UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE MASTER’S
THESIS

Reservoir computing for learning the
underlying dynamics of sequential data
points

Author: Supervisor:
Ntria Sdnchez Font Dr. Oriol Pujol Vila

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matematiques i Informatica

June 29, 2020

http://www.ub.edu
http://www.johnsmith.com
http://www.jamessmith.com
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract

Facultat de Matematiques i Informatica
MSc

Reservoir computing for learning the underlying dynamics of sequential data
points

by Ntria Sdnchez Font

Reservoir computing (RC) is a learning technique used to infer the underlying dynam-
ics given a set of sequential data points. For instance, it may learn the dynamics of
an input sequence in order to produce a related output sequence or it may learn the
dynamics of a certain data in order to be capable of predicting the following time
steps. The neural network employed is composed by a single hidden layer along
with an input and output layers. As we will see, reservoir computing is a recur-
rent neural network approach but with the main difference that it deterministically
sets all the connections within the different components of the network with the ex-
ception of the output connections, since these will be the connections to be learnt.
This is possible because of the so called echo states, which is the key concept behind
the reservoir computing approach. Therefore, reservoir computing needs to learn a
much lower number of parameters, which makes it computationally cheaper than
other RNN approaches. However, this is not the only difference. As will be exposed
later on, the learning procedure consists on performing a linear regression, which is
less costly than the usual backpropagation.

The reservoir computing technique has recently gained a lot of popularity thanks
to the work of chaos theorist Edward Ott and four collaborators at the University of
Maryland in the area of chaotic dynamical systems (Pathak et al., 2018b and Pathak
et al., 2017). In that work, they were able to predict the dynamics of some chaotic
systems up to 8 Lyapunov times, which is an impressive distant horizon.

HTTP://WWW.UB.EDU
http://mat.ub.edu

Acknowledgements

First of all, I would like to thank my supervisor, Oriol Pujol, for all the time he has
been willing to spend discussing the different issues that came along during the
project. His constant support allowed me to get the most out of this experience.

Moreover, I would like to thank the partners of the master, who have made this ad-
venture more enjoyable.

Finally, I would also like to thank my family and friends for their continuous en-
couragement throughout my years of study.

Contents

Abstract

Acknow

ledgements

1 Introduction

2 Basics of reservoir computing
2.1 Topology and dynamics of the neural network
22 Echostates

23
24

Training the neuralnetwork
Toyproblem

3 Learning two fundamental dynamics

3.1

3.2

Periodicdynamics o o
311 Settingthetask
312 Neural Network
313 Trainingandtesting,
3.14 Preventing the network from degenerating
3.1.5 Playing with the deterministic parameters
Multiple attractor o o

4 The Mackey-Glass system

4.1
4.2
43
44

Preliminaries on the Mackey-Glass system
Settingthetask 0 ..
Trainingand testing L.
Results
441 Mildly chaoticsystem: c =17
442 Wildly chaoticsystem: c =30

5 The standard map

51
52
5.3
54
5.5

6 Conc

Bibliogr

Preliminaries on the standardmap
Settingthetask
Trainingand testing
Experiments o
Other trials with poor performance or too much computational cost . .

lusions

aphy

vii

iii

19
19
19
20
20
22
23
25

29
29
30
31
32
32
34

37
37
38
40
41
44

49

51

Chapter 1

Introduction

The most common approach when dealing with sequential series is to use recurrent
neural networks (RNN) due to their capacity of storing information about the past.
That is, at each time step, they input a point of the sequential series along with a
memory component, which stores information regarding the previous time-steps.
In addition, it is also possible to input information regarding the previous outputs.
The below picture depicts an example of a vanilla RNN

AN
DAY

where x; = tanh(Wx;_; + Winu;) are the hidden states and y; = softmax(W°x;)
the predictions at time . The main downside of such approach is the exploding or
vanishing gradient encountered when performing the backpropagation. In addition,
all the matrices giving the connections between the different elements have to be
learnt. In order to overcome such difficulties, the so called echo states network is in-
troduced.

Under certain conditions, the hidden state of a RNN can be univocally deter-
mined by the previous input history and, if it has feedback connections, by the pre-
vious outputs as well. That is, there exists a function E such that

x(n) = E(.,u(n—1),u(n);..yn—-2),yn-1)). (1.1)

Therefore, the hidden state can be thought of as an echo of the past history. As we
are going to further develop along the project, the fact that the hidden states are an
echo of the past allows to deterministically define the matrices of connections W
and W, in such a way that the only weights to be learnt are the output ones (W°").
In addition, such weights are going to be learnt by performing a linear regression.
Therefore, the existence of this E function drastically decreases the computational
cost of training. This learning technique is the so called reservoir computing.

The truth is that the reservoir computing technique has recently gained a lot of
popularity thanks to the work of chaos theorist Edward Ott and four collaborators at
the University of Maryland in the area of chaotic dynamical systems (Pathak et al.,
2018b and Pathak et al., 2017). In it, they trained a neural network, by means of the
reservoir computing approach, with a data sequence sampled from the Kuramoto-
Sivashinsky equation. Then, the network was able to predict the future evolution

2 Chapter 1. Introduction

of the system up to 8 Lyapunov times, which is an impressive distant horizon. It
is worth noting the fact that the network was solely trained with past data, it did
not have any knowledge regarding the equation itself. What makes this result so
outstanding is the fact that the system generating the data points do not need to be
modelled by people. Therefore, it simplifies a lot the predicting task. The prediction
of chaotic dynamics based solely on past data may have a wide range of applications:
monitor the heartbeat in order to prevent a heart attack, keep track of a sea’s swell
in order to predict rough waves that may endanger a ship and its crew, track solar
flares in order to predict solar storms that would severely damage Earth’s electronic
infrastructure and whether forecasting among others.

Therefore, the aim of this project is to study the theory behind reservoir comput-
ing as well as analyzing its application on the task of learning a dynamics. On the
one hand, the former, could include studying the conditions that guarantee the exis-
tence of the function E given in equation (1.1) or understanding the reason why the
existence of such function allows to solely train the output connections by means
of a linear regression. On the other hand, the latter will entail the construction of
an appropriate network in order to infer the underlying dynamics of a given set of
sequential data points. Therefore, during testing, the network will be capable of pre-
dicting the following time steps.

The project is structured as follows. In Chapter 2, we establish the setting of the
reservoir computing learning technique. The details regarding the structure of the
neural network as well as its induced dynamics, the intuition behind the so called
echo states and the details regarding the training and testing of the network are pro-
vided in Section 2.1, 2.2 and 2.3 respectively. In addition, Section 2.4 illustrates the
main features regarding the dynamics and the topology of an echo states network by
means of a simple example. In addition, this chapter determines all the terminology
that is going to be used along the project.

Once all the theoretical concepts behind the reservoir computing have been es-
tablished, we are going to focus on some of its applications. In Chapter 3, the net-
work is going to be trained in order to learn two fundamental dynamics, such are the
discrete periodic dynamics (Section 3.1) and the multiple attractor dynamics (Sec-
tion 3.2). The former can be thought of as training the network in order to make
it capable of playing a melody whereas, in the latter, we will see how the network
learns a constantly changing dynamics without memorizing any specific task.

Afterwards, in Chapter 4, we aim to train a neural network in order to learn
and predict the dynamics given by the so call Mackey-Glass system. As Section 4.1
exposes, this system is determined by a certain delay differencial equation whose delay
parameter (denoted as ¢) is going to determine the degree of chaos present on the
orbits. Thus we are going to be dealing with ¢ = 17, which renders a mildly chaotic
dynamics, and ¢ = 30, which renders a wilder chaotic dynamics.

The main goal so far was to understand the theoretical basis of the reservoir
computing as well as its learning capabilities when dealing with different types of
dynamics and, in particular, with chaotic dynamics. For this purpose, the main
reference that we followed was Jaeger, 2010, which is the paper where echo states
networks were first introduced. At this point, we decided to eventually apply the
already acquired knowledge in order to train a neural network so as to make it ca-
pable of learning a dynamics of our choice, which was the standard map. We opted
for such system because, on the one hand, it displays a very challenging behavior
and, on the other hand, we did not find any literature regarding the application of
the reservoir computing on it. Thus, Chapter 5 is devoted to this task. Section 5.1

Chapter 1. Introduction 3

gives some intuition on the dynamics defined by the standard map. As already ex-
posed there, it may display chaotic or non-chaotic behaviors according to a certain
parameter denoted as K. Afterwards, Sections 5.2, 5.3 and 5.4 present all the choices
regarding the parameters and the procedures that gave the best testing result. How-
ever, Section 5.5 describes all the approaches that were tried before reaching the best
result. Such approaches are worthy to mention and study since, although they may
had not worked in this particular case of study, they belong to the set of typical tun-
ning strategies. Therefore, they provide a systematic technique to carry out the fine
tunning of the parameters and procedures.

Finally, in Chapter 6, we discuss the ideas that have appeared to be key along the
project. In addition, we outline the current main branches of research related with
the reservoir computing technique.

Along the project, many experiments have been performed. Although, in this
memory, we only provide the main results, all the code can be found on the GitHub
repository https://github.com/NuriaSF/ReservoirComputing_TFM.

https://github.com/NuriaSF/ReservoirComputing_TFM

Chapter 2

Basics of reservoir computing

Reservoir computing (RC) is a learning technique used to infer the underlying dynam-
ics given a set of sequential data points. For instance, it may learn the dynamics of an
input sequence in order to produce a related output sequence or it may learn the dy-
namics of a certain data in order to be capable of predicting the following time steps.
The neural network employed is composed by a single hidden layer along with an
input and output layers. Section 2.1 details the topology of the neural network as
well as its induced dynamics. As we will see, reservoir computing is a recurrent
neural network approach but with the main difference that it deterministically sets
all the connections within the different components of the network with the excep-
tion of the output connections, since these will be the connections to be learnt. This
is possible because of the so called echo states, which is the key concept behind the
reservoir computing approach. Section 2.2 introduces the notion of echo states and
discusses why they are so powerful. Therefore, reservoir computing needs to learn
a much lower number of parameters, which makes it computationally cheaper than
other RNN approaches. However, this is not the only difference. As Section 2.3 ex-
poses, the learning procedure consists on performing a linear regression, which is
less costly than the usual backpropagation. Finally, Section 2.4 illustrates the perfor-
mance and main features of reservoir computing by means of a simple example.

Therefore, in this chapter, we are going to establish the setting of the reservoir
computing approach as well as the main terminology that will be used along the
project.

2.1 Topology and dynamics of the neural network

Let us begin by detailing the structure of the network. The neural network we are
going to be dealing with consists on a K-dimensional input denoted by u, on an N-
dimensional hidden layer denoted by x and on an L-dimensional output, denoted
by y. The nodes of the hidden layer are usually referred to as internal units, internal
states or just states. As we will show later, the values of the different elements of
the network are going to be updated at each time step, which will define a dynam-
ics over the different elements of the network. Therefore, each component can be
thought as a multidimensional time series. That is:

e u(n)T = (u1(n),uz(n),..., ux(n))) is a K-dimensional vector giving the input

units at time 7.

e x(n)T = (x1(n),x2(n),..., xn(n))) is an N-dimensional vector giving the inter-
nal units at time n.

e y(n)T = (y1(n),y2(n),...,yr(n))) is an L-dimensional vector giving the output
units at time n.

6 Chapter 2. Basics of reservoir computing

Since we are dealing with a discrete dynamics, the time step 7 is going to take
values on the set of natural numbers. It is important to keep in mind that y denotes
the output produced by the trained network. That is, it stands for the predictions.

Let us now determine the connection matrices between the different layers:

e Input connections, W"e M (R)yxk, matrix giving the connection weights
from the input units to the internal units. That is, W;; gives the weight of the
connection from the j-th input unit to the i-th internal unit.

e Internal connections, W € M (R)y«n, matrix giving the connection weights
between the different internal units. That is, W;; gives the weight of the con-
nection from the j-h internal unit to the i-th internal unit.

o Feedback connections, € M(R)yxr, matrix giving the connection weights
from the output units to the internal units. That is, W}’]?‘Ck gives the weight of
the connection from the j-th output unit to the i-th internal unit.

e Output connections, W°'e M (R); (K+N+L), matrix giving the connection
weights from the input, internal and output units to the output units. That is:

- WZF’]W for 1 < j < K gives the connection weight from the j-th input unit
to the i-th output unit.

- WZ-O]?H for K < j < K+ N gives the connection weight from the j-th internal
unit to the i-th output unit.

- W{/’jut for K+ N < j < K+ N + L gives the connection weight from the
j-th output unit to the i-th output unit.

Notice that all type of connections within the different objects are allowed. That
is, there may be directed connections between the input and the hidden layer, the in-
put and the output, the hidden and the output, the output and the hidden, recurrent
connections within the hidden layer and recurrent connections within the output
connections. As will be seen in Section 2.2, from the set of weight matrices, W is the
only one that is going to be learnt whereas the other ones are going to be deterministically
defined according to the problem. Figure 2.1 illustrates the general structure of this type
of neural networks.

