
 

 
 

 

 
Int. J. Environ. Res. Public Health 2021, 18, 6357. https://doi.org/10.3390/ijerph18126357 www.mdpi.com/journal/ijerph 

Article 

MoSIoT: Modeling and Simulating IoT Healthcare-Monitoring 

Systems for People with Disabilities 

Santiago Meliá *, Shahabadin Nasabeh, Sergio Luján-Mora and Cristina Cachero 

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante, Carretera de San Vicente s/n, 

03690 San Vicente del Raspeig, Alicante, Spain; nss24@alu.ua.es (S.N.); sergio.lujan@ua.es (S.L.-M.);  

ccc@ua.es (C.C.) 

* Correspondence: santi@ua.es; Tel.: +349-6590-3400 (ext. 2383) 

Abstract: The need to remotely monitor people with disabilities has increased due to growth in their 

number in recent years. The democratization of Internet of Things (IoT) devices facilitates the im-

plementation of healthcare-monitoring systems (HMSs) that are capable of supporting disabilities 

and diseases. However, to achieve their full potential, these devices must efficiently address the 

customization demanded by different IoT HMS scenarios. This work introduces a new approach, 

called Modeling Scenarios of Internet of Things (MoSIoT), which allows healthcare experts to model 

and simulate IoT HMS scenarios defined for different disabilities and diseases. MoSIoT comprises 

a set of models based on the model-driven engineering (MDE) paradigm, which first allows simu-

lation of a complete IoT HMS scenario, followed by generation of a final IoT system. In the current 

study, we used a real scenario defined by a recognized medical publication for a patient with Alz-

heimer’s disease to validate this proposal. Furthermore, we present an implementation based on an 

enterprise cloud architecture that provides the simulation data to a commercial IoT hub, such as 

Azure IoT Central. 

Keywords: Internet of Things; healthcare-monitoring system; disabilities; simulator; model-driven 

engineering; Alzheimer’s; FHIR; trigger–action programming; machine-learning MDE;  

Azure IoT Central 

 

1. Introduction 

Recently, the World Health Organization (WHO) [1] estimated that about one billion 

people have some form of disability (15% of the world’s population). One of the main 

problems identified by the WHO is that medical institutions should address the physical 

barriers that may hinder the healthcare and monitoring of patients with disabilities. 

Therefore, it is necessary to implement healthcare-monitoring systems (HMSs) devoted 

to monitoring their vital signs, with a set of different devices appropriate for each disabil-

ity. 

Furthermore, as a result of the increased democratization and reduced cost of Inter-

net of Things (IoT) devices, technology has become more accessible to people with disa-

bilities, with the aim of improving their independence and quality of life. However, mon-

itoring people with disabilities is not a simple task: (i) each IoT HMS should consider a 

specific scenario that allows two-way communication between the person with a disabil-

ity and the system; (ii) the devices must be suitable for collecting patients’ vital signs; (iii) 

the telemetry generated must be relevant to physicians; and (iv) the actions to be taken 

must be case-specific. 

Numerous proposals have addressed the monitoring of people with disabilities [2–5]; 

however, these share three main drawbacks. First, to the best of our knowledge, none 

have attempted to address the customization needed for each IoT HMS scenario. To ad-
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dress this issue, the inclusion of personalization mechanisms in the proposals would fa-

cilitate the representation of the variability associated with the monitoring of people with 

disabilities. 

In addition, the final implementation of these IoT HMSs often fails to acknowledge 

that healthcare experts need to undertake appropriate monitoring of patients [6]. One so-

lution to this problem is that the HMS allows experts to take part in the configuration of 

the system. This can be achieved by raising the level of abstraction at which this HMS 

configuration takes place, and by providing a simplified configuration model that is closer 

to the expert’s domain. 

Finally, the implementation cost of these systems is high. To address this issue, the 

IoT community [7] recognizes simulators as a useful mechanism to identify risk factors 

and evaluate these complex systems in advance. 

In this work, we propose a new approach, called Modeling Scenarios of Internet of 

Things (MoSIoT), which, based on the model-driven engineering (MDE) [8] paradigm, can 

address these three previous challenges by: (i) providing a simple communication lan-

guage that allows domain experts, in this case, healthcare workers, to configure an IoT 

HMS scenario; (ii) possessing the customization capability to modify and introduce new 

elements to the IoT HMS scenario; and (iii) establishing an enterprise cloud architecture 

that allows simulating the scenario in a real situation. 

It is well known that the MDE paradigm establishes the use of models as central ele-

ments. These models are domain-specific languages that raise the level of abstraction, thus 

facilitating the communication between the application stakeholders. In addition, MDE 

provides an automation process based on model-to-model and model-to-text transfor-

mations, which reduce the time required for deployment to the final solution. 

MoSIoT applies an IoT architecture reference model [9] that is specialized for IoT 

HMS systems for people with disabilities, and comprises two elements: (i) a domain 

model, in which a domain expert specifies a knowledge base that gathers the invariant 

information of most recognized standards relating to three fields, namely, accessibility, 

the IoT systems, and healthcare; and (ii) a scenario model, which allows a medical expert 

to introduce the static and dynamic behavior of the entities specific to a concrete IoT HMS 

scenario of patients with disabilities. The two models are connected, allowing the domain 

model’s invariant concepts to feed the variable entities defined in each of the scenarios. 

As shown in Figure 1, the MoSIoT framework applies MDE to generate from these 

MoSIoT models an enterprise cloud architecture based on a set of Web services with a 

secure API REST interface, a transactional business logic, and database persistence. The 

architecture’s central component is the MoSIoT simulator, which manages the domain 

model information and contains the code generator to obtain each IoT HMS scenario. Each 

scenario contains specific business logic and the prediction module that applies machine 

learning (ML) to provide data to the IoT Hub. This solution uses Azure IoT Central [10], 

which has a powerful IoT accelerator that provides an API REST to send the IoT teleme-

tries for presentation to the medical expert in a Web patient’s dashboard. This MoSIoT 

framework allows the domain and scenario models to be populated from Web or mobile 

apps, making the framework more usable and accessible by non-technical users, such as 

medical experts, caregivers, or related people. 
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Figure 1. An overview of the MoSIoT framework. 

This paper presents a case study for people with cognitive and physical disabilities 

caused by Alzheimer’s disease. Based on recent medical studies, we validated our ap-

proach, representing this real IoT HMS scenario covering the follow-up recommendations 

for these patients [11]. The case study validates the scenario model’s usefulness to simu-

late a scenario with the devices, vital signs, and accessible modes based on relevant med-

ical literature on Alzheimer’s patients and cognitive disabilities. 

This paper is structured as follows: Section 2 describes the previous work on IoT in 

healthcare-monitoring systems, IoT simulators, and MDE for IoT. Section 3 introduces the 

MoSIoT framework, presenting the software architecture model and the reference models 

of the MoSIoT framework. Section 4 presents a case study in which this approach was 

applied for Alzheimer’s disease (AD) patients. Section 5 explains the challenges to the 

validation of the proposal, and finally, Section 6 draws the conclusions of the paper and 

defines the main lines of future work. 

