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Strategy and Trajectory

of my thesis

[ would like to first provide context to the path and trajectory of my thesis, as

this is essential for its assessment.

My research was initially focused on metagenomics. Within this field, I
actively collaborated within an existing research line of the group. In this
study, we characterized and analyzed the metaregulome of three different
environments: Acid mine, Whale Fall, and Waseca Farm, and their impact in
the adaptation to particular variable physicochemical conditions. Our results
highlighted the potential effects of gene regulation on the adaptation of
bacteria through habitats, by distributing their regulatory potential among
specific functions. My contribution there consisted in the analysis of
transcription factor regulatory networks underlying bacterial adaptive
changes, and in the drafting of the manuscript (Fernandez et al., 2014).
Afterwards, and following the metagenomics line, I also participated in
another project that aimed at assessing the impact of metformin, a common
treatment of type 2, on the composition and dynamics of the gut microbiome
of patients (Wu et al., 2017). This work was performed in collaboration with
Dr. Josep Manuel Fernandez from the Trueta Hospital in Girona. After this
contribution, and considering the difficulty of accessing proper metagenomic

data to continue this research line and answering questions regarding
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microbiome composition in diseases, forced us to change the direction of the

research line.

For this reason, we redirected the thesis trajectory towards the identification
and characterization of large-scale structural variants, which was, at that time,
an emerging research line in the group with more possibilities of publication.
Our lab, at that time, was devoting efforts to the analysis of structural variation
associated to complex diseases, and to cancer, through the development of a
novel algorithm for the identification of somatic structural variants, SMuFin
(Moncunill et al,, 2014), which has been applied since then to large-scale
projects such as the ICGC and the PCAWG ICGC/TCGA Pan-Cancer

(Consortium, 2020).

In line with this, I first participated in a meta-analysis for type 2 diabetes based
on the re-analysis of publicly available individual genetic data for up. There, I
validated and interpreted small to medium-size insertions and deletions
(Indels) that were identified via genotype imputation, using novel sequence-
based reference panels, such as the UK10K (Consortium et al., 2015) and 1000
Genomes Project (Genomes Project et al., 2015). This study demonstrated the
value of reanalyzing existing genetic datasets for GWAS through a deeper

variant analysis, like expanding to indels and other structural variants.

In parallel to this study, I already started to work on the second version of the
SMukFin algorithm. My initial goal was to improve the detection capabilities
and scalability of the original algorithm, by adding novel features and, at the
same time, enhancing the computational performance, addressing those
scenarios where SMuFin was offering poor results. During one year I tried to
work on top of the original code but this strategy was not fruitful due to the
obfuscation of the code, and the impossibility to communicate with the
original developer. Thereafter, we decided to develop a new algorithm from
scratch, SmuFin2, capable of identifying more efficiently a larger spectrum of

somatic genetic variants and, at the same time, improving the scalability of the
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code. The SMufin2 algorithm presented below is the result of the close
collaboration with the Data-Centric Computing group from the Barcelona
Supercomputing Cneter (BSC), particularly with postdoctoral fellow Jorda
Polo, Ph.D. candidate Nicola Cadenelli, and the head of the group David

Carrera.

Finally, during the development of SMuFin2, I had the opportunity of
collaborating with the research group led by Dr. Alex Kentsis from the
Memorial Sloan Kettering (NY) together with my groupmate and Ph.D. student
Elias Rodriguez-Fos. This collaboration was a continuation of a previous study
towards uncovering the role of PGBDs5, a transposase-like gene, in the
generation of medium-size genomic deletions in cancer (Henssen et al., 2017a).
This last study intends to characterize the role of PGBD5 in the generation of
somatic structural variation during the development of neural tissues in the
brain. Specifically, here I have applied different variant calling and
interpretation strategies to define and describe the landscape of somatic
variation in wild type and FPgbds knock-out mice. We expect to finalise the

publication, of which I will share a first authorship.

All the aforementioned articles can be consulted in the Publications section,

with a brief note describing my particular contribution to them.
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Abstract

The identification and analysis of genomic variation across individuals has
been central in biology, first through comparative genomics to answer
evolutionary questions, and then in the context of biomedicine, where it is
actually becoming central to the study of most diseases. Next generation
sequence technologies are allowing the systematic analysis of thousands of
different types of genetic variation, enhancing the identification of disease
markers and the understanding of the molecular basis of disease. For the past
years, there has been a burst of new methodology for genome analysis around
diseases coming from hundreds of groups around the world. Specific
computational methods and strategies are being designed and improved
around the identification and interpretation of genomic variation. The
identification and classification of different types of genomic variants in the
context of biomedicine is a key and foundational step for the development of

a personalized medicine.

This has been particularly central in the field of cancer genomics, which has
based the research of the past ten to fifteen years in the sequencing of genomic
DNA, and the identification and interpretation of (mostly) somatic and
germline variation. Throughout these years, a large number of methods for
variant detection have been developed with different action ranges. Despite all
these developments, the identification of genomic variants has still room for
improvement, not only at the level of sensitivity and specificity, but also at the

computational level. Given the emergence of many initiatives for personalized
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medicine around the world, and the expected number of genomes that will
have to be analyzed within health care systems, we require robust algorithms,
designed together with a matching implementation that will minimize the
computational costs of the analysis. With this aim, during this thesis, I have
pushed and designed and implemented an algorithm for the efficient
processing of genomic data, in close collaboration with computer scientists of
our center that defined the implementation, focusing on lowering the energy
and the time of the analysis. This methodology, which relies on a reference
free approach of read classification, has been protected with a patent, and is
being used as the foundation for the development of SMuFinz, a more accurate
and computationally efficient version of the initial SMuFin from 2014. We
here show that our method is able to process whole genome sequences very
fast and with a minimal energy consumption, compared with existing
methods, and that has great potential for the identification of all ranges of
variants, including insertions of non-human DNA. Further developments on

SMuFinz are needed to finally assess its full variant calling capabilities.

Despite their great importance and their clear role in the biology of the cell,
somatic variation that occurs in healthy tissues has remained diffuse in their
roles. In the case of development, some hypotheses have been proposed to
explain the observed somatic DNA damage that occurs during brain
development (e.g., replication stress). But the real impact and the underlying
mechanisms of this somatic variation are not yet understood. In order to seed
light on the type and potential functional impact of somatic variation in brain
development, we established a new collaboration to identify, and describe
somatic DNA rearrangements induced by Pgbds during brain development
and adult state in 36 mice neural tissue samples. The detection of somatic
variants in healthy tissues presents more challenges than in the cancer
scenario, where a variant is present in a significant number of cells and is easier

to detect. We have identified, classified and interpreted the landscape of
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somatic variation in neural development and identified interesting differences
between adult and embryonic variation load, and specific types of variants, as

the potential result of the activity of these transposase-like genes.
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INTRODUCTION



The identification and analysis of genomic variation across individuals has
been central in biology, first through comparative genomics to answer
evolutionary questions, and then in the context of biomedicine, where it is
actually becoming central to the study of most diseases. Next-generation
sequence technologies (NGS) are allowing the systematic analysis of thousands
of different types of genetic variation, enhancing the identification of disease
markers and the understanding of the molecular basis of disease. For the past
years, there has been a burst of new methodology for genome analysis around
diseases coming from hundreds of groups around the world. Specific
computational methods and strategies are being designed and improved
around the identification and interpretation of genomic variation. This covers
from Genome-Wide Association studies (GWAS) that aim at identifying risk
polymorphic variants for complex diseases, to the analysis of rare germline and

somatic mutations associated with rare diseases and cancer, respectively.

Therefore, the identification of different types of genomic variants in the
context of biomedicine is a key and foundational step for the development of
personalized Medicine. Diagnosis, Prognosis and treatment protocols are
starting to be designed around specific genomic changes, which makes their
identification crucial. The way genomic variation can influence cellular
function and cause disease is very heterogeneous, depending on the location
and the type of variation. Therefore, it is very important to find variants, but it

is also very important to be able to classify and interpret them.

This thesis has contributed to the generation of genome analysis based strategy
to identify somatic variants, as well as to the characterization of the landscape

of somatic variants in healthy neural tissues during Neural development mice.
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1. Somatic Genomic variation: Definition, incidence,

and types

In general terms, somatic genomic variation are defined as changes in the
genome of somatic (non-germline) cells, and therefore are not transmitted onto
the offspring. In contrast to germline variation, which occurs in germline cells
and are passed to the offspring, somatic variants have not been so much
studied, due to the technical difficulties at the identification and
characterization level. With the appearance of the NGS and the possibility to
systematically identify and classify somatic variants from tumors, their study
has dramatically increased, being now one of the hot research topics in
biomedicine. Among others, one of the differences between somatic variants
compared to germline variants is the mutation rate. In the case of Single
Nucleotide Variant (SNV), it has been observed that the somatic mutation rate
is 2.8 x10-7 and 4.4 x10 per base pair per generation for humans and mice,
respectively; and in the case of germline mutation rate is 1.2 x 10—8 and 5.3 x
10—9 mutations per base pair (Milholland et al., 2017). This means that the
somatic mutation rate is one order of magnitude higher than the germinal rate

for these species.

Although somatic variants comprise all types of possible changes in the
genome and can be classified in many different ways and using different
criteria, the main classification derives from the methodology developed and
used for their detection (Escaramis et al., 2015; Weischenfeldt et al., 2013). As
shown in Figure 1, for example, some variants can be balanced, i.e. with no loss
or gain of genetic material, such as SNV, inversions, and translocations, while
others are considered unbalanced, when a part of the genome is duplicated or

lost, like deletions and duplications.



In general this classification starts to be very challenging when considering
large and complex chromosomal rearrangements. Within the community,
variants are normally classified based on their length, which also agrees with
the general detection range of available methodology. Although there is no
rule that clearly defines the division between "small” and "large” categories, 50
base pairs (bp), is the cutoff currently considered in most studies (Guan and
Sung, 2016; Sudmant et al., 2015; Tattini et al.,, 2015). Small variants include
single nucleotide changes (SNVs), as well as short insertions or deletions
(indels), and large variants, also known as chromosomal rearrangements or
structural variation (SV), that include, from large deletions and insertions of
DNA, to many types of complex variation, like multiple chromosomal
rearrangements, transposition, copy of DNA, among others (Yi and Ju, 2018).
Structural variants are defined by their breakpoints, which correspond to the
points where the rearrangement occurs (Quinlan and Hall, 2012). Originally
SVswere defined as insertions, deletions, and inversions higher than 1kb; with
the arrival of the sequencing of the human genome, this varied to the current

size and type (Alkan et al., 2011; Lupski, 2007).

In summary, the standards for classifying somatic variants, which are
necessary for the comparison and globalization of genomic research, are
normally based on the length of the change and defined by current variant
identification methodology. A more important functional classification of
variants is growing within the community, in order to understand the
functional impact of the genomic change and translate this knowledge into the
understanding of the underlying process, which in the case of disease can

ultimately be translated into the development of clinical protocols.
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Figure 1. Diversity of genetic variation. Depending on the size of the DNA sequence
of the variant, we can differentiate between SNVs, Indels and SV.

An important characteristic of variants is the frequency, at which they are
represented in a given sample. This, not only affects the possibilities of
detection, as variants that are less represented (in less cells) of the sample are
more challenging to find, but also is informative of the level of cellular
mosaicism within that sample. Please, note that all somatic variants are
expected and assumed to be heterozygous, involving less alleles and more
difficulties for detection, compared to germline homozygous changes. The
Variant Allele Frequency (VAF) is the parameter that measures and quantifies
the relative abundance of a given mutated allele within the whole population

of different alleles. This parameter follows the formula:

f' . Tmut,i
=
Timut,i + rref,i
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Where rmuti are the reads containing the variant, and rwr; the reads of the
reference allele.

The VAF of a somatic mutation is conditioned by two factors: prevalence and

heterogeneity (Figure 2).

Prevalence refers to how widespread the variation is, which depends mainly
on how early the mutation occurs during the development. On the other hand,
heterogeneity refers to the tissue from which the sample was subtracted for

further sequencing.

For example, if a mutation occurs at the early stage of first cell division, and
each cell produces the same number of offspring, the expected VAF value in
an unbiased sample is around 0.25. On the other hand, if this mutation occurs
uniquely in a post-mitosis cell, the VAF would be reduced to an infinitesimal
value (Dou et al., 2018). In general terms, variations will have a higher VAF if

they have occurred earlier compared to those that have happened later.

Assuming clonal cellular growth, as in tumors for example, the VAF of a
variant depends on when that variation happens, relative to the clonal
expansion of cells. Genomic variations occurring in the first stages of tumor
(clonal) growth will theoretically be present in all of the derived cells, and the
VAF would be of 0,5 (assuming heterozygous states of somatic variants), with
a cell fraction of 1. This is typical of variants that drive and trigger tumor
formation. On the contrary, variants that appear at later stages of the clonal
expansion, will have lower representation within the sample, and cover lower
cell fractions. These variants with lower VAF values are more difficult to
detect (they are represented by less sequencing reads) and are becoming very
important to understand the evolution and progression of tumors, as they
represent and indicate the existence of different clones that might have
different reactions to treatment, and often determine the fate of the patient.

The detection of different levels of variants, according to their VAF values,
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depends on the sequencing coverage of the sample, that is, the number of times
that a single base is represented across all sequencing reads. The sequencing of
samples at coverage levels of 30x, or higher, ensures the possibilities of
detecting founder and prevalent variants (high VAFs), as well as those that are
represented in lower levels, normally up to levels of VAFs of 0,2, or even lower
depending on the sensitivity of the analysis methods.

Late somatic mutation  Early somatic mutation

Final cell

v v population
\Mutation event —

Initial cell
population

Time
Figure 2. An early mutation produces a higher proportion of mutant cells in the
growing population than a later mutation. An earlier mutation (right) produces a
larger population of mutant cells than a later mutation (left). Depending on when a
mutation occurs, the size of the affected cell population differs. (Based on: An

Introduction to Genetic Analysis. 7th edition; Griffiths AJF, Miller JH, Suzuki DT, et al,;
2000). Created with Biorender.com

1.1 The importance of studying somatic mutations

Somatic mutations accumulate relentlessly in our cells as we age. The concept
of accumulation of somatic changes was first proposed more than 50 years ago,
and it was associated with aging and even death (Szilard, 1959). Although the
majority of somatic variation have no functional consequences and accumulate
passibly in cells. On the other hand, some somatic mutations can affect
functional genomic regions, and have functional and cellular consequences,
even leading to disease. Actually, the classification of variants can also follow
functional criteria, as in the clinical context, where somatic variants are divided
into: (i) those that confer a selective advantage to the cell, increasing survival

or proliferation (so-called "driver” mutations, in the context of cancer), (ii)
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those that are selectively neutral (iii) and those that are a disadvantageous,
often leading to cell death (Martincorena et al., 2018). Important efforts are
made in order to infer the potential functional impact of each of the variants
detected in a certain study. These predictions are made with different types of
programs that cross the location and the type of a variant, with the annotation
of functional features in the same genomic region, such as genes, regulatory
regions, epigenetic marks, among others. This functional classification of
variants are currently used in the clinics for prioritizing those changes that

possibly have a diagnosis or treatment value.

The field, in which somatic variants have a key role, and where they have been
mostly studied is cancer genomics (see below), for which variation is assumed
to be responsible for more than 9go% of tumors (Martincorena and Campbell,
2015). In 1914, Boveri (Boveri, 2008) proposed in his book two important
concepts between somatic mutations and cancer: control of cell proliferation
(proliferation as the default state of cells) and carcinogenesis (chromosomal

aberrations/mutations) as the cause of cancer.

Despite this clear implication in cancer, somatic variants are also known to be
involved in other types of pathologies, like those related to other clonal based
cell expansions, like in the hematopoietic system, such as Neurofibromatosis 1
(NF1) (Kehrer-Sawatzki et al., 2004), atrial fibrillation (Gollob et al., 2006), and
the Alport syndrome (Krol et al., 2008), or autoimmune disease. It is also
known that somatic mutations can play an essential role in some neurological
diseases, including autism spectrum disorders, epilepsy, and intellectual
disability (Poduri et al,, 2013). For some of these diseases, the presence of
somatic mutations, even in a small fraction (10%) within specific cell types can
trigger the disease (Lee et al., 2012). Finally, somatic variation has also been

assigned to physiological (non-pathological) processes (Michikawa et al., 1999).

Despite this, there are very few studies tackling somatic variation in non-

disease scenarios (see section 3).
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1.2 Genome analysis in the era of Next-Generation
Sequencing

The NGS emerged at the end of the twentieth century, as a new and
revolutionary sequencing approach to overcome the limitations of Sanger-
based sequencing technology. The impact of NGS in biomedicine is so
enormous that it has revolutionized basal experimental designs, changing the
paradigm behind biomedical research. The possibilities of including whole
genome sequencing in most research studies in biomedicine, have changed the
basic underlying strategy to identify biomarkers (genes) (ENCODE
(Consortium, 2004)) associated with diseases. Before the NGS era, disease
genes were identified using a function-to-genetic approach, where first, a
candidate gene was hypothesized to be associated with a particular disease
based on its function, and validated on DNA for a particular number of
patients. But now, the possibilities of high-throughput sequencing of genomic
DNA allows us to directly evaluate which are the variants (or genes)
recurrently identified within large cohorts of patients, and statistically
associated with the disease (Mardis, 2008; van Dijk et al, 2014). The
identification of the statistically significant correlation of a particular variant
with a specific trait using genome information of large disease and control
cohorts is the common and underlying principle behind all modern genomic-
based studies in biomedicine. This approach has allowed the identification of
genomic biomarkers at an unprecedented rate over the past years, setting up
the basis for a personalized medicine, where the genomic profiles of patients

will be considered for diagnosis, prognosis and treatment of disease.

1.2.1 Emerging limitations
The drop in prices of high throughput sequencing and the increasing access to
basic computing facilities has allowed, even to small and medium laboratories,

to become data generators (Marx, 2013). This still increasing generation of
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biomedical data (mostly from sequencing, but also from other data types) has
also placed bottlenecks on different parts of the study, mostly at the analysis
side. As the ambition and scope of current biomedical projects increase, the
need of large computing infrastructures are becoming limiting factors and are
actually driving, together with the access to the data, the organization of
current biomedical data-centric research. Data security and privacy are
particularly important when handling sensitive data, such as patient clinical

and genomic information (Datta et al., 2016).

But these new bottlenecks and emerging challenges of data-centric strategies
are not only found in the control of access, transfer, or management of data,
but also, as mentioned, in the subsequent analysis of the data. The analysis of
large datasets, not only requires large and powerful computing environments,
but also a proper combination of algorithms and implementations that ensure
an efficient processing of the data. For example, with such large data volumes,
the scalability of a program is a crucial factor. This is the reason why
bioinformaticians require close collaborations with computer scientists, in
order to match the proper algorithm with an efficient implementation

(Mattmann, 2013).

2. Cancer

Cancer is currently one of the major research topics in biomedicine, due to the
great burden that represents at medical and social level. In 2018, According to

the Cancer Research UK ( https://www.cancerresearchuk.org), 17 million new

cases had been reported, and among them, 9.6 million of patients died during
2018. The incidence of cancer is heterogeneous around the world and depends
on environmental factors (mutagens) and on the genetic background of each
individual. This genetic background can determine the offset and the
progression of the tumor, which in part explains the different incidence of

different types of cancer within different populations and even between
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genders. Economic development, social factors, and lifestyle are also factors
involved in the incidence and treatment of cancer. In the case of men, for
example, the most frequent tumor type is lung cancer, that presents the highest
incidence of death, closely followed by liver and stomach cancer that present
high mortality, and prostate and colorectal cancer, that present a severe
incidence. For women, the most frequent cancer type is the one affecting
breast, followed by lung cancer, as to mortality, and by colorectal cancer, as to
the level of incidence (Bray et al,, 2018). The rapid evolution of sequencing
technologies, along with the increasing possibilities of genomic analysis, has
changed the way tumors are nowadays classified and diagnosed, and is setting
up the basis for a genomic and personalized oncology. The possibility of a deep
genomic and molecular characterization of tumors are now allowing the
gradual incorporation of more efficient and targeted treatment protocols, with
the final aim of substituting traditional aggressive treatments based on

chemotherapy and radiotherapy.

Atmolecular level, tumors emerge from a deregulation or malfunction of genes
that are involved in the growth and death of the cell, usually through somatic
alterations in its genome. In particular, the loss of function of tumor suppressor
genes, and the gain of function for oncogenes can trigger the formation of a
tumor, as an uncontrolled growth of cells (Zhang et al., 2018; Zia et al., 2012).
Tumor suppressor genes, such as 7P53(Varley et al., 1997), PTEN (Stambolic et
al.,, 1998) , BRCA 1, BRCA 2 (Roy et al, 2011), are genes that regulate the cell
during cell division and replication. If a mutation in a tumor suppressor gene
results in a loss or reduction of its function, in combination with other genetic

variations, this could lead to the cell growing abnormally and to cancer.

On the other hand, oncogenes represent the opposite side of cell growth
control, where genes are involved in abnormal cell proliferation as a result of

genetic alterations that either enhance gene expression or lead to uncontrolled
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activity of the proteins encoded by the oncogene some examples are RAS
(Lievre et al,, 2008), MYC (Chen et al., 2018), and ERK (Koutsioumpa et al.,

2018).

The number of somatic mutations among tumors varies according to the tissue
and the molecular background of the cancer cells. This number usually ranges
from 1.000 to 20.000 mutations, covering from single point mutations to large
chromosomal rearrangements (Lawrence et al.,, 2013; Vogelstein et al.,, 2013).
Several studies concluded that both endogenous and exogenous factors can
contribute in different ways to the generation of somatic variation and the
offset of tumors (Alexandrov et al., 2013; Alexandrov and Stratton, 2014;

Martincorena and Campbell, 2015).

2.1 General causes of somatic mutations

A large fraction of somatic genomic variation appears during DNA replication,
and derives from errors during the cell division that are not repaired. Some
forms of DNA alterations that can lead to somatic variants are caused by
endogenous factors, such as reactive oxygen species, aldehydes, and by
exogenous factors, such as chemicals (like those from tobacco smoking),
ultraviolet (UV) light, and ionizing radiation (Figure 3). Other sources of
somatic genomic variation involve the infection of viruses, as well as
endogenous retrotransposition events, which can trigger chromosomal
alteration and alteration of gene function (Talbot and Crawford, 2004). A well-
known example is the human papillomavirus or Hepatitis B virus (HBV),
which is involved in the origin of some types of cancer like Cervical Squamous
Cell Carcinoma (CESC), Liver Hepatocellular carcinoma (LIHC), and Uterine
Corpus Endometrial Carcinoma (UCEC).
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Figure 3. The descendant line of the mitotic cell divisions of a fertilized egg
represented in a single cell showing the processes that can contribute to acquiring
somatic mutation at different stages. Three different mutations are classified:
passenger mutation (circles), driver mutation (stars), and Chemotherapy resistance
mutation (triangle). Note that driver mutations tend to cause clonal expansion
compared to the passenger mutations that do not affect the fitness of a clone but may
be associated with clonal expansion. Another point to note is that in the field of relapse
after chemotherapy, this phenomenon can be associated with resistance mutations
before starting cancer therapy. Somatic mutations can be acquired during the normal
cell lineage, due to cell division or by the effect of exogenous mutagens, or be
generated by DNA repair defects during the development of cancer among other
processes. Extracted from: (Stratton et al., 2009)

Over the last half century, the development of new technologies and analysis
methodology has facilitated the systematic characterization and interpretation
of cancer genomes at increasingly precise levels of resolution (Figure 4).
Almost 30 years ago, the first cancer-related genetic mutation was discovered,
a point mutation in the HRAS gene (Reddy et al., 1982), that changed a glycine
to valine in codon 12. Although the functional impact of this mutation was
originally not clear, many years of research have actually turned this gene as
one of the "resistance marker” for the tumor response to anti-epidermal
growth factor receptor (EGFR) therapies. This marker is used to determine the
step to follow in targeting EGFR therapy in patients with colon or lung

adenocarcinomas (Chin et al, 2011; Lievre et al., 2008) exemplifying the
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potential and the importance of identifying and characterizing somatic

variation in modern oncology.
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Figure 4. Timeline showing the milestones in cancer genome research. Based on
(Stratton, 2011). Created with Biorender.com

There are different degrees of genome study, depending on the scope of the
sequencing. Whole-genome sequencing (WGS) provides the sequence of the
entire genome, in contrast to exome (only gene exons), or gene panels, which
are the most frequent in hospitals and the way that genome sequencing is

entering into current oncology protocols.

2.2 National and International initiatives

With the goal of understanding the role of genome variation in the biology of
cancer, large efforts have taken place around the world. Some of these efforts
in the form of large consortia. Among the most outstanding initiatives are the

International Cancer Genome Consortium (ICGC) (https://icgc.org) (Figure 5)

and The Cancer Genome Atlas (TCGA)( https://www.cancer.gov/tcga.). These
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two initiatives have pushed the field of cancer research, setting up the basis for
current and future studies within the community. The first stages of these
projects involved the identification of cancer driver genes, and the generation
of general maps for somatic variation across different tumor types. The
following phases involve the functional interpretation of these variants and
the applicability to the clinics to achieve better and more personalized
diagnosis and treatment protocols. In addition. Thanks to the expansion of
these studies, and as a second step of this global characterization, samples were
unified to gain statistical power and organized in PCAWG studies. For
example, the TCGA pan cancer initiative, comprised the study of up to 11,000
tumor genomes, mostly exomes (Hoadley et al., 2018), the Pancancer Analysis

of Whole Genomes (PCAWG) (https://dcc.icgc.org/pcawg) consortium was

created with the goal of meta-analysing the genomic characteristics of the
different types of tumors. This project, where our group has had a key role, has
involved the collaboration of more than 1,300 researchers from 37 different
countries, analyzing a total of more than 2,600 whole genomes, covering 38
different types of tumors . The results of the project were presented in
February 2020, completing the most exhaustive study of the entire cancer
genome to date. The results described in the different publications
(Consortium, 2020; Cortes-Ciriano et al., 2020; Gerstung et al., 2020; Li et al,,
2020), have helped to significantly improve the understanding of cancer and

has provided new avenues for its diagnosis and treatment.
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International Cancer Genome Consortium ICGC. Within the first part of the ICGC
initiative, each one of the countries were committed to analyze and characterize the
genomic variation associated to specific selected tumor types. Image extracted from:

https://icgc.org

These initiatives have, not only played a major role in the technological
revolution in genomics, but also in the area of international collaboration by
generating a standard of norms to ensure that all data follows a quality
criterion. This means that all the data generated presents the minimum overlap
and redundancy, and thus, the overall value of the data increases. In addition,
in cancer research, the strategies used by the consortium have become the

standard format.

2.3 Analysis of somatic variation in cancer
The detection, classification and interpretation of somatic genomic variants
has become an essential component in the study of cancer genomes.

Practically, all the studies targeting tumor genomes follow a common strategy
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or protocol, in which normal (normally from blood) and tumor genomes are

sequenced from the same patient.

The first step of the analysis protocol (Figure 6) begins with the extraction of
both normal and tumor samples from the same patient, whenever possible
even from the same tissue, followed by the subsequent sequencing of the
genome. This data is then analyzed to identify variations in the tumor sample,
where the output is a potentially extensive list of somatic mutations. This list
of variants is interpreted at the functional level to identify the genes that are
affected and are part of the cancer biology. Subsequently, all those genes are
analyzed at the molecular level to discover new drug targets and to design

specific diagnosis and treatment protocols that will return to the patient.

The sequencing step can be targeted by different sequencing methods: WGS,
Whole-exome sequencing (WES), or gene panels. Each has advantages and
cons. Although panel tests and WGS offered similar diagnostic performance,
WGS offered the benefit of reanalysis along the way to incorporate advances
in knowledge. Until recently, only Multi-Gene Panel testing was used in
clinical care, while WGS is already quite commonly applied in research. Even
if substantial experience is needed for genomic interpretation of WGS (Cirino
et al., 2017), it is expected that WGS is included in basic cancer analysis

protocols soon.

Despite the technical and methodological challenges, these studies have also
generated other more organizational adversities, as some steps of the analysis
need to be conducted by different centres and communities. For example, the
reception of the patient and the extraction of the corresponding samples
happen in clinical environments, while the sequencing and analysis occur in
sequencing and computing centres. More and more, the need of coordinating
these efforts is driving the organization of large research environments, where
sequencing and analysis technologies,are being developed close to clinical

personalized medicine environments.
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Figure 6. Common protocol for the identification of the genetic and molecular
basis of tumorigenesis for the development of personalized therapies.

Throughout past years, several methods for variant detection have been
developed with different scopes and capabilities. Most of the published
methods are usually focused on the detection of a specific type of mutation,
ranging from point mutations to structural variants (Chen et al, 2009;
Cibulskis et al., 2013), while others are able to detect multiple classes of
mutations in a single run (Rausch et al., 2012; Wala et al., 2018). These methods
have, not only different detection scope, but also different levels of sensitivity
(measures the proportion of actual positives that are correctly identified) and
specificity ( measures the proportion of true negatives that are correctly

identified) (Guan and Sung, 2016), presenting their strengths and weaknesses
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(Hurles et al., 2008) in the detection and the fact that it is the user who must
decide which one best suits his needs. In the generation of pipelines to identify
the full range of somatic mutation types in tumor samples, more than one
program should be used to achieve the objective. Once the results of the
different programs are obtained, filtering steps must be performed, which
include information like: minimum coverage, mapping value, sequence quality,
etc. for each of the mutations obtained. The selection of programs to generate
this type of pipeline is a great challenge to achieve, both a good specificity and
a good sensitivity for all kinds of variants. Notwithstanding, the VAF of
somatic mutations in cancer usually has a higher value due to the selective
advantage conferred by the mutations in cell proliferating. Accordingly, the
vast majority of algorithms for specifics for cancer variant detection do not
target low VAF values (Cibulskis et al., 2013). Therefore, the complete
characterization of tumor genomes, as to their catalog of somatic variation,
requires the development of complex and multimodular analysis pipelines
gathering the results of different detection methods (Kosugi et al., 2019; Tattini
et al., 2015), since no single method can detect each type of variant with high

specificity and sensitivity.

2.3.1 The calling pipeline

The underlying principle behind somatic variant identification programs relies
on the search and detection of genomics changes present in the tumor sample,
relative to the healthy one from the same patient. The vast majority of variant
calling methods analyze all the tumoral and normal sequencing reads, aligned
onto the reference genome. In contrast to that, a few methods, use alternative
approaches based on the direct comparison of tumor and normal reads, and are

therefore called reference-free methods.

52



2.3.1.1 Reference-based methods

Most of the available variant callers have been developed following the
mapping based strategy, which is based on the accurate analysis of the reads
aligned to the human reference genome, making this alignment step critical for
the final sensitivity and specificity of the methods. In this direction, we can
foresee some inherent limitations of reference-based methods. For example,
this alignment process involves a high expenditure of resources and time. In
addition, although there are several alternative alignment methods, like GEM
(Marco-Sola et al., 2012), generally, this step is performed with the Burrows-
Wheeler Aligner (BWA) program (Li and Durbin, 2009). The major difference
between GEM and BWA is that GEM is five times faster than BWA execution
in its default heuristic mode, giving a similar number of reads aligned. But the
community uses BWA almost exclusively. This makes the alignment
information the same for all, which means that all the analyses that need this
information will share the same type of errors and therefore can be compared.
At the same time, BWA provides a binary file (BAM file) containing
information regarding the quality, structure and position of the read alignment,
together with a list of all the reads that could not be mapped. The fact that
BAMs are ready-to-be-used files, and that it conserves all the original read
information, has made this file the current form of exanching and storing

genome sequencing data within databases.

But most importantly, the complex nature of the human genome represents a
technical challenge for alignment accuracy. A human genome contains 3.2
billion bp, around 50-69% being repetitive sequences (de Koning et al., 2011),
which includes transposable elements (i.e., LINES, SINES, and Long Terminal
Repeats), low complexity regions (i.e., homopolymers), and pseudogenes. The
complex nature of the human genomes presents significant challenges to
achieve technical accuracy on alignments (Goldfeder et al., 2016). Larger
insertions, deletions, and rearrangements within the genome are not

represented in the reference genome and, therefore, adds additional
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complexity to the alignment. Also, germinal variation does not only affect the
accuracy of the alignment, as indeed, many of them are wrongly predicted as
somatic mutations, increasing the number of false positives and lowering the
specificity of the program. Finally, the impossibility to align reads with greater
alignment complexity that cover large and complex genomic rearrangements
(i.e. SVs), or that fall in polymorphic regions not included in the reference
genome, will not be taken into account and will be disregarded as “unmapped

reads”, which could indeed contain valid and important (Degner et al., 2009).

In addition to these limitations, it is worth mentioning that those methods
specifically designed for the identification of large SVs, are usually also more
inaccurate at the breakpoint of the variation. In these cases, the variation is
located within a range of genome that is possible to align, becoming a

restriction for further studies.

For the detection of point mutations or small indels, the alignment information
is used within the read itself. In the case of SVs, the combination of
information from mismatched reads is used (Figure 7; A1-A2). The four most

common strategies are (Figure 7; B) (Guan and Sung, 2016):

1. Clustering (CL): All the discordant reads surrounding a region are
grouped. Some of the «callers employing this strategy are:
VariationHunter(Hormozdiari et al.,, 2010), GASV (Cameron et al,
2019), and CLEVER.

2. Split-reads alignment (SA): is divided into two subcategories; (i)
indirect case: align soft-clipped reads and one-end-anchored reads to
locate the breakpoints that match. (ii) Direct case: refine the breakpoints
identified by discordantly mapped reads. In the first subcategory we
encounter the callers: CREST(Wang et al., 2011), ClipCrop(Suzuki et al.,
2011), and Socrates (Schroder et al., 2014). In the second subcategory:

Gustaf(Trappe et al., 2014), Prism(Jiang et al., 2012).
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3. Contig Assembly (CA): anomalously mapped reads are de novo
assembled to form longer consensus sequences (contigs) to identify the
pairing breakpoints. Some of the callers using this strategy are

TIGRA(Chen et al,, 2014), and Cortex (Alekseyev and Pevzner, 2007).

4. Statistical testing (ST): use the local variations of reads depth, often
used to detect copy-number variations. Breakdancer (Chen et al., 2009)

is one of the variant callers that use this strategy.

Variant callers tend to use a combination of more than one of the above listed
strategies for variant detection (Baker, 2012). A clear example is the variant
caller DELLY (Rausch et al., 2012), that combines the detection and subsequent
verification of mutations, using the information from discordant and one-end-

anchored reads, and optionally from soft-clipped reads.
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Figure 7. A1 - A2) Types of mismatched reads used on SV calling in two different
scenarios of variation: deletion and translocation. A1) Soft-clipped reads; In Smith-
Waterman alignment, the soft-clip readings are an unmatched fragment in a partially
mapped read, within a sequence that is not aligned from the first residue to the last.
Not to be confused with hard-clipping, they differ in that the subsequent clipping is
not present in the alignment register. This clipped alignment is used to reconstruct
those events that the read covers, as shown in the two scenarios: The read is mapped
into two different fragments within the same chromosome with a separation between
them due to the deletion caused. The read is mapped into two separate pieces of
different chromosomes due to the translocation process. A2) Paired-end reads; The
two reads of a paired-end are expected to be mapped into different strands of the
same chromosome, and the distance between them will be consistent with the
insertion size distribution. If SV callers detect pair reads mapped onto two different
chromosomes, they will report a translocation or transposition event. If SV callers
identify pair reads mapped with incorrect insertion sizes, they will indicate an insertion
or deletion event; similarly for other types of SVs.

B) SV calling techniques graphic representation of the methods: Clustering (CL),
Split-reads alignment (SA), Contig Assembly (CA), and Statistical testing (ST).

2.3.1.2 Reference free methods

In order to overcome the above mentioned limitations of the mapping of reads
that influence the rest of the analysis, a few alternative approximations have
been developed using reference-free strategies. The following are some
examples of these strategies: (i) the use of reference mapping combined with
assembly-based methods (Chen et al., 2014); (ii) de novoassembly (Zhuang and
Weng, 2015); and (iii) suffix tree approximations (Moncunill et al., 2014). While
the first two strategies are based on the end-joining of reads in the tumor and
normal genomes in order to identify discordant patterns, the latest is based on

a suffix tree strategy, further developed in the next section.
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2.3.1.2.1 Somatic Mutation Finder (SMuFin)

SMukFin is a reference free-method, generated within the group (Moncunill et
al,, 2014), that relies on the use of a quaternary sequence tree structures to
compare directly tumor and normal reads and identify all types of genomic

changes (except copy number changes) (Figure 8).

Some of the the advantages combined within SMuFiN for the detection of
somatic variations include: (i) the direct comparison of normal and tumor
readings without the need of using Binary Alignment Map (BAM) file
alignment information; (ii) the single execution of the program to detect nearly
all types of variants, including from SNV to SV, as well as inter- and intra-
chromosomal translocations, inversions, insertions and deletions of any size;
(iii) the detection of variants is reported at base pair resolution; and (iv) the
accurate reconstruction of the region around variations in the tumor genome,

including the sequence around the SVs breakpoints.

On the other hand, one of the limiting factors of using this approach for cancer
genome analysis is the computational power that it requires. Quaternary
sequence tree structures, also known as suffix-trees, are data structures that
inherently demand blocking the access patterns to allow concurrent updates,
thereby limiting the ability to implement these approaches efficiently in any
high-performance parallel computing system for large scale analysis of
genomes. This translates into a considerable memory requirement and makes
it impossible to run the analysis of the genomes on any computer with a single

node.
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Figure 8. Representation of quaternary sequence tree structure from the SMuFin
algorithm representing an SNV. The base containing the mutation and the bases
following that generates a new branch on the quaternary sequence tree structure,
are marked in red. We observe how from the SNV A --> C a new branch is generated
in the tree structure. With this type of construction, it is possible to detect all those new
branches that are candidates to contain a mutation. These branches will be later
evaluated with different steps for its correct detection of variations.

2.3.2 Variant caller virus

Any research on cancer is incomplete without considering tumorigenic
viruses. Several research groups are engaged in the search for therapeutic
targets and novel vaccines to fight against these viruses (Sarid and Gao, 2011).
The idea that viruses can cause cancer dates back more than a century (Javier
and Butel, 2008). Nowadays, it has been unequivocally confirmed that several
viruses are responsible for cancer in humans (Herrington et al., 2015; Moore
and Chang, 2010). In fact, the World Health Organization (WHO) has estimated

that 15.4% of all cancers are attributable to infections, 9.9% of which are linked
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to viruses (Parkin, 2006; Plummer et al.,, 2016). The International Agency for
Research on Cancer (IARC) classifies up to eleven pathogens as human
carcinogens (Geisler et al,, 2019). Moreover, it has been demonstrated that
some viruses contribute to the biology of multi-step oncogenesis and are
involved in many of the characteristics of cancer (Zapatka et al., 2020). To date,
the four viruses that cause most of the infection-derived tumors, are the
Human papillomavirus (HPV) (Munoz et al,, 2006), that can cause cancer
including anal, cervical, penile, throat, vaginal and vulvar; HBV (Bialecki and
Di Bisceglie, 2005), is a leading cause of liver cancer; Hepatitis C virus (HCV)
(Hermine et al,, 2002) is a leading cause of liver cancer, and can cause non-
Hodgkin's lymphoma; and Epstein-Barr virus (EBV) (Farrell, 2019), that can
cause non-Hodgkin's lymphoma, and stomach cancer. Thanks to the
appearance of the NGS, including the WGS and the RNA-seq, it has been
possible to determine the position in which a virus is integrated within the
tumor genomes (Duncavage et al,, 2011). Accordingly, several analysis tools
have been developed based on paired-end Illumina NGS data to tackle the
detection of viruses in the tumor genomes, not only their presence but also
their integration site: Capsid, VirusSeq(Chen et al., 2013), Virus- Finder (Gao
et al.,, 2018), ViralFusionSeq(Li et al., 2013); VERSE (Wang et al., 2015), Virus-
Clip (Ho et al,, 2015) and Vy-PER(Forster et al., 2015) (Nguyen et al., 2018).

The strategy for the detection of the viruses behind each program varies but
all of them are based on a standard scheme: the usage of alignment information
of the reads that map in both genomes being analyzed, the human and the viral.
For this reason, it is not only essential to pre-align the samples but to
previously construct anew genome that contains the human reference genome
and all the viral genomes to be identified. Despite the existence of these
methods, the identification of viral copies remains a challenge, as normally
viruses tend to integrate in repeat-rich genomic regions, and the sequencing

reads covering internal parts of the virus are not considered and disregarded
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as unmapped reads on the BAM file. This phenomenon gives rise to frequent
false positives, and accordingly new methodologies have been created to
eliminate false positive detection of virus integration events in next-

generation sequencing data (Forster et al., 2015).

Accordingly, the study of the relationship of viruses and human cancer has
opened new fronts for the development of novel strategies for preventing the
infections that can evolve into carcinogenesis. In treatments like
chemotherapy and radiation, the inability of the drugs to specifically target
cancer cells instead of all types of cells, including healthy ones, and the toxicity
that generates for the patients results in a significant drawback. Therefore, the
new strategies are based on the presence of viral products in the tumor cells,
as a target for guided therapies in which the tumor cells can be differentiated
explicitly from normal ones. Therefore, the therapies that target the viral agent,
generate immune responses to prevent infection, or kill infected or cancer
cells, prove great potential due to their more effective and tolerable nature

(Liao, 2006).

3. Somatic variation in non-disease scenarios

After years in the shadows, recent studies changed the way of understanding
somatic variations and their selection. The challenges associated with the
study of somatic variation within healthy tissues, correspond to limitations in
their detection, due to the high degree of tissue and cellular mosaicism in any
targeted sample. It is now, when we can largely increase the sequencing
coverage of genomes, when we can start studying the composition and
potential role of somatic variation within physiological conditions. Therefore,
proper sample collection protocols must be designed to ensure the success of

this studies (Lupski et al., 2013).

3.1 Somatic variation in Neurodevelopmental diseases
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The genetic variations involved in neurodevelopmental diseases were
traditionally considered either to derive from the germline of one of the
parents, or a de novo germline variation. Instead, more and more frequently a
role for somatic variations in diseases other than cancer have been described,
including neurodevelopmental diseases and other pathogenesis generated by
de novo mutations that occur post-zygotically and, therefore, only targets a

subset of the individual's cells.

During neurogenesis, where 105 neurons per minute are generated from an
initial population of source cells (Workman et al., 2013), is when the human
brain is most vulnerable to undergo somatic mutations. During the
neurogenesis stage, neurons present a high mutation rate with about 5.1 point
mutations per day (Bae et al.,, 2018), and some of these mutations may trigger
neurological diseases. These diseases can be particularly sensitive to somatic
mutations because even less than 10% of the cells carrying a mutation can
affect phenotypes based on the distribution of these cells in the brain (Lee et
al, 2012; Riviere et al., 2012). Furthermore, each neuron will continue
accumulating somatic mutations linearly with age (Lodato et al.,, 2018), which
could contribute to the development of neurodegenerative diseases (D’Gama
and Walsh, 2018).

To understand the role of somatic variations in neurodevelopmental disease,
two main factors must be taken into consideration: (i) the temporal moment
and the progenitor cell in which the somatic mutation has appeared, and (ii)
the effect that the mutation can produce in the cell (e.g., if the mutation is very
harmful, the cell is selected against it and the mutation will not lead to disease)
(D'Gama and Walsh, 2018). Numerous studies have been carried out around
neurological development disorders with visible focal lesions generated by
somatic variations, such as Focal cortical dysplasia (FCD) and
hemimegalencephaly (HME) (Blumcke et al, 2011; Poduri et al, 2012).

However, it is important to highlight that the same mutations have been also
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studied in relation to diseases that do not present such visible lesions as the
previous ones. This group includes cases of intellectual disability and autism
spectrum disorder and epileptic encephalopathies (Lee et al., 2012; Poduri et

al,, 2012) and a wide range of neuropsychiatric diseases.

3.1.1 Neurodevelopmental genome analysis in the era of NGS

Thanks to the appearance of NGS and single-sequencing techniques, the role
of somatic variations in the development of the human brain has been
understood in a more refined and extended way. These new technologies have
allowed the scientific community to approach different hypotheses formulated
thanks to the facilitation of a systematic analysis of all types of somatic

mutations in both healthy and affected tissues.

The detection of these variations presents more difficulties than in any of the
previously mentioned cancer scenarios, due to the low VAF expected for non-
cancer somatic variation and the subsequent difficulty in detection. Therefore,
in order to make a proper detection, the coverage of the sample being analyzed
must be sufficiently high to ensure that the mutations are well represented
(Jamuar et al., 2014; Lim et al., 2015) and are not considered sequencing errors
during the analysis, as it usually happens with low VAF variants (D’Gama and
Walsh, 2018).

3.1.2 Somatic mosaicism in the normal human brain

During the study of somatic variations and their role in neurological diseases,
it has always been of particular interest to understand whether these variations
may actually play an important role in the development and physiology of
brain cells. Recently, several studies that glimpse the role that somatic
variations have in the generation of neuronal diversity have been published.
In 2010 Muotri and colleagues (Muotri et al., 2010), demonstrated the impact

of L1 insertions, initially considered as “junk DNA”" in the human brain, since
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these represent approximately 25% of our genome. The rate of insertion of
retrotransposons can cause the inactivation of genes or the change of the
expression. Although the rate of these is still a subject of debate, the impact
they have on the development of the human brain remains an essential area of
study. It is in this area, of the role that somatic variations play in
neurodevelopment, that I focus the study of the second part of the thesis

presented here.

