query statements and no limits in the rows were expressed.

Table 5 presents the average query execution times in the four scenarios and for the
two versions of Big Data software components. As indicated, the first and second scenarios
take longer than the third and fourth scenarios. Figure 4 presents the data for Table 5 in

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 17/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


Table 5 Average query execution times (seconds) for XML files from vendors A and B in fourth sce-
narios.

Scenario Vendor A [s]
version 1

Vendor B [s]
version 1

Vendor A [s]
version 3

Vendor B [s]
version 3

1 185.04 344.43 0.26 0.25
2 184.84 341.64 0.23 0.26
3 0.19 0.30 0.13 0.13
4 0.18 0.67 0.11 0.10

Figure 4 Average query execution times (seconds) for XML files from vendors A and B in fourth sce-
narios.

Full-size DOI: 10.7717/peerjcs.652/fig-4

graphical form, where the difference is remarkable. Therefore, based on the results of these
preliminary tests, the first and second scenarios were discarded.

Following the base expression of Appendix B, we created Apache Hive external and
internal raw tables and then column-separated tables with the positional explode method.
Over these tables, we conducted the queries obtained for each mobile network vendor
from Table 4 using sentences of DQL type with HQL. We limited the query to 1,000 rows
in order to perform the tests in a common scenario for all queries and tools.

In this section, we present the results of the evaluation of execution query time for:

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 18/33

https://peerj.com
https://doi.org/10.7717/peerjcs.652/fig-4
http://dx.doi.org/10.7717/peerj-cs.652


Figure 5 Average query execution times (milisenconds) for apache hive external and internal tables
versions 1 and 3 from vendor A.

Full-size DOI: 10.7717/peerjcs.652/fig-5

1. Apache Hive internal tables, where the XML files and the Apache Hive tables are stored
in the same Apache Hive directory and the queries are performed through HQL.

2. Apache Hive external tables, where the XML files are stored in HDFS and the tables are
stored in a Apache Hive directory. Queries are also performed through HQL.
Figure 5 presents the average query execution times for the XML files from vendor A and

Fig. 6 from vendor B. The queries relate to those identified in Table 4 for the third scenario
in blue for Apache Hive version 1 and yellow for version 3, and the fourth scenario in red
for version 1 and purple for version 3. The x axis presents the query identifications and the
y axis the average query execution time in ms . To determine the optimal query execution
time, the sample mean, variance, and standard deviation are calculated.

To calculate the sample mean X̄ , we denote the observations drawn from the Apache
Hive external and internal tables by XEi and XIi respectively, with i= 1,...,14, and N = 14
according to the number of queries. Let:

X̄E =
1
N

N∑
i=1

XEi and X̄I =
1
N

N∑
i=1

XIi

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 19/33

https://peerj.com
https://doi.org/10.7717/peerjcs.652/fig-5
http://dx.doi.org/10.7717/peerj-cs.652


Figure 6 Average query execution times (milisenconds) for Apache Hive external and internal tables
versions 1 and 3 from vendor B.

Full-size DOI: 10.7717/peerjcs.652/fig-6

To calculate the variance σ̂ 2, let the expression:

σ̂ 2
E =

1
N −1

N∑
i=1

(XEi− X̄E)2 and σ̂ 2
I =

1
N −1

N∑
i=1

(XIi− X̄I )2

To obtain the standard deviation σ̂ , the square root of the variance is calculated.
As Table 6 indicates, for external tables, the query execution time for vendor A deviates

from the average by approximately 22.53 ms for Apache Hive version 1 and 8.37 ms for
Apache Hive version 3. For internal tables, the standard deviation is equal to 12.75 ms for
Apache Hive version 1 and 2.67 ms for Apache Hive version 3.

Conversely, for vendor B, the query execution time deviates from the average by
approximately 15.69 ms for Apache Hive version 1 and 6.47 for Apache Hive version 3 for
external tables. The standard deviation for internal tables is 11.42 ms for Apache Hive 1 and
2.62 ms for Apache Hive 3. Therefore, the standard deviation obtained from Apache Hive
external tables for versions 1 and 3 is greater than that for internal tables; thus, we conclude
the fourth scenario allows lower query execution time and that the query execution time
for Apache Hive version 3 is more efficient than version 1 as we expected.

