
Received April 15, 2021, accepted May 15, 2021, date of publication May 20, 2021, date of current version June 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3082182

Open Data Consumption Through the
Generation of Disposable Web APIs
PALOMA CÁCERES GARCÍA DE MARINA 1, JOSÉ MARÍA CAVERO BARCA 1,
CARLOS E. CUESTA 1, MIGUEL ÁNGEL GARRIDO 1, IRENE GARRIGÓS 2,
CÉSAR GONZÁLEZ-MORA 2, JOSE-NORBERTO MAZÓN 2,
ALMUDENA SIERRA-ALONSO 1, BELÉN VELA 1,
AND JOSÉ JACOBO ZUBCOFF 2
1Department of Computer Science and Statistics, Rey Juan Carlos University, 28933 Madrid, Spain
2Department of Software and Computing Systems, University of Alicante, 03690 Alicante, Spain

Corresponding author: Irene Garrigós (igarrigos@ua.es)

This work was supported in part by the Access@City coordinated Research Project through the Spanish Ministry of Science, Innovation
and Universities under Grant TIN2016-78103-C2-1-R and Grant TIN2016-78103-C2-2-R; in part by the Plataforma intensiva en datos
proveedora de servicios inteligentes de movilidad (MoviDA) Project through Rey Juan Carlos University; and in part by the Recolección y
publicación de datos abiertos para la reactivación del sector turístico postCOVID-19 (UAPOSTCOVID19-10) Project through the Consejo
Social of the University of Alicante. The work of César González-Mora was supported in part by the Generalitat Valenciana, and in part by
the European Social Fund under Grant ACIF/2019/044.

ABSTRACT The ever-growing amount of information in today’s world has led to the publication of more
and more open data, i.e., that which is available in a free and reusable manner, on the Web. Open data is
considered highly valuable in situational scenarios, in which thematic data is required for a short life cycle
by a small group of consumers with specific needs. In this context, data consumers (developers or data
scientists) need mechanisms with which to easily assess whether the data is adequate for their purpose.
SPARQL endpoints have become very useful for the consumption of open data, but we argue that its steep
learning curve hampers open data reuse in situational scenarios. In order to overcome this pitfall, in this
paper, we coin the term disposable Web APIs as an alternative mechanism for the consumption of open
data in situational scenarios. Disposable Web APIs are created on-the-fly to be used temporarily by a user
to consume open data. In this paper we specifically describe an approach with which to leverage semantic
information from data sources so as to automatically generate easy-to-use disposable Web APIs that can
be used to access open data in a situational scenario, thus avoiding the complexity and learning curve of
SPARQL and the effort of manually processing the data. We have conducted several experiments to discover
whether non-experienced users find it easier to use our disposableWeb API or a SPARQL endpoint to access
open data. The results of the experiments led us to conclude that, in a situational scenario, it is easier and
faster to use the Web API than the corresponding SPARQL endpoint in order to consume open data.

INDEX TERMS Disposable Web APIs, open data, semantic annotation, SPARQL.

I. INTRODUCTION
The volume of data on the Web has, with the advent of
the open data movement, exploded in the last few years.
Open data is published in order to be freely accessible and
reusable (without copyright restrictions) and is, therefore,
usually considered highly valuable as situational data. Situ-
ational data [1] has a narrow focus on a specific area and,
often, a short lifespan so as to add value to data owned (and
controlled) by a small group of consumers with a unique set of

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Anwar Hossain .

needs. Examples of this might be data scientists who wish to
analyze a company’s sales with respect to weather conditions
within a period of time, or a Web developer who needs to
implement a prototype of an envisioned smart city app that
employs traffic data.

There are roughly two ways in which to publish open data:
(i) open data portals that focus on published tabular-form
data (such as CSV files), and (ii) Linked Open Data that
allow users to use Semantic Web technologies to access data
on the Web in the same way as a database management
system is used, i.e., by means of query languages such as
SPARQL [2]. The current goal of any open data project is

76354 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-2722-2434
https://orcid.org/0000-0001-5324-1383
https://orcid.org/0000-0003-0286-4219
https://orcid.org/0000-0002-7711-6314
https://orcid.org/0000-0001-5869-5245
https://orcid.org/0000-0002-6878-5321
https://orcid.org/0000-0001-7924-0880
https://orcid.org/0000-0002-2409-4617
https://orcid.org/0000-0003-0604-7312
https://orcid.org/0000-0002-9469-7747
https://orcid.org/0000-0002-7673-8410


P. C. G. D. Marina et al.: Open Data Consumption Through Generation of Disposable Web APIs

to provide a SPARQL endpoint that will enable the powerful
and seamless querying of data. However, average open data
consumers (such as data scientists or developers) lack the
skills required to smoothly use the SPARQL query language
and the underlying RDF (Resource Description Framework)
data model, since they both have a steep learning curve.
Moreover, recent surveys [4] conclude that no usable tool that
could be used to support the whole Linked Data consumption
process currently exists. Consequently, in a situational sce-
nario, alternative mechanisms that will allow powerful open
data consumption without any knowledge of Semantic Web
technologies are, therefore, required [3], [5].