3.1.3 Somatic activity on brain development

During embryonic development, the brain undergoes rapid and sustained cell
proliferation originating at the rostral end of the fetal neural tube. Brain
cortical development is accomplished via a highly regulated sequence of
neuroprogenitor cell division, migration, and differentiation. This
neuroprogenitor cells divide asymmetrically, generating a progenitor stem cell
and a neuron that migrates from the ventricles along the radial glia pathways
to form a six-layered lamellar neocortex. Through this process, the neurons
undergo DNA damage. This damage has been oberserved to reach a maximum
between Ei11-E14.5 during development in mice and is mainly observed in
postmitotic premigratory populations of the developing nervous system. It has
been suggested that this DNA damage plays an influential role in the
subsequent massive apoptotic event during development, an essential process
for the elimination of overproduced neurons. Numerous hypotheses have been
proposed to unravel the causes of somatic DNA damages during brain
development (e.g., replication stress), nevertheless, it has not been established
yet. Accordingly, in the present work we hypothesize that PGBDs5, a
transposase-like protein that presents nuclease activity, can produce double-
stranded DNA breaks in neurons, contributing to the generation of somatic
DNA changes, enabling the survival of the mutated cells during the subsequent
apoptotic selection. In a recent study where our group contributed, it has been

shown that an active nuclease PiggyBac Iransposable Element Derived 5
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(PGBDs5) has the ability to generate somatic mutations in human cancer cells
(Henssen et al, 2017a). PGBD5 expression is presently high and almost
confined to the brain area, specifically the neurons of the cortex, hippocampus,
and cerebellum. This fact raises an interesting and long-standing question
about the somatic DNA rearrangements in brain cells. However, the function

of PGBDs5 remains elusive.
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4. Final considerations

In brief, with the emergence of new sequencing technologies the study of
somatic variants has experienced huge progress. In the area of cancer, it has led
to the formation of research projects with a large number of samples to give a
better picture of the role of mutations in the biology of tumor. These advances
have come with numerous challenges; at the computational level to be able to
analyze all those data, and at the level of analysis to formulate new methods to

be able to make a more accurate detection of these mutations.

Albeit it is true that research associated with somatic variants in healthy
tissues is increasingly abundant, the detection methods used present
limitations and further studies are needed. The present thesis is aimed at
overcoming part of these limitations, focusing first in the development of a
reliable new algorithm for the detection of somatic variations with special
emphasis in the scalability and implementation of the method for large dataset
analysis, and second in the detection of somatic variants in healthy tissue

directly related to neuronal development.
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The main goals of this thesis are:

L. To design and implement a reference-free and scalable algorithm for

the identification of somatic variants.

II. To identify somatic DNA rearrangements induced by Pgbds (the mouse
ortholog of human PGBDs5) during brain development and adult state, that
might enhances the survival of the mutated cell to the subsequent apoptotic

selection.
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METHODS



The method section has been divided into two major blocks (Figure 9).
The first block corresponds to all the resources and methodology for the

development of SMuFin2.

The second main block corresponds to the study of somatic DNA
rearrangements induced by Pgbds (mouse orthologue of human PGBDg)

during brain development and adult state.

SMuFin2

Development of a computer-implemented and
reference-free method for identifying variants
in nucleic acid sequences (SmuFin2).

'

Calibration

'

Construction of the in-silico testing
chromosome (chr 20)

'

Testing SmuFin2: analysis of the in silico
chr20

'

Applying SmuFin2 to analyze Pancancer
data

'

Identification of viruses

Study of somatic DNA rearrenegements

Study of somatic DNA rearrangements
induced by Pgbd5 (mouse orthologue of
human PGBDS) during brain development
and adult state.

.

| Knockout (KO) mouse of the Pgbds5 allele

.

| Sequencing data alignment |

'

| Variant calling |

v

| Variant allele Frequency calculus |

.

Identification and analysis of the genes
and genomic intervals

'

| Detection of microhomology |

v

| Study of genetic ontology |

Figure 9. General workflow for the methods section. The white boxes correspond to
the work carried out in the center; the yellow boxes correspond to those carried out

in external centers. created with Biorender.com

Methods
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1. Development of a computer-implemented and
reference-free based strategy for identifying

variants in nucleic acid sequences

This strategy was conceived as a current reference-free algorithm-
implementation and a redesign of the original SMuFIn (Moncunill et al., 2014),
a reference-free caller based on a suffix-tree strategy to identify somatic

mutations on tumor genomes developed on Dr. Torrents group.

SMuFinz is a reference-free detection strategy based on polymorphic k-mer
strategy that allows both discovery of homozygous and heterozygous
variation in genomes. That strategy also granted us the identification of most
types of sequence genomes variation, from single nucleotide substitutions to

large structural variants in a single run.

Polymorphic k-mer strategy is based on the sequential sub-selection of read
regions, with a defined k-mer size, that will be compared to rely on the regions
that contain variations. The core of the startegy relies on k-mers being
managed as “dynamic entities” , this means that the k-mers suffer variations
that make it possible for us to compare between two samples, and thus be able
to hunt in a first pass the regions that are susceptible to contain a possible

mutation.

In this way, we generate a reduced group of candidate reads, easier to treat, and
analyze since all the reads without information related to any mutation have

been eliminated.
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1.1 Polymorphic k-mer strategy

SMuFinz is based on a polymorphic k-mer strategy.

For a full understanding, we detail below the main terms, structures, we have

been used to develop the strategy for the detection of variants.

1.1.1 Important terms

K-mer

In bioinformatics k-mers are all possible subsequences of length k contained
within a biological sequence which have a length M. The total number of k-

mers in a sequence of length M is M-k+1.

CHNMIOR OO HNM IO
HHHHHH OoHdNNNNNNN

LaNmsposooag SEARHNANBReanS
GAAAACTAAGCTGAATTAGAAAGGAATAATGCTCATCGCA
GAAAACTAAGCTGAATTAGAAAGGAATAAT
AAAACTAAGCTGAATTAGAAAGGAATAATG
AAACTAAGCTGAATTAGAAAGGAATAATGC
AACTAAGCTGAATTAGAAAGGAATAATGCT Read length = 40on
ACTAAGCTGAATTAGAAAGGAATAATGCTC k-mer length = 30on
CTAAGCTGAATTAGAAAGGAATAATGCTCA
TAAGCTGAATTAGAAAGGAATAATGCTCAT
AAGCTGAATTAGAAAGGAATAATGCTCATC
AGCTGAATTAGAAAGGAATAATGCTCATCG
GCTGAATTAGAAAGGAATAATGCTCATCGC
CTGAATTAGAAAGGAATAATGCTCATCGCA

Stem

The stem is a fragment of a k-mer. It can be a k-mer without a prefix, a k-mer
without a suffix, a k-mer without an infinitive, or any combination of previous
states.

Example:

K-mer with 30 nucleotides. To mark the base that was deleted from the original

non

k-mer, we will use the character
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K-mer ID n°1
AAAACTAAGCTGAATTAGAAAGGAATAATG

K-mer ID n°1 without a prefix of length 1
-AAACTAAGCTGAATTAGAAAGGAATAATG

K-mer ID n°1 without a suffix of length 1
AAAACTAAGCTGAATTAGAAAGGAATAAT-

K-mer ID n°1 without suffix and prefix both of length 1
-AAACTAAGCTGAATTAGAAAGGAATAAT-

K-mer ID n°1 without an infix in position 3 of length 2
AA--CTAAGCTGAATTAGAAAGGAATAATG

Inflection

The inflection in the method refers to all the possible fragments resulting from
completing a k-mer stem, taking into account that we work with four different

bases that are the nucleotides: ACT G.

If a stem only differs from the original k-mer in one base, we can obtain up to

4 different inflections, one of which will be identical to the original k-mer.

If instead of a single base, there were two bases, the total number of inflections

would be 16 (4°).
Eg.

-AAAACTAAGCTGAATTAGAAAGGAATAATG
We generated all its inflections:

AAAACTAAGCTGAATTAGAAAGGAATAATA
AAAACTAAGCTGAATTAGAAAGGAATAATC
AAAACTAAGCTGAATTAGAAAGGAATAATT
AAAACTAAGCTGAATTAGAAAGGAATAATG
CAAACTAAGCTGAATTAGAAAGGAATAATA
CAAACTAAGCTGAATTAGAAAGGAATAATC
CAAACTAAGCTGAATTAGAAAGGAATAATT
CAAACTAAGCTGAATTAGAAAGGAATAATG
TAAACTAAGCTGAATTAGAAAGGAATAATA
TAAACTAAGCTGAATTAGAAAGGAATAATC
TAAACTAAGCTGAATTAGAAAGGAATAATT
TAAACTAAGCTGAATTAGAAAGGAATAATG
GAAACTAAGCTGAATTAGAAAGGAATAATA
GAAACTAAGCTGAATTAGAAAGGAATAATC
GAAACTAAGCTGAATTAGAAAGGAATAATT
GAAACTAAGCTGAATTAGAAAGGAATAATG
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We behaved as the fourth inflection corresponds to k-mer Id n°1

Partial inflection

The partial inflection is when we have a stem with a minimum of two
positions removed from the original k-mer, and at least one of them is not

extended to generate its inflections.

Using the stem generated in the previous section that had neither prefix nor
starting suffix one.

-AAACTAAGCTGAATTAGAAAGGAATAAT-

We generate all the prefix inflections. To mark the position that has not been

nn

extended from the stem we will use the character ".”.

‘AAACTAAGCTGAATTAGAAAGGAATAATA
‘AAACTAAGCTGAATTAGAAAGGAATAATC
‘AAACTAAGCTGAATTAGAAAGGAATAATT
‘AAACTAAGCTGAATTAGAAAGGAATAATG

Polymorphic k-mer

We refer with this term to that k-mer that from the stem of it can identify the

totality of its inflections, as its partial inflections.

With this strategy, we use the k-mers to see all their variations through their
inflections and to be able to detect with them those that may be related to a

variation in the genome and to be able to catch all the information around it.

1.2 Calibrate algorithm

In order to measure and calibrate the detection capabilities of the method
algorithm, we executed it on a controlled system, consisting of modified
sequences of chromosome 20. For testing proposes we selected a small

chromosome (62.435.965 bp) that can be handled well on the calibration. We
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use the same mutations as in the SMuFin method in order to make a direct

comparison with it.

For each step of the method, different scenarios have been made to check its
effectiveness. All the data has been extracted within intermediate house

scripts in python only included on the developers’ code.

1.2.1 Construction of the in-silico chromosome 20

A personalized chromosome 20 has been extracted from the hgig reference
genome downloaded from UCSC (with no repeat-masking)
(http://www.ucsc.edu) and modified to match a randomly chosen human
haplotype. Personalized chromosome 20 contains 148,639 variants consisting
of 96,935 SNPs and 51,704 deletions. The catalog of somatic variants further
added to this personalized chromosome and constituting the target of the
invention, was composed of: 168 SNVs, 26 Indels, 20 SVs and 1 viral insertion
of KI polyomavirus (extracted from:

http://www.ncbinlm.nih.gcov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=

4234),
ART Illumina (Altschul et al,, 1990) has been used to in-silico sequencing,
sequencing parameters like variation or read length has been extracted from

Moo4 sample of mantle cell lymphoma (MCL) (Bea et al., 2013).

1.3 Analysis of the in silico chromosome 20 with the
strategy of the invention
Using an internal pipeline, we extracted all the candidate blocks to contain a

variant to calibrate the first block from SMuFin2.

Further details about the analysis of in-silico chromosome 20 can be found in

the configuration file from this execution (Results chapter section 1.3.1).
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1.4 PCAWG data

PCAWG BAMs files were obtained from The International Cancer Genome
Consortium (ICGC)/The Cancer Genome Atlas (TCGA) Pan-Cancer Analysis
of Whole Genomes (PCAWG) project, accessed through the ICGC data portal's
Data Repository tool (https://dcc.icgc.org).

The PCAWG project enabled the study and characterization of the pattern of
mutations of more than 2,700 cancer donors and 20 primary tumor sites.

The dataset is constituted by a total of 5,789 whole genomes of tumors and
matched healthy tissue encompassing 39 tumor types. The tumor/normal pairs
came from a total of 2,834 donors collected and sequenced by 48 sequencing
projects across 14 jurisdictions from the International Cancer Genome
Consortium.

Biorxiv preprint (Large-Scale Uniform Analysis of Cancer Whole Genomes in
Multiple Computing Environments)
(https://www .biorxiv.org/content/10.1101/161638v1) describes the
generation of data and the phases of the uniform analysis of whole genomes
where genomes are involved.

For the selection of samples, we considered all those of known tumor-
associated viruses such as EBV, HBV, and several HPV types.

The selected studies where the samples belong and with which we carry out

the tests are:

DCC Project Code ; Project Name ; Country

CESC-US ; Cervical Squamous Cell Carcinoma - TCGA, US ; US
LIHC-US ; Liver Hepatocellular carcinoma - TCGA, US ; US
UCEC-US ; Uterine Corpus Endometrial Carcinoma- TCGA, US ; US

The last access to all the data storage was in September 2018.
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1.4.1 Running SMuFin2 to analyze PCAWG data

Using an internal pipeline from SMuFinz2, we extracted all the candidate blocks
to contain a variant to select all those ones that could be involved in the
integration of a virus on the tumoral sample.

Further details about the analysis of PCAWG data can be found in the

configuration file from this execution in the Results chapter 1.4 Identification

of tumor-associated viruses.

As alarge part of this thesis was focused on the development of the algorithm

of SMuFinz, detailed information about the algorithm can be found in the

Results chapter 1.1 SMuFin2 Algorithm.

1.4.2 Identification of viruses presence on sample
To identify the presence of viruses within the samples, a program of alignment
with those sequences filtered by the method described in results, was used

against a virus genome database.

The selected method was the command line version 2.6.0 of Basic Local
Alignment Search Tool ; BLAST (Altschul et al., 1990).

The  virus base that was used was downloaded from

https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cqi -

The last access to all the data storage was in May 2018.
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2. Landscape of somatic variation in neural

development and the role of Pgbd5

2.1 Experimental outline
To provide experimental context of the data used in this analysis Dr. Luz
Jubierre Zapater from the group of Dr. Alex Kentsis, at Memorial Sloan

Kettering, produced the knockout (KO) mouse model of the Pgbds allele.

In summary they generated:

Pebds -/wild type (wt) females were crossed to Pgbds -/wt males to obtain
Pegbds wt/wt and FPgbds - /- (or KO) littermates.

For the identification of neuron-specific Pgbds somatic DNA rearrangements
in Pgbds-wt and Pgbds-KO mice models, was used Illumina high-coverage

(8ox) PCR-free paired-end genome-wide sequencing.

Adult brains

In the case of the detection of induced rearrangements by Pgbds in adult mice,
3 Pgbdswt and 3 FPgbds KO littermates of 30 days of age were used. Just before
the euthanasia, peripheral blood mononuclear cells (PBMC) was collected as a
control for the experiment. As a case sample, three different neural tissues
were collected: Olfactory bulb, Hippocampus, and Cerebellum. They extracted
DNA using an Invitrogen DNA extraction kit (K1820-02) and quantified it
using TapeStation Bioanalyzer. Genomics Core at Memorial Sloan Kettering

made the library preparation and the Illumina sequencing.
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Embryo developing brain

In the case of the detection of induced rearrangements by Pgbds in the
developing brain, were used 3 Pgbds wt and 3 Pgbds KO E14 (14 days post-
coitum) embryos from the same pregnancy. Just before the euthanasia, the
embryos were extracted from the mother and spleen was collected as a control

for the experiment.

As a case sample, three different neural tissues were collected: the Forebrain
(the part that will give rise to the cortex among other structures), Midbrain
(this part will give rise to the midbrain), and Hindbrain (this part give rise to
the cerebellum and spine bulb). As adult brain samples, They extracted DNA
using an Invitrogen DNA extraction kit (K1820-02) and quantified it using
TapeStation Bioanalyzer. Genomics Core at Memorial Sloan Kettering made

the library preparation and the I[llumina sequencing.

2.2 Analysis of sequenced data

2.2.1 Sequenced data alignment

Once the data was generated we started by aligning the sequenced data to the
mouse  reference genome (GRCms38/mmio) downloaded from

(https://genome.ucsc.edu) using Burrows-Wheeler Alignment (BWA) MEM

algorithm (Li and Durbin, 2009). To improve the coverage for the detection, all
the FASTQs corresponding to the same sample were merged in a single BAM
file. We used bammarkduplicates to mark the duplicated reads. For the
alignment summary metrics, we used Alfred vo.1.16 (Rausch et al., 2019). The

last access to all the data storage was in January 2019.

2.2.2 Variant calling
To perform the detection of the rearrangements produced by Pgbds, we run
three different variant callers: Pindel (Raine et al., 2015)(version 2.2.3) (Ye et al.,

2009), and Delly (Rausch et al.,, 2012), detecting indels and structural variants,
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and GATK (version 3.7) (McKenna et al.,, 2010) focusing on SNVs. In order to
run the programs, we use the following reference files: the mouse reference
genome (GRCm38/mmz1o), the simple repeats file from mouse , and the coding
exons file from (GRCm38/mm1o0) downloaded from

(https://genome.ucsc.edu).

The last access to all the data storage on (https://genome.ucsc.edu) was in

January 2019

Each of the methods for the detection was run on pooled libraries (normal and

tumor) using default settings except for the following parameters:

Delly2

Predictions obtained with Delly2 were considered with the following

parameters: -c 0.05 , -a 0.05 and -m 15.

2.2.2.1Joining and filtering of variant calling results

Once we obtained the results, for each sample from each variant caller, we join
the results from the different callers in order to increase our sensitivity and we
filtered out the duplicates within and between callers, to avoid redundancy,
considering a similarity window of 300bp . In case a mutation was found to be
duplicated, we kept the one with the highest detection quality, VAF (Variant
allele Frequency), or ultimately, we give more weight to the deletions. In the
final step, in order to maintain specificity, we filter for those that had the

default PASS quality filter for further analysis.

2.2.3 Variant allele Frequency calculus

VAF is the relative frequency of a variant at a particular locus, expressed as a
percentage or fraction.

To calculate VAF, we divided the number of reads with the presence of the

variant by the total number of reads of all the alleles.
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fi _ Tmut,i

Trmut,i + Tref i

Formula 1. Where r.., are the reads containing the variant, and r.; the reads as
reference allele (normal) for the mutation i.

2.2.4 |dentification and analysis of genes
For the detection of genes affected by mutations we used the BEDTOOLS
package (Quinlan, 2014) and the annotation of NCBI genes for mouse

downloaded from (https://genome.ucsc.edu).

To study the effect of the different subsets of mutations we use the ENSEMBL
Variant Effect Predictor (https://www.ensembl.org/Tools/VEP) (VEP)

(McLaren et al, 2016). with default settings except for the following

parameters:
Species: Mouse (mus musculus ; GRCm38.p6)
Transcript database: RefSeq transcripts

Filtering by the most severe consequence per variant. In the case of obtaining

more than one result, we kept the one that was more deleterious.

2.2.5 Identification and analysis of genomic intervals

For the detection of genomic intervals, the regions have been created
dynamically through the list of mutations contained in each group, with a
static window size of 3Mb. For each mutation entry we had in the file, we
generated the window, and we observed how many mutations those windows

covered.

We filter through those windows that contain a minimum of two mutations,
and we remove those windows composed of subgroups of mutations that

come from larger windows. This results in a single list for each group selected.
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For the study of overlaps, we crossed the files of each group with the option

Intersect from bedtools (Quinlan, 2014).

2.2.6 Detection of motifs

For the discovery and analysis of motifs around the breakpoints of the
mutations that were affecting genes or highly mutated regions: (i) We
reconstructed the sequence around both breakpoints of the selected deletions
with a length of 20bp around each breakpoint, (ii) we executed the meme suite
tool, specifically the tool MEME to discover possible motifs in each of the
different subgroups (Bailey et al., 2009; Bailey and Elkan, 1994). With the
following parameters: maximum number of motifs: 25, minimum width: 4bp,

maximum width: 12bp

2.2.7 Study of genetic ontology

We perform the gene ontology analysis using the online tool: The Database for
Annotation, Visualization and IntegratedDiscovery; DAVID (version 6.8) (
https://david.ncifcrf.gov) (Huang da et al., 20093, b) (Huang da et al., 2009b) in

the set of genes that were uniquely associated (mutated) to each of the different
subgroups of samples. P < 0.05, the threshold level for all gene ontology, was

considered statistically significant.
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Following the hierarchy of topics in the method section, the results have been
split into two blocks; the first one is related to the development of SMuFinz2,
an standalone based strategy for the reference-free identification of somatic
genomic variation, and the second is focused on the study of somatic DNA

rearrangements induced by Pgbds during brain development and adult state.
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1. Design of the algorithm of the Somatic Mutation
Finder, version 2 (SMuFin2)

SMukFinz is an algorithm designed for the identification and classification of
somatic variation in cancer, and other normal-case genome pairs. SMuFin2
represents the second version of the original SMuFin program published in
2014, and was planned and designed in response to the limitations of the first
version, mostly concerning the scalability and computing efficiency, limited
by its underlying suffix-tree data structure. For the design of SMuFinz2, we
focused on computing efficiency and scalability, keeping the original qualities
and capabilities of SMuFin: high sensibility and specificity, reference-free
detection, detection of all variation types in a single execution, and base-pair
resolution. From a close collaboration with Jorda Polo, from the David
Carrera’s group at the Computer Science Department at the BSC, we have
ensured the combination of an efficient algorithm with a proper
implementation and hardware integration. My specific activity has been

centered in the design of that algorithm.

Following and adapting to the different computing needs across the general

analysis of genomes, we have divided the algorithm into two blocks:

1. A first block that processes all raw data, and therefore is
computationally (I/O) more intensive. This part starts by reading the
raw genomic sequence data (thousands of millions of reads), to finally
provide small sequence blocks that are candidates to contain a
mutation. Due to the high computational requirements generated
mainly by the genome lectures, this part was done in collaboration with

David Carrera’s group.
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2. The second block consists of the detection and classification of the
different variants within these blocks, and the subsequent alignment to
the genome to provide their exact genomic coordinates. This step also
includes the detection of the presence and insertion of non-human

genetic material in the tumor sample

As the first block is suitable to be used for other types of sequence analysis,
like for transcriptomics, it was decided to describe and protect this part
through the submission of a patent (PATENT: A computer-implemented and
reference-free method for identifying variants in nucleic acid sequences.
NUM: WO 2018/007034). The patent was accepted by the European Pattent
Office and was published on Espacenet and Google patents. We are currently

in the process of applying for the US patent.

The positive overall performance results of this first block, makes it potentially
useful for the design of large scale infrastructures for genome analysis, in
relation to the expected demand coming from Personalized Medicine
initiatives.

Currently, the entire program and functionality of SmuFinz2 is still not
complete, as only the first block is finished and frozen. The second part is still

under progress (see below).

1.1 SMuFin2 Algorithm

The new algorithm is based on the direct comparison of genomic sequences
coming from two genomes, normally tumor and normal from the same
individual, in the case of cancer, to finally identify all the changes
corresponding to somatic variation occurring in one of them. As explained
below in more detail, this direct comparison is done by converting all the read
sequences into k-mers, which are then scanned, searching for differences

between the two genomes. As for the first version of SMuFin that used sufix-
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tree organization of the data to identify tumor reads that had no counterpart
in the normal, and therefore could potentially point to a somatic mutation,
SMuFin2 uses the k-mer approximation with the same aim. We directly
compare all the reads of tumor and normal sequences to identify candidate
regions having a variation. From these reads, we then reconstruct, in the form
of aligned sequence blocks, a specific candidate region of the genome with the
corresponding reads of both normal and tumor genomic sequences that should
contain the variation. In the second part of the algorithm, we analyze these
sequence blocks to identify and classify the variation, to finally map it onto the
reference genome to provide the type of variation and the exact genomic
coordinates. In order to clarify the description of the algorithm, we have
defined different steps, represented in Figure 10 with section reference from

results chapter on each step.
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1st part
Patent

Normal and tumor
genome sequences
(WES or WGS)

Phred quality score Undefined Minimum k-read
nucletoides length

Generationand - Building a
analysis of k-mers hashtable structure ==

section 1.1.4
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section 1.1.5

~=-  Build candidate
block

Clustering and
filtering
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variants defined from
sequence blocks.
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Display of variant

region for manual g
curation :
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Figure 10. Schematic representation of SMuFin2’s Algorithm with chapter section
from results block for each step. SMuFin2 is divided info two blocks according
computing needs across the general analysis of genomes, the first block was
patented. SMuFin2’s algorithm starts with sequenced data (FASTQ) or aligned data
(BAM), finishing with a vcf file and a website of somatic variants detected on tumoral
sample. created with Biorender.com
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1.1.1 Inputting two sets of nucleic acid reads

In the first (1) step, SMuFin2 processes the input sequence files to start
building a hashtable of k-mers. As input, the method accepts FASTQ files
(Cock et al.,, 2010) and BAM files (Li et al., 2009), which contain all the reads
with mapping coordinates onto the reference genome. This is important, as
many databases and datasets of sequences are only in BAM format, from which
one can easily extract all the reads and reconstruct the original FASTQ. For
each read, we also extract the corresponding sequence quality score and the

sequence identifier.

1.1.2 Quality filtering of the raw sequenced data
Preliminary, to start processing the reads, we perform the filtering of low

quality and potentially erroneous reads. This is done, at different levels:

Phred quality score

A sequence is included if the input contains a minimum of bases with a Phred
quality score (Ewing and Green, 1998; Ewing et al., 1998) greater than 20 (Q20),
this means that the base call accuracy is 99%. For example, If this value is set
to 80, it means that all those reads with more than 20% of their bases with a
Phred quality lower than 20 will be eliminated. Therefore, we only keep those

that at least 80% of their bases are of higher quality.

Undefined nucleotides

If the sequence contains undefined nucleotides, represented by "N”, these will
be eliminated, generating independent sub-sequences from the read at both

sides of the N (Figure 11).
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Original Sequence 1

IO T L Bt ot P I E A PP B L P LR P F R R NS L LSS PP S F I I SR 3 SRS SN SR £ 3324 $ 4 14 $4 3 3:4

GTTACCATTTGATAGATGCATGGCCTGAGGAAACNACTCAGTCCCTCTGAGAAAACTAAGCTGAATTAGARAGGAATAATGCTCATCGCACAGGGTTGTG

Sub-sequence 1A Sub-sequence 1B

GTTACCATTTGATAGATGCATGGCCTGAGGAAAC ACTCAGTCCCTCTGAGAAAACTAAGCTGAATTAGAAAGGAATAATGCTCATCGCACAGGGTTGTG

Figure 11. Sub-sequences generated from an original read containing an
undefined nucleotide “N”. Original Sequence 1 with a length of 100 nucleotides and 1
undefined nucleotide generates two sub-sequences: 1A with a length of 34
nucleotides, and 1B with a length of 65 nucleotides.

Minimum read k-length

We discarded all the sequences whose length does not cover the k-mer size
established to make the analysis, due to the fact that k-mers could not be
generated for the detection of variants. Hence, we eliminate the sequences that
come from the raw data as well as those resulting from the formation of sub-

sequences explained in the previous section.

1.1.3 Generating a hash table structure
After the quality filtering step, the algorithm next, (3) generates a hashtable
with all the k-mers from both samples. This step is divided into two major

processes: (1) generate the k-mers and (2) build a hash table structure.

1.1.3.1 Generation and analysis of k-mers

The purpose of the k-mer analysis is to be able to hunt and bring together,
ideally, all the reads that correspond to the same region in the genome. For that
reason, k-mer should be shared among the reads but unique along the genome
in order not to gather information from different regions. On the basis of
(Paszkiewicz and Studholme, 2010) the approximate minimum sequence
length that would allow the reconstruction of a whole genome is around 3ont.
Therefore, taking this into account, and considering that a short k-mer would

allow us to better explore the sequence space through the reads, we chose 30nt,
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as the default value for the k-mer. Even Though we recommend this value, the
program accepts other sizes of k-mers [28-32] to adjust to different genomes

and situations.

After defining the k-mer size, we next counted the number of k-mers across
all sequencing reads. As shown in section 1.1.1 k-mer from methods section,
for each of the reads, we start from the beginning of the sequence moving base
by base to annotate and count all possible 3onucleotide (nt) long k-mers. In this
way, we make sure we cover the whole extent of the read, to capture any
possible variation that can be found in it. Thanks to this procedure, we can
generate kmers that will be common between the normal and tumoral samples
and kmers that we will only find in the tumoural sample, which will be those

susceptible to contain a variation (Figure 12).
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A) Generation of k-mers in a normal and tumor sample containing an SNV.

SNV

Read length = n
k-mer length = 30

GTTACCATTTGATAGATGCATGGCCTGAGGAAACTACTC. . .GTG
GTTACCATTTGATAGATGCATGGCCTGAGG
TTACCATTTGATAGATGCATGGCCTGAGGA
TACCATTTGATAGATGCATGGCCTGAGGAA
ACCATTTGATAGATGCATGGCCTGAGGAAA
CCATTTGATAGATGCATGGCCTGAGGAAAC
CATTTGATAGATGCATGGCCTGAGGAAACT
ATTTGATAGATGCATGGCCTGAGGAAACTA
TTTGATAGATGCATGGCCTGAGGAAACTAC
TTGATAGATGCATGGCCTGAGGAAACTACT
TGATAGATGCATGGCCTGAGGAAACTACTC |

GTTACCATTTGATAGATGCATGGCCTGAGGAAACGACTC. . .GTG
GTTACCATTTGATAGATGCATGGCCTGAGG
TTACCATTTGATAGATGCATGGCCTGAGGA
TACCATTTGATAGATGCATGGCCTGAGGAA
ACCATTTGATAGATGCATGGCCTGAGGAAA
CCATTTGATAGATGCATGGCCTGAGGAAAC
CATTTGATAGATGCATGGCCTGAGGAAACG
ATTTGATAGATGCATGGCCTGAGGAAACGA
TTTGATAGATGCATGGCCTGAGGAAACGAC
TTGATAGATGCATGGCCTGAGGAAACGACT
TGATAGATGCATGGCCTGAGGAAACGACTC

B) Generation of k-mers in a normal and tumor sample containing an SV.

Large Insertion

Read length =n ACAGCTCAGCTGCAGAAGGGGAGGGCGGGAAGTCAAGGG. . .ACG
ACAGCTCAGCTGCAGAAGGGGAGGGCGGGA
k-mer length = 30 " CAGCTCAGCTGCAGAAGGGGAGGGCGGGAA
AGCTCAGCTGCAGAAGGGGAGGGCGGGAAG
GCTCAGCTGCAGAAGGGGAGGGCGGGAAGT
CTCAGCTGCAGAAGGGGAGGGCGGGAAGTC
TCAGCTGCAGAAGGGGAGGGCGGGAAGTCA
CAGCTGCAGAAGGGGAGGGCGGGAAGTCAA
AGCTGCAGAAGGGGAGGGCGGGAAGTCAAG
GCTGCAGAAGGGGAGGGCGGGAAGTCAAGG
CTGCAGAAGGGGAGGGCGGGAAGTCAAGGG

ACAGCTCAGCTGCAGAAGGGGAGGGCGGGAAGAGTAGCT. . .GCT
ACAGCTCAGCTGCAGAAGGGGAGGGCGGGA
CAGCTCAGCTGCAGAAGGGGAGGGCGGGAA
AGCTCAGCTGCAGAAGGGGAGGGCGGGAAG
GCTCAGCTGCAGAAGGGGAGGGCGGGAAGA
CTCAGCTGCAGAAGGGGAGGGCGGGAAGAG
TCAGCTGCAGAAGGGGAGGGCGGGAAGAGT
CAGCTGCAGAAGGGGAGGGCGGGAAGAGTA
AGCTGCAGAAGGGGAGGGCGGGAAGAGTAG
GCTGCAGAAGGGGAGGGCGGGAAGAGTAGC
CTGCAGAAGGGGAGGGCGGGAAGAGTAGCT

Normal read

Tumor read

K-mers derived from
tumor reads with a
somatic mutation are
expected to be unique,
and not shared with
normal reads.

Normal read

Tumor read

K-mers derived from
tumor reads with a
somatic mutation are
expected to be unique,
and not shared with
normal reads.

Figure 12. Representation of k-mers generation on mutated scenarios. For each
scenario A and B, we have a read from the normal sample, and a read from the
tumor sample that contains a variation that is marked by red characters. We observe
how the generation of k-mers covers the whole sequence, and both common reads
between the two samples and unique reads containing the mutation are generated.

Results
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1.1.3.2 Building a hashtable structure

After analyzing and counting all the k-mers present in our datasets, we
designed a form of having all this data accessible to be able to make different
types of queries. For that, we stored this information in a hashtable structure
that allows us easy and quick access to the data with reduced memory
requirements, despite the large number of k-mers generated from both normal
and tumour genome sequences. For each k-mer stored with their frequency on
normal and tumor samples, information related to the read and the position in
it is also . To provide the possibility of performing different queries to the
hashtable, for each k-mer, we also store the information corresponding to the

reverse complement of each particular k-mer.

To detect the mutations, the first step is to generate the stem with prefix one
and suffix one for each of our kmers. Please, see section 1.1.1 of Methods for a
better understanding of the generation of the stem through the kmer and its
prefixes and suffixes. The objective is to find the beginning and end of the
mutation. The stem is shared between the mutated and non-muted reads, and
the inflection belongs to the beginning and /or end of the variation between
the two, which allows us to collect all the reads of both samples for the same
region and reconstruct it. By creating the inflection at the beginning and end
of the kmer, we can cover the entire sequence and detect the mutation

throughout the read.

Once all the k-mers of both samples are computed, a summary of the hashtable
is generated (Figure 13) that includes, for example, the data for the creation of
a histogram of k-mers frequency, k-mer counters, between others. In addition
to directly pointing to candidate reads having the mutation, and to bring
together normal and tumor reads of the same genomic region, we can also

evaluate other useful information regarding, for example, the quality of the
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sample. For instance, knowing the number of k-mers only seen once within a

sample gives an estimation of the rate os sequencing errors within the sample.

Histo N: @ 1 630312
Histo N: 1 2 326072
Histo N: 2 4 1528111

Histo N: 3 8 2175895
Histo N: 4 16 112179
Histo N: 5 32 20297
Histo N: 6 64 5839
,, A Histo N: 7 128 2006
w Histo N: 8 256 769
( \ generated Histo N: 9 512 307
Histo N: 10 1024 108

list of X Histo N: 11 2048 72
Histo N: 12 4096 32
fomers Histo N: 13 8192 2

| Histo N: 14 16384 2

list of X —_— hashtable Histo T: @ 1 633210
generated Histo T: 1 2 329692

k-mers Histo T: 2 4 1533344

. Histo T: 3 8 2172666
Histo T: 4 16 111960
Histo T: 5 32 20328
Histo T: 6 64 5913
. Histo T: 7 128 1999
list of X Histo T: 8 256 756
K Histo T: 9 512 322
Gners Histo T: 10 1024 104

Histo T: 11 2048 74
hashtable Histo T: 12 4096 30
generated Histo T: 13 8192 2
Histo T: 14 16384 2

Number of roots: 2842459

Number of stems: 5306418

Number of stems seen once: 764122
Number of kmers: 6504328

Sum of counters: 74494723

Number of filter hits (roots): 7224
Number of filter hits (stems): 9793
Number of filter hits (kmers): 9795
Time count/stats: 1.30337

Figure 13. Storage and generation of hashtable. Sample hashtable summary
generated by each node where the generated k-mers are processed. created with
Biorender.com

1.1.4 Detecting candidate somatic variants with k-mers

Once the hashtable is generated, with all the k-mers, their recurrence within
the normal and tumor samples and information about the corresponding reads
associated, the next step is to select those kmers that are likely to contain a
variant. For this, we expect to find k-mers with different counts. For example,
k-mers that have been found at the same rate in both samples, are expected to
cover identical regions within both genomes, and therefore are not expected
to contain mutations. On the other side, k-mers that have been found in tumor
samples, but not in normal samples, are expected to cover somatic variants, and

are actually the target of our analysis.
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To identify the k-mers that can contain a variant, we ask the following

questions to the hashtable:

(i)An inflection based on the stem of a k-mer must have at least Y1 reads with
the same variation in the tumor sample, and a maximum of Y2 reads in the
normal sample. (ii) If this criterion is met, we consult the complementary
reverse of the same infection, which should have at least Y3 reads with the
same variation in the tumor sample and a maximum of Y4 reads in the normal
sample (Figure 14).

A) kmers inflections in a sample containing an SNV.

(A-R) (A-C) (A-T) (A-G) (C-A) (C-C)
_TTACCATTTGATAGATGCATGGCCTGAG_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

(C-T) (C-G) (G-A) (G-C) (G-T)
(0,0) (0,0) (0,0) (0,0) (0,0)

(G-G) (T-A) (T-C) (T-T)
(1,1) (0,0) (0,0) (0,0)

(T-G)
(0,0)

_TACCATTTGATAGATGCATGGCCTGAGG_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1,1) (0,0) (0,0) (0,0)
_ACCATTTGATAGATGCATGGCCTGAGGA_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1,1) (0,0) (0,0) (0,0)
_CCATTTGATAGATGCATGGCCTGAGGAA (1,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
_CATTTGATAGATGCATGGCCTGAGGAAA_(0,0) (0,0) (0,0) (0,0) (0,0) (1,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
_ATTTGATAGATGCATGGCCTGAGGAAAC_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
_TTTGATAGATGCATGGCCTGAGGAAACT_ (1,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
_TTGATAGATGCATGGCCTGAGGAAACTA_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0)
_TGATAGATGCATGGCCTGAGGAAACTAC_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) (0,0)
_GATAGATGCATGGCCTGAGGAAACTACT_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0)
_TTTGATAGATGCATGGCCTGAGGAAACG_ (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
_TTGATAGATGCATGGCCTGAGGAAACGA_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,0)
_TGATAGATGCATGGCCTGAGGAAACGAC_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0)
_GATAGATGCATGGCCTGAGGAAACGACT_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,0)
B) kmers inflections in a sample containing an SV.

(A-A) (A-C) (A-T) (A-G) (C-A) (C-C) (C-T) (C-G) (G-A) (G-C) (G-T) (G-G) (T-A) (T-C) (T-T) (T-G)
_ CAGCTCAGCTGCAGAAGGGGAGGGCGGG_ (1,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
_ AGCTCAGCTGCAGAAGGGGAGGGCGGGA_ (0,0) (0,0) (0,0) (0,0) (1,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
_GCTCAGCTGCAGAAGGGGAGGGCGGGAA_ (0,0) (0,0) (0,0) (1,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
_CTCAGCTGCAGAAGGGGAGGGCGGGAAG_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (0,0) (0,0)
_ TCAGCTGCAGAAGGGGA! GGGAAGT_ (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
_CAGCTGCAGAAGGGGAGGGCGGGAAGTC_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0)
AGCTGCAGAAGGGGAGGGCGGGAAGTCA_ (0,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
:GCTG(‘B"” GGA GGG ""'FCAA:(O,O) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
_ CTGCAGAAGGGGAGGGCGGGAAGTCAAG_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (0,0)
_ TGCAGAAGGGGAGGGCGGGAAGTCAAGG_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
CTCAGCTGCAGAAGGGGAGGGCGGGAAG_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
_ TCAGCTGCAGAAGGGGAGGGCGGGAAGA_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
:CAGCTGCAGAAGGGGAGGGCGGGAAGAG:(OVO) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0)
AGCTGCAGAA A GGGAAGAGT_ (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
:GCTGCAGAAGGGGAGGGCGGGAAGAGTA:(0,0) (0,0) (0,0) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
CTGCAGA GGGAAGAGTAG_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
_TGCAGAAGGGGAGGGCGGGAAGAGTAGC_ (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Figure 14. Representation of a hashtable for a candidate mutation. Hashtable
representation with the k-mers inflections of the mutations represented in previous
"figure 10 ". The bases containing the mutation are marked in red. The left column
represents all the stems of the k-mers, the head of the following columns represent all
the possible inflections E.g (A-A) inflation with suffix and prefix with the base A. Below
are the counters for each of them, where the first position corresponds to the normal
counters and the second position to the tumors. We can see how the first k-mers are
shared by the two samples (k-mer). The last k-mers belong only to the tumoural
sample and are candidates for mutations since they are only found in it.
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With this criterion, we make sure that:

e The mutation is covered in both directions (forward & reverse) and by

a minimum of tumor reads; variables Y1 - Y3.

e Thenormal sample can contain a maximum of readings from the tumor

sample, due to contamination; variables Y2 and Y4.

o We detect those k-mers that, with their inflection, there are differences

between normal and tumoural.

e We detect those k-mers whose own stem contains a variation

These variables can be modified by the user in the configuration file in the

following fields:
max-normal-count-a= __ MAX_NC_A__
min-tumor-count-a=__MIN_TC_A__
max-normal-count-b=__MAX_NC_B__

min-tumor-count-b=__MIN TC B

A and B represent an arbitrary direction, since, as mentioned above, we do not

know the real direction compared to the reference genome.

At this stage, besides selecting the candidate breakpoints with k-mers, we also
keep additional information that will be necessary for the next steps: (i) the
selection of all relative reads, (ii) the position of the k-mers within the reads,

and (iii) a map of the k-mers.

The selection of the relative reads is based on the stem and the checking when
any inflection meets the criteria described above, in this way we get both the
reads that contain the mutation and the reads that pass through the same

region without the mutation.
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1.1.5 Clustering and filtering candidate somatic variants to build
blocks with candidate variants

To this step we arrive with all the tumor-specific or tumor-enriched k-mers
potentially having a variant, and the information of the read they belong to.
From these data, the method next identifies and extracts the matching tumor
reads, together with the normal reads ideally corresponding to the same
genomic region. These tumor and normal reads are then piled-up to form a
sequence block that will be analyzed more in detail, to define the final variant.
For this, we first make a selection of the so-called leading reads, which are
defined as those reads that cover the mutations as efficiently as possible to

collect all the required information. This read is called “leading read”.

The criteria to select the leading reads is that it has to contain a minimum of
(Ys) candidate k-mers, and (ii) the distance between these minimum k-mers

must not be further than (Y6) nucleotides (Figure 15).

A) Leading read candidate containing an SNV.

mmmmm 02780785 2RRNNTRERRSBHNREABREASTY0T . . .8
GTTACCATTTGATAGATGCATGGCCTGAGGAAACGACTCAGTCC .G
CATTTGATAGATGCATGGCCTGAGGAAACG 6
ATTTGATAGATGCATGGCCTGAGGAARACGA 7
TTTGATAGATGCATGGCCTGAGGAAACGAC 8
TTGATAGATGCATGGCCTGAGGAAACGACT 9
TGATAGATGCATGGCCTGAGGAAACGACTC 10
GATAGATGCATGGCCTGAGGAAACGACTCA 11
ATAGATGCATGGCCTGAGGAAACGACTCAG 12
TAGATGCATGGCCTGAGGAAACGACTCAGT 13
AGATGCATGGCCTGAGGAAACGACTCAGTC 14
GATGCATGGCCTGAGGAAACGACTCAGTCC 15

Groups of seven candidates k-mers.
Distance between first and last
need to be =< 10 positions inside
read.

B) Leading read candidate containing an SV.

ransnoroaddSnnasn R ARRANIRERRARANNIRARRRSTRT . .2
ACAGCTCAGCTGCAGAAGGGGAGGGCGGGAAGAGTAGCTCCCCC. . . T
GCTCAGCTGCAGAAGGGGAGGGCGGGAAGA 4
CTCAGCTGCAGAAGGGGAGGGCGGGAAGAG 5
TCAGCTGCAGAAGGGGAGGGCGGGAAGAGT 6 Groups of seven candidates k-mers.
CAGCTGCAGAAGGGGAGGGCGGGAAGAGTA 7 Distance between first and last
AGCTGCAGAAGGGGAGGGCGGGAAGAGTAG 8 need to be =< 10 positions inside
GCTGCAGAAGGGGAGGGCGGGAAGAGTAGC 9 read.
CTGCAGAAGGGGAGGGCGGGAAGAGTAGCT 10
TGCAGAAGGGGAGGGCGGGAAGAGTAGCTC 11
GCAGAAGGGGAGGGCGGGAAGAGTAGCTCC 12
CAGAAGGGGAGGGCGGGAAGAGTAGCTCCC 13
AGAAGGGGAGGGCGGGAAGAGTAGCTCCCC 14
GAAGGGGAGGGCGGGAAGAGTAGCTCCCCC 15

Figure 15. Leading reads for SNV and SV scenarios. Example of positive read leader
selection with the variables Y5 =7 and Y6 =
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With this criterion, we ensure that the leading read has created a minimum
number of candidate k-mers in a range of nucleotides, a sign that the mutation

is well covered.

Next, taking each leader as a seed, we start adding other reads that share the
same stem, and are therefore expected to derive, a priori, from the same
genomic region. Using sequence information (stem) we also fetch the
corresponding reads coming from the normal sample, and construct the block.
We will also use the stem in reverse complement in order to reconstruct the

region in both directions, forward and reverse (Figure 16).