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 20/33

https://peerj.com
https://doi.org/10.7717/peerjcs.652/fig-6
http://dx.doi.org/10.7717/peerj-cs.652


Table 6 Mean, variance, and standard deviation for query execution times (milliseconds) in Apache
Hive external and internal tables.

Vendor Hive Mean X̄E Mean X̄I Variance
σ̂2
E

Variance
σ̂2
I

Standard
deviation σ̂E

Standard
deviation σ̂I

A 1 118.21 90.71 507.72 162.53 22.53 12.75
3 100.50 77.07 70.12 7.15 8.37 2.67

B 1 101.07 82.57 246.07 130.42 15.69 11.42
3 82.43 75.50 41.80 6.88 6.47 2.62

Figure 7 Average query execution times (ms ) for internal and external Apache Hive tables with differ-
ent XML file sizes.

Full-size DOI: 10.7717/peerjcs.652/fig-7

We perform other tests in order to determine the behavior for external and internal
Apache Hive tables version 3, with different file sizes. We only test version 3 as this provides
a better performance. The results are presented in Fig. 7.

As explained in the Related Concepts section, an internal Apache Hive table stores data
in its own directory in HDFS, while an external Apache Hive table uses data outside the
Apache Hive directory in HDFS. Therefore, as expected, the query execution times for
internal tables are smaller than external tables. However, as indicated in Fig. 7, as the
number of rows in an XML file increases, internal Apache Hive tables perform better

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 21/33

https://peerj.com
https://doi.org/10.7717/peerjcs.652/fig-7
http://dx.doi.org/10.7717/peerj-cs.652


than external tables. For instance, for 3,000,000 rows the query execution time takes
approximately 400 ms , while for an external table it takes around 1,800 ms .

Apache Spark
We also evaluated the query execution times for XSD from mobile network vendors A and
B in the Apache Spark engine versions 1 and 3. First, a data frame with a single row of raw
data was created as positional explode is only available for SELECT sentences. Like Apache
Hive, XML files with 4668 rows and 8461 rows were used for the tests of mobile network
vendors A and B, respectively.

The tests were conducted for the same queries employed for Apache Hive from
Table 4. Again, we limited the query to 1,000 rows. Each query was performed in the Scala
shell and follows the query syntax of Data Retrieval Statements (DRS). For instance, to
query Q1 of the mobile network vendor A:

var dataframe = sqlContext.read.
format("com.databricks.Apache Spark.xml").
option("rowTag", "mdc").load("/hdfs")

dataframe.selectExpr("explode(md)as_md").
select (\$"_md.mi.gp").show (1000)

In this section, we present the results of the evaluation of query execution times for
Apache Spark data frames. XML files are also stored in HDFS. Queries are performed
through a domain-specific language for structured data manipulation in the Scala shell.

The attained results for the query execution times in ms for Apache Spark are presented
in Table 7. Because there are no internal and external table concepts; only one execution
time is obtained for each query. As Table 7 indicates, for vendor A the query execution
time deviates from the average by approximately 323.19 ms for Apache Spark version 1
and 60.15 ms for version 3. Conversely, for vendor B the standard deviation is equal to
287.31 ms for version 1 and 71.86 ms for version 3. An important conclusion based on
these results is that our proposal can be applied on different versions of Apache Spark and
performance in the more recent versions is improved.

Comparison between Apache Hive and Apache Spark
According to the results of the case study, Apache Hive and Apache Spark are useful
for processing complex XML schemas using our proposed method. Figure 8 presents a
comparison of query execution times between the Apache Hive external table and the
Apache Spark data frame for a single row of raw data. Version 3 is used for the reasons
stated previously. Furthermore, we use the Apache Hive external table because the raw data
is inside the HDFS and the queries are performed there directly. From these results, we
conclude that the external Apache Hive table is more efficient when queries to a complete
data frame are performed, as indicated in Fig. 8. Appendices B and C present examples of
the sentences used to create the raw table for Apache Hive and the data frame with a single
row in Apache Spark, utilizing the XSD from Appendix A.