Despite the fact that any kind of connections among the different parts of the net-
work are allowed, it is usually enough to consider that the output is solely connected
to the internal units. Since this is the most common approach in the literature regard-
ing reservoir computing, this is precisely the approach we are going to follow along
the project. Notice that, in this case, the output matrix becomes W°"'e M (R).«n
and the neural network structure is slightly modified, as illustrated in Figure 2.2.

So far, we have determined the structure of the neural network, that is, we have
defined the layers along with their connections. Let us now introduce how these two
elements induce a dynamics on the network. On the one hand, the internal state x is
going to be updated at each time step as follows

x(n+1) = fFWPu(n 4 1) + Wx(n) + Whaky(n)), (2.1)

2.2. Echo states 7

\‘\ f'/Wm
(R
W
NZ

FIGURE 2.1: (A) Schema of the general structure of a reservoir’s net-
work. (B) Example of a neural network following the structure de-
picted in (A) with the connections explicitly illustrated.

/V&\

Wom
@\ 4
W w
w
(A

) (B)

FIGURE 2.2: (A) Schema of a reservoir’s network where the output

only depends on the internal states. This is the structure we are go-

ing to consider from now on. (B) Example of a neural network fol-

lowing the structure depicted in (A) with the connections explicitly
illustrated.

where f is the activation function. On the other hand, the value of the output y
is going to be computed as

y(n+1) = " (W (n+1)), (2.2)

where f°U is the activation function. Again, since tanh is the most used activation
function on the literature, this is the activation function we are also going to imple-
ment in our experiments. Notice that it is applied component-wise.

Since the nodes of the hidden layer are time series, we usually talk about the
dynamics of the nodes.

2.2 Echo states

According to what we have exposed in Section 2.1, the neural network employed
in the reservoir computing approach can be thought of as a recurrent neural network
(RNN). However, there is a key concept behind reservoir computing that makes it

8 Chapter 2. Basics of reservoir computing

different from the other RNN approaches: the existence of echo states. Along this
section, we are going to develop what echo states are and why they are so powerful.

Echo states were first introduced in Jaeger, 2010, thus all the definitions and re-
sults presented in this section are taken from that paper.

Let us begin by introducing some notation. We are going to denote by U™ to the
space containing the input. That is, u(n) € U™ for all time step 7. In the same way,
we are denoting by U°"" the space where the output is contained. On the other hand,
u~* stands for left-infinite sequences. It is defined as

i ={umn+i)}lien={. un=2),u(n—1),un)}.

In a similar way, we define 7~*. Finally, we will define the operator T as the network
state update operator. That is, x(n +h) = T(x(n),y(n);u(n +1),..,u(n+h)). We
will say that an state x € A is end-compatible with some left-infinite sequence 7~
and 7~ if there exists a state sequence {...,x(n — 1), x(n)} such that T(x(7), u(i +
1),y(i)) = x(i+1),and x = x(n).

From now on, we are going to assume the so called standard compactness condi-
tions, which are:

e Input and output are drawn from compact spaces U™ and U°".
e Internal states lie in a certain compact set A.

The reason for such requirements is due to the fact that, on the one hand, the values
of all elements of the network have to be bounded, since, otherwise, the information
is going to be lost when applying the tanh activation function. Recall that tanh col-
lapses values that are large in module to +1. On the other hand, we need the spaces
to be closed, since, otherwise, the sequences may converge to values that are outside
the subspace and, thus, unattainable.

Following the notation introduced so far, we are going to provide the formal
definition of echo states.

Definition 2.2.1. Assume standard compactness conditions.

(i) Assume the network does not have feedback connections. Then, the network
has echo states, if the network state x(n) is uniquely determined by any left-
infinite input sequence i ~*.

(ii) Assume the network has feedback connections. Then, the network has echo
states, if the network state x(n) is uniquely determined by any pair of left-
infinite input sequence i~ and left-infinite output sequence 7.

Remark 2.2.2. This definition can be equivalently stated as follows.

(i) Assume the network does not have feedback connections. Then, there exist
echo functions E = (ey, ey, ...,en), where ¢; : (UM)™N — R, such that for all
left-infinite input histories {...,u(n — 1), u(n)} € (U™)~N the current network
state is

x(n) =E(..,u(n—1),u(n)).

That is,
xi(n) =ej(...,u(n—1),u(n)), foralll <i<N.

2.2. Echo states 9

(ii) Assume the network has feedback connections. Then, there exist echo functions
E = (e1,ez,...,en), where ¢; : (U™)™N x (U°)"N — R, such that for all left-
infinite input and output histories {...,u(n —1),u(n)} x {..,y(n —1),y(n)} €
(U™ =N x (U°ut) =N the current network state is

x(n) = E(.,u(n—1),u(n);.,y(n—1),y(n)).
That is,

xi(n) = ei(...,u(n —1),u(n);..,y(n—1),y(n)), foralll <i<N.

Therefore, the echo state property assumes the internal state to be an “echo” of
the past. That is the reason why this concept is named echo states.

We will say that a network whose topology is as exposed in Section 2.1 is an echo
states network (ESN) if it satisfies the echo state property stated in Definition 2.2.1.

Let us now give two important properties of echo states networks.

Proposition 2.2.3. Let us assume an echo states network without feedback connections. In
particular, we are supposing standard compactness conditions. Let d denote the Euclidean
distance. Then,

(i) The network satisfies the state forgetting property. That is, for all left-infinite input
sequence {...,u(n —1),u(n)} € U™N there exists a null sequence (8),);,>q such that
for all states x,x" € A, for all h > 0, for all input sequence suffixes i, = {u(n —
h),...,u(n)} it holds that d(T (x, ay,), T(x', i) < .

(ii) The network satisfies the input forgetting property. That is, for all left-infinite input
sequences 11~ there exists a null sequence (0p,)p>o such that for all h > 0, for all in-
put sequence suffixes i, := {u(n — h), ..., u(n)}, for all left-infinite input sequences
of the form @~ iiy, 0~ iy, for all states x end-compatible with W~ iy, and states x’
end-compatible with 5=y, it holds that d(x, x") < &y,.

Observation: the sequences of the form @w~il;, are the concatenation of both se-
quences. That is, {..., w(n —h —2),w(n —h—1),u(n —h),..,u(n)}.

Remarks 2.2.4. In rough outlines, Proposition 2.2.3 says that recent values of the
input will have more influence when updating the internal state than older inputs,
since the input influence gradually fades out. Therefore, two different inputs that
after some time steps are close enough will produce the same sequence of internal
states from that point on. This occurs regardless of the initialization of the inter-
nal state. That is, if we initialize the hidden layer with two different values but the
sequence of inputs is the same, both sequence of internal states will end up converg-
ing. Thus the whole dynamics of the reservoir is not determined by its initialization
due to the fact that its influence fades out as time goes by.

On the other hand, notice that we have assumed a network with no feedback. It
is worth noting that one could concatenate the input and output vectors and regard
it as a new input as well as concatenate the input and feedback matrices and regard
it as a new input matrix. By doing this change of notation, we get rid of the feedback
connections, since they are now included in the input component. Therefore, we
could then apply Proposition 2.2.3.

Proposition 2.2.3, says that an echo states network satisfies the input and state
forgetting properties. However, the reciprocal is also true. That is, if a network satis-
fies the input forgetting property or the state forgetting property, then the networks

10 Chapter 2. Basics of reservoir computing

has echo states. Therefore, these three notions of echo states, state forgetting and
input forgetting are equivalent. The proves of this proposition along with the recip-
rocal ones can be found in Jaeger, 2010.

Up to this point, the natural question would be how one could assert whether a
network has echo states. Notice that proving its existence by means of the definition
or by means of the input or state forgetting property does not appear to be feasible.
The truth is that there is not a complete answer to this question. However, let us
now state a result that provides a sufficient condition for echo states and a sufficient
condition for the non-existence of the echo states.

Proposition 2.2.5. Assume a sigmoid network with a tanh activation function. Let d denote
the Euclidean distance.

(i) Let the weight matrix W satisfy Opmax = N < 1, where Oyay is its largest singular
value. Then d(T(x,u,y), T(x',u,y)) < A-d(x,x") for all inputs u and outputs y,
for all states x,x" € [—1,1]N. This implies echo states for all inputs u, all outputs y
and all states x,x" € [—1,1]N.

(ii) Let the weight matrix have a spectral radius |Ayax| > 1, where Ay is the largest
eigenvalue of W in module. Then, the network has an asymptotically unstable null
state. This implies that it has no echo states for any input and output sets U™ x U
containing 0 and internal state set A = [—1,1]N.

Again, the proof of Proposition 2.2.5 can be found in Jaeger, 2010.

The main downside of this result is how restrictive it actually is. As we are going
to see in the experiments performed in the following chapters, it is quite common
to define a connection matrix W whose largest eigenvalue is greater than 1. In these
cases, we are not regarding a null input for any time step, thus we are not contra-
dicting Proposition 2.2.5.

So far, we have stated the definition of echo state networks along with its prop-
erties. Let us now discuss why they are so powerful. By definition, an ESN is a
recurrent neural network displaying the structure and the dynamics explained in
Section 2.1 such that its internal states at a certain time step are univocally deter-
mined by its past along with the input, internal and feedback connections (see Re-
mark 2.2.2). In other words, let us denote by yach the desired output we want our
network to produce. That is, we want our network to predict a value y that is as
close as possible to the desired value Vieqach. Assume we have available the input val-
ues {u(1),..,u(T+ 1)} and the desired output values {Yieach(1), - Yteach(T)}. In
addition, suppose that the connection matrices Wi", W and WPk are determin-
istically defined. Then, the network ends up with a univocally determined val-
ues of the internal state {x(fmin + 1),...,x(T + 1)} regardless of the initialization
of the internal state and the first values of the input and the output, as long as the
value of T and 7 are large enough. Notice that the input and the internal states
may fluctuate at the beginning, but it will not make any difference at the values of
{x(Mmin + 1), ..., x(T + 1) }. We should keep in mind the necessity of discarding the
first nmin time steps, since they are very influenced by the initial values of u, x and
y. Since the values of the internal states are completely determined by the values of
the input and the output along with the input, internal and feedback connections,
then the input, internal and feedback connections DO NOT NEED TO BE LEARNT.
Since y(n) = tanh(W°%x(n)), then it is enough to perform a linear regression in
order to solely learn W°". Therefore, notice that the main goal is to end up with a

2.3. Training the neural network 11

wider variety of hidden states trajectories in order to obtain a subspace containing
Yieach- Thus, the values of Wi, W and Wbak need to be tuned in order to get the
appropriate subspace. Therefore, W', W and WPk are not parameters to be learnt
but parameters to be tuned. In Section 2.4, we are going to analyze different choices
of all hyperparameters, including such matrix connections.

As we have just mentioned, obtaining a wider variety of states’ trajectories is
key in order to appropriately learn the desired dynamics. In other words, the tra-
jectories of the internal states have to be a reservoir of dynamics. That is the reason
why the graph given by W is usually called reservoir. Thus this learning technique
is called reservoir computing. It can be regarded as a particular case of RNN with the
difference that the only set of connections that need to be learnt are the output ones,
which are learnt by means of a linear regression. Notice that this approach is much
cheaper computationally than usual RNN: the number of connections to be learnt
is much lower and the learning algorithm is a linear regression instead of the usual
backpropagation, which avoids problems as the vanishing/exploding gradient.

2.3 Training the neural network

In this section, we are going to provide the formulas for training and testing the
network. In addition, we are going to develop the metrics used to evaluate the per-
formance of the network.

In equations (2.1) and (2.2), we introduced the formulas determining the dynam-
ics of the network. However, such formulas are going to be slightly modified at
training time. The training is going to be carried out in two different steps, which
are developed next.

(i) Let T be the number of training data points. Then, the internal state is going to
be updated for the T training time steps following a teacher forcing approach:

x(n+1) = tanh (Winu(n +1)+Wx(n) + WbaCkyteaCh(n)) , (2.3)

forall 0 < n < T — 1, where Ve (n) is the desired output at time step n
and x(0) is going to be the initial state of the reservoir. Recall that the latter is
not relevant due to the state forgetting property (see Proposition 2.2.3). Notice
that, once this step is finished, we end up with N time series of size T, one for
each internal node. Therefore, x may be thought of as a matrix of size T x N,
where the j-th column stands for the trajectory of the j-th node.

Let us remark that, at this step, we only deal with the known data. In other
words, we do not make predictions nor use the matrix Wout, That is precisely
what we mean by teacher forcing: instead of making predictions and using them
(v), we directly work with the ground truth (ye,cn) in order to force the desired
behavior.

(ii) Asshown in equation (2.2), the output is computed as a linear combination of
the states of the reservoir. Therefore, the output matrix W is going to be the
one that minimizes

| ‘Woutx - tanhil (yteach) | |2/ (2.4)

where x are the internal states computed in the previous step after the first
Nmin time steps were dismissed. Notice that a transient of n,, time steps should

12 Chapter 2. Basics of reservoir computing

be discarded in order to guarantee the converge of the reservoir’s dynamics, since the
first values are quite influenced by the initial values of the input, output and hidden
states (see Section 2.2). Equivalently, the loss function to minimize is going to
be the mean square error:

T
L3 [tanh ™ (iacn(n)) — tanh ()|

T — Nmin N=MNmin

T
— # Z [tanh_l (yteach(n)) - WOUtx(n):| 2 ’

T - nmm N=MNmin

MSE (]//]/teach) =

The second step of the training implies that the learning procedure consists on
performing a linear regression. Therefore, the main goal of the first step is to get a
wide enough variety of nodes’ trajectories in order to construct a subspace contain-
ing the desired output.