Our hypothesis is that, in situational scenarios, it is easier
to have a Web API access to open data than a SPARQL
endpoint. These Web APIs must specifically allow data con-
sumers to access data easily and rapidly without wasting time
processing tabular data sources (from CSV files or fromWeb
sites) or learning how to query a SPARQL endpoint. They
have been denominated as disposableWeb APIs because they
are created on-the-fly to be used temporarily by a user to
consume open data as situational data. Moreover, the use of
a disposable Web API allows a data consumer (data scientist
or developer) to easily assess whether the data is adequate for
his/her purpose, thus avoiding the complexity and learning
curve of SPARQL and the effort of manually processing the
data. However, developing disposable Web APIs requires to
enrich tabular data sources with data semantics in the sense
of the ‘‘Model for Tabular Data and Metadata on the Web’’
developed by the W3C CSV on the Web Working Groupi1

which proposes to add semantic annotations by means of
separated metadata file to supplement tabular data. In this
paper we, therefore, describe an approach with which to
leverage semantic information from data sources so as to
automatically generate easy-to-use disposable Web APIs that
can be used to access open data in a situational scenario. Our
specific contributions are the following:
• A process for the semantic annotation of tabular data
sources from the Web.

• Amodel-driven approach that can be employed to ingest
our semantic annotation and generate disposable Web
APIs with which to query data sources.

• A controlled experiment carried out in order to com-
pare the process of accessing data from the SPARQL
endpoints with that of using our equivalent generated
disposable Web APIs.

Throughout this paper, we use a real situational case study
(i.e., a running example) based on data obtained from the
public transport sector in Madrid (Spain), namely Metro
Madrid data, in order to exemplify our approach. A data
scientist working at a real estate company was willing
to analyze the company’s internal data regarding housing
rental and incomes in Madrid by considering additional open
data related to the accessibility of public transport, which
helps create a more inclusive society that provides the same

1https://www.w3.org/TR/tabular-data-model/

opportunities for all [11]. This would, therefore, allow the
real estate company to attain new insights and make informed
decisions with which to, e.g., provide adapted solutions to
those of its customers with special mobility needs during
a short-term marketing campaign. A disposable Web API
with which to consume public transport accessibility data for
Madrid was, therefore, required.

The remainder of the paper is as follows: Section II
presents some related work, while Section III describes the
process of automatically generating disposable Web APIs
using semantic-annotated open data sources. Section IV pro-
vides a validation of the proposal by describing an experiment
in which data consumption from a Web API and the use of
SPARQL were compared, and finally, Section V shows a
summary of our main conclusions and future work.

II. RELATED WORK
This section reviews some research works related to howWeb
APIs are useful as regards providing easier data consumption.

The starting point for our current work was the research
described in [11], which was focused on adding semantics to
existing data. In the present paper, however, we have used this
step as a part of the whole process carried out to make it easier
for users to access open data on the Web.

In [6], a simple API, which is used to provide access to
the KnowledgeStore, a semantic web storage, is described.
It is used by many developers that are unfamiliar with RDF
and SPARQL technologies to build web applications that
use this data. The developers have to compose a query
using simple API methods, which is then converted into a
SPARQL query so as to access the endpoint and obtain the
data required. However, this API was created manually and is
used only to access specific data from specific semantic web
storage.

The authors of [19], [20] propose an automatic
query-centric API for routine access to Linked Data. In these
papers, they present and extend ‘‘grlc’’, a generic Linked
Data gateway. The papers propose the generation of APIs that
provide uniform API access to any Linked Data published in
SPARQL endpoints, Linked Data Fragments servers, RDF
dumps, or RDFa embedded in HTML pages. Unfortunately,
a Github repository containing all possible SPARQL queries
to the endpoint is required, signifying that a developer must
manually write down all possible queries that might be
unfamiliar with RDF and SPARQL queries.

Rather than using SPARQL queries, users can also use
GraphQL-LD [21] queries to access RDF data, which
are GraphQL queries enhanced with a JSON-LD context.
This GraphQL-LD approach is a developer-friendly alter-
native to SPARQL, but only for experts in GraphQL APIs,
signifying that developersmust be familiar with this program-
ming language. Instead, users employing our approach are
providedwith an easy-to-use standardAPI based onOpenAPI
principles.

An approach to help Web developers access Linked data is
proposed in [22]. The objective is to transform ontologies into

VOLUME 9, 2021 76355



P. C. G. D. Marina et al.: Open Data Consumption Through Generation of Disposable Web APIs

Ontology-Based APIs such that developers can easily query
Linked Data. However, our approach is directly addressed
toward developers who wish to access open data available on
the Web, signifying that the starting point is not an ontology
or an SPARQL endpoint from the Linked Data cloud.

In [7], a RESTful API with which to semantically augment
the data that is being published by a sensor is proposed, but it
is not useful as regards retrieving data from the semantic web.
The authors have manually created a system that transforms
a set of inter-linked JSON documents into an RDF graph
in order to obtain a semantically-enriched dataset and have
the full query capability provided by SPARQL. However,
an API that facilitates access to the semantic data without
advanced knowledge of the SPARQL query language is still
required.

The authors of [8] describe how cities are starting to release
their public information and create public data catalogues,
but there is still a lack of open APIs, which is restricting
the full potential of the open data. The paper in question
therefore proposes the development of an open data API,
which provides tools that will help users to access the data
concerning their own cities.

In [9], a framework called Prov4J is described, which uses
Semantic Web tools and standards. It provides to developers
a provenance management mechanism with which to build
provenance-aware applications. Tracking the origin of infor-
mation currently plays a fundamental role on theWeb because
it enables users to determine the suitability and quality of the
data. The Prov4J framework includes a Client API that con-
tains key interface methods for a set of provenance queries,
thus minimizing the users’ interactions with SPARQL. How-
ever, this API was created manually for data provenance
purposes only.

