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Abstract: We analyze the entanglement entropy of a spherical region in N = 4 SYM theory in
the strong coupling limit at zero and finite temperature. In this limit, we can apply Gauge/String
duality so that the entropy is determined by the surface of minimal area in the dual gravity space
such that its intersection with the boundary corresponds to the aforementioned sphere. We find the
shape of the minimal surface in terms of the radius of the sphere, compute its area and examine
its divergence and regularization. Finally, at nonzero temperature, we study how the regularized
entanglement entropy compares to the thermal entropy as the volume of the sphere grows. We
obtain that for spheres of radius ∼ 1/T the entanglement entropy is about half of the thermal
entropy. As the radius grows, these two entropies approach one another and for radii as large as
10/πT this deviation is still at the 10% level.

I. INTRODUCTION

As is well known, thermodynamics successfully de-
scribes static systems in the limit of infinite volumes,
considered as systems with a size much more larger than
the microscopic scale. A natural question that arises is
up to which extend these results hold for finite volumes
and, in particular, what is the minimum size of a system
in which thermodynamics applies. We aim to address
this question in the strong coupling limit of Gauge theo-
ries. To do so, we use the so-called entanglement entropy
[1], as it allows us to assign an entropy to a finite system.

Entanglement entropy provides a measure of how
closely entangled are two complementary regions of a
quantum system when only information of one of the sub-
systems is available. This quantity is hard to determine
in general, but for the set of theories with a dual gravity
system there exists a simple formula.

Gauge/String duality states that it is possible to
describe a (d + 1)−dimensional conformal field the-
ory (CFTd+1) as the boundary of an associated (d +
2)−dimensional anti-de Sitter space (AdSd+2) obtained
introducing a new spatial coordinate z, such that the
CFT is identified with the boundary. We work in N = 4
SYM theory in equilibrium, an scale-invariant theory.
Therefore, we consider the setup of the AdS5/CFT4 cor-
respondence in the strong coupling limit. See [2] for a
concrete geometric description via string theory in this
scheme.

In this framework, we can follow the holographic proce-
dure presented in [3] to obtain the entanglement entropy.
Consider the AdS5/CFT4 duality where the quantum
field theory lives on a 4−dimensional Minkowski space-
time R×R3. Let us take a connected submanifold A ⊂ R3

at a fixed time t = 0. We aim to compute the entan-
glement entropy of the region A, which we denote SA.
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To this end, we extend A to a surface γA in the whole
anti-de Sitter space so that its boundary corresponds to
the boundary of the initial manifold A, i.e. such that
δγA = δA. To find SA, the surface γA with minimal area
must be employed. With this minimal area surface, the
entanglement entropy SA in CFT4 can be expressed as

SA =
Area(γA)

4G
(5)
N

, (1)

where G
(5)
N is the 5−dimensional Newton constant. Note

that the Gauge/String duality dictionary relates G
(5)
N

with the number of color in the Gauge theory (Nc) as

G
(5)
N = πR3/2N2

c [4], where R is the radius of AdS5.
In this work, we use Eq. (1) to compute the entan-

glement entropy of an sphere A of a given radius in the
Gauge theory. In section II, we examine the shape of
the minimal area surface γA for different radii at null
and finite temperature. Then, in section III, we analyze
the regularization of the divergent area of γA, compute
the entanglement entropy in terms of the volume of the
sphere, and provide a detailed study of the asymptotic
behaviours of the entropy for small and large volumes.

All the numerical calculations are computed with
Mathematica.

II. MINIMAL AREA SURFACE

We choose region A to be an sphere in N = 4 SYM
theory. We aim to find the minimal area surface γA in
the dual gravity theory such that δγA in the boundary
corresponds to the boundary of the sphere δA. To do so,
we consider the metric of AdS5 given by

ds2 =
R2

z2
(−f(z) dt2 + d~x2 +

dz2

f(z)
), (2)

where z is the added spatial coordinate, (t, ~x) the coor-
dinates in the 4−dimensional Minkowski spacetime, and
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f(z) equals 1 in the vacuum case (at zero temperature)
and 1− (z · πT )4 in the thermal case (at finite tempera-
ture), where T is identified with the temperature in the
boundary SYM theory.