2. Background 

To contextualize the contribution of this work, this section focuses on introducing the 

existing approaches aligned to each of the goals of this research: (i) the existing solutions 

applied to healthcare-monitoring and assisted-living systems for caring for people with 

special needs; (ii) the range of IoT simulators currently available for HMS solutions; and 

(iii) the application of model-driven approaches in the development of IoT systems. 

2.1. The Existing HMS Solutions for People with Disabilities 

Concern regarding the increase in the number of people with disabilities is not new. 

Proposals for a technological vision aimed at improving the quality of life and increasing 

the independency of people with special needs have been made for a number of years 
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[2,3]. These approaches appeared under the term “smart houses” (SHs), which apply a 

model that is adapted to the user’s needs and physical limitations. These models are clas-

sified by [4] as smart houses for people with low vision, movement disabilities, hearing 

impairments, or cognitive impairments. As stated by the authors of [4], it is difficult to 

make a clear distinction between these groups of disabilities because individuals with one 

disability often suffer from other limitations or chronic health problems. Thus, research 

has been undertaken to attempt to address different types of disabilities; for example, [5] 

proposed a framework to manage a collection of devices and applications in a home en-

vironment for people with different disabilities (blind, nonspeaking, etc.). However, this 

approach did not have the benefits of today’s IoT systems, which allow continuous con-

nectivity of all devices, and thus allow uninterrupted telemetries and can enable a re-

sponse in real time. 

Another approach is to use so-called assisted-living systems (ALSs), which focus on 

providing supervision or assistance to residents to ensure their health, safety, and well-

being. To accomplish this, ALSs provide services such as tracking, fall detection, and se-

curity [12]. In addition to physiological measurements, the daily physical activity of 

chronic patients represents an important reflection of the quality of their daily lives. Alt-

hough these health measurements can help people with any disability, these approaches 

do not seek a complete solution, but rather aim to address a single physical or cognitive 

disability. 

Another discipline focused on the use of technology to provide remote assistance is 

ambient intelligence solutions (AmI). AmI is defined as a digital environment that is con-

text-sensitive, adaptive, and responsive to the presence of people [13], and has been used 

to develop cognitive stimulation technologies for the elderly. This technology is mainly 

focused on informing family members and caregivers about the health status of people 

with disabilities [3]. Unlike our proposal, this approach does not provide a personaliza-

tion framework that allows health personnel to configure the system to each disability. 

In recent years, several IoT proposals have been defined for health monitoring of pa-

tients with different diseases; for example, [14,15] aimed to reduce the energy cost and 

improve the efficiency of healthcare devices, thus reducing the need for maintenance, 

which is essential when dealing with patients with disabilities. However, to our 

knowledge, no proposals exist that propose IoT HMS frameworks dedicated specifically 

to people with disabilities. The iHome Health-IoT [16] framework can be applied in vari-

ous health-related scenarios, including environmental monitoring, vital-sign acquisition, 

medication management, and healthcare services. However, its solution does not consider 

scenarios related to people with disabilities. 

Finally, it should be noted that the survey in [17], which was used to study existing 

SH solutions for people with disabilities, highlighted that: (i) the main challenge of SHs 

for disabilities lies in the personalization that the environment can offer to adapt to the 

needs of the user; (ii) the SH system has to evolve according to the user; and (iii) monitor-

ing systems for patients who depend on caregivers appear to be the more intelligent ap-

proach for the future development of SH systems. These principles were fundamental to 

developing our approach. 

2.2. Necessity and Existing IoT Simulators 

As stated in [17], smart devices for disabilities are expensive, and if they are not effi-

ciently used, the system may be ineffective. IoT developers must design to achieve the 

maximum output while using the minimum number of sensors and actuators. For this 

reason, the authors of [6] propose the use of an effective simulation tool to represent com-

plex scenarios before starting the development of IoT applications. The simulator permits 

the quantitative and qualitative evaluation of components in real time and ensures that 

the developed system meets the design requirements. A number of issues can be ad-

dressed via a simulator, including capacity planning, “what-if” simulations, analysis, pro-

active management, and support for many specific security-related evaluations. 
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One of the simulators’ possible classifications is based on the part of the IoT system 

architecture that they are intended to emulate. Following the division proposed by [7], a 

generic IoT architecture can be divided into four layers: IoT devices, gateways, communi-

cation, and backend systems. 

Thus, it is notable that numerous IoT simulators focus on the communication layer, 

for which mature tools have been examined in previous research on wireless-sensor sys-

tems. Thus, NS-2 [18] and NS-3 [19] are simulation tools used for research purposes that 

permit developing a real-time network simulator. Despite their relevance, these simula-

tors are not adapted to the specific scenarios of an HMS for people with disabilities. 

Regarding the backend systems, numerous IoT simulators exist for data processing 

that are focused on describing sensors and edge-computing aspects. An excellent simula-

tor is Osmobility [20], which focuses on simulating mobility, communication, and energy 

consumption of IoT devices. A recent work [21] proposes a dependability evaluation sim-

ulator to model fault behaviors of sensing devices and network links. Regardless of the 

suitability of these simulators, they cover a specific spectrum of IoT systems that does not 

align with our needs but could, however, complement this work. 

One of the most relevant simulators in the area of healthcare is SimIoT [22]. SimIoT 

models the sensor-data-processing scenario relevant to remote healthcare IoT systems to 

evaluate its load scalability. The use case is an HMS for emergencies in which short-range 

and wireless communication devices are used to monitor patients’ health. Unlike our pro-

posal, it is not adapted for people with disabilities, nor presents a friendly environment 

for health experts. 

2.3. Model-Driven Engineering for Developing IoT Systems 

It is well known that MDE [8] comprises a development process based on the use of 

models as a central element. The main principles of MDE are abstraction and automation, 

with an integrative development process that allows for: 

 Specifying the system model, in which the heterogeneous elements are precisely 

identified, defining an automation process to obtain the final solution; 

 The application’s complexity to be addressed; 

 Facilitating communication between the application stakeholders. 

In recent years, MDE has been applied to represent the complexity of IoT systems. 

One of the most important approaches is the IoT reference model [9], which represents a 

mature and well-defined reference model for IoT based on the analysis of researchers and 

the industry’s needs. Although this approach does not establish any automation process 

to obtain an IoT system, this work inspired us to define a set of formal models as inputs 

to the simulator of the IoT HMS for disabilities. 

Most MDE approaches for IoT propose complete solutions. However, these are fo-

cused on a specific IoT domain and cannot be used directly to address the application of 

HMSs to individuals with disabilities. Examples of these approaches are: (i) SysML4IoT 

[23], which uses a new UML profile that permits validation of the quality of service (QoS) 

of a modeled IoT system; (ii) PervML [24], which defines a domain-specific language 

based on UML, to describe pervasive systems in a technology-independent manner; and 

(iii) MDE4IoT [25], which is an approach for modeling, validating, and generating a subset 

of IoT systems known as emergent configuration. 

3. MoSIoT: A MDE Framework for IoT Healthcare-Monitoring Systems for People 

with Disabilities 

In this paper, we propose a framework called MoSIoT, which addresses the repre-

sentation of the different scenarios faced by an IoT HMS for people with disabilities. We 

chose an MDE approach, which generates a data-intensive simulator with the objective to 

inspect the IoT HMS’s complex behavior under hypotheses called scenarios. In practice, 
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formulating a scenario enables building a hypothetical world that the medical expert can 

then query and navigate. 