Depending on the specific task we are dealing with, we may slightly change
equations (2.3) and (2.4). For instance, we may add a noise term in the former in
order to prevent the predictions from degenerating. This would actually be the case
when dealing with periodic or wildly chaotic dynamics. On the other hand, it may
happen that the subspace generated by the states of the reservoir do not generate a
subspace containing the desired output. If that is the case, it may be useful to regard
a quadratic relationship between y and the internal states x. Therefore, equation (2.4)
would become

[IWel, 2% — tanh ™ (yieacn) |2,
where [x, x?] would stand for the horizontal concatenation of x and x? obtained in
the first step (with the first 1, steps discarded) and W € M(RR) Lx(N+N)- If that
was the case, then equation (2.2) should become

y(n+1) = tanh (W [x(n + 1), x(n +1)?)).

Actually, when dealing with the standard map, we will implement a slightly dif-
ferent version of this quadratic relationship. Finally, it is also possible to add some
regularization term to the loss function. It is quite common to implement a ridge
regression.

Once the network has been trained, that is, once the output weights have been
learnt, then the network can freely run. That is, it can autonomously predict the
output. In order to obtain the prediction at time step n + 1, withn +1 > T, two
steps have to be carried out:

(i) Update the internal state of the reservoir by means of equation (2.1). Notice
that, in order to compute x(n + 1), x(n) is required. Therefore, if we regard
n+1=T+1,then x(n) = x(T) would be the the last hidden state obtained
during training.

(ii) Compute the prediction y(n + 1) by means of equation (2.2).

In order to assess the accuracy of the predictions, we will not only implement the
mean square error but also the so called normalized root mean square error (NRMSE) for a
certain horizon, which provides information about the long-term predictions. A very
common choice is an horizon of 84 time steps, denoted as NRMSEg,. This metrics is
computed as follows:

2.4. Toy problem 13

e The reservoir is updated by means of teacher forcing for 1000 time steps (equa-
tion (2.3)).

e The network freely runs for another 84 time steps and the value y(1000 + 84)
is kept (equations (2.1) and (2.2)).

e The two previous steps are performed 50 times. Therefore, we end up with 50
values: {y(n-1000+n-84)|n =1,2,...,50}.

e Compute the NRMSEg, as follows:

1
50 . .84) — .) 2\ 2
NRMSE84 — (n=1 [y(n 1000 + n 845)0 Uzyteach(n 1000 4+ n 84)]) ,

where ¢ is the variance of the original signal. Recall that ¢* can be computed
from the original values as follows

o =E [(yteach)z} —E [yteach]z ,

where the expectation is empirically approximated by the mean.

The NRMSEg, is very useful in order to measure the accuracy of the predictions
of the trained network when dealing with chaotic dynamics. The reason is the fact
that this metrics provides information regarding how close are the learnt an the tar-
get dynamics for different levels of chaos, since the degree of chaos may vary along
time.

2.4 Toy problem

In this section, we are going to develop an example in order to see all the features
and procedures discussed above. All the experiments carried out can be found in
the notebook Intuition_EchoStates.ipynb.

Let us assume that we have a neural network displaying the structure exposed
in Section 2.1, but without feedback connections. That is, there are input, internal
and output connections, but not feedback. Let us also suppose that such network
inputs, at each time step n > 1, the value

u(n) = sin (g) .

For the moment, just forget about the output, since it does not influence the dynam-
ics of the states of the reservoir. In other words, we are not actually defining any
particular task. In this case, the update is performed as follows

x(n) = tanh(Wu(n) + Wx(n —1)).

Let us now establish the size of the reservoir (i.e, of the hidden layer) and the connec-
tion values given by Win and W. As we have mentioned in Section 2.2, it is important
to end up with a rich reservoir of dynamics. Therefore, it is a common practice to
take a quite large reservoir. In our case, we will take N = 100. However, this value
has to be chosen according to the particular task we are trying to solve. Recall that
the reservoir’s goal is to end up with a set of N trajectories capable of generating a

14 Chapter 2. Basics of reservoir computing

subspace containing the desired output. In addition, the values of W and W are
chosen with the same purpose. W is usually a very sparse matrix whose non-null
values are randomly chosen to be —a or a with the same probability, where a is usu-
ally a small value. The particular value of a is not actually important since, once
the reservoir is constructed, its adjacency matrix W is rescaled in order to get the
desired value of Apmax Or Omax. What is actually important is to define the non-null
values, which should represent around 2% of the total connections, to be opposite
in sign. These features of W encourages a wider range of states trajectories. In our
particular case, we will randomly construct W by taking values 0, -0.4 and 0.4 with
probabilities 0.95, 0.025 and 0.025 respectively. Figure 2.3 shows the trajectories of
three randomly selected nodes for two different choices of W. We can see that spar-
sity actually encourages different behaviors on the states’ trajectories. In this case,
we say that the reservoir is inhomogeneous, since there is a wide variety of trajectories.
See Section 2.2 of the notebook called Intuition_EchoStates.ipynb in order to see more
behaviors regarding different choices of W. Finally, WM is constructed in a similar
way but without the sparse feature. In our case, we randomly construct it by taking
values 1 or -1 each with probability 0.5.

Let us now check that the input and state forgetting properties actually hold. On
the one hand, we are going to initialize the hidden state in three different ways: all
nodes equal to 0, all nodes equal to 1 and randomly following a uniform distribu-
tion on the interval [-1,1]. Figure 2.4 (A) shows the three different trajectories of three
randomly selected nodes. There, we can see that the three trajectories converge after
a few time steps. Therefore, the state forgetting property is satisfied. On the other
hand, let us initialize the reservoir with the null state and introduce two types of
input: the original one and the original one with some random noise added in the
first time steps. Figure 2.4 (B) shows the two different trajectories of three randomly
selected nodes. Again, we see that, after few time steps, both trajectories converge
to the same trajectory. Therefore, the input forgetting property is satisfied.

Another interesting feature that is worth noting, is the influence of the input in a
network without feedback connections. Figure 2.5 shows the behavior of three ran-
domly selected nodes for different types of input. By looking at them, we may infer
that the dynamics of the reservoir are quite influenced by the dynamics of the input.
Notice that if the network also had feedback connections, then the previous outputs
will also play an important role on determining the reservoir’s behavior.

So far, we have defined the network and the input and we have analyzed the
relationship between these parts of the network. Let us now determine a particular
learning task. In what remains of this section, we are going to train the already
defined network in order to predict the sequence

Yreach (1) = %sin7 (g)

given the original input
u(n) = sin <E) .
5
Let us now recall that the notation y(n) stands for the output produced by the net-

work at time n whereas Vieach (1) is the desired output at time n. Keep in mind that
our available data consists, on the one hand, on the input sequence {u(1), u(2),...}

2.4.

Toy problem

Trajectory of the node 33

n 40 &0 80 100

Trajectories of the node 33

0 40 60 80 100

Trajectory of the node 57

n 40 &0 80 100
(a)

Trajectories of the node 57

0 40 60 80 100

(B)

Tra

jectory of the node 73

Trajectories of the node 73

0.00

-0.25

-0.50

-075

FIGURE 2.3: (A) Trajectories of three randomly selected nodes con-

sidering W to be randomly generated by taking values 0, -0.4 and 0.4

with probabilities 0.95, 0.025 and 0.025 respectively. (B) Trajectories

of three randomly selected nodes where the values of the connections
W where uniformly sampled from the interval [-1/12,1/12].

Trajectories of the node 21

—— U'sinitialization
— U'sinitialization
—— random

-1.00

Trajectories of the node 2

—— Original input
— Modified input

Trajectories of the node 48

— I'sinitialization
— 0O'sinitializaticn
— rmndom

(a)

Trajectories of the node 4

—— Original input
—— Modified input

(B)

Trajectories of the node 75

— I'sinitialization
— 0O'sinitializaticn
— rmndom

Trajectories of the node 10

—— Original input
—— Modified input

FIGURE 2.4: Trajectories of three randomly selected nodes. (A) Each
plot shows three different trajectories corresponding to three differ-
ent initializations: all 1’s, all 0’s and random. (B) Each plot shows
two different trajectories corresponding to two different inputs. The
modified input is the same as the original input but with some noise

added in the first 20 time steps.

16

Chapter 2. Basics of reservoir computing

10

08

06

04

02

0o

-02

-04

06

10

08

06

04

02

00

-02

10

L]

06

04

02

00

-02

i T tories of the node 74
Trajectories of the node 29 rajectories of the node

Trajectories of the node 12 Trajectories of the node 29

Trajectories of the node 34 Trajectories of the node 69

150 200 250 .00 0 50 100 150 200 250 300

o4
8
B
8

Trajectories of the node 40 Trajectories of the node 49

Trajectories of the node 40 Trajectories of the node 49

150 00 250 300

o_
5
g
E
-
5
g
B
g
g
g

(E)

Trajectories of the node 91

I
9 50 00 180 200 B0 00
Trajectories of the node 79
9 50 00 180 200 B0 00
Trajectories of the node 98

-
[
g
g
g

200 250 300

Trajectories of the node 77

-
5
g
5
g
g
g

Trajectories of the node 73

0 50 100 150 200 250 300

FIGURE 2.5: Trajectories of three randomly selected nodes for differ-
ent types of inputs. (A) The input was constant. (B) Random input.
(O) The input is a combination of sines and cosines. (D) Constant in-
put that periodically spikes. (E) Constant input that spikes at random

with probability 0.066.

2.4. Toy problem 17

and, on the other hand, on a few values of Yieach, {Vteach(1), - Yteach(T)}, in order
to perform the supervised learning. Recall that T stands for the number of training
time steps.

Let us now train the network for T = 300 time steps regarding a dismissal of
Nimin = 100 time steps. As already explained in Section 2.3, the training is performed
in two steps:

(i) Compute the trajectories of the reservoir by means of teacher forcing. That is,
for 1 < n < T, update the states as follows

x(n) = tanh(W™u(n) + Wx(n —1)).

Notice that in this particular case, no teacher forcing is needed since there are
not feedback connections. Recall that in case there were feedback connections,
the update would be carried out as:

x(n) = tanh(Wmu(n) + Wx(n — 1) + WPay, . 4. (n)).
(ii) Compute WU by minimizing

1 T
T— Nmin N=MNmin

[tanh ™ (yeacn (1)) — W*'x(n)]

After performing the training, we obtained a training MSE of 3.19 - 10724, Once the
network is trained, it can generate the predictions. Recall that, in order to obtain the
prediction at a single time step 1, two steps are required:

(i) Update the state of the reservoir:
x(n) = tanh(W™u(n) + Wx(n — 1))

Notice that this formula was also used for training. The reason is the fact that
there is no feedback connections. Recall that, if there were feed back, the up-
date would be performed as follows

x(n) = tanh(W™u(n) + Wx(n — 1) + WPaky(n)).

(ii) Compute the output at time n:

y(n) = tanh(W"x(n)).

We tested the network for 301 < n < 600 and got a testing MSE equal to 2.8 - 10~%.
Figure 2.6 shows the predictions against the true values. By looking at that picture,
we see that the network has properly learnt the desired dynamics.

To finish, let us mention that the learning has been possible because the output
and the input are quite similar. As we have already seen above, the dynamics of
the reservoir is quite determined by the dynamics of the input. Consequently, if we
tried to learn an output from a very different input, the learning would not have
been successfully. Let us illustrate this fact by means of an example. Assume we

18 Chapter 2. Basics of reservoir computing

Predictien vs ground truth

06
| | | l | | |— oround truth

04 [| [| [| || [1 |1 | prediction

0z

00

300 350 400 450 500 550 600

FIGURE 2.6: Comparison between the desired output and the net-
work’s prediction.

want to learn

Yieach (1) = % ‘sin (1%) + 7sin (g) + sin(3n) COS(TI)) + %COS (g)

from the input

u(n) = 21—0 (sin (%) + 7sin (g) + sin(3n) cos(n)) :

Prediction vs ground truth

100 —— ground truth
075 prediction

= LN L

-0.75

-1.00

300 350 400 450 500 550 600

FIGURE 2.7: Comparison between the desired output and the net-
work’s prediction when the former behaved very differently with re-
spect to the input.

Since the network only has input connections, the behavior of the reservoir is
going to be highly influenced by the input. Since the output has nothing to do with
the input, then it will not be contained in the subspace generated by the reservoir.
When performing this experiment, we got a training error of 0.04, which leads us to
think that the network is not properly learning. Finally, we got a testing MSE of 0.74.
Figure 2.7 shows the comparison between the predictions and the desired output.
It is clear that they have nothing to do. Let us remark again that the learning has
not been possible since the dynamics of the reservoir were highly determined by the
input, which in turn is very different from the output. Therefore, the output was not
contained in the reservoir’s subspace.