With the given metric, the boundary is at z = 0. More-
over, since we work in a conformal theory, all the quanti-
ties are expressed in terms of 1/T . Then, we can choose
the value of T = 1/π for simplicity in the thermal case.
According to Eq. (5.33) in [4], this implies locating the
horizon surface at z = 1/(πT ) = 1.

We denote the radius of A as ρmax and work with
spherical coordinates (ρ,Ω) such that d~x2 = dρ2+ρ2dΩ2.
To parametrize the surface in the gravity theory, we take
(t, ρ, θ, φ, z) = (0, ρ, θ, φ, z(ρ)).

Now, to find the surface with minimal area, we make
use of the area element

√
|det g|, where g is the metric

tensor so that ds2 = gijdx
idxj . With this, the integral

corresponding to the area can be written as

Area(γA) =

∫ √
|det g| dρ dΩ =

= 4πR3

∫ ρmax

0

ρ2

z3

√
1 +

ż2

f(z)
dρ (3)

where we used that dΩ = sin θ dθ dφ, which implies∫
dΩ =

∫ π
0

sin θdθ
∫ 2π

0
dφ = 4π.

Applying the Euler-Lagrange equations to the inte-
grand of Eq. (3), we obtain the following ODE for z(ρ):

4zż3 + 2[3ρż2 + ρzz̈ + 2zż]f(z)+

+ 6ρf(z)2 − ρzż2ḟ(z) = 0, (4)

where we impose as boundary conditions z(ρ = 0) =
z0, ż(ρ = 0) = 0. Notice that, instead of specifying
the size of the sphere in CFT4, we fix the depth z0 of
the minimal surface (z up to which it extends). At zero
temperature, z0 can take any positive value, whereas at
nonzero temperature in our choice of coordinates it is
restricted to z0 ∈ (0, 1), since the surface cannot cross
the event-horizon.

For the vacuum case, there exists an analytical solu-
tion:

z2 + ρ2 = ρ2max (5)

where ρmax = z0. This means that, at zero temperature,
γA corresponds to a 3−dimensional semi-sphere.

From Eq. (5) we observe that, regardless of the value
of z0, the minimal surface always meets the boundary
z = 0 perpendicularly. Furthermore, the shapes ob-
tained for different radii are self similar, meaning that
once the surface for a certain radius ρmax is found, its
expression for an arbitrary radius ρmax can be easily ob-
tained properly rescaling the coordinates (it suffices to
set (z, ρ) = (z · ρmax/ρmax, ρ · ρmax/ρmax)).

On the other hand, at nonzero temperature, there is
not known analytic solution to the surface profile. For
this case, solving the differential equation numerically,

z

a
zm

z0

FIG. 1: Illustration of the minimal area surface in AdS5 for a
small radius where a represents the cut-off used to regularize
the entropy, zm the point at which the distinct numerical
methods converge, and z0 the deepest point of the surface.
The red disk corresponds to the sphere A in the boundary
SYM theory. See the text for more details.

we find that the silhouette of the solution is different for
each radius. We observe that, as z0 gets closer to the
horizon, ρmax gets bigger at a higher rate than z0. Thus,
the shape of the surface starts deforming and it flattens,
becoming parallel to the horizon surface away from the
boundary. This behaviour is represented in Fig. (2).

At this point, we face the following problem: with our
methods, we are not able to obtain an exact value of
the point ρmax where the surface meets the boundary.
In order to solve this issue, for each z(ρ) obtained, we
construct a solution as a power series of ρ(z) around z = 0
starting at an approximation of ρmax. This allows us to
be aware of the exact values that ρ takes when z = 0. We
check later that, from a certain order on, by considering
an extra decimal value for ρmax the resultant change in
the area is imperceptible.