Finally, mapping strategies have been investigated to a sig-
nificant extent, and work researching conversion from other
formats to RDF has also been carried out for static [23] and
live conversion [24]. Other solutions [3], [5] aim to reduce the
difficulty involved in using SPARQL and RDF technologies.
However, they still lack the support specifically required by
data scientists and open data reusers to overcome the diffi-
culty of accessing RDF data using SPARQL. According to
experts (as detailed in [3]), the problem does not reside in
RDF, and these solutions may not be suitable for non-experts
in this Semantic Web environment. It is even more neces-
sary in a situational scenario, where data consumers need
to temporarily access data easily and rapidly without spend-
ing too much time learning how to query the SPARQL
endpoint.

In our approach we, therefore, provide an alternative
through the use of standard and easy-to-query APIs rather
than SPARQL endpoints that access RDF data.

In summary, there is much research on the creation of Web
APIs with which to access data, but there is, to the best of
our knowledge, no solution that tackles situational scenarios
in which thematic open data is temporarily used for specific
needs.

III. OPEN DATA CONSUMPTION PROCESS FOR
SITUATIONAL SCENARIOS
The proposed process for open data consumption through the
use of automatically generated disposable Web APIs com-
prises three stages:

1) Data Input Process: in this stage, it is necessary to
select the Web data from either open data sources or data
embedded in the HTML code of a Web site (specifying the
Web data source URL), required to satisfy data consumer
needs according to a situational scenario. This data must be
processed (e.g., by programming a Python script in order
to obtain the data by means of web scraping techniques).
We would like to point out that we consider, as input of this
process, Web data sources with no semantic information.

2) Semantic Annotation Process: the input tabular data
(e.g. a CSV file) is annotated using a domain-specific ontol-
ogy, obtaining semantically annotated data. The output of
this process is a CSV file with semantic annotations as RDF
triples.

3) Disposable Web APIs Generation Process: the input
of this process is the previously semantically annotated tabu-
lar data, from which disposable Web APIs are automatically
generated in order to allow the consumption of data in a
situational scenario.

The complete open data consumption process is shown
in Fig. 1, including the inputs and outputs of each process.

FIGURE 1. Open data consumption process for situational scenarios.

The Semantic Annotation of the Structured Open Data
Process (subsection III.A) and the Automatic Generation of
Disposable Web APIs (subsection III.B) are described in the
following subsections.

A. SEMANTIC ANNOTATION OF STRUCTURED OPEN DATA
In this section, we describe the systematic process employed
to generate a semantically annotated dataset from the

76356 VOLUME 9, 2021



P. C. G. D. Marina et al.: Open Data Consumption Through Generation of Disposable Web APIs

structured open data on the Web. This method makes it pos-
sible to enrich data by adding new semantics.

The process entails the following steps:
Step 1. First, information contained in the data source and

important features of the selected domain must be studied.
It is then necessary to create a glossary of terms concerning
the terminology used in the data source, describing each one,
after which a domain model with which to represent these
terms and their relationships must be defined in a domain
model by using a UML class diagram.

Step 2. Identify the semantics of the information in order
to align them with the terms of a reference vocabulary, that
is, a vocabulary that the developer needs to choose (e.g.
domain-specific ontology). At this point, when necessary,
auxiliary vocabularies can be chosen so as to cover additional
properties. The mappings required in order to establish the
correspondence between different information elements from
the data source (glossary of terms) and the reference vocab-
ulary (domain-specific ontology) are defined by means of a
manual inspection of the input data source. We specifically
identify the subjects, predicates and objects of a CSV input
file and map them onto elements from the reference vocabu-
lary (e.g. a domain-specific ontology, such as MAnto). This
mapping is manually defined and added to a configuration
file. Once all the mappings have been defined, a custom
script is programmed in order to transform the input tabular
source data (CSV file) into the semantically annotated data,
according to the mappings defined in the configuration file.
This data annotation process is described in a detailed manner
by means of a case study shown in our previous work [11].

Step 3. If the alignment is possible, then it is necessary to
use the original data, and semantically annotate them using
the existing terms from the reference vocabulary (domain-
specific ontology) by means of the RDF language using the
previously definedmappings. If the alignment is not possible,
then we should analyze the difference between the original
data and the reference vocabulary in order to extend it and,
in this case, return to the second step.

Step 4. Integrate the semantic dataset with other sources.
This is done by relating elements from the different seman-
tic datasets and discarding duplicated information in the
datasets, when necessary. At this point, it is also possi-
ble to add new properties to the final annotated dataset.
Finally, a single annotated dataset is obtained as the output
of Step 4. It is worth mentioning, in the case of integrating
with non-semantic data sources, that the semantic annota-
tion process from step 1 to step 3 has to be performed
beforehand.

This generic process has been applied to our case study
about the public transport domain, and specifically to Metro
Madrid.

During the Data Input Process, we first selected the open
datasets available in the Madrid Public Transport open data
portal. We then developed a Python script in order to obtain
theMetroMadrid accessibility data bymeans of web scraping
techniques, thus completing our input dataset.

We subsequently semantically annotated the real Metro
Madrid public transport company data (by applying afore-
mentioned steps 1, 2 and 3); in this case, there is no previously
annotated data and we, therefore, omit step 4.

An explanation of each of the steps in the Semantic Anno-
tation Process applied to our case study is provided as follows.

In Step 1 of the semantic annotation of structured open
data, we created a glossary of terms concerning the terminol-
ogy used in the data source, describing each one. We then
defined the domain model using a UML class diagram
with which to represent these terms and their relationships
(see Fig. 2).