Additionally, Figs. 9 and 10 compares the query execution times between Apache Spark
data frames and Apache Hive external and internal tables for the 14 queries identified in
Table 4. The results indicate that, for every individual query, the attained times for Apache

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 22/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


Table 7 Query execution times, mean and standard deviation (milliseconds) in Apache Spark version 1 and 3.

Vendor /
Apache Spark
Version Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 X̄ σ̂

A/1 1850 1840 1770 1360 1880 1030 1130 2050 1390 1850 1380 1300 1260 1600 1549.29 323.19
A/3 193 217 307 219 143 158 118 193 166 86 106 103 108 177 163.86 60.15
B/1 1880 1550 1980 1770 1800 1240 1100 1840 1920 1340 1480 1560 1290 1850 1614.29 287.31
B/3 243 168 423 253 239 186 249 187 133 139 206 216 157 204 214.50 71.86

M
artinez-M

osquera
etal.(2021),PeerJ

C
om

put.Sci.,D
O
I10.7717/peerj-cs.652

23/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


Figure 8 Average query execution times (ms ) comparison for Apache Hive and Apache Spark with a
single row of raw data.

Full-size DOI: 10.7717/peerjcs.652/fig-8

Spark are 100 times or more greater than those attained for Apache Hive. Therefore, query
execution times for Apache Hive are also lower for individual values or attributes than
Apache Spark.

Similar results for individual queries can be observed in Table 6, where the query
execution time for Apache Hive version 1 deviates from the average by 22.53 ms as a
maximum value for vendor A. Conversely, as indicated in Table 7, the query execution
time for Apache Spark version 3 deviates from the average by 60.15 ms as a minimum
value.

We can therefore conclude that, because Apache Hive is only a database engine for
data warehousing, where the data are already stored in tables inside HDFS as its default
repository, it exhibits better performance than Apache Spark, Apache (2021b). Moreover,
Apache Spark is not a database even though it can access external distributed data sets
from data stores such as HDFS. Apache Spark is able to perform in-memory analytics for
large volumes of data in the RDD format; for this reason, an extra process is needed over
the data, Apache (2021c). For queries over XML files with complex schemas, Apache Spark
is no more efficient than Apache Hive; however, Apache Spark works better for complex
data analytics in terms of memory and data streaming, Ivanov & Beer (2016).

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 24/33

https://peerj.com
https://doi.org/10.7717/peerjcs.652/fig-8
http://dx.doi.org/10.7717/peerj-cs.652


Figure 9 Average query execution times (miliseconds) for Apache Hive and Apache Spark from
vendor A.

Full-size DOI: 10.7717/peerjcs.652/fig-9

Comparison with other approaches
As mentioned previously, multiple studies have evaluated the processing of XML files
with Big Data systems. However, these approaches involve the simplest XML schemas
and are generally not suitable for complex schemas that are more common in real life
implementations.

The studies by Hai, Quix & Zhou (2018); Hricov et al. (2017) and Hsu, Liao & Shih
(2012) present the results of their experiments processing XML files in terms of query
execution time. However, the features of their Big Data ecosystem differ from ours and
they do not present the versions used for the software. Therefore, we only take as reference
the query execution time ofHricov et al. (2017) that is approximately 7 s for 1,000,000 rows;
while, as a result of our work, to query approximately 3,000,000 rows, Apache Hive external
tables take around 2 s; while for theApache Spark data frame the queries take around 14.25 s,
using the Big Data environment version 3.

CONCLUSIONS AND FUTURE WORK
Motivated by the need to evaluate queries for complex XSD that are now used in multiple
applications, and the Big Data solutions available for processing this file format, we

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 25/33

https://peerj.com
https://doi.org/10.7717/peerjcs.652/fig-9
http://dx.doi.org/10.7717/peerj-cs.652


Figure 10 Average query execution times (miliseconds) for Apache Hive and Apache Spark from
vendor B.