19

Chapter 3

Learning two fundamental
dynamics

Along this chapter, we aim to train a neural network in order to learn two funda-
mental dynamics, such are the discrete periodic dynamics and the multiple attractor
dynamics. The former is going to be developed in Section 3.1 and the latter in Sec-
tion 3.2. In these approaches, we are going to train and test the network by means of
the already introduced techniques (see Section 2.3). However, when dealing with the
periodic dynamics, we are going to present an approach for preventing the network
from degenerate: the insertion of noise.

All the experiments performed in this section can be found on the notebook Pe-
riodic_Spiking_Dynamics.ipynb.

3.1 Periodic dynamics

The main goal of this section is to train the neural network in order to make it capable
of generating a discrete periodic sequence. Equivalently, this task can be thought of
as learning how to cyclically play a melody. In order to achieve so, the network
needs to learn how to cycle through a periodic attractor.

3.1.1 Setting the task

The periodic sequence we want the network to learn is a periodic repetition of the
melody “House of the Rising Sun”, which consists of 48 notes. Therefore, the sig-
nal has period 48. The notes of this melody are assigned numerical values ranging
from -1 (g#) to 14 (a’), with halftone intervals corresponding to unit increments. This
melody is depicted in Figure 3.1. Finally, since we are using tanh as the activation
function, the outputs that the network is going to generate will belong to the inter-
val [-1,1]. Therefore, in order to learn this melody, we need to squash it into such
interval. In order to achieve so, the notes’ numerical values are divided over 28.

As already stated above, in this section we are going to understand the learning
task as being able of autonomously reproducing this sequence of period 48 during
the maximum possible number of time steps. Let us now state this learning proce-
dure more formally. The desired output, Yeach, is going to be the periodic concate-
nation of the melody. That is, at time step #, Yieach (1) is going to be the note n%48
of the melody, where % stands for the modulo. Then, at testing time n, we want
the hidden layer to input the output at time n — 1 through the feedback connections
and output y(n), which should be as close as possible to yie,cn(71). Therefore, we are
going to consider a neural network (following the topology of Section 2.1) without

20 Chapter 3. Learning two fundamental dynamics

Melody of the 'House of the Raising Sun’ before the 1/28 scaling
1 L))

12 . L1

10

Notes' values

8
&
4
2
o

time

FIGURE 3.1: One period of the sequence to be learnt before squashing
it into the interval [-1,1].

input but with feedback connections.

The next two sections provide more details regarding the network and the train-
ing and testing procedures.

3.1.2 Neural Network

As already mentioned in Section 3.1.1, the network we are going to implement do
not have input but feedback connections, due to the task we want to solve. Let
us now determine the reservoir and feedback connections. Recall that, as stated in
Section 2.2, the main goal of these connections is to end up with a wider enough
variety of hidden states trajectories in order to obtain a subspace containing ¥each-

On the one hand, the reservoir is going to be composed of 400 nodes. Its internal
weights will be randomly chosen to be 0, 0.4 and -0.4 with probabilities of 0.9875,
0.00625 and 0.00625 respectively. Recall that sparsity encourages more different be-
haviors on the trajectories. In addition, 400 nodes appears to be enough so as to
produce a rich reservoir of dynamics. On the other hand, the feedback weights are
going to be randomly chosen following a uniform distribution on the interval [-2,2].
In Section 3.1.5, we are going to modify the reservoir and feedback connections in
order to see how the predictions vary. By doing so, we will try to empirically iden-
tify the role they play on the learning procedure. However, we are going to see that
the feedback choice is quite robust.

Finally, let us mention that the maximum eigenvalue and maximum singular
value (in module) of the adjacency matrix of the reservoir, which is the matrix of
internal connections W, are 0.93 and 1.96 respectively. Therefore, this shows that
Proposition 2.2.5 is actually very restrictive.

3.1.3 Training and testing

As already stated in Section 3.1.1, the main goal is to train a network that is capable
of autonomously generating a cyclic repetition of the melody. That is, we want Yeach
to be the periodically concatenation of the melody.

The training was carried out for T = 1500 time steps taking a dismissal of
Nmin = 500. That is, we updated the reservoir by means of teacher forcing for
1 <n < T as follows

x(n) = tanh(Wx(n — 1) + WPy, 4 (n —1)).

3.1. Periodic dynamics 21

Trajectories of the node 57 Trajectories of the node 120 Trajectories of the node 140

1 10 10

08 08 0.8
08 06
04
04 0z

00
—02
00 -04

-06
0 200 400 600 B00 1000 1200 1400 0 00 400 600 800 1000 1200 1400 0 00 400 600 800 1000 1200 1400

FIGURE 3.2: Trajectories of three randomly selected nodes during
training.

Then, the output connections Wout are found by minimizing the square error:

Ly [()~ W),

T - nmm N=MNmin

MSE(y/ yteach) =

Recall that this formulas were developed in Section 2.3.

In our particular task, we got a training MSE of 1.90 - 1028, Figure 3.2 illustrates
the trajectories of three randomly selected nodes during training.

Regarding the testing, recall that, at time step n, the prediction is computed in
two steps:

e Update the reservoir as follows:
x(n) = tanh(Wx(n — 1) + WPaky(n — 1)),
where y(n — 1) is the prediction of the network at time step n — 1.

e Compute the prediction as

y(n) = tanh(W"x(n)).

As sated in Section 2.3, the test begins when the training ends. That is, the testing
time starts at T + 1 and regards x(T) as the last internal state obtained when training
and y(T) as Yieach(T). However, since our goal is not predicting the following time
steps but being able to autonomously generate the melody, the test is going to be
initialized in a slightly different way. Since the network is capable of autonomously
running once the reservoir has converged (due to the input and state forgetting prop-
erty), we will erase all the nodes’ trajectories obtained during training. Then, we will
perform some time steps by means of teacher forcing (as during training), which are
going to be denoted as tgismiss- Then, the test is going to be carried out for 7 > tgigmiss
and the value of x(f4ismiss — 1) is going to be the last hidden state obtained during
this procedure and y(tgismiss — 1) Will be Yieach (Edismiss — 1)-

We tested our network for 300 time steps after performing a teacher forcing pro-
cedure of tyismiss = 500. Figure 3.3 illustrates the predictions during test, whose
MSE was of 0.16. By looking at that image, we can see that, once the network has
autonomously run for almost 125 time steps, it begins to degenerate. In other words,
the periodic orbits at which the network converge are unstable. The reason for such

22 Chapter 3. Learning two fundamental dynamics

06 —— Desired output [y_teach)

s IR Output of the network during the autanomous time steps
TV,
RVYAY.

0 50 100 150 200 0 300

FIGURE 3.3: Testing the trained network for 300 time steps after con-
sidering t4ismiss = 500.

behaviour is because the equation we minimize when training, which is

1 1%) (1 t) 2
MSEain = ——— tanh™ Yeacn(n) — W (n)) ,
1000 , =, eac
is equivalent to
1 548 1 2
MSEtrain = @ Z (tanhi yteach(n) - Woutx (Tl)) ’
n=501

SINCe Yieach and x are 48-periodic. Therefore, in order to determine the 400 values
that compose W, we only dispose of 48 linearly independent arguments. Thus
there are many possible values of W°" that would minimize the above equation.
Then, when doing the python instruction “.fit”, one of them is arbitrarily chosen.
Section 3.1.4 will provide a technique for avoiding such degeneration.

3.1.4 Preventing the network from degenerating

As stated in Section 3.1.3, the degeneration of the network’s behavior is due to the
fact that the periodicity of yieacn and x render the computation of W underdeter-
mined when performing the MSE. One way of avoiding such underdetermination is
by introducing some noise when updating the state of the reservoir during training.
By doing so, we will prevent x from being periodic.

Therefore, the updating is going to be carried out as follows

x(n) = tanh [Wx(n — 1) + WP (yyeqen(n — 1) + V("))] ,

where the noise v(n) is uniformly sampled from [-0.001, 0.001]. Notice that noise is
added to the yieach, since the problem is caused by its periodicity. Now, the equation
we want to minimize, which is

1500

1 _ 2
MSEain = m Z (tanh ! yteach(n) - Woutx(n)) ’
n=501

is composed of 1000 linearly independent arguments since now we actually have
1000 values of x.

Following this new equation, we obtained a training MSE of 6.86 - 10—, which
is much lower than the one we obtained when no noise was introduced, which was
of the order of 1072, Figure 3.4 shows the trajectories of three randomly selected
nodes during training. Notice that they are quite similar to the ones we got when

3.1. Periodic dynamics 23

Trajectories of the node 68 Trajectories of the node 138 Trajectories of the node 315
100 10 100
075

050
0.25
04 000
000 025

-025 | 050

-0.50 -075
-02 _1.00
0 200 400 600 80 1000 1200 1400 0 00 400 600 B0 1000 1200 1400 0 200 400 600 80 1000 1200 1400

FIGURE 3.4: Trajectories of three randomly selected nodes during
training. Some noise was introduced during training.

05 — Desired autput (y_teach}
Output of the network during the autonomous time steps

o

=

0.

o

o

¥}

01

00

0 50 100 150 200 20 300

FIGURE 3.5: Testing the trained network for 300 time steps after con-
sidering fgismiss = 500. Some noise was introduced during training.

no noise was introduced. Then, we tested the network for different values of fgismiss
and different testing times. The results are stated below:

e When testing the network for 300 time steps after regarding t4ismiss = 500, we
got a MSE of 8.82 - 1078. Figure 3.5 shows the predictions, which coincides
with the desired output. Notice that this was the experiment we performed in
Section 3.1.3, but it now does not degenerate.

e When testing the network for 10000 time steps after regarding tqismiss = 500,
we got a MSE of 9.09 - 1078,

e When testing the network for 10000 time steps after regarding ¢4ismiss = 30, we
gota MSE of 1.01 - 10~7.

Notice that the result of the last experiment is very powerful. It says that, once
the output weights have been learnt, then the network only needs to converge for
the first 30 time steps and, afterwards, it can autonomously generate copies of the
melody for 10000 time steps giving a MSE of 1.01 - 10~7, which is very low.

The details regarding the training and testing of this task are already explained
in Section 3.1.3.

3.1.5 Playing with the deterministic parameters

In Section 3.1.2, we determined the feedback and internal connections. Let us now
see how the learning procedure is modified when changing these values. All these
experiments and some more are developed in Section 1.3, 1.4 and 1.5 of the Note-
book Periodic_Spiking_Dynamics.ipynb. In this section, we will summarize the results
seen there.

Let us begin by modifying the feedback connections. Recall that the construction
used in the above experiments regarded it to be randomly generated by uniformly
taking values on [-2,2]. Then, we performed some experiments regarding WP to
be uniformly sampled from: [-0.5,0.5], [-0.01,0.01], [-4,4], [-6,6], {-1,1} and {-3,3}. The

24 Chapter 3. Learning two fundamental dynamics

100 — Desired output (y_teach)
Output of the network during the autonemous time steps

FIGURE 3.6: Testing the trained network for 300 time steps after con-
sidering tqismiss = 500. All the components of the adjacency matrix of
the reservoir takes the same non-null value.

results obtained suggest that when we test the network for 300 time steps after re-
garding tgismiss = 900, the network behaves quite robustly independently of the
particular Wback In addition, we see that WPak can be uniformly chosen from [-a,a]
for a € [0.5,4] without much influence on the network’s behaviour. Finally, it seems
that, for smaller values of 4, the network needs to undergo the teacher forcing step
(i.e, t4ismiss) for longer time in order to achieve good performance.

The second bunch of deterministic connections are the internal ones. As we al-
ready mentioned along the project, the reservoir needs to be inhomogeneous. That is,
the nodes of the reservoir need to display trajectories quite different among them. As
mentioned many times, this is achieved by regarding a sparse reservoir. In fact, we
have performed various experiments where the network have been trained regard-
ing different levels of sparsity. The cases we considered are: fully-connected with
the same weights, fully-connected with different weights and non fully-connected
with different weights. In the former case, we tested the network for 300 time steps
regarding tgismiss = 500. The comparison of the predictions with the desired output
can be seen in Figure 3.6. Since all the trajectories are almost equal, then the network
is not capable of learning. On the other hand, the other two experiments gave very
similar results than with the sparse matrix but with a higher computational cost.
Therefore, we may conclude that the best reservoir is constructed with only 1-2% of
connectivity. By doing so, a wide variety of behaviors of the nodes are encouraged,
which is key to make it capable of robustly learning the desired output and, at the
same time, its low percentage of connectivity entails a lower computational cost.

Finally, we recover the original sparse matrix of connections W. Recall that it
was randomly constructed taking values 0, -0.4 and 0.4 with probabilities of 0.9875,
0.00625 and 0.00625 respectively. Then, we wanted to analyze the role played by the
numbers themselves. That is, why choosing 0.4 instead of 0.1 or 0.9, for instance. In
fact, there is a common practice, as already mentioned in Section 2.4, consisting on
rescaling the values of the matrix in order to obtain a particular spectral radius. In
this particular case, the maximum eigenvalue (in module) was 0.93. Therefore, we
performed different experiments considering different spectral radius.

The truth is that such maximum eigenvalue is quite related with the memory
of the network. The closer it is to 1, the slower it is the fading out of the previous
information. By looking at the periodic orbit we want to learn, which was depicted
in Figure 3.1, we observe that the last 5 notes and the first 3 notes are the same. This
implies that the network needs to have enough memory so as to see the same note 8
times in a row and not getting stuck on it. However, few memory is enough in order
to achieve so.