FIGURE 2. Domain model of metro Madrid.

In Step 2, we first choose our reference vocabulary,
which is denominated as MAnto [12], [13]. MAnto2 is a
light ontology based on the Identification of Fixed Objects
in the Public Transport (IFOPT) reference data model
(CEN/TC278 2012)[14], included in the European Reference
Data Model for Public Transport Information (Transmodel)
[15]. The reason for using the MAnto ontology as a reference
vocabulary in our case study is twofold: (i) first, we wished
to describe a real scenario, and what is more important,
(ii) we required a well-known ontology with which to con-
duct the experiments in a real setting. We then established
the mappings between the elements of the Metro Madrid
and the chosen reference vocabulary, MAnto. For example,
wemanually identify Sol as a station (mao:StopPlace subject)
and 1, 2 and 3 as lines (mao:Line objects), and there are
three connection links (mao:hasConnectionLink properties)
that relate the subject (Sol) with the objects (lines 1,2 and 3).

In Step 3, we annotated the data semantically using the
terms from our reference vocabulary (MAnto ontology) as
follows: if the alignment is possible: (a) we first extract the
data from the data source by means of a Python scraper;
(b) we semantically annotate them (for example, each quay
belonging to Line 1 of Metro Madrid has been annotated as
?quay mao:ofLine “1”) and (c) we reuse terms from

2https://github.com/vortic3/LinkedUnifiedDataset/blob/master/MAnto_
Lite_ontology.rdf

VOLUME 9, 2021 76357



P. C. G. D. Marina et al.: Open Data Consumption Through Generation of Disposable Web APIs

other vocabularies only when necessary (for example, if the
name term exists in the schema ontology, we do not create
the same term in MAnto -mao:name metadata-, but use that
which already exists: in the RDF triple ’’43566 sch:name
Sol”, we assign the name of Sol to station 43566 using a
metadata property that already exists in the schema ontology).

The output of the Semantic Annotation Process will be a
CSV file with semantic annotations as RDF triples, which
will be used as input to the Disposable Web APIs Generation
Process.

B. AUTOMATIC GENERATION OF DISPOSABLE WEB APIs
In this section, a complete model-based transformation pro-
cess is proposed in order to achieve the automatic gen-
eration of a disposable Web API from the previously
semantic-annotated data sources (an overview of this process
is shown in Fig. 3). The transformation process includes
(apart from the RDF annotation using the semantic engine,
as explained above), the following steps: (a) a text to model
(T2M) transformation from the annotated data source to a
specific data model (specific to the source format) that we
have defined specifically for tabular data in CSV format; (b) a
model to model (M2M) transformation from this data model
to an OpenAPI model that we have also defined; (c) a model
to text (M2T) transformation from the OpenAPI model to its
OpenAPI specification, and finally, (d) a text to text (T2T)
transformation from the OpenAPI specification to the Web
API that makes it possible to access open data.

FIGURE 3. Automatic API generation process.

1) FROM DATA SOURCE TO DATA MODEL (T2M)
The first stage of the transformation process is a text to model
(T2M) transformation. The data source is converted into the
data model in order to represent the data and proceed with
the model-based transformation approach. This data model is
based on a metamodel based on MOF0F3 (shown in Fig. 4)
which is implemented in the Ecore format from the Eclipse
Modeling Framework (EMF).

The input semantic annotated tabular data in our case study
consists of: (a) the Madrid metro accessibility data source,
which is a CSV file, and (b) the semantic annotations as
RDF triples. Our approach processes the CSV by rows and
columns, injecting the semantic information into the columns
names. The data is analyzed, and a data model with table, row,
and cell objects is created. This generated model (as shown
in Fig. 5) contains an object ‘Table’, in which there is a set

3https://www.omg.org/mof/

FIGURE 4. CSV datafile metamodel.

FIGURE 5. Datafile model in XMI format.

of ‘Rows’ containing many ‘Cells’. Each cell in the model
contains the information regarding each cell from the CSV
file, which is the information concerning metro stations and
their accessibility.

2) FROM DATA MODEL TO OpenAPI MODEL (M2M) AND
SPECIFICATION (M2T)
Once the data model has been populated from the data file,
the second stage involves a model to model (M2M) trans-
formation from the CSV data model to the OpenAPI model,
followed by a model to text (M2T) transformation between
the OpenAPI model and the OpenAPI specification.

First, an M2M transformation defined in ATL lan-
guage [16]–[18] is launched. ATL is one of the most widely
used model transformation languages currently employed,
and is backed by a mature and efficient execution runtime.
A set of transformation rules between the data model and the
OpenAPI model has, therefore, been defined using the ATL
language, as shown in the extract of the code in Fig. 6. The
ATL transformation rules start from the Table object defined
in its Ecore metamodel, and its rows and cells are used to
generate the OpenAPI model and all the different objects
contained in its metamodel.

The OpenAPI model generated is in XMI format, as shown
in Fig. 7.

It is based on its OpenAPI metamodel in Ecore format
(Fig. 8), which has been created by updating an existing

76358 VOLUME 9, 2021



P. C. G. D. Marina et al.: Open Data Consumption Through Generation of Disposable Web APIs

FIGURE 6. ATL transformation rules.

FIGURE 7. OpenAPI model (XMI).

OpenAPI metamodel2F4 from Swagger 2.0 to OpenAPI
3.0 specification.