Full-size DOI: 10.7717/peerjcs.652/fig-10

proposed three main methods to facilitate the creation of Apache Hive internal and
external tables, Apache Spark data frames, and the identification of their respective queries
based on the values and attributes of the XML file.

The three proposed methods were (1) cataloging, (2) deserialization, and (3) positional
explode. In (1), five element types of an XSD were identified: root, arrays, structures,
values, and attributes. The root element identification facilitated the creation of a raw table
with the content of the XML file. In (2), identification of attributes and values elements
allowed the raw XML data to be converted into a table with rows and columns. Finally, in
(3), the arrays were placed in multiples rows to improve the visualization to the final user.

To validate our proposal, we implemented a Big Data framework with two versions of
software components named version 1 and 3. As a case study, we used the performance
management files of 3G and 4G technologies from two mobile network vendors as real
data sets. Using the proposed methodology, internal and external Apache Hive tables and
Apache Spark data frames were created in a more intuitive form for both versions. Finally,
we presented the execution times of the 14 identified queries for PM files from mobile

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 26/33

https://peerj.com
https://doi.org/10.7717/peerjcs.652/fig-10
http://dx.doi.org/10.7717/peerj-cs.652


network vendors A and B. The query types used in this work can be employed for other
data sets as they are composed only of SELECT statements.

The experimental results indicated that query execution times for Apache Hive internal
tables performed better than Apache Hive external tables and Apache Spark data frames.
Moreover, the Big Data environment implemented with HDFS version 3.2.1, Apache Hive
version 3.1.2, Apache Spark version 3.0.1, Java version 1.8.0271, and Scala version 2.12.10
exhibited better performance than with older versions.

Another important point to make is that the results of direct queries to a data frame
with a single row took longer than queries to a Apache Hive external table. Based on these
results, our research questions are answered as follows:
1. It is possible to create Apache Hive external and internal tables and Apache Spark data

frames using our proposed method. For the cataloging process, the following elements
are identified: root, structures, arrays, attributes, and values. For the deserialization
process, the values and attributes are populated into column-separated fields, while for
the positional explode the arrays are uncompounded into multiple rows.

2. Apache Hive internal tables generate lower query execution times than external tables
with the fourth proposed scenario: creating an Apache Hive internal raw table and then
creating a new Apache Hive table with the positional explode method. This result is
consistent with the expected behavior as tables and data are stored in the same directory
in HDFS.

3. When comparisons are made between Apache Hive and Apache Spark, Apache Hive
external table allows for shorter query execution times when queries to a complete
data frame are performed. Moreover, Apache Hive external or internal tables are more
efficient than Apache Spark for queries to individual values or attributes. We believe
this occurs because Apache Spark requires extra in-memory processing for queries on
XML files.
In future work, we plan to explore the behavior of a Big Data cluster with several nodes.

Moreover, we plan to include PM files from 5G mobile networks in the tests, and to create
a benchmark for different data sets and queries.

APPENDIX A. 3GPP TS 32.401 V5.5.0 PM DATA FILE XSD
<?xml version="1.0" encoding="UTF -8"?>

<!--
3GPP TS 32.401 PM Concept and Requirements
Measurement collection data file XML schema
measCollec.xsd

-->

<schema
targetNamespace=

"http://www.3gpp.org/ftp/specs/latest/rel -5/32 _series /32401 -540. zip#measCollec"
elementFormDefault="qualified"
xmlns="http://www.w3.org /2001/ XMLSchema"
xmlns:mc=

"http://www.3gpp.org/ftp/specs/latest/rel -5/32 _series /32401 -540. zip#measCollec"
>

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 27/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


<!-- Measurement collection data file root XML element -->

<element name="measCollecFile">
<complexType >

<sequence >
<element name="fileHeader">

<complexType >
<sequence >

<element name="fileSender">
<complexType >

<attribute name="localDn"
<attribute name="elementType" type="string" use="optional"/>