MoSIoT was applied to three of the main challenges that IoT simulators should over-

come [26]: (i) modeling entity heterogeneity, (ii) customization and extensibility, and (iii) 

support for online decision-making. 

To overcome the first challenge; i.e., modeling device heterogeneity, MoSIoT defines 

a formal reference model representing different entities, relationships, and behavior of an 

IoT HMS system. 

The second challenge is related to the necessity of customization and extensibility of 

the IoT HMS. The introduction of new device models and new user profiles with different 

characteristics is required, without knowing or changing the simulator’s internal proper-

ties. To achieve this, the simulator offers a friendly user interface that permits an expert 

domain to instantiate the MoSIoT domain model using a Web app. Once the models are 

stored, a set of transformations is defined that permit MoSIoT to generate a specific sce-

nario’s behavior. 

Finally, the third challenge requires that simulators be used in online decision-mak-

ing, and are able to incorporate live data and process multiples scenarios. Thus, we inte-

grated a prediction module into the MoSIoT framework that applies an integrated set of 

learning attributes to the scenario model related to machine-learning algorithms. These 

learning attributes allow predictions to be obtained with greater precision and in real time. 

3.1. The Software Architecture of the MoSIoT Framework 

Figure 2 shows an overview of the software architecture of the MoSIoT framework 

using the C4 notation [27]. This architecture model represents the main components that 

comprise the MoSIoT framework and the actors that interact with it. Following the ele-

ments proposed by the C4 approach, we represent the MoSIoT simulator as a software 

container comprising a set of components. The left side of the diagram shows the core of 

the simulator, which comprises three components: (i) A Web app that allows an actor 

called the Simulator Admin to manage the simulator’s information (MoSIoT simulator 

frontend: https://github.com/hichman662/IoTAFA, accessed on 31 May 2021). This Web 

app is a progressive Web application implemented in Ionic (MoSIoT final User frontend: 

https://github.com/hichman662/userIoT accessed on 9 June 2021) that permits, through 

forms, the introduction of generic information to the simulator, thus populating the Mo-

SIoT domain model presented in Section 3.2. (ii) The core of MoSIoT is a Web service based 

on a REST API interface that provides the available services to the Web app. This object-

oriented business logic represents the MoSIoT domain model. (iii) A database in which all 

the domain information is stored and mapped through an object–relational mapping 

framework (e.g., NHibernate). The domain model is defined with the OOH4RIA [28] ap-

proach, which allows us to quickly update and generate its backend implementation (Mo-

SIoT simulator backend: https://github.com/santiagomelia/MoSIoT-Backend, accessed on 

31 May 2021). 
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Figure 2. C4 Software architecture of the MoSIoT framework. 

The simulator offers a user-friendly hybrid mobile app (e.g., Ionic, Flutter) to the 

medical expert (practitioners, nurses, or caregivers) for the provision of healthcare to peo-

ple with disabilities (details are provided in Section 4.1). This mobile app allows the intro-

duction of an IoT HMS scenario for a specific type of patient based on the generic infor-

mation of the domain model. For this reason, the mobile app is first connected to the sim-

ulator’s core backend to obtain all the generic information about these elements (patient 

profile, device templates, care plan templates) to accelerate the creation of a scenario in-

stance. Once the health expert has created and managed the appropriate entities for an 

IoT HMS scenario, the execution of the MDE transformations obtains the MoSIoT simula-

tor instance backend, which allows animation of the behavior of that particular scenario. 

Specifically, each MoSIoT simulator instance is a Web service comprising an API REST, 

transactional business logic, and a relational database for its storage. The simulator busi-

ness logic contains the functionality of: 

 Entity operations that the simulator has enriched with a typology to improve the 

generation; 

 The state machine models to represent the internal states of complex entities; 

 Trigger–action programming to define a set of recipes that configure the behavior of 

the scenario. 

A prediction module integrated into the scenario model through learning attributes 

that gather information from machine-learning algorithms (see details in Section 4.2) com-

pletes the scenario’s behavior. 

As part of the result, the simulator injects, through an API REST, all the elements and 

animated data involved in an IoT HMS specific scenario into an IoT Hub Cloud (e.g., Az-

ure IoT Central). The real scenarios’ information allows us to compare their data with the 

predictions of our simulator, indicating what is accomplished, and allowing the medical 

expert to adjust and improve the simulator. 

As indicated by the authors of [29], it is crucial to identify an adequate formalism to 

express the simulation model conceptually. In the MoSIoT simulator, this formalism is 

provided by the MDE paradigm. MoSIoT applies a set of models and model transfor-

mations that facilitate the transition from the medical expert’s requirements to the final 

IoT HMS simulator. 
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The following section provides a detailed description of the MoSIoT domain model, 

the formalization of which allows the management of the simulator’s core concepts. 

3.2. The MoSIoT Domain Model 

Following the same philosophy as the IoT reference model [9], the domain model is 

an essential part of any reference model. It defines the main abstract concepts (abstrac-

tions), their responsibilities, and their relationships. The domain model’s fundamental 

idea is to represent concepts that do not change over time, so they must be independent 

of both technology and specific scenarios. 

In our case, the MoSIoT domain model is divided into three fundamental parts or 

packages: 

 The patient profile package, which allows for the definition of the adaptation profiles 

of patients based on the types of disabilities and conditions; 

 The device package, which defines the device templates or types of devices used in 

these systems with their characteristics and the types of telemetries; 

 The healthcare package, which proposes different care plan templates with activities, 

goals, and communications for patients with specific conditions and disability types. 

Each of the packages of the MoSIoT domain model is based on a set of industry stand-

ards that have been considered relevant in their area. 

3.2.1. The Patient Profile Package 

Figure 3 shows an extract of the package in which entities are expressly represented 

that we consider fundamental to defining the profile of a type of patient with one or more 

disabilities and several diseases. Although no standards to address disability for IoT cur-

rently exist, we relied on initiatives such as the ISO/IEC 24751 AccessForAll (AFA) [30] 

specification, which proposes a reference model that represents users’ personal accessibil-

ity needs and preferences, and controls the presentation of the information. Although the 

proposal was defined for the domain of e-learning resources, we extracted the domain-

independent aspects from the reference model, such as the definitions of access modes 

and the different types of adaptations according to a specific disability. 

The central element of this package is the PatientProfile class, which brings together 

the patient’s set of disabilities and the set of diseases that they may have over time. We 

based this element on the Web Accessibility Initiative (WAI) W3C classification [31] to 

define the different types of disabilities: auditory, cognitive, physical, speech, and visual. Fur-

thermore, severity can be classified as: severe, moderate, or mild. The Condition entity is 

based on the Fast Healthcare Interoperability Resources (FHIR) standard [32], which in-

dicates patients’ current clinical status (active, recurrence, relapse, etc.), its severity, and the 

disease suffered. This Condition entity belongs to the Health package, explained in Section 

3.2.3, which defines the elements to establish a patient’s care plan. 
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Figure 3. The patient profile package. 