Read lead
GTTACCATTTGATAGATGCATGGCCTGAGGAAACGACTCAGTCCCTCTGAGAAAACTAAGCTGAATTAGAAAGGAATAATGCTCATCGCACAGGGTTGTG
Extract Candidate k-mers Generate stem candidate k-mers Recolect Reads with common
CATTTGATAGATGCATGGCCTGAGGAAACG _ATTTGATAGATGCATGGCCTGAGGAAAC _ stem candidate k-mers

ATTTGATAGATGCATGGCCTGAGGAAACGA
TTTGATAGATGCATGGCCTGAGGAAACGAC
TTGATAGATGCATGGCCTGAGGAAACGACT
TGATAGATGCATGGCCTGAGGAAACGACTC

Normal reads

Tumor reads

Figure 16. Reconstruction of block. From a read lead, we extract all the candidate k-
mers that it contains, generating the stem of each one of them to be able to collect all
the reads both mutated and not mutated of the normal and tumoral samples and to
build the block that contains the somatic mutation.

With this approach a single candidate mutation can generate more than one
block. This is because more than one read covering the mutation can become a
read leader. The next step is to remove redundancy, by filtering out those

blocks that contain the same reads, or that are already included in another
block.

Then we pile-up the reads taking the stem from the read leader as an anchor to
add the other reads. For each sequence collected through the read leader’s k-

mers, we look for the root that has been called and that is common with the
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read leader sequence. Then, each read is successively positioned so that its
inflection or partial inflection coincides with the central read. For the reverse
direction of the block we use the same read leader but in a complementary

reverse direction so that the k-mers match and could be pile-up.

The results of this section correspond to a collection of blocks reproducing
approximately 150bp-long genomic regions (with original read size of 100bp),
if original read size is 100bp, that are expected to contain a somatic variation.
These blocks, finally are expected to contain, for each candidate region, reads
covering both alleles of the normal sample, reads covering the same region of
the non-mutated tumor allele, and reads covering the mutated allele with the

mutation (see Figure 17).
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1.2 SMuFin2-algorithm implementation

SMuFin was deployed on 16 nodes of MareNostrum 3, where, per each patient,
it costs around 10 hours and 56 kWh to complete a single analysis. With
improvements on algorithm, accelerators , and NVM used as main memory
extension, SMuFin2 can be executed on one single enterprise-node with
512GB of main memory, and process a 30X coverage genome pair in 9 hours
and as few as 4.3 kWh, which means a 13.1x improvement. Nevertheless, we
were able to run SMuFinz2 on a desktop machine only by adopting NVMe as
an alternative to main memory. Running SMuFin2 in an affordable node with
a 6-core i7 and only 32 GB of main memory, required 22.4hours, a significant
slowdown, but in consuming only 2.4KWh, a 23.3x improvement over the

original deployment.

If we compare the single enterprise node against the desktop machine this last
one supposes only Y% of the cost, and it requires approximately half of energy
for each execution . As a result, a cluster of multiple desktop machines costs
half as much as a cluster of servers, and consumes half the energy while
maintaining similar performance. These results (Figure 18) demonstrate that
hardware/software co-design allows significant reduction in the total cost of
ownership of data intensive genomics methods, facilitating their adoption in

large genome repositories.

More detailed information can be found in Dr. Cadenelli thesis, as this was the
result of a collaboration, and on papers (Cadenelli et al., 2017 ; Cadenelli et al.,

2019).
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Figure 18. Aggregate node time and energy-to-solution of all SMuFin2 versions on
the different hardware configurations.

1.3 Algorithm validation

In summary, at this stage, we have developed a comprehensive methodology
for the processing and classification of sequence reads, according to their
potential coverage of somatic variants, and using a k-mer-based methodology.
The algorithm, and its implementation in an High-performance computing
(HPC) environment, allows a complete processing of entire whole genome
sequences very quickly, and at low computational cost. Driven by the novelty
of this methodology, and because of its potential use for other specific
sequence analysis, provided a different and adjusted processing of the
sequence blocks, we decided to patent this algorithm (EP16178577.9). To
validate the potential of this algorithm to identify somatic variants, and to
develop the second part of the entire program, we performed extensive

assessments as described below.

1.3.1 Generation of an /n silico test sample for initial validation
To validate the technique and verify that the expected prediction of the

mutation was met, we perform calibration in parallel to the development of
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the method. To verify that the algorithm works as expected in each step, we
need to create controlled reference set containing all the elements to be

analyzed.

In the case of the variant caller, an in-silico sample is used to control the totality
of mutations and to know exactly all the sequences with or without mutation
that pass through it. It is not recommended to use an in-vivo sample because

it is not known with certainty the total mutations that it contains.

The sequences, both mutated and non-mutated, covering the mutations, are
marked and selected. In the steps where the program executes a filter, which
are: Detecting candidate breakpoints with k-mers, and Clustering and filtering
candidate breakpoints to build candidate blocks, we extract all the reads that
have passed the criterion, and in this way, we can check if a mutation is
represented. Finally, in the block alignment step, those blocks that contain
mutation sequences are marked. This marking allows us to check later in the

final block what the mutations look like.

To emulate the steps taken by the algorithm, we re-create all potential /possible
scenarios, most of them manually. This allowed knowing firsthand the failures
and improvements that could be generated. The calibration sets of this step
consisted of small regions of the genome (between 200-500 bp) that contained

a unique mutation.

Once the algorithm was validated on different types of mutations, we
proceeded to build a chromosome in-silico to exclusively validate the method
against it.

For the creation of the in-silico (see methods section 1.2.1), we used the
program ART-Illumina that allows us, on the one hand, to simulate the
sequencing of a sample and on the other hand, thanks to a secondary file we

know all the reads that pass through each position with the information of the
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sequencing errors they contain. We selected the chr2o since, by size, it is more
manageable to control along with all the steps of the program. In the in-silico,
we added a profile of germinal mutations in both normal and tumor samples.
In the tumoural sample, a wide range of mutations was chosen, from SNV to
SV . This added variation was composed of: 168 SNVs, 26 Indels, 20 SVs, and

1 viral insertion

These mutations were the same used for the SMuFin test so that we could
compare it with its predecessor. Besides, a virus fragment was inserted, namely
Ki polyomavirus, at position 56.398.700. Detailed information about the
potential of SMuFin2 for the identification of tumor-associated virus can be
found in section 1.4.

The test with the first block from the algorithm was done with the variables
on config file:

KMER_LENGTH=28
MAX_NORMAL_COUNT A=1
MIN_TUMOR_COUNT A=4
MAX_NORMAL_COUNT_B=1
MIN_TUMOR_COUNT B=1
WINDOW_MIN=7
WINDOW_LEN=10

The results for this test were: 100% for SNVs, 100% for Small SVs, 100% for
Large SVs, and 100% for virus Insertion (Table 1). In the table, we can check
the results in the two checkpoints mentioned above, after the filter by

candidate k-mers, and after the cluster to build the block.
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Mutations After filtering %sensitivity After clustering %sensitivity

SNV 168 168 100% 168 100%
Small SVs 26 26 100% 26 100%
Large SVs 20 20 100% 20 100%
Virus 1 1 100% 1 100%

Table 1. Results from chr20 test. In each filtering step we evaluate the number of
detected mutations classified by type.

It is remarkable the capacity of detecting large structural variants with such a

high sensitivity, even the insertion of a virus (Figure 19).
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1.4 Identification of tumor-associated viruses
To test the virus detection role of the first block from SMuFin2, we explored the
WGS of PCAWG Consortium (Consortium, 2020) generated by the ICGC and

the Cancer Genome Atlas projects.

For the selection of samples, we considered those where infection-related
causes of cancer were estimated to be viral, such as Hepatitis B virus (Bialecki
and Di Bisceglie, 2005), and several Human papillomaviruses (Munoz et al.,

2006) types.

Therefore, we randomly selected some patients from the following studies:

(DCC Project Code; Project Name; Country)
CESC-US ; Cervical Squamous Cell Carcinoma - TCGA, US ; US
LIHC-US ; Liver Hepatocellular Carcinoma - TCGA, US ; US
UCEC-US ; Uterine Corpus Endometrial Carcinoma- TCGA, US ; US
We ran SMuFinz first block with the following variables:

KMER_LENGTH=32
MAX_NORMAL_COUNT_A=1
MIN_TUMOR_COUNT_A=3
MAX_NORMAL_COUNT_B=1
MIN_TUMOR_COUNT_B=2
WINDOW_MIN=7
WINDOW_LEN=10

Thanks to the summary information obtained in the hashtables, we were able
to verify that in some patients, the normal sample had lower coverage than the
tumor sample. We were also able to extract that the sequencing errors were

low in the sample, and therefore we continued with the k-mer at a start of 32.

108



Our objective was to detect the presence of viruses in the samples, and
therefore, we focused on the groups that did not contain reads from the normal

sample. Following the detection strategy explained in the section 1.1.6 .

Detection of HBV

In the patients of the LIHC-US project, we found positive results in virus
detection. The most frequently detected virus was HBV. We also observed

cases where the presence of HERV-K117 was detected.

Detection of HPV

On patient samples from the CESC-US and UCEC-US projects, we found
results favorable to the presence of viruses. The virus that appears most
frequently is HPV16 in both samples. In the case of the UCEC-US project, the

presence of the HPV18 virus was also found.

The results of the virus presence obtained are in agreement with those
presented in the recent paper published by the working group of pathogens of
the PCAWG consortium (Zapatka et al., 2020).

1.5 Cataloguing and annotating blocks

This second part of the algorithm consists of the detection of the different
variants within the blocks and the subsequent alignment against the genome
identifying its exact position.

It is an interim strategy that we are currently implementing. This strategy is
based on the detection of somatic mutations from SNV to SV. One point to
note is that it addresses not only the detection but also the insertion point of

non-human genetic material such as viruses.
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Once we have all the candidate breakpoint blocks aligned from the previous
step (section 1.1.5), we proceed to the detection and identification of variants

for each of them.

We use the alignment information to observe the differences in each group:

tumor, non-tumot, and both.

The first step consists of joining both directions, forward and reverse, of each
block in one, to obtain a greater coverage of the region. For each position in
the block, a value is given according to the variability within that position. As
a result, we get a representation of all the variability within the block. This
variability is calculated for the three different groups: tumor, non-tumor, and
both.

These alignment scores are compared recursively to identify differences in
both samples, tumor and non-tumor. With these scores, we first evaluate a

consensus for each sample, to avoid false positives and misalignments.

We then look for all variants that are completely included within the
comparand block. These variations will be SNV and small SV, which will
consist of: insertions, deletions, and inversions. All blocks that do not meet
this criterion will be candidates to contain a large SV, which means that the
block only covers one of the breakpoints of possible large insertions, deletions,

inversions, or intra- or inter-chromosomal translocations.

Once all types of variations are defined, we move on to identify the coordinate
of the mutation. We generate a consensus of the normal block, for which we
have stored the position where the mutation occurs and aligned it against the
reference genome. Using the consensus, we obtain a sequence with a longer
length than the original read, which allows a better alignment. In addition, we
avoid possible alignment problems due to the presence of the mutation that
we are questioning, as it usually happens in those non-reference-free methods

that are based on references.
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For the blocks containing an SV, the tumor consensus carrying the mutation
will also be generated and aligned against the reference genome to know the
chromosome that cause the SV and the coordinates of the variation. This same
process of tumor consensus will be done by mapping this time against non-
human databases to locate which viruses are inserted and the exact insertion

position.

For the detection of non-human insertions in the genome, the user can choose
against which database he wants to perform the alignment of the groups
susceptible to contain an insertion of non-human material. In the test runs
(section 1.4) a database of all viruses described in the methods section 1.4.2 was
used. This guarantees that the user can make a more general or more specific

search according to his criteria.

As mentioned before, the method is also able to detect the non-human
sequences present in the sample. To do this, we rely on the knowledge that the
sequences that come from viruses that are not homologous with the normal
sample generate groups that only contain tumor reads. Following this
criterion, we use the blocks that only contain tumor sequences, and we make

a consensus and map them against a selected database.

Knowing which viruses are in the sample beforehand helps us to determine
when we find a breakpoint with a virus insertion as the sequence is shorter to

go towards a more targeted search.

1.6 Output files

The results of the program are presented in two formats: Variant Call Format

(VCF), a standard file of the detection methods, and an interactive web page.
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The VCF will provide the eight mandatory columns:

1; CHROM The chromosome on which the mutation is being

called.
2; POS The position of the mutation on the reference genome.
3; ID  The identifier of the variation

4; REF The reference base (or bases in the case of a small deletion) at

the given position of the non-mutated sequence.

5, ALT The mutated base or bases at this position.

6; QUAL A quality score associated with the mutation.

7; FILTER A flag indicating the filters the mutation has passed.

8; INFO An extensible list of key-value pairs (fields) describing the

variation

The website consists of:
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Home page with a list of all the blocks lined up.

FEach block/group will be given the following information that has

composed it:

o Overview consisting of Number of k-mers (A), Number of k-
mers (B), K-mers distance (A), K-mers distance (B), Number of
reads (N), Number of reads (T) , and Number of reads (N+T)

o Lead read

o List of K-mers in direction A with respective counters for

normal an tumoral sample

o List of K-mers in direction B with respective counters for

normal an tumoral sample

o List of Normal reads ; ID + sequence



o List of Tumoral reads ; ID + sequence
o Alignment for the direction A
o Alignment for the direction B
e On the block alignment page the user can interact with the data:

o Rearranging the alignment by type of read or by alignment

position

o Marking with color by base type, by read type or without color.

1.7 SMuFin2 first block execution

SMufin2 has been conceived as a reconfigurable set of checkpointable stages

(Figure 20), developed C++ , and Python programming language.

Depending on where the hardware is running, SMuFin2 supports different
modes of execution to suit it: from scale-out executions in large data centers
to scale-up solutions that take advantage of accelerators and storage-class

memory in a single machine.

1.7.1 Compile

Compiling the first block from SMuFin2 requires make, a compiler such as gcc
with C++11 support (>= 4.8), and the following libraries:

e sparsehash (>=2.0)

e boost (>= 1.55): Property trees and string algorithms

o ConcurrentQueue and ReaderWriterQueue: MPMC and SPSC queues
e libbf (<= vo.1-beta): Bloom filters

e RocksDB (>= 4.9): Key-value store for flash storage

e htslib: Parse BAM files
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merge

to_fastq
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Figure 20. SMuFin2 execution command graph. The graph shows the dependencies
between SMuFin2 commands and all checkpointables stages: (i) prune, (ii) count, (iii)
filter, (iv) merge and (v) group.

Run

A configuration file (Supp Figure 1) with all the necessary variables and paths

is required to run the method.

Commands

The argument passed to the --exec flag or the configuration option in core.exec,
must be a list of stage commands separated by semicolons. The commands are
prepared with a stage name followed by a colon and chained in a comma-

separated list. For example, count:run,dump or count:restore;filter:run,dump.

Note that the commands must follow a specific order, and some stages cannot

be executed without running the previous stages first.

The following list contains all available steps and commands represented on

Figure 16:
e prune

o run: generates a bloom filter of stems that have been observed
in the input more than once; optional stage that can be run first

to save memory during count.
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Results

count: build frequency table.

O

run: counts frequency of normal and tumoral k-mers in input
sequence, ignoring k-mers whose stem is only seen once;

counters hold values up to 2"16.

dump: serialize k-mer frequency as sparsehash tables indexed

by stem, for checkpointing and/or later analysis.
restore: unserialize dumped frequency tables from disk.

stats: display frequency stats, including size of different tables,

and histograms for normal and tumoral counts.

export: serialize frequencies as plain CSV table files containing
k-mers along with normal and tumoral counters; rows can be
limited to k-mers that meet certain criteria through

configuration options export-(Altschul et al., 1990).

filter: select breakpoint candidates and build indexes.

O

merge:

run: build filter normal and tumoral (mutated and non-mutated)
indexes containing candidate reads, along with their IDs and

positions of candidate k-mers.

dump: finalize writing filter indexes to disk; when using

RocksDB indexes, force a compaction.
stats: display sizes of the different filters.
combine multiple filter indexes.

run: read and combine filter indexes from different partitions
into a single, unified index in RocksDB. Merges all possible

indexes, sequentially one at a time.

run_{seq,kz2i,izp}_{nn,tn,tm}: read and combine specific filter
indexes from different partitions into a single RocksDB

instance.
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o stats: display sizes of the merged filters.
o to_fastq: convert indexed reads to FASTQ format.
e group: match candidates that belong to the same region.

o run: window-based group leader selection and retrieval of

related reads.

o stats: display number of groups generated by each thread.
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2. Landscape of somatic variation in neural

development and the role of Pgbd5

The next project is an ongoing study. The results reported here are preliminary,
and the results of Dr. Kentsis group, collaborating in this project, are not

published yet.

In brief, this part of the thesis aims to answer the hypothesis that gbds is active
as a nuclease and produces DNA double-strand breaks (DSB). This activity
produces DNA rearrangements in neurons during brain development, which
allows them to survive subsequent apoptotic selection. The interest on Fgbds
is preceded by (Henssen et al., 2017a) that unveils the role of DNA transposase
PGBDs5 that, by acting as a nuclease in human cells, underlies cell
transformation by inducing site-specific genomic rearrangements. We seek to
compare Knockout (KO) and wild-type (WT) individuals to determine Pgbds-
induced somatic rearrangements in neural tissues. To understand the role of
Pebds, we divided the project into two parts: 1) the characterisation of somatic
variation for neural tissues, and 2) the study of those variations associated with
Pebds.

This project required collaboration between multidisciplinary teams. On one
side, a wet lab focused on KO mice, led by Dr.Kentsis lab from the Memorial
Sloan Kettering (MSK) New York (NY); and a dry lab, focused on the
computational side, led by Dr.Torrents lab from Barcelona Supercomputing
Center (BSC). My contribution here is the characterization of the landscape of
somatic variation in neural tissues of adult and embryonic mice, and the

contribution of Pgbds (mouse orthologue of human PGBDs5) during brain
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development and adult state, together with my groupmate and Ph.D. student
Elias Rodriguez-Fos. In particular, my contribution was on the data processing
of FASTQ data received and the posterior detection and classification of
somatic variants on neural samples; the preparation of the data for the
characterization of the different type of variants on adult and embryo mice;
and the identification of genes and genomic intervals specific related in each

highlighted group.

The detection of somatic variants on non-tumoral samples was a
methodological challenge. This new scenario, compared to the pattern of
somatic mutations in cancer, is presented as a variation with a non-clonal
profile, and a somatic variation with a lower VAF. These characteristics made
its detection more complicated when using the conventional methods
designed for a tumor mutation profile. Initially, when the study started we
didn't know if we could detect variations, stating that the detection of somatic

variants was something fundamental to the project.

To determine whether Pgbds could be responsible for somatic rearrangements
on neural samples, Dr.Kentsis group produced the KO mouse model of the
Pgbds allele. Then Pgbds -/wt females and Pgbds -/wt males were crossed to
obtain Pgbds wt/wt and Pgbds -/- (or KO) littermates. For the identification
of neuron-specific Pgbds somatic DNA rearrangements in FPgbdswt and
Pegbds-KO mice models, lllumina high-coverage (8ox) PCR-free paired-end

genome-wide sequencing was used.

Two groups of mice were studied in parallel, adult and embryo, to analyze the
effect of Pgbds at different growth stages. We expected to study the effect in

its origins on embryo samples to unravel the causes of DNA damages during
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brain development, and follow the mutation to the adulthood to analyze how

these rearrangements have turned out:

Adults brain: The number of samples was: 3 Pgbds wild types and 3 Pgbds KO
littermates of 30 days of age. Just before the euthanasia, Peripheral blood
mononuclear cells (PBMC) were collected as a control for the experiment.
PBMCs are non-neural cells that undergo RAG1 recombination in the
Immunoglobulin locus, serving as a prefect quality control for the subsequent
analyses. As a case sample, three different neural tissue samples were collected:

Olfactory bulb, Hippocampus, and Cerebellum.

Embryo developing brain: The number of samples was: 3 FPgbds wild types and

3 Pgbds5 KO E14 (14 days post-coitum) embryos from the same pregnancy. Just
before the euthanasia, the embryos were extracted from the mother, and
spleen was collected as a control for the experiment. The spleen is a
hematopoietic organ during embryogenesis, and together with the liver, is
where lymphocytes mature. As with PBMCs in adults, the spleen serves as a
suitable control for this experiment. Structural differences exist between E14
developing and adult brains. As a case sample, three different neural tissue
samples were collected: the Forebrain (the part that will give rise to the cortex
among other structures), Midbrain (this part will give rise to the midbrain), and

Hindbrain (this part give rise to the cerebellum and spine bulb).

In total, we studied rearrangements in 36 samples of neuronal tissue, 18 for
each adult and embryonic group. Nine of them belong to the KO group and the
other nine to the WT group.
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Figure 21. General workflow for the study of somatic DNA rearrangements induced
by Pgbd5 during brain development and adult state. The first section represents the
selection of the mouse samples obtained by Dr. Alex Kentsis' group, a total of 36 case
samples and 12 controls that were analyzed during the study. The second represents
the detection, and subsequent analysis of the variants carried out in our group, which
include: the identification of somatic variants within non-tumoral tissues, the study of
Pgbd5 KO mice vs. WT mice, the characterization of the deletions on wild-type mice,
the identification and analysis of genes and genomic intervals, and the study of
genetic ontology. Created with Biorender.com
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2.1 Identification of somatic variants within neural tissues

Our aim in this part was to identify somatic variants. This was a particularly
challenging task because, having experience in detecting variants in cancer
tumor samples, we did not know a priori whether the methods used in that
area would work for detection in normal tissues. The first question was if we
were able to identify somatic variations from non-clonal tissue growth. Our
first approach was to increase the coverage for the proper detection of somatic
variants. This parameter is essential because the role that we hypothesized for
Pegbds would involve rearrangements that diversify the genomic content,
leading to polyclonal rearrangements with reduced allele fractions, albeit
sharing features that may lead to recurrent alignments. The higher the
coverage rate, the higher the detection probability of these variants at such low

fractions.

As we showed in Figure 21 we obtained the FASTQ data from the 48 samples
sequenced. The first step in the data analysis pipeline was the alignment of the
obtained sequences to the reference genome using BWA (Li and Durbin, 2009).
To improve the coverage for the detection, all the FASTQs corresponding to

the same sample were merged in a single BAM file.
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Figure 22. Boxplot for level of coverage sample before and after the merge step.
Notice the increment on level of coverage on samples before merge, particularly on
embryo samples.

Figure 22 shows that in the case of the embryo samples, merging the data
considerably increased the level of coverage from a median of 55 to an average
coverage of go. In the case of the adult samples, this increase was not seen in
such an acute way, that increased only from an average of 9o to 91.5. It is worth
emphasizing those samples that had very little initial coverage and that
represented a greater challenge for the detection of variants. In the case of the
embryos, we found an initial sample with only a coverage 1 that was increased
to 13 thanks to the merge. In the case of the adults, the sample with the lowest
coverage was a sample with only a coverage 8, since no more samples were

available, its level of coverage could not be increased.

At the time of this study, the majority of variant callers variant callers are
dedicated to the detection of somatic mutations in the clonal profile of cancer.
Finally to perform the landscape of somatic variation in neural development

and the role of Pgbds, we chose three methods that allow the detection of
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mutations at a very low VAF: Pindel, and Delly2, focusing on indels and large
structural variants, and GATK focusing on SNVs. To perform the mutation
detection, we follow the profiles previously indicated in the methods section
2.2.2. In this study, we did not include SMuFin because It did not produce
convincing results during trial analysis, as it is quite conservative and
disregards variants supported by a few reads. In one of the tests performed,
specifically on a sample of Olfactory bulb from a healthy mouse, SMuFin
detected only a Large SVs, zero small SV, and go SNVs.

In order to increase sensitivity, we joined the results for each sample obtained
from the different callers We filtered out the duplicates within and between
callers to avoid redundancy, considering a similarity window of 300bp. In case
a mutation was found to be duplicated, we kept the one with the highest
detection quality, VAF, or ultimately, we gave more weight to the deletions. In
the final step, in order to maintain specificity, we selected those variations that

had the default PASS quality filter for further analysis.

Altogether, we confirmed the ability to identify somatic variants on neural

tissues despite the above-mentioned factors.

2.2 Comparative analysis of somatic variation between
adult and embryo

With the current results we had a first overview of the landscape of somatic
mutations in neural tissues in embryo and adult samples (SNVs are currently
being detected and will be included next in the study). Based on the observed
variation we found a total of 32,190 somatic mutations in adults (18,194 on
WT sample; 13,996 on KO sample) and 9,795 on embryos, (3,816 on WT
sample; 5,979 on KO samples). As shown in the pie-chart (Figure 21),
deletions were the most represented variants on adults wild-type mice with
(86.96%) , followed by insertions (5.45%), duplications (3.95%), inversions

(2.32%), and others (1.32%). In the case of embryos wild-type mice, deletions
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were the most represented variants with (73.36%), followed by duplications

(19.52%), inversions (4.64%), insertions (1.77%) and others (0.71%).

Given the predominant profile of the deletions in both adult and embryonic
samples in the WT group, and based on previous studies (Henssen et al.,

2017b) we focused our attention on deletions.

2.32% 4.64%
(440) (221)
1.32% 0.71% |
| 5.45%
A i) 245% B @4 | 1.77%

19.52%

T SR
749
(929)

86.96% Type of mutations 73.36%
(16,501) Deletions (3,491)
M Duplications
Insertions
Inversions
M Others

Figure 23. Landscape of mutations in wild-type mice. A) Representation of somatic
variants detected on Adults wild-type mice. B) Representation of somatic variants
detected on Embryos wild-type mice. Of note, the most prevalent type of
intrachromosomal mutations acquired in WT mice were deletions, representing
86.39% of mutations in embryos, and 86.97% in adults
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2.3. Characterization of the deletions on wild-type mice

To check if there was any deviation that could affect the total count of the
samples and to analyze the differences between tissues and their possible
relationship with Pgbds activity, we studied the distribution of the deletions

through the different tissues from neuronal samples.

As the first exploration on wild-type mice, we observed that the number of
deletions was not dependent on tissue type in either adult or embryo samples
(Figure 24). In conclusion, we can indicate that no sample or mouse could
deviate our statistics since the distribution is presented relatively
homogeneously; and that a priori there is no significant difference between

tissues due to the possible activity of Pgbds.
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Figure 24. Number of deletions for each tissue on A) Adult sample and B) Embryo
samples. The X-axis is divided at the top by the mouse sample, and below it lists the
three tissues for each one: Cerebellum fissue, hippocampus and olfactory bulb in the
case of Adults, and Anterior brain, Posterior brain and Midbrain in the case of
Embryos. On the X axis it represents the number of deletions, which ranges from 0 to
3,000 in both bar graphs, A and B.

Then, we examined the VAF of the deletions to confirm if the high detection
observed in the samples could be correlated with a higher VAF compared to the
rest of the variants. In the analysis of the VAF profile (Figure 25), we observed

that the vast majority have a VAF of less than 0.5 . This profile, which is similar

Results 125



in both groups, is an indicator that the mutations occur in a low fraction.
Furthermore, the profile of mutations that we expected to find in our hypothesis

was corroborated by these low results in the VAF.

2500 " 2500

2000 2000

ions.

1500 1500

1000

Number of deleti
Number of deletions

1000

500 500
- 0 AL,

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
VAF VAF

Figure 25. VAF profile for the total of deletions on A) Adult sample and B) embryo
sample. X- axis represents the VAF that goes from 0 to 1, and the Y axis represents
the number of deletions, that ranges from 0 to 2,500 in both barplots, A and B.

We further investigated the length distribution to determine if the deletions
revealed a particular pattern in this area. The results (Figure 26) showed how
the vast majority of the deletions were around o-500bp. Within this range, two
peaks of deletions were observed in the case of adults in the fields around o-
25 bp and 200 bp; this last peak was also present in the case of embryos. Both
samples, with a higher degree in adults due to the accumulation of mutations

along time, showed a drastic drop in the number of deletions around 500bp.

Based on our experience in the field of detecting somatic mutations in cancer,
we presumed that some peaks may be due to methodological reasons
(i.e.library size or read length), as some information is used by most callers to
make predictions of mutations. Therefore we have compared our results with
the ones reported by the same variant callers from Chronic lymphocytic

leukemia (CLL) samples, that reported approximately a similar library size and

126



read length. A similar peak pattern was also observed in CLL samples.

Therefore we confirmed their presence for methodological reasons.
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Figure 26. Length distribution for the total of deletions on A) Adult sample and B)
embryo sample. X- axis represents the length of deletions in pairs of bases (bp) that
goes from 0 to 1,000; and the Y axis represents the number of deletions, that ranges
from 0 to 200 in both barplots, A and B.

To detect if there was any over-mutated region in the genome, in addition to
the distribution of the start of the deletions, we also studied the recurrence of
the deletions across the samples (Figure 27). We could observe how there is a
considerable accumulation of mutations showing a more significant
recurrence in the sample of adults than in embryos. The highest value is six
samples of the nine totals in the case of adults, while in embryos, we found a

case that is up to seven samples out of the nine.
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Figure 27. Circular genome representation (Krzywinski et al, 2009) of the
recurrency of deletions for each tissue on A) Adult sample and B) Embryo samples.
The red lines mark the deletions that we find in each of the three tissues that we
analyze for each wild-type mouse. The blue histogram represents the total number
of deletions detected across the entire genome in the different tissues, a total of nine.
We can see how the number of variations is higher in adults than in embryos, as well
as the recurrence of specific deletions, without reaching an event that is in the total of
all tissues.

2.4 Study of Pgbd5 KO mice vs WT mice

Following what we know about Pgbds related to deletion variants we
expected to find deletions that integrate two motifs on each point of
breakpoint. For this reason we focused our analysis on deletions higher than
24bp.

Centring our attention on the length of deletions, we observed a significant
difference between the distribution of the length of deletions in WT vs. KO
mice, in adults and embryos. In the case of adults (Supp. Figure 2), we worked
with a total of 27,856 mutations between the two KO and WT groups. We
observed that there was a significant difference in the window range of 50-

400 bp. This difference leads to an increase in the number of mutations in
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favour of the WT samples. In the case of the embryos (Supp. Figure 3), the
number of mutations studied was 8.313, which is lower than in the adult
scenario. In this group, we found a significant difference in the window range
of 150 to 550 bp. Unlike the adults, this difference was unexpectedly in favor

of the KO samples.

In summary, through this analysis, we found significant differences in the total
length distribution of deletions between WT and KO groups, and an
enrichment of deletions with lengths around 200-300 bp following what was

previously known about PGBDs5-related deletions.

For the subsequent analysis of these deletions we decided to choose a length
of deletion that would encompass these significant results for all the samples.
Thus, we selected the consensus length of 150-400bp for both adult and
embryo.With this criterion, we obtained: 9,149 mutations on adult wild-type,
7,440 mutations on adult KO, 1,625 mutations on embryo wild-type, and 3,172

embryo KO.

2.5 Identification and analysis of genes and genomic
intervals

In an attempt to elucidate the role of the selected rearrangements, we
investigated the genes and genomics intervals that are somatically rearranged

in wild-type versus knockout tissues.

On the side of genes, we first crossed the selected mutations with genomic
annotations - NCBI genes (see methods section 2.2.4), using the intersect
command from the bedtools suite. Furthermore , we studied those genes that
are found exclusively in WT to determine ifDNA rearrangement affects genes
that occur recurrently in independent individuals and diverse brain regions.

To do this, we filtered down genes that are rearranged in at least two out of
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the three individual mice and loci that are rearranged in at least two out of the
three brain regions. Through this analysis, we found genes that are exclusively

mutated in WT and KO, for both groups, on the three scenarios (Figure 28).
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A.
Adult KO 1699 240 Embryo KO
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123 2 3 144 7 3
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Figure 28. Venn diagram plots of mutated genes in A) Total samples , B) At least
two mice ,and C) At least two tissues.

We focus the attention on those genes that have at least one rearrangement

affecting their exons (Figure 29).

Only 31 mutated genes were found affecting coding regions. Among the ten
genes with exonic rearrangements present in exclusivity on WT samples , we
found four that were related to cell development (Dazl), nervous system

development (Ntngz2, Traf3ip1) and embryo development (Prkra).
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Figure 29. Venn diagram plot for mutated genes only affecting on coding regions

On the side of genomics intervals, following the same procedure as in the
previous section with the genes, we studied those genes that were exclusively
found in WT. We also studied if its DNA rearrangement affecting genes occur
recurrently in independent individuals and diverse brain regions (Figure 30).
Through this analysis, we found genomic intervals exclusively mutated in WT
and also KO, for both groups, and three scenarios. The regions have been
created dynamically through the list of mutations contained in each group,
with a static window size of 3Mb. For each mutation entry we had in the file
we generated the window, and we observed how many mutations those

windows covered.
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Figure 30. Venn diagram plots of mutated regions in A) Total samples , B) At least
two mice and, C) At least two tissues. The results for each group should be read
clockwise. Example: graph A group Adult KO + Adult WT, have the values 513/622. This
means that the result 513 belongs to the group Adult Ko and the 622 to the group Adult
WT.

Below we turned our attention on those unique groups, both genes and of
region intervals, for WT and KO within the adult and embryonic groups. With
this, we observed not only the differentiation between WT and KO within
each group, but also the unique characteristics of the embryonic groups that

had continuity and were present in the adult group too.

The first objective was to look at the overall picture of how both genes and
regions were distributed or linked to a particular tissue or mouse. The heatmap
graphs were divided by tissue and mouse sample; thanks to the mutation rate

described at the top of the graphs, we could verify that for both cases, genes
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and regions, there was no clear relationship either by the tissue or by a
particular mouse. It is worth mentioning that we didn’t get any result for one

of the adult KO mice olfactory bulb sample due to low coverage.

We then centered our attention on the top 20 genes and genomic regions of

each group and studied their effect thanks to the variant effect predictor.

First of all, in the study of the genes (Supp. Figure 4 ; Supp. Figure 5 ; Supp.
Figure 6 ; Supp. Figure 7) , we checked that when comparing the Adult and
embryonic samples, both for KO and WT, there is no gene that is prolonged
between the groups.In this scenario, we also analyzed the effect of the
mutation thanks to the effect predictor of the We were able to observe that
most of the mutations were in intronic areas. These also didn't cover any
relationship with a particular tissue or mouse. Secondly, we studied the
genomic region intervals (Supp. Figure 8 ; Supp. Figure 9 ; Supp. Figure 10 ;
Supp. Figure 11). A key point to take into account for the evaluation of the
results is that the coordinates are not the same across the groups due to the
practice for the formation of the regions, discussed above. When we observe
the regions highlighted in adults and in embryos, for each KO and WT group,
we observed that in this case there are regions that are shared between them.
In the case of the KO group, there are a total of 4 regions composed by:
chr5:18,000,000- 21,000,000, chr8:20,000,000-24,000,000 , chr3:5,200,000-
8,200,000 ,and chr16:54,000,000-57,000,000 . In the case of the WT group we
see that they are a total of 5 regions composed of: chr9:28,000,000-32,000,000;
chrs:6,216,000-9,216,000, chr3:140,000,000-143,000,000 , chr11:8,500,000-
11,500,000 ,and chrs: 6,200,000-9,200,000.

Accordingly, we developed a functional analysis with the variant effect
predictor to study regions scenario. The results showed that most of the
regions were in intronic areas, and also not cover any relationship with a

particular tissue or mouse.
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2.6 Detection of motifs around breakpoints

As mentioned in the previous study, deletions related to Pgbds revealed
significant enrichment of PGBDs-specific signal sequences motifs at the
breakpoints of PGBD5-induced tumor structural variants. When we studied if
the mutations that affected the above mentioned genes show any different

sequence motifs at their breakpoints, no significant results were found.

2.7 Functional enrichment analysis of genes affected by
pgbd5-dependent deletions

To test if rearranged mouse brain genomic loci exhibited distinct Pgbds-
dependent and/or independent functional associations, we took the genes that
are only mutated from each group and performed a functional analysis.
Through this analysis, we found that there is a neuronal development gene
ontology related to WT mutated genes in contrast with KO mutated genes, this

scenario is only represented on adult samples.
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DISCUSSION



Following the flow of the methods and results sections, the discussion has
been also split into two blocks; the first one is related to the development of
SMuFin2, an standalone reference-free strategy for the identification of
somatic genomic variation; and the second is focused on the study of somatic
DNA rearrangements induced by Pgbds during brain development and adult
state. Following the same structure, this thesis contributes to science in two
different ways: one corresponds to the generation and improvements of
approaches for genome analysis, which can help the community to have a more
accurate methodology for the incorporation and interpretation of genomic
analysis in basic research and clinical practice. ; and the application of these
methodologies to characterize and understand the landscape and the role of

somatic variation in neuronal development in mammals.
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1. Development of a computer-implemented and
reference-free strategy for identifying variants in

nucleic acid sequences

As described in the introduction, the identification and interpretation of the
broad spectrum of potential variation within genomes, affecting from single
nucleotides to large chromosomal rearrangements, requires a myriad of
different variant callers. As each variation type and size impose different
searching strategies through the sequencing reads.To this end, this PhD project
proposes SMuFinz algorithm as a comprehensive and highly scalable solution
with the following advantages: (i) identifies a wider range of genetic variants
in a single execution; (ii) achieves base-pair resolution; (iii) and detects the

presence and insertions of non-human sequences, such as viruses.

This PhD includes the design and implementation of a computationally highly
efficient reference-free strategy (described in Patent: A computer-
implemented and reference-free method for identifying variants in nucleic
acid sequences. NUM: WO 2018/007034) to process NGS reads from two
different samples (states) to identify and isolate all potential changes between
them in the form of aligned read blocks of aproximately 250 nt long. This
constitutes a highly efficient and independent module, where different
algorithms can be plugged providing different types of outputs. For example,
also as part of this thesis, a preliminary module has been added for the
identification of somatic variants from the comparison of normal and tumor
genomes. These two modules together constitute SMuFin2, which

demonstrates great potential for the accurate identification of all types of
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somatic variation, including the exact insertion position for cancer-related
viruses. But the versatility that this strategy confers opens path to additional
implementations in scenarios besides the identification of somatic genetic
variants, by processing these blocks differently. For example, for the analysis
of RNAseq data, a researcher would need to change the internal thresholds,
and add a module to answer specific questions regarding the differential
expression of genes, and/or the detection of different forms of splicing. This
NGS analysis platform has easy access to tune and change the different
thresholds and decisions made during the process, making the adaptation to

other needs more feasible.

Of note, the development of this NGS read analysis platform and SMuFin2
represent an efficient example of close collaboration between computer and
life-science groups. With the goal of developing an application with the
intention of maximizing the efficiencies of algorithm and implementation,
Jorda Polo (from the group of David Carrera, BSC) was devoted to the
computational efficiency of the process, whereas my specific contribution to
this project has been the design of the algorithm, and its validation in the form
of SMuFin2 against real cancer and normal genome sequences. This close
collaboration has proven to be crucial to address the development of
applications that require a close interplay between implementation and

algorithm.

As to computer efficiency, this analysis platform excels in minimizing time and
energy consumption. Scalability is one of the main limiting factors in genomic
research considering the current amount of petabytes of data that we are
already facing up and even further, with the expected wide deployment of
sequencing to millions of genomes that we will experience in the following
decade. At this point scalability becomes from a highlight to a necessity in the

life-science community, which is not addressed by many commonly used
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programs for genome analysis. Consistent with this notion, SMuFin2
performance in a median sample patient with 30x coverage, using 8 nodes of
Marenostrum 4, requires 14,7 CPU hours and 4,9 kWh consumption (section
1.3 SMuFin2 implementation). Variant identification in the complete PCAWG
dataset (2,856 pairs of healthy-tumor samples) was performed on the group
using 16 nodes of Marenostrum 3 and entailed a 425,280 CPU hours and
148,848 kWh consumption. The exact same analysis but implemented with the
novel SMuFinz algorithm generated in this project would have encompassed
a total expense of 39,072.6 CPU hours and 13,024.2 kWh. Thereafter, SMuFin2
represents a giant leap in computational scalability by providing a 12-folds
reduction in computational resources and, as SMuFin2, constitutes the most
appropriate tool for genetic variant identification in large-scale consortiums.
To facilitate the broad deployment of SMuFin2 , we considered alternative
scenarios besides cloud or HPC computing. As a result, it can be implemented
and executed in a workstation computer, which is a relevant framework taking
into account privacy policies in genomic data. Of note, anticipating the current
trend to promote clinical translation of genomic research, our workstation
version could be implemented in small laboratories or clinics. The
computational efficiency of the methods used in variant identification is in
response to the growing demand for genome analysis, a crucial factor not

found in all current variant callers.

The strategy behind SMuFin2 is expected to contribute with additional
advantages for the identification and classification of somatic variants,
compared with other available variant callers. On one hand, SMuFinz2,
although it accepts aligned BAM files as input, uses the reads directly, as in
FASTQ files. In this way, the method is not subjected to any pre-aligned file
with an specific format or program performance (in this case BWA for the

BAM file), which makes it less dependent on changes of these alignment
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programs, as it happened with the most recent of the BWA program, with
changes that required adjustments in all reference-dependent variant callers.
In addition, this pre-alignment step involves further limitations: (i) it requires
time and computing resources. On average, BWA takes approximately 2d ays
to align a 30x NGS sequenced whole genome, using 4 CPUs (Yung et al,, 2017),
(ii) the state-of-art and most widely tool used for pre-alignment is BWA, and
hereby all variant callers, despite of their particular features, suffer from the
same alignment errors, limiting the availability of alternative strategies to
combine with, and to increase the efficiency of approaches that use multiple
variant callers. (iii) the alignment of reads containing somatic or polymorphic
variants relative to the reference genome, are expected to align with low
quality or to be misaligned, depending on the type and size of the variant. In
particular, reads with structural variants are poorly mapped by BWA,
compared with reads covering one single nucleotide variant. (iv) Following the
previous point, non-human DNA sequences (viruses, for example) present on
the sequenced genome, will not be aligned to the reference genome, and will
not be considered in the study, unless is specifically captured. On the other
hand, reference-free methods do not depend on prior pre-alignment steps and

therefore are not subjected to these limitations.

In order to gain detection and classification resolution , the strategy behind
SMuFinz2 pays particular attention to the alignment region where the variant
is represented. Having a complete and properly aligned catalogue of the reads
around a given variant is key for its identification and proper classification
(Figure 17). Alignment is performed considering the consensus sequence of the
block against that of a single read. This gain in alignment quality occurs, not
only for the blocks that contain mutations in regions that belong to the
reference human genome, but also for those not present in the reference

genome, mainly corresponding to viral genomes. Of note, considering the large
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genetic variability in viruses, this advantageous strategy sets SMuFinz apart

from its competitors.

Indeed, SMuFin2 shows a high potential performance in the identification of
virus presence and insertions as our preliminary analysis shows (see 2.1 of the
results section). In both in-silico genome and in Pan-Cancer data, SMuFinz2
was capable of delineating the inclusion of a virus genome but also provided
the actual insertion point in the same single execution on an in-silico model.
To detect viruses, SMuFin2 does not use reference virus genomes as an
additional step. Insertion detection is done directly, and then those blocks that
do not align with the human reference genome are aligned against the virus
database of the user’s selection. This approach avoids two of the most common
issues reported in virus identification tools: (i) the additional alignment of the
entire sample against a reference genome containing the virus sequence, or the
creation of a new reference genome with all the viruses, as it is required for
VERSE (Wang et al,, 2015) ; and (ii) the viruses in the real sample have to be
quite similar to the reference sequence of the viruses, and given their high
variability, they will not always be able to be detected, this also includes the

possibility of detecting new viruses that are not contained in the database.

Based on the last big study published by the working group of pathogens
within the PCAWG (Zapatka et al., 2020), the strategy used was based on two
major steps: (1) Virus Detection, using three independently developed
pathogen detection pipelines that rely on the: 'Computational Pathogen
Sequence Identification’ (CaPSID) (Borozan et al., 2012), 'Pathogen Discovery

Pipeline’ (P-DiP) b (https://github.com/mzapatka/pdip) and 'Searching for

Pathogens’ (SEPATH) to generate a large compendium of viral associations
across 38 cancer types.; (2) Virus integration sites analysis: A subset of viral
candidates identified to be present in tumor samples by the CaPSID analysis

pipeline was selected for the detection of viral integration events using the
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VERSE algorithm. SMuFin2’ functionality would cover and provide additional
information within these two steps, incorporating new ones. For example,
SMuFin2 can use the original sample without having to first filter for those
reads misaligned with the reference genome. Importantly, in general, SMuFin2
would fulfill the two steps of the strategy in a single execution, by evaluating
the hash table of SMuFin2, we can directly detect reads (k-mers) in the tumor
sample that have no match on the normal genome, likely corresponding to
non-human sequences. This allows us to potentially identify the entire viral
sequence that has integrated adn, by adding additional features, be able to
assemble those fragments into complete integrated (viral) sequences. On the
other hand, manual inspection of the results of the preliminary module for
block processing, show that the identification of reads that contain human and
non-human k-mers allow are informative of the exact insertion point within
the genome. Therefore, SMuFinz is potentially useful to complement current
efforts towards the characterization of viral integrations in tumor genomes

and to investigate their role in tumor formation and progression.