</complexType >
</element >
<element name="measCollec">

<complexType >
<attribute name="beginTime" type="dateTime" use="required"/>

</complexType >
</element >

</sequence >
<attribute name="fileFormatVersion" type="string" use="required"/>
<attribute name="vendorName" type="string" use="optional"/>
<attribute name="dnPrefix" type="string" use="optional"/>

</complexType >
</element >
<element name="measData" minOccurs="0" maxOccurs="unbounded">

<complexType >
<sequence >

<element name="managedElement">
<complexType >

<attribute name="localDn" type="string" use="optional"/>
<attribute name="userLabel" type="string" use="optional"/>
<attribute name="swVersion" type="string" use="optional"/>

</complexType >
</element >
<element name="measInfo" minOccurs="0" maxOccurs="unbounded">

<complexType >
<sequence >

<element name="granPeriod">
<complexType >

<attribute
name="duration"
type="duration"
use="required"

/>
<attribute

name="endTime"
type="dateTime"
use="required"

/>
</complexType >

</element >
<choice >

<element name="measTypes">
<simpleType >

<list itemType="Name"/>
</simpleType >

</element >
<element name="measType"

minOccurs="0" maxOccurs="unbounded">
<complexType >

<simpleContent >

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 28/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


<extension base="Name">
<attribute name="p"

type="positiveInteger" use="required"/>
</extension >

</simpleContent >
</complexType >

</element >
</choice >
<element name="measValue"

minOccurs="0" maxOccurs="unbounded">
<complexType >

<sequence >
<choice >

<element name="measResults">
<simpleType >

<list itemType="mc:measResultType"/>
</simpleType >

</element >
<element name="r"

minOccurs="0" maxOccurs="unbounded">
<complexType >

<simpleContent >
<extension base="mc:measResultType">

<attribute name="p" type="positiveInteger"
use="required"/>

</extension >
</simpleContent >

</complexType >
</element >

</choice >
<element name="suspect" type="boolean" minOccurs="0"/>

</sequence >
<attribute name="measObjLdn"

type="string" use="required"/>
</complexType >

</element >
</sequence >

</complexType >
</element >

</sequence >
</complexType >

</element >
<element name="fileFooter">

<complexType >
<sequence >

<element name="measCollec">
<complexType >

<attribute name="endTime" type="dateTime" use="required"/>
</complexType >

</element >
</sequence >

</complexType >
</element >

</sequence >
</complexType >

</element >

<simpleType name="measResultType">
<union memberTypes="decimal">

<simpleType >
<restriction base="string">

<enumeration value="NIL"/>
</restriction >

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 29/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


</simpleType >
</union>

</simpleType >

</schema >

APPENDIX B. APACHE HIVE TABLE CREATION

CREATE TABLE RawTable ( xml STRING )
ROW FORMAT SERDE "com.ibm.spss.Apache Hive.serde2.xml.XmlSerDe"
WITH SERDEPROPERTIES ( "column.xpath.xml"="/" )
STORED
AS
INPUTFORMAT "com.ibm.spss.Apache Hive.serde2.xml.XmlInputFormat"
OUTPUTFORMAT "org.apache.hadoop.Apache Hive.ql.io.IgnoreKeyTextOutputFormat"
LOCATION "/hdfs/tmp"
TBLPROPERTIES
("xmlinput.start"="<MeasDataCollect",
"xmlinput.end"="</MeasDataCollect >");

CREATE TABLE ColumnSeparatedTable
AS
SELECT REGEXP_EXTRACT(t.INPUT__FILE__NAME , ’^.*/(.*)$’, 1)
XPATH_STRING
(t.xml ,"/MeasDataCollect/MeasFileHeade/fileFormatVersion")
XPATH_STRING
(t.xml ,CONCAT("/MeasDataCollect // MeasData[", MeasuData.index , "]/NEID/NEUserName"))
FROM RawTable
AS t
LATERAL VIEW MeasData
AS index
WHERE MeasData.index > 0;