To find the aforementioned power series, we consider
the parametrization (t, ρ, θ, φ, z) = (0, ρ(z), θ, φ, z) and
obtain the following equation for ρ(z):

2z + 2zρ̇2 (1− z4)− zρρ̈ (1− z4)+

+ ρρ̇ (3− z4) + 3ρρ̇3 (1− z4)2 = 0. (6)

Solving Eq. (6) for a general case, we get a power series
of the form:

ρ(z) = ρmax −
z2

2ρmax
+ c4z

4 +O(z6) (7)

where the rest of the odd coefficients are null and the even
ones can be expressed in terms of c4, which we will specify
later. Moreover, computing the same expression for the
case of null temperature, we obtain that both formulas
coincide up to order 8 (not included) independently of
the radius ρmax.

For each value of ρmax, we compute the corresponding
coefficient c4 taking a point (ρm, zm) near the boundary
and imposing ρ(z) to provide the same result than z(ρ) at
that point. This intermediate point, as well as the other
surface parameters, are illustrated in Fig. (1). To chose
the intermediate point we adopt the following criteria:

i) If z0 ≥ 0.4, we set zm ∼ 0.1 and, for each case, ρm is
computed such that z(ρm) = zm. We pick the value
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0.1 because in this region, close to the boundary
z = 0, the derivative of ρ(z) is small enough for the
power series to be computed accurately, as we see
in Fig. (2).

ii) If z0 < 0.4, the surface starts rounding like a semi-
sphere, as in the vacuum case. So we scale the
intermediate point applying the relation derived
for a zero temperature between the values of z for
spheres with different radii.

To decide up to which point each criterion prevails,
we plot z0/ρmax in terms of z0. We obtain that up to
z0 ∼ 0.4 the quotient is approximately equal to 1, i.e.
the shape can be identified with a semi-sphere, and then
it starts decreasing as the surface flattens.

However, we verify later that the results of the area
integral do not depend on the choice of zm as long as we
take it close enough to the boundary z = 0, so that the
surface is still perpendicular to z = 0. Furthermore, we
confirm that the results do not depend on the order of
the power series either.

Thus, we construct the minimal surface joining z(ρ)
up to zm and ρ(z) from ρm until ρmax where the sur-
face meets the boundary. We get that at the intermedi-
ate point (ρm, zm) the difference between the derivatives
of both functions is insignificant regardless of the value
of z0. This implies that, as expected, the transition is
smooth, as is shown in Fig. (2).

z(1/πT)
ρ( 1
πT

)
zm

z0

z(1/πT)
ρ( 1
πT

)
zm

FIG. 2: Representation of sections of the minimal surface
obtained joining z(ρ) and the power series ρ(z) for z0 = 0.3
(top figure) and z0 very close to 1 (bottom figure). The red
lines correspond to the horizon surface.

III. DETERMINATION OF THE
ENTANGLEMENT ENTROPY

To find the entanglement entropy of region A, we just
have to compute integral (3) replacing z(ρ) with the ob-
tained solutions.

For the vacuum case, we use relation (5) and we com-
pute the area of γA implementing a change of variables
from z(ρ) to ρ(z) for simplicity. Besides, the area diverges
as we approach the boundary z = 0, so we integrate z
from a cut-off a > 0 to ρmax.

Taking the limit when a→ 0, we get

Area = 4πR3
[1

2

(ρmax
a

)2
− 1

2
ln
(ρmax

a

)
− ln 2

2
− 1

4

]
, (8)

where we denote Area = Area(γA).
Then, by Eq. (1), we obtain the following formula for

the entanglement entropy:

SA =
πR3

G
(5)
N

·
[1

2

(ρmax
a

)2
− 1

2
ln
(ρmax

a

)
− ln 2

2
− 1

4

]
. (9)

This expression matches the one presented in [5].
Let us provide some insight into the divergence of the

entropy as a tends to 0. We can identify entanglement
entropy as a measure of the amount of information lost
when restricting ourselves to a certain region in the space.
Since near the boundary there is a strong entanglement
between the outer and the inner regions, a large amount
of data is being lost. That is why, as we approach this
limit, the area integral increases drastically. However, as
these fluctuations in the edges of the surface do not affect
the deeper points, the expression of this divergence does
not depend on the volume of the sphere.