The organization of the data within SMuFinz2, in the form of hashtables, results
in highly efficient storing of the k-mers and their corresponding reads. This
format enables us to save other read features along with the read id. The
analysis of the structure of these hashtables, beyond providing direct variant
candidates in the form of blocks, can also provide additional information
regarding the sample. A prevalent scenario is that researchers have an
imprecise knowledge about the coverage and sequencing errors, as these are
strongly dependending on the quality of the biological sample. This
information is usually obtained using external software that is based on a pre-
alignment step of the sample, such as BWA or Alfred (used in the mouse
project, see Section 2.1). By calculating the frequency of occurrence of k-mers

across the entire hashtable, SMuFinz is able to have a quite precise estimate of
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the real coverage of the sample. Moreover, we can estimate the sequence error
rate of a particular sample by counting the fraction of unique k-mers, which is
expected, in most cases to correspond to sequencing errors. This estimation
will also be dependent on the sample, as tumor samples with a high degree of
heterogeneity can have a larger fraction of variants corresponding to low cell
fractions and can be taken as sequencing errors. These observations not only
give a much comprehensive overview of the input data being analysed, but
they are also crucial to apply the most appropriate filters to precisely identify

the genetic variants that we are interested in.

Potential users of SMuFin2 cover a broad range of expertise in computational
analysis. We addressed this by generating a versatile set of output results that
should attain the needs of our diverse candidate users. On one hand, we
provide output files in the formats accepted and used within the community,
e.g.VCF format. Thus, the results can be easily compared with the rest of the
variant callers available in the field. As a very useful feature, SMuFinz2 is able
to also generate an equivalent output file in html format, reconstructing the
region that contains the somatic variant, as well as other types of sequence
information, counters, etc. that enabled its particular identification. This
provides an intuitive and alternative way of evaluating the quality and

confidence of the variant call, which is particularly relevant in clinical contexts.

In summary, SMuFin2 excels in enlarging the landscape of genetic variants
identified without computationally compromising the viability and costs of
the analysis, that suits for current and upcoming large volumes of sequencing
data within biomedical research and, slowly, also within the clinical practice.
In this last environment, the low cost, as to time and computing resources
provided by SMuFinz is also crucial to give a rapid clinical response to the
patient. Furthermore, Introducing a new strategy for the detection of somatic

variants makes SMuFinz2 well suited for evaluation for greater accuracy for
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overlapping calls. The recall of overlapping calls varies depending on the
combinations of the specific algorithms and not the combinations of the

methods used in the algorithms (Kosugi et al., 2019).
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2. Landscape of somatic variation in neural

development and the role of Pgbd5

Non-cancer-related somatic mutations that occur during development may
affect cell proliferation, as is the role of cancer, or may alter cell function
without causing a proliferative or any other nocive effect. Recent literature
suggests that somatic mutations might also occur during brain development
without resulting in a disease status. This poses the question of whether this
somatic genetic diversity could foster functional diversity among brain cell-
types. Although it is known that somatic variation can play a role on neuronal
development no extensive analysis has been done to characterise the landscape
of somatic variation in mammal neural tissue. In this thesis we have covered
part of this area by studying the landscape of variations in mammals on
neuronal development, in order to understand, in particular, those arising from

the activity of the PGBDj5 gene.

The characterisation of somatic variants in neural tissues is particularly
challenging, when compared to the tumor genomes. This is due to the expected
high tissue heterogeneity, and the consequent low coverage (VAF) of somatic
variants, which are expected to be represented in low fraction of cells. By
combining extensive sequencing and deep variant calling analysis we have

partially overcome these limitations.

We first ensured that this methodology was able to detect different types of
somatic variants from healthy, non-tumoral, tissue. Although our
methodology does not capture a large fraction of somatic variants, represented

by undetectable low cell fractions, we were able to identify an extensive
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catalog of somatic variants, likely representative of the entire landscape of
variation within this tissue. The variant calling and classification results on wt
samples, as representative of the landscape of somatic variation in neural
tissues in mice, show a wide range of types of variants, covering from indels,
to large structural variants (analysis for SNVs is, at this moment, in progress).
From the comparison of the different fractions of variant types, adult and
embryo show deletions, as the most predominant type of variant with (86.96%)
and (73.36%) of all the detected variation, respectively. The types of variants
are also different in the two groups. In the case of adults, we detected
insertions (5.45%), duplications (3.95%), and inversions (2.32%); while
in embryos, we have duplications (19.52%), inversions (4.64%), and insertions
(1.77%). It is important to note that the percentage of duplications that we find
in the embryo samples is 5 times greater than what we find in the adult
samples, being the number of mutations higher in embryos (929) than in adults
(749) when we have previously mentioned that the number of total mutations
was higher in the last ones.These results start giving us an overview of the
landscape of somatic variation in neural tissues, and the differences
between embryos and adults. For example, the number of mutations was
three-fold higher in adult tissue samples (32.190) than in embryos (9.795). This
phenomenon may be due to the accumulation of somatic variations over time
that the adult tissues have undergone. Further studies are needed to evaluate
whether these differences imply that the mechanisms for genome remodeling
during embryogenesis are different from those present in later stages of the
organism. Alternatively, this difference can also derive from our detection
possibilities, i.e. to the different forms of clonal expansion of different cell
types, accumulating specific forms of somatic variation. After having an
overview of the general landscape of somatic variation in neural tissues, and
the potential differences between different stages of the organism, our next

goal was to determine which fraction of this variation was due to the activity
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of Pgbds gene, using the comparison between the Pgbds-Knock-out and wt

samples.

We focused on the deletions for the comparison of wild-type and knockout
samples to determine the role of Pgbds in the catalog of somatic variation. This
decision was due to the predominant profile presented in both adult and
embryonic samples in the WT group, and the previous study related to Pgbd
activity 5 (Henssen et al,, 2017b) of the type of variant associated with its
activity. As the first exploration on wild-type mice, we observed that a priori
there is no significant difference between tissues or samples (Figure 22). With
this, we conclude that the deletions are not associated with a specific tissue,
and we corroborate that no mouse specimen causes a deviation of these results.
Regarding the VAF profile(Figure 23), it was similar in both groups. The
majority of the deletions were below the value of 0.25, which corresponds to
the pattern we expected from somatic variability in non-tumoral tissues. We
then investigated the length distribution and concluded that the profile in both
groups was similar, with a drastic drop in the number of deletions of 500bp
(Figure 24). This last, we could confirm that it was due to methodological
causes because a similar peak pattern was also observed in CLL samples that
reported approximately a similar library size and read length. On the other
hand, we did not find any region of the genome that was highly recurrent
(Figure 25).

On the Study of Pgbds KO mice vs WT mice, we observed statistically
differences in the total distribution of the length of deletions between WT and
KO. Surprisingly, these differences were opposite in the groups. While in
adults the increase in variation was in favor of WT (Supp. Figure 2), in embryos
it was just the opposite and was in favor of the KO group (Supp. Figure 3),in a
similar windows length. Also, we found an enrichment in deletions of around

200-300 bp, in concordance with preliminary data available for PGBD5-related
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deletions (Henssen et al., 2017b) For the subsequent analysis of these deletions
we decided to select a consensus length of deletion of 150-400bp for both

adult and embryo.

With this group of significant deletions, we identified those genes affected by
the variations and those genomic intervals with more presence of variations
for each one of the groups (Adult-KO, Adult-WT, Embryo-KO, and Embryo-
WT). We were able to identify those that were exclusive to each group, as well
as to analyze those that were common among the groups and see their
dynamics. Note that of the total only 31 mutated genes were found affecting
coding regions. Among the ten genes with exonic rearrangements present in
exclusivity on WT samples, we found four that were related to cell
development (Dazl), nervous system development (Ntng2, Traf3ipi) and
embryo development (Prkra). Even follow up analysis was carried out to
identify the mutated regions and genes, no correlation was found among the

deletion profiles and any particular tissue or mouse.

Once the deletions of interest were selected, further studies focused on the
functional analysis to better understand how the underlying biological
processes correlated to the mutations. Accordingly, we selected the genes that
were only mutated from each group (Adult-KO, Adult-WT, Embryo-KO, and
Embryo-WT) (Figure 26). We found that there is a neuronal development gene
ontology related to the genes that are mutated in the WT samples in contrast
with the genes mutated for the KO. Interestingly, this scenario is only
represented on adult samples and not in embryos. This phenomenon may be
due to the fact that when embryo samples are collected, they are in the primary
development stage, where the cells are actively dividing and the amount of
cells increases drastically. Thus, many of the cells carrying the mutations
observed in the adult mice are actually eliminated on embryos during this

stage. It is interesting to highlight that the genetic classification that
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accompanies the production of neuronal cells during embryogenesis is part of

the neuronal selection process.

Taking the whole analysis as a unit, we cannot decide on either of the two
models intended for such a physiological process. Model1; the mechanism
would be analogous to RAGi/2-mediated rearrangements of the
immunoglobulin receptor genes, where Pgbds would induce deletions or
inversions of exons in one or few genes, leading to the production of new
exon-exon junctions. Model 2; Pgbds would act on a diverse set of genetic loci,
including genes or intergenic regulatory sequences, which would be identified
by the presence of conserved sequence features. The second model is
analogous to Barbara McClintock’s Activator-Dissociator transposition
mechanism, and may indeed involve specific mouse sequences that are
mobilized or rearranged by Pgbds (Comfort, 2001) (McClintock B, 1947). The
genomic loci, genes and SV features may be diverse, but would all share a
common set of DNA sequence substrates, such as for example transposon

inverted terminal repeats (ITRs).

In summary, the objective of the detection and analysis of somatic DNA
rearrangements induced by Pgbds has been fulfilled with promising results.
Dr. Kentsis group is currently re-sequencing a list of candidate genes and
regions in more than ten new samples to confirm the findings and gain
statistical power. In particular, next steps will include the design of a custom
Nimblegen hybrid capture probe set to re-sequence the samples at high depth,
as well as to continue working with RNA-seq results to see if there is any

correlation with the above described rearrangements.

Considering the promising results that we obtained with the deletions, we
decided to expand the spectrum of mutations to be analyzed and not just

concentrate on the deletions. Another question that remains unclear is why
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the mice brain exhibits more somatic rearrangements than control tissue
(blood/liver). To answer this question we will consider running the same
variant callers but inverting the cases by controls, which would allow us to
verify if the neuronal tissue presents a higher number of mutations than the
blood samples. This could be due to two hypotheses: i) methodological because
we cannot detect it due to its low cell-fraction, or ii) biological, because one of
the tissues has less amount of variations. Normal preliminary results for blood
sample deletions indicate that we have been able to corroborate that the

number of deletions identified so far is lower than in neural tissues.

At the same time, by carrying out a characterization of all the samples (cases
and controls), we will be able to confirm that all the mutations that we find in
the samples of neural tissue are exclusive to this tissue, and we have no false
positives in our results. In this approach, the procedure we will start by
characterizing all the tissues. Following this, we will validate if the variations
detected in the neuronal samples do not contain false positives. Once we have
the variant landscape, we will reanalyze all types of variants with the same
pipeline shown in the results section to identify all those variations that may

be significantly associated with Pgbds activity.
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CONCLUSIONS



Development of a computer-implemented and reference-free
strategy for identifying variants in nucleic acid sequences
(i)A reference-free and scalable algorithm, called SMuFinz, has been developed

for the identification of somatic variants in tumoral samples.

(ii))SMuFinz, a reference-free based startegy, is scalable and high efficient. It
can be implemented into the normal research activity of cancer genomics, in
contrast to what was believed due to the high computing demand generated

by current sizes of data and expecting larger datasets.

(iii) The preliminary tests done with in SMuFin2 has shown the potential to
detect a wide range of somatic variation, including insertions of non-human

DNA on tumoral sample.

Landscape of somatic variation in neural development and the role of
Pgbd5

(i) The application of current tools for the identification of somatic variation in
cancer can be applied to study somatic physiological modifications in neuronal

tissues.

(ii)) WT and Pgbds KO present a difference in the total distribution of the
deletion lengths, increasing in number of mutations in adult mice and

embryos, respectively.

(iii) The study of genetic ontology on selected genes shows a neuronal

development gene ontology related to WT on Adult samples.

(iv) Taken together we identify a Pgbds dependent somatic activity in

different neural tissues.
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[core]

# Length of k-mers, which is the size of the substrings that reads will be

# split into in order to be analyzed. The recommended value is in the range of
# [28, 32]; currently only k-mers of up to length 32 are supported.

k = __K-MER_LENGTH__

# Partitioning is the scaling mechanism that allows distributing the

# computation, splitting data into different chunks that can be processed

# independently. Partitions can be adapted to run sequentially or in parallel,

# in a single or multiple machines. While increasing the number of partitions

# lowers the peak amount of memory, it also increases the amount of duplicate
# data during the filter stage, which in turn may incur in slower merging.

#

# «num-partitions» represents the total number of partitions, while «pid» is

# the current partition that will is processed in a particular execution, in

# the range [0, num-partitions).

num-partitions = _ NUM_PARTITIONS_
pid = @

num-loaders = 8

num-storers = 16

num-filters = 28

num-mergers = 16

num—groupers = 16

# Input format for normal and tumoral samples. Two formats are available:
# - fastq: gzipped FASTAQ files (recommended)

# - bam: aligned BAM files with corresponding BAI index (experimental).
input-format = bam

# Paths to normal and tumoral input files. For multiple files, wildcard

# expansion is supported, e.g. «file-*.fq.gz».

#filter quality check

input-normal = /path/to/normal/input/files
input-tumor = /path/to/tumor/input/files

output = /path/to/output/dir

data = ./data

check—-quality = false

[prune]

# Desired false-positive (FP) probability for both bloom filters, «all» and

# «allowed». Lower FP rates involve a higher number of hash functions to be
# calculated, which translates into additional computation to create and

# access the bloom filters. Note that this is only used as a performance

# tradeoff; a lower rate doesn't have any impact in the results since later

# filters address and discard FPs.

false-positive-rate = 0.05

# Number of expected items in the bloom filters. Higher capacity translates
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# into additional memory. The «all» bloom filter should be approximately an
# order of magnitude larger than the «allowed» bloom filter.

all-size = 100000000000

allowed-size = 10000000000

[count]

# The count cache keeps track of k-mers that are seen only once so as to not
to

# include them in the tables, reducing the overall memory footprint. It's

# enabled by default and recommended when running standalone counts, but it
# can be disabled when running with prune.

enable-cache = false

# Total number of expected items in the cache and table; generally speaking,
# the cache contains stems seen once or more, while the table contains stems
# seen more than once (so it's smaller). Sizes may need to be adjusted

# depending on the input so as to not to over or under-provision the memory.
# E.g. an input with ~4,250 million 80bp reads with a coverage of 60x

# requires a cache of size 106240000000 and a table of size 12800000000.
cache-size = 106240000000

table-size 12800000000

# Limit exported rows to a particular subset of k-mers that match the following
# minimum/maximum frequencies. That is, either the normal count or the
tumoral

# count of the k-mer is strictly greater than «export-min» and less than

# «export-max» (both excluded).

export-min = 0

export-max = 131072

max—conversions = 4

output = __ OUTPUT_COUNT__

prefilter = true

# Format used to store filtering indexes. Two kinds of formats are supported:

# - plain: In-memory hashtables that are dumped to disk as simple

# space-separated plain text files.

# - rocks:RocksDB-backed databases, optimized for writing, then compacted for
# later stages.

index-format = rocks

# Number of indexes built for each partition. Increasing the number of indexes
# can speed up the filter stage, potentially slowing down the merge stage.

# Should be smaller or equal to the number of filter threads,

# «core.num-filtersy».

num-indexes = 2
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# Candidate k-mer filtering/selection based on imbalanced absolute counts with
# the following criteria: at most «max-normal-count» normal k-mers, and at
# least «min-tumor-count».

max—normal-count-a = _ MAX_NC_A__
min—-tumor-count-a = __MIN_TC A__
max—normal-count-b = _ MAX_ NC_B__
min—-tumor-count-b = __ MIN_TC B__

# Maximum number of reads per k-mer; k-mers seen in more than «max-reads»
# different reads are discarded when building the filter indexes.
max—-reads = 2000

output = _ OUTPUT_FILTER__
[merge]
output = _ OUTPUT_MERGE__
[group]

# Groups are generated after finding "leader" reads using a window-based
# technique. A read becomes a "leader" if it contains at least «window-min»
# candidate k-mers in a window of «window-len» bases.

window-min = __WINDOW_MIN___

window—len = __ _WINDOW_LEN__

# Maximum number of reads per k-mer; reads from k-mers with more than

# «max-reads» reads are dropped from the groups file and marked as such in
the

# results. Note that only reads are dropped, no k-mers will be removed. This

# value should be lower than «filter.max-reads».

max—reads = 2000

# Estimate number of candidate lead reads, which identify groups. For best
# performance, this value should be slightly higher than the actual number of
# candidate leads.

leads-size = 12800000

output = __ OUTPUT_GROUP__

[rocks]

# Number of RocksDB background threads. High priority threads flush
memtables

# to disk, while low priority threads compact sstables.

num-threads-high = 10

num-threads-low = 10

block-cache-size = 12884901888

block-size = 16384
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# vim: ft=dosini

Supp Figure 1. SMuFin2 configuration file. All the paths and variables are configured
in advance to facilitate the user.
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Supp. Figure 2. Comparison of number of deletions per length between WT and

KO Adults samples.
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Supp. Figure 3. Comparison of number of deletions per length between WT and

KO embrionary samples.
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Adaptation to environmental factors shapes the
organization of regulatory regions in microbial
communities

Leyden Fernandez', Josep M Mercader', Mercé Planas-Félix' and David Torrents'?"

Abstract

Background: It has been shown in a number of metagenomic studies that the addition and removal of specific
genes have allowed microbiomes to adapt to specific environmental conditions by losing and gaining specific
functions. But it is not known whether and how the regulation of gene expression also contributes to adaptation.

Results: We have here characterized and analyzed the metaregulome of three different environments, as well as
their impact in the adaptation to particular variable physico-chemical conditions. For this, we have developed a
computational protocol to extract regulatory regions and their corresponding transcription factors binding sites
directly from metagenomic reads and applied it to three well known environments: Acid Mine, Whale Fall, and
Waseca Farm. Taking the density of regulatory sites in promoters as a measure of the potential and complexity of
gene regulation, we found it to be quantitatively the same in all three environments, despite their different
physico-chemical conditions and species composition. However, we found that each environment distributes their
regulatory potential differently across their functional space. Among the functions with highest regulatory potential
in each niche, we found significant enrichment of processes related to sensing and buffering external variable
factors specific to each environment, like for example, the availability of co-factors in deep sea, of oligosaccharides
in soil and the regulation of pH in the acid mine.

Conclusions: These results highlight the potential impact of gene regulation in the adaptation of bacteria to the

different habitats through the distribution of their regulatory potential among specific functions, and point to
critical environmental factors that challenge the growth of any microbial community.

Keywords: Adaptation, Environment, Gene regulation, Metagenomes

Background

Metagenomic studies generate a massive amount of se-
quence information of communities of organisms living in
different physicochemical conditions. This allows, for the
first time, to search for the molecular and genetic basis of
adaptation through the comparison and the study of ge-
nomes of different species sharing the same environment,
and of similar species living in different conditions. The
comparative studies of the potential protein content in
many of these datasets have already provided interesting
examples of specific functions that correlate with specific
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08034 Barcelona, Spain
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characteristics of the environment. For example, in the
search of functional fingerprints related to specific habi-
tats, a comparative analysis between soil, and deep and
superficial aquatic environments found abundant ortholo-
gous groups specific of these particular habitats [1]. In this
case, the examination of higher order processes reveals
differences in energy production between these three
niches, such as starch and sucrose metabolism in soil or
photosynthesis in oligotrophic surface waters [1,2].

More recently, metagenomic studies have gone beyond
the sequencing of DNA and the counting of genes, and
have incorporated techniques and protocols to detect,
measure and analyze their transcriptome. While the se-
quencing of metagenomes provides an overview of the
genes present in specific environments that can poten-
tially play a role in adaptation, the analysis of expression

© 2014 Fernandez et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http//creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public

Domain Dedication waiver (http//creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this

article, unless otherwise stated.
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provides a more precise picture of what functions are
expressed and active in a particular moment of the en-
vironment. Even though the techniques for mRNA isola-
tion and sequencing from metagenomic samples are still
not able to provide comprehensive pictures of expres-
sion profiles, there have been important progresses in
this direction and some interesting findings. For example,
one of the first studies of metatranscriptome, despite it
covered a small fraction of the expressed genes, identified
specific biological processes active in bacterioplankton
communities that could be correlated with either marine
or freshwater conditions [3]. As the coverage and accuracy
of these analysis increased (mostly by including next gen-
eration sequencing techniques), more active processes
have been linked to variable environmental conditions.
For instance, an expression time-series performed on mi-
crobial communities living in surface oceanic showed that
processes of energy production were active in hours with
light, while anabolic housekeeping processes were pre-
dominant during the night [4]. Despite the underlying
methodology behind, metatranscriptomics still needs to
overcome several challenges [5]. But the rapid progress in
this field is promising and we will soon have the oppor-
tunity of building accurate expression profiles and com-
pare them across environments, as well as exploring the
interaction of processes of different organisms within spe-
cific environments.

In the present study we have conducted a novel ap-
proach that complements and bridges metagenomic
and metranscriptomic concepts. The rationale behind
this study relies on the hypothesis that the regulation
of the expression of those biological functions that
confer adaptation to variable environmental conditions
will show higher complexity, i.e. they will have complex
regulatory regions.

Previous studies [6,7] have shown that genes with
complex regulation requirements show higher number
of transcription factor binding sites (TFBSs) in their up-
stream cis-regulatory regions compared to housekeeping
genes. For example, stress-response genes in yeast need
a precise regulation of their expressions patterns to
adapt to drastic changes of environmental conditions
and also show a significantly higher number of different
TFBSs in their upstream regulatory regions. Beyond the
extensive analysis of the regulatory characteristics of par-
ticular functions (8], up to now, there are not global ap-
proaches and studies on how the regulatory potential of
entire microbial communities is influenced and orga-
nized in natural habitats.

In particular, and using the same rationale, we have
measured and compared the complexity of gene regula-
tion in bacteria and archaea living in environments with
distinct underlying physico-chemical conditions. For that
purpose, we searched within each of the environments
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for specific functional signatures predicted to have high
regulatory potential. These are correlated with specific
and also dynamic physico-chemical stress factors of each
of the niches. The functional significance of the differ-
ences detected highlights the existence of adaptation
strategies that rely on the regulatory potential of regions
that control the expression of specific fitness genes.

Results and discussion

With the ultimate goal of identifying and characterizing
the extend, to which environmental factors influence the
organization of the regulatory potential of particular
microbial communities, we have studied and compared
the regulome of three fundamentally different ecological
niches using whole metagenomic data. We next provide
details on the major results and findings of this study: (1)
The development of a new pipeline for the identification
and prediction of proximal regulatory regions and their
TFBS from metagenomic data; (2) and the generation of a
collection of regulatory regions from three well studied
and reference metagenomic samples (Whale Fall, Waseca
Farm and Acid Mine). The comparative analysis of this
data has shown that, while (3) the overall distribution of
TFBS on promoters is the same across environments, their
distribution across their functional space is significantly
different, as (4) promoters with higher number of TFBS
tend to regulate environment specific functions, and (5) a
fraction of these are environment specific and can be
linked to characteristic external physicochemical factors
(Additional file 1: Figure S1).

Identification and classification of proximal regulatory
regions from metagenomic data
We first characterized and analyzed the gene regulatory
space from metagenomic data obtained from three well-
known sequenced environments with clearly different
physico-chemical properties: Whale Fall Community,
Acid Mine and Waseca County Farm Soil [1]. For that,
we started by identifying and defining gene regulatory
regions to later characterize them, as to their levels of
TF binding, i.e. their regulatory potential. For the design
of a search strategy, we followed two major consider-
ations: first (1) avoiding biases in favor of most abundant
and well-known bacteria (and closely related species), as
well as, (2) ensuring an equal coverage through all the
phyla detectable in those samples. As a result, we devel-
oped a pipeline that consists of two major steps: (1)
first the identification of proximal regulatory regions
and then, within each of them, (2) the prediction of po-
tential regulatory transcription factor binding sites. The
complete pipeline is detailed in the Methods and summa-
rized graphically in Figure 1.

Through extensive homology searches, our procedure
identified putative proximal regulatory regions in Waseca
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METAGENOMIC SEQUENCE DATA
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promoters cover all phyla (Additional file 1: Figure S2)

that were previously described in these environments [1].
Next, we estimated the level of regulatory potential for

each of these promoter regions through the prediction

Farm Soil, in Acid Mine Drainage, and in the Whale Falls
Sample (a complete catalogue of these regions can be
found in Additional files 2, 3 and 4). A first and basic taxo-
nomical analysis of these sequences shows that these
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of their transcription factor binding sites. In order to
minimize possible biases favoring promoters from well-
studied bacteria (or close species), we did not consider
TFBSs prediction strategies that rely on the homology
mapping of described TFBSs. Instead, we used a de novo
prediction protocol that relies on the identification of
palindromic repeats [9], which have been previously de-
termined as preferred binding sites for transcription reg-
ulators in bacteria and archaea [9-14]. Because this
method was originally developed for the analysis of sin-
gle genomes [9] and, although it has been applied to a
wide variety of bacterial sequences and studies [14-16],
we needed to adapt it to cope with the heterogeneity
and redundancy of metagenomic data by including some
modification in the scoring system.

Evaluation of predicted promoters and TFBSs

Like any other de novo prediction method in sequence
analysis, we have to initially assume the presence of false
positive TFBS models among correct predictions. To as-
sess for the reliability of all of our predictions and to put
our strategy and results into the context of our goals
and of the current knowledge about regulatory regions
in prokaryotes, we performed different quantitative and
qualitative comparisons with available independent data
and methodologies.

From a quantitative point of view, we (1) first observed
that the global average of 10 TFBS per promoter (with 0
as minimum and 25 as maximum values) that we iden-
tify from all three environments is in agreement with
previous estimates obtained with different bacterial spe-
cies and methodologies. For example, using genome
comparative analysis, an average of 11-13 TFBS motifs
per promoter was found for Shewanella [17). In addition,
a study of the transcription regulatory network of E. Coli
K12 predicted up to 16 sites per promoter [18], and up
to 20 through the identification of half-sites motifs [19].
(2) We also evaluated the performance of our method-
ology by comparing our results with those obtained with
an independent method, MotifClick, that predicts cis-
regulatory regions using a graph-based polynomial-time
algorithm [20]. After running both predictors over inter-
genic E. Coli regions, we observed that the densities of
TEBS resulting from one or the other strategy showed
high correlation values (rho =052, p-value<2.2 x 10™%
(Additional file 1: Figure S3).

From a qualitative point of view, we first (1) assessed
the biological significance of our predictions by carrying
out a randomization test consisting in applying the same
prediction pipeline to our collection of promoters with
their nucleotide sequence completely shuffled, ie. with
no biological information. We observed that the distri-
butions of the number of motifs per promoter were sig-
nificantly different between the real and the randomized
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sample (Figure 2). (2) Furthermore, we screened for co-
incidences between our predicted TFBSs and those re-
ported in the RegPrecise database [21], which consist on
manually curated site reconstructions in various bacteria
genomes. This comparison showed that 28% of our pre-
dicted binding sites include, at least, one possible bind-
ing sequence of the matrices for each of the 38 TFs
included in RegPrecise (Additional file 5). (3) Finally, we
also searched for a particular type of false predictions,
which consist on regulatory palindromic repeats with no
binding potential, named Clustered Regularly Inter-
spaced Short Palindromic Repeats (CRISPRs) [22]. The
results that we obtained using the CRISPRFinder web
tool [23] showed a negligible amount of these regions
(less than 1% of our set of promoters), which were sub-
sequently removed from the analysis.

In summary, all these evaluation tests suggest that our
set of promoters is both, quantitatively and qualitatively
reliable, as they show a significant fraction of reported
TFBS, and a small portion of false positives. But, most
importantly, the presence of this small fraction of false
positives is not expected to affect our final conclusions,
as these come from comparisons within and between en-
vironments and do not rely on absolute TFBSs counts.

Functional organization of regulatory potentials within
each environment

We then studied how microbial communities living in
these environments organize and distribute their regula-
tory potential through the different biological functions
and to which extend this could obey to specific adapta-
tion needs. It is interesting to observe that, whereas the
range of density of predicted sites per promoter is wide
within each of the environments, the overall distribution
and the averages are similar: 9.98 (+3.29), 9.58 (+3.49)
and 10.28 (+3.35) for Acid Mine Drainage, Waseca Farm
Soil and Whale Falls samples, respectively (Figure 2).
This indicates that, although these three environments
present (1) different sequence coverage, (2) different
physicochemical characteristics and (3) different species
composition, the overall regulatory potential, as to the
total number of different TFBS, and their distribution
across the promoters follow a similar pattern.

To go beyond simple counts and to explore whether
or not this regulatory potential is distributed equally
through all the functions of each of the metagenomes,
we first identified the functions under the control of our
collection of proximal regulatory regions. For this, we
assigned to each promoter the functional category (from
SEED database) [24] of the corresponding downstream
coding region using MEGAN [25] see (Additional files 6,
7 and 8, for a complete list of functions and TFBS dens-
ities). We first investigated whether the regulatory po-
tential is organized differently over the functional space
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corresponds to the three bins analyzed in Additional file 1: Figure S4.
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Figure 2 Distribution of regulatory regions predicted per each environments analyzed in this study according to their content of
TFBSs. Solid lines represent the distributions of TFBS obtained using real data, whereas dashed lines show predictions using randomized DNA
sequences, i.e. with no biological information. Three major groups of regulatory potential are also shown: low, medium and high, which

of each of the environments. For this, we ranked all pro-
moters of each sample according to their TFBS density
and count, for each density group, how many associated
functions are specific of that particular environment, or
co-occur in one or in the other two samples. This ana-
lysis showed significant differences between promoters.
Interestingly, the functions under the control of pro-
moters with high number of TFBSs show significantly
less co-occurrences between environments, than those
regulated by promoters with lower regulatory potential.
The fact that promoters with high density of TFBS are
enriched in environment specific functions provides the
first hint that processes that require complex regulation
might provide adaptation to environment specific vari-
able external factors. (Additional file 1: Figure S4). We
expect that a large fraction of functions that showed a
higher co-occurrence among environments likely corres-
pond to housekeeping roles.

To study this further, we next investigated which func-
tions are specifically enriched among the highly regu-
lated ones in each of the environments. For this, we
zoomed into the fraction of the 33% highest regulated

promoters (i.e. with more than 12 TFBSs/promoter) and
subdivided it further into subgroups covering the 1, 5,
10, 20, 30 and 40 top percentages of TFBS density, to fi-
nally analyze the functional enrichments within each of
them. This analysis highlighted different enriched func-
tions in each of the environments (see Additional file 1:
Figure S5 (Acid Mine), S6 (Waseca Soil), S7 (Whale
Falls)). These enriched functions cover different types of
processes, the majority of them involved in sensing and
buffering external factors, such as, receptors and trans-
porters in Acid Mine and stress response systems in
Whale Falls.

1At .

Potential envir g regulation r p

In order to finally highlight potential points of inter-
action between highly regulated functions that could
provide adaptation to variable conditions specific to each
of the environments, we first selected for each habitat,
those functions that show stronger enrichment, i.e. with
pvalue < 0.05, among the top 1, 5, 10 and 20% groups
and with clear orthologous functions in the other two
samples. This subgroup of functions include (virulence,
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cell cycle, carbohydrates metabolism, stress response
and cofactors metabolism), which we then compared
among environments and evaluated their relationship
with the niche specific variable factors. For this, we car-
ried out extensive literature searches on different bio-
chemical mechanisms of adaptation guided by these
functions and the characteristics of the environment.
Despite the limited information about the environment
physico-chemical factors characteristic of available meta-
genomic studies, we propose in the following sections
potential adaptive scenarios by correlating highly regu-
lated functions with known variable external factors in
each of the environments.

Waseca Farm Soil

In Waseca Farm Soil, carbohydrates metabolism related
functions appear as highly regulated, more precisely
di and oligosaccharides metabolism (pvalue = 1x107'°,
within environment and adjusted pvalue (Bonferroni) =9 x
107" for Fisher’s exact test between groups). This fact
could be in concordance with the fluctuations in organic
matter concentrations in the soil, such as, plant debris,
which has also been previously proposed as an ex-
planation for the presence of other carbohydrate me-
tabolism functions specific of this environment [1].
This further agrees with the behavior observed in
lower eukaryotes abundant in soil, like yeast, where
high complexity in their transcriptional regulation
were found upstream of genes that play a role in car-
bohydrates metabolism [26]; and with the fact that, in
this niche, the upstream region of the FruR gene, a
known TF that regulates carbohydrate metabolism,
appears as highly regulated, with the highest number
of predicted TFBS (Additional file 1: Figure S8).

Whale Falls samples
A different scenario is observed in Whale Fall where,
even though each of the subsamples were collected in a
specific moment of decomposition from two different
whales and at different depths, they all share similar gen-
eral physico-chemical patterns, predominating the dras-
tic fluctuations of nutrient availability [1]. In agreement
of what would be expected for microorganisms living in
these kind of environments, most of the highly regulated
functions that are enriched in whale falls samples are re-
lated to adaptation capabilities to starving periods (Figure 3).
Particularly, we found TFBS rich promoters upstream
of genes that are involved in cell cycle and growth, i.e.
the control of basic macromolecular synthesis operon.
This is in contrast to what happens in Waseca and Acid
Mine, where the same functions present lower density
of TFBSs (Figure 3).

Moreover, bacterial communities living in cold water
are also exposed to high concentrations of oxidant
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reagents [27] causing an increase in the metabolic costs
associated with the activation of antioxidant defenses. In
fact, functions related with the response to oxidative
stress appear specifically enriched in this environment
compared to others. These functions comprise, for ex-
ample, the hydrogen peroxide-inducible gene activator
and a hem and copper containing membrane protein
(NnrS), that needs to respond to external NO concentra-
tions. Additionally, parts involved in the machinery that
protects genomic DNA during prolonged non-growing
phases [28], like the non-specific DNA binding protein
(Dps), also appear as highly regulated in this niche.

It has been also pointed before, that the uptake and
metabolisms of cofactors and amino acids are particu-
larly variable in marine environments, essential to adapt
to typical oceanic oligotrophic conditions [2]. In agree-
ment with this, cofactor metabolism related functions
are also enriched (adjusted pvalue (between groups)<
0.05). In particular, we found enrichment for enzymes
involved in the metabolism of molybdenum cofactors,
pterin and folate (Figure 3). These findings were further
confirmed by the overrepresentation of TyrR and ArgR
binding sites in this niche, both known to be TFs in-
volved in the control of amino acid transport for the
synthesis of proteins (according to the RegPrecise data-
base; see Additional file 1: Figure S8).

Acid Mine

The acid mine is characterized by extreme physico-
chemical conditions, showing low pH records and
fluctuating temperature, conductivity and rainfall (see
Figure 4A) [29]. Among the functions with high regula-
tory potential that appear enriched in this niche are
those known to play a role in the adaptation to changes
in external osmolarity, typical of environments with
variable distribution of rainfall across the year [30,31]
(Figure 4A). It is worth mentioning the high regulatory
potential of some genes related to the TonB transport
system (Figures 3, 4B), which are also involved in avoid-
ing toxicity by keeping metal homeostasis inside the cell
[32], in particular of iron. The high regulatory potential
of the TonB-dependent receptor and the iron chelator
utilization protein (Figure 3) might provide homeostasis
(i.e. plasticity) to acid mine bacteria living under variable
ferric concentrations, which is further confirmed by the
fact that a significant fraction of homeostasis-related pro-
moters could be assigned to Leptospirillum (genus known
to be adapted to low pH [33]) (Figure 4). In addition, we
found overrepresentation of binding sites for LexA tran-
scription factor in this niche (see Additional file 1: Figure
$8), and, specifically in Ton and Tol transport systems re-
lated promoters (the sequence for LexA binding site is in
Figure 4B, colored in red). LexA transcription factor is
known to be involved in the response to DNA damage
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and external pH fluctuations [34]. In fact, when we evalu-
ated the fraction of binding sites shared between two
members of the Ton and Tol system (iron chelator
utilization protein and TonB dependent receptor), we
found a high number of coincidences for other sites be-
sides LexA (ie. sites for the transcription factors ModR
and ModE involved in metal metabolism) (Figure 4B).

Taken together, the fact that highly regulated functions
are not the same between the different environments
agrees with previous metatranscriptome studies [3,4]
and indicates that the organization of the regulatory
potential between the functional space of each niche
is different and influenced by the environmental
physico-chemical conditions. This could reflect organ-
ism-environment interaction points where gene regula-
tion should be able to provide enough plasticity to the
functional network for the adaptation to variable exter-
nal parameters.

Conclusions

We have here studied how variable physico-chemical
conditions of the environment can shape the regulome
of microbial communities living there to provide adapta-
tion. We have combined existing and novel methodologies
and applied it to three environments (Acid Mine, Whale
Fall and Waseca Farm Soil) to identify and characterize,
for the first time, their regulatory space, i.e. proximal pro-
moters and their corresponding TFBSs. Taking the density
of TFBSs as a measure of the level of regulatory potential,
we first observed that, despite the differences of the living
conditions of each of the environments studied here, their
distribution of the regulatory potential, at quantitative
level, appears to be nearly identical. However, when we
went beyond simple counts we observed that the associ-
ated cellular functions in different groups related to the
regulatory potential tend to be environment specific. This
supports our hypothesis and expectation that point to
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a role of gene regulation in the adaptation of organisms
to particular and variable external factors. Also in this dir-
ection, we have found specific functional enrichments
among highly regulated functions in each of the metagen-
omas, suggesting potentials interaction points between
gene regulation and dynamic environmental conditions.
In particular, we have identified points of interaction
between signatures of significant functional enrichment
and specific characteristics of the marine and terrestrial
environments. These results highlight the impact of gene
regulation in the adaptation of microbes to their habitat.
Beyond contributing to the general understanding of how
wild bacterial communities interact with the environment,
our methodology can also be used to identify potential
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external factors to which bacteria are particularly sensitive
in order to design efficient communities for therapeutic,
or ecological needs.

Methods

Datasets

Metagenomic samples (i.e. Sanger sequencing reads)
were downloaded from the Camera Database [35). In
particular, (1) samples of whale falls were obtained
from three independent libraries named Whale falls:
CAM_SMPL_WHALEFALLBONE (Whale fall carcass
bone, W. Antarctic Peninsula Shelf), CAM_SMPL_
WHALEFALLMAT (Whale fall carcass microbial mat,
Santa Cruz Basin), and CAM_SMPL_WHALEFALLRIB
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(Whale fall carcass rib bone, Santa Cruz Basin) in the
database. These three sets differ in the depth of the sam-
pling and come from two different whale samples. (2)
The Acid Mine dataset is formed by 5-Way (CG) Acid
Mine Drainage Biofilm Metagenome and UBA Acid
Mine Drainage Biofilm Metagenome reads. The first cor-
responds to a low-complexity microbial biofilm growing
hundreds of feet underground within a pyrite (FeS,) ore
body. The UBA biofilm was subaerial, collected from the
base of a ~2 m high pile of pyrite sediment. (3) The third
environment corresponds to a surface soil (0-10 cm) col-
lected from a Waseca County farm in Minnesota.

Promoter identification
The prediction and classification of regulatory regions
from metagenomic data relies on the extraction of DNA
regions upstream of coding genes detected through
homology searches directly from the sequencing reads.
For this protocol we selected conservative filters to en-
sure the reliability of the putative promoters found. Sim-
plified in Figure 1, our protocol consisted in: (1) filtering
out reads shorter than 800 base pairs. This filter keeps
up to 90% of all reads and ensures both, the detection of
the coding region and the extraction of the putative pro-
moter from the reads; (2) detection of reads with coding
potential through the comparison of all the sequences of
each metagenome with all bacterial and archaeal anno-
tated proteins (NCBI; http://www.ncbi.nlm.nih.gov/Ftp/),
using BLASTx (default parameters [36), and selecting
those reads with a match to a known protein over, at
least, 150 amino acids and with more than 50% of se-
quence identity; (3) filtering out those positive reads that
did not contain at least 300 nucleotide of non-coding se-
quence upstream of the region matching in BLASTx.
This filter enriches our sampling in regions with regula-
tory potential by avoiding internal genes of operons,
which are expected to have short upstream regions with
no regulatory potential. Finally, from the remaining ac-
cepted reads (13572, 3017, and 3215, for Acid Mine
Drainage, Waseca Farm Soil and Whale Falls Samples,
respectively) we extracted 300 nucleotides upstream of
the coding region as putative promoter sequence. We
expect that the 300 base pairs criteria will affect equally
all bacteria and environments and will not favor bacteria
with largest genomes, as this length has been also de-
scribed for Pelagibacter ubique, the free living bacteria
with the smallest genome known [37]. Moreover, fixing
this length also avoids short intergenic regions within op-
erons, as their regulatory role is not yet well understood.
To avoid other possible biases favoring common spe-
cies in these environments and to make possible com-
parative and qualitative analyses between them, we also
removed the redundancy within these collections of pu-
tative promoter sequences using a cutoff of 98% of
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sequence identity. We also removed those reads that
correspond to eukaryotic DNA, mostly from plant spe-
cies in the Waseca sample, identified using MEGAN
[25]. To discard the inclusion of (parts of) ncRNA genes
into the collection of promoters, we applied a second fil-
ter to remove ncRNAs that target untranslated 5 por-
tions of mRNAs by using Rfam [38] and also we did a
second prediction of coding region in our set of putative
promoters using the software Prodigal [39] that allows
the identification of genes even if the specie is unknown.

Prediction of transcription factor binding sites

We next searched for sequence motifs with binding po-
tential within the putative promoters identified before.
For this, we used a de novo prediction method that is
based on the identification of palindromic repeats sepa-
rated by a spacer DNA region. In particular, we used the
most recent adaptations of the method [14] originally
described by Li and coworkers [9].

In order to identify putative cis regulatory elements, we
screened each promoter sequence for W ,NW,, DNA mo-
tifs, where W; and W, are 3-5 nucleotide long palin-
dromic sequences separated by N (0-30) arbitrary bases.
This method relies on the fact that prokaryotic TFBSs are
usually palindromes between 12 and 30 base pairs, which
may facilitate the dimerization and binding of TFs [12].

To assign a probabilistic values to all motifs found, we
first calculated the probability of observing n(D) copies
of a dimer D by chance, by pooling all the promoters
and calculating its expected frequency from the formula,

_ n(W1) n(W2)
¥(D) = Leff (D)oo tegrwa) 1)

where 7(W 1) and n(W 2) are the total number of occur-
rences of W | and W , in the whole data set (all three
environments together) and Leff(D) = £r(L(r) - L(D) + 1)
is the number of independent positions in the data
where a motif D of length L(D) can be found. The sum-
mation is over all the occurrences among 11,614 pro-
moters identified, each with a length L(r) (ie. the
estimated distance between coding regions). Finally, a
P-value is assigned to each of the motifs assuming that
the background follows a Poisson distribution:

_ Y'(D) (D)
p _ann(D) e (2

and is considered significant if P < 1/N,,,o0i5 Where N,,,o0¢
is the total number of positive motifs found. As W is
the reverse complement of W, (palindrome), the cutoff
on P is corrected by the total number of palindromic di-
mers found [9,14].

In order to identify environment specific enrichment
of our know TFBSs (i.e. those present in the RegPrecise



Fernandez et al. BMC Genomics 2014, 15:877
http//www.biomedcentral.com/1471-2164/15/877

database), we run a Kruskal Wallis test to compare the
density of each particular known TFBS among all three
environments. The density of known TFBS per metagen-
omes is calculated as follows:

N
> TEBS

0
N = Thp @

D(x) =

where D (x) is the density of TFBSs per metagenome, N
represents the number of promoters found in the x
metagenome and Tbp is the number of base pairs per
promoter (300 base pairs). The complete list of overrepre-
sented TFBSs found in our selected promoter set are shown
in Additional files 6, 7, 8, 9, 10 and 11, for Acid Mine,
Waseca Farm Soil and Whale Falls samples, respectively.

Method validation

For the randomization test on TFBS prediction, we run
the corresponding searching methodology on predicted
promoter regions after shuffling their sequence using a
20 nt window to ensure the minimum variance of local
nucleotide composition.

For the comparison with the MotifClick method
[20] we first downloaded intergenic regions from the
Escherichia coli K12-W3110 genome from IMG data-
base (https://img.jgidoe.gov). We ran MotifClick (motif
length = 14 nt) over these regions, specifically 300 nu-
cleotide upstream annotated TSS and recorded the
number of positive predictions per promoter. These
values were then compared with the results provided by
our method applied on the same set of E. Coli regula-
tory regions (Additional file 1).

Statistical procedure for the functional analysis
Functional assignment for all the data was performed
by MEGAN software [25] using the output of BLAST
searches of our reads against databases of known bacter-
ial proteins. Through this comparison we could identify
up to 1646 (Whale Falls Samples), 4646 (Acid Mine
Drainage) and 1514 (Minnesota Farm Soil) gene up-
stream segments with functional assignment. In order to
roughly study up to which level low, medium and high
regulated functions are shared among environment we
have run a Spearman test for independence using R,
for the rectangular plot and correspondence analysis we
use the plot function included in R graphics (http://
www.r-project.org/) (see Additional file 1: Figure S4).