The definition and documentation of the Web API are
represented by a JSON file (Fig. 9) in accordance with the
Swagger standards3F,5 because this helps design, build, doc-
ument and test the API. The API specification JSON file
is, therefore, directly generated from the OpenAPI model
in XMI format by using a model to text (M2T) transforma-
tion. It consists of a straightforward transformation, since the

4https://github.com/SOM-Research/APIDiscoverer/tree/master/metamodel
5https://swagger.io

FIGURE 8. OpenAPI metamodel.

FIGURE 9. Extract of OpenAPI JSON file.

OpenAPI model has elements that are equivalent to the API
specification, but in a different structure because a different
format is used. We, therefore, perform this M2T transfor-
mation programmatically from the OpenAPI model in XMI
format to the OpenAPI specification of the API, which is
in JSON format. It is easy to perform the transformation
because we have constructed the OpenAPI model according
to the OpenAPI specification, such that each object from the
model corresponds to a JSON object in the file. For example,
each path of the API is transformed from the ‘‘Path’’ object
in the OpenAPI model to the ‘‘paths’’ object in the JSON
file (e.g., Path /stationName/{stationName} in Figure 7 is
transformed in the element ‘‘/stationName/{stationName}’’
from attribute path in JSON file of Figure 8). The complete
API specification in Swagger 2.0 format is available online.6

3) FROM OpenAPI SPECIFICATION TO WEB API
In this stage, the complete Web API is generated from its
OpenAPI specification. The automatic process creates the

6https://wake.dlsi.ua.es/madrid/api-docs

VOLUME 9, 2021 76359



P. C. G. D. Marina et al.: Open Data Consumption Through Generation of Disposable Web APIs

API code represented by a server in NodeJS4F,7 a simple
and efficient runtime environment for network applications.
The automatic generation process is accomplished with the
help of the Swagger Codegen tool, which creates the struc-
ture of the server with the files and folders required. It also
manages the calls to the API and redirects them to the cor-
responding method in NodeJS code. The automatic genera-
tor then completes the server with the features required to
return the data requested, which are retrieved from the data
source.

This generated Web API has been published in an online
server, thus allowing open data reusers to query the data with
the parameters desired to filter the information. The queries
to the Web API are specified in the OpenAPI documentation,
whose simplicity makes it possible for them to be executed
by non-experts in query languages in a situational scenario.
The API available online contains a method with which to
query the metro stops filtered by many parameters. When
a user queries this information, the list of metro stops is
returned, including the stops that fulfill the specified query
parameters. For instance, a query that requests the metro
stops that are be accessible via a lift and escalator is:
https://wake.dlsi.ua.es/madrid/metro/?hasLift=TRUE&has
Escalator=TRUE

TheWeb API will respond to this request with the required
information in JSON format, because it is easy for humans
to read and write and it is easy for machines to parse and
generate5F.8 The result obtained from the query example is
the data concerning metro stops that are accessible by lift and
escalator. In this case, many stations fulfill these conditions
and we consequently show only the example of the ‘‘Islas
Filipinas’’ station. The extract of the API output in JSON
format, therefore, contains information regarding the stations
filtered as:

{
“stationName”: “ Islas Filipina ”,
“about”:

“https://www.metromadrid.es//es/
viaja_en_metro/red_de_metro/estaciones/
IslasFilipinas.html”,

“hasEscalator”: “TRUE”,
“hasLift”: “TRUE”,
“hasTravelator”: “FALSE”,
“transfer”: “”,

“lineAbout”:
“https://www.metromadrid.es//es/
viaja_en_metro/red_de_metro/lineas_y
_horarios/linea07.html”,

“lineID”: “N0d6e5c75dec24ce9a67f74
c725894bd0”,
“lineName”: “Línea 7”,
“routeService”: “https://www.
metromadrid.es/es/index.html”}

7https://nodejs.org
8https://www.json.org/

IV. VALIDATION
In order to validate our approach, a controlled experiment was
conducted in which we compared two means of consuming
open data: (i) by using the SPARQL access point of RDFs
or (ii) by using our equivalent generated disposableWeb API.

A. DESCRIPTION OF THE EXPERIMENT
The objective of the experiment was to study whether there
were any differences as regards consuming data via the Web
API vs. via SPARQL queries. In order to conduct the exper-
iment we, therefore, planned to carry out a set of surveys
(concerning Web APIs and SPARQL) with Data Science
Master’s Degree students at the Universidad Rey Juan Carlos
(Madrid, Spain). One group of 15 users was instructed in
the use of APIs, while the other group of 17 students was
instructed in the use of SPARQL, such that each of the groups
would answer the surveys by using the API or SPARQL,
respectively. It is worth noting that all the participants had
similar previous knowledge of the technologies used in the
experiment, and they were also simultaneously instructed in
the use of APIs and SPARQL. Each survey, i.e., that concern-
ing the use of the Web API and the other concerning the use
of SPARQL, had to be answered by the participants using the
correct queries in each case.

The surveys were composed of five data requests (using a
SPARQL endpoint of the corresponding Web API), i.e., the
participants were given five queries and requested to find the
right data. We also made a note of the time it took to answer
each question, in addition to whether the query was correct
and the number of attempts made until the correct query was
attained. These variables helped us assess how difficult it was
for the users to obtain the correct data and whether the Web
API access (generated by using the approach proposed in this
paper) is better than the use of the corresponding SPARQL
endpoint.