We performed different experiments considering an spectral radius equal to 0.99,

3.2. Multiple attractor 25

100 10
075

Sy AR
—0.25 02 l‘
o 00 \J]

-0.75

-1.00

0 50 00 150 00 250 300] 50 100 150 200 250 300

(A) (B)

FIGURE 3.7: Testing the network for 300 time steps after

tdgismiss = D00. The orange points are the predictions and the blue

ones are the desired output. (A) Spectral radius of 0.15. (B) Spectral
radius of 0.09.

0.79, 0.27, 0.15 and 0.09. The three former cases provided the same result as with
the original spectral radius whereas the two latter cases gave a degenerated result.
Figure 3.7 illustrates the predictions in these degenerated cases. Therefore, we infer
that it is instrumental to have a little bit of memory.

3.2 Multiple attractor

In this section, we are going to train a network so as to learn a dynamics charac-
terized by having multiple attractors. That is, we want the network to stabilize on
certain stable points and, then, we want it to be capable of jumping from one stable
point to another stable point.

We are going to consider a 20-dimensional input which is going to take constant
value 0 in all its components for all time steps. However, the input is going to spike.
That is, it will take value 0.5 every 200 time steps and the spike is going to occur at a
single component at a time. So, in the first time step, only the first component is go-
ing to spike, while the other components will take value 0; then all components are
going to take value 0 for 200 time steps; afterwards, the second component is going
to take value 0.5, while the other ones are going to take value 0; and so on. So the
spike occurs at one component at a time, in a sorted way and every 200 time steps.
The components are also referred to as channels. Now, we want the output to provide
a description of the input’s spikes. The desired output is going to be 20-dimensional
and its i-th channel will take value -0.5 until the i-th input channel spikes. Once
the i-th input channel has spiked, then the i-th channel of the output will take value
0.5. Then, such channel will remain constant at value 0.5 until another input channel
spikes. Once the other input channel spikes, then the i-th channel of the output will
come back to the value -0.5.

Let us now construct the network. It will have input and feedback connections.
The reservoir is going to consist on 100 nodes randomly connected with weights 0,
0.4 and -0.4 with probabilities 0.95, 0.025 and 0.025 respectively. Finally, these values
are going to be rescaled so as to get an spectral radius of 0.22. As we have already
mentioned in Section 3.1.5, such value is related with the memory. Since it takes
such an small value, then the network will not have much memory. The reason why
we want to impose such a short memory is the fact that we want to learn this task
from the previous outputs and the inputs. That is, we do not want the network to

26 Chapter 3. Learning two fundamental dynamics

Trajectories of the node 27 Trajectories of the node 74 Trajectories of the node 99

-100 -100
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

FIGURE 3.8: Trajectories of three randomly selected nodes during
training.

Channel (component] 2 Channel (component) 3

L
LU -

5000 10000 15000 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30006 35000 40008

Channel (component) 1

04
02

-0
’ 0.

0 5000 10000 15000 20000 25000 30000 35000 40000

2

=

2

=

FIGURE 3.9: Input along with the predictions and the ground truth
for channels 1, 2 and 3. The orange points are the predictions and the
blue ones are the desired output.

memorize anything.

We trained the network for T = 4050 time steps and discarded the first #7in = 50
time steps. The network was trained as specified in Section 2.3 and we obtained a set
of 20 training MSE (one for each component) of the order of 10~7 or 10~8. Figure 3.8
shows the trajectories of the three randomly selected nodes during training.

Then, we tested the network for 40000 time steps. The input during testing was
constructed in the same way as during training: the spiked occurred every 200 time
steps at one channel at a time, in a sorted way. The order of the 20 testing MSE
obtained ranged from 10~ to 10~%. Figure 3.9 shows the behavior of the first three
channels. In it, we can see the comparison of the desired output against the predicted
output along with the input (for that particular component). We can see that the
predictions coincide with the ground truth.

Then, we also tested the already trained network with a random input. That is,
we considered an input such that, with probability 0.02, one of its channels, ran-
domly selected with a uniform distribution, spiked. Therefore, the spikes were pro-
duced at random time steps at random channels. However, we still have the con-
straint that the spike has to occur at a single channel. We tested the network for 4000

Channel (component) 3

Channel (component) 1 Channel {component) 2
04 04
-01
02 02
-02
00

00 ‘
-02 | ‘ |
Ll

[[y So—

5 w0 1000 150 man 7500 an0n 0o 4000 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

FIGURE 3.10: Input along with the predictions and the ground truth

for channels 1, 2 and 3. The input at testing time was different than

at training time. The orange points are the predictions and the blue
ones are the desired output.

3.2. Multiple attractor 27

Trajectories of the node 2 Trajectories of the node 37 Trajectories of the node 71
100 100 100

075 075 075
050 050 050
025 025 0.25
000 000 0.00
-0.25 -0.25 -0.25
-0.50 -0.50 -0.50

-075 -075 -075

-1.00 -1.00 -1.00
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

FIGURE 3.11: Trajectories of three randomly selected nodes.

Channel (compenent) 1 Channel (compenent) 2 Channel (component) 3

04 04

02 02

04 ‘
00

W |
ol || = I

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

FIGURE 3.12: Input along with the predictions and the ground truth
for channels 1, 2 and 3. The orange points are the predictions and the
blue ones are the desired output.

time steps. Then, we got 20 testing MSE of the order of 10~*. Figure 3.10 shows the
behavior of the first three channels. Since the input spiked at random, the first chan-
nel spiked 5 times whereas the third channel never spiked. Notice that the network
successfully predicts the desired output. Therefore, this means that the network has
not memorized the task but it has actually learnt it. This could be achieved due to
the small spectral radius.

Finally, we trained again the network considering the same random input as in
the previous test. That is, an input that spiked with probability 0.02 at a random
channel. Then, we got 20 training MSE whose orders ranged from 10~ to 10~°. Fig-
ure 3.11 shows the trajectories of 3 randomly selected nodes. Notice that it is quite
similar to the previous case, but now the space between spikes is different. Then,
we tested the network for 4000 time steps. Figure 3.12 shows the comparison of the
predictions and the ground truth along with the inputs for the first three channels.
Again, notice that the predictions are as desired. Let us remark again that the net-
work has learnt but not memorized the task, which has been possible due to the
small spectral radius.

29

Chapter 4

The Mackey-Glass system

In this chapter, we are going to introduce the so called Mackey-Glass system, which
is a dynamical system that displays a chaotic behavior. Our main goal will be to
train a neural network in order to make it capable of predicting chaotic trajectories.
That is, we will train the network with T time steps of a particular trajectory and,
afterwards, the network will predict the following time steps.

All the experiments performed in this chapter can be found on the attached note-
book called MackeyGlass.ipynb. Actually, this notebook also contains some additional
experiments, like the training and testing of the network for values of o between 17
and 30.

4.1 Preliminaries on the Mackey-Glass system
The Mackey-Glass system is determined by the following delay differential equation

(e = =)

= m —7y(t),

where &, B,y > 0. This system has different behaviors depending on the parameters.
For instance, it may have a fixed point, it may oscillate or it may display a chaotic
dynamics. Recall that, in rough outlines, chaotic dynamics are characterized by the
fact that the trajectories of two arbitrarily close initial points may differ a lot after
some time steps. This is just an intuition of what chaos means but in any case it is a
definition. See Greiner, 2010 for a more formal definition of chaos.

The parameters we are going to use are the standard ones. Thatis,« = 0.2, = 10
and y = 1. Therefore, the equation becomes

i(t) = 02y(t—o0)

=T y(—o)0 0.1y(t),

where ¢ > 0 stands for the time delay. Under such conditions, the system becomes
chaotic for o > 16.8.

It can be seen that the discrete approximation to the continuous solution of the
system is

02y(n—%)
T+y(n—g)io —0.1y(n)|, (4.1)

where § = 1/10. Finally, in order to achieve that a unit in the discrete approach
is the same as a unit in the continuous approach, a subsampling by 10 should be
performed. In other words, after the subsampling, one can guarantee that one time
step from y(n) to y(n + 1) by means of the above formula corresponds to a unit time

yn+1) =y(n)+9

30 Chapter 4. The Mackey-Glass system

wﬁiiﬁm T mum
e H\

N‘J‘Nu \MWH

\‘nu HWWU‘HIII

r?l|\VlﬂV|\')b\'IJ.\V/nlVNJ»\'!h\'Iﬁ\'l«\ﬁWh\Wn\WﬁWﬁ\' I \ (€
P ”’(’A) @ - o

eeeeeeeeeeeeeeee

: I \ \ \ ‘A
. \'u'”m \‘H \WUF \H | O
\W"\[‘\NMM"W

\“u (
[ithe \H

w ch

Muﬂ

() (D)

FIGURE 4.1: Visualization of four different trajectories of the Mackey-
Glass system for different values of ¢. In all the cases, the initial con-
dition is y(0) = 1.2. (A) ¢ = 5. (B) ¢ = 10. (¢) ¢ = 17. (D) ¢ = 30.

step from y(t) to y(f + 1) of the original continuous system. In addition, we are
going to define y(n) = 0 for all n < 0.

There are two common ways of visualizing such systems. The first one would be
the time series itself, which means y as a function of n. The second one consists in
plotting the trajectory followed by any point (y(n),y(n — 0)).

In Figure 4.1, we can see both types of visualization for different values of the
delay: ¢ = 5,10,17,30. In all the plots, we are regarding y(0) = 1.2. Notice that, as
already mentioned above, this system behaves differently for different values of o
and the chaotic behavior appears when o > 16.8.

From now on, we will be dealing with a chaotic Mackey-Glass system. That is,
we will only regard values of ¢ greater or equal than 17.

4.2 Setting the task

The main goal would be to train an echo states network so as to learn the dynamics
given by the Mackey-Glass system. By “learning the dynamics” we mean training
the network for a sequence of a certain size T in such a way that the trained network
could afterwards predict the sequence for t > T. Therefore, we are going to consider
Vteach as a certain trajectory of the Mackey-Glass system. In fact, we will perform
experiments regarding different initial conditions.

Let us now construct the network. First of all, we will deal with a reservoir com-
posed by 400 nodes. Such nodes are going to be randomly connected taking weights
equal to 0, 0.4 and -0.4 with probabilities 0.9875, 0.00625 and 0.00625 respectively.
Therefore, we will only regard 1.25% of connections. Finally, such weights are going
to be rescaled in order to obtain an adjacency matrix with an spectral radius of 0.79.
On the other hand, it is clear that our network needs to have feedback weights in
order to get the information from previous outputs. Such connections (W) are
going to be randomly sampled following a uniform distribution over [-0.56,0.56]. In
addition, we are going to consider a constant input equal to 0.2, that is, u(n) = 0.2
for all n in order to introduce more variability within the internal states. The matrix
giving the input connections (W) will be randomly chosen from the set {0, 0.14, -
0.14} with probabilities 0.5, 0.25 and 0.25 respectively. It is quite common to take the

4.3. Training and testing 31

feedback connections within an interval and the input connections within a discrete
set.

As already mentioned above, Vieach i going to be a trajectory of the Mackey-
Glass system, which is constructed as explained in equation (4.1). However, since
the activation function is going to be a tanh, we want our sequence to take values in
the interval [-1,1]. That is the reason why such sequences will undergo the following
transformation

Yteach — tanh(]/teach - 1)

Therefore, unless we specify the contrary, yieach is going to denote such squashed
version of the trajectory.

4.3 Training and testing

As stated above, the task consists in learning the dynamics of the Mackey-Glass
system. In order to achieve so, different experiments are going to be carried out,
each one considering a different type of training sequence:

e 0 =17 and T = 3000 time steps.
e 0 =17 and T = 21000 time steps.
e 0 =30and T = 3000 time steps.
e ¢ =30and T = 21000 time steps.

Recall that ¢ is the parameter determining the degree of chaos, being 16.8 the bound-
ary over which the system becomes chaotic. Therefore, ¢ = 17 entails a mildly
chaotic system whereas o = 30 entails a wilder chaotic system.

The training and testing procedures are going to be as exposed in Section 2.3.
However, we will introduce another updating formula, which, during the training
time, will be as follows:

x(n+1) = (1—-6Ca)x(n)+4C [tanh (Wmu(n +1) + Wx(n) + WPaky, . (1) + v(n))} ,
(4.2)
where we are going to take 6 = 1, C = 0.49 and a = 0.9. The noise v(n), which will be
uniformly sampled from the interval [—0.00001,0.00001]4°, will only be introduced
when dealing with ¢ = 30, since, as we are going to see, it entails a more stable
result. On the other hand, no noise will be required when dealing with o = 17.
As always, the learning is carried out by minimizing the MSE, which is

where T is the the number of training time steps and 7min is the number of discarded
time steps. In all the experiments we are going to perform, we will discard the first
1000 time steps.