In addition, functional enrichment analysis was done
by first ranking all promoters as to their number of pre-
dicted TFBSs. Then, for each of the groups of interest,
we ran a Fisher’s exact test for count data to see whether
particular functions within each group (top 1%, 5%, 10%,
20%) were specifically enriched versus the total
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distribution of functions. For this, we have used “all
intermediate” functional levels according to MEGAN
classification. Heat maps for all function within environ-
ment were obtained using package ggplot2 for R
(Additional file 1). Then, we retained significant cases
based on two criteria 1) functions whose p << 0.05
within environment and 2) functions with orthologous
in the other three environments. Those selected groups
were compared again, this time among environments,
for this analysis we ran a Fisher’s exact test to see
whether functional enrichment within environment were
maintained among them.

Additional files

Additional file 1: Figure S1. Shows the overview of the general results
of this study. Figure S2. shows the comparative analysis of the taxa
obtained with MEGAN on our promoter regions compared with that
obtained previously using 165 rRNA information from the same samples
in Waseca soil (a), Whale falls (b), and Acid mine (c). Figure S3.
represents the correlation analysis between the TFBSs predictions per
promoter using the method explained in this paper versus MotifClick
predictions. Figure S4. illustrates a global view of the relationship
between regulatory potential and the level of co-occurring functions
within each of the environments. Figure S5. Results of the functional
enrichment analysis for Acid Mine using the predefined bins. Figure S6.
Results of the functional enrichment analysis for Waseca Farm using
predefined bins. Figure S7. Results of the functional enrichment analysis
for Whale Falls using predefined bins. Figure S8. shows the relative
abundances of our TFBS prediction that matched known TFBS.

file 2: List of p selected after ing the
methodology described in Figure 1 on Waseca Farm Soil data.

Additional file 3: List of the promoters selected after applying the
methodology described in Figure 1 on Acid Mine data.

Additional file 4: List of the promoters selected after applying the
methodology described in Figure 1 on Whale Fall Samples data.

Additional file 5: Table listing the number of TFBSs per genomes
found after applying our method versus the number of sites
described in Regprecise database.

Additional file 6: Table in CSV format listing the number of TFBSs
identified for each promoter and the function assigned to the
corresponding downstream coding region in Acid Mine.

Additional file 7: Table in CSV format listing the number of TFBSs
identified for each promoter and the function assigned to the
corresponding downstream coding region in Waseca Soil.

Additional file 8: Table in CSV format listing the number of TFBSs
identified for each promoter and the function assigned to the
corresponding downstream coding region in Whale Falls.

Additional file 9: A list (CSV MS-DOS format) of overrepresented
TFBSs per promoter found in Acid Mine, Waseca Soils and Whale
falls, respectively. The abbreviated nomenclature used for the binding
sites is the following: N, W, Sequence, where N is the number of variable
nucleotides. W is the number of nucleotides defining the inverted repeat.
Sequence is the actual sequence of the site. Example: 10 3 ATC,
corresponds to: ATCNNNNNNNNNNGAT.

Additional file 10: A list (CSV MS-DOS format) of overrepresented
TFBSs per promoter found in Acid Mine, Waseca Soils and Whale
falls, respectively. The abbreviated nomenclature used for the binding
sites is the following: N, W, Sequence, where N is the number of variable
nucleotides. W is the number of nucleotides defining the inverted repeat.
Sequence is the actual sequence of the site. Example: 10 3 ATC,
corresponds to: ATCNNNNNNNNNNGAT.
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Additional file 11: A list (CSV MS-DOS format) of overrepresented
TFBSs per promoter found in Acid Mine, Waseca Soils and Whale
falls, respectively. The abbreviated nomenclature used for the binding
sites is the following: N, W, Sequence, where N is the number of variable
nucleotides. W is the number of nucleotides defining the inverted repeat.
Sequence is the actual sequence of the site. Example: 10 3 ATC,

« to: ATC AT.
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Metformin alters the gut microbiome of individuals
with treatment-naive type 2 diabetes, contributing to the
therapeutic effects of the drug

Hao Wu'!2, Eduardo Esteve?~%12, Valentina Tremaroli!, Muhammad Tanweer Khan!, Robert Caesar!,
Louise Manneras-Holm!, Marcus Stahlman!, Lisa M Olsson!, Matteo Serino’, Mercé Planas-Félix®, Gemma Xifra2-4,
Josep M Mercader®, David Torrents®’, Rémy Burcelin®?, Wifredo Ricart?-4, Rosie Perkins!,

José Manuel Fernandez-Real?>~* & Fredrik Biackhed!>'!!

Metformin is widely used in the treatment of type 2 diabetes (T2D), but its mechanism of action is poorly defined. Recent

evidence i the gut mici

as a site of metformin action. In a double-blind study, we randomized individuals with

treatment-naive T2D to placebo or metformin for 4 months and showed that metformin had strong effects on the gut microbiome.

These results were verifi

d in a subset of the placebo group that switched to metformin 6 months after the start of the trial.

+, sy

t) from

Transfer of fecal les (obtained before and 4 months after t
howed that gl tol was impi
met i icrobiota int ti in a gut si we shi

d in mice that received metformin-altered
d that metformin affected with biological

ted donors to germ-free mice
By directly i ig:

functions in species from two different phyla, and many of the metformin-regulated genes in these species encoded

teins or metal t
of metformin’s antidiabetic effects.

Metformin is the most prescribed pharmacotherapy for the treatment
of individuals with type 2 diabetes (T2D) because of its relative safety,
low cost, and beneficial effects on blood glucose and cardiovascu-
lar mortality!:2. However, its mechanism of action remains unclear.
Although metformin is generally considered to mediate its antihyper-
glycemic effects by suppressing hepatic glucose output through the
activation of AMP-activated protein kinase (AMPK)-dependent®->
and AMPK-independent pa\hways"’“ in the liver, accumulating evi-
dence indicates that it might also act through pathways in the gut®-1°.
For example, its glucose-lowering effect is more pronounced when
given orally than when administered intravenously!!. In addition, a
study comparing metformin formulations with reduced and normal
plasma exposure provided evidence to indicate that the lower bowel
is a major site of action for metformin'2. Furthermore, recent stud-
ies in both rodents!?-!5 and humans!6-18 suggest that gut microbial
changes might contribute to the antidiabetic effect of metformin.
So far, however, it is not known how metformin affects the gut micro-
biota of individuals with treatment-naive T2D, nor how metformin
interacts with gut bacteria.

porters. Our findings provide support for the notion that altered gut microbiota mediates some

Here we performed a randomized, placebo-controlled, double-blind
study in individuals with newly diagnosed T2D on a calorie-restricted
diet, and we combined metagenomics and targeted metabolomics to
investigate the effect of metformin on the composition and function
of the gut microbiota. We also transferred human fecal samples to
germ-free mice to study the effects of metformin-altered microbiota
on host glucose metabolism, and we used an in vitro gut simulator to
investigate metformin-microbiota interactions directly.

RESULTS

Metformin alters the gut microbiota composition

To investigate how metformin affects the composition of the gut
microbiota, we randomized treatment-naive individuals with recently
diagnosed T2D to receive either placebo (1 = 18) or 1,700 mg/d of
metformin (n = 22) for 4 months in a double-blind study. Clinical
characteristics of these individuals before and after treatment are
presented in Table 1. Both groups were recommended to consume a
calorie-restricted diet for the 4-month study period (Supplementary
Table 1); calorie intake was reduced by a median of 342 kcal/d, and
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Table 1 Clinical characteristics for the 40 individuals with T2D enrolled in this study

Placebo group (n = 18)

Metformin group (n = 22)

PO P2 P4 MO M2 M4
Age (years) 54.9+1.9 - - 52.6 2.0 - -
Sex (male/female) 99 - - 814 - -
Weight (kg) 854156 82.2+5.6% 81.5+5.4% 96.5+4.1 92.9+4.0 91.4+3.9
Waist circumference (cm) 106.1 4.4 101.7 £4.3* 101.9+3.6 111.5+2.7 108.3 +2.9* 108.7 £2.9
HOMA 8015 89+1.6 81118 8312 6.2+£0.9 6.0£0.8*
Total cholesterol (mg/dl) 205.8+8.8 197.8+7.7 190.7 £6.9* 206.0+7.4 196.6+7.2 1988+7.5
HDL-C (mg/dl) 46.9+3.4 45.0£3.0 46.8+3.1 48.4+2.7 55.2+6.1 51.1 £3.0*
LDL-C (mg/dl) 126.8+6.6 1248+5.7 118.1+6.2* 129.4+6.4 117.4 +6.2* 1215+6.8
Triglycerides (mg/dl) 151.9+18.7 155.9+15.2 129.3+12.5 129.0+17.8 139.6+11.6 135.9+12.7
ALT (U/liter) 33.2+7.2 243+29 223+2.1 355+3.5 28.0+1.8* 32.8+3.2
GGT (UAiter) 384154 28.2+2.1* 26.3+2.0* 44.0£6.0 31.3+3.2% 34.1+3.9*
CRP (mg/dl) 0.4+£0.1 0.6+0.1 0.5+0.1 0.4+0.1 0.4+0.1 0.4+£0.1
Statin treatment (n) 3 - - 4 - -
Antihypertensive treatment (n) 2 - - 3 - -

ALT, alanine transaminase; CRP, C-reactive protein; GGT, y-glutamyl transferase; HDL-C, high-density li i
low-density lipoprotein cholesterol. *P < 0.05; *P < 0.01; #P < 0.001 versus PO or MO. Wilcoxon signed-rank test; data are shown as means + s.e.m.

no significant differences were seen between the groups (P = 0.90).
A subset of the placebo group switched to receive metformin (850 or
1,700 mg/d; n = 13) 6 months after the start of the study; to validate
our findings from the randomized study, we analyzed samples from
this group after a further 6 months.

As expected given the reduced calorie intake, body-mass index
(BMI) decreased significantly in both the placebo and metformin
groups over the initial 4-month study period (Fig. 1a). However, sig-
nificant decreases in % hemoglobin Alc (HbAlc) and fasting blood
glucose were observed only in the group randomized to metformin
treatment (Fig. 1b,c). BMI did not decrease further in the switched
subgroup after 6 months on metformin (Fig. 1a), but %HbAlc and
fasting blood glucose were significantly reduced by metformin in this
subgroup (Fig. 1b,c).

To characterize the effects of metformin on the gut microbiome, we
performed whole-genome shotgun sequencing of 131 fecal samples.
On average, we obtained 38 million paired-end reads for each sample
(ranging from 15 million to 116 million; Supplementary Table 2).
The taxonomy and gene profiles were estimated by mapping the
high-quality reads to nonredundant genome and gene catalogs imple-
mented in the metagenomic data-utilization and analysis (MEDUSA)
pipeline!?, respectively. Only one bacterial strain was altered over
the 4-month study period in the placebo group (Fig. 1d), despite
the reduction in BMI. By contrast, metformin treatment for 2 and 4
months resulted in significant alterations in the relative abundance
of 81 and 86 bacterial strains, respectively, most of which belonged
to y-p teria (for ple, Escherichia coli) and Firmicutes
(Fig. 1d and Supplementary Table 3; false-discovery rate (FDR)
< 0.05). At the genera level, we observed an increase of Escherichia
and a decrease of Intestinibacter in the metformin-treated group
(Supplementary Table 3). Notably, the microbial changes observed
after 2 and 4 months of metformin treatment in our randomized
study correlated with the microbial changes observed in the switched
subgroup after 6 months on metformin (Fig. 1e). We also observed
a metformin-induced increase in Bifidobacterium in this subgroup
(Supplementary Table 3).

Earlier studies have shown an association between metformin
and the abundance of Akkermansia muciniphila'3-'>'8 and between
A. muciniphila and improved metabolic features in mice'»202! and
humans?. In a targeted analysis of our metagenome data, we showed

HOMA, ic model LoL-c,

increased abundance of A. muciniphila in individuals who received
metformin for 4 months (Supplementary Fig. 1). However, we
did not observe any significant correlations between %HbAlc and
A. muciniphila abundance in our cohort (P> 0.1; Supplementary Fig. 1).

To investigate how different gut bacteria interact with each
other, we performed a coabundance network analysis. We showed
that 2 months of metformin treatment promoted an increased
number of positive connections among microbial genera, especially
those within Proteobacteria and Firmicutes (Fig. 1f). We also iden-
tified a few interphylum connections, such as between Shewanella
(Proteobacteria) and Blautia (Firmicutes), a short-chain fatty acid
(SCFA)-producing genus?3.

To test the effect of metformin on microbial growth, we mapped whole-
genome shotgun reads to the genomes of common strains in the human
gut to determine the ratio between DNA copy number near the replica-
tion origin and DNA copy number near the terminus (termed the peak-
to-trough ratio, PTR) of bacterial genomes??. After correction for FDR,
we found that the PTR of only one bacterial species (Bifidobacterium
adolescentis) was significantly increased by metformin (Fig. 2a). In
agreement, the PTR of B. adolescentis was also increased in the switched
subgroup after 6 months on metformin (Fig. 2a). Furthermore, in our
cohort, we observed a negative correlation between the PTR of B. ado-
lescentis and %HbA1lc (Spearman coefficient rho = -0.28, P < 0.01).
Consistent with this observation, in vitro analysis showed that met-
formin directly promoted the growth of B. adolescentis in pure cultures
(Fig. 2b). We also showed that metformin directly promoted the growth
of A. muciniphila, but not of E. coli, in pure cultures (Fig. 2¢,d).
Metformin-altered biota imp gl tol
To investigate whether metformin-altered microbiota could con-
tribute to the glucose-lowering effect of metformin, we transferred
fecal samples from three metformin-treated participants (before and
4 months after metformin, here termed M0 and M4 microbiota) to
germ-free mice. All three of the metformin recipients responded
similarly to metformin in terms of reduced %HbAlc, as compared
to baseline, after 2 and 4 months on metformin. The mice were fed a
high-fat diet for 1 week before and during colonization for 18 d.

‘We did not observe any differences in body weight, body fat, or fasting
insulin between mice that received M4 and M0 microbiota (Fig. 3a,b
and Supplementary Fig. 2a-c). However, we found improvements
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Figure 1 Metformin treatment promotes rapid changes in the of the gut (a—c) Boxplots (with median) showing BMI, %HbAlc,

and fasting blood glucose before treatment (PO and MO) and after 2 and 4 months in individuals with T2D randomized to placebo (P2 and P4; n = 18)
or metformin (M2 and M4; n = 22), and 6 months after metformin in a subgroup that switched from placebo to metformin after the randomized study
period (P/M6; n = 13). Wilcoxon signed-rank test; *P < 0.05; **P < 0.01; ***P < 0.001. (d) Heat map showing changes in the abundance of bacterial
strains after placebo or metformin treatment (only strains with >50 reads mapped are shown). Wald test; *FDR < 0.05; *FDR < 0.01; *FDR < 0.001.

d to MO; M4 as

d to MO; and P/M6 as compared to P4.

(e) Pearson correlations between microbial changes observed at M2 as

(f) Genus-genus coabundance network before (MO) and after 2 months of metformin treatment (M2) in individuals with T2D. The edges indicate

Spearman correlations of >0.6 or <-0.6 between genera present in at least 80% samples.
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Figure 2 Metformin treatment promotes the growth of gut bacteria.

(a) Boxplots (with median) showing B. adolescentis growth as estimated
by peak-to-trough ratio (PTR) before treatment (PO and MO) and after 2
and 4 months in individuals with T2D randomized to placebo (P2 and P4;
n = 18) or metformin (M2 and M4; n = 22) and 6 months after metformin
in a subgroup that switched from placebo to metformin after the
randomized study period (P/M6; n = 13). Wilcoxon signed-rank test; *FDR
< 0.05. (b-d) Growth of B. adolescentis, A. muciniphila, and E. coli as single
cultures in the presence or absence of 10-mM metformin (with six technical
replicates). Pvalues were determined by two-way analysis of variance
(ANOVA) with repeated measurements. Data are shown as means + s.e.m.

in glucose tolerance in mice that received M4 microbiota, as com-
pared to those that received MO microbiota, from two of the three
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Figure 3 Metformin-altered glucose
(a) Body weight of mice 1 d and 18 d after colonization with fecal

icrobi ined from three indivi with T2D before (MO)
and 4 months after metformin treatment (M4). (b) Fasting plasma
insulin concentrations measured in the same mice used in a 18 d after
colonization. (c) Plasma glucose concentrations measured in the same
mice used in a during an intraperitoneal glucose-tolerance test 18 d after

ization. Data are shown as means + s.e.m. and are the combined

donors (Supplementary Fig. 2d-f) and when bining the results
from all three transfer experiments (Fig. 3c).

Metformin promotes functional shifts in the gut microbiome

To further investigate functional changes in the gut microbiome after
metformin treatment, we annotated genes to Kyoto encyclopedia of
genes and genomes (KEGG) orthology (KO)?3. Only two KOs were sig-
nificantly altered over the 4-month study period in the placebo group
(FDR < 0.05). By contrast, 626 and 473 KOs were increased, whereas
130 and 69 KOs were decreased after 2 and 4 months of metformin,
respectively (Supplementary Fig. 3 and Supplementary Table 4;
FDR < 0.05), and most of the shifts were consistent between the two
sampling times (Supplementary Fig. 3). Principal coordinate analysis
(PCoA) of the relative abundance of all of the significantly altered
KOs revealed similar gene functions in the placebo group at all time
points and the metformin group at baseline (i.e., before treatment),
but we observed significant shifts after metformin treatment for
2 months and 4 months (Fig. 4a). Pathway-enrichment analysis
revealed that metformin treatment was linked mainly to the enrich-
ment of genes for bacterial envir I resp (for pl
bacterial secretion system, two component system, and ATP-binding
cassette (ABC) transporters), drug resistance (bacterial chemotaxis and
cationic antimicrobial peptide resistance), central carbohydrate metab-
olism (phosphotransferase system, pyruvate, butyrate, and propionate
metabolism), amino acid metabolism, and lipopolysaccharide (LPS)
biosynthesis (Fig. 4b and Supplementary Table 4; FDR < 0.05).

results of three indep transfer experiments (shown individually in
Supplementary Fig. 2). MO: n = 20 mice; M4; n = 21. Wilcoxon rank-sum

test; *P < 0.05; **P < 0.01. FMT, fecal microbiota transplantation.

Although it is not clear how alterations in the gut microbiota
promote beneficial effects in the host, a potential mechanism includes
increased production of SCFAs, primarily acetate, propionate,
and butyrate, and other organic acids?®27. We therefore per-
formed targeted metabolomics to investigate whether the observed
enrichment in genes for SCFA metabolism in the gut microbiome
following metformin treatment was paralleled by an increased pro-
duction of SCFAs. We observed significantly larger increases in fecal
propionate and butyrate concentrations in the metformin group,
as compared to the placebo group, after 4 months of treatment in
men; however, no differences were observed when results from
men and women were combined (Fig. 4c). We also observed signifi-
cantly larger increases in fecal concentrations of lactate and a trend
toward a larger increase in fecal concentrations of succinate in the
metformin group, as compared to the placebo group, after 4 months
of treatment (Fig. 4d).

The gut microbiota is also known to be a major regulator of bile acid
metabolism?®, which may contribute to its effects on host metabo-
lism. Furthermore, a few studies have indicated a potential role of
metformin in altering the bile acid profile?>-*, but this link is not well
established. Here we investigated the effect of metformin treatment
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Figure 4 Metformin treatment promotes functional shifts in the gut microbi

iota. (a) Principal coordinate analysis (PCoA) of all KOs that are significantly

altered from baseline (PO and MO) after 2 and 4 months in individuals with T2D randomized to placebo (P2 and P4; n = 18) or metformin (M2 and
M4; n = 22). Adonis test based on 5,000 permutations; Pyo vs. m2 = 0.00040; Pyg ys. ma = 0.0062. Data are shown as means + s.e.m. (b) Pathway-

enrichment analysis of all si ly altered KOs. H

showing changes from baseline (PO and MO) for fecal concentrations of SCFAs (c), fecal

ric test; *FDR < 0.05; *FDR < 0.01; “FDR < 0.001. (c-e) Boxplots (with median)

of lactate and (d), and plasma

concentrations of bile acids (e) after 4 months in individuals with T2D randomized to placebo (P4; n= 18) or metformin (M4; n = 22). Wilcoxon

rank-sum test; *P < 0.05; **P < 0.01.

for 4 months on fecal and plasma bile acid composition. No substantial
changes in fecal bile acids were detected following metformin treat-
ment (Supplementary Fig. 4a). However, we observed significantly
larger increases in plasma bile acid concentrations (total, primary,
secondary, and unconjugated) in the metformin group, as compared
to the placebo group, after 4 months of treatment (Fig. 4e). By using
a targeted metagenomic analysis, we showed an increased abundance
of bsh, genes encoding bile salt hydrolases, after 2 months on met-
formin (Supplementary Fig. 4b).These enzymes are produced by the
gut microbiota and catalyze the deconjugation of glycine- or taurine-
conjugated bile acids, and thus increases in bsh could contribute to the

increased concentrations of unconjugated bile acids. Furthermore, we
found a significant negative correlation between the concentrations of
unconjugated bile acids and %HbA Ic (rho = -0.27, P < 0.05), which
suggests a possible link b the modul of bile acid composi-
tion and the therapeutic effect of metformin.

Direct effects of metformin on the gut microbiota

To directly investigate how metformin affects the gut microbiota, we
cultured fecal samples (obtained before metformin treatment from
two participants, donors 13 and 49) in two separate gut-simulator
experiments, and exposed the lestoa flow of metformin
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Eaad

e of 686 and 909 KOs in samples from donors 13 and 49,

(10 mM) for 1 week. We then profiled the microbi by whole-
genome shotgun sequencing at both the DNA and RNA level.
Compositional profiling revealed that metformin exposure signifi-
cantly altered the DNA and RNA abundance of 24 bacterial strains
when culturing the feces of donor 13 but of only 4 for the feces of
donor 49 (Supplementary Table 5; FDR < 0.05). Donor-specific
effects of metformin exposure included, for example, increased
RNA abundance of Bilophil thia (donor 13) and increased
DNA abund: of Lach eae bacterium (donor 49) (Fig. 5a
and Supplementary Table 5). A. muciniphila was the only taxon that

respectively (Supplementary Table 6; Wald test, FDR < 0.05). In
total, 31 and 38 pathways were enriched after metformin exposure
in samples from donors 13 and 49, respectively; of these, 22 enriched

h were to both samples (Fig. 5b and Supplementary
Table 6; hypergeometric test, FDR < 0.05). Six pathways that were
enriched in the metformin-treated samples in the in vivo metage-
nome analysis (see Fig. 4b)—including those for genes involved in
LPS synthesis, butyrate and pyruvate metabolism, and two-compo-
nent systems—were also shown to be enriched by metformin in both

increased in both DNA and RNA abund in to met-
formin in both samples, and it was also the taxon that increased the
most in abundance (Fig. 5a and Supplementary Table 5).
Functional profiling of the combined metagenome and metatran-
scriptome showed that metformin exposure significantly altered the

t-simul experiments (Fig. 5b). In addition, the in vitro analysis
revealed enrichment of metabolic pathways linked to the metabolism
of cofactors and vitamins (Fig. 5b). These results show that although
metformin exerts donor-specific taxonomic effects, it induces overlap-
ping microbial functional changes in samples from both donors.
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Finally, we performed in-depth transcriptome analyses (using the
in vitro cultured fecal sample from donor 13) to investigate direct interac-
tions between metformin and individual bacterial species. We first exam-
ined the RNA reads that mapped to the gene catalog of A. muciniphila (the
taxon with the overall highest abundance in this fecal sample; Fig. 5a).
We found that nearly 10% (207/2138) of the protein-coding genes in
A. muciniphila were significantly regulated by metformin; of these,
65% were downregulated by metformin (Supplementary Table 7;
FDR < 0.1). Furthermore, 78 of the 207 metformin-regulated genes
could be annotated to KOs, and of these, 41 genes mapped to the 22
metfor iched pathways ¢ to cultured fecal samples
from both donors (Fig. 5¢c and Supplementary Table 7). By manual
annotation, we found that the protein products of 108/207 metformin-
regulated genes required cofactors or coenzymes such as ATP, FAD,
FMN, metal, NAD, and vitamin B6 (Fig. 5c and Supplementary Table 7);
most of the remaining genes (63/99) have not been characterized
(Supplementary Table 7). Of particular interest, 81 of the 108 met-
formin-regulated annotated genes encoded metalloprotein or metal
transporters (Fig. 5cand Supplementary Table 7). Gene ontology (GO)
analysis of metformin-regulated genes in A. muciniphila confirmed that
their gene products were enriched in proteins that bind to metal ions in
addition to several other cofactors and coenzymes, as well as transferase,
hydrolase, ligase, and protein components of ribosomes (Fig. 5d). To
address whether those observations were specific to A. muciniphila, we
also analyzed B. wadsworthia (the second most abundant taxon in this
cultured fecal sample after metformin treatment; Fig. 5a). According
to protein-homology detection, only 14 metformin-regulated genes
were orthologous between these two bacteria; however, most annotated
metformin-regulated genes in B. wadsworthia also encoded metallo-
proteins (Supplementary Table 7).

DISCUSSION

In this study, we performed a randomized, placebo-controlled, double-
blind study in individuals with newly diagnosed T2D on a calorie-
restricted diet and showed that metformin, but not calorie restriction,
had rapid effects on the composition and function of the gut micro-
biota in parallel with the reduction of %HbAlc and fasting blood
glucose concentrations. Transfer of the microbiota to germ-free mice
showed that the metformin-altered microbiota could improve glucose
metabolism. Furthermore, transcriptome analyses of feces cultured
with metformin in vitro in a gut simulator showed that metformin
had direct effects on the microbiota and regulated the expression of
genes encoding metalloproteins in the gut bacteria.

By using paired samples in our prospective human study, we
reduced the effect of interindividual variations, a common issue in
previous studies investigating the effect of metformin on the micro-
biota!®1731, A further strength of our cohort is that these individuals
had been newly diagnosed with T2D and thus were not taking other
medications for T2D, and only a small number in each group were
taking statins or antihypertensive therapy. We also monitored the
dietary intake of the participants before and 4 months after treatment
and showed that calorie restriction did not affect the gut microbiome
to any great extent in our study; it should be noted that the calorie
reduction reported was mild relative to that in earlier studies show-
ing profound changes in the gut microbiome in response to dietary
intervention®?32, The design of our study thus enabled us to minimize
the effect of major confounding factors known to have an impact on
the gut microbiome.

By performing whol equencing of fecal samples, we
observed dramatic shifts in the composition of the gut microbiota after

h

2 and 4 months on metformin in individuals with newly diagnosed T2D.
Notably, these changes were similar to those observed after 6 months
on metformin in a placebo subgroup that switched to metformin
6 months after the study start. In particular, we observed signifi-
cant changes in Escherichia and Intestinibacter abundance across all
sampling points in the metformin-treated group, a finding that is in
agreement with results reported in a cross-sectional study that com-
pared metformin-treated and untreated groups of people with T2D'7.
Growth of E. coli in an in vitro analysis was not affected by metformin.
Thus, the effects of metformin on the abundance of Escherichia spp.
are likely indirect, and possibly, a result of modified bacteria-bacteria
interactions or of other ph gical and/or envi | changes
within the gut upon metformin treatment. We showed that metformin
promoted the growth of B. adolescentis both in vivo (after 2 months
in the main study and after 6 months in the switched subgroup, as
measured by PTR) and in vitro using pure cultures, and also that
it increased the abundance of Bifidobacterium in the switched sub-
group. Supplementation with B. adolescentis in a rodent model of the
metabolic syndrome has previously been shown to increase insulin
sensitivity*3. In our cohort, we also observed a negative correlation
between the PTR of B. adolescentis and %HbA 1¢, which suggests that
increased growth of this bacterial species could potentially contribute
to the antidiabetic effect of metformin.

To observe direct metformin-microbiota interactions, we incu-
bated fecal samples from treatment-naive participants with met-
formin in a gut simulator. In this system, we did not observe any
significant changes in E. coli or B. adolescentis. In fact, the only taxon
that increased in response to metformin (at both DNA and RNA lev-
els and in samples from two separate donors) was A. muciniphila.
Metformin has previously been shown to increase the abundance of
A. muciniphila in rodents on a high-fat diet'>-15, and this increased
abundance has been linked to improved glucose metabolism!3:2021,
However, evidence for a link between metformin and A. muciniphila
is less clear in humans!®!7. We did observe a significant increase in
the abundance of A. muciniphila over time in the individuals who
received metformin for 4 months, but only when we used a targeted
analysis. Similarly, a recent study that screened mucin-degrading
and butyrate-producing bacteria showed increased abundance of
A. muciniphila in humans taking metformin'$. In agreement with
these observations, we showed that metformin increased the growth of
A. muciniphila in vitro using pure cultures. However, it is likely that the
growth of this taxon is affected in humans in vivo by factors that differ
between individuals, such as fiber** and polyphenol availability?3-3,
immune responses®”3%, and age*#°. Furthermore, in our study,
we did not observe any significant correlations between %HbAlc
and A. muciniphila abundance, and therefore, cannot conclude that
A. muciniphila is a major contributor to the beneficial effects of met-
formin in our human cohort.

By comparing results from the in vivo metagenomics analysis and
the in vitro metagenomics and metatranscriptomics analyses, we
noted that metformin promoted consistent shifts in microbial func-
tions, including LPS biosynthesis and SCFA metabolism. Increased
LPS biosynthesis might reflect the increased abundance of Gram-
negative bacteria such as Proteobacteria, but it was not associated
with increased systemic inflammation, because C-reactive protein
was unaltered (Table 1). Similarly, enrichment of the LPS biosynthe-
sis pathway without an increase in inflammation has been observed
both in humans after bariatric surgery*! and in prebiotic-treated
mice on a high-fat diet*2. Increased SCFA metabolism in response
to metformin has also been predicted in earlier metagenomics
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analyses in humans'7-8, and in ag our targeted bol

analysis showed that metformin significantly increased butyrate and
propionate in men.

In-depth transcriptome analysis of the effects of metformin on
two distantly related bacterial species in the gut simulator showed that
most of the metformin-regulated genes encoded metalloproteins or
metal transporters. It is unlikely that the transcriptional responses of
this subset of genes were due to a growth-induced increase in total
transcripts because the majority of these genes were downregulated
by metformin. Interestingly, some metals are known to contribute to
T2D pathophysiology*?, and it has been known for many years that
metformin binds to metals*4. Furthermore, a recent study showed that
the effects of metformin on a mammalian liver cell line are depend-
ent on the metal-binding properties of this drug*!. However, our
study, to the best of our knowledge, is among the first to indicate
a link between metformin and metal-binding proteins produced by
the gut microbiota.

Fecal transfer to germ-free mice resulted in improved glucose tol-
erance in recipients of metformin-altered microbiota from two out
of three donors, with overall substantial improvement of glucose
metabolism, thus indicating that metformin-adapted microbiota
could contribute to the beneficial effects of metformin on glucose
homeostasis. It is not clear why the responses to the metformin-
altered microbiota differed between the donors, given that all the
donors showed improved glucose tolerance after both 2 and 4 months
of metformin treatment. However, there are large interindividual dif-
ferences in gut-microbiota composition in humans, and the lack of
response of microbiota from one donor might be attributable to an
incomplete transfer of key species, as has previously been described?>.
Furthermore, the different diets of the recipient mice and the human
donors (i.e., high fat as opposed to calorie restriction) would likely
exacerbate differences in the gut-microbiota composition between
the donors and recipients. The taxa that are successfully transferred
to recipient mice will therefore be dependent not only on the com-
position of the donor gut microbiota, but also on how well the taxa
respond to different macronutrients.

There is increasing evidence to indicate that SCFAs and bile acids
have a role in the regulation of glucose homeostasis?®274647, and
we recently reported that microbiota-produced succinate could
improve glucose metabolism by activating intestinal gluconeogenesis
in mice?®. Here we observed metformin-induced alterations in these
microbially regulated metabolites, which suggests that they might be
partly responsible for the stronger glucose-lowering effect that has
been observed when metformin is administered orally as compared
with intravenous injection!!. It should be noted that we cannot con-
clude that the major mechanism of action of metformin is through
the microbiota. For example, a recent study in mice showed that the
phosphorylation of acetyl-CoA carboxylases (ACC) 1 and 2 by AMPK
is required to observe the insulin-sensitizing effects of metformin®,
demonstrating the importance of AMPK/ACC signaling. However,
it is possible that the gut microbiota might also act through ACCs,
given that we previously showed that diet-induced obesity involved
cross-talk between the microbiota, AMPK, and downstream ACC2
phosphorylation®’.

In summary, our work shows that metformin interacts with differ-
ent gut bacteria, possibly through the regulation of metal homeostasis.
However, additional studies ¢ untargeted bol and
metaproteomics are essential to identify further microbial metabolites
or proteins and to determine how they interact with the host targets
in improving host metabolism.
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METHODS

Methods, including statements of data availability and any associated
accession codes and references, are available in the online version of
the paper.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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ONLINE METHODS

Clinical study design. 40 individuals with T2D were recruited and rand-
omized (using a computational random generator Aleator) to treatment with
metformin (n = 22) or placebo (n = 18) for 4 months. Metformin (Acyfabrik,
Madrid, Spain) was started at a dose of 425 mg/d and increased progressively
during the first week to reach 1,700 mg/d (in three doses). We instructed both
groups to maintain a reduction in daily caloric intake of 500 kcal during the
entire treatment. We reccommended a hypocaloric diet containing 25 kcal/kg or
20 keal/kg and used a validated food-freqs 30, The composi-
tion of the diet was 15% protein, 30% fat (<10% saturated fat), 55% carbohy-
drates, and 20-25 g dietary fiber (Supplementary Table 1). Lifestyle changes
were also suggested, including regular physical activity (150 min/week).
We collected both fecal and plasma samples at baseline and at 2 and 4 months
after treatment. A subgroup of those on placebo switched to metformin treat-
ment after 6 months of dietary intervention (850 or 1,700 mg/d, n = 13);
we obtained fecal and plasma samples from these individuals after a further
6 months. People in this group were not randomly selected, but had agrccd

coabundance network analysis was based on Spearman correlation. Only genera
present in at least 80% of samples were used for correlation analysis, and only
connections with a rho value larger than 0.6 or smaller than 0.6 were used for
network building and visualization, on the basis of igraph®”. For the estimation
of PTRs, metagenomic reads were mapped to a local genome database containing
~200 common human bacterial strains, using the software PTRC2!. For the analy-
sis of bile salt hydrolase (bsh) genes, a local gene database containing all available
bsh genes was constructed by blasting™ against NCBI reference genes>®, MEDUSA
gene catalog!®, and the integrated gene catalog for human microbiome (IGC)%"
using 16 randomly selected seed bsh genes (gi: 169212173, 47121626, 488267184,
489835719, 491501450, 491807128, 499725619, 503743756, 524844235,
558633790, 654788256, 753801014, 759977951, 814507153, 823277295 and
933135484). Thelocal bsh gene database was then used for targeted reads screen-
ing on the basis of the MEDUSA pipeline!®.

Targeted metabolomics analyses. Fecal SCFAs were measured using gas chro-
matography coupled to mass spectrometry detection (GC-MS), as described

to be treated with metformin. Compliance and side effects were
ateach visit.

Inclusion criteria were: (i) aged between 18 and 65 years; (i) T2D diagnosis
in the previous 6 months, as defined by the American Diabetes Association
Criteria®; (iii) absence of systemic and metabolic disease other than T2D, and
absence of infection within the previous month; (iv) absence of diet or medica-
tion that might interfere with glucose homeostasis, such as glucocorticoids or
antibiotics in the previous 3 months; and (v) HbA1c lower than 9%.

Exclusion criteria were: (i) clinically significant major systemic disease,
including malignancy; (ii) clinical evidence of hemoglobinopathies or anemia;
(iii) history of drug or alcohol abuse, defined as >80 g/d in men and >40 g/d
in women; (iv) acute major cardiovascular event in the previous 6 months; (v)
acute illnesses or current evidence of acute or chronic inflammatory or infective
disease; and (vi) mental illness rendering the participants unable to understand
the nature, scope, and possible consequences of the study.

Allindividuals gave written informed consent. The experimental prolocol was

pp d by the Ethics C and the C for Clinical
of the Hospital Universitari Dr.Josep Trueta (Girona, Spain). We certify thatall
the ethical use of information and
snmplcs from human volunlccrs were followed during this research. Complete
clinical trial registration is deposited in the EU clinical trials register (EudraCT
number 2010-022394-34).

of fecal ic DNA and whole-g shotgun

Fecal genomic DNA was extracted from 100 mg of frozen stools using the
QIAamp DNA mini stool kit (Qiagen, Courtaboeuf, France) following repeated
bead-beating (6,500 r.p.m., 3 x 30 s). The DNA was extracted from 131 fecal
samples, obtained from the participants at three different time points during the
study (n = 118; two fecal samples were not obtained) and from 13 participants
additionally sampled 6 months after switch to metformin treatment. DNA frag-
ments of approximately 300 bp were sequenced on an Illumina NextSeq 500
instrument (150 bp; paired-end) at Genomics Core Facility at the Sahl, k

p 1y®1. In brief, app ly 50-250 mg of feces were mixed with internal
standards, added to glass vials and freeze-dried. All samples were then acidified
with HCI, and SCFAs were d with two rounds of diethyl ether

The organic supernatant was collected, the derivatization agent N-tert-butyld-
imethylsilyl-N-methyltrifluoroace-tamide (Sigma-Aldrich, Stockholm, Sweden)
was added, and samples were incubated overnight. SCFAs were quantified with
a 7090A gas chromatograph coupled to a 5975C mass spectrometer (Agilent
Technologies 5975C, Santa Clara, CA). SCFA standards were obtained from
Sigma-Aldrich (Stockholm, Sweden).

Bile acids were analyzed using ultra-performance liquid chromatography
coupled to tandem mass spectrometry (UPLC-MS/MS), as described before?!.
Briefly, bile acids from plasma were extracted using protein precipitation with
ten volumes of methanol internal dards. After mixing and cen-
trifugation, the samples were evaporated and reconstituted in 200 pl of metha-
nol:water (1:1) for analysis. For feces, about 50 mg of stool samples were placed
in a 2-ml polypropylene tube together with six ceramic beads (3 mm; Retsch
GmbH, Haan, Germany) and 500 ul of internal standard containing methanol.
Stools were homogenized and centrifuged, and the supernatant was diluted ten
times in methanol:water (1:1) before analysis. Bile acids were separated using
a Kinetex C18 column (2.1 x 100 mm with 1.7-um particles) (Phenomenex,
Torrance, CA, USA) kept at 60 °C. The mobile phases consisted of water with
7.5-mM ammonium acetate and 0.019% formic acid (pH 4.5) as mobile phase A,
and acetonitrile with 0.1% formic acid as phase B. A QTRAP 5500 instrument
(Sciex, Toronto, Canada) was used for detection using multiple-reaction moni-
toring in negative mode. Bile acid standards were obtained from Sigma-Aldrich
(Stockholm, Sweden), CDN Isotopes (Quebec, Canada), and Toronto Research
Chemicals (Downsview, Ontario, Canada).

Animal p d Animal p were app d by the Gothenburg

Animal Ethics Committee. For the fecal-microbiota transplant experiments,
we used 10- to 12-week-old male Swiss Webster germ-free mice. Mice were

Academy, University of Gothenburg.

Metagenomics analyses. We oblanned atotal of 941 Gb of raw paired-end reads.

The icand KO ition was obtained by using an updated version of
the MEDUSA pipeline!?, in whlch the raw reads were trimmed by FASTX (http://
hannonlab.cshl.edu/fastx_tool itha quality threshold of 20 bp and minimum
length of 35 bp), filtered to remove human reads (version hg19), and then mapped
to bacterial gene and genome catalogs using Bowtie2 (ref. 52). An additional
filter was applied during the mapping process containing reads with at least 95%
identity to obtain high-quality reads. The mean mapping rates for the genome
and gene catalogs were 36.6% and 64.6%, respectively (Supplementary Table 2).
The obtained taxonomic composition and KO profile matrix were further ana-
lyzed by DESeq2 package™. Pathway-enrichment analyses are based on KEGG
annotation?’ and hypergeometric test using goseq. The beta diversity and PCoA
analysis were calculated on the basis of the relative abund: of all signifi

kept in individ d cages (ISOcage N System, Tecniplast, Buguggiate,
Italy) with a maximum of five mice per cage. Water was given ad libitum. 500 mg
of frozen stools obtained at baseline (M0) and 4 months after metformin treat-
ment (M4) from three individuals were suspended in 5 ml of reduced PBS buffer
containing 0.2 g/liter Na,S and 0.5 g/liter cysteine as reducing agents. The three
donors were chosen from the metformin arm of the randomized clinical study
who showed a reduction in %HbA ¢ after 2 and 4 months of metformin treat-
ment, and the individual stool samples were not pooled. The germ-free mice
were randomized into two groups and colonized by oral gavage with 200 pl of
MO0/M4 fecal slurry from each donor. The mice were fed an irradiated high-fat
diet (40% kcal fat, TD09683, Harlan Teklad) for 1 week before and during the
18 d of colonization. Body composition was determined with an EchoMRI
instrument (EchoMRI) 1 d after colonization and at the end of the experiment.
Insulin was measured with a kit from Crystal Chem (Downers Grove, IL) accord-

ing to the manufacturer’s protocol, and an mtrapenloneal glucase tolerance test
was perfi d at the end of the experi as described®2. The

KOs (further transformed by the square root to reduce the influence of dominant
KOs, as suggested previously*%) using phyloseq (version 1.12.2). Genus-to-genus

P
investigators were not blinded to the group allocation. No mice were excluded
from this study.
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Invitrob 1 growth exps Precul of B. adolc is[2-32and
E. coliwere inoculated anaerobically in a Coy chamber (5% hydrogen, 10% carbon
dioxide, and 85% nitrogen) as single colonies in 7 ml of brain-heart infusion
(BHI) medium containing (in g/liter) yeast extract (5), cellobiose (1), maltose
(1), cysteine (0.5), and hemin (0.01). For A. muciniphila, modified BHI broth was
used, into which cysteine (0.05%) and type II mucin (1%) were added. Before
inoculation, the modified medium was filtered through a 0.22-pum filter. After
incubation for 14 h, each precul was i lated in freshly prepared BHI
broth or modified BHI broth with or without metformin in a 24-well plate or 96-
well microplate at a concentration (v/v) of 0.5% E. coli or 1% B. adolescentisin a
volume of 2.5 mland 2% A. muciniphila in a volume of 300 ul. The effect of met-
formin on bacterial-growth kinetics was analyzed in a CLARIOstar microplate
reader equipped with atmospheric control unit (BMG Labtech) by following the
optical density (ODggo). The atmospheric oxygen concentration was reduced to
0.1% and was maintained with nitrogen as ground gas. The growth-curve data
over 10 h for E. coliand B. isand 30 h for A. iniphila were analyzed
using MARS data-analysis software (BMG Labtech.).

In vitro gut simul A simulated human i 1 redox model (SHRIM)
was used to explore the effect of in on a stabilized gut bial com-
bic luminal

munity in vitro. SHRIM is a two-chamber fe withan

Then the MEDUSA pipeline!® was used to obtain the taxonomical composition
and functional KO profiles, as described for the metagenomics analysis. In addi-
tion, to analyze the gene expression profile of A. muciniphilaand B. wadsworthia,
alocal gene database containing only genes from those two bacteria was down-
loaded from NCBI (accession number NC_010655.1 and NZ_ADCP00000000.2,
respectively). The circos plot was produced using R package circlize®”. GO
enrichment was performed using R package STRINGdb (version 1.10.0)%3,

Statistical analysis. All statistical analyses were performed in the R environ-
ment®. A power of 97% was obtained using pwr package® for this study, on
the basis of 22 individuals, with paired design, 5% significance, and an esti-
mated effect size of 0.87 for metformin in improving fasting blood glucose”".
Because the primary aim of our randomized lled study was toi ig:
the effect of metformin on the composition and function of the gut microbiota,
we did not perform a power calculation for the placebo relative to metformin
groups, because the effect size of metformin together with a calorie-restricted
diet on the biota was previously unk For animal tests, sample size
was chosen on the basis of our earlier experience and no statistical test was used
to predetermine sample size.

Wald (esl with paired design implemented in DESeq2 (ref. 53) was used for

bund analyses for all count data (in the case of both metage-

chamber (250 ml) and an oxygen feeder (100 ml), which are separated by a
Nafion Membrane N115 (DuPont, USA; diameter 2.5 cm) and continuously
purged with nitrogen and oxygen, respectively. The luminal chamber was con-
tinuously stirred at 250 r.p.m. and kept at 37 °C. The oxygen feeder contained
100-mM potassium phosphate buffer. The luminal chamber was seeded with
250 ml of feed (in g/liter) arabinogal (1.0), pectin (2.0), xylose
(1.5), starch (3.0), glucose (0.4), yeast extract (3.0), peptone (1.0), mucin type IT
(4.0), and cysteine (0.5). To simulate digestion processes, the feed was acndmed
toaround pH 2 with 6-M HCl, and neutralized with simulated

nomics and iptomics). The Sp s rank-order correlation was
used to determine the strength and direction of the monotonic relationships
between two variables unless strong collinearity was observed, in which case the
Pearson product-moment correlation was calculated. Multivariate analysis with
the Adonis test was performed on the basis of 5,000 permutations, using vegan’2,
Statistical testing for bacterial growth rates was examined by two-way ANOVA
with repeated measures based on six technical replicates. Changes in SCFA con-
centrations between the metformin and placebo groups were compared by linear

gl adjusted for BMI, gender, and fiber intake; the same procedure was

to a pH of around 6.9. The simulated ic juice d: (in gllncr)
NaHCO; (12.5), Oxgall bile salts (6.0), and pancreatin (0.9). The feed and pan-
creatic juice mix (70:30), referred to as SHRIM feed, was kept anaerobic by
continuously purging with nitrogen®*. The SHRIM feed was fed continuously
to the luminal chamber at a rate giving a retention time of around 24 h, and pH
was maintained between 6.9 and 6.6 with pH controller and dosing Pump (Black
stone BL7912, Hanna Instruments, UK).