The specific queries were related to the Metro Madrid
transport data (i.e., the running example used throughout this
paper):

1. Set of stations on a given subway line (Line 1).
2. Subway lines that pass through a certain station

(‘‘Canal’’).
3. Stations that have correspondence with other means of

transportation.
4. Correspondence of a station (‘‘Plaza de Castilla’’) with

a specific means of transport (‘‘Cercanías Renfe’’).
5. Determining whether a given station had an escalator,

elevator or moving walkway.

All of these questions were marked as having a basic
level of complexity (considered as simple), with the excep-
tion of the last (considered as complex), because, unlike
the others, it was necessary to use the SPARQL FILTER
command to correctly perform the query. These simple and
complex queries allowed us to assess whether our approach
for generating Web APIs improves SPARQL data access in
any particular way.

76360 VOLUME 9, 2021



P. C. G. D. Marina et al.: Open Data Consumption Through Generation of Disposable Web APIs

FIGURE 10. Time by type and complexity.

FIGURE 11. Attempts by type and complexity.

The analysis was focused on studying the time it took the
participants to answer the query and the number of attempts
needed to find the correct answer. We used a two-factor
ANOVAwith interaction to analyze the effect on the response
time for each type of tool (API/SPARQL) and the complexity
(simple/complex). The time variable was transformed with
the double square root in order to comply with homocedastic-
ity. The number of attempts was analyzed by using Poisson’s
GLM approach, taking into account the type and complexity
factors.

FIGURE 12. Histogram for attempts by type.

B. RESULTS
The results obtained from the analysis of the time that the
participants took to respond with the correct answers have
a different pattern according to whether they were attained
using API or SPARQL (Fig. 10). No interaction between
the two factors was detected (F1,118, p-value = 0.8450),
signifying that the pattern observed in both types is the
same: more complex queries take more time, regardless of
the type of approach (SPARQL or Web APIs). However,
both factors separately had significant differences in their
levels. Users spent more response time when using SPARQL
than when using Web APIs for both simple and complex
queries (F1,118, p-value= 0.0018). The complexity was also
significant: the simpler queries required less time than the
complex ones (F1,118, p-value = 0.0324).

The number of attempts was higher when using SPARQL
(p-value = 1.42e-10) (Fig. 11). It was also higher for the
more complex queries (p-value = 0.0001). In the case of
SPARQL, there were up to 20 attempts, the average being
around 4 attempts (Fig. 12). In the case of API, the average
number of attempts was about 2.

It is, therefore, possible to conclude that the use of Web
API attains better results than the use of SPARQL as regards
both the number of attempts and the response time.

C. DISCUSSION
When employing Web APIs, the users generally responded
with correct answers in less time than when employing
SPARQL. If we consider the complexity of the queries,
the more complex the query was, the more time they spent
resolving them by using SPARQL. The response time for
complex queries using SPARQL has greater variance than the
other cases.

With regard to the number of attempts, the pattern is simi-
lar: the more complex the query, the longer it took, regardless

VOLUME 9, 2021 76361



P. C. G. D. Marina et al.: Open Data Consumption Through Generation of Disposable Web APIs

of using Web APIs or SPARQL. In addition, the number of
attempts almost doubles when using SPARQL, despite the
complexity of the query. This is particularly relevant in the
case of situational scenarios, in which the data lifetime is very
short. We do not normally know the structure of situational
data, signifying that it will be more complex to manage.

The results of the experiment have allowed us to verify our
previous hypothesis: that it is easier and faster in a situational
scenario to use a Web API than the corresponding SPARQL
endpoint in order to consume open data. Using disposable
Web APIs, therefore, makes sense if the data to be consumed
has a short lifespan and the objective is to solving specific
one-time problems. When compared to a SPARQL endpoint,
this could, therefore, be more useful in other more stable
scenarios.

V. CONCLUSION
In this paper, we present an approach whose objective is to
generate disposable Web APIS for open data consumption.
Disposable Web APIs will likely be used to consume sit-
uational data, i.e., those data that have a narrow focus on
a specific area and, often, a short lifespan in order to add
value to data owned (and controlled) by a small group of
consumers with a unique set of needs. This was the case in
our situational scenario, in which a data scientist working at
a real estate company was willing to analyze its internal data
regarding housing rental and incomes in Madrid by adding
open data from the Madrid public transport so as to attain
new insights and make informed decisions in order to provide
adapted solutions to customers with special mobility needs.
Our approach first proposes a process with which to acquire
structured open data. A semantic annotation process is then
carried out to obtain semantically annotated data (i.e., RDF
triples). Finally, this annotated data is used as a starting point
for a model-driven process that automatically generates the
disposable Web API for open data consumption in a situa-
tional scenario.

Our approach makes use of some semantic information,
but we do not rely on SPARQL endpoints. Indeed, we have
also conducted a controlled experiment to show that our Web
APIs approach is more convenient for accessing data than a
SPARQL endpoint.

One piece of immediate future work is that of carrying out
more detailed experimentation in order to consider a wider
range of situational scenarios. Our long-term future work
consists of extending our disposable Web APIs generation
process in order to consider open data consumers’ person-
alization requirements.

ACKNOWLEDGMENT
The authors would like to thank to those students who agreed
to participate in the experiment.

REFERENCES
[1] A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J.-N. Mazón,

F. Naumann, T. Pedersen, S. B. Rizzi, J. Trujillo, P. Vassiliadis, and
G. Vossen, ‘‘Fusion cubes: Towards self-service business intelligence,’’ Int.
J. Data Warehousing Mining, vol. 9, no. 2, pp. 66–88, Apr. 2013.

