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ABSTRACT
The paper proposes the Self-organizing Migrating Algorithm with
CLustering-aided migration and adaptive Perturbation vector con-
trol (SOMA-CLP). The SOMA-CLP is the next iteration of the SOMA-
CL algorithm, further enhanced by the linear adaptation of the prt
control parameter used to generate a perturbation vector. The latest
CEC 2021 benchmark set on a single objective bound-constrained
optimization was used for the performance measurement of the
improved variant. The proposed algorithm SOMA-CLP results were
compared and tested for statistical significance against four other
SOMA variants.
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1 INTRODUCTION
The family of metaheuristic algorithms for global optimization con-
tains a wide variety of algorithms. One of these algorithms is the
Self-OrganizingMigrating Algorithm (SOMA), originally developed
in 1999 [16] and later popularized in 2001, 2004 and mainly in 2019,
when several new powerful versions [3, 4] have been introduced for
the solving of 100-digit challenge [10]. The SOMA involves several
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mechanisms known in other evolutionary computation techniques.
A mutation process is implemented in SOMA by means of a dis-
crete perturbation vector, moreover the inherent self-adaptation of
individuals’ movement over the search space has been present in
the algorithm since the original version. SOMA has already proved
its robustness in both domains of real-world single-objective op-
timization tasks - continuous [9], and discrete [1, 2]. Several SOMA
modifications were successful in handling the multi-objective [7]
or constrained optimization problems [11].

The paper presents the new variant of SOMA, Self-organizing
Migrating Algorithm with CLustering-aided migration and adapt-
ive Perturbation vector control (SOMA-CLP). The SOMA-CLP al-
gorithm is a direct descendant of SOMA-CL [6] and both algorithms
can be classified as modern variants of SOMA. SOMA-CLP uses
a linear adaptation of the prt control parameter, promoting the
global transition from the tendency of exploration to exploitation.
The workflow of the SOMA-CLP can be divided into three phases:
search space mapping, clustering of the mapped space, and the
exploitation by performing a more detailed screening of areas of
interest discovered during the first phase. All three phases thus
define one iteration of the algorithm.

A large variety of metaheuristic algorithms are available for
optimization tasks, thus making the decision process challenging.
The no free lunch theorem [13] states that there can be no universal
algorithm capable of achieving the best possible results for the
whole variety of tasks. Therefore, for most optimization problems,
the selectedmetaheuristic algorithmwill probably have a significant
impact on the optimized solution.

The well-known benchmark sets may be used to compare al-
gorithms and rank them by the average performance. Moreover,
the benchmarks usually provide various test functions with various
characteristics, which may be used to spot a superior performance
of one algorithm on a certain type of test functions. One of the
well-known benchmarks is devoted to the single objective bound-
constrained numerical optimization. Over the years, the CEC bench-
mark introduced various optimization problems (single objective,
niching, constrained, and expensive test cases). The CEC 2021 [12]
competition presents ten test functions for numerical optimization
divided into four different types: unimodal, multimodal, hybrid, and
composition functions. The CEC 2021 benchmark set is selected
to compare the average performance of the proposed SOMA-CLP
against its predecessor SOMA-CL and clasical variants of SOMA.
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The paper is structured as follows. The next section contains
the descriptions of all five tested and compared metaheuristic al-
gorithms; Section 3 describes the experiment settings along with
algorithms parameters settings; Section 4 provides the benchmark
results, and Section 5 contains concluding remarks.

2 ALGORITHM DESCRIPTIONS
This section covers the description of the algorithms for global
optimization used for comparison on the CEC 2021 benchmark set
[12]. Firstly, the basic, original SOMA is described together with its
commonly used strategies. After the SOMA follows the descriptions
of its two modern variants: SOMA-CL and SOMA-CLP. The Self-
Organizing Migrating Algorithm with CLustering-aided migration
and adaptive Perturbation vector control (SOMA-CLP), is the newly
proposed variant.

2.1 SOMA
The Self-Organizing Migrating Algorithm (SOMA) was initially
developed in 1999 by I. Zelinka [15, 16]. SOMA takes inspiration
in self-organization and cooperative behavior while maintaining
some of the fundamentals of nature-inspired methods. The discrete
perturbation mimics the mutation process while the self-adaptation
of movement over the search space allows easy scalability.

As mentioned, SOMA is based on the cooperation of individuals.
Hence, the candidate solution is represented by an individual 𝒙 . The
cooperation amongst individual is, by author, defined as a migration
(1) of one particular individual from population towards another
member of the population.