The SHRIM system was inoculated with an aliquot of the M0 fecal sample
from each donor individually. A preculture was prepared anaerobically in a
Coy chamber (5% hydrogen, 10% carbon dioxide, and 85% nitrogen) by adding
2% fecal material to 5 ml of BHI broth as described above. The preculture was
incubated for 3 hat 37 °C, and 2% of the pre-culture was seeded into the luminal
compartment of the SHRIM.

Analysis of d . £ the microbial
in the in vitro gut simulator. After 1 week ofslabnhza!mn the microbial com-
munity was challenged with 10-mM metformin continuously, and samples (2 x
1 ml) were taken at baseline (time zero) and then daily for 1 week. After cen-
trifugation at 16,000 r.p.m. for 2 min at 4 °C, the cellular pellet was suspended in
1 ml of Tris-EDTA buffer (10-mM Tris, I-mM EDTA pH 7.5), and 500-ul
aliquots were used for DNA and RNA extractions. Total DNA was extracted
by repeated bead-beating, as previously described®. Total RNA was extracted
according to the Macaloid isolation protocol using the Phase Lock Gel Heavy
tubes (5 Prime GmbH) and the RNAeasy mini kit with on-column DNAsel
treatment (Qiagen) for purification, as previously described®346,
‘Whole-genome shotgun sequencing was performed both on isolated DNA
and RNA from the gut simulator at baseline and after 1 d and 7 d of metformin
treatment on [llumina NextSeq 500 instrument at Genomics Core Facility at
the Sahlgrenska Academy, U of Gothenburg. An average of 21.6 mil-
lion paired-end 150-bp DNA reads and 35.2 mllhon paired-end 75-bp RNA
reads from both donors were g d for and ip-

used for bile acids, except the data were adjusted for total calorie intake instead
of fiber intake. Otherwise, two-tailed Wilcoxon rank-sum tests or Wilcoxon
signed-rank tests were used throughout the study, depending on whether the
samples were paired. Raw P values were adjusted by the Benjamini-Hochberg
method” with a false discovery rate of 5%, unless indicated otherwise.

Data availability. Sequence data are available for download from the Sequence
Read Archive with accession number PRJNA361402.
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The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to
gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2
diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we
identify seven novel associated regions, five driven by common variants (LYPLALT, NEUROG3,
CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare
variant in chromosome Xq23, rs146662075, associated with a twofold increased risk for T2D
in males. rs146662075 is located within an active enhancer associated with the expression of
Angiotensin |l Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits
allelic specific activity in muscle cells. Beyond providing insights into the genetics and
pathophysiology of T2D, these results also underscore the value of reanalyzing publicly
available data using novel genetic resources and analytical approaches.
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tion studies (GWAS) have been performed with the aim

of providing a better understanding of the biology of
complex diseases, improving their risk prediction, and ultimately
discovering novel therapeutic targets'. However, the majority of
the published GWAS have only reported primary findings, which
generally explain a small fraction of the estimated heritability.
To examine the missing heritability, most strategies involve
generating new genetic and clinical data. Very rarely are new
studies based on the revision and reanalysis of existing genetic
data by applying more powerful analytic techniques and resources
after the primary GWAS findings are published. These cost-
effective reanalysis strategies are now possible, given emerging
(1) data-sharing initiatives with large amounts of primary genetic
data for multiple human genetic diseases, as well as (2) new
and improved GWAS methodologies and resources. Notably,
genotype imputation with novel sequence-based reference
panels can now substantially increase the genetic resolution of
GWASs from previously genotyped data sets®, reaching good-
quality imputation of low frequency (minor allele frequency
[MAF]: 0.01 £ MAF<0.05) and rare variants (MAF <0.01),
increasing the power to identify novel associations, and fine
map the known ones. Moreover, the availability of publicly
available primary genetic data allows the homogeneous integra-
tion of multiple data sets from different origins providing more
accurate meta-analysis results, particularly at the low ranges
of allele frequency. Finally, the vast majority of reported GWAS
analyses omits the X chromosome, despite representing 5% of the
genome and coding for more than 1,500 genes®. The reanalysis of
publicly available data also enables interrogation of this
chromosome.

We hypothesized that a unified reanalysis of multiple
publicly available data sets, applying homogeneous standardized
quality control (QC), genotype imputation, and association
methods, as well as novel and denser sequence-based reference
panels for imputation would provide new insights into the
genetics and the pathophysiology of complex diseases. To test
this hypothesis, we focused this study on type 2 diabetes (T2D),
one of the most prevalent complex diseases for which
many GWAS have been performed during the past decade’.
These studies have allowed the identification of more than
100 independent loci, most of them driven by common variants,
with a few exceptions®. Despite these efforts, there is still a large
fraction of genetic heritability hidden in the data, and the role of
low-frequency variants, although recently proposed to be minor®,
has still not been fully explored. The availability of large
T2D genetic data sets in combination with larger and more
comprehensive genetic variation reference panelsz, provides
the opportunity to impute a significantly increased fraction
of low-frequency and rare variants, and to study their contribu-
tion to the risk of developing this disease. This strategy also allows
us to fine map known associated loci, increasing the chances
of finding causal variants and understanding their functional
impact. We therefore gathered publicly available T2D GWAS
cohorts with European ancestry, comprising a total of 13,857
T2D cases and 62,126 controls, to which we first applied
harmonization and quality control protocols covering the
whole genome (including the X chromosome). We then perfor-
med imputation using 1000 Genomes Project (1000G)” and
UKI0K? reference panels, followed by association testing.
By wusing this strategy, we identified novel associated
regions driven by common, low-frequency and rare variants,
fine mapped and functionally annotated the existing and
novel ones, allowing us to describe a regulatory mechanism
disrupted by a novel rare and large-effect variant identified at the
X chromosome.

D uring the last decade, hundreds of genome-wide associa-
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Results

Overall analysis strategy. As shown in Fig. 1, we first gathered all
T2D case-control GWAS individual-level data that were available
through the EGA and dbGaP databases (i.e., Gene Environment-
Association Studies [GENEVA], Wellcome Trust Case Control
Consortium [WTCCC], Finland-United States Investigation of
NIDDM Genetics [FUSION], Resource for Genetic Epidemiology
Research on Aging (GERA], and Northwestern NuGENE project
[NuGENE]). We harmonized these cohorts, applied standardized
quality control procedures, and filtered out low-quality variants
and samples (Methods and Supplementary Notes). After this
process, a total of 70,127 subjects (70KforT2D, 12,931 cases, and
57,196 controls, Supplementary Data 1) were retained for
downstream analysis. Each of these cohorts was then imputed to
the 1000G and UKIOK reference panels using an integrative
method, which selected the results from the reference panel that
provided the highest accuracy for each variant, according to
IMPUTE?2 info score (Methods). Finally, the results from each of
these cohorts were met: lyzed (Fig. 1), obtaining a total of
15,115,281 variants with good imputation quality (IMPUTE2 info
score 2 0.7, MAF20.001, and I* heterogeneity score < 0.75),
across 12,931 T2D cases and 57,196 controls. Of these, 6,845,408
variants were common (MAF20.05), 3,100,848 were low-
frequency (0.01 SMAF<0.05), and 5,169,025 were rare
(0.001 < MAF <0.01). Merging the imputation results derived
from the two reference panels substantially improved the number
of good-quality imputed variants, particularly within the low-
frequency and rare spectrum, compared to the imputation results
obtained with each of the panels separately. For example, a set of
5,169,025 rare variants with good quality was obtained after
integrating 1000G and UK10K results, while only 2,878,263 rare
variants were imputed with 1000G and 4,066,210 with UK10K
(Supplementary Fig. 1A). This strategy also allowed us to impute
1,357,753 indels with good quality (Supplementary Fig. 1B).

To take full advantage of publicly available genetic data, we
used three main meta-analytic approaches to adapt to the three
most common strategies for genetic data sharing: individual-level
genotypes, summary statistics, and single-case queries through
the Type 2 Diabetes Knowledge Portal (T2D Portal) (http://www.
type2diabetesgenetics.org/). We first meta-analyzed all summary
statistics results from the DIAGRAM trans-ancestry meta-
analysisa (26,488 cases and 83,964 controls), selecting 1,918,233
common variants (MAF 2 0.05), mostly imputed from HapMap,
with the corresponding fraction of non-overlapping samples in
our 70KforT2D set, i.e. the GERA and the NuGENE cohorts,
comprising a total of 7,522 cases and 50,446 controls (Fig. 1,
Supplementary Data 1). Second, the remaining variants
(13,197,048), which included mainly non-HapMap variants
(MAF < 0.05) or variants not tested above, were meta-analyzed
using all five cohorts from the 70KforT2D resource (Supplemen-
tary Data 1). Finally, low-frequency variants located in coding
regions and with p < 1 x 107 were meta-analyzed using the non-
overlapping fraction of samples with the data from the T2D
Portal through the interrogation of exome array and whole-
exome sequence data from ~80,000 and ~17,000 individuals,
respectively®.

Pathway and functional enrichment analysis. To explore whe-
ther our results recapitulate the pathophysiology of T2D, we
performed gene-set enrichment analysis with all the variants with
pS1x107 using DEPICT? (Methods). This analysis showed
enrichment of genes expressed in pancreas (ranked first in tissue
enrichment analysis, p=7.8x 10™, FDR < 0.05, Supplementary
Data 2) and cellular response to insulin stimulus (ranked second
in gene-set enrichment analysis, p=3.9x107%, FDR=0.05,
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Fig. 1 Discovery and replication strategy. Publicly available GWAS datasets representing a total of 12,931 cases and 57,196 controls (70KforT2D) were first
quality controlled, phased, and imputed, using 1000G and UK10K separately. For those variants that were present in the DIAGRAM trans-ethnic meta-
analysis, we used the summary statistics to meta-analyze our results with the cohorts that had no overlap with any of the cohorts included in the
DIAGRAM trans-ethnic meta-analysis. With this first meta-analysis, we discovered four novel loci (within magenta panels). For the rest of the variants, we
meta-analyzed all the 70KforT2D data sets, which resulted in two novel loci (in blue panels). All the variants that were coding and showed a

p-value of <1x 1074 were tested for replication by interrogating the summary statistics in the Type 2 Diabetes Knowledge Portal (T2D Portal)
(http://www.type2diabetesgenetics.org/). This uncovered a novel low-frequency variant in the EHMT2 gene (highlighted with a green panel)

Q

ppl y Data 3, Suppl y Fig. 2, Suppl Y
Fig. 3), in concordance with the current knowledge of the
molecular basis of T2D.

In addition, variant set enrichment analysis of the T2D-
associated credible sets across regulatory elements defined in
isolated human pancreatic islets showed a significant enrichment
for active regulatory enhancers (Supplementary Fig. 4), suggesting
that causal SNPs within associated regions have a regulatory
function, as previously reported'’.

Fine-mapping and functional characterization of T2D loci. The

The high coverage of genetic variation ascertained in this study
allowed us to fine-map known and novel loci, providing more
candidate causal variants for downstream functional interpreta-
tions. We constructed 99% credible variant sets'! for each of
these loci, i.e. the subset of variants that have, in aggregate, 99%
probability of containing the true causal variant for all 57 loci
(Supplementary Data 5). As an important improvement over
previous T2D genetic studies, we identified small structural
variants within the credible sets, consisting mostly of insertions
and deletions between 1 and 1,975 nucleotides. In fact, out of the
8,348 variants included within the credible sets for these loci, 927
(11.1%) were indels, of which 105 were genome-wide significant

three association strategies allowed us to identify 57 g -wide
significant associated loci (p <5 x 1078), of which seven were not
previously reported as associated with T2D (Table 1). The
remaining 50 loci have been previously reported and included, for
example, two low-frequency variants recently discovered in
Europeans, one located within one of the CCND2 introns
(rs76895963), and a missense variant within the PAM® gene.
Furthermore, we confirmed that the magnitude and direction of
the effect of all the associated variants (p<0.001) were highly
consistent with those reported previously (p=092, p=1x10
248 Supplementary Fig. 5). In addition, the direction of effect
was consistent with all 139 previously reported variants, except
three that were discovered in east and south Asian populations
(Supplementary Data 4).
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Suppl y Data 6). Interestingly, by integrating imputed
results from 1000G and UK10K reference panels, we gained up to
41% of indels, which were only identified by either one of the two
reference panels, confirming the advantage of integrating the
results from both reference panels. Interestingly, 15 of the 71
previously reported loci that we replicated (p<5.3x 107 after
correcting for multiple testing) have an indel as the top variant,
highlighting the potential role of this type of variation in the
susceptibility for T2D. For example, within the IGF2BP2 intron, a
well-established and functionally validated locus for T2D'2, we
found that 12 of the 57 variants within its 99% credible set
correspond to indels with genome-wide significance (5.6 x 10716
< p<24x107"), which collectively represented 18.4% posterior
probability of being causal.
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Table 1 Novel T2D-associated loci

OR (95% CI) P-value

Novel Locus Chr rsID--Risk Allele Stage1 Discovery Meta- Stage2 Replication Stage1 + Stage2 MAF

analysis Met: lysi: Combil Meta-

analysis

LYPLALI/ZC3H1IB 1 1s2820443-T 1.08 (1.04-1.13) 1.06 (1.03-1.09) 1.07 (1.04-1.09) 0.28
(1941 294x10742 210x1075b 2.56x1078¢
EHMT2 6 rs115884658-A 134 (118-1.53) 117 (1.09-1.26) 121 114-1.29) 0.02
(6p21.33-p21.32) 1.00x10752 290x1076¢d 3.00x10710¢
ABO 9 rs505922-C 1.07 (1.03-1.11) 1.06 (1.03-1.09) 1.06 (1.04-1.09) 034
(9934.2) 6.93x10742 190x1075b 494x1078¢
NEUROG3 10 152642587-G 112 (1.08-116) - - 0.22
(10g22.1) 8.45x107%¢
CAMKK2 12 1s3794205-G 1.09 (1.05-1.14) 1.06 (1.03-1.09) 1.07 (1.04-110) 032
(12924.31) 418x10752 1.60%x1074 b 4mx1078¢
CALCOCO2/ATPSG1/ 17 rs12453394-A 1.08 (1.04-1.12) 1.07 (1.03-111) 1.07 (1.05-1.10) 0.47
UBE2Z/SNF8/GIP 7.86x10752 9.60x1075b 3.23x1078¢
(17921.32)
AGTR2 X rs146662075-T 3.09 (2.06-4.60) 157 (119-2.07) 1.95 (1.56-2.45) 0.008
(Xq23) 324x1078f 1.42x10738 7.85%x107°

Chr chromosome, OR odds ratio, MAF minor allele frequency

FUSION + WTCCC, 12,931 cases and 57,196 controls)

OGTT > 7.8 mmol I”!, when available)

2Imputed based public GWAS discovery meta-analysis (NUGENE + GERA cohort, 7,522 cases and 50,446 controls)
PTransancestry DIAGRAM Consortium (26,488 cases and 83,964 controls)°Meta P-value estimated using a weighted Z-score method due to unavailable SE information from Stage 2 replication
cohorts?T2D Diabetes Genetic Portal (Exome-Chip + Exome Sequencing, 35,789 cases and 56,738 controls)Full imputed based public GWAS meta-analysis (NuGENE + GERA cohort + GENEVA +

f70KforT2D Men Cohort (GERA cohort + GENEVA + FUSION, 5,277 cases and 15,702 controls older than 55 years)
#Replication Men Cohort SIGMA UK10K imputation + InterAct + Danish Cohort (case control and follow-up) + Partners Biobank + UK Biobank (18,370 cases and 88,283 controls older than 55 years and

To prioritize causal variants within all the identified associated
loci, we annotated their corresponding credible sets using the
Variant Effector Predictor (VEP) for coding variants!? (Supple-
mentary Data 7), and the Combined Annotation-Dependent
Depletion (CADD)' and LINSIGHT'® tools for non-coding
variation (Supplementary Data 8 and 9). In addition, we tested
the effect of all variants on expression across multiple tissues by
interrogating GTEx'® and RNA-sequencing gene expression data
from pancreatic islets'”.

Novel T2D-associated loci driven by common variants. Beyond
the detailed characterization of the known T2D-associated
regions, we also identified seven novel loci, among which, five
were driven by common variants with modest effect sizes (1.06 <
OR < 1.12; Table 1, Fig. 2, Supplementary Fig. 6 and 7).

Within the first novel T2D-associated locus in chromosome
1q41 (LYPLALI-ZC3H11B, rs2820443, OR=1.07 [1.04-1.09), p
=26x107%), several variants have been previously associated
with waist-to-hip ratio, height, visceral adipose fat in females,
adiponectin levels, fasting insulin, and non-alcoholic fatty liver
disease'®2%. Among the genes in this locus, LYPLALI, which
encodes for lysophospholypase-like 1, appears to be the most
likely effector gene, as it has been found to be downregulated in
mouse models of diet-induced obesity and upregulated during
adipogenesis®!.

Second, a novel locus at chromosome 9q34.2 region (ABO,
1rs505922, OR = 1.06 [1.04-1.09], p=4.9 x 1078) includes several
variants that have been previously associated with other
metabolic traits. For example, the variant rs651007, in linkage
disequilibrium (LD) with rs505922 (=0.507), has been shown
to be associated with fasting glucose?, and rs514659 (r* with top
=1) is associated with an increased risk for cardiometabolic
disorders®®. One of the variants within the credible set was the
single base-pair frame-shift deletion defining the blood group
0%, In concordance with previous results that linked O blood
type with a lower risk of developing T2D?3, the frame-shift
deletion determining the blood group type O was associated with
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a protective effect for T2D in our study (rs8176719, p=3.4 x 1074,
OR=0.95 [0.91-0.98]). In addition, several variants within this
credible set are associated with the expression of the ABO gene in
multiple tissues including skeletal muscle, adipose tissue, and
pancreatic islets (Suppl ry Data 9, Suppl y Data 10).

Third, a novel locus at chromosome 10922.1 locus (NEUROG3/
COL13A1/RPL5P26, rs2642587, OR=1.12 [1.08-1.16], p = 8.4 x
107%) includes NEUROG3 (Neurogenin3), which is an essential
regulator of pancreatic endocrine cell differentiation®. Mutations
in this gene have been reported to cause permanent neonatal
diabetes, but a role of this gene in T2D has not been yet
reported”".

The lead common variant of the fourth novel locus at
chromosome 12q24.31 (rs3794205, OR=1.07 [1.04-1.10], p=
4.1 x 107®) lies within an intron of the CAMKK2 gene, previously
implicated in cytokine-induced beta-cell death?!. However, other
variants within the corresponding credible set could also be
causal, such as a missense variant within the P2RX7, a gene
previously associated with glucose homeostasis in humans and
mice®?, or another variant (rs11065504, ©* with lead variant=
0.81) found to be associated with the regulation of the P2RX4
gene in tibial artery and in whole blood, according to GTEx
(Supplementary Data 9).

The fifth novel locus driven by common variants is
located within 17q21.32 (rs12453394, OR=1.07 [1.05-1.10],
p=323x107%). It includes three missense variants located
within the CALCOCO2, SNF8, and GIP genes. GIP encodes for
glucose-dependent insulinotropic peptide, a hormonal mediator
of enteral regulation of insulin secretion®®. Variants in the GIP
receptor (GIPR) have been previously associated with insulin
response to oral glucose challenge and beta-cell function®,
proposing GIP as a plausible candidate effector gene of this
locus®.

A new T2D signal driven by a low-frequency variant. Fur-
thermore, we selected all low-frequency (0.01 < MAF <0.05)
variants with p<1x 10~ in the 70KforT2D meta-analysis that

|DOI: 10.1038/541467-017-02380-9 | www.nature.com/naturecommunications.
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Fig. 2 Manhattan and quantile-quantile plot (QQ-plot) of the discovery and replication genome-wide meta-analysis. The upper corner represents the QQ-
plot. Expected —log;o p-values under the null hypothesis are represented in the x axis, while observed —log;o p-values are represented in the y axis.
Observed p-values were obtained according to the suitable replication dataset used (as shown in Fig. 1) and were depicted using different colors. HapMap
variants were met lyzed using the tr. thnic summary from the DIAGRAM study and our meta-analysis based on the Genetic
Epidemiology Research on Aging (GERA) cohort and the northwestern NuGENE project, and that resulted in novel associations depicted in magenta. The
rest of non-HapMap variants meta-analyzed using the full 70KforT2D cohort are represented in gray, and the fraction of novel GWAS-significant variants
is highlighted in light blue. Coding low-frequency variants meta: d using the 70KforT2D and the T2D Portal data that resulted in novel GWAS-
significant associations are depicted in green. The shaded area of the QQ-plot indicates the 95% confidence interval under the null and a density function
of the distribution of the p-values was plotted using a dashed line. The 4 is a measure of the genomic inflation and corresponds to the observed median »2
test statistic divided by the median expec(ed,yz test statistic under the null hypothesis. The Manhattan plot, representing the -log,o p-values, was colored
as explained in the QQ-plot. All known GWAS-significant associated variants within known T2D genes are also depicted in red. X chromosome results for

females (F), males (M), and all individuals (A) are also included

were annotated as altering protein sequences, according to VEP.
This resulted in 15 coding variants that were meta-analyzed with
exome array and whole-exome sequencing data from a total of
~97,000 individuals® after excluding the overlapping cohorts
between the different data sets. This analysis highlighted a novel
genome-wide association driven by a low-frequency missense
variant (Ser58Phe) within the EHMT2 gene at chromosome
6p21.33 (rs115884658, OR=1.21 [1.14-1.29], p=3.00x1071;
Fig. 2, Supplementary Figures 6 and 7). EHMT2 is involved in the
mediation of FOXO1 translocation induced by insulin®. Since
this variant is less than 1 Mb away from HLA-DQAI, a locus
reported to be associated with T2D*”> we performed a series of
reciprocal conditional analyses and excluded the possibility that
our nna})ysis was capturing previously reported T2D® 37 or
T1D*4 signals (Supplementary Data 11). Beyond this missense
EHMT?2 variant, other low-frequency variants within the corre-
sponding credible set may also be causal. For example,
rs115333512 (2 with lead variant=0.28) is associated with the
expression of CLICI in several tissues according to GTEx (mul-
titissue meta-analysis p = 8.9 x 10~', Supplementary Data 9). In
addition, this same variant is associated with the expression of the
first and second exon of the CLICI mRNA in pancreatic islet
donors (p(exon 1)=1.4x 107", p(exon 2) = 1.9 x 10~'3, Supple-
mentary Data 10). Interestingly, CLICI has been reported as a
direct target of metformin by mediating the antiproliferative
effect of this drug in human glioblastoma®!. All these findings
support CLICI, as an additional possible effector transcript, likely
driven by rs115333512.

NS (2018)9:321

A novel rare X chr variant d with T2D.
Similar to other complex diseases, the majority of published large-
scale T2D GWAS studies have omitted the analysis of the X
chromosome, with the notable exception of the identification of a
T2D-associated region near the DUSP9 gene in 20102 To fill this
gap, we tested the X chromosome genetic variation for association
with T2D. To account for heterogeneity of the effects and for the
differences in imputation performance between males and
females, the association was stratified by sex and tested separately,
and then meta-analyzed. This analysis was able to replicate the
DUSP9 locus, not only through the known rs5945326 variant
(OR=1.15, p=0.049), but also through a three-nucleotide dele-
tion located within a region with several promoter marks in liver
(rs61503151 [GCCA/G], OR=1.25, p=3.5x 107%), and in high
LD with the first reported variant (r* = 0.62). Conditional analyses
showed that the originally reported variant was no longer sig-
nificant (OR=1.01, p=0.94) when conditioning on the newly
identified variant, rs61503151. On the other hand, when con-
ditioning on the previously reported variant, rs5945326, the effect
of the newly identified indel remained significant and with a
larger effect size (OR=1.33, p=0.003), placing this deletion, as a
more likely candidate causal variant for this locus (Supplementary
Data 14).

In addition, we identified a novel genome-wide significant
signal in males at the Xq23 locus driven by a rare variant
(rs146662075, MAF = 0.008, OR = 2.94 [2.00—4.31], p=3.5 x 1075
Fig. 3a). Two other variants in LD with the top variant,
15139246371 (chrX:115329804, OR=1.65, p=3.5x107, 2=
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0.37 with the top variant) and rs6603744 (chrX:115823966,
OR=128, p=17x 1074, 2= 0.1 with the top variant), comprised
the 99% credible set and supported the association. We
tested in detail the accuracy of the imputation for the
15146662075 variant by comparing the imputed results from the
same individuals genotyped by two different platforms (Methods)
and found that the imputation was highly accurate in
males only when using UKIOK, but not in females, nor
when using 1000G (R%(ukiok,mates) = 0:94, RAUK10K femates] = 0.66,
R%(1000G,males) = 062, and  R?(1000G, femates) = 0-43; Supplementary
Fig. 8). Whether this association is specific to men, or whether it
also affects female carriers, remains to be clarified with datasets
that allow accurate imputation on females, or with direct
genotyping or sequencing.

To further validate and replicate this association, we next
analyzed four independent data sets (SIGMAS, INTERACT®,
Partners Biobank*, and UK Biobank®®), by performing imputa-
tion with the UK10K reference panel. In addition, a fifth cohort
was genotyped de novo for the rs146662075 variant in several
Danish sample sets. The initial meta-analysis, including the
five replication data sets did not reach genome-wide significance
(OR=157, p=1.2 x 107 Supplementary Fig. 9A), and revealed a
strong degree of heterogeneity (heterogeneity phe = 0.004), which
appeared to be driven by the replication cohorts.

As a complementary replication analysis, within one of the
case-control studies, there was a nested prospective cohort study,
the Inter99, which ¢ d of 1,652 nondiabetic male subjects
genotyped for rs146662075, of which 158 developed T2D after 11
years of follow-up. Analysis of incident diabetes in this cohort
confirmed the association with the same allele, as previously seen
in the case-control studies, with carriers of the rare T allele having
increased risk of developing incident diab ¢ d to the C
carriers (Cox-proportional hazards ratio (HR)=3.17 [1.3-7.7), p
=0.011, Fig. 3b). Nearly 30% of carriers of the T risk allele
developed incident T2D during 11 years of follow-up, compared
to only 10% of noncarriers.

To understand the strong degree of heterogeneity observed
after adding the replication datasets, we compared the clinical and
demographic characteristics of the discovery and replication
cohorts, and found that the majority of the replication datasets
contained control subjects that were significantly younger than 55
years, the average age at the onset of T2D reported in this study
and in Caucasian populations*®, This was particularly clear for
the Danish cohort (age controls [95%CI] =46.9 [46.6-47.2] vs.
age cases [95%CI] =60.7 [60.4-61.0]) and for INTERACT (age
controls [95%CI] =51.7 [51.4-52.1] vs. age cases [95%CI] = 54.8
[54.6-55.1]; Supplementary Fig. 10). Given the supporting results
with the Inter99 prospective cohort, we performed an additional
analysis using a stricter definition of controls, to minimize the
presence of prediabetics or individuals that may further develop
diabetes after reaching the average age at the onset. For this, we
applied two additional exclusion criteria: (i) subjects younger
than 55 years and (ii), when possible, excluding individuals with
measured 2-h plasma glucose values during oral glucose
tolerance test (OGTT) above 7.8 mmol 1™}, a threshold employed
to identify impaired glucose tolerance (prediabetes)*’, or controls
with family history of T2D, both being strong risk factors for
developing T2D. While the application of the first filter alone did
not yield genome-wide significant results (Supplementary Fig. 9B),
upon excluding individuals with prediabetes or a family history of
T2D, the replication results were significant and consistent with
the initial discovery results (OR=1.57 [1.19-2.07], p=0.0014).
The combined analysis of the discovery and replication cohorts
resulted in genome-wide significance, confirming the association
of 5146662075 with T2D (OR=1.95 [1.56-2.45], p=7.8 x 1079,
Fig. 3c).
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Allele-specific enhancer activity of the rs146662075 variant. We
next explored the possible molecular mechanism behind this
association, by using different genomic resources and experi-
mental approaches. The credible set of this region contained three
variants, with the leading SNP alone (rs146662075), showing 78%
posterior probability of being causal (Supplementary Fig. 7,
Supplementary Data 5), as well as the highest CADD (scaled C-
score=15.68; Supplementary Data 8), and LINSIGHT score
(Supplementary Data 9). rs146662075 lies within a chromosomal
region enriched in regulatory (DNase I) and active enhancer
(H3K27ac) marks, between the AGTR2 (at 103 kb) and the
SLC6A14 (at 150 kb) genes. The closest gene AGTR2, which
encodes for the angiotensin II receptor type 2, has been pre-
viously associated with insulin secretion and resistance*%0,
From the analysis of available epig ic data sets!, we found
no evidences of H3K27ac or other enhancer regulatory marks in
human pancreatic islets; whereas a significant association was
observed between the presence of H3K27ac enhancer marks and
the expression of AGTR2 across multiple tissues (Fisher test p=
4.45x 107), showing the highest signal of both H3K27ac and
AGTR2 RNA-seq expression, but not with other genes from the
same topologically associated domain (TAD), in fetal muscle
(Fig. 4a; Supplementary Figure 11).

We next studied whether the region encompassing the
15146662075 variant could act as a transcriptional enhancer and
whether its activity was allele-specific. For this, we linked the
DNA region with either the T (risk) or the C (non-risk) allele, to a
minimal promoter and performed luciferase assays in a mouse
myoblast cell line. The luciferase analysis showed an average 4.4-
fold increased activity for the disease-associated T allele,
compared to the expression measured with the common C allele,
suggesting an activating function of the T allele, or a repressive
function of the C allele (Fig. 4b). Consistent with these findings,
electrophoretic mobility shift assays using nuclear protein extracts
from mouse myoblast cell lines, differentiated myotubes, and
human fetal muscle cell line, revealed sequence-specific binding
activity of the C allele, but not the rare T allele (Fig. 4c). Overall,
these data indicate that the risk T allele prevents the binding of a
nuclear protein that is associated with decreased activity of an
AGTR2-linked enhancer.

Discussion

Through harmonizing and reanalyzing publicly available T2D
GWAS data, and performing genotype imputation with two
whole-genome sequence-based reference panels, we are able to
perform deeper exploration of the genetic architecture of T2D.
This strategy allowed us to impute and test for association with
T2D more than 15 million of high-quality imputed variants,
including low-frequency, rare, and small insertions and deletions,
across chromosomes 1-22 and X.

The reanalysis of these data confirmed a large fraction of
already-known T2D loci, and identified novel potential causal
variants by fine mapping and functionally annotating each locus.

This reanalysis also allowed us to identify seven novel asso-
ciations, five driven by common variants in or near LYPLALI,
NEUROG3, CAMKK2, ABO, and GIP; a low-frequency variant in
EHMT?2, and a rare variant in the X chromosome. This rare
variant identified in Xq23 chromosome was located near
the AGTR2 gene, and showed nearly twofold increased risk for
T2D in males, which represents, to our knowledge, the
largest effect size identified so far in Europeans, and a magnitude
similar to other variants with large effects identified in other
populations® 7.

Our study complemented other efforts that also aim at unra-
veling the genetics behind T2D through the generation of new
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at the onset of T2D), had normal glucose tolerance, and no family
history of T2D. This is in line with previous results obtained for a
T2D population-specific variant found in Inuit within the
TBC1D4 gene, which was only significant when using OGTT as
criteria_for classifying cases and controls, but not when using
HbA1c*2 Our observation that 30% of the rs146662075 risk allele
carriers developed T2D over 11 years of follow-up, compared to
10% of noncarriers, further supports the association of this var-
iant and suggests that an early identification of these subjects
through genotyping may be useful to tailor pharmacological or
lifestyle intervention to prevent or delay the onset of T2D.

Using binding and gene-reporter analyses, we demonstrated a
functional role of this variant and proposed a possible mechanism
behind the pathophysiology of T2D in T risk allele carriers, in
which this rare variant could favor a gain of function of AGTR2,
previously associated with insulin resistance’®, AGTR2 appears,
therefore, as a potential therapeutic target for this disease, which
would be in line with previous studies showing that the blockade
of the renin-angiotensin system in mice®> and in humans®
prevents the onset of T2D, and restores normoglycemia®” >,

Overall, beyond our significant contribution toward expanding
the number of genetic associations with T2D, our study also
highlights the potential of the reanalysis of public data, as a
complement to large studies that use newly generated data. This
study informs the open debate in favor of data sharing and
democratization initiatives® %, for investigating the genetics and
pathophysiology of complex dlseases, which may lead to new
preventive and therapeutic applications.

Methods

Quality ﬁherlng for imputed variants. In order 1o assess genotype imputation
quality and to d ine an accurate post quality filter, we made use of
the Wellcome Trust Case Control Consortium (WTCCC)™ data available through
the European Genotype Archive (EGA, https://www.ebi.ac.uk/ega/studies/
EGAS00000000028). The genotyping data and the subjects included in the fol-
lowing tests were filtered according to the guidelines provided by the WTCCC,
whose criteria of exclusion are in line with standard quality filters for GWAS®. We
used the 1958 British Birth cohort (~3,000 samples, 58C) that was genotyped by
Affymetrix v6.0 and Illumina 1.2M chips. After applying the quality-filtering cri-
teria, 2,706 and 2,699 subjects from the Affymetrix and Illumina data, respectively,
were available for the 58C samples, leaving an intersection of 2,509 individuals
genotyped by both platforms. After variant quality filtering and excluding all the
variants with minor allele frequency (MAF) below 0.01, 717,556, and 892,516
variants remained for 58C Affymetrix and Illumina platforms, respectively.

We used a two-step genotype imputation approach based on prephasing the
study genotypes into full haplotypes with SHAPEIT2! to ameliorate the
computational burden required for genotype imputation through IMPUTE2%2, We
used the GTOOL software (http://www.well.ox.ac.uk/~cfreeman/software/gwas/
gtooLhtml, version 0.7.5) to homogenize strand annotation by merging the
imputed results obtained from each set of genotyped data. To ensure that there
were no strand orientation issues, we excluded all C/G and A/T SNPs. To perform
genotype imputation, we uscd two sequence-based reference panels: the 1000G
Phasel (June 2014) release’ and the UK10K2.

We evaluated genotype imputation for each rcfcrcncc panel consldtnng 2,509

As the individuals typed (and imputed) using Affy and IL SNPs as backbones
were the same, we expected no statistical differences when comparing the allele and
genotype frequencies with any of the variants. The quality of the imputed variants
was evaluated using the allelic dosage R? correlation coefficient, between the
genotype dosages estimated when imputing using Affy or IL as the backbone. The
Affy GT and IL GT SNPs were used to evaluate the correspondence between the
allelic dosage R? scores and the IMPUTE2 info scores for the imputed genotypes.
The linear model, between the allelic dosage R? and the IMPUTE2-info, was used
to set an info score threshold of 0.7, which corresponds to an allelic dosage R? of
0.5. The correlation between R* and info score was uniform across all reference
panels and platforms.

The 70KforT2D resource. We collected genetic individual- Ievel data for T2D
case/control studies from five ind dent datasets, Gene
Association Studies initiative [G[NEVA] Wellcome Trust Case Control Con-
sortium [WTCCC], Finland-United States Investigation of NIDDM Genet-
ics [FUSION], Resource for Genetic Epidemiology Research on Aging [GERA],
and the Northwestern NUgene project [NUGENE] publicly available in the dbGaP
(http://www.ncbinlm.nih.gov/gap) and EGA (https:/www.cbi.ac.uk/ega/home)
public repositories, comprising a total of 13,201 cases and 59,656 controls (for the
description of each cohort, see Suppl y Note 1 and Suppl; Data 1).
Each dataset was independentl d and quality with a
three-step protocol, including two stages of SNP removal and an intermediate stage
of sample exclusion. The exclusion criteria for v:mms were (1) missing call rate
2 0.05, (ii) signi deviation from H: (HWE) pS1x
107 for controls and p < 1 x 1072° for the entire cohon‘ (iii) significant differences
in the proportion of missingness between cases and controls p < 1 x 107, and (iv)
MAF < 0.01 (for the GERA cohort, we considered a MAF of 0.001). The exclusion
criteria for samples were i) gender discordance between the reported and
genetically predicted sex, ii) subject relatedness (pairs with #20.125 from which
we removed the individual with the highest proportion of missingness), iii) missing
call rates per sample 2 0.02, and :v) population structure showmg more than four

standard d within the distrib of the study popul g to
the first four pnnclpa] components.
We p d genotype imp dently for each cohort by

h pes to whole haplotypes with SHAPEIT2 and then, we
perfonncd genotyp: imputation with IMPUTE2. We tested for association with
additive logistic regression using SNPTEST, seven derived principal components
sex, age, and body-mass index (BMI), except for WTCCC, for which age and BMI
were not available (: it y Data 1). To imi wer and accuracy, we
combined the association results fmm 1000G Phasel integrated haplotypes (June,
2014)” and UKI0K (http://www.uk10k.org/) reference panels by choosing for each
variant, the reference panel that provided the best IMPUTE? info score. For
1000G-based genotype imputation in chromosome X (chrX), we used the “v3.
macGT1" release (August, 2012). For chrX, we restricted the analysis to non-
pseudoautosomal (non-PAR) regions and stratified the association analysis by sex
to account for hemizygosity for males, while for females, we followed an autosomal
model. Also, we did not apply HWE filtering in the X chromosome variants.
Finally, for the GERA cohort due to the large computational burden that comprises
the whole genotype imputation process in such a large sample size, we randomly
split this cohort into two homogeneous subsets of ~30,000 individuals each, in
order to minimize the memory requirements.

We included variants with IMPUTE2 info score 2 0.7, MAF 20.001, and for
autosomal variants, HWE con(rols p>1x107°. Further details about genotype
B i d

o
[

imputation and covariate i used in testing are
in Supplementary Data 1.
70KforT2D and inclusion of previous data. We meta-

y
analyzed the different sets from the 70KforT2D data set with METALS?, using the
inverse variance-weighted fixed effect model. We included variants with I het-
erogeneity < 75 This filter was not applied to the final X chromosome data set,

58C individuals that were genotyped by both indep g
Four scenarios were considered: (a) fraction of variants ongmnlly gcnmypcd (GT)
by both Illumina (IL) and Affymetrix (Affy) platforms (both GT), (b) variants
genotyped by Affy, but not present in IL array (Affy GT), (c) variants genotyped by
IL, but not present in the Affy array (IL GT), and (d) variants not typed in IL nor in
the Affy arrays, and therefore, imputed from IL and Affy data sets (d). This last
scenario comprised the largest fraction of variants.

after met the results from males and females separately (which were
already filtered by P <75).

For the meta-analysis with the DIAGRAM trans-ethnic study®, we excluded
from the whole 70KforT2D datasets those cohorts that overlapped with the
DIAGRAM data. Therefore, we meta-analyzed the GERA and NuGENE cohorts
(7,522 cases and 50,446 controls) from the 70KforT2D analysis with the trans-
ethnic summary statistics results. As standard errors were not provided for the

Fig. 4 Functional characterization of rs146662075 association signal. a Signal plot for X chromosome region surrounding rs146662075. Each point
represents a variant, with its p-value (on a -log10 scale, y axis) derived from the meta-analysis results from association testing in males. The x axis
represents the genomic position (hg19). Below, representation of H3K27ac and RNA-seq in a subset of cell types is shown. The association between RNA-
seq signals and H3K27ac marks suggests that AGTR2 is the most likely regulated gene by the enhancer that harbors rs146662075. b The presence of the
common allelic variant rs146662075-C reduces enhancer activity in luciferase assays performed in a mouse myoblast cell line. ¢ Electrophoretic mobility
shift assay in C2C12 myoblast cell lines, C2C12-differentiated myotubes, and human fetal myoblasts showed allele-specific binding of a ubiquitous nuclear
complex. The arrows indicate the allele-specific binding event. Competition was carried out using 50- and 100-fold excess of the corresponding unlabeled

probe
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DIAGRAM ti thni lysi d a sample size based meta-
analysis, which converts the dn'ecuon of thc effecl and lhe p -value into a Z-score.
In addition, we also p d an inverse hted fixed effect meta-
analysis to estimate the final effect sizes. This approach required the estimation of
the beta and standard errors from the summary statistics (p-value and odds ratio).

For the meta-analysis of coding low-frequenc) 4 variants with the
Type 2 Diabetes Knowledge Portal (T2D Portal)®, we included from the
70KforT2D data set the NuGENE and GERA cohorts (7,522 cases and 50,446
controls), to avoid overlapping samples. Like in the previous scenario, standard
errors were not provided for the T2D Portal data and we used a sample size based
meta-analysis with METAL. However, to estimate the effect sizes, we also
calculated the standard errors from the p-values and odds ratios, and we performed
an inverse vari ighted fixed effect met

See further details aboul the cohorts in Supplememary Note 1.

Pathway and enrichment analysis. Summary slansucs that resuhed rrom the

causal SNP if this has been genotyped or imputed. The credible set construction
provides, for each variant placed within a certain associated locus, a posterior
probability of being the causal one'!. We estimated the approximate Bayes’ factor
(ABF) for each variant as

\r:’,’z)_

ABF = V1 —ré

where

004
"~ (SE*+0.04)"

L
SE’

The ff and the SE are the estimated effect size and the corresponding standard

error resulting from testing for association under a logistic regression model. The

70KforT2D meta-analysis were anal;
Integration for Complex Traits (DEPICT) to prioritize Ilkely causal genes, to
highlight enriched pathways, and to identify the most relevant tissues/cell types;
DEPICT relies on publicly available gene sets (including molecular pathways) and
leverages gene expression data from 77,840 gene expression arrays, to perform gene
and gene-set enrichi based on predicted gene function and the

so-called reconstituted gene sets. A reconstituted gene set contains a membership
probability for each gene and conversely, each gene is funclnonally characterized by
its b bilities across 14,461 ituted gene sets. As an input to
DEPICT, we used all summary statistics from autosomal variants with p < 1x 10>
in the 70KforT2D meta-analysis. We used an updated version of DEPICT, which
handled 1000G Phasel-integrated haplotypes (June 2014, www.broadinstitute.org/
depict). DEPICT was run using 3,412 associated SNPs (p < 1 x 107%), from which
we identified independent SNPs using PLINK and the following parameters:

--clump-pl 5e-8, --clump-p2 le-5, --clump-r2 0.6, and --clump-kb 250. Wc uscd
LD 2> 0.5 distance to define locus limits yielding 70 1 loci comp

posterior probability for each variant was obtained as

BF;
Posterior Probability, = %

where ABF; corresponds to the approximate Bayes’ factor for the marker i and T
represents the sum of all the ABF values from the candidate variants enclosed in
the interval being evaluated. This calculation assumes that the prior of the f
corresponds to a Gaussian with mean 0 and variance 0.04, which is also the same
prior commonly employed by SNPTEST, the program being used for calculating
single-variant associations.

Finally, we ranked variants according to the ABF (in dccrczsing order) and from
this ordered list, we calculated the lative post bability. We included
variants in the 99% credible set of each region unul (he SNP that pushed the

lative posterior probabili iation over 0.99.
The 99% CRdlblE sets of variants for each of the 57 GWAS-significant regions

119 genes (note that this is not the same locus definition that we used elsewhere i m
the text). We ran DEPICT with default settings, i.e,, using 500 permutations to
adjust for bias and 50 replications to estimate false discovery rate (FDR). We used
normalized expression data from 77,840 Affymetrix microarrays to reconstitute
gene sets”. The resulting 14,461 reconstituted gene sets were tested for enrichment
analysis. A total of 209 tissue or cell types expression data assembled from 37,427
Affymetrix U133 Plus 2.0 Array samples were used for enrichment in tissue/cell-
type expression. DEPICT identified 103 reconstituted gene sets significantly enri-
ched (FDR < 5%) for genes found among the 70 loci associated to T2D. We did not
consider reconstituted sets in which genes of the original gene set were not
nominally enriched (Wilcoxon rank-sum test), as these are expected to be enriched
in the reconstituted gene set by design. The lack of enrichment makes the inter-
pretation of the reconstituted gene set challenging because the label of the
reconstituted gene set will not be accurate. Hence, the following reconstituted gene
sets were removed from the results (Wilcoxon rank sum and P-values in par-
entheses): MP:0004247 gene set (p=0.73), GO:0070491 gene set (p=0.14),
MP:0004086 gene set (p=0.17), MP:0005491 gene set (p = 0.54), GO:0005159 gene
set (p=0.04), MP:0005666 gene set (p=0.05), ENSG00000128641 gene set (p=
0.02), MP:0006344 gene set (p=0.42), MP:0004188 gene set (p=0.22),
MP:0002189 gene set (p=0.02), MP:0000003 gene set (p=0.08),
ENSG00000116604 gene set (p=0.13), GO:0005158 gene set (p=0.07), and
MP:0001715 gene set (p=0.01). After applying the filters described above, there
were 89 significantly enriched reconstituted gene sets. We used the affinity pro-
pagation tool to cluster related reconstituted gene sets (network diagram script
available from https:/github.com/perslab/DEPICT).