APPENDIX C. APACHE SPARK DATA FRAME CREATION
var dfApache Spark=sqlContext.read.format("com.databricks.Apache Spark.xml").
option("rowTag","MeasDataCollect").
load("/hdfs/tmp").
dfApache Spark.selectExpr("explode(MeasData)as_md").
select($"_md.neid.neun").
show()

ADDITIONAL INFORMATION AND DECLARATIONS
Funding
This work was supported by the Unidad de Gestión de Investigación y Proyección Social
from the Escuela Politécnica Nacional. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Unidad de Gestión de Investigación y Proyección Social from the Escuela Politécnica
Nacional.

Competing Interests
The authors declare there are no competing interests.

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 30/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652


Author Contributions
• Diana Martinez-Mosquera conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, and approved the final draft.
• Rosa Navarrete and Sergio Luján-Mora conceived and designed the experiments,
performed the experiments, analyzed the data, prepared figures and/or tables, authored
or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw measurements, results of the experiments, and part of the referenced standard
3GPP are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.652#supplemental-information.

REFERENCES
Apache. 2021a. Hadoop distributed file system. Available at https://hadoop.apache.org/docs/

r1.2.1/hdfs_design.html (accessed on 01 March 2021).
Apache. 2021b. Hive. Available at https://hive.apache.org/ (accessed on 01 March 2021).
Apache. 2021c. Spark. Available at https://spark.apache.org/ (accessed on 01 March

2021).
Boussaid O, Messaoud RB, Choquet R, Anthoard S. 2006. X-Warehousing: an XML-

based approach for warehousing complex data. In: 9th advances in databases and
information systems. 39–54 DOI 10.1007/11827252_6.

Chituc C-M. 2017. XML interoperability standards for seamless communication: an
analysis of industry-neutral and domain-specific initiatives. Computers in Industry
92-93:118–136 DOI 10.1016/j.compind.2017.06.010.

Cook L. 2018. Language manual. Available at https://cwiki.apache.org/confluence/display/
Hive/LanguageManual (accessed on 01 March 2021).

Databricks. 2021. Lateral view clause (Databricks SQL). Available at https://docs.databricks
.com/sql/language-manual/sql-ref-syntax-qry-select-lateral-view.html/ (accessed on 01
June 2021).

Debreceny R, Gray GL. 2001. The production and use of semantically rich accounting
reports on the Internet: XML and XBRL. International Journal of Accounting
Information Systems 2-1:47–74 DOI 10.1016/S1467-0895(00)00012-9.

Fan H, Ma Z,Wang D, Liu J.. 2018.Handling distributed XML queries over large
XML data based on MapReduce framework. Information Sciences 453:1–20
DOI 10.1016/j.ins.2018.04.028.

Francke L. 2021. Managed vs. external tables. Available at https://cwiki.apache.org/
confluence/display/Hive/Managed+vs.+External+Tables (accessed on 01 March 2021).

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 31/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.652#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.652#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.652#supplemental-information
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hive.apache.org/
https://spark.apache.org/
http://dx.doi.org/10.1007/11827252_6
http://dx.doi.org/10.1016/j.compind.2017.06.010
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://docs.databricks.com/sql/language-manual/sql-ref-syntax-qry-select-lateral-view.html/
https://docs.databricks.com/sql/language-manual/sql-ref-syntax-qry-select-lateral-view.html/
http://dx.doi.org/10.1016/S1467-0895(00)00012-9
http://dx.doi.org/10.1016/j.ins.2018.04.028
https://cwiki.apache.org/confluence/display/Hive/Managed+vs.+External+Tables
https://cwiki.apache.org/confluence/display/Hive/Managed+vs.+External+Tables
http://dx.doi.org/10.7717/peerj-cs.652


3rd Generation Partnership Project. 2005. Technical specification group services and
system aspects; telecommunication management; performance management (PM);
concept and requirements. Technical Specification 32.401 V5.5.0 5:1–33.

GSM. 2020. The mobile economy 2020. Available at https://www.gsma.com/
mobileeconomy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.
pdf (accessed on 01 March 2021).