During testing time, the updating is going to be carried out as shown in equa-
tion (4.2) but without noise and using vy instead of y,cn. The output of the network

32 Chapter 4. The Mackey-Glass system

Initial Condition Errors T=3000 T=21000
NRMSEg, 0.00109 0.00135

y(0)=1.2 MSEiest (T /1000) 0.00012 291-10°°
MSEqeqt (T//5000) 0.03192 0.06040
NRMSEg, 0.00299 0.00150

y(0)=1 MSEest(T/1000) | 0.3.34-1075 | 521-107°
MSEqest (T /5000) 0.08973 0.09480
NRMSEg, 0.00104 0.00126

y(0)=1.5 MSEqest (T//1000) 0.00029 423-107°
MSEest (T /5000) 0.03177 0.03585
NRMSEg, 0.00159 0.00146
y(0)=5 MSEqeqt (T/1000) 0.00145 0.00014
MSEqeqt (T/5000) 0.06083 0.07123

FIGURE 4.2: Performance comparison of two different values of T
regarding o = 17

will be a linear combination of the internal states of the reservoir. That is, the output
will be computed as
y(n) = Wx(n),

where WO € M, y(R) is the learnt matrix.

Finally, apart from using the MSE, we are going to use the NRMSEg4, which was
introduced in Section 2.3. It measures the accuracy of the predictions in the long
term, which is extremely useful in chaotic dynamics. Recall that, in a chaotic system,
two close points may end up being far apart.

4.4 Results

All the experiments performed can be found on the attached MackeyGlass.ipynb note-
book. In it, we have played with different initial conditions as well with different
values of the tgismiss parameter, which allowed us not only to predict but also to
replicate the dynamics seen during training. However, this section will just provide
the main results, all regarding the prediction task.

4.4.1 Mildly chaotic system: ¢ = 17

As stated in Section 4.2, the network has been trained regarding T = 3000 and
T = 21000. In addition, we considered different initial conditions, which were
y(0) =1,1.2,1.5,5. The results are exposed on Figure 4.2. In it, we are using the no-
tation of MSEest(T, M) to indicate that it corresponds to the prediction of the M time

4.4. Results 33

Prediction an testing time: time series

— Desired output {y_teach)
-~ Network's prediction

nyin)

Chaotic positios

0 00 a00 00 800 1000
Time step n

(4)

Prediction an testing time: time series

— Desired output {y_teach)
- Network's prediction

yin)

Chaotic position

0 1000 2000 3000 a000 5000
Time step n

(B)

FIGURE 4.3: Network’s prediction after being trained for T = 3000
time steps. In both cases, the initial condition is y(0) = 1.2. (A) Pre-
dicting the next 1000 steps. (B) Predicting the next 5000 steps.

steps that follow the T steps used for training. By looking at the already mentioned
figure, we see that when 1000 steps are predicted, the results are more accurate for
T = 21000 than for T = 3000. However, it appears that the precision achieved for
T = 3000 is good enough in most of the experiments. If we now regard the ex-
periments for which 5000 steps were predicted, we see that the results obtained for
T = 21000 are slightly worse than for T = 3000 but quite equivalent. Another good
metrics for measuring the precision of the predictions is the NRMSEg,. Notice that,
in some experiments, such metrics gets better for T = 21000 whereas, in some oth-
ers, it gets worse. Despite such slight variations, both metrics are quite similar for
both values of T.

In addition, Figure 4.3 shows the prediction of 1000 and 5000 time steps regard-
ing T = 3000 and y(0) = 1.2. All the plots obtained for other initial conditions and
for T = 21000 are quite similar, thus we are only showing it once. In any case, all
the images can be found on notebook MackeyGlass.ipynb. By looking at that figure,
we can see that the network predicts quite precisely the next 1000 time steps that
follow the training although it can just approximate the next 5000. In addition, it
is worth noting that, even though the prediction may degenerate, it still follows a
dynamics that resembles that of a Mackey-Glass system. In addition, the degener-
ated prediction may end up recovering precision and getting closer to the original
one whenever it encounters less chaotic behaviors. The latter can be seen in Fig-
ure 4.3 (B), where it degenerates after 1000 time steps but then it recovers precision
at time step 4000.

As we have already discussed, the network predicts quite precisely the next 1000
time steps that follow the training and it then degenerates. On the other hand, it

34 Chapter 4. The Mackey-Glass system

— Desired output y_teach}
| Network's prediction

89

Chactic position y(n)
L

3000 4000 5000
Tme step n

FIGURE 4.4: Prediction of 5000 time steps after increasing the net-
work’s capacity.

is true that such degeneration still resembles a Mackey-Glass dynamics and, after
some time steps, the predictions may recover precision. Therefore, it seems that the
problem does not lie on the quantity of data available (since the results for T = 3000
and T = 21000 have appeared to be similar) but on the network’s capacity. In other
words, a reservoir with 400 nodes is not capable of learning the dynamics at the
extent of precisely predicting 5000 time steps. Consequently, we incremented the
network’s capacity by regarding a reservoir with 1500 nodes. After training the net-
work with T = 7000, we could quite accurately predict 2000 time steps, which can
be visually inferred by looking at Figure 4.4. In addition, the value of the NRMSEg,
was divided by 100, which implies that this network is 100 times more precise in the
long term than any of the previous ones.

4.4.2 Wildly chaotic system: ¢ = 30

Similarly than in Section 4.4.1, we performed different experiments, which are sum-
marized in Figure 4.5. In addition, Figure 4.6 (A) depicts the prediction for 1000
time steps regarding T = 3000 and y(0) = 1.2. Again, since all the obtained plots
appear to behave similarly, we will only provide one. What we observe is quite sim-
ilar to the previous case. That is, the network degenerates after 200 or 250 time steps
although the degenerated prediction still resembles a Mackey-Glass dynamics. In
addition, the predictions may recover accuracy as time goes by. Apart from that,
the accuracy got for T = 3000 and T = 21000 is quite similar. Therefore, all these
observations suggest that, in order to improve the learning, we need to increase the
network’s capacity. Consequently, we increased the number of nodes from 400 to
1500. After training the network for 7000 time steps, the prediction is as shown in
Figure 4.6 (B). Notice that, now, the network could precisely predict around 800 time
steps. In addition, the value of the NRMSEg, has been divided by 10. Therefore, this
network is 10 times more precise in the long term than any of the previous ones.

Finally, let us remark that, when dealing with ¢ = 30, some noise needed to
be introduced. Recall that it was uniformly chosen from [—0.00001,0.00001]*%. In
the already mentioned notebook, we performed different experiments regarding the
noise to be on the interval [—a, a]*? for different values of a. After performing such
experiments, we could see the importance of choosing the appropriate noise. For
instance, we saw that, if the value of a is too big, then the prediction will end up
degenerating, although it will still follow a trajectory resembling that of a Mackey-
Glass system. On the other hand, if we do not introduce noise or the value of a is too

4.4. Results

35

Initial Condition Errors T=3000 T=21000
NRMSEg, 0.90456 0.37840
y(0)=1.2 MSEes(T /200) 0.00271 0.00157
MSEtest(T/1000) 0.07000 0.10662
NRMSEg, 0.79282 0.38680
y(0)=1 MSE st (T /200) 0.01376 0.00057
MSEiest(T/1000) 0.12254 0.08265
NRMSEg, 1.12072 0.36563
y(0)=1.5 MSEieqt (T/200) 3.96-1075 | 0.00011
MSE;eqt (T//1000) 0.07439 0.06813
NRMSEg, 0.71455 0.40585
y(0)=5 MSEes(T /200) 0.00017 0.00064
MSE¢est(T/1000) 0.05028 0.11481

FIGURE 4.5: Performance comparison of two different values of T

regarding o = 17

Prediction on testing time: time series

(4)

Prediction on testing time: time series

f 1

|

r‘ [
A
|
l

(B)

FIGURE 4.6: (A) Predicting the next 1000 steps. (B) Predicting the
next 1000 steps after increasing the network’s capacity.

36 Chapter 4. The Mackey-Glass system

Prediction on testing time: time series

M
4/ M& !
RA

[} 200 200 @0 0 1000
Time step n

FIGURE 4.7: Predicting 1000 time steps for ¢ = 30 when no noise is
added.

small, the predictions will degenerate. In this case, the prediction will be far from
a Mackey-Glass one. Figure 4.7 illustrates the predictions when no noise was intro-
duced.

Therefore, we found two possible ways of degenerating: the one that still follows
a trajectory that resembles a Mackey-Glass dynamics and the one that gets stuck at
+1. The former can be solved by increasing the network’s capacity and the value of
training samples whereas the latter could be work out by introducing some noise.

37

Chapter 5

The standard map

The main goal of this chapter is to use all the knowledge acquired during the pre-
vious chapters in order to learn the dynamics of the so called standard map. That is,
we want to train an echo states network in order to make it capable of predicting
the different trajectories of such map. We decided to deal with this system since it
displays a very challenging behavior and we did not find any literature regarding
the application of the reservoir computing on it.

We start the chapter by providing some notions on the standard map (Section 5.1),
which follow Chirikov standard map and Kicked Rotator. Afterwards, we expose the
network and training parameters and procedures that gave the best performance
(Sections 5.2, 5.3 and 5.4). Finally, Section 5.5 provides an overview of the different
strategies we tried before reaching the best result. Such approaches are worthy to
mention and study since, although they may had not worked in this particular case
of study, they belong to the set of typical tunning strategies. Therefore, they illustrate
a way of systematically choose the most suitable strategies and parameters.

All the experiments performed in this chapter can be found on the attached note-
books called StandardMap.ipynb and StandardMap_Parallel.ipynb. Along this chapter,
we are going to detail the main conclusions we reached as well as the most remark-
able features observed. However, we are not going to discuss all the experiments
performed, since they can be found on the already mentioned notebooks.

5.1 Preliminaries on the standard map
The Chirikov standard map (or simply standard map) is an area-preserving map

F:[0,27] x [0,271] x R — [0,27t] x [0,271]
(p,0,t) — F(p,6,t)

defined by means of the following differential equation

p =p+Ksin(h)
6 =0+p ’

where 6 and p determine the angular position and the angular momentum. The

parameter K is a non-negative scalar giving the degree of chaos. When K = 0, the

orbits are linear. Then, as this value increases, periodic and quasi-periodic orbits ap-

pear. Finally, if we increase the value even more, so does the probability of observing

chaotic dynamics for the appropriate initial conditions.

38 Chapter 5. The standard map

This map is generated by the Hamiltonian

2
H(p,,t) = % + Kcos(8)1 (1),

where 61 (t) is a periodic —function with period 1 in time.

In our study, we are not going to use the continuous EDO but its discrete version,
which is
{pn+l = pﬂ +KSln(9n) , (51)

Opt1 =0, + Pn+1

where p,, and 0, are taken modulo 27t. Therefore, we are regarding F to be defined
on the torus.

The standard map describes the dynamics followed by a kicked rotator. A kicked
rotator is usually imagined as a particle constrained to move on a circle in a system
with no friction nor gravity that is periodically kicked. Thus, its parameters are:

¢ 6, which gives the angular position within the circle. It is measured in radians.

e p, which gives its angular momentum. It can be positive or negative, where
positive indicates counter-clockwise motion and negative indicates clockwise
motion.

e K, which stands for kick strength. For low kick strengths, the particle motion is
fairly regular. However, if the kicks are strong enough, K > K. ~ 0.971635. ..
the system becomes chaotic and has a positive Maximal Lyapunov exponent
(MLE).

The particle starts out at a random position on the circle with a random initial
momentum and is periodically kicked by an “homogeneous field”. Depending on
the position the particle is located within the circle, the kick affects the particle’s
motion differently. In particular, in order to compute how effective the kick is at a
certain position 6, its value K is multiplied by sin(6).

Figure 5.1 illustrates the phase space of the standard map for different values of
the kick. In our particular case, the phase space is a two dimensional space where
each axis stands for one of the standard’s map variables. That is, the x-axis corre-
sponds to 6 whereas the y-axis corresponds to p. The phase space depicts all the
orbits (i.e, trajectories) for any initial condition given by (6y, po). By looking at the
image, we see that, when K = 0, each trajectory is a set of points that lie on the same
line. The reason is that, in such case, the value of p is constant and the value of 6
is proportional to p (module 277). As the value of K increases, quasi-periodic and
periodic orbits appear (K = 0.5,0.9). When the value of K reaches 0.9, we observe
trajectories that seem to be slightly chaotic. This would be the case of the light blue
and pink curves. For K = 1.2, such chaotic trajectories are easier to distinguish. That
is, we see a wide range of the space filled with points of different colors. Finally, it
is clear that, as the value of K keeps increasing, so does the probability of finding
chaotic trajectories.

5.2 Setting the task

The main goal is to train an echo states network so as to learn the dynamics given
by the standard map. Similarly to Chapter 4, the learning task consists on training

5.2. Setting the task 39

Phase space for k=0 Phase space for k=0.5 Phase space for k=0.9

B {momentum)

1 5 6 5 6 0 1 2 3 1 5 6

3
theta (position)

FIGURE 5.1: Phase space of the standard map for different kick val-
ues. The first row corresponds to non-chaotic behaviors whereas the
second one depicts some chaotic orbits.

the network for a sequence of a certain size T in order to make it capable of predict-
ing the sequence for t > T. Therefore, the desired output, denoted as yieqch, Will
represent a certain trajectory of the standard map. That is,

]/teach(n)T = (9(1’1), p(n))/

will correspond to the position of the particle at time n. Many experiments regard-
ing different initial conditions and values of K will be carried out.