We also used the VSE R package to compute the enrichment or depletion of
genetic variants comprised in the 57 credible sets listed in Supplementary Data 5
across regulatory genomic annotations, as described in®. Each GWAS lead variant
from the final meta-analysis was considered as a tag SNP and variants from the
corresponding 99% credible set (Supplementary Data 5) in LD with the tag SNP
(R220.4), as a cluster or associated variant set (AVS). In order to account for the
size and structure of the AVS, a null distribution was built based on random
permutations of the AVS. Each permuted variant set was matched to the original
AVS, cluster by cluster using HapMap data by size and structure. This Ma!ched
Random Vallan! Sel (MRVS) was calculated using 500 p

or were idered when the i-adjusted p-value
was < 0.01. Human islet regulatory elements (C1-C5) were obtained from!".

Definition of 99% credible sets of GWAS-significant loci. For each genome-
wide significant region locus, we identified the fraction of variants that have, in
aggregate, 99% p ility of ining the causal T2D-: iated variant. By
using our 70KforT2D meta-analysis based on imputed data (NuGENE, GERA,
FUSION, GENEVA, and WTCCC data sets, comprising 12,231 cases and 57,196
controls), we defined the 99% credible set of variants for each locus with a Bayesian
refinement approach!! (we considered variants with an R?> 0.1 with their
respective leading SNP).

Credible sets of variants are analogous to confidence intervals as we assume that

are d in y Data 5.

C ization of indels. We d whether indels from the 99% credible
sets were present or absent in the 1000G Phasel or UK10K reference panels, and
also checked whether they were present or not in the lODOG Phase3 reference
panel. All the infc ion has been din y Data 6. We also
visually inspected the aligned BAM files of the most relevant mdels from both
projects to discard that they could be alignment artifacts.

Functional annotation of the 99% credible set variants. To determine the effect
of 99% credible set variants on genes, transcripts, and protein sequence, we used
the variant effect predictor (VEP, GRCh37.p13 assembly)'*. The VEP application
determines the effect of variants (SNPs, insertions, deletions, CNVs, or structural
variants) on genes, transcripts, proteins, and regulatory regions. We used as input
the coordinates of variants within 99% credible sets and the corresponding alleles,
to find out the affected genes and RefSeq transcripts and the consequence on the
protein sequence by using the GRCh37.p13 assembly. We also manually checked
all these annotations with the Exome Aggregation Consortium data set (ExAC,
http://exac.broadinstitute.org) and the most updated VEP server based on the
GRCh38.p7 assembly. All these ions are provided in Sup y Data 7.

We used combined annotation-dependent depletion (CADD) scoring function
to prioritize functional, deleterious, and disease causal variants. We obtained
the scaled C-score (PHRED-like scaled C-score ranking each variant with respect to
all possible substitutions of the human genome) metric for each 99% credible set
variant, as it highly ranks causal variants within individual genome sequences'!
(Supplementary Data 8). We also used the LINSIGHT score to prioritize functional
variants, which measures the probability of negative selection on noncoding sites
by combining a generalized linear model for functional genomic data with a
probabilistic model of molecular evolution'®. For each credible set variant, we
retrieved the precomputed LINSIGHT score at that particular nucleotide site, as
well as the mean LINSIGHT precomputed score for a region of 20 bp centered on
each credible set variant, respectively (https:/github.com/CshlSiepelLab/
LINSIGHT). These metrics are summarized in Supplementary Data 9.

In order to prioritize functional regulatory variants, we used the V6 release from
the GTEx data that provides gene-level expression quantifications and eQTL results
based on the annotation with GENCODE v19. This release included 450 genotyped
donors, 8,555 RNA-seq samples across 51 tissues, and two cell lines, which led to
the identification of eQTLs across 44 tissues'®. Moreover, RNA-seq data from
human pancreatic islets from 89 deceased donors cataloged as eQTLs and exon use
(SQTL) were also integrated with the GWAS data to prioritize candidate regulatory
variants'” but in pancreatic islets, which is a target tissue for T2D. Both analyses
are summarized in Supplementary Data 10 and Supplementary Data 11,
respectively.

Conditional analysis. To confirm the independence between novel loci and pre-
viously known T2D signals, we performed reciprocal conditional analyses (Sup-
y Data 5, y Data 12, Supp y Data 13, and

the credible set for each associated region contains, with 99% probability, the true
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logistic regression model, assuming that every residual signal that arises corre-
sponds to a secondary signal independent from this conditioning SNP. We applied
this method to the EHMT2 locus (less than 1Mb away from the HLA where T2D
and T1D signals have been identified), to confirm that this association was inde-
pendent of previously reported T2D signals and also to discard that this association
is also driven by possible contamination of T1D diagnosed as T2D cases. We
conditioned on the top variant identified in this study and the top variant from the
99% credible set analysis, but also on the top variants previously described for T2D
and T1D® 310, For this purpose, we used the full 70KforT2D resource (NuGENE,
GERA, FUSION, GENEVA, and WTCCC cohorts imputed with 1000G and
UKI10K reference panels). Finally, all the results were meta-analyzed as explained in
previous sections. These analyses are provided in Supplementary Data 13. This
approach was also applied to confirm that the novel CAMKK?2 signal at rs3794205
is independent of known T2D signals at the HNFIA locus (rs1169288, rs1800574,
and chr12:121440833:D)*, which is summarized in Supplementary Data 12.
Moreover, this approach confirmed known secondary signals in the 9p21 locus®®
which allowed us to build 99% credible sets based on the results from the condi-
tional analyses (included in Supplementary Data 5), and allowed us to identify the
most likely causal variant for the DUSP9 locus (Supplementary Data 14).

Replication of the rare variant association at Xq23. To replicate the association
of the rs146662075 variant, we performed genotype imputation with the UK10K
reference panel in four independent data sets: the InterAct case-cohort study?, the
Slim Initiative in Genomic Medicine for the Americas (SIGMA) consortium
GWAS data set®, the Partners HealthCare Biobank (Partners Biobank) data set™,
and the UK Biobank cohort”. Phasing was performed with SHAPEIT2 and the
IMPUTE2 software was used for genotype imputation.

The current UK Biobank data release did not contain imputed data for the X
chromosome, for which phasmg and imputation had to be analyzed in-house. The
data release used QCed g of 488,377
participants, which were assayed using two arrays sharing 95% of marker content
(Applied Biosystems™ UK BiLEVE Axiom™ Array and the Applied
Biosystems ™ UK Biobank Axiom™ Array). We included samples and markers
that were used as input for phasing by UK Biobank investigators. At the sample
level, we also excluded women, individuals with missing call rate > 5% or showing
gender discordance between the reported and the genetically predicted sex. At the
variant level, we excluded markers with MAF < 0.1% and with missing call rate
> 5%. The final set of 16,463 X chromosome markers and 222,725 male individuals
was split into six subsets due to the huge computational burden that would require
phasing into whole haplotypes the entire data set. We also excluded indels, variants
with MAF < 1%, and variants showing deviation of Hardy-Weinberg equilibrium
with p < 1x 1072 before the imputation step. In addition, from those pairs of
relatives reported to be third degree or higher according to UK Biobank, we
excluded from each pair the individual with the lowest call rate. We then tested the
rs146662075 variant for association with type 2 diabetes using SNPTEST v2.5.1 and
the threshold method. To avoid contamination from other types of diabetes
mellitus, we excluded from the entire sample data set, individuals with ICD10
codes falling in any of these categories: E10 (insulin-dependent diabetes mellitus),
E13 (other specified diabetes mellitus), and E14 (unspecified diabetes mellitus).
Then, we designated as T2D cases those individuals with E11 (non-insulin-
dependent diabetes mellitus) ICD10 codes, and the rest as controls. Moreover, we
only kept as control subjects those individuals without reported family history of
diabetes mellitus and older than 55 years, which is the average age at the onset of
T2D.

We also genotyped de novo the rs146662075 variant with KASPar SNP
genotyping system (LGC Genomics, Hoddeson, UK) in the Danish cohort, which
comprises data from five sample sets (Supplementary Note 2 also for the
genotyping and QC analysis for this variant).

We used Cox-proportional hazard regression models to assess the association of
the variant with the risk of incident T2D in 1,652 nondiabetic male subjects
genotyped in the Inter99 cohort (part of the Danish cohort) that were followed for
11 years on average. The follow-up analysis was restricted to male individuals
younger than 45 years who were 56 years old after 11 years of follow-up.
Individuals with self-reported diabetes at the baseline examination and mdnvnduals

org/ g.php), in order to assess which type of regulatory
element was associated with lhe rs146662075 variant.

To further evaluate the putative regulnlory role of rs|46662075. we uscd the
WashU EpiGenome Browser (I wustl.ed ast
access on June 2016). We used the rollowmg public data hubs: (1) the reference
human epige from the Roadmap C ium track hubs and
(2) the Roadmap Epigenomics lmegranve Analysis Hub. These data were released
by the NIH Road: ics Mapping C ium®'. RNA-seq data were
used to evaluate whether gene expression of any of the closest genes (AGTR2 and
SLC6A 14 genes, fixed scale at 80 RPKM) correlated with the presence of the
H3K27ac enhancer marks (a more strict mark for active enhancers in contrast with
H3K4mel®, which were highlighted by the HaploReg search) at the rs146662075
location. For visualizing the H3K27ac marks around rs146662075, we focused on a
region of 8 kb and we used a fixed scale at 40 —log,, Poisson p-value of the counts
relative to the expected background count (Ajoca)-

The NIH Roadmap Epigenomics Consortium data from standardized
epigenomes also allowed us to further interrogate which target gene within the
same topologically associating domain (TAD) was more likely to be regulated by
this rs146662075 enhancer. We used H3K27ac narrow peaks from 59 tissues called
using MACSv2 with a p-value threshold of 0.01 from 98 consolidated epigenomes
to seek for enhancer marks in a given tissue (the presence of H3K27ac peak). To
assess gene expression for any of the pulanvc Iargct genes within TAD, we used the
RPKM ion matrix for 57 Ppige (http://egg2.wustl.edu/
roadmap/dala/byDataTypclrnal) and gene expression quantifications for fetal
muscle leg, fetal muscle trunk, and fetal stomach provided by ENCODE (https://
www.encodeproject.org/). With this, we were able to test for each of the genes, the
association between gene expression and enhancer activity in 31 tissues with a
Fisher's exact test.

Allele-specific enhancer activity at rs146662075. The mouse C2CI2 cell line
(ATCC CRL-1772) was grown in DMEM medium supplemented with 10% FBS
and was induced to differentiate in DMEM with 10% horse serum for 4 days.

The human fetal myoblast cell line was established by Prof. Giulio Cossu
(Institute of Inflammation and Repair, University of Manchester)®®, The authors
played no role in the procurement of the tissue. Cells were cultured in DMEM
medium supplemented with 10% fetal calf serum and was induced to differentiate
in DMEM with 2% horse serum for 4 days.

To perform an electrophoretic mobility shift assay, nuclear extracts from mouse
myoblast C2C12 cells and the human myoblast cell line (ATCC CRL-1772) were
obtained as described before®. Double-stranded oligonucleotides containing either the
common or rare variants of rs146662075 were labeled using dCTP [a-32P] (Perkin
Elmer). Oligonucleotide sequences are as follows (SNP location is underlined): probe-
C-F: 5-gatcTTTGAACACcGAGGGGAAAAT-3' and R:5"-gatcATTTTCCCCTC
EGTGTTCAAA -3"and probc -T-F: 5'- gatt TTTGAACACtGAGGGGAAAAT-3" and
R: 5"-gatcATTTTCCCCTCaGTGTTCAAA-3'. Assay specificity was assessed by
preincubation of nuclear extracts with 50- and 100-fold excess of unlabeled wild-type
or mutant probes, followed by electrophoresis on a 5% polyacrylamide
gel. Findings were confirmed by repeating binding assays on separate days.

For evaluating if the activity of the rs146662075 enhancer was allele specific, we
performed a luciferase assay. A region of 969 bp surrounding rs146662075 was
amplified from human genomic DNA using F: 5'-
GCTAGCATATGGAGGTGATTTGT-3" and R: 5'-
GGCACTTCCTTCTCTGGTAGA-3' oligonucleotides and cloned into pENTR/D-
TOPO (Invitrogen). Allelic variant rs146662075T was introduced by site-directed
mutagenesis using the following primers: F: 5'-

CTTTTTTTACTTTGAACACTGAGGGGAAAATCATGCTTGGC-3" and R: 5'-
GCCAAGCATGATTTTCCCCTCAGTGTTCAAAGTAAAAAAAGG-3',
Enhancer sequences were shuttled into pGL4.23(luc2/minP] vector (Promega)
adapted for Gateway cloning (pGL4.23-GW, 2) using Gateway LR Clonase 11
Enzyme mix (Invitrogen). Correct cloning was confirmed both by Sanger
sequencing and restriction digestion.

C2C12 (ATCC CRL-1772) and 293T (ATCC CRL-3216) cells were transfected
in quadruplicates with 500 ng of pGL4.23-GW enhancer containing vectors and 0.2
ng of Renilla normalizer plasmid. Transfections were carried out in 24-well plates

present in the Danish National diabetes registry before the baseline

using Lip 2000 and Opti-MEM (Thermo Fisher Scientific) following the
fa Luciferase activity was measured 48 h after

were also excluded. To include the follow-up study as a part of the r

cohorts, we used a meta-analysis method that accounts for 1 samples
(MAOS)®, as we had to control for the sample overlap between the follow- up and
the case-control study from the Danish samples.

See Supplementary Note 2 for a larger description of each of the five replication
cohorts and how they have been processed.

We meta-analyzed the association results from these five replication data sets
with the 70KforT2D data sets. In the final meta-analysis, we excluded whenever it
was possible (a) controls younger than 55 years and (b) with OGTT > 7.8 mmol |

! or with family history of T2D.

In silico of . This variant is located in
an intergenic region, flanked by AGTR2 and SLC6A 14 genes, and within several

DNase I hypersensitive sites. We searched for regulatory marks (1 e, H3K4mcl and
H3K27ac marks) through the Hapl web server (http

NS | (2018)9:321

usmg Dual-Luciferase Reporter Assay System (Promega). Firefly
luciferase activity was normalized to Renilla luciferase activity, and the results were
expressed as a normalized ratio to the empty pGL4.23(luc2/minP] vector backbone.
Experiments were repeated three times. Statistical significance was evaluated
through a Student’s t-test.

Data availability. The association results are available at the Type 2 Diabetes
Knowledge portal (www.type2diabetesgenetics.org/) and the complete summary
statistics are available for download at http://cg.bsc.es/70kfort2d/
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A computer-implemented and reference-free method for identifying variants
in nucleic acid sequences

The present invention relates to a computer implemented method for the
identification and characterization of sequence variants in nucleic acids. In
particular, this method is able to quickly and accurately identify most types of
sequence genome variations with a potential association to a disease, that is,
from single nucleotide substitutions to large structural variants. This method
may have multiple and direct applications in genomics-based diagnosis,
prognosis and therapy.

The invention further relates to a computer program and to systems suitable
for performing such a method. The computer program may be designed to be
lock-less and scalable, thereby allowing for high performance
implementations on parallel execution environments such as specialized
hardware accelerators.

BACKGROUND ART

The genetic basis of disease is increasingly becoming more accessible
thanks to the emergence of the Next Generation Sequencing (NGS)
platforms, which have extremely reduced the costs and increased the
throughput of genomic sequencing. For the first time in history, personalized
medicine is close to becoming a reality through the analysis of each patient’s
genome.

A wide range of genome variation of cells and individuals has been identified
to be the direct cause, or a predisposition to genetic diseases: from single
nucleotide variants (SNVs if they are somatic, and SNPs if they are
polymorphic in the population), to structural variants (SVs), which can
correspond to deletions, insertions, inversions, translocations and copy
number variations (CNVs), ranging from a few nucleotides to large genomic
regions, including complete chromosome arms. These variations can exist
between patients and also emerge among cells of the same patient. The
unveiling of changes in the genome is driving discoveries such as the
Philadelphia translocation between chromosomes 9 and 22, whose presence
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implies the development of chronic myelogenous leukemia (CML) and its
identification allows the development and selection of last-generation
therapies.

The ideal exploitation of genomic sequencing should involve the accurate
identification of all variants, in order to derive a correct diagnosis and to
select the best therapy. For clinical purposes, it is important that this
computational process be carried out within an effective timeframe. But a
simple sequencing experiment typically yields thousands of millions of reads
per genome, which have to be stored and analysed. The task is severely
hindered by a variety of factors such as PCR-amplification and sequencing
errors, limitations intrinsically linked to the size of the reads, biases in the
sequencing techniques employed, the inherent repetitive and dynamic nature
of the genomic sequences, and others. As a consequence, the analysis of
genomes with diagnostic and therapeutic purposes is still a great challenge,
both in the design of efficient algorithms and at the level of computing
performance.

Modern medicine will rely on the identification of genetic markers for precision
diagnosis and for the application of more specific therapies. Cancer is one of
the most active diagnostic and therapeutic areas where genetic analysis is
being applied. Having access to all somatic variation accumulated in a tumor
cell is now allowing the study of the genetic causes of the tumor and the
development of new clinical protocols that are already starting to be applied
in some clinical centres, and that will be soon a reality for all modern
healthcare systems around the world. This is why, the identification of tumor
variants is key in research and soon, also in medical care. The variants
responsible for the origin and progression of tumors are currently searched
using a common scheme that involves the sequencing of both tumor and
normal genome samples of the same patient, and the subsequent scan and
identification of the differences between them. Most of the available methods
rely on an initial step, where all the normal and tumor sequence reads are
aligned to a reference genome to then identify the changes present in the
tumor compared with the normal and reference genomes. Despite these
methods have provided a great number of disease-associated variation so
far, they still entail intrinsic limitations associated to the need of a
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prealignment to a reference genome, affecting their performance and
accuracy. More precisely, the reference-based identification of somatic
variation in cancer genomes has currently the following sources of errors and
limitations: (i) the initial alignment step, on which all the methods rely, is time
consuming and particularly error prone with the tumor reads that carry the
sequence variation, which are the most relevant for the analysis. It has been
proven that many of these reads that carry changes and differences in their
sequence are difficult or even impossible to align to the reference unmutated
genome. The absence and the misplacement of tumor reads in the final
alignment drastically affect all existing downstream methods for variant
searching and calling. Although a number of alternative methods exist, this
alignment step is generally performed with the same program (Li, H., et.al.
“Fast and accurate short read alignment with Burrows-Wheeler transform”
Bioinformatics 2009, vol. 25, pp. 1754-1760), which implies that nearly all
analyses done nowadays share the same type of errors derived from this
mapping of reads. (ii) The usage of a reference genome also involves the
interference with millions of inherited variants (germline, i.e. not somatic) that
affect both, the accuracy at the level of read mapping and the actual
identification of the target somatic fraction (normally comprising only between
2 and 10 thousand variants). A considerable number of these germline
variants are then frequently mispredicted as somatic changes, increasing the
rate of false positives and decreasing, consequently, the final reliability and
applicability of the results.

On top of the limitations and errors inherent to the generation and
dependency of this initial alignment, the subsequent analysis, where somatic
changes are finally identified, also implies a number of restrictions and
complications. For example, despite the great deal of possibilities in terms of
available methods, not a single one of them is able to identify a wide range of
somatic variation, but instead, each is limited to the detection of a particular
size and type of mutation (Medvedev P. “Computational methods for
discovering structural variation with next-generation sequencing” Nat.
Methods Suppl. 2009, vol. 6, S13-S20)There are programs that use this
alignment to detect only SNVs and others that only identify SVs, among
which, each one is able to detect a particular variant size. For instance, some
methods identify insertions or deletions that comprise a few nucleotides (from
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2 to a few dozens), others detect medium size SVs (from a few dozens of
nucleotides to a few hundreds), and a small fraction of them, are designed for
the identification of larger SVs (Ding, L., et.al. “Expanding the computational
toolbox for mining cancer genomes” Nat. Rev. Genet. 2014, vol. 15, pp. 556-
570). As the detection complexity increases with the detection range,
methods designed for the identification of large SVs are also more imprecise
in defining the exact location in the genome and the type of change, which
are often necessary for being able to derive the functional consequences of
the mutation. These programs often only report regions where SVs might be
located.

In order to overcome these limitations, to date, alternative approximations
have been developed. The term reference-free becoming more popular and
has recently been used to describe a wide range of fundamentally different
underlying strategies. For example, these methodologies are using
fundamentally different unrelated strategies covering, from the use of
reference mapping plus assembly-based (Chen K. “TIGRA: A targeted
Iterative Graph Routing Assembler for Breakpoint Assembly” Genome Res.
2016, vol. 24, pp.310-317), de novo assembly (Zhuang, J. “Local sequence
assembly reveals a high-resolution profile of somatic structural variations in
97 cancer genomes” Nucleic Acid Research 2015, vol. 43, pp.8146-8156), to
suffix tree approximations (Moncunill V., et al., “Comprehensive
characterization of complex structural variations by directly comparing
genome sequence reads” Nature Biotech. 2014, vol. 32, pp. 1106-1112). The
first two examples are based on the end-joining of reads in the tumor and
normal genomes in order to identify discordant patterns. Although these
assembly can also suffer the mapping-derived limitations, they have other
major limitations associated to the underlying mechanism of the assembly,
mostly when using NGS reads, as the overlapping regions needed to extend
over the read size are often too small to be position-specific in the genome.
Among other reference-free approximations reported to date, it can be
highlighted a suffix tree-based method (SMUFIN) that compares in a tree-like
structure all tumor and normal reads, to then extract discordant branches as
candidate positions for variation. Although this particular way of analysing
reads may directly overcome many of the limitations mentioned, it still lacks
possibilities for detecting non-human sequences and is limited by the size of
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the tree, which grows in memory demands as sequencing coverage grows.
Additionally, and in contrast to the approach followed in the method of the
present invention, suffix trees are data structures that inherently require
locking access patterns to allow for concurrent updates to take place,
therefore limiting the ability to efficiently implement these approaches in high
performance parallel computing systems. These two fundamentally different
approaches of analysing sequence reads have also limitations of scalability,
as the design of the code has not considered alternative ways of adapting to
specific and more efficient hardware architectures. In fact, all the limitations
mentioned hinder the incorporation of this type of genomic analysis into
identification of somatic mutations applied to the clinical practice, which calls
for much faster and more accurate computational methods. In addition,
current methods for somatic variant calling still miss an important fraction of
large SVs, which are relevant for the diagnosis and treatment of diseases.

Similar approximations have also been extended to deal with other type of
problems in molecular biology. For example, some reference free methods
have been developed to quantify the abundance of RNA isoforms from RNA-
seq data (Patro R., et. al. “Sailfish enables alignment-free isoform
quantification from RNA-seq reads using lightweight algorithms” Nature
Biotech. 2014, vol. 32, pp. 462-464), or to identify evolutionary-driven
substitutions in homozygosis, using de novo assembly of plant genomes
(Nordstrom K.J.V, et.al. “Mutation identification by direct comparison of
whole-genome sequencing data from mutant and wild-type individuals using
k-mers” Nature Biotech. 2013, vol. 31, pp. 325-331).

Clearly quick and robust comparative methods, able to detect all kinds of SVs
differentiating two states (normal vs. pathological, undifferentiated vs.
differentiated, etc.) with high sensitivity, specificity, speed and scalability are
still needed, as well as systems and computer programs suitable for
performing such methods.

SUMMARY OF THE INVENTION

In contrast to what is found in the prior art, inventors have come up with a
computer-implemented method for identifying nucleic acid variants between
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two genomic states that does not depend on the alignment of reads of either
state to a reference genome, or on the construction of sequence-based suffix
trees. Using a different underlying mechanism, this method is, on its own,
able to accurately identify all types of variants (heterozygous and
homozygous), from single nucleotide variations to large structural variants at
base pair resolution with unprecedented performance at the level of variant
detection and execution possibilities. Importantly, the method is not restricted
to the identification of a certain type of variant (SNVs, insertions, inversions,
etc.) nor does it only perform for variants of a certain size, as is the case for
many of the methods found in the art. Because of its underlying principle,
based on the use of k-mers and hashtables independently of a reference
genome, all the limitations that apply to all other existing methods (outlined
above) are overcome. This translates to a method that is not only more
robust, but is also more thorough and much faster than the methods
described to date.

This invention entails a reference-free detection method that allows
discovering homozygous and heterozygous variation in genomes using a
polymorphic k-mer strategy consisting in the sequential sub-selection of read
regions that will be compared in different ways to finally isolate variant-
containing regions. One of the key elements of this computer-implemented
method is the way k-mers are handled, as they are taken as “dynamic
entities” by taking their stems and using the latter to explore for their
inflections and partial inflections (see below). Compared to the other
reference-free methods described above, the invention relies on a
fundamentally different way of dealing with the reads since, instead of
constructing an assembly, or a complete suffix-tree with all normal and tumor
reads, it uses a particular k-mer strategy (see below) to fish reads with
potential variation and discards, in one pass, the vast majority of reads with
no information. This allows inventors to quickly filter and retain a subset of
reads representing all the variants that are now computationally easy to treat
and analyse.

Of note, the use of k-mers for direct comparison of genomes has only been
explored in simple scenarios with a small scope, data, and requirements (see
for instance Nordstrom K., ibid). In general, the use of k-mers has some
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limitations due to their strict nature, and the way k-mers are distributed in
genomes, requiring large amounts of computing resources if the identification
of unique features is sought. Inventors address these limitations by using a
more flexible approach: polymorphic k-mers, which in addition to k-mers, also
identify variations (inflections) of k-mers with similar patterns (stems, see
below). Unlike regular, fixed-length k-mers, polymorphic k-mers enable the
identification of unique features, and at the same time provide the means to
gather and group related sequences even if they are not strictly the same.
This element is key, as will be seen in the examples found below.

Thus, a first aspect of the present invention is a computer-implemented
method for identifying nucleic acid variants between two genomic states
comprising the steps of: A) Inputting 2 sets of nucleic acid reads, which are
sequences retrieved from a nucleotide sequencing method, wherein the first
set of reads corresponds to cells representing a first test state, and the
second set of reads corresponds to cells representing a second control state;
B) Filtering the reads, wherein the filtering comprises: B1) Keeping only
the reads with at least a percentage X1 of their bases with a Phred quality
score higher than 20, being X1 equal to or above 90%; B2) Splitting the reads
with an undefined nucleotide, giving one sequence before, and one sequence
after the undefined nucleotide, the latter being discarded; and B3) Discarding
the sequence reads with less than X2 bases, wherein X2 is from 25 to 50;

C) Generating a hashtable structure comprising: C1) Generating a number of
N-X2+1 new reads for each read of sequence length N, wherein the new N-
X2+1 reads correspond to all k-mers with length X2 nucleotides; and C2)
Building a hashtable structure, which comprises all the k-mers generated in
step C1) and further comprises the number of times each k-mer is observed in
the two sets of reads corresponding to first and second states.

D) Detecting candidate variants in the sequence between first state and
second state, wherein a k-mer of the hashtable structure is taken as a
candidate breakpoint, which represents a variant between the first and
second states, if it fulfills all the following requirements: D1) At least one
inflection based on a k-mer’s stem must have at least X3 reads with the same
variation between first and second states, being X3 at least 2; D2) The
percentage of first state reads in second state reads is not over a threshold
X4, to account for possible contamination of control state reads with test state
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reads, wherein X4 is at least 5%. E) Clustering and filtering test and control
reads derived from all candidate breakpoints accepted in step D to build
blocks, by carrying out the steps: E1) Retrieving reads which contain the stem
of at least one k-mer that represents the candidate breakpoint selected in
step D); E2) The reads of step E1) with at least X5 k-mer variants within a
window of X6 nucleotides are taken as leading reads, wherein X5 is at least 7
and X6 is at least 10; E3) Reads whose k-mers share at least one stem with a
leading read are merged to give a block; and E4) If the nucleic acid whose
variant is being identified is a double stranded DNA, then both forward and
reverse variants are taken into account when building the block. F) Aligning
blocks taking their leading reads as a reference: F1) For each read in the
block, take the leading read’s stem and find the longest inflection or partial
inflection between the read and the leading read. F2) Successively position
each read so that its matching inflection or partial inflection is aligned against
the leading read.

The performance and speed of this method make it more suitable for clinical
applications (such as genomic analysis of cancer cells) than the alternative
solutions, which result complex and time-consuming. As it is shown in the
data below, the method has a superior performance even to last-generation
methods such as the one published in Moncunill (ibid), which is also
reference-free.

A second aspect of the present invention is a computer program product
comprising program instructions for causing a computer system to perform the
computer-implemented method for identifying nucleic acid variants between
two genomic states of the first aspect of the invention.

The computer program product may be embodied on a storage medium (for
example, a CD-ROM, a DVD, a USB drive, on a computer memory or on a
read-only memory) or carried on a carrier signal (for example, on an electrical
or optical carrier signal).

The computer program may be in the form of source code, object code, a
code intermediate source and object code such as in partially compiled form,
or in any other form suitable for use in the implementation of the processes
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according to the invention. The carrier may be any entity or device capable of
carrying the computer program.

For example, the carrier may comprise a storage medium, such as a ROM, for
example a CD ROM or a semiconductor ROM, or a magnetic recording
medium, for example a floppy disc or hard disk. Further, the carrier may be a
transmissible carrier such as an electrical or optical signal, which may be
conveyed via electrical or optical cable or by radio or other means.

When the computer program is embodied in a signal that may be conveyed
directly by a cable or other device or means, the carrier may be constituted by
such cable or other device or means.

Alternatively, the carrier may be an integrated circuit in which the computer
program is embedded, the integrated circuit being adapted for performing, or
for use in the performance of, the relevant methods.

A third aspect of the invention is a system for identifying nucleic acid variants
between two genomic states, the system comprising:

A) Computer/Electronic means for inputting 2 sets of nucleic acid reads,
which are sequences retrieved from a nucleotide sequencing method,
wherein the first set of reads corresponds to cells representing a first test
state, and the second set of reads corresponds to cells representing a second
control state;

B) Computer/Electronic means for filtering the reads, wherein the filtering
comprises: B1) Keeping only the reads with at least a percentage X1 of their
bases with a Phred quality score higher than 20, being X1 equal to or above
90%; B2) Splitting the reads with an undefined nucleotide, giving one
sequence before, and one sequence after the undefined nucleotide, the latter
being discarded; and B3) Discarding the sequence reads with less than X2
bases, wherein X2 is from 25 to 50; C) Computer/Electronic means for
generating a hashtable structure comprising: C1) Generating a number of N-
X2+1 new reads for each read of sequence length N, wherein the new N-
X2+1 reads correspond to all k-mers with length X2 nucleotides; and

C2) Building a hashtable structure, which comprises all the k-mers generated
in step C1) and further comprises the number of times each k-mer is observed
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in the two sets of reads corresponding to first and second states.

D) Computer/Electronic means for detecting variants in the sequence
between first state and second state, wherein a k-mer of the hashtable
structure is taken as a candidate breakpoint, which represents a variant
between the first and second states, if it fulfills all the following requirements:
D1) At least one inflection based on a k-mer’'s stem must have at least X3
reads with the same variation between first and second states, being X3 at
least 2; D2) The percentage of first state reads in second state reads is not
over a threshold X4, to account for possible contamination of control state
reads with test state reads, wherein X4 is at least 5%. E) Computer/Electronic
means for clustering and filtering test and control reads derived from all
candidate breakpoints accepted in step D to build blocks, by carrying out the
steps: E1) Retrieving reads which contain the stem of at least one k-mer that
represents the candidate breakpoint selected in step D); E2) The reads of
step E1) with at least X5 k-mer variants within a window of X6 nucleotides are
taken as leading reads, wherein X5 is at least 7 and X6 is at least 10; E3)
Reads whose k-mers share at least one stem with a leading read are merged
to give a block; and E4) If the nucleic acid whose variant is being identified is
a double stranded DNA, then both forward and reverse variants are taken into
account when building the block. F) Computer/Electronic means for aligning
blocks taking their leading reads as a reference: F1) For each read in the
block, take the leading read’s stem and find the longest inflection or partial
inflection between the read and the leading read. F2) successively position
each read so that its matching inflection or partial inflection is aligned against
the leading read.

The electronic/computer means may be used interchangeably, that is, a part
of the described means may be electronic means and the other part may be
computer means, or all described means may be electronic means or all
described means may be computer means. Examples of an apparatus
comprising only electronic means may be a CPLD (Complex Programmable
Logic Device), a FPGA (Field Programmable Gate Array) or an ASIC
(Application-Specific Integrated Circuit).

A fourth aspect of the invention is a computer system comprising a processor
and a memory, wherein the memory stores computer executable instructions
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that, when executed by the processor, cause the system to perform the
method for identificatying nucleic acid variants between two genomic states.
In some examples, the computer system may further comprise a hardware
accelerator.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG1. Data flow for the proposed configuration of the system. 1.1 Quality
Check; 1.2 Base Convertion; 1.3 Reduce; 1.4 Hash; 1.5 Orchestable Data
Movement; 1.6 Store Data into Associative Structure; 1.7 Load Sequences
and Quality Markers; 1.8 Network; 1.9 Disk(s).

FIG2. Filtering capabilities of the method at different stages. -o- is Total
Reads; -x-is Supporting Reads; -I- is Identifiable Mutations.

FIG3. Visualization of a breaking-block with an insertion of virus
DETAILED DESCRIPTION OF THE INVENTION

All terms as used herein, unless otherwise stated, shall be understood in their
ordinary meaning as known in the art. Other more specific definitions for
certain terms as used in the present application are as set forth below and
are intended to apply uniformly throughout the description and claims unless
an otherwise expressly set out definition provides a broader definition.

It must be noted that for clarity reasons, a variety of nucleotide sequences are
given in the definitions and the examples found below. These nucleotide
sequences are made up for these examples and they do not refer to any real
nucleotide sequence of any organism. They are only listed so that the reader
of the present application understands the terms used such as k-mer, stem,
inflection, partial inflection, etc. They are absolutely unrelated to the invention
being disclosed herewith, which has nothing to do with any particular
nucleotide sequence.

The terms “computational method” and “computer implemented method” are
taken here to mean the same and are used interchangeably. Therefore,
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“computational method” and “computer implemented method” are taken as
synonyms.

The terms “Next Generation Sequencing” (NGS), “deep sequencing”, “ultra-
deep sequencing”, “high throughput sequencing” are all used interchangeably
and refer to the technology platforms currently being used as standard to
enable the sequencing of genomes (“sequencing methods”) with high speed
and contained cost, such as the Roche/454, lllumina/Solexa, Life/APG and
Pacific Biosciences platforms.

The term “base” and the term “nucleotide” are herein used interchangeably,
and refer to the monomers (subunits) which are repeated in a nucleic acid
such as DNA or RNA, giving its sequence or primary structure.

The term “reference genome” as used herein refers to the complete nucleic
acid sequence representing the whole genome of a species normally
accepted by the wide community. Since the reference genome is usually
assembled from the sequencing of DNA from a number of donors, it does not
accurately represent the set of genes of any one single individual. Instead, a
reference genome provides a mosaic of different DNA sequences from each
donor. But, at general levels, the reference genome provides a good
approximation of the DNA of any single individual. However, in genomic
regions with high allelic diversity, the reference genome may differ
significantly from any one single individual. For example, GRCh37, the
Genome Reference Consortium human genome (build 37) is derived from
thirteen anonymous volunteers from New York. Reference genomes are
typically used as a guide on which new genomes are built and aligned,
enabling their assembly and comparison.

The term “forward strand” as used herein refers to a nucleic acid sequence
read from 5’ terminal to 3’ terminal ends. The term “reverse strand” refers to
the nucleic acid sequence which is complementary to the forward strand.

The term “nucleic acid variant” or simply “variant” as used herein refers to a
difference in sequence between two genomic states. A variant can be a single
nucleotide variant (SNV) if the difference between the two genomes (or two
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states of the same genome) is only due to the change of a single nucleotide.
All other variants, among them insertions, deletions, inversions, duplications,
translocations and others are termed structural variants (SV). The latter can
have many sizes, from two bases up to entire pieces of a chromosome.

The term “genomic state” as used herein can refer to two different genomes
derived from two different individuals, or two genomes derived from two
different cells of the same individual. In the second case, the two different
cells can be a normal vs. a pathological cell, an undifferentiated vs. a
differentiated cell, a cell which has been exposed to a certain external factor
vs. an unexposed cell, etc.

The term “mapping” as used herein refers to aligning blocks of the first and
second state to a reference genome.

The term “read” as used herein refers to a fragment of nucleic acid that is
sequenced in its entirety. The nucleic acid might be DNA, RNA, or even
chemically altered nucleic acids. The initial step in a high throughput
sequencing run is the random fragmentation of a genome into millions of
partly overlapping fragments called reads, which are usually amplified by
Polymerase Chain Reaction and sequenced using a variety of techniques that
are platform-dependent. The lengths of the reads can also vary depending on
the platform, and are usually on the order of a few dozens to a few hundreds
of nucleotides. The partly overlapping reads must be assembled if a complete
picture of the genome is to be built.

The term “depth of coverage” as used herein refers to the number of times a
nucleotide is read during the sequencing process. Deep sequencing means
that the total number of reads is many times larger than the length of the
sequence under study. Standard depth of coverage currently range from 30x
to 100x for whole genomes, meaning that each position in the genome is
represented from 30 to 100 times. Coverage similarly designates the average
number of reads representing a given nucleotide in the reconstructed
sequence.

Depth of coverage can be calculated from the length of the original genome
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(G), the number of reads (N), and the average read length (L) as N*L/G.

The term “undefined nucleotide” as used herein refers to a certain position
inside a sequenced read that could not be determined during the sequencing
process, that is, a position for which the sequencing experiment has not
unambiguously resolved whether it is occupied by an adenine (A), guanine
(G), cytosine (C) or thymine (T), and therefore its nature is unknown.
Undefined nucleotides in reads are filtered out (removed) in the method of the
invention, generating two or more fragments of defined sequence if the
undefined nucleotides are removed form inner positions of the read.

The term “Phred quality score” as used herein refers to the quality score
given to each nucleotide base call in a sequenced read. The Phred score is a
property given to each sequenced nucleotide and it is logarithmically related
to the base-calling error probability. A Phred score of 10 assigned to a certain
nucleotide in a sequenced read means that there is a 90% probability that the
base call is correct, a Phred score of 20 means that there is a 99% probability
that the base call is correct, and a Phred score of 30 means that there is a
99.9% probability that the base call is correct.

The term “assembling” as used herein refers to grouping all the first state
reads, and separately second state reads that share the same variant.

The term “hashtable” as used herein refers to a data structure used in
computing that allows (by applying a hash function) assigning and mapping
hashes (values) to strings of data, that is, it associates a series of hashes
(values) to a series of strings in pairs, such that the association of hash-string
is established. The addition, removal and modification of pairs is easily
achieved by computational means, as well as the lookup and accession of
strings thanks to their respective hashes (values).

The term “hash” as used herein refers to the value given by the hash function
and linked to a certain string. This value allows computationally storing,

retrieving, deleting and sorting strings in a very efficient manner.

The term “hash function” as used herein refers to the function that is used for
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linking hashes (values given by the hash function) to strings of data given as
input.

The term “k-mer” as used herein refers to all possible substrings of length k
that are contained in a string. In genomics, all k-mers of a nucleic acid read
are all the possible sub-sequences within the original read which have a
length k. The amount of k-mers in a read of length M is M-k+1.

The term “polymorphic k-mer” as used herein refers to a k-mer that also
identifies inflections and partial inflections of the k-mer’'s stem. By
polymorphic k-mer it is here understood the way the method of the invention
handles k-mers, that is, the way they are used to derive stems and the latter
to search for, manipulate and fish inflections and partial inflections.

The term “stem” as used herein refers to a fragment of a k-mer of length k
with S defined bases, where S < k, and k-S omitted (undefined) bases. The
stem fragment can either be a k-mer without a prefix, a k-mer without a suffix,
a k-mer without an infix, or any combination thereof. Stem fragments without
infix and/or prefix are consecutive, while stems without infixes can be non-
consecutive. In a stem, the character “-“ denotes a base that is omitted from
the k-mer. Examples of the 30-mer SEQ ID NO: 1
CACGGCAGCTGAGTCAACAGGTTCTTCCCA:

SEQID NO:2

CACGGCAGCTGAGTCAACAGGTTCTTCCC- (omission of suffix of length 1)
SEQID NO:3

-ACGGCAGCTGAGTCAACAGGTTCTTCCC- (omission of prefix of length 1,
and suffix of length 1)

SEQID NO:4

CACG--AGCTGAGTCAACAGGTTCTTCCCA (omission of infix of length 2
starting at position 5)

The term “prefix” as used herein, refers to the first part of a sequencing read,
that is, from position 1 to a given position depending on the context. This term

is used here, as it is used in a grammatical context referring to words.

The term “suffix” as used herein, refers to the last part of a sequencing read,
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that is, from the last position to a given position depending on the context.
This term is used here, as it is used in a grammatical context referring to
words.

The term “infix” as used herein, refers to a part of a read positioned in the
middle of the sequence.

The term “inflection” as used herein refers to a fragment of length k that can
be derived from extending a stem of length k-1, k-2, k-3, etc. of a k-mer of
length k. E.g. A stem of length k-1 can be used to derive 4 inflections of
length k since there is a single unknown position, and 4 different bases
(41=4). A stem of length k-2 can be used to derive 16 inflections of length k
(42=16). Following the example given above, for the stem (SEQ ID NO:5):
“CACGGCAGCTGAGTCAACAGGTTCTTCCC-“ (omission of suffix of length
1) the inflections would be (SEQ ID NO:6 to SEQ ID NO:9):
CACGGCAGCTGAGTCAACAGGTTCTTCCCA
CACGGCAGCTGAGTCAACAGGTTCTTCCCC
CACGGCAGCTGAGTCAACAGGTTCTTCCCT
CACGGCAGCTGAGTCAACAGGTTCTTCCCG

and further,

inflections based on stem (SEQ ID NO:10)
““ACGGCAGCTGAGTCAACAGGTTCTTCCC-“ would be (SEQ ID NO:11-
SEQ ID NO:26):

AACGGCAGCTGAGTCAACAGGTTCTTCCCA
AACGGCAGCTGAGTCAACAGGTTCTTCCCC
AACGGCAGCTGAGTCAACAGGTTCTTCCCT
AACGGCAGCTGAGTCAACAGGTTCTTCCCG
CACGGCAGCTGAGTCAACAGGTTCTTCCCA
CACGGCAGCTGAGTCAACAGGTTCTTCCCC
CACGGCAGCTGAGTCAACAGGTTCTTCCCT
CACGGCAGCTGAGTCAACAGGTTCTTCCCG
TACGGCAGCTGAGTCAACAGGTTCTTCCCA
TACGGCAGCTGAGTCAACAGGTTCTTCCCC
TACGGCAGCTGAGTCAACAGGTTCTTCCCT
TACGGCAGCTGAGTCAACAGGTTCTTCCCG
GACGGCAGCTGAGTCAACAGGTTCTTCCCA
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GACGGCAGCTGAGTCAACAGGTTCTTCCCC
GACGGCAGCTGAGTCAACAGGTTCTTCCCT
GACGGCAGCTGAGTCAACAGGTTCTTCCCG

The term “partial inflection” as used herein refers to a fragment with P defined
bases that can be derived from extending a stem of S defined bases of a k-
mer of length k, and where S<=P<k. In a partial inflection, the «.» character
denotes a non-extended position of its stem. Partial inflections must have at
least one non-extended position. Only omitted bases («-») can be marked as
non-extended.

Following the example given above:

Partial inflections based on stem (SEQ ID NO:27)
““ACGGCAGCTGAGTCAACAGGTTCTTCCC-“ would be (SEQ ID NO:28 —
SEQ ID NO:36):

.ACGGCAGCTGAGTCAACAGGTTCTTCCC.
AACGGCAGCTGAGTCAACAGGTTCTTCCC.
CACGGCAGCTGAGTCAACAGGTTCTTCCC.
TACGGCAGCTGAGTCAACAGGTTCTTCCC.
GACGGCAGCTGAGTCAACAGGTTCTTCCC.
.ACGGCAGCTGAGTCAACAGGTTCTTCCCA
ACGGCAGCTGAGTCAACAGGTTCTTCCCC
.ACGGCAGCTGAGTCAACAGGTTCTTCCCT
.ACGGCAGCTGAGTCAACAGGTTCTTCCCG

The term “breakpoint” as used herein refers to the the nucleotide position
where the sequence changes, that is sequence immediately flanking a
sequence variant. For SVs, a breakpoint is the point where the DNA broke in
the second state and appears as a change in the first state compared to the
second control state. In other words, where the continuity of the sequence of
the control second state breaks (changes) in the first state.

The term “leading read” as used herein refers to a complete sequenced read
that contains at least one k-mer that is a candidate breakpoint (variant).
Normally, in the case of heterozygous variation, only the reads derived from
the altered allele contain the mutation or variant.
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The term “block” refers to a leading read along with all reads derived from the
sequencing of all four alleles involved (two coming from the first state genome
and two coming from the second state genome) covering the same region as
the leading read.

The term “similarity score” as used herein refers to numbers that help to
identify how different sets of aligned sequences are, and can be used as part
of the proposed method to measure the quality of an aligned block. Similarity
scores can be vertical or horizontal. The former measures, for every position
in a sequence, how many bases in the set of aligned sequences are different
than the mode base. The latter measures, for every sequence in the set, how
many positions of the sequence are different to the mode/consensus
sequence. Similarity scores can be measured for different sets of sequences,
e.g. the set of control sequences, the set of test sequences, or the set
containing both.