Hai R, Quix C, Zhou C. 2018. Query rewriting for heterogeneous data lakes. In: 20th
european conference on advances in databases and information systems, vol. 33. 35–49
DOI 10.1007/978-3-319-98398-1_3.

Holmes A. 2014. Hadoop in practice, second edition. New York, USA: Manning
Publications.

Hong S, Song Y-T. 2007. Efficient XML query using Relational Data Model. In: Inter-
national conference on software engineering, artificial intelligence, networking, and
parallel/distributed computing. 1095–1100 DOI 10.1109/SNPD.2007.540.

Hricov R, Senk A, Kroha P, ValentauM. 2017. Evaluation of XPath queries over XML
documents using SparkSQL framework. In: 4th international conference: beyond
databases, architectures and structures, vol.1. 28–41 DOI 10.1007/978-3-319-58274-0_3.

HsuW-C, Liao I-E, Shih H-C. 2012. A cloud computing implementation of XML
indexing method using Hadoop. In: 3rd asian conference on intelligent information
and database systems, vol. 7198. 256265 DOI 10.1007/978-3-642-28493-9_28.

Intel. 2013. Hadoop Tutorials: ingesting XML in Hive using XPath. Available at
https://itpeernetwork.intel.com/hadoop-tutorials-ingesting-xml-in-hive-using-
xpath/#gs.3n6cyj/ (accessed on 01 June 2021).

Ivanov T, Beer M-G. 2016. Evaluating Hive and Spark SQL with BigBench. Frankfurt big
data lab technical report No. 2015-2. 1–47.

Jabagi N, Park A, Kietzmann J. 2020. The 5G Revolution: expectations versus reality. IT
Professional 8–15 DOI 10.1109/MITP.2020.2972139.

Krishnamurthy R, Chakaravarthy VT, Kaushik R, Naughton JF. 2004. Recursive
XML Schemas, recursive XML queries, and relational storage: XML-to-SQL
query translation. In: 20th international conference on data engineering. 42–53
DOI 10.1109/ICDE.2004.1319983.

Kunfang S. 2016. Efficient querying distributed Big-XML data using MapReduce.
International Journal of Grid and High Performance Computing 8(3):70–79
DOI 10.4018/IJGHPC.2016070105.

Lin X,Wang P,Wu B. 2013. Log analysis in cloud computing environment with Hadoop
and Spark. In: 5th IEEE international conference on broadband network & multimedia
technology. 273–276 DOI 10.1109/ICBNMT.2013.6823956.

LuoW, Liu B,Watfa AK. 2014. An open schema for XML data in Hive. In: 2nd IEEE in-
ternational conference on big Data. Vol. 1. 25–31 DOI 10.1109/BigData.2014.7004409.

Madhavrao R, Moosakhanian A. 2018. Integration of digital weather and air traf-
fic data for NextGen. In: 37th conference on digital avionics systems, vol.1. 1–8
DOI 10.1109/DASC.2018.8569255.

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 32/33

https://peerj.com
https://www.gsma.com/mobileeconomy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf
http://dx.doi.org/10.1007/978-3-319-98398-1_3
http://dx.doi.org/10.1109/SNPD.2007.540
http://dx.doi.org/10.1007/978-3-319-58274-0_3
http://dx.doi.org/10.1007/978-3-642-28493-9_28
https://itpeernetwork.intel.com/hadoop-tutorials-ingesting-xml-in-hive-using-xpath/#gs.3n6cyj/
https://itpeernetwork.intel.com/hadoop-tutorials-ingesting-xml-in-hive-using-xpath/#gs.3n6cyj/
http://dx.doi.org/10.1109/MITP.2020.2972139
http://dx.doi.org/10.1109/ICDE.2004.1319983
http://dx.doi.org/10.4018/IJGHPC.2016070105
http://dx.doi.org/10.1109/ICBNMT.2013.6823956
http://dx.doi.org/10.1109/BigData.2014.7004409
http://dx.doi.org/10.1109/DASC.2018.8569255
http://dx.doi.org/10.7717/peerj-cs.652


Martinez-Mosquera D, Navarrete R, Luján-Mora S. 2020. Development and evaluation
of a big data framework for performance management in mobile networks. IEEE
Access 8:226380–226396 DOI 10.1109/ACCESS.2020.3045175.