In our case of study, we will deal with a reservoir composed by 3000 nodes. Such
nodes are going to be randomly connected taking weights equal to 0, 0.4 and -0.4
with probabilities 0.9875, 0.00625 and 0.00625 respectively. Therefore, we will only
regard 1.25% of connections. Finally, such weights are going to be rescaled in order
to obtain an adjacency matrix with an spectral radius of 1.35.

The matrix giving the feedback connections (WP2k) is going to be constructed by
randomly taking uniformly distributed numbers within the interval [-0.56,0.56]. In
addition, we will also input a constant value of 0.5 in order to encourage even more
a wider variety of dynamics (i.e, u(n)=0.5 for all). Its matrix of connections (W'")
will take values 0, 0.7 and -0.7 with probabilities 0.5, 0.25 and 0.25 respectively.

These values of the parameters appeared to be the ones that gave the best perfor-
mance after some trial and error. In Section 5.5, we will provide an overview of the
different strategies we tried before reaching the best result.

As already mentioned, yi,cn Will be a trajectory of the standard map, which is
constructed as explained in equation (5.1). Recall that the parameters 6 and p are
taken modulo 27t. Therefore, the trajectory will take values on the interval [0,27].
However, since the activation function is going to be a tanh, we want our sequence to

40 Chapter 5. The standard map

take values in the interval [-1,1]. That is the reason why such sequences will undergo
the following transformation

h
Yeeach 1= y%“ —05.

Therefore, unless we specify the contrary, Yieach is going to denote such squashed
version of the trajectory.

5.3 Training and testing

The network is going to be trained for T = 3000 time steps regarding a dismissal of
Nmin = 500 steps.

The training and testing procedures are going to be as exposed in Section 2.3.
However, we will now introduce some noise during training in order to prevent
the predictions from degenerating in the long term. Therefore, the update of the
reservoir while training is going to be as follows

x(n) = tanh (Wmu(n) +Wx(n—1)+ WbaCkyteaCh[:,n 1]+ v[:,n]) , (5.2)

where we are going to take v as a centered Gaussian noise with standard deviation
of 0.001. On the contrary, the update during testing will be:

x(n) = tanh (Wi“u(n) + Wax(n —1) + WPacky [— 1]) . (5.3)

In equations (5.2) and (5.3), we are considering Yieach and v as matrices of sizes
yeah ¢ My, 7(R) and y***" € M,, v (R) respectively, where T’ is the testing time
steps.

Recall that in the experiments we carried out so far (in the previous chapters), the
output of the network was computed as a linear combination of the internal states
of the reservoir. That is, the output was computed as

y(n) = W*Ux(n),

where W € M|, n(IR) was the matrix to be learnt. However, in this case of study
we will slightly modify such approach in order to get more accurate outputs. The
strategy we will be following is:

y(n) = Wz (n), (54)

- L X(Tl)lz%
%(n) = (x(n)zg’ﬂ;z\]) (5.5)

2%+1:N '
the notation of x(1n),., represents the slice of vector x(n) from component a to com-
ponent b. Therefore, in equation (5.5), the above vector stands for the first half of
x(n) whereas the below one stands for the second half of x(n) to the square.

By following this approach, we want to end up having a set of nodes’ trajecto-
ries in such a way that the desired output belongs, not to the subspace generated
by them, but to the subspace generated by them and its squares. Notice that this

where

stands for the vertical concatenation of vectors x(1),.x and x(n) In addition,
©2

5.4. Experiments 41

approach has more probabilities of yielding good results.

Finally, the learning will consist on a ridge regression instead of the classical linear
regression. Thus, we will need to minimize the following function

RIDGE = tanh—l teach | Wou’[f 2 Y Wout 2,
y 2 2

where y*@" € My, (7, . (R), W € My, n(R) and ¥ € My (1_p,,,)(R). Recall
that T is the number of time steps considered and 71y is the number of discarded
time steps. In addition, we will take a=10.

The choice of the insertion of noise in equation (5.2), the computation of the out-
put as a quadratic combination (equation (5.4)) and the Ridge regression instead of
the classical linear regression were done after some trial and error. Section 5.5 pro-
vides an overview of the discarded approaches.

5.4 Experiments

Along this section, we are going to present the main conclusions from the differ-
ent experiments performed. All of them can be found in the notebook Standard-
Map.ipynb.

The kick values we are going to consider in these experiments are: 0, 0.1, 0.25, 0.5,
0.75,09,1.2,15, 2,3, 5 and 7. Although the first 5 cases will not display a chaotic
dynamics, they are worthy cases of study since their trajectories are not going to
be trivial. The reason is the fact that the values of 6 and p are taken modulo 2.
Therefore, if the initial condition is different from

21 21
(6o, po) = <a' b) fora,b € Z-,

then, even though the points are reduced to belong to [0,277], two different points
of the trajectory will not perfectly coincide when taken in such modulo. Notice that
this is still true even if we squash, since squashing does no cause overlapping of
points. The initial conditions we have considered are: (0, 0.75), (0,0), (27t/7, 27t/8),
(0,0.9), (0.9,0), (0.5,3), (1,3.5) and (1,1.2).

What can be inferred after carrying out the experiments is the fact that the net-
work can properly predict at least a few time steps for all initial condition and all
value of k lower than 0.9. Afterwards, the predictions may degenerate in two differ-
ent ways according to the NRMSEg,: the mistakes are amplified as time goes by OR
the dynamics end up catching again the true trajectory. In the former case, such met-
rics are large whereas, in the latter case, such metrics are smaller. Figure 5.2 depicts
two cases where the first 100 predictions coincide almost perfectly with the desired
values. However, the NRMSEg, for both parameters in (A) are lower than 2 whereas
in (B), the NRMSEg, for 0 takes value 15, which is very large. The reason for these
two different behaviors is the fact that the network is trained in order to learn a dy-
namics. Therefore, it may be possible to learn a dynamics that is close to the original
one but that, at some points, it differs a little bit. This would correspond to the cases
where the metrics NRMSEg, is lower. On the contrary, it may also occur that the
network commits an error when predicting and, then, this error is propagated along

42 Chapter 5. The standard map

Network's prediction vs ground truth Network's prediction vs ground truth

~.
~ | a5 L Networks prediction

(A) (B)

FIGURE 5.2: Comparison of the prediction against the ground truth
for two different initial conditions and K = 0.25. (A) (6, po)=(1,3.5).
(B) (6o, po)=(1,1.2).

time. This would correspond to the cases where the metrics NRMSEg, is higher.

Finally, let us also mention the fact that being able to predict the trajectories of
the standard map for non-chaotic values of K do not appear to be a trivial task. Fig-
ure 5.3 depicts different orbits for different non-chaotic values of K and different
initial conditions. Notice that non of the behaviors depicted there seem trivial. No-
tice that even images (A) and (D) do not follow a clearly distinguishable pattern.
What is more, the orbits seem to have some subtle random behavior.

Let us now tackle the chaotic case. Recall that the trajectories may become chaotic
whenever the kick value is higher than 0.98. The experiments showed that, when the
orbits displayed a chaotic behavior, then the network was not able to properly pre-
dict. By looking at the second row of Figure 5.1, it can be seen that, if the value of K is
greater than 0.98 but not too large, then not all orbits are necessarily chaotic. There-
fore, in our experiments, we could quite accurately predict orbits for chaotic values
of K as long as the orbits were non-chaotic. On the contrary, if the orbits displayed
a chaotic pattern, then they could not be learnt. Figure 5.4 shows one non-chaotic
orbit properly predicted and a chaotic orbit whose prediction completely missed the
ground truth. In both cases, K=1.2, thus a chaotic value of K was considered.

What appears to be the main cause of the poor predicting capability of the net-
work when dealing with an standard’s map chaotic orbit is the fact that its dynam-
ics is not continuous. Such discontinuity makes the orbits look like a point cloud
without structure (see Notebook StandardMap.ipynb). Thus learning the dynamics
become a hard task.

5.4. Experiments

43

Prediction of p as a time series

0010

0012

0014

0016

0018

P (momentum)

0020

0022

0024

0070

0088

0066

0062

P (momentum)

0060

0058

0056

0054

- ground truth

- Network's prediction

Prediction of p as a time series

tme

(4)

100

* ground truth
+ Network's prediction

Prediction of theta as a time series

10

theta (position)

« ground truth
- Networks prediction

Prediction of p as a time series

(©

100

p (momentum)

+ ground truth
+ Network's prediction .

(D)

100

FIGURE 5.3: (A) (6, po)=(0.5,3) and K=0.1. (B) (6, po)=(1,3.5) and
K=0.1. (C) (60, p0)=(0.9,0) and K=0.75. (D) (6, po)=(1,3.5) and K=0.75.

44 Chapter 5. The standard map

aaaaaaaaaaaaaaaaa

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

(4) (B)

FIGURE 5.4: (A) Orbit of (6, po)=(1,3.5) taking K = 1.2. (B) Orbit of
(80, p0)=(0,0.9) taking K = 1.2.

Another widely used approach in the area of reservoir computing consists on
training one reservoir for each bunch of variables instead of training a single reser-
voir. The main advantage of this technique is that each reservoir only takes into
account the relationship among the variables that belong to the same bunch. This
method is very useful when the parameter space is high dimensional and each com-
ponent is only influenced by its neighboring components. At first, we may think
that this approach is not suitable for our particular case of study, since our param-
eter space is only two dimensional and both variables are highly related. However,
we still tried to train two reservoirs in parallel, each one regarding a single vari-
able of the standard map. The experiments can be found on the notebook Standard-
Map_Parallel.ipynb. What we saw is that the only case where the same performance
can be achieved with less computational cost is when the value of K is equal to 0.
Recall that, in this case, the value of p is constant, thus the only parameter to be
learnt is 6. On the other cases, the outcome may depend on the initial condition. If
it is true that, in some cases, training a single parameter allows to reduce a little bit
the value of NRMSEg,, it is also true that there is not much difference on the short
term prediction. Despite these few cases, in the majority of experiments, the results
appeared to be better when both parameters were jointly trained. As we previously
mentioned, this was the expected behavior.

5.5 Other trials with poor performance or too much compu-
tational cost

As already mentioned, Section 5.4 showed the best performance we were able to ob-
tain by tunning all the different components of the network as well as the training.

5.5.

Other trials with poor performance or too much computational cost 45

Prediction of theta as a time series

- ground truth
Network's prediction

= ground truth
Network's prediction

(B)

FIGURE 5.5: Two different predictions for the same trajectory that
differ on the choice of the spectral radius.(A) Spectral radius of 0.99.
(B) Spectral radius of 3.

Let us now provide an overview of the different strategies we tried before reaching
the best result. Such approaches are worthy to mention and study since, although
they may had not worked in this particular case of study, they belong to the set of
typical tunning strategies.

Let us now review the different trials carried out. All of them can be found on

Section 3 of the notebook StandardMap.ipynb.

e Parameters of the reservoir. Within these group, we will focus on the number

of nodes and the spectral radius, since the other parameters of the reservoir
appeared to be quite robust. On the one hand, we saw that, if the number of
nodes was too low, then the network is not capable of learning complex dy-
namics. However, it is also true that we saw that, even regarding N=400, the
results were not as bad as one would expect, since, in the short term, the pre-
dictions lied on a reasonable neighborhood of the ground truth. Despite this
fact, the predictions quickly degenerated. Then, if the number of nodes was
too large, the NRMSEg, could decrease a little bit, entailing an improvement
on the long term predictions. Despite this fact, not much was improved, which
leads us to think that a huge number of nodes does not guarantee a good per-
formance.

On the other hand, we also tunned the spectral radius. We saw that, if it was
low, the network learnt some simple continuous dynamics, which had nothing
to do with the desired one. On the contrary, if it was too big, it seemed that the
network was not learning any particular dynamics but a quite random cloud
of points. This fact is illustrated in Figure 5.5.

46

Chapter 5. The standard map

Prediction of theta as a time series

* ground truth
Network’s prediction

o 0 Y & & 100

FIGURE 5.6: Predictions regarding the updating formula exposed in
equation (5.6).

o Input. At first, one may decide to not define an input, which would make

sense since the only main feature of the network is the feedback. However, not
introducing an input entails a poor performance not only in the long term but
also in the short term. On the other hand, the choice of the input value has to
be the appropriate, since a too lower or too higher value may not provide the
desired result.

Inserting noise during training. We carried out some experiments where we
played with the noise: changing the standard deviation of a centered Gaussian
noise, changing the Gaussian noise for a uniformly distributed noise and even
removing the noise. As we already saw when dealing with the Mackey-Glass
system, the lack of noise leads the predictions to degenerate in the sense of
ending taking value -1 or 1. On the other hand, we saw that the Gaussian
noise gave the best performance. In addition, its parameters had to be chosen
in order not to be too large or too low. In the former, the noise’s influence was
too big so as to properly learn the desired dynamics whereas in the latter, the
influence of the noise was too subtle to make a difference.