[2] B. DuCharme, Learning SPARQL: Querying and updating with SPARQL
1.1. Newton, MA, UAS: O’Reilly Media, 2013.

[3] D. Booth, C. G. Chute, H. Glaser, and H. Solbrig, ‘‘Toward easier RDF,’’
in Proc. W3C Workshop Standardization Graph Data, Berlin, Germany,
2013, pp. 1–5.

[4] J. Klímek, P. Škoda, and M. Neäaský, ‘‘Survey of tools for linked
data consumption,’’ Semantic Web, vol. 10, no. 4, pp. 665–720,
May 2019.

[5] P. Lisena, A. Meroáo-Peáuela, T. Kuhn, and R. Troncy, ‘‘Easy Web API
development with SPARQL transformer,’’ inProc. Int. SemanticWeb Conf.
Cham, Switzerland: Springer, 2019, pp. 454–470.

[6] I. M. S. Hopkinson and M. Rospocher, ‘‘A simple API to the knowledge-
store,’’ in Proc. Int. Conf. Developers, Oct. 2014, pp. 1–5.

[7] H. Müller, L. Cabral, A. Morshed, and Y. Shu, ‘‘From RESTful
to SPARQL: A case study on generating semantic sensor data,’’ in
Proc. 6th Int. Conf. Semantic Sensor Netw., vol. 1063, Oct. 2013,
pp. 51–66.

[8] M. Rittenbruch, M. Foth, R. Robinson, and D. Filonik, ‘‘Program your
city: Designing an urban integrated open data API,’’ in Proc. Conf., Open
Helsinki-Embedding Design Life, 2012, pp. 24–28.

[9] A. Freitas, A. Legendre, S. O’Riain, and E. Curry, ‘‘Prov4j: A semantic
Web framework for generic provenance management,’’ in Proc. 2nd Int.
Workshop Role Semantic Provenance Manage. (SWPM, 2010, pp. 17–22.

[10] J. Cabot. (2018). Open Data for All: An API-Based Approach
Interested Modeling Languages. [Online]. Available: https://modeling-
languages.com/open-data-for-all-api/

[11] P. Cáceres, A. Sierra-Alonso, B. Vela, J. M. Cavero, M. A. Garrido, and
C. E. Cuesta, ‘‘Adding semantics to enrich public transport and accessi-
bility data from the Web,’’ Open J. Web Technol., vol. 7, no. 1, pp. 1–18,
2020.

[12] P. Ceres, A. Sierra-Alonso, B. Vela, J. M. Cavero, and C. E. Cuesta,
‘‘Towards smart public transport data: A specific process to generate
datasets containing public transport accessibility information,’’ in Proc.
3rd Int. Conf. Universal Accessibility Internet Things Smart Environments,
Rome, Italy, 2018, pp. 66–71.

[13] P. Cáceres, A. Sierra-Alonso, C. E. Cuesta, B. Vela, and J. M. Cavero,
‘‘Modelling and linking accessibility data in the public bus network,’’
J. Universal Comput. Sci., vol. 21, no. 6, pp. 777–795, 2015.

[14] CEN/TC 278. (2012). Intelligent Transport Systems—Public Transport—
Identification of Fixed Objects In Public Transport. [Online]. Available:
http://www.normes-donnees-tc.org/wp-content/uploads/2014/05/IFOPT-
FR.pdf

[15] Transmodel. (2016). Transmodel, Road Transport and Traffic Telematics.
[Online]. Available: http://www.transmodel.org/en/cadre1.html

[16] F. Jouault, F. Allilaire, J. Bázivin, and I. Kurtev, ‘‘ATL: A model trans-
formation tool,’’ Sci. Comput. Program., vol. 72, pp. 1–2, May 2008, doi:
10.1016/j.scico.2007.08.002.

[17] J. S. Cuadrado, E. Guerra, and J. de Lara, ‘‘AnATLyzer: An advanced
IDE for ATL model transformations,’’ in Proc. 40th Int. Conf.
Softw. Eng., Companion Proceeedings, May 2018, pp. 85–88, doi:
10.1145/3183440.3183479.

[18] A. Srai, F. Guerouate, N. Berbiche, and H. Drissi, ‘‘An MDA approach for
the development of data warehouses from relational databases using ATL
transformation language,’’ Int. J. Appl. Eng. Res., vol. 12, pp. 3532–3538,
2017.

[19] A. Meroáo-Peuela and R. Hoekstra, ‘‘GRLC makes Github taste like,’’ in
Proc. Eur. Semantic Web Conf., 2016, pp. 342–353.

[20] A. Meroáo-Peáuela and R. Hoekstra, ‘‘Automatic Query-centric API for
routine access to linked data,’’ in Proc. Int. Semantic Web Conf., 2017,
pp. 334–349.

[21] R. Taelman, S. M. Vander, and R. Verborgh, ‘‘GraphQL-LD: Linked data
Querying with GraphQL,’’ in Proc. 17th Int. Semantic Web Conf., 2018,
pp. 1–4.

[22] D. Garijo and M. Osorio, ‘‘OBA: An ontology-based framework for creat-
ing REST APIs for knowledge graphs,’’ in Proc. Int. Semantic Web Conf.
Cham, Switzerland: Springer, Nov. 2020, pp. 48–64.

[23] A. Dimou, S. M. Vander, P. Colpaert, R. Verborgh, E. Mannens,
and R. Van de Walle, ‘‘RML: A generic language for integrated
RDF mappings of heterogeneous data,’’ in Proc. LDOW, Jan. 2014,
pp. 1–5.