𝑥𝑘+1𝑖, 𝑗 = 𝑥𝑘𝑖,𝑗 +
(
𝑥𝑘𝐿,𝑗 − 𝑥𝑘𝑖,𝑗

)
· 𝑡 · 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 𝑗 (1)

The 𝑥𝑘+1
𝑖, 𝑗

is a new position of an 𝑖-th individual in 𝑗-dimension for a
next iteration step𝑘+1. Accordingly, the𝑥𝑘

𝑖,𝑗
is a position of the same

individual in 𝑘 iteration. The 𝑥𝑘
𝐿,𝑗

the position of a leader, which
is selected based on the selected SOMA strategy (SOMA strategies
are described below). Individual discrete steps between an 𝑖-th
individual and selected leader 𝑥𝑘

𝐿,𝑗
are represented by 𝑡 parameter.

The best-found solution on this path is then transferred into a new
iteration. The 𝑡 parameter is a collection of values starting from 0
to 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ with increment (or step size) of 𝑆𝑡𝑒𝑝 .

The 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 𝑗 mimics the mutation process and is generated
as (2) for all the individual 𝑡 steps. This vector determines in which
dimensions 𝑗 the 𝑖-th individual will migrate towards a leader
and which dimensions stay unchanged. From the equation (2) it is
clear that the parameter 𝑝𝑟𝑡 has a direct impact on the resulting
𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 𝑗 and on the strength of a mutation during the migration.
This 𝑝𝑟𝑡 parameter can be considered as a threshold value and is
chosen in the range from 0 to 1.

𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 𝑗 =

{
1 , if (𝑟𝑎𝑛𝑑 𝑗 < 𝑝𝑟𝑡)
0 , otherwise (2)

Original SOMA describes several different strategies for the leader
selection. Three most common strategies are described bellow.

2.1.1 Strategy All-To-One. This easy to implement strategy will
select for each migration cycle (one iteration of the algorithm) one
leader. The leader is selected based on its objective function value.

All the remaining individuals then migrate towards the leader. The
implementation of SOMA using this strategy is labeled as SOMA-
ATO.

2.1.2 Strategy All-To-Random. This strategy contains leader indi-
vidual as in All-To-One strategy. However, the leader is selected
randomly for each migrant at the beginning of the migration pro-
cess. The strategy is labeled as SOMA-ATR.

2.1.3 Strategy All-To-All. The selection process of a leader is dif-
ferent for this strategy. One individual migrates towards all other
individuals. After the end of the migration of a selected individual,
this individual returns to its original position, and the process is
repeated for the next individual. The migration cycle ends after all
the individuals in population migrated towards each other, and all
individuals then update their positions. This strategy is labeled in
this paper as SOMA-ATA.

2.2 SOMA-CL
The Self-organizing Migrating Algorithm with Clustering-aided
Migration (SOMA-CL) is one of the recent variants of SOMA [6]
proposed by the authors of this paper. The SOMA-CL utilizes the
natural abilities of exploration and exploitation phases of its pre-
decessor. These phases are influenced by migration strategies. The
main idea behind the SOMA-CL is that in each iteration, the al-
gorithm migrates the population by two separate strategies. The
first strategy (All-To-Random) is focused on the exploration and
search space mapping, whereas the second strategy boosts the ex-
ploitation by carrying out a more detailed screening of areas of
interest discovered by the first strategy. These areas of interest are
represented by clusters that are created from mapping positions.

The following SOMA-CLP is a direct descendant of the SOMA-CL
and shares a majority of the steps with the SOMA-CL. Due to this
reason, only a following newly proposed SOMA-CLP is described in
detail, and the differences between them are stated in the following
subsection.

2.3 SOMA-CLP
The novel metaheuristic algorithm, Self-Organizing Migrating Al-
gorithm with CLustering-aided migration and adaptive Perturb-
ation vector control (SOMA-CLP), is the updated version of its
predecessor SOMA-CL. SOMA-CLP uses a linear adaptation of the
prt control parameter to generate a perturbation vector, promoting
the global transition from the tendency of exploration to exploit-
ation as the strength of perturbation of individuals’ movement
weakens. The workflow of the SOMA-CLP can be divided into three
phases. The first exploration phase is focused on space mapping,
the second phase is a clustering of the mapped space by k-means
method [5], and the third phase is focused on exploitation by carry-
ing out a more detailed screening of areas of interest discovered by
the first phase. The end of the last phase also ends one iteration of
the algorithm, and the whole process starts again with phase one.
Detailed descriptions of the phases are in the following subsections
in order of occurrence.