Marín-Ortega PM, Abilov VDM, Gmez JM. 2014. ELTA: new approach in designing
business intelligence solutions in era of big Data. Procedia Technology 16:667–674
DOI 10.1016/j.protcy.2014.10.015.

Microsoft. 2021. EXPLODE (U-SQL). Available at https://docs.microsoft.com/en-us/u-
sql/statements-and-expressions/select/from/cross-apply/explode/ (accessed on 01 June
2021).

Mozafari B, Zeng K, Zaniolo C. 2012.High-performance complex event processing over
XML streams. In: 15th ACM SIGMOD international conference on management of
data. 253–264 DOI 10.1145/2213836.2213866.

Mukherjee R, Kar P. 2017. A comparative review of data warehousing ETL tools with
new trends and industry insight. In: 2017 IEEE 7th international advance computing
conference. 943–948 DOI 10.1109/IACC.2017.0192.

Murthy R, Banerjee S. 2003. XML Schemas in Oracle XML DB. In: 29th annual interna-
tional conference on very large data bases. 1009–1018
DOI 10.1016/B978-012722442-8/50094-X.

Rahm E, Do H-H, Mamann S. 2004.Matching large XML schemas. Special Interest Group
on Management of Data 33:26–31 DOI 10.1145/1041410.1041415.

Statista. 2020. Number of mobile wireless cell sites in the United States from 2000 to
2019. Available at https://www.statista.com/statistics/185854/monthly-number-of-cell-
sites-in-the-united-states-since-june-1986/ (accessed on 01 March 2021).

Tevosya A. 2011. Language manual XPath UDF. Available at https://cwiki.apache.org/
confluence/display/Hive/LanguageManual+XPathUDFl (accessed on 01 March 2021).

Vasilenko D, Kurapati M. 2015. An empirical study on XML schema idiosyncrasies
in big data processing. International Journal on Computer Science and Engineering
7(10):97–107.

W3C. 2016. Extensible markup language XML. Available at https://www.w3.org/XML/
(accessed on 03 March 2021).

W3C. 2020. A JSON-based serialization for linked data. Available at https://www.w3.org/
TR/json-ld11/ (accessed on 03 March 2021).

Zhang C, Lu J. 2021.Holistic evaluation in multi-model databases benchmarking.
Distributed and Parallel Databases 33:1–33 DOI 10.1007/s10619-019-07279-6.

Zhang X, Mahadevan S. 2019. Aviation safety assessment using historical flight trajec-
tory data. In: AIAA Aviation 2019 Forum. Dallas, Texas. 1–10 DOI 10.2514/6.2019-3415.

Martinez-Mosquera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.652 33/33

https://peerj.com
http://dx.doi.org/10.1109/ACCESS.2020.3045175
http://dx.doi.org/10.1016/j.protcy.2014.10.015
https://docs.microsoft.com/en-us/u-sql/statements-and-expressions/select/from/cross-apply/explode/
https://docs.microsoft.com/en-us/u-sql/statements-and-expressions/select/from/cross-apply/explode/
http://dx.doi.org/10.1145/2213836.2213866
http://dx.doi.org/10.1109/IACC.2017.0192
http://dx.doi.org/10.1016/B978-012722442-8/50094-X
http://dx.doi.org/10.1145/1041410.1041415
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://www.statista.com/statistics/185854/monthly-number-of-cell-sites-in-the-united-states-since-june-1986/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+XPathUDFl
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+XPathUDFl
https://www.w3.org/XML/
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/json-ld11/
http://dx.doi.org/10.1007/s10619-019-07279-6
http://dx.doi.org/10.2514/6.2019-3415
http://dx.doi.org/10.7717/peerj-cs.652