One of the aspects defined from the AFA standard is the definition of a set of Access-

Modes, which are the accessible modes with which the patient will interact with the differ-

ent devices. Each AccessMode will establish the relationship between the PatientProfile and 

the DeviceTemplate. Each AccessMode has an AccessModeType, which establishes an access 

mode for the patient to interact with the device. For example, a Voice Interpreter has an 

Auditory mode, and a smartphone may have several modes, such as Tactile, Visual, and 

Auditory. Each AccessMode is further composed of three elements: (i) AdaptationRequest, 

which establishes a preference of the access mode with which the patient interacts with 

the device. For example, the patient can indicate that if a smartphone offers a visual Ac-

cessMode, she chooses an AccessModeTarget Auditory mode. (ii) AdaptationTypeRequired sets 

a form of adaptation determined by the disability; e.g., a smartwatch may have a visual 

AccessMode. A person with a visual impairment may set an AdaptationType equal to Audi-

oDescription. (iii) AdaptationTypeDetail is a more specific adaptation of the previous Adap-

tationType. Following the previous example, we can set the AudioDescription to have an 

AdaptationDetailValue of type Record so that all descriptions are recorded and can be sub-

sequently heard again. 

Therefore, each patient profile of a specific clinical picture with disabilities estab-

lishes an accessibility configuration with a set of device templates. Thus, when a 

healthcare professional establishes a specific patient’s profile, they will be able to choose 

the accessibility configuration that best suits that patient a priori. This makes it possible 

to obtain previously defined expert knowledge and substantially reduce the effort re-

quired to define the patient in the scenario model. 

3.2.2. The Device Package 

The device package consists of the entities necessary to represent the IoT devices that 

constitute the MoSIoT simulator. Figure 4 shows an extract of this package, the central 

element of which is the DeviceTemplate. Its definition is based on the W3C Web of Things 
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standard [33], but adapted to commercial solutions such as Azure IoT Central [10], the 

platform used for the current implementation of MoSIoT. 

Specifically, a DeviceTemplate is an abstraction that defines all the characteristics and 

behaviors that a device type needs within an IoT system. The DeviceTemplate provides a 

set of Commands that are the methods of the device that are offered to the rest of the system 

to represent the behavior. For each Command, we define whether it is asynchronous. It is 

assigned a type (e.g., create, getter, delete, reboot, etc.) that endows it with a specific behavior 

(e.g., a reboot command puts the device in its initial state). The DeviceTemplate contains a 

set of Property elements, which are the different internal data fields that define the device’s 

state (e.g., a smart light bulb has the property state with the values on and off). 

Furthermore, each DeviceTemplate contains a set of Telemetry entities, representing a 

human-readable view of the device information relevant to the client. In this context, these 

are typically significant patient measures (heart rate, steps, blood pressure, etc.) or metrics 

of the device (battery, temperature, internal state, etc.) represented in the scenario control 

panel. Thus, each Telemetry must define the properties it represents, the type of data 

(schema), the frequency of collecting data by the device, and the data unit. 

Different Telemetry subtypes can be specified through the SpecificTelemetry entity. 

Four types are defined: (i) StateTelemetry allows the definition of the range of StateDevice 

to be displayed by sending the IoT Hub the states that the device goes through. (ii) 

EventTelemetry establishes a trigger sent to the Hub when one or more commands are ex-

ecuted on the device. (iii) LocationTelemetry is necessary for devices that need to store their 

location. (iv) SensorTelemetry establishes Telemetry to collect information from a specific 

type of sensor; for example, we define the SensorType equal to temperature for a thermo-

stat device. 

 

Figure 4. The device package. 

3.2.3. The Healthcare Package 

The third package of the MoSIoT simulator defines the entities that enable patient 

care and the establishment of specific care plans to be monitored by the IoT system. 
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For its definition, we analyzed several standards that allow the storage of patients’ 

medical information, such as ISO13606 [34], OpenEHR [35], and CDA of HL7 [36], which 

are based on the definition of complex reference models based on archetypes with a 

stronger focus on their persistence. These standards provide a sizeable expressive capacity 

to specify patients’ clinical data, but the interoperability of their data is considered sec-

ondary. 

In contrast, in the context of IoT HMS, interoperability is considered fundamental 

because devices send data to IoT hubs and the healthcare systems to which patients be-

long. Therefore, based on a current health standard; i.e., HL7 Fast Healthcare Interopera-

bility Resources (FHIR) [32], the aim is to simplify and accelerate HL7 implementation 

using open Web standards such as REST, JSON, HTTP, and OAuth. 

As the name implies, FHIR is focused on interoperability, simplifying communica-

tion with the rest of the simulator and, in addition, providing the possibility of connecting 

with healthcare systems, both to retrieve information from patients and healthcare pro-

fessionals, and to send information if necessary. 

Specifically, among the set of modules existing within the FHIR standard, we focused 

on the Workflow module, which is responsible for the coordination of activities between 

the different systems. We focused on defining a care plan that allows the definition of a 

set of clinical or administrative activities to manage patient care, followed by monitoring 

of the implementation of these plans. Following the FHIR HL7 standard, most entities 

have included an encoding based on standards such as SNOMED CT [37] for clinical ter-

minology, ICD-10 [38] for diseases, and LOINC for care plans [39], thus providing a com-

prehensive and precise clinical health terminology. 

As shown in Figure 5, the health package’s core element is the CarePlanTemplate, 

which is based on the FHIR CarePlan to define all the elements that will enable the estab-

lishment of an IoT-assisted care plan. The CarePlanTemplate also defines a generic treat-

ment plan for specific disabilities and critical illnesses. Once defined, the MoSIoT scenario 

will instantiate for a specific scenario whose specific needs will be defined. 

 

Figure 5. The healthcare package. 
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The CarePlanTemplate defines the duration (in days) of the treatment, the status of the 

plan, the list of Conditions or diseases it intends to address, its intent, and the modification 

date. It is important to note that the domain model relates a CarePlanTemplate to a given 

PatientProfile. This allows a filter to be established when we select a care plan, following 

the establishment of a patient profile in the definition of a scenario. 

The CarePlanTemplate is a composite element containing three lists of entities: (i) a list 

of Activities called CareActivity, which are the actions to be performed as part of the plan; 

(ii) a list of Goals, which are the objectives to be met in carrying out the plan; and (iii) a list 

of Communications that permit messages sent to other users to be registered. 
CareActivity represents the action by the patient over a certain period, duration, and 

periodicity. Both activityCode and outcomeCode codification follow the SNOMED CT stand-

ard. CareActivity can contain extra information on other entities such as: (i) Medication—

a prescribed medication that the patient takes during a specific period; (ii) Nutri-

tionOrder—the care plan instructs the patient to perform a specific food diet; and (iii) Ap-

pointment—a proposed virtual appointment with a practitioner. 

As mentioned above, a CarePlanTemplate contains a set of Goals. Each Goal defines a 

priority, a category (dietary, safety, behavioral, or physiotherapy), its description (e.g., the pa-

tient must lose weight), and outcome, which is also coded by SNOMED CT. Each Goal 

contains a set of Target objects that allow the Goal to be set quantitatively; e.g., for a weight-

loss goal, the desireValue indicates the number of kilograms to be lost and the date. More-

over, the Goal establishes a relationship with the Measure entity, which indicates the meas-

urable concept to be treated (i.e., weight, % body fat, heart rate, etc.). This Measure entity 

is in turn related to a Telemetry that is sent to the IoT hub. 