The term “ambiguous path” as used herein refers to multiple possible
sequence solutions in a given tree. It is referred here as the opposite of
unique and unambiguous path or sequence.

The terms defined above are used in the following example for increasing
their clarity and conciseness:

Imagine the read to be input:

A) (SEQ ID NO: 37)
CACGGCAGCTGAGTCAACAGGTTCTTCCCAGGAGCGGACGGCGGTGGC
CAGCAGGCACGTG (its length N=61).

After the quality filtering (step B) of the method), the next step of the method
C) would be to generate a hashtable with all the k-mers of length X2. If X2 is
taken to be 30, then, there should be N-X2+1 30-mers, that is, 61-30+1=32
(SEQ ID NO:38 — SEQ ID NO:69):

CACGGCAGCTGAGTCAACAGGTTCTTCCCAGGAGCGGACGGCGGT
GGCCAGCAGGCACGTG

CACGGCAGCTGAGTCAACAGGTTCTTCCCA
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ACGGCAGCTGAGTCAACAGGTTCTTCCCAG
CGGCAGCTGAGTCAACAGGTTCTTCCCAGG
GGCAGCTGAGTCAACAGGTTCTTCCCAGGA
GCAGCTGAGTCAACAGGTTCTTCCCAGGAG
CAGCTGAGTCAACAGGTTCTTCCCAGGAGC
AGCTGAGTCAACAGGTTCTTCCCAGGAGCG
GCTGAGTCAACAGGTTCTTCCCAGGAGCGG
CTGAGTCAACAGGTTCTTCCCAGGAGCGGA
TGAGTCAACAGGTTCTTCCCAGGAGCGGAC
GAGTCAACAGGTTCTTCCCAGGAGCGGACG
AGTCAACAGGTTCTTCCCAGGAGCGGACGG
GTCAACAGGTTCTTCCCAGGAGCGGACGGC
TCAACAGGTTCTTCCCAGGAGCGGACGGCG
CAACAGGTTCTTCCCAGGAGCGGACGGCGG
AACAGGTTCTTCCCAGGAGCGGACGGCGGT
ACAGGTTCTTCCCAGGAGCGGACGGCGGTG
CAGGTTCTTCCCAGGAGCGGACGGCGGTGG
AGGTTCTTCCCAGGAGCGGACGGCGGTGGC
GGTTCTTCCCAGGAGCGGACGGCGGTGGCC
GTTCTTCCCAGGAGCGGACGGCGGTGGCCA
TTCTTCCCAGGAGCGGACGGCGGTGGCCAG
TCTTCCCAGGAGCGGACGGCGGTGGCCAGC
CTTCCCAGGAGCGGACGGCGGTGGCCAGCA
TTCCCAGGAGCGGACGGCGGTGGCCAGCAG
TCCCAGGAGCGGACGGCGGTGGCCAGCAGG
CCCAGGAGCGGACGGCGGTGGCCAGCAGGC
CCAGGAGCGGACGGCGGTGGCCAGCAGGCA
CAGGAGCGGACGGCGGTGGCCAGCAGGCAC
AGGAGCGGACGGCGGTGGCCAGCAGGCACG
GGAGCGGACGGCGGTGGCCAGCAGGCACGT
GAGCGGACGGCGGTGGCCAGCAGGCACGTG

The hashtable to be generated with all k-mers and their number of times they
are observed in first state and second state, would look like (SEQ ID NO:70 —
SEQ ID NO:75):
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K-mer Nor | Tumor
mal

ACGGCAGCTGAGTCAACAGGTTCTTCCCAG
CGGCAGCTGAGTCAACAGGTTCTTCCCAGG
GGCAGCTGAGTCAACAGGTTCTTCCCAGGA
GCAGCTGAGTCAACAGGTTCTTCCCAGGAG
CAGCTGAGTCAACAGGTTCTTCCCAGGAGC
AGCTGAGTCAACAGGTTCTTCCCAGGAGCG

oO|OoO|O|O|O |OC
Alalalalala

D) The next step in the method would be to detect variants between the first
and second states. The first step would be to derive a stem for each one of
the k-mers (SEQ ID NO:76 — SEQ ID NO:108):

CACGGCAGCTGAGTCAACAGGTTCTTCCCAGGAGCGGACGGCGGT
GGCCAGCAGGCACGTG

CACGGCAGCTGAGTCAACAGGTTCTTCCC-
ACGGCAGCTGAGTCAACAGGTTCTTCCCA-
CGGCAGCTGAGTCAACAGGTTCTTCCCAG-
GGCAGCTGAGTCAACAGGTTCTTCCCAGG-
GCAGCTGAGTCAACAGGTTCTTCCCAGGA-
CAGCTGAGTCAACAGGTTCTTCCCAGGAG-
AGCTGAGTCAACAGGTTCTTCCCAGGAGC-
GCTGAGTCAACAGGTTCTTCCCAGGAGCG-
CTGAGTCAACAGGTTCTTCCCAGGAGCGG-
TGAGTCAACAGGTTCTTCCCAGGAGCGGA-
GAGTCAACAGGTTCTTCCCAGGAGCGGAC-
AGTCAACAGGTTCTTCCCAGGAGCGGACG-
GTCAACAGGTTCTTCCCAGGAGCGGACGG-
TCAACAGGTTCTTCCCAGGAGCGGACGGC-
CAACAGGTTCTTCCCAGGAGCGGACGGCG-
AACAGGTTCTTCCCAGGAGCGGACGGCGG-
ACAGGTTCTTCCCAGGAGCGGACGGCGGT-
CAGGTTCTTCCCAGGAGCGGACGGCGGTG-
AGGTTCTTCCCAGGAGCGGACGGCGGTGG-

232



21

GGTTCTTCCCAGGAGCGGACGGCGGTGGC-
GTTCTTCCCAGGAGCGGACGGCGGTGGCC-
TTCTTCCCAGGAGCGGACGGCGGTGGCCA-
TCTTCCCAGGAGCGGACGGCGGTGGCCAG-
CTTCCCAGGAGCGGACGGCGGTGGCCAGC-
TTCCCAGGAGCGGACGGCGGTGGCCAGCA-
TCCCAGGAGCGGACGGCGGTGGCCAGCAG-
CCCAGGAGCGGACGGCGGTGGCCAGCAGG-
CCAGGAGCGGACGGCGGTGGCCAGCAGGC-
CAGGAGCGGACGGCGGTGGCCAGCAGGCA-
AGGAGCGGACGGCGGTGGCCAGCAGGCAC-
GGAGCGGACGGCGGTGGCCAGCAGGCACG-
GAGCGGACGGCGGTGGCCAGCAGGCACGT-

For each stem, inflections are to be generated. For instance, the second stem
found in the table above would give the following 4 inflections (SEQ ID
NO:109 — SEQ ID NO:113):

ACGGCAGCTGAGTCAACAGGTTCT | ACGGCAGCTGAGTCAACAGG
TCCCA- TTCTTCCCAA
ACGGCAGCTGAGTCAACAGG
TTCTTCCCAC
ACGGCAGCTGAGTCAACAGG
TTCTTCCCAT
ACGGCAGCTGAGTCAACAGG
TTCTTCCCAG

Find each one of the inflections in the hashtable:
K-mer Normal | Tumor
ACGGCAGCTGAGTCAACAGGTTCTTCCCAA 0 1

ACGGCAGCTGAGTCAACAGGTTCTTCCCAC
ACGGCAGCTGAGTCAACAGGTTCTTCCCAT
ACGGCAGCTGAGTCAACAGGTTCTTCCCAG

o |Oo|Oo
alals

If one inflection meets the requirements (has at least X3 reads with the same
variation between the first and second states, and the amount of first state
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reads in second state reads is not over X4), select k-mer as candidate

breakpoint:
K-mer Normal | Tumor
ACGGCAGCTGAGTCAACAGGTTCTTCCCAA 0 1

ACGGCAGCTGAGTCAACAGGTTCTTCCCAC

ACGGCAGCTGAGTCAACAGGTTCTTCCCAT

o |0 |O
alals

ACGGCAGCTGAGTCAACAGGTTCTTCCCAG

5 E) Clustering and filtering test and control reads derived from all candidate
breakpoints:
For each candidate breakpoint selected in step D), retrieve reads which
contain the stem of the k-mer (SEQ ID NO:114 — SEQ ID NO:116):

Reads for candidate breakpoint based on k-mer
AGTCAACAGGTTCTTCCCAGGAGCGGACGC

CACGGCAGCTGAGTCAACAGGTTCTTCCCAGGAGCGGACGGCGG
TGGCCAGCAGGCACGTG

AGCAGGCACGTGACGGCAGCTGCAGTCAACAGGTTCTTCCCAGG
AGCGGACGCCGGTGGCC

10
Then, for each read, we will end up with all k-mers that are candidate
breakpoints, and their positions in the read (SEQ ID NO:117 - SEQ ID
NO:126):

Read #1

CACGGCAGCTGAGTCAACAGGTTCTTCCCAGGAGCGGACGGCGG
TGGCCAGCAGGCACGTG

ACGGCAGCTGAGTCAACAGGTTCTTCCCAG (1)
GGCAGCTGAGTCAACAGGTTCTTCCCAGGA (3)
GCAGCTGAGTCAACAGGTTCTTCCCAGGAG (4)
CAGCTGAGTCAACAGGTTCTTCCCAGGAGC (5)
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AGCTGAGTCAACAGGTTCTTCCCAGGAGCG (6)
GCTGAGTCAACAGGTTCTTCCCAGGAGCGG (7)
TGAGTCAACAGGTTCTTCCCAGGAGCGGAC (9)
GAGTCAACAGGTTCTTCCCAGGAGCGGACG (10)
AGTCAACAGGTTCTTCCCAGGAGCGGACGG (11)

(SEQ ID NO:127 — SEQ ID NO:128)

Read #2

AGCAGGCACGTGACGGCAGCTGCAGTCAACAGGTTCTTCCCAGG
AGCGGACGCCGGTGGCC

AGTCAACAGGTTCTTCCCAGGAGCGGACGC (23)

Reads with (X5) 7 k-mers containing candidate breakpoints within a window
of (X6) 10 nucleotides are taken as leading reads (SEQ ID NO:129).

Leading reads

CACGGCAGCTGAGTCAACAGGTTCTTCCCAGGAGCGGACGGCGG
TGGCCAGCAGGCACGTG

Generate stems from leading reads (SEQ ID NO130 — SEQ ID NO:138):

CACGGCAGCTGAGTCAACAGGTTCTTCCCAGGAGCGGACGGCGG
TGGCCAGCAGGCACGTG

ACGGCAGCTGAGTCAACAGGTTCTTCCCA-
GGCAGCTGAGTCAACAGGTTCTTCCCAGG-
GCAGCTGAGTCAACAGGTTCTTCCCAGGA-
CAGCTGAGTCAACAGGTTCTTCCCAGGAG-
AGCTGAGTCAACAGGTTCTTCCCAGGAGC-
GCTGAGTCAACAGGTTCTTCCCAGGAGCG-
TGAGTCAACAGGTTCTTCCCAGGAGCGGA-
GAGTCAACAGGTTCTTCCCAGGAGCGGAC-
AGTCAACAGGTTCTTCCCAGGAGCGGACG-

Build blocks by finding other candidate reads that share stems with leading
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reads (SEQ ID NO: 139 — SEQ ID NO:141):

Leading read #1

CACGGCAGCTGAGTCAACAGGTTCTTCCCAGGAGCGGACGGCGG
TGGCCAGCAGGCACGTG

Additional reads

AGCAGGCACGTGACGGCAGCTGCAGTCAACAGGTTCTTCCCAGG
AGCGGACGCCGGTGGCC

Shared stems

AGTCAACAGGTTCTTCCCAGGAGCGGACG-

By executing the steps outlined above in the right order, the application of the
computer-implemented method of the invention allows to easily cut the huge
numbers of reads given in the input down to a much reduced number where
most of the true positives are found, as will be seen in the experimental data
found in the examples section (below).

As is revealed in Paszkiewicz K., et.al. “De novo assembly of short sequence
reads” Brief Bioinform. 2010, vol. 11, pp. 475-472, the approximate minimum
length that NGS reads must have in order to be able to reconstruct a genome
is around 30. Bearing in mind the latter, a minimum length of approximately
30 bases was taken to be the minimum length of a productive read. 30 is a
value that was found to be a viable cutoff for variable X2 in the definition of
the method of the invention, although slightly smaller values might be viable
as well.

As it has been cited above, the first aspect of the present invention is a
computer-implemented method for identifying nucleic acid variants between
two genomic states comprising the steps of: A) Inputting 2 sets of nucleic acid
reads, which are sequences retrieved from a nucleotide sequencing method,
wherein the first set of reads corresponds to cells representing a first test
state, and the second set of reads corresponds to cells representing a second
control state;B) Filtering the reads, wherein the filtering comprises: B1)
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Keeping only the reads with at least a percentage X1 of their bases with a
Phred quality score higher than 20, being X1 equal to or above 90%; B2)
Splitting the reads with an undefined nucleotide, giving one sequence before,
and one sequence after the undefined nucleotide, the latter being discarded;
and B3) Discarding the sequence reads with less than X2 bases, wherein X2
is from 25 to 50; C) Generating a hashtable structure comprising: C1)
Generating a number of N-X2+1 new reads for each read of sequence length
N, wherein the new N-X2+1 reads correspond to all k-mers with length X2
nucleotides; and C2) Building a hashtable structure, which comprises all the
k-mers generated in step C1) and further comprises the number of times each
k-mer is observed in the two sets of reads corresponding to first and second
states.D) Detecting candidate variants in the sequence between first state
and second state, wherein a k-mer of the hashtable structure is taken as a
candidate breakpoint, which represents a variant between the first and
second states, if it fulfills all the following requirements: D1) At least one
inflection based on a k-mer’s stem must have at least X3 reads with the same
variation between first and second states, being X3 at least 2; 2) The
percentage of first state reads in second state reads is not over a threshold
X4, to account for possible contamination of control state reads with test state
reads, wherein X4 is at least 5%. E) Clustering and filtering test and control
reads derived from all candidate breakpoints accepted in step D to build
blocks, by carrying out the steps: E1) Retrieving reads which contain the stem
of at least one k-mer that represents the candidate breakpoint selected in
step D); E2) The reads of step E1) with at least X5 k-mer variants within a
window of X6 nucleotides are taken as leading reads, wherein X5 is at least 7
and X6 is at least 10; E3) Reads whose k-mers share at least one stem with a
leading read are merged to give a block; and E4) If the nucleic acid whose
variant is being identified is a double stranded DNA, then both forward and
reverse variants are taken into account when building the block. F) Aligning
blocks taking their leading reads as a reference: F1) For each read in the
block, take the leading read’s stem and find the longest inflection or partial
inflection between the read and the leading read. F2) Successively position
each read so that its matching inflection or partial inflection is aligned against
the leading read.

In a particular embodiment of the first aspect of the invention, the computer-
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implemented method further comprises the step following F2: F3) F3)
Obtaining first state scores, second state scores, and global similarity scores
of each position in the block by measuring a ratio of most frequent nucleotide
in that position relative to the total number of nucleotides.

In a particular embodiment of the first aspect of the invention, the computer-
implemented method further comprises the step: G) Cataloguing and
annotating blocks according to the following: G1) If blocks between the first
and second states only differ in one substituted nucleotide, the variant is
catalogued as containing a single nucleotide variant and the single nucleotide
variant is annotated; G2) If blocks between the first and second states differ
in more than one nucleotide but the whole difference in sequence is
contained within the block, the variant is catalogued as a small structural
variant, and the small structural variant is annotated; and G3) If blocks
between the first and second states differ in more than one nucleotide and the
whole difference in sequence is not contained within the block, the variant is
catalogued as a large structural variant, and the boundaries of all large
structural variants are extended by retrieving blocks overlapping at least X2
nucleotides in an iterative process which ends when the extended sequence
reaches 200 nucleotides or when an ambiguous path is found.

In a particular embodiment of the first aspect of the invention, the computer-
implemented method further comprises the step: H) Filtering of the blocks,
according to the following: H1) The percentage of second state reads in first
state reads is not over a threshold X7, to account for possible contamination
of test state reads with control state reads, wherein X7 is at least 20%;

In a particular embodiment of the first aspect of the invention, the method
further comprises optionally mapping second state blocks, and subsequently
mapping first state blocks, on a reference genome.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X1 is equal or above 95%.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X1 is equal or above 99%.
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In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X2 is from 25 to 40.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X2 is from 30 to 35.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X2 is from 30 to 32.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X2 is equal to 30.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X3 is equal or above 4.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X3 is equal or above 6.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X3 is equal or above 8.

In a particular embodiment of the first aspect of the invention, X3 is directly
proportional to the depth of coverage in the sequencing experiment. This

means that, the deeper the coverage, the more restrictive (higher) is the value

for X3.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X4 is between 5-10%.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X4 is between 5-7%.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X4 is 5%.

239



28

X4 is expressed as a percentage, reflecting the maximum accepted ratio of
first state (test) reads vs. second state (control) reads for each of the k-mers,
and represents the levels of contamination expected for each of the samples
(usually in the direction of tumor cells within normal samples). This value

5  should be set by the user accordingly. Setting up a low value for X4 ensures
high specificity but might result in a lower sensitivity, whereas the selection of
high values, might result in the accumulation of false positives.

In a particular embodiment of the first aspect of the invention, optionally in
10  combination with any embodiment above or below, X5 is from 10 to 15.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X5 is from 12 to 14.

15 In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X6 is from 12 to 25.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X6 is from 12 to 20.

20
In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X6 is from 12 to 15.

In a particular embodiment of the first aspect of the invention, optionally in
25  combination with any embodiment above or below, X7 is between 20-25%.

In a particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X7 is 20%.

30 Ina particular embodiment of the first aspect of the invention, optionally in
combination with any embodiment above or below, X5 is from 10 to 15 and
the threshold X6 is from 12 to 20.

In a particular embodiment of the first aspect of the invention, optionally in

35 combination with any embodiment above or below, X5 is from 12 to 14 and
the threshold X6 is from 12 to 15.
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In a particular embodiment of the first aspect of the invention, the first set of
reads corresponds to pathological cells of a patient, and the second set of
reads corresponds to non-pathological cells of the same patient;

In another particular embodiment of the first aspect of the invention, the first
set of reads corresponds to cancer cells of a patient, and the second set of
reads corresponds to non-cancer cells of the same patient.

In another particular embodiment of the first aspect of the invention, the first
set of reads corresponds to virus-infected cells of a patient, and the second
set of reads corresponds to non-infected cells of the same patient.

In another particular embodiment of the first aspect of the invention, the first
set of reads and the second set of reads correspond to the same cell of the
same patient in two different developmental stages.

In another particular embodiment of the first aspect of the invention, the first
set of reads corresponds to cells of a patient which have been exposed to a
drug, and the second set of reads corresponds to cells of the same patient
which have not been exposed to a drug.

In a particular embodiment of the first aspect of the invention, the first set of
reads corresponds to cells of a tissue, and the second set of reads
corresponds to cells of another tissue of the same or a different individual.

Although the present invention has been described in detail for purpose of
illustration, it is understood that such detail is solely for that purpose, and
variations can be made therein by those skilled in the art without departing
from the scope of the invention.

Thus, while the preferred embodiments of the methods and of the systems
have been described in reference to the environment in which they were
developed, they are merely illustrative of the principles of the invention. Other
embodiments and configurations may be devised without departing from the
scope of the appended claims.
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Further, although the embodiments of the invention comprise processes
performed in computer systems, the invention also extends to computer
systems and to computer programs (which may be embodied on a storage
medium and/or carried on a carrier signal) adapted for putting the invention
into practice.

Accordingly, the invention also provides a computer program product
comprising program instructions for causing a computer system to perform the
method for identifying nucleic acid variants between two genomic states as
defined above.

In a preferred embodiment, the computer program product is embodied on a
storage medium.

In another preferred embodiment, the computer program product is carried on
a carrier signal. The carrier may be any entity or device capable of carrying
the program.

As it has been cited above, a fourth aspect of the invention is a computer
system comprising a processor and a memory, wherein the memory stores
computer executable instructions that, when executed by the processor,
cause the system to perform the method for identifying nucleic acid variants
between two genomic states.

In a preferred embodiment of the fourth aspect of the invention, the system
may further comprise a hardware accelerator, which may be in some
examples an FPGA or a GPU.

Throughout the description and claims the word "comprise” and variations of
the word, are not intended to exclude other technical features, additives,
components, or steps. Furthermore, the word “comprise” and its variations
encompasses the term “consisting of”. Additional objects, advantages and
features of the invention will become apparent to those skilled in the art upon
examination of the description or may be learned by practice of the invention.
The following examples are provided by way of illustration, and they are not
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intended to be limiting of the present invention. Furthermore, the present
invention covers all possible combinations of particular and preferred
embodiments described herein.

EXAMPLES

Examples of using the method of the invention for detecting characterizing
sequence variants in nucleic acid sequences are given below.

In the in silico tests it is revealed that the method of the invention is capable
of identifying SNVS and SVs of all sorts and sizes. Remarkably, the method
of the invention is even proven to be capable of identifying novel non-human
insertions. In one of the examples found below, the method is remarkably
capable of detecting the insertion of a virus where, other methods (including
the one disclosed in Moncunill et al., ibid) fail.

Material and methods

An implementation of the computer-implemented method

The general structure and the complete variant identification and
characterization carried out by the method of the invention comprise the steps
outlined below:

A) Input data.

As input, the method takes high quality sequences data directly from FASTQ
files of tumor and non-tumor control cells samples of the same individual.
Alternatively, it is also able to accept BAM files, from which it extracts all the
sequencing reads. Tumor sample corresponds to the first state and non-tumor
control sample correspond to the second state.

B) Filtering the data.

When inputting the data, the user can define a cut-off so that reads having
over a certain threshold of their bases with a Phred quality score <q20 are
discarded. X1=90 has been found to be especially suited for the purposes
tested. This means that only reads with at least 90% of their bases with a
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Phred quality score higher than 20 are kept. In the case of the presence of
undefined base pairs (“N”), these are removed and the original sequence is
split forming new shorter reads, which are considered only if they are longer
than X2 base pairs.

In order to lower the amount of space needed to store k-mers, they are
converted into integers by mapping each base of the k-mer to a 2-bit code.
For instance, a k-mer of length 32 represented as a sequence of characters
takes 256 bits, but after the conversion it is turned into a single value of 64
bits.

In a particular embodiment of the computer-implemented method, wherein
hardware accelerator(s) may be used,, reads that don’t meet the
aforementioned quality criteria are discarded by means of marking their k-
mers as discardable, which are then ignored in the subsequent steps of the
pipeline. Marking k-mers as discardable instead of deleting them immediately
enables a faster pipeline without conditional execution.

C) Generating a hashtable structure.

After the quality filtering step of the method, the next step of the method is to
generate a hashtable with all the k-mers of length X2 using all high quality
tumor and non-tumor control reads (see Table 1 below for a simplified
version). If X2 is taken to be 28, then, there should be N-X2+1, that is, 100-
28+1=73 resultant k-mers for a 100-nucleotide read. Each of k-mers
generated is inserted into the hashtable and their number of times they are
observed in tumor (test state) and non-tumor (second control state) cells.

The mapping of k-mers to their observed frequencies in the input is, generally
speaking, one to one, meaning each entry of the associative data structure
contains a pair of frequencies. In order to find the position where to store data
into an associative structure a hash function is used to compute an index into
a position, from which the desired value can be stored and retrieved. Any
function that guarantees a homogeneous distribution of the results can be
used as hash function.

Table 1
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(SEQ ID NO:142 — SEQ ID NO:145)

kmer (length X2) Frequencies

ACTGACTGACTGACTGACTGACTGACTGAA (0,1)
ACTGACTGACTGACTGACTGACTGACTGAC (1,0)
ACTGACTGACTGACTGACTGACTGACTGAG (23,2)
ACTGACTGACTGACTGACTGACTGACTGAT (9,10)

Each item of the hashtable consist of its k-mer (in nucleotide string or
encoded key format), along with its pair frequencies in the first state and
second state sets of reads (Table 1).

In particular embodiments of this aspect, each entry of the associative data
structure may contain frequencies for more than one k-mer. This is
accomplished by means of indexing stems instead of k-mers. Table 2 below
depicts such an example, where stems are basically the original k-mer
truncating the last base, which is then included as part of the list of
frequencies. Indexing stems instead of k-mers improves the locality of the
data, reducing the number of lookup queries.

stem (length X2-1) Frequencies

ACTGACTGACTGACTGACTGACTGACTGA A:(0,1) C:(1,0) G:(23,2) T:(9,10)
ACTGACTGACTGACTGACTGACTGACTGC

Table 2 (SEQ ID NO:146 and SEQ ID NO:147)

In a particular embodiment, the hash function operates over the encoded key

as described in step B instead of the k-mer containing a string of nucleotides.

In order to lower the number of updates to the associative data structure, a
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particular embodiment of this aspect involves generating an additional
structure to store the set of k-mers seen only once, meaning the main data
structure is only updated for k-mers with a frequency of 2 or more.

In another embodiment, a lower number of updates to the main data structure
is achieved by generating partial data structures containing frequencies for a
subset of the input, which are then merged into the main associative data
structure.

D) Detecting k-mers containing variants once all the reads are derived on k-
mers and loaded into the hashtable structure, the next step consists in
identifying all tumor specific reads. Inventors expect that variants generate
new and distinct sequences in the tumor genome compared to the non-
mutated control genome.

If one inflection meets the requirements: has at least 4 (X3) k-mers with the
same variation between tumor cells and maximum 1 (X4) k-mer non-tumor
control cells, then this k-mer is select as a candidate breakpoint.

The detection of entries of the hashtable containing k-mers with variants
between the first and second state is accomplished by reading the filtered
input again, and selecting all reads that contain k-mers whose frequencies
meet certain criteria.

In addition to selecting candidate variants, in this step the implementation
also selects additional information needed during later steps of the pipeline,
namely: 1) selection of relative reads; 2) position of candidate k-mers for each
read; and 3) map of k-mers to reads. In particular, the selection of relative
reads is done based on stems, and checking whether any inflection matches
the criteria described in the previous paragraph.

E) Clustering and filtering test and control reads

For each candidate breakpoint selected in step D), retrieve reads which
contain the stem of the k-mer. Then for each read, we will end up with all k-
mers that are candidate breakpoints, and their positions in the read. Reads
with 7 (X5) k-mers containing candidate breakpoints within a window of 10
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(X6) nucleotides are taken as leading reads. This process is in order to find
enough support information for each breakpoint detected (if not it is removed
from the candidate list). Reads whose k-mers share at least one stem with a
leading read are merged to give a block, and if the nucleic acid whose variant
is being identified is a double stranded DNA, then both forward and reverse
variants are taken into account when building the block.

F) Aligning blocks taking their leading reads as a reference.

For each read in the block, inventors take the leading read’s stem and find
the longest inflection or partial inflection between the read and the leading
read. Successively position each read so that its matching inflection or partial
inflection is aligned against the leading read.

Ideally each block represents a region in the genome containing the mutated
and the non-mutated version. In order to classify and characterize the type of
variation identified, the method takes into account the align score for tumor
block, non-tumor block and the sum up of both. Then the method extracts the
consensus mutated and normal sequences from these blocks. The
corresponding normal consensus sequence can be used at the end of the
procedure and mapped onto a reference genome to obtain the coordinates of
the variant.

Optionally the method also can include step G

G) Cataloguing and annotating blocks

Once all possible breakpoint blocks are defined, the next step consists in
identifying and classifying the variation included there. At this point the
method uses the aligning score to observe the differences in each group:
tumor, non-tumor and both. For each position on the block supported by a
read it puts a value depending on the similarity, so finally it has a
representation of all the variability on the block. These aligning scores are
recursively compared to identify differences between tumor and non-tumor
samples. A first evaluation will search a consensus in non-tumor block in
order to avoid false positives and wrong alignments from different regions,
and the same way on tumor blocks. The next step searches for all the small
variants, which consist on those that are completely included within the block
(SNV and small SVs: insertions, deletions and inversions). All the blocks that
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do not match this criterion are then considered candidates for large SVs, i.e.
likely to cover break points of intra or interchromosomal transitions, part of
large deletions, insertions or inversions.

After small and large somatic variants are defined, the method of the
invention identifies the coordinates of the changes by mapping onto a
reference genome the normal consensus sequences corresponding to each
of the variants, avoiding potential mapping conflicts derived from the
presence of the variant, as usually happens when using reference-based
approaches. Sequences mapping (with the same score) to several positions
in the genome are discarded. The same process can be done by mapping
onto virus databases to locate which are the viruses inserted in the genome
being analyzed.

Construction of the in silico chromosome 20

In order to measure and calibrate the detection capabilities (sensitivity) of the
method of the invention, inventors executed it on a controlled system,
consisting of modified sequences of the chromosome 20.

A personalized chromosome 20 was extracted from the hg19 reference
genome downloaded from UCSC (with no repeat-masking)
(http://www.ucsc.edu) and modified to match a randomly chosen human
haplotype. This chromosome contains 148,639 variants consisting of 96,935
SNPs and 51,704 deletions. The catalogue of somatic variants further added
to this personalized chromosome and constituting the target of the invention,
includes random 168 SNVs, 12 random deletions, 18 random insertion, 6
inversions and 1 insertion of KI polyomavirus (extracted from:
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvI=0&id=423445

)

In silico sequencing was simulated using ART lllumina (Huang W. et.al. “ART:
a next-generation sequencing read simulator” Bioinformatics 2012, vol. 28,
pp- 593-594). For this inventors, like on the previous in silico, first generated
a profile using the M0004 sample to extract parameters, like sequencing
variation or read length.
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Analysis of the in silico chromosome 20 with the method of the invention

The method of the invention was run with using the next variables X1= 90,
X2=28, X3=4, X4=1, X5=7 and X6=10 considered as default at the moment of
the invention.

For the sake of clarity and simplicity, inventors have set up X4 as 1 in this
example of the in silico chromosome 20.

A System Configuration

The invention also comprised an efficient hardware configuration for the
system focused on the execution of the computer program performing the
method.

Due to the characteristics of the method, which involve a highly parallelizable
input without dependencies and huge amounts of intermediate data, the input
sources are split into chunks of C1 sequences and processed in a pipelined
fashion. Thus, each step of the method is executed by a different component
of the computer system, in parallel, over different chunks of input data. This
strategy is more efficient in terms of execution time since it attempts to
maximize the utilization of the system, and also overlaps data movement
times.

When accelerators are capable of streaming data while computing, it is
possible to add additional steps to the pipeline, eg. data is being sent to and
received from the accelerators. When using accelerators that have
interconnections unable to offer bidirectional concurrent transfers, data
movement must be serialized and this could become the bottleneck of the
entire pipeline. Generally, the bigger the number of sequences per chunk
(C1), the higher the achievable bandwidth on data transfers from host system
to accelerators and vice versa is. On the other hand, this number is limited by
the memory capacity of the accelerators. Moreover, encoding the keys may
require to sorting all keys and some parallel sorting algorithms require a
number of items that’s a power 2, meaning extra padding might be required in
order to reach the next power of 2. When this happens, the number of reads
sent to each accelerator must be accordingly chosen in order to minimize the
number of pudding elements.
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The hardware components of the computer system consisted of:

A) Input Source

As input source, the processing pipeline reads high quality sequencing data
from local disks or from network resources. An example of a network
resource, is a sequencing machine connected to the system. In this case the
system receives the input reads directly from the sequencing machine and
starts elaborating at the same time as the sequencing machine is still
working.

B) Host System, and C) Accelerators

In order to compute and elaborate data, the invention comprises processors
and accelerators for example, hardware in the form of PCI cards or network
resources, for offloading part of the computation. The amount of work to
offload to the accelerators depends on the interconnection between
accelerator and host system as well on the processing power and memory of
both processors and accelerators.

Ideally, processors will read the input sources that might need to be
uncompressed and filtered in order to extract only sequence reads and
quality markers. Once enough sequences to fill a chunk are loaded in
memory, sequences and relative quality markers are sent to the accelerators.
In turn, accelerators will: filter reads, convert all read fragments to their
encoded key representation; reduce k-mers producing the <key, count> pairs;
and eventually, hashing the keys to obtain the tuple <key, count, hash>. Once
the data is transferred back to the system’s main memory, processors will
consume it updating the counters stored in the associative structure.
Optionally, when accelerators have network interconnections and inputs are
streamed from network resources, accelerators can read input directly from
the source without requiring any work from the main system, offloading even
more work. When the capabilities of the accelerators are limited, some of the
processing steps can be carried out by the processors instead. For example,
if transferring the tuple <key, count, hash> from accelerators to the host
system becomes the bottleneck of the processing pipeline, it’'s wise to migrate
the hashing step to the processors. In this way, it is reduced to 3/5 the
amount of data that is transferred from the accelerators to the host system.
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If the steps offloaded to the accelerators constitutes the bottleneck and
having a higher number of updates to the hash table does not have an impact
on the performance, the key conversion step can be disabled in order to
increase the global throughput.

If more than one accelerator is available, data is split in different parts and
each one of the parts is sent to a different accelerator. In order to efficiently
offload the computation among multiple accelerators, the criterion used to
split the data may take into account the available memory of each accelerator
and may be as balanced as possible to the throughput offered by each
accelerator. Which, for example, is: if two accelerators are available and one
of them offers a throughput that is double of the other then the former
accelerator should process an amount of data that is about 2/3 of the total,
meanwhile the latter accelerator is about 1/3. If accelerators are different
among each other and it’s clear that different accelerators might suit better for
different steps; then, the steps of the method are split among the available
accelerator assigning each step to the accelerator that suits better. In this
case, the output of one accelerator becomes the input of another and if no
direct interconnection is available between the accelerators the host system
must intervene to orchestrate data transfers. On the other hand, if no
accelerators are available all the computation must be carried out by the main
processors.

D) Main Memory, and E) Memory Expansion Cards

In addition to staging intermediate data from a one step of the pipeline to the
next one, main memory is also used to store a partial version of the
associative structure. This in-memory structure is used to store k-mers seen
just few times, while those seen more than I1 times are stored into a
permanent associative structure in the memory expansions card.

In order to store the persistent associative structure containing all the useful
information from normal (CNR) and tumoral (CTR) sample, memory
expansion cards are used. When multiple cards are available inventors can
use each card to store part of the associative structure allowing to split read
requests among the cards increasing the possible number of in-flight requests
proportionally with the number of the cards. Examples of an apparatus that
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can be used as memory expansion cards may be NVMe cards.

FIG. 1 shows the data flow from the input source, first to host system to load
the reads, and then to accelerators for quality checking and base conversion.
Afterwards, data is reduced again by the accelerators, which also generate
the hash before data is loaded back into memory.

Results

As explained above, to assess the performance of the method of the
invention, inventors measured the fraction of somatic variants detected
(sensitivity).

In silico validation with chromosome 20

This sample was created exclusively in order to validate the method against
an in silico sample with an insertion of a virus, also the sample includes
different somatic mutations.

Inventors first observed that the calling of somatic SNVs and SVs is optimal
with a sensitivity of 96.4% for SNVs, 96.2% for Small SVs, 100% for Large
SVs and 100% for virus Insertion. It is remarkable the capacity of detecting
large structural variants with such a high sensitivity (Table 3)

Mutations | After % After %
filtering |detection clustering |detection
Point mutations |168 167 99.4% 162 96.4%
Small SVs 26 26 100.0% 25 96.2%
(indels)
Large SVs 10 10 100.0% 10 100.0%
Virus 1 1 100.0% 1 100.0%

Table 3. Assessment variant calling for chromosome 20

FIG. 2 provides an overview of the filtering capabilities of the invention, along
with its sensitivity, at different stages of the execution. Step D) (filter) reduces
the number of input reads to less than 10% of the input, while still keeping
99% of mutations identifiable, and high number of reads supporting those
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mutations (72%). Step E) (clustering) further decreases the size of relevant
reads, while still keeping very high number of identifiable mutations.

Besides that, it is also capable of detecting the insertion of the Ki
polyomavirus. The computer-implemented method of the invention allows
finding viral integration events with better accuracy and recall than the
available alternative methods which are based on pre-alignment steps of the
reads onto a reference genome. (FIG. 3).

In the case of normal reads, inventors observed the genome sequence
without any kind of structural variation. In contrast, on tumor reads (with
heterozygosity A1-A2) inventors were able to detect the Kl polyomavirus
insertion on chromosome 20 at position 56398701.

In silico validation of the chromosome 20 insertion with the method disclosed
in Moncunill et. al (ibid):

This method, with the default parameters, performed poorly in this test.

Its results on large structural variants does not show any evidence of the
detection of Kl polyomavirus insertion on chromosome 20 at position
56398701, it was just able to describe variants from the own genome.
Therefore, the method of the present invention was shown to be superior to
the reference-free suffix-tree- based method described in Moncunill et al.

Taking into account all the results obtained at this point, the method of the
invention has shown the capacity to detect all kinds of SNVs and SVs with
great sensitivity without restrictions with the size. Also it is capable to detect
the insertions of a virus in the genome with a base-pair resolution in
comparison with the available alternative methods, which are based on suffix
trees.
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CLAIMS

1. A computer-implemented method for identifying of nucleic acid variants
between two genomic states comprising the steps of:

A) Inputting 2 sets of nucleic acid reads, which are sequences retrieved from
a nucleotide sequencing method, wherein the first set of reads corresponds to
cells representing a first test state, and the second set of reads corresponds
to cells representing a second control state;

B) Filtering the reads, wherein the filtering comprises:

B1) Keeping only the reads with at least a percentage X1 of their
bases with a Phred quality score higher than 20, being X1 equal to or above
90%;

B2) Splitting the reads with an undefined nucleotide, giving one
sequence before, and one sequence after the undefined nucleotide, the latter
being discarded; and

B3) Discarding the sequence reads with less than X2 bases, wherein
X2 is from 25 to 50;

C) Generating a hashtable structure comprising:

C1) Generating a number of N-X2+1 new reads for each read of
sequence length N, wherein the new N-X2+1 reads correspond to all k-mers
with length X2 nucleotides; and

C2) Building a hashtable structure, which comprises all the k-mers
generated in step C1) and further comprises the number of times each k-mer
is observed in the two sets of reads corresponding to first and second states.

D) Detecting candidate variants in the sequence between first state and
second state, wherein a k-mer of the hashtable structure is taken as a
candidate breakpoint, which represents a variant between the first and
second states, if it fulfills all the following requirements:

D1) At least one inflection based on a k-mer’s stem must have at least
X3 reads with the same variation between first and second states, being X3 at
least 2;

D2) The percentage of first state reads in second state reads is not
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over a threshold X4, to account for possible contamination of control state
reads with test state reads, wherein X4 is at least 5%.

E) Clustering and filtering test and control reads derived from all candidate
breakpoints accepted in step D to build blocks, by carrying out the steps:

E1) Retrieving reads which contain the stem of at least one k-mer that
represents the candidate breakpoint selected in step D);

E2) The reads of step E1) with at least X5 k-mer variants within a
window of X6 nucleotides are taken as leading reads, wherein X5 is at least 7
and X6 is at least 10;

E3) Reads whose k-mers share at least one stem with a leading read
are merged to give a block; and

E4) If the nucleic acid whose variant is being identified is a double
stranded DNA, then both forward and reverse variants are taken into account
when building the block.

F) Aligning blocks taking their leading reads as a reference:

F1) For each read in the block, take the leading read’s stem and find the
longest inflection or partial inflection between the read and the leading read.
F2) Successively position each read so that its matching inflection or partial
inflection is aligned against the leading read.

2. The computer-implemented method according to claim 1, further
comprising the step following F2:

F3) Obtaining first state scores, second state scores, and global similarity
scores of each position in the block by measuring a ratio of most frequent
nucleotide in that position relative to the total number of nucleotides.

3. The computer-implemented method according to any one of claims 1-2,
further comprising the step of:

G) Cataloguing and annotating blocks according to the following:

G1) If blocks between the first and second states only differ in one
substituted nucleotide, the variant is catalogued as containing a single
nucleotide variant and the single nucleotide variant is annotated;

G2) If blocks between the first and second states differ in more than
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one nucleotide but the whole difference in sequence is contained within the
block, the variant is catalogued as a small structural variant, and the small
structural variant is annotated; and

G3) If blocks between the first and second states differ in more than
one nucleotide and the whole difference in sequence is not contained within
the block, the variant is catalogued as a large structural variant, and the
boundaries of all large structural variants are extended by retrieving blocks
overlapping at least X2 nucleotides in an iterative process which ends when
the extended sequence reaches 200 nucleotides or when an ambiguous path
is found.

4. The computer-implemented method according to any one of the claims 1-3,
further comprising the step of:
H) Filtering of the blocks, according to the following:

H1) The percentage of second state reads in first state reads is not
over a threshold X7, to account for possible contamination of test state reads
with control state reads, wherein X7 is at least 20%;

5. The computer-implemented method according to any of the claims 1 to 4
further comprising optionally mapping second state blocks, and subsequently
mapping first state blocks, on a reference genome.

6. The computer-implemented method according to any one of claims 1 to 5,
wherein X2 is from 25 to 40.

7. The computer-implemented method according to any one of claims 1 to 6,
wherein X3 is equal to or above 3.

8. The computer-implemented method according to any one of claims 1 to 7,
wherein threshold X4 is 5%.

9. The computer-implemented method according to any one of claims 1 to 8,
wherein the threshold X5 is from 10 to 15 and the threshold X6 is from 12 to
20.

10. The computer-implemented method according to any one of claims 1 to 9,
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wherein the first set of reads corresponds to pathological cells of a patient
and the second set of reads corresponds to non-pathological cells of the
same patient.

11. A computer program product comprising program instructions for causing
a computer system to perform the method for identifying nucleic acid variants
between two genomic states as defined in any of claims 1 to 10.

12. The computer program product according to claim 11 embodied on a
storage medium.

13. The computer program product according to claim 11 carried on a carrier
signal.

14. A system for identifying nucleic acid variants between two genomic states
comprising the steps of:

A) Computer/Electronic means for inputting 2 sets of nucleic acid reads,
which are sequences retrieved from a nucleotide sequencing method,
wherein the first set of reads corresponds to cells representing a first test
state, and the second set of reads corresponds to cells representing a second
control state;

B) Computer/Electronic means for filtering the reads, wherein the filtering
comprises:

B1) Keeping only the reads with at least a percentage X1 of their
bases with a Phred quality score higher than 20, being X1 equal to or above
90%;

B2) Splitting the reads with an undefined nucleotide, giving one
sequence before, and one sequence after the undefined nucleotide, the latter
being discarded; and

B3) Discarding the sequence reads with less than X2 bases, wherein
X2 is from 25 to 50;

C) Computer/Electronic means for generating a hashtable structure
comprising:
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C1) Generating a number of N-X2+1 new reads for each read of
sequence length N, wherein the new N-X2+1 reads correspond to all k-mers
with length X2 nucleotides; and

C2) Building a hashtable structure, which comprises all the k-mers
generated in step C1) and further comprises the number of times each k-mer
is observed in the two sets of reads corresponding to first and second states.

D) Computer/Electronic means for detecting variants in the sequence
between first state and second state, wherein a k-mer of the hashtable
structure is taken as a candidate breakpoint, which represents a variant
between the first and second states, if it fulfills all the following requirements:

D1) At least one inflection based on a k-mer’s stem must have at least
X3 reads with the same variation between first and second states, being X3 at
least 2;

D2) The percentage of first state reads in second state reads is not
over a threshold X4, to account for possible contamination of control state
reads with test state reads, wherein X4 is at least 5%

E) Computer/Electronic means for clustering and filtering test and control
reads derived from all candidate breakpoints accepted in step D to build
blocks, by carrying out the steps:

E1) Retrieving reads which contain the stem of at least one k-mer that
represents the candidate breakpoint selected in step D);

E2) The reads of step E1) with at least X5 k-mer variants within a
window of X6 nucleotides are taken as leading reads, wherein X5 is at least 7
and X6 is at least 10;

E3) Reads whose k-mers share at least one stem with a leading read
are merged to give a block; and

E4) If the nucleic acid whose variant is being identified is a double
stranded DNA, then both forward and reverse variants are taken into account
when building the block.

F) Computer/Electronic means for aligning blocks taking their leading reads
as a reference:

F1) For each read in the block, take the leading read’s stem and find the
longest inflection or partial inflection between the read and the leading read.
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F2) Successively position each read so that its matching inflection or partial
inflection is aligned against the leading read.

15. A computer system comprising a processor and a memory, wherein the
memory stores computer executable instructions that, when executed by the
processor, cause the system to perform the method for identifying nucleic
acid variants between two genomic states as defined by any of claims 1 to 10.
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ABSTRACT

A computer-implemented and reference-free method for identifying variants
in nucleic acid sequences

There is provided a computer-implemented method for identifying of nucleic
acid variants between two cells, such as a normal cell vs. a pathological cell
of a patient, or a cell at two different stages of development. The method is
alignment-free, as it does not depend on the use of a reference genome, and
is based on the generation and comparison of polymorphic k-mers derived
from the nucleotide sequence reads of both biological states. The invention
accurately identifies all sorts of genetic variants, ranging from single
nucleotide substitutions (SNVs) to large structural variants with great
sensitivity and specificity. As a major novelty, it also identifies non-human
insertions, such as those derived from retroviruses. Altogether, this invention
allows the integration with specific hardware architectures in order to speed
up the executions to an unprecedented level.
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