2.3.1 Exploration Phase. This phase uses the SOMA with All-To-
Random strategy as described in subsection 2.1.2. The leader is se-
lected randomly from the population set of NP individuals for each
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active individual x. The migration strategy equation is the same
as for the SOMA in (1). The main difference between SOMA-CL
and the proposed SOMA-CLP is the usage of the linear adaptation
of the 𝑝𝑟𝑡 parameter. Originally, the 𝑝𝑟𝑡 is one of the user-defined
parameters of SOMA. The proposed SOMA variant employs the
similar adaptivity of the 𝑝𝑟𝑡 parameter as in other modern variants
of SOMA [3, 4]. This adaptation affects the covered area by the
exploration phase over the algorithm execution. The 𝑝𝑟𝑡 represents
the strength of a mutation during the migration and starts with the
low value (high mutation change), and it is steadily increasing to
an upper limit (low mutation change). Therefore, at the beginning
of the algorithm, the exploration phase covers wider hyperspace of
solutions between active individual and leader, and this mapping
later becomes more focused on the "direct" path between them. The
equation of the adaptive 𝑝𝑟𝑡 is defined as (3).

𝑝𝑟𝑡 = 0.08 + 0.9 · (𝐹𝐸𝑆/𝑚𝑎𝑥𝐹𝐸𝑆) (3)

Where the 𝐹𝐸𝑆 is the number of objective function evaluations in
a given time, and the𝑚𝑎𝑥𝐹𝐸𝑆 is the maximal limit of such evalu-
ations.

An essential part of this phase is that each evaluated individual
is stored in a memory M. This memory M represents all visited
solutions and is used in the next phase of the algorithm.

2.3.2 Clustering of the Mapped Space. The evaluated solutions
stored in the memoryM from the previous exploration phase are
investigated in this second phase. From the memoryM are selected
candidate leaders for the last exploitation phase. The basic idea is
to select only a few promising solutions from the whole covered
hyperspace. Therefore, a clusteringmethod to divide all solutions by
their parameter values into several groups (clusters) is used. Namely,
the k-means clustering method [8]. The number of outcome clusters
should be 10% of the NP, or it may be set by the user asNPL. K-means
algorithm is an iterative algorithm that can be briefly described in
three steps. In the first step, k-number of centroids are randomly
placed in search space. For the second step, the objects (in this
case, positions) are assigned to the nearest centroids (one object
can have assigned only one centroid). The third step recalculates
the positions of centroids to ensure that the new positions become
the new mean. The second and third parts are then repeated until
convergence is reached.

From each of the created clusters are selected only solutions
with the best objective function value within their cluster – cluster
leaders. The cluster leaders are then sorted by their objective func-
tion values in ascending order from the best-found solution to the
worst.

2.3.3 Exploitation Phase. This phase uses the SOMA with the All-
To-One strategy with two alterations. The leader 𝑥𝐿,𝑗 in equation
(1) is this time selected from the set of cluster leaders using the
Rank Selection technique [14] (the solution with the best object-
ive function value has the highest probability to be chosen as a
leader, the second-best has the second-highest probability of being
selected, and so on. The worst solution has the lowest chance to
be chosen as a leader). The leader is selected for each individual.
The individual 𝑥𝑖 is migrating by discrete steps, and the best-found
solution on t-th position is propagated into a new iteration of the
algorithm. The t parameter is generated in a range starting from

0 to pathLengthL with step size stepL. The leader selection with
parameters values of pathLengthL and stepL should ensure the ex-
ploitation of an interesting solutions discovered in the first phase.
The 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 𝑗 is generated in the same way as in equation (2),
and the 𝑝𝑟𝑡 is again computed by (3).

The described three phases of the SOMA-CLP are then repeated
until the stopping condition is met, typically the𝑚𝑎𝑥𝐹𝐸𝑆 is reached.

3 EXPERIMENT SETTINGS
The CEC 2021 Special Session and Competition on Single Objective
Bound Constrained Optimization [12] is accompanied by a tech-
nical report which describes the benchmark itself together with
instructions on how to approach the problems presented in it. It also
provides test function definitions and describes the evaluation cri-
teria. The values of the chosen parameters for tested and compared
algorithms are shown in Table. 1.