Notice that in the first divergent term (ρmax/a)2 there
appears the area of the sphere of radius ρmax. This is
consistent with Eq. (2.9) in [3], and corresponds to the
fact that, the bigger the area covered in the boundary,
the more information is being lost.

In the next steps, to find the area for the thermal case,
it is important to use an accurate upper limit for the
integral to ensure that no significant contribution to it
is lost, since near z = 0 the slightest increment in ρmax
considerably affects the integral of the area. Then, we
need both the solution z(ρ) as well as the power series
ρ(z).

Therefore, we numerically compute the surface area
splitting the integral in two parts: the first one in terms
of z(ρ) integrating with respect to ρ from 0 to ρm, and
the second one in terms of ρ(z) with respect to z from a
cut-off a > 0 to zm.

We repeat the calculations for several cut-offs ap-
proaching 0, getting for all of them the same results. So
we conclude that the found values hold in the limit a→ 0.

Although we cannot obtain an analytical expression for
the entanglement entropy SA in this case, we can employ
the power series ρ(z) given in Eq. (7) to estimate how it
diverges.
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Firstly, we observe that the minimal surface always
approaches z = 0 perpendicularly, the same way than

in the vacuum case, since it holds
dρ

dz |z=0

= 0. This

means that the integral diverges analogously as for zero
temperature. Indeed, by integrating the general power
series obtained for ρ(z) near the boundary, we verify that
the divergent terms are equal to those in Eq. (9).

Then, we regularize the entropy subtracting the whole
Eq. (9). We set SR = SA(T 6= 0) − SA(T = 0). So we
get a null entropy for small spheres and finite values for
bigger volumes, as we can see in Fig. (3). This way, all
the nonzero contributions to SR are due to the change in
the metric caused by the addition of the event-horizon.

ρmax(
1
πT

)

SR

FIG. 3: Regularized entanglement entropy in terms of the ra-
dius of the boundary sphere for a = 10−6 (which corresponds

to the smallest cut-off used). The term πR3/G
(5)
N is not in-

cluded in the calculations.

We saw that as ρmax increases the minimal area surface
can be identified with the event-horizon, except for the
limits where it bends and touches the boundary z = 0.
We expect the contribution of these limits to become neg-
ligible for sufficiently large radii, so that the asymptotic
minimal surface can be assimilated to the horizon surface.
Thus, the entanglement entropy will eventually match
the AdS5 black hole entropy as it is given by the area of
the 3−dimensional event-horizon (A3):

SSYM = SBH =
A3

4G
(5)
N

, (10)

where A3 = R3

z3
·
∫
d~x, being

∫
d~x the volume in the

boundary conformal theory and z the position of the
horizon surface. According to the duality description,
this entropy corresponds to the thermal entropy in the
SYM theory [4].

In our case, since we consider a sphere in the Gauge
theory with volume 4

3πρ
3
max and we take z = 1, we can

write Eq. (10) as

SBH =
πR3

3G
(5)
N

· ρ3max =
2N2

c

3
· ρ3max. (11)

This implies that for radii large enough the regularized
entanglement entropy SR must be proportional to ρ3max.

We observe that, as z0 tends to 1, this dependence can be
inferred, though with this procedure we cannot get close
enough to the horizon surface to get a conclusive result
due to numerical precision problems.

Conversely, for small radii we found that the surface
turns into a semi-sphere, i.e. the minimal surface ap-
proximates the one at null temperature. This was the
expected outcome, since near the boundary z = 0 the
shape of the surface is not significantly affected by the
change in the metric, i.e. the effects of the event-horizon
can be neglected, and the surface behaves like in the vac-
uum case. Indeed, we obtain that the regularized entropy
tends to 0, which implies that the entropy SA equals the
one at zero temperature. However, in this region the en-
tropy does not behave like the third power of the radius,
so other powers need to be taken into consideration.

Let us study both limits in more detail with an ana-
lytical approach to support the numerical results.

A. Small radii limit

We aim to find the dominant ρ−dependence corre-
sponding to the behaviour of the regularized entropy for
small radii, assuming that it is similar to the vacuum
case. To do so, we make use of perturbative methods.