The MoSIoT domain model generates a common understanding of the target domain, 

collecting all the valuable information in an IoT HMS for people with disabilities. As in-

dicated [4] in the definition of the domain model, a set of concepts exists that remains 

constant, regardless of the specific scenarios represented. Other concepts will vary for 

each case. The Web app that manages the Simulator Admin permits the introduction of 

all the information that remains constant (see Figure 2). For example, the different De-

viceTemplates or types of devices used in an IoT HMS (e.g., smartwatch, smartphone, voice 

assistance, or any wearables), in addition to their properties, telemetry, and commands, 

will be the same, regardless of the scenario. 

Figure 6 shows several views of the mobile version of the MoSIoT framework Web 

app. In Figure 6a, a PatientProfile is introduced, showing the parameters of the patient’s 

disability; in this case, Alzheimer’s with moderate cognitive impairment. Figure 6b shows 

a screen of a CarePlanTemplate for Alzheimer’s disease depicting its parameters, such as 

indicating that the plan status is draft, its intent is a proposal, and the duration is 100 days. 

The description indicates that this plan is for patients with severe Alzheimer’s disease 

with cognitive and mobility impairment. Finally, Figure 6c shows the screen of a smart-

watch device in which its telemetries, specifically the telemetries Fall Detection, Blood pres-

sure, and HeartRate, are defined. The screen shows the details of the HeartRate. This is a 

type of sensor telemetry; the unit of the metric is beats per minute; the frequency with 

which it collects information is 20 s; and the schema that defines its data type is Integer. 
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                 (a)                             (b)                              (c) 

Figure 6. Web app admin of MoSIoT. (a): Patient Profile edition screen; (b): CarePlan Alzheimer 

edition screen; (c): Smartwatch Telemetries edition screen. 

Once the domain model has been defined, the next step is to represent the scenarios 

for each patient. For this purpose, the following section defines the metamodel of the sce-

nario model, which gathers the knowledge of the domain model and instantiates the con-

cepts specific to each scenario. 

3.3. The MoSIoT Scenario Metamodel 

As stated in the IoT reference architecture [9], the information model is a model that 

defines the main elements of information needed to define an IoT system scenario. Mo-

SIoT has renamed the information model as a scenario model, which is the instantiation 

of the concepts that vary in each of the IoT HMS scenarios. For the construction of the 

scenario model, our framework establishes a relationship between the scenario entities 

and the domain entities. This aspect provides several advantages, such as: (i) speeding up 

the scenario model’s creation, because many concepts are automatically generated from 

the domain model information; (ii) simplifying the definition of scenarios by offering the 

practitioner a choice between possible alternatives for patient profiles, care plans, and de-

vice templates; and (iii) the scenario model feeds back to the knowledge base of the do-

main model with the data obtained from the execution of the different real cases. 

The first step in defining the scenario model is to define its abstract syntax; i.e., its 

metamodel. This metamodel is split into two fundamental parts: the core, in which the 

main elements that will structure the dynamic and static part of the model are defined; 

and the relationships between the scenario model and the domain model, in which the 

invariant domain information is provided. In this case, these are the elements of an IoT 

HMS, and the restrictions obtained by the scenario’s fundamental entities through this 

relationship. 

Figure 7 shows an extract of the core of the scenario model metamodel. Its central 

element is the IoTScenario class, which contains all the elements that are part of a scenario. 

The IoTScenario contains a set of Entity objects, each of which defines a real-world entity 

that is part of the IoT scenario. The IoTScenario has a set of Association objects that represent 

the relationships between the different entities. 



Int. J. Environ. Res. Public Health 2021, 18, 6357 14 of 27 
 

 

Figure 7. The metamodel core of the MoSIoT scenario model. 

Each Entity of the scenario model has a static part, defined by a set of EntityAttributes 

that can be primitive data or refer to other Entities through the Association. An EntityOper-

ation represents the dynamic part of the Entity. These operations also contain a set of En-

tityParameters. In addition, the Entity has a setting of EntityState, representing the different 

states that an entity can go through during its life cycle. The different EntityOperation val-

ues trigger the transitions of these states at both the source and destination of each state. 

The core contains the IoT system’s behavior, represented by the set of rules called 

recipes. We relied on trigger–action programming for the definition of the recipes [40]. 

This programming paradigm is based on frameworks such as IFTTT, Integromat, and 

Zapier. This paradigm allows medical experts with no programming knowledge to intro-

duce new recipes that allow the proper configuration of each IoT HMS. A Recipe is a com-

bination of a Trigger and an Action that follows the format IF (TriggerFunction) Then (Ac-

tionFunction). A Trigger is either an event or a condition. The event relates to an Enti-

tyOperation, and the condition is defined by an operatorType (equal, distinct, isGreater-

Than, isLessThan, etc.) from the value of an EntityAttribute. A RecipeAction is a command 

or operation that will be executed when the trigger is fulfilled. This operation belongs to 

an Entity of the IoT system. This core allows the establishment of a static and dynamic 

representation of the concepts to be represented in a scenario; however, the Entity sub-

types that are finally instantiated in the IoT HMS scenario must be established. 

Figure 8 shows the metamodel’s extract of the scenario model in which the specific 

entity types of the IoT HMS domain are defined. Each of the entity types of the scenario 

model is related to an entity of the domain model. The simulator obtains the previous 

domain information from which its entities are generated, and the possible relationships 

between the different entities are established. Thus, a patient entity has a relationship with 

the PatientProfile entity of the domain model. Due to this relationship, patient retrieves the 

information of a specific PatientProfile, such as the type of disability with its access modes, 

and the disease or condition. In this way, when the physician defines a PatientAccess, 

which has a relationship with AccessMode, the model will propose a set of AccessMode en-

tities within the previously chosen PatientProfile. The medical expert can reuse one of these 

or create one from scratch. 
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Figure 8. The entity hierarchy metamodel of the MoSIoT scenario model. 

The scenario model can define a set of Device entities representing the Thing of WoT 

or VirtualDevice of the Reference IoT Model. Each Device has a unique identifier within 

the IoT hub and the entire Internet. In addition, it has the data of the physical device, such 

as the serialNumber and the firmVersion. However, it can also be a simulated or use a real 

device, with the attribute isSimulated equal to false. Moreover, each device is related to a 

DeviceTemplate, which gathers information about the commands, properties, and teleme-

tries. Thus, when a device with its DeviceTemplate is chosen, a medical expert can define 

an IMTelemetry, which they can choose from the subset of Telemetry contained in that De-

viceTemplate. 

Finally, the third domain in which the simulator can restrict elements is contained in 

the healthcare package. Specifically, when a CarePlan is created, it can be assigned to a 

CarePlanTemplate related to the disabilities and conditions of the patient. Once this Care-

PlanTemplate is chosen, then CarePlan elements such as Goals, Activities, and Communica-

tions will be proposed to the medical expert, or new elements can be created. 