[24] M. Lefranáois, A. Zimmermann, and N. Bakerally, ‘‘A SPARQL
extension for generating RDF from heterogeneous formats,’’ in Proc.
Eur. Semantic Web Conf. Cham, Switzerland: Springer, May 2017,
pp. 35–50.

76362 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1145/3183440.3183479


P. C. G. D. Marina et al.: Open Data Consumption Through Generation of Disposable Web APIs

PALOMA CÁCERES GARCÍA DE MARINA
received the M.Sc. degree in computer science
from the Polytechnic University of Madrid, Spain,
in 1993, and the Ph.D. degree in computer science
from Rey Juan Carlos University, Madrid, Spain,
in 2006. She is currently an Associate Professor
with Rey Juan Carlos University. Her research
interests include software engineering, Web engi-
neering, model-driven development, data science,
open and linked data, the semantic Web, and trans-

port and accessibility. She is the author or coauthor of several national and
international articles related to these areas.

JOSÉ MARÍA CAVERO BARCA received the
M.Sc. degree in computer science from the Poly-
technic University of Madrid and the Ph.D. degree
in computer science from Rey Juan Carlos Uni-
versity. He is currently an Associate Professor
with the School of Computer Science Engineering,
Rey Juan Carlos University. His research interests
include databases, open data, transport, accessibil-
ity, and scientometrics.

CARLOS E. CUESTA received the Ph.D. degree
in information technologies from the University of
Valladolid, in 2002. He is currently an Associate
Professor of software engineering with Rey Juan
Carlos University,Madrid, Spain. He has had work
published in premier conferences and journals,
such as the International Journal of Information
Technology&DecisionMaking andFuture Gener-
ation Computer Systems. His main research inter-
est includes software architecture, including such

topics as self-adaptive systems and systems-of-systems, and with relation
to concurrency theory, formal methods, distributed systems, or data engi-
neering. He has been the Program Chair of the Sixth and 12th European
Conferences on Software Architecture (ECSA 2012 & 2018).

MIGUEL ÁNGEL GARRIDO received the M.Sc.
degree in computer science from Rey Juan Carlos
University, Madrid, Spain, in 2014, where he is
currently pursuing the Ph.D. degree in computer
science. For ten years, he hasworked as a computer
technician at several entities. He is also an Assis-
tant Professor with Rey Juan Carlos University.
His research interests include Web engineering,
model driven development, semantic Web, linked
open data, transport, and accessibility.

IRENE GARRIGÓS received the Ph.D. degree.
She is currently an Associate Professor with the
Department of Software and Computing Systems
and the Head of theWeb and Knowledge Research
Group, University of Alicante, Spain. Her research
interests include open data, Web augmentation,
Web modeling languages, and personalization and
application programming interfaces.

CÉSAR GONZÁLEZ-MORA is currently pursuing
the Ph.D. degree with the Web and Knowledge
Research Group, Department of Software, Uni-
versity of Alicante, Spain. His research interests
include open data, Web augmentation, semantic
Web, and application programming interfaces. His
work is funded by a contract with the Generalitat
Valenciana of Spain and the European Social Fund
for predoctoral training.

JOSE-NORBERTO MAZÓN received the Ph.D.
degree. He is currently anAssociate Professor with
the Department of Software and Computing Sys-
tems, University of Alicante, Spain. He is also the
Chair of the Torrevieja Venue at the University of
Alicante. He is the author of more than 100 sci-
entific works published in international confer-
ences and journals. His research interests include
open data, business intelligence in the big data
scenario, the design of data-intensive Web appli-

cations, smart cities, and smart tourism destinations.

ALMUDENA SIERRA-ALONSO received the
Ph.D. degree in computer science from the Uni-
versidad Politécnica de Madrid, in 2000. She is
currently an Associate Professor with the Depart-
ment of Computer Science and Statistics, Rey Juan
Carlos University. She is the author or coauthor
of several articles related to software engineering,
the semantic web, and teaching in engineering
education (in areas, such as operating systems
and software engineering). Her research interests

include software engineering, data science, open and linked data, the seman-
tic Web, and transport and accessibility.

BELÉN VELA received the M.Sc. degree in com-
puter science from Carlos III University and the
Ph.D. degree in computer science from Rey Juan
Carlos University. She is currently an Associate
Professor with the Department of Computing Sci-
ence, Computer Architecture, Programming Lan-
guages and Systems and Statistics and Operative
Investigation, Rey Juan Carlos University, Madrid,
Spain. She also leads the Vortic3 Research Group.
She has participated in and led several research

projects and has had numerous articles published in prestigious journals and
conferences. Her research interests include software engineering, informa-
tion system engineering, data science, open data, DB (NoSQL), model driven
development, transport, accessibility, and scientometrics.

JOSÉ JACOBO ZUBCOFF received the Ph.D.
degree. He has a wide range of teaching and
research experience in the field of statistics, and
data mining and its application to biology. He has
more than 100 publications in which he has dealt
with obtaining knowledge from a data source.
He has carried out research in various fields of
science, such as computing, biology, medicine,
education, and social sciences. He has additionally
directed and participated in more than 20 compet-

itive public projects financed by the Ministry of Economy and Competitive-
ness, the Generalitat Valenciana, the University of Alicante, and European
and private projects, all of which have contributed to his knowledge of data
analysis, data mining, and the attempt to democratize knowledge.

VOLUME 9, 2021 76363