Given an sphere of a certain radius at z = 0, we need
to measure the change in the entropy with respect to the
case of zero temperature. Then, we fix the volume in
the Gauge theory and we just have to determine how in
the thermal case the minimum surface with this bound-
ary changes. Hence, we set the value of ρmax and apply
perturbation theory on z(ρ).

We consider the metric given in Eq. (2) with f(z) =
1 − εz4 where ε ∈ [0, 1], so that ε = 0 corresponds to
the vacuum case and ε = 1 to the thermal one. With
this metric, we compute the ODE for z(ρ) corresponding
to the minimal surface. Then, we take a perturbative
expansion z̃(ρ) = zT=0(ρ) + ε · δz(ρ) + O(ε2) and, by
replacing this z̃(ρ) in the new equation and assimilating
each coefficient of ε to 0, we get an expression for the
perturbative term:

δz(ρ) =
(ρ2 − 2ρ2max) · (ρ2max − ρ2)3/2

10
. (12)

We observe that zT=0 + δz matches the numerical val-
ues for z(ρ) at nonzero temperature up to z0 ∼ 0.6 with a
negligible error. Therefore, the perturbation accurately
provides the change in the deepest point of the surface
at a finite temperature, i.e. it successfully predicts the
flattening of the semi-sphere for small radii.

Finally, we analyze the area integral with these new
components and obtain the following dependence for the
perturbative term:

δSR ∝
πR3

G
(5)
N

· ρ4max, (13)
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where S̃R = ε · δSR + O(ε2). This relation holds for the
numerical results as is shown in Fig. (4), where we get
an asymptotic constant value after dividing by ρ4max.

B. Large radii limit

Now, let us consider a new variable zp which allows
us to move the horizon surface to zp = ∞, so that we
can get surfaces with considerable higher values of ρmax
without encountering the numerical precision issues that
arose with the previous methods. We take:

zp =
z

1− z
. (14)

SR/δS†
R

ρmax(
1
πT

)

SR/SBH

ρmax(
1
πT

)

FIG. 4: Asymptotic behaviours of SR compared with the
analytical results: small radii limit where we take δS†R =

ρ4max · πR3/G
(5)
N (top figure) and large radii limit (bottom

figure). All the numerical results are for a = 10−6 (which
corresponds to the smallest cut-off used).

With this new variable we are able to obtain spheres
with radius up to ρmax ∼ 10. For larger values, the
corresponding deepest point (zp)0 becomes too big for
the surface to be computed with these techniques.

Again, we obtain the entropy for several values of a ap-
proaching 0 and the various results are indistinguishable.

Hence, we state that these hold for the limit a→ 0. We
provide a comparison of these values with the thermal
entropy SBH in Fig. (4).

IV. CONCLUSIONS

We successfully reproduced the entanglement entropy
for strong coupling CFT4 at zero temperature proceeding
as in [5]. Besides, we went one step further and numeri-
cally found the correlation between the entanglement en-
tropy and the volume of the subsystem considered for a
finite temperature. Finally, we verified the obtained re-
sults with an analytical approach in two different limits.

Now, we are able to tackle our initial question about
the thermal behaviour of the entanglement entropy. Even
though Fig.(4) shows that the regularized entropy asymp-
totically approximates the entropy of the black hole, for
a radius of the order 10/(πT ) both quantities still differ
about a 10%. Moreover, for ρmax ∼ 1/T the entangle-
ment entropy is only about a half of the thermal entropy

To give our results a wider perspective, it is interesting
to put them into the context of other analysis of collec-
tive dynamics of small systems. In [6] it is shown that
hydrodynamics starts applying for radii as small as 1/T .
This emphasizes even more the unexpected collective be-
haviour observed in small systems, in the sense that a
hydrodynamic description holds even when there is still a
significant deviation from the thermodynamic behaviour.

Although we have provided a complete overview of the
entanglement entropy and its extreme behaviours for a
finite temperature scheme, some issues still need to be
addressed. Among them, finding a numerical method
that would allow us to work with arbitrary large radii in
the thermal case, or whether the procedure used is the
most accurate to regularize the area integral.
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