Once the semantics of the scenario metamodel have been defined, the scenario model 

can be instanced and applied to a real case. The following section explains a scenario 

model representing an IoT HMS of a patient with Alzheimer’s disease. 

4. A Case Study of the MoSIoT Scenario Model: A Patient with Alzheimer’s Disease 

Alzheimer’s disease (AD) affects millions of people globally and is currently the 

sixth-leading cause of death in the USA, having increased by 98% since 2000. For this rea-

son, it is necessary to implement measures that not only help to combat the disease, but 

also help improve the quality of life of those affected, by allowing practitioners to monitor 

their progress on an ongoing basis. 

For the definition of this scenario, we relied on the work of Kourtis et al. [11]. These 

authors have conducted research in the medical field; therefore, all treatments and follow-

ups indicated by IoT HMS were based on scientific evidence from real patients. The work 

focused on studying the evolution of patients with AD who suffer a gradual reduction in 

their cognitive and motor skills. 

4.1. The MoSIoT Scenario Model 

The MoSIoT scenario model allowed the representation of a scenario in which a spe-

cific care plan for AD was specified. This scenario was associated with the capture of a set 

of telemetries collected by one or more devices that specifically related to this disease or 
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condition. In addition, as one of the main contributions, accessibility scenarios were con-

sidered, which in this case could be both physical and cognitive, so that the patient could 

receive information and communicate with other people. 

The model allowed the capture of variabilities that occurred between patients with 

AD; i.e., the model could be defined by a doctor for several patients with the same disease 

stage. However, the model was instantiated with each patient and could evolve as the 

patient’s disease progressed, thus addressing intrapatient variability. 

The current scenario (depicted in Figure 9) started with the main element, which was 

the Patient. When this was defined, a patient profile had to be selected from those available 

in the domain model; at that moment, we chose the profile for AD. Subsequently, the sim-

ulator offered a subset of the access modes available for that type of patient, although a 

doctor could modify an access mode that they consider appropriate. 

 

Figure 9. Alzheimer’s scenario using the information model. 

Associated with this patient, we have the element that provides input to the patient’s 

follow-up configuration, in this case, the CarePlan. As previously indicated, the CarePlan 

can be defined from CarePlanTemplate defined in the domain model, which provides a 

possible configuration for this disease. The CarePlan contains a period of validity between 

the start date and end date, and a set of Goals associated with different VitalSign values 

defined for this care plan. Based on a previous study [11], we established the VitalSign 

values of interest to be collected from the patient. The first was Sleep Time. Studies of AD 

populations have confirmed that patients with AD experience more night-time awaken-

ings, less time in REM sleep, and lower sleep efficiency. Thus, [41] recommends using a 

Smartring, which has shown higher levels of sleep-staging accuracy than other devices 
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located on the wrist, such as smartbands and smartwatches. In the VitalSign entity called 

SleepQuality, we captured metrics that corresponded to the different sleep stages, such as 

awakeTime, REMTime, deepTime, and lightTime. In addition, we defined a learned Attribute 

called anomalySleep, associated with a machine-learning algorithm (explained in Section 

4.2). We also established notification operations in the case of an excessive number of 

awakeTime and a reduced REMTime. This VitalSign is related to the Smartring device in 

charge of collecting such information. 

The second VitalSign defined was heart-rate variability (HRV), a measure of time in-

tervals between heartbeats, resulting from the heart’s dual modulation by the sympathetic 

and parasympathetic systems. In adults, HRV is correlated with cognitive functions, at-

tention, memory, stress, and social cognition [42]. Thus, HRV serves as a compelling 

marker for AD progression. The VitalSign HRV was included in the model, and the lower 

limit at which values were considered to represent negative cognitive function was de-

fined. This HRV measure was also linked to the Smartring device, which was equipped 

with photoplethysmography and offered high reliability [11]. Another measure collected 

directly with the CarePlan was Movement. Studies based on actigraphy data using accel-

erometers have been useful in establishing an objective measure of apathy in patients with 

impaired activity levels and neural impairment [43]. Thus, the scenario defined that the 

Smartring collected data relating to steps taken during the day, calories consumed, and 

inactivity time. In addition, we defined a notification when the level of steps was lower 

than this value. 

The three metrics were finally grouped into a single SensorTelemetry called Readiness 

& Sleep. The Smartring device monitored the body’s signals, registered daily habits, and 

provided an overall measure of the patient’s recovery called Readiness. The Readiness 

measure allowed signaling of the capacity to perform mental, emotional, and physical 

activities. The Smartring device also gathered different types of sleep (deep, light, REM) 

and heart-rate insights, which allowed an overall sleep-quality reference to be derived. 

One of the essential entities in the scenario was the Practitioner; in this case, a Neurol-

ogist in charge of monitoring the disease, following up the CarePlan, and introducing as-

sessments of the patient’s evolution in both Readiness and SleepQuality. Doctor–patient 

communication was introduced into the domain, and was necessary in most scenarios. 

For this purpose, the scenario had a Communication entity that sent messages between the 

two actors, and each actor was notified of their receipt. As previously indicated, for com-

munication with an Alzheimer’s patient who has a cognitive disability, the patient’s com-

munication must be accessible. Thus, we defined a PatientAdapter entity between the Pa-

tient and the smartwatch device in charge of collecting and sending messages. The Patien-

tAdapter entity had defined elements from the accessibility package of the domain model. 

In this communication, the default AccessMode used by the smartphone for the messages 

was textual. However, due to this patient’s cognitive disability, we provided an Adapta-

tionRequest equal to Auditory so that these messages were translated from text to speech 

for this patient. Finally, we introduced an AdaptationDetail with a value equal to Record, 

which indicated that the system would record speech messages for later playback. 

The last part of this scenario was analyzing the Alzheimer patient’s speech and lan-

guage in their conversations. According to a metric study [44], the proportion of words 

spoken in a patient’s conversation can correlate with transitions from normal cognition to 

mild cognitive impairment. A simple metric quantifying pauses between utterances 

shows memory problems associated with AD. In our scenario, we staged the capture of 

both metrics using a voice assistant that picked up the patient’s spoken words in a con-

versation with RelatedPerson; in this case, with a family member. The IoT HMS transcribed 

these conversations into text and stored them in a SensorTelemetry called Spoken-

Words&Pauses, calculating the percentage of words spoken by the patient and pauses be-

tween utterances. 

We also introduced an accessibility mechanism through a PatientAdapter to improve 

the patient’s interaction with the voice assistant. The mechanism displayed the text with 
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the spoken messages on a screen that accompanied the voice assistant, thus setting the 

AdaptationRequest as Textual and indicating that the AdaptationType was equal to Tran-

script. The AdaptationTypeDetail was equal to RealTime, thus establishing the speech-to-text 

transcription in real time. 

Figure 10 provides a schematic of the data flow between the different actors in the 

Alzheimer’s scenario. The diagram shows how the patient sent data from the wearable 

Smartring and two devices with an accessible interface, such as the voice assistant and the 

smartphone. The three devices were responsible for generating the HRV and movement, 

Sleep and Speak, and Pause telemetries, which the medical expert read. In addition, the 

diagram shows the data flow in the communication between the doctor and patient 

through messages. 