Formula for updating the reservoir. In this particular task, we updated the
reservoir by means of the following equation

x(n+1) = tanh (Wmu(n) + W (n) + Whackyteachr, 41 4 [n]) ,

where Vieach is replaced by the output of the network (y) during testing time.
This strategy, which is the most common one, was already implemented when
coping with other tasks. However, recall that when dealing with the Mackey-
Glass system, the updating was done as follows

x(n+1) = (1—6Ca)x(n) + 6C tanh (Wx(n) + WbaCkyteaCh[:,nD , (5.6

where 6=1, C=0.49 and 4=0.9. Notice that, when 6 = C = g4 = 1, the second
formula reduces to the first one. Figure 5.6 depicts the predictions when the
update was done by means of equation (5.6) (and adding some noise). Notice
that the predictions seem to be an average of the real ones. The reason why
this approach does not work in our case is the fact that it is very suitable when
dealing with slow continuous dynamics, which is not our case.

5.5. Other trials with poor performance or too much computational cost 47

Metwork's prediction vs ground truth

+ ground truth
Network's prediction

P {momentum)

006

.

-100 -075 050 -025 000 025 050 075 100
theta (position)

Prediction of theta as a time series.

theta (position)

025

050

078

= ground truth
-100 Network's prediction

0 0 © &0 @ 100
time

Prediction of p as a time series

P {momentum)

006

008 + ground truth

[0) & & 100
time

FIGURE 5.7: Predictions when the loss function was the classical MSE.

e Formula for obtaining the output. Recall that, in our case, the output is com-
puted from the internal states of the reservoir as follows

y(n) = WOE(n),

where
x(n)l:g

2
x(n)%H;N

stands for the vertical concatenation of vectors x(1);.y and x(n)ZNH, N+ How-
2! Ny

ever, this was not the first strategy that we tried. We began with classical linear

combination. That is,
y(n) = Wx(n).

Once we saw that the quadratic combination provided a better outcome, we
also decided to try a cubic combination. That is,

y(n) = Wx(n),

48

Chapter 5. The standard map

where

stands for the vertical concatenation of the three vectors.

The main difference between the three approaches is the long term prediction.
The linear combination approach appears to degenerate quite fast. Then, the
cubic one seems to lower the NRMSEg, with respect to the quadratic. We de-
cided to work with the quadratic one since it provided a good enough result
and it implied less complexity of the reservoir’s subspace.

Loss function. The last choice we made was regarding the loss function. Recall
that we performed a ridge regression. However, we began trying the classical
linear regression. The poor performance of this approach can be seen in Fig-
ure 5.7. In addition, we also carried out experiments regarding different values
of x. We saw that, if it was to low, then the predictions degenerated in the sense
that they ended up taking value +1. On the contrary, if it was too large, it also
ended up degenerating, although in a more smoother way.

49

Chapter 6

Conclusions

The main goal of this project was to understand the internal functioning of the reser-
voir computing approach as well as to analyze its implementation on the task of
learning a dynamics, which included both chaotic and non-chaotic dynamics. Let us
now summarize both aspects.

Reservoir computing is a framework that inputs a time step of a sequential sig-
nal, denoted by u(#n), along with the network’s previous output, denoted by y(n —
1). Then, both are projected onto a higher dimensional space by the maps W™ and
Wback regpectively. Afterwards, the new point is run through a deterministic dynam-
ical system called “reservoir”, which is defined over the previous mentioned higher
dimensional space. Finally, a linear combination of the states of the reservoir is per-
formed by means of a map denoted as W°". The result of this linear combination is
the output y(t). The only connections to be learnt are the ones given by W°", since
all the others have to be deterministically set in advanced.

While training, the reservoir is updated by means of teacher forcing and, after
discarding the initial time steps (state and input forgetting properties), a linear re-
gression is performed in order to obtain the desired output as a linear combination
of the states of the reservoir. Therefore, the connections Wi, Wbak and W have to
be deterministically chosen in order to guarantee that the subspace generated by the
trajectories of the nodes of the reservoir contains the desired output.

Aswe have seen along the project, whenever the reservoir computing framework
is implemented, many choices regarding the parameters and the procedures have to
be done. By means of the experiments we have carried out, we tried to identify the
role played by such elements. Let us now summarize our findings:

e REGARDING THE RESERVOIR

— Number of nodes of the reservoir. They determine the network’s capac-
ity.

— The connections W™ and WPk, They are usually randomly chosen.

— The internal connections of the reservoir, W.

* The most important feature of W is its sparsity, since it encourages a
wider range of nodes’ behaviors. Therefore, it guarantees the inho-
mogeneity of the reservoir

* The reservoir needs to have echo states. This is guaranteed whether
Omax > 1 0r Amax < 1. However, these two conditions appeared to
be too restrictive since, in most of our experiments, they were not
satisfied.

50 Chapter 6. Conclusions

* The memory issue. If the value of Anm,yx is low, then the inputs’ in-
fluence fades out faster. On the contrary, if it is higher, then such
influence fades out slower.

e TRAINING PROCEDURE

— If the predictions degenerate quite fast or they degenerate taking values 1
or -1, then introducing some noise appears to be a good idea. The choice
of such noise is quite case dependent and has to be tunned by trial and
error.

— As already mentioned, the output is a linear combination of the internal
states of the reservoir. Thus the loss function is usually the MSE. How-
ever, there may be situations where it should be regularized in order to
get the appropriate result (as happened when dealing with the standard
map, for instance). In such cases, the ridge regression appears to be the
most popular choice.

e METRICS

— MSE. It is the most common way of measuring the training and testing
errors.

— NRMSEgsy. This measure solely depends on the trained network. It mea-
sures the error in the long term, which is very useful when dealing with
chaotic dynamics.

o MAIN CONCERNS WHEN DEALING WITH CHAOTIC DYNAMICS

— In a chaotic orbit, the uncertainty increases as time goes by, because of the
definition of chaos. Therefore, the long term predictions appear to be a
hard task.

Many research work is being developed in the area of reservoir computing. As
already mentioned in Chapter 1, chaos theorist Edward Ott and its team could pre-
dict the chaotic dynamics of the Kuramoto-Sivashinsky equation up to 8 Lyapunov
times by means of this framework (Pathak et al., 2018b and Pathak et al., 2017). Re-
call that the reservoir computing is based on solely learning from past data, thus
the differential equation giving rise to the dynamics do not need to be modelled.
However, in paper Pathak et al., 2018a, the same team used, not only the reservoir
computing resource but they also tried to model the system. By means of this hy-
brid approach, the predicting capability was increased up to 12 Lyapunov times.
Finally, let us mention that the reservoir computing and the echo states network is
not a field only devoted to deal with chaotic dynamics but also to many other areas.
As reported in Schrauwen, Verstraeten, and Campenhout, 2007, such framework
has been successfully applied in the context of reinforcement learning, digital signal
processing (such as speech recognition or noise modeling) and on the Brain Machine
Interfacing. In addition, in many areas, such as chaotic time series prediction and
isolated digit recognition, reservoir computing techniques have outperformed state-
of-the-art approaches. Finally, it is worth mentioning the work of Hart, Hook, and
Dawes, 2020, where they expose the mathematics behind the echo states network. In
particular, they proved that, under suitable conditions on the dynamical system and
on the echo states network, there exists a linear readout layer that allows the ESN to
predict the next observation of a dynamical system arbitrarily well. This beautiful
result mathematically backs up the reservoir computing framework.

51

Bibliography

Aoun, Mario and Mounir Boukadoum (Oct. 2015). “Chaotic Liquid State Machine”.
In: International Journal of Cognitive Informatics and Natural Intelligence 9, pp. 1-20.
DOI: 10.4018/IJCINI.2015100101.

Chirikov standard map. http://wuw.scholarpedia.org/article/Chirikov_standard_
map. Accessed: 2020-05-1.

Greiner, W. (2010). Lyapunov Exponents and Chaos. In: Classical Mechanics. Springer,
Berlin, Heidelberg.

Hart, Allen, James Hook, and Jonathan Dawes (2020). “Embedding and approxima-
tion theorems for echo state networks”. In: Neural Networks 128, 234-247. 1SSN:
0893-6080. DOI: 10.1016/j .neunet.2020.05.013. URL: http://dx.doi.org/10.
1016/j .neunet.2020.05.013.

Jaeger, H. (Jan. 2010). “The "echo state" approach to analysing and training recur-
rent neural networks-with an erratum note”. In: Bonn, Germany: German National
Research Center for Information Technology GMD Technical Report 148.

Jaeger, Herbert and Harald Haas (2004). “Harnessing Nonlinearity: Predicting Chaotic
Systems and Saving Energy in Wireless Communication”. In: Science 304.5667,
pp. 78-80. ISSN: 0036-8075. DOI: 10 . 1126 / science . 1091277. eprint: https :
//science.sciencemag.org/content/304/5667/78.full.pdf. URL: https:
//science.sciencemag.org/content/304/5667/78.

Jiang, Junjie and Ying-Cheng Lai (2019). Model-free prediction of spatiotemporal dynam-
ical systems with recurrent neural networks: Role of network spectral radius. arXiv:
1910.04426 [cs.LG].

Kicked Rotator. https://ccl.northwestern.edu/netlogo/models/KickedRotator.
Accessed: 2020-05-1.

Machine Learning’s “Amazing” Ability to Predict Chaos. https://www.quantamagazine.
org/machine - learnings - amazing - ability - to- predict - chaos - 20180418/.
Accessed: 2020-02-1.

Pathak, Jaideep et al. (2017). “Using machine learning to replicate chaotic attrac-
tors and calculate Lyapunov exponents from data”. In: Chaos: An Interdisciplinary
Journal of Nonlinear Science 27.12, p. 121102. 1SSN: 1089-7682. DOI: 10 . 1063 /1 .
5010300. URL: http://dx.doi.org/10.1063/1.5010300.

Pathak, Jaideep et al. (2018a). “Hybrid Forecasting of Chaotic Processes: Using Ma-
chine Learning in Conjunction with a Knowledge-Based Model”. In: CoRR abs/1803.04779.
arXiv: 1803.04779. URL: http://arxiv.org/abs/1803.04779.

Pathak, Jaideep et al. (Jan. 2018b). “Model-Free Prediction of Large Spatiotemporally
Chaotic Systems from Data: A Reservoir Computing Approach”. In: Phys. Rev.

https://doi.org/10.4018/IJCINI.2015100101
http://www.scholarpedia.org/article/Chirikov_standard_map
http://www.scholarpedia.org/article/Chirikov_standard_map
https://doi.org/10.1016/j.neunet.2020.05.013
http://dx.doi.org/10.1016/j.neunet.2020.05.013
http://dx.doi.org/10.1016/j.neunet.2020.05.013
https://doi.org/10.1126/science.1091277
https://science.sciencemag.org/content/304/5667/78.full.pdf
https://science.sciencemag.org/content/304/5667/78.full.pdf
https://science.sciencemag.org/content/304/5667/78
https://science.sciencemag.org/content/304/5667/78
https://arxiv.org/abs/1910.04426
https://ccl.northwestern.edu/netlogo/models/KickedRotator
https://www.quantamagazine.org/machine-learnings-amazing-ability-to-predict-chaos-20180418/
https://www.quantamagazine.org/machine-learnings-amazing-ability-to-predict-chaos-20180418/
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
http://dx.doi.org/10.1063/1.5010300
https://arxiv.org/abs/1803.04779
http://arxiv.org/abs/1803.04779

52 Bibliography

Lett. 120 (2), p. 024102. DOI: 10. 1103 /PhysRevLett . 120 .024102. URL: https:
//1link.aps.org/doi/10.1103/PhysRevlett.120.024102.

Schrauwen, Benjamin, David Verstraeten, and Jan Campenhout (Jan. 2007). “An
overview of reservoir computing: Theory, applications and implementations”.
In: pp. 471-482.

Vlachas, P.R. et al. (2020). “Backpropagation algorithms and Reservoir Computing
in Recurrent Neural Networks for the forecasting of complex spatiotemporal dy-
namics”. In: Neural Networks 126, pp. 191 -217. 15SN: 0893-6080. DOI: https://
doi.org/10.1016/j .neunet.2020.02.016. URL: http://www.sciencedirect.
com/science/article/pii/S0893608020300708.

https://doi.org/10.1103/PhysRevLett.120.024102
https://link.aps.org/doi/10.1103/PhysRevLett.120.024102
https://link.aps.org/doi/10.1103/PhysRevLett.120.024102
https://doi.org/https://doi.org/10.1016/j.neunet.2020.02.016
https://doi.org/https://doi.org/10.1016/j.neunet.2020.02.016
http://www.sciencedirect.com/science/article/pii/S0893608020300708
http://www.sciencedirect.com/science/article/pii/S0893608020300708

	Abstract
	Acknowledgements
	Introduction
	Basics of reservoir computing
	Topology and dynamics of the neural network
	Echo states
	Training the neural network
	Toy problem

	Learning two fundamental dynamics
	Periodic dynamics
	Setting the task
	Neural Network
	Training and testing
	Preventing the network from degenerating
	Playing with the deterministic parameters

	Multiple attractor

	The Mackey-Glass system
	Preliminaries on the Mackey-Glass system
	Setting the task
	Training and testing
	Results
	Mildly chaotic system: =17
	Wildly chaotic system: =30

	The standard map
	Preliminaries on the standard map
	Setting the task
	Training and testing
	Experiments
	Other trials with poor performance or too much computational cost

	Conclusions
	Bibliography