 

Figure 10. Data flow diagram of the Alzheimer’s scenario. 

As indicated in the MoSIoT framework architecture shown in Figure 2, the healthcare 

expert entered the patient scenario information using a mobile app that allowed them to 

quickly enter the entities and their relationships of the IoT HMS scenario. Figure 11 shows 

an example of a doctor’s mobile app screen in which they inserted the patient’s Patien-

tAdapters. In this case, the doctor could create a new PatientAdapter or choose the different 

AccessMode associated with the PatientProfile of the patient through a Select control. Fol-

lowing the same Alzheimer’s scenario model as in this section, when the AdaptationVoice 

patient adapter was selected, its detail with the AccessMode and the different adaptations 

were explained. Finally, the app permitted the association of the PatientAdapter to a Device 

(e.g., Voice Assistance) defined in the scenario. 
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Figure 11. Web app for the MoSIoT scenario model. 

However, to complete the simulator, each entities’ internal behavior and the pro-

gramming of the rules that allowed the particular conditions to be established were re-

quired. Thus, the doctor could establish a state machine for complex entities, and establish 

a behavior based on a set of states that respond differently to each of the operations. Figure 

12a shows how the app allowed the Smartring state machine definition, which indicated 

Off as the initial state. Its transition to an On state occurred by executing a Reboot event, 

which could, in turn, receive two events: a ReadHRV event to collect the data from the 

VitalSign HRV, and a SwitchOff event to switch the device back to an Off state. The Smar-

tring can collect many events, but we only show these states due to the mobile interface’s 

limitations. 
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(a) (b) 

Figure 12. Web app for the MoSIoT scenario model. (a): Smartring state machine edition screen; 

(b): New recipe creation screen. 

Another aspect that defines the behavior of the simulator is the introduction of the 

recipes based on trigger–action programming, which, as indicated in the previous section, 

were introduced in the scenario model as a set of “IF(Trigger) Then(Action)” recipes. Fig-

ure 12b shows the introduction of a recipe with the name “Notify Practitioner for lower 

steps”. This stated that if the number of steps the user performed in a day was less than 

500, it triggered a notification to the Practitioner called Reduce Steps, which was selected 

from the different notifications of the Smartring device. 

Once the healthcare expert defined the scenario model, our framework initiated a 

code-generation process employing model-to-text transformations of OOH4RIA [28] to 

obtain the MoSIoT simulator instance for a scenario (see Figure 2). This component was a 

Web service made up of an API REST, the business logic with the scenario’s functionality, 

and a persistence layer based on an object–relational mapping that accessed a relational 

database in which all the information related to the patients in the scenario was stored. 

Because the scenario model defined a typology of entities (Patient, CarePlan, Device, etc.) 

linked to the MoSIoT domain model, detailed information was available to generate func-

tional code for each entity. The framework generated the static part represented by the 

entities’ attributes, which could have primitive types or types from association relations, 

or those defined in the domain model. The framework also generated the dynamic part 

through the typed operations (Notify, Register, etc.), the state machines of those entities 

with a complete behavior, and the programming of the set of recipes appropriate to that 

scenario. Following generation, the scenario entities in an IoT hub were created, and data 

were provided to animate the simulation. 

The following section addresses the task of generating the data for the IoT hub from 

the prediction module.   
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4.2. The Prediction Module of MoSIoT Simulator 

The prediction module of the MoSIoT framework had inputs from three sources of 

data related to the system behavior: (i) the input from expert knowledge that is defined 

both in the domain model and by the specific entities in the scenario model; (ii) the appli-

cation of prediction techniques based on machine learning (ML); and (iii) the input of data 

from real patients interacting with the already-implemented system. 

The prediction module was integrated into the business logic generated from the spe-

cific scenario. As stated in a previous study [29], performing a proper simulation requires 

an accurate representation of the scenario. In our case, the MoSIoT scenario model accu-

rately represented all entities’ behavior in an IoT HMS scenario. However, it was neces-

sary to adopt an approach that first provided the past data, and then animated that data 

through the events expressed by the recipes and the different entities’ internal behaviors. 

For this purpose, because MoSIoT is an MDE approach, we applied an approach 

based on [45], which seamlessly integrated machine-learning algorithms in a domain 

model; specifically, in data sets composed of independent and heterogeneous entities with 

very different behaviors, as was the case of the IoT HMS. The traditional coarse-grained 

machine learning that searches for commonalities across the whole dataset is often impre-

cise and rigid, and requires the process to be recomputed each time a single element of 

the domain model is changed. 

However, this approach [45] follows fine-grained learning based on a “divide and 

conquer” technique, which is capable of performing complex learning tasks with a reusa-

ble, chainable, and independent set of microlearning units integrated in different entities 

of the scenario. This technique establishes the mapping between the specific machine-

learning algorithm and one or several domain elements, allows it to execute the micro-

learning units fast enough, and can apply live or online learning. 

In our case, the model used to integrate the microlearning units was the scenario 

model, for which an extension was defined in its metamodel, relating to the information 

to be learned (learned attributes), the manner in which it should be learned (ML algo-

rithms), and what was to be defined (attributes). Specifically, Figure 13 shows an example 

based on the case study presented in the previous section. A learned Attribute called 

AnomalySleep of type Boolean was defined, which allowed the detection of anomalies in 

the sleep of Alzheimer’s patients. For this purpose, we established a set of input attributes 

that related to the different sleep states of a person, which were obtained by the measure 

SleepQuality (AwakeTime, REMTime, LightTime, and DeepTime). In addition, a ma-

chine-learning algorithm called the Gaussian mixture model, which allowed the detection 

of anomalies using an unsupervised clustering approach, was applied. The algorithm 

stored the AnomalySleep attribute’s information, setting its attribute to true when an 

anomaly occurred in the patient’s Sleep Quality. 
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Figure 13. Web app for the MoSIoT scenario model. 

It is important to note that the framework used the learned Attributes within a sce-

nario model as another attribute. Thus, this could be integrated into the IoT HMS to send 

a notification to the practitioners with the NotifyAnomaly event when the value of the 

learned attribute AnomalySleep was equal to true; i.e., an anomaly had occurred in the 

patient’s sleep. Transitions could also be made between the states of the entities or sam-

pled in the telemetries. 

4.3. The IoT Hub Integration 

Once the scenario’s business logic configured its dynamic part and its prediction 

module, the next step was to provide data to the IoT hub. Specifically, in the current im-

plementation of the MoSIoT framework, Azure IoT Central was chosen due to its suitabil-

ity to the medical environment and its compatibility with the FHIR standard. The business 

logic component in .NET, using an extension of OOH4RIA that integrated the aspects of 

machine learning, was responsible for providing the data contained in its database via 

invocations made from its business logic to the API REST provided by Azure IoT Central 

(see Figure 2). 

Following the Alzheimer’s patient case study, Figure 14 depicts an excerpt of the 

practitioner’s dashboard with the patient’s telemetry information. As previously indi-

cated, MoSIoT customized the dashboard, showing the scenario model telemetries pro-

posed for this scenario. In this case, three devices sent information: the Smartring, the 

Voice Assistant, and the Smartwatch. This dashboard screenshot shows two telemetries. 

A telemetry with the types of Sleep phases is represented in a pie chart. Specifically, this 

showed that, during the previous 12 h, the patient had almost 49% of Light Sleep hours, 

27% of Deep Sleep, 17% of Awake Time, and only 5% of REM Time. The panel also shows 

another telemetry represented by a line chart, which compared the evolution during 1 h 

of the patient’s movement, represented by the Movement vital sign and the evolution of 

their HRV. Specifically, it shows that the patient started the hour by performing a constant 

movement derived from an activity such as a walk, while their HRV was similar, with the 
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exception of the last phase, in which the difference between the pulsations increased, co-

inciding with the end of the activity. 

The IoT hub integration with the MoSIoT framework provides two benefits. First, 

MoSIoT provides the practitioner with a control panel for each patient on a website, pro-

vided in this case by Azure IoT Central, which allows them to see the evolution of each 

patient’s telemetry in real-time. In addition, the cloud is able to communicate with the real 

devices through the MQTT protocol, or other alternative protocols compatible with the 

devices and the IoT cloud. The simulator implements a real scenario in which patients 

with disabilities can use these IoT scenarios to provide real data to the simulator. 

 

Figure 14. An excerpt of the dashboard for the Alzheimer’s patient. 

These aspects provide a scalable solution and allow multiple patients to benefit from 

an IoT HMS solution. However, one question remains to be addressed: the connectivity 

of the different patient devices to the IoT Hub to provide tracking data. In the current 

implementation, we relied on the scalable Azure IoT Central solution, which supported 

an automatic registration in which the device was registered automatically when it first 

connected. This scenario enables an original equipment manufacturer (OEM) to mass-

manufacture devices that can connect without being registered. An OEM generates suita-

ble device credentials and configures the devices in the factory. Optionally, it can require 

an operator to approve the device before it starts sending data. Specifically, our solution 

configured a shared access signature (SAS) group enrollment for each group of patients 

that belonged to the same MoSIoT scenario. 

5. Discussion 

Following the above presentation of the proposal, we now will indicate the main 

challenges to validation that need to be evaluated. 

First, we decided to evaluate our approach using an end-to-end real case study of an 

Alzheimer’s patient with a cognitive disability. Nonetheless, we showed the usefulness of 
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the approach and relied on recognized medical studies to demonstrate the solution’s use-

fulness. One remaining challenge to validation is that the evaluation case study might be 

especially appropriate for the presented solution. Thus, we need to consider additional 

case studies to better estimate the presented approach’s general applicability. 

Another aspect that may challenge external validation is that MoSIoT’s implementa-

tion only supports one of the most recognized IoT platforms; that is, Azure IoT Central. 

However, this aspect could limit the solution in some areas. The Azure IoT platform has 

not validated all commercially available devices for different disabilities and diseases. 

Therefore, it is important to note that we implemented the MoSIoT framework as a set of 

independent Web services, allowing it to connect to any IoT hub, such as AWS IoT and 

Google Cloud IoT. However, adapting to another IoT hub would require implementation 

of new transformations in the simulator generator to send data to the new hub. 

The main difference between previous related IoT HMS proposals, such as [14–16], 

and our approach, is that the former presented ad hoc solutions that achieved highly op-

timized results for particular devices, and thus required significant manual development 

to introduce new devices. In contrast, MoSIoT delegates the development of such devices 

to third parties, which implies a possible loss of optimization, but focuses more on the 

ability of the IoT HMS to be flexible to changes in the scenario. Due to MDE, MoSIoT can 

change the scenario model, generate modified code, and quickly adapt to each patient’s 

specific needs. 

6. Conclusions 

This paper presented the MoSIoT framework, which allows the representation of dif-

ferent IoT HMS scenarios for people with disabilities. MoSIoT focuses on the application 

of an MDE approach that provides the following: (i) A formalization of the different do-

main elements that constitute the context of healthcare-monitoring systems for people 

with disabilities. A domain model was proposed as the core of the application, which, 

based on the standards, defines the contexts of accessibility, the IoT devices, and the 

healthcare domain. (ii) A scenario model that allows the static and dynamic definition of 

all the entities to represent a patient with a specific type of disability and disease. In this 

study, we applied the model to an Alzheimer’s patient with a cognitive disability. (iii) The 

integration of machine learning in the scenario model allowed the integration of ML algo-

rithms directly in the entities. It was thus able to obtain more accurate and faster predic-

tions based on data obtained in real time. Finally, the framework was implemented based 

on the extension of the OOH4RIA approach, which allowed generation and management 

of the models as if they were business applications, with a scalable backend accessible 

through an API REST, a transactional business logic, and a relational database for their 

persistence. In addition, it is possible to manage the models through hybrid mobile appli-

cations that allow users without modeling knowledge and experts in the health domain 

to easily create a scenario. Finally, through the prediction module, the framework ani-

mates a scenario, sending the data to more powerful IoT hubs, such as Azure IoT Central, 

which allows the information of each patient to be displayed in the web console. Moreo-

ver, this permits fast integration of multiple devices and has connectivity with standards 

such as FHIR. 

We evaluated our approach using an end-to-end real case study of an Alzheimer’s 

patient with a cognitive disability. Although we showed the usefulness of the approach, 

the main limitations or threats to the validation of MoSIoT are as follows: (i) the need to 

perform additional case studies to estimate the presented approach’s general applicabil-

ity; (ii) the need to increase the empirical evidence by conducting experiments to validate 

the intention to adopt MoSIoT by the physicians who configure the scenarios and by the 

patients who evaluate the results obtained; (iii) the implementation supporting the Mo-

SIoT proposal was achieved using Azure IoT Central, potentially limiting the commer-

cially available devices for disabilities—to address this problem, different transformations 
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in the simulator should be proposed to have connections to different IoT hubs in the fu-

ture; and (iv) unlike other proposals such as [14–16], which presented highly optimized 

solutions for specific devices, MoSIoT cannot compete in the search for such results. On 

the contrary, our approach mainly focuses on adapting the software side of an IoT sce-

nario, delegating to third parties the development of the hardware devices. 

Simulation is an initial and necessary step for developing an IoT system, and partic-

ularly for an IoT HMS for people with disabilities, which presents considerable complex-

ity and variability. However, the complete system’s materialization is necessary, which 

implies the implementation of the applications with which people directly interact, ac-

cording to their type of disability and their different access modes. The MoSIoT frame-

work, through its integration with an IoT hub, provides a robust and extensible architec-

ture for completing the user interfaces and the integration of their devices. 

Future Work 

Future investigations are necessary to validate the conclusions drawn from this 

study. It is necessary to carry out empirical experiments to determine the intention of 

adoption and the level of satisfaction with the proposed approach, among both medical 

experts and patients with disabilities. This information will be critical to improve both the 

interaction with the application and to detect shortcomings in the simulator for enhance-

ment. Furthermore, the current version of MoSIoT allows the definition of scenarios using 

forms in an app. However, in the future, we would like to provide an interface that allows 

the instantiation of scenarios using graphical models. It will then be necessary to deter-

mine if the graphical models represent an improvement in efficiency and effectiveness 

compared to the current proposal. 
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