The benchmark suite consists of 10 test functions (one unimodal
function, three basic multimodal functions, three hybrid functions,
and three composition functions). Each test function can be further
parametrized by a parameterization vector. The setting of para-
metrization may enable bias, shift, rotation, or any combination to
each test function. The parametrization vector introduces 8 pos-
sible configurations to a test function. Therefore, the total number
of test functions for one dimension is 80. Each test function has
a defined search range in span from -100 to 100 and a different
minimum value. The tested dimension sizes are 10 and 20 for all
test functions. Each test function, for a particular dimension size,
should be optimized in 30 independent runs, which then represent
the final results. Finally, both of the tested dimension sizes has a
fixed budget of maximal function evaluations -𝑚𝑎𝑥𝐹𝐸𝑆 .

Table 1: Selected parameters for algorithms

SOMA–ATA NP = 30, prt = 0.3, step = 0.11, pathLength = 3.0
SOMA–ATO NP = 30, prt = 0.3, step = 0.11, pathLength = 3.0
SOMA–ATR NP = 30, prt = 0.3, step = 0.11, pathLength = 3.0
SOMA-CL NP = 100, NPL = 10, step = 0.33, stepL = 0.11

prt = 0.5, prtL = 0.3
SOMA-CLP NP = 100, NPL = 10, step = 0.33, stepL = 0.11

4 RESULTS
In this section, the results are compared, and the overall perform-
ance of all tested algorithms is evaluated and compared using Fried-
man ranks with critical distance assessed according to the Nemenyi
Critical Distance post-hoc test for multiple comparisons. The visual
outputs of comparisons on both tested dimension sizes with rank-
ings are given in figures Figure 1 and Figure 2. The computed
p-values of both Friedman rank tests are lower than 0.05 and both
tests are therefore relevant. The dashed line represents the critical
distance from the best-performed algorithm (the lowest mean rank).
The lower the rank is, the better is the overall performance of that
algorithm on a particular dimension size.

Based on the Friedman rank test for dimension size 20 presented
in Table 2, it is clear that the average performance of the proposed
SOMA-CLP is statistically significantly better than the remaining
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tested algorithms. For the dimension size 10 (Table 1), the ranks are
similar but the difference between SOMA-CL and SOMA-CLP are
not significant. However, the new proposed SOMA-CLP maintains
the best average rank in both tested dimensions.

The second performed statistical test was the Wilcoxon rank-
sum test 2. The test counts how often one algorithm significantly
outperformed all the others on test functions. The last column
(None) counts the problems with a similar performance of the
tested algorithms. The results of the second statistical test confirm
the results of the Friedman ranks for both tested dimensions. The
SOMA-CPL significantly outperformed the other algorithms on 22
and 38 tested functions on the 10D and 20D with the Wilcoxon
rank-sum test.

The detailed results of SOMA-CLP are shown in tables Table 3
to Table 18. Due to the strict limitation of the number of pages,
complete results are available at the A.I.Lab website 1. The source
code of the SOMA-CLP is available at the A.I.Lab Github 2.

Nemenyi Critical Distance

2.238

4.15

4.5

2.512

1.6

SOMA-CL SOMA-ATA SOMA-ATO SOMA-ATR SOMA-CLP
0

1

2

3

4

Avg. Rank

Figure 1: Friedman rank tests for 10D.

5 CONCLUSION
The paper described the newly proposed metaheuristic algorithm
SOMA-CLP. The algorithm results were comparedwith other SOMA-
based metaheuristics on the bound-constrained single objective nu-
merical optimization benchmark CEC 2021. The proposed strategy
with an embedded clustering technique and linear adaptation of
the 𝑝𝑟𝑡 parameter represents the updated version of its direct pre-
decessor SOMA-CL.

The proposed algorithm outperformed other tested algorithms
on dimension size 20 and the basic SOMA variants on dimension
size 10. The results are further supported by the Wilcoxon rank-
sum test. Due to paper limitations and the number of test functions
for the CEC 2021 benchmark testbed, the full results are presented
at the link in the result section.

The future research will continue on a detailed investigation of
the possibilities of promising proposals for the SOMA algorithm
1https://ailab.fai.utb.cz/resources/
2https://github.com/TBU-AILab/SOMA_CLP

Nemenyi Critical Distance

2.356

3.388

4.825

3.069

1.362

SOMA-CL SOMA-ATA SOMA-ATO SOMA-ATR SOMA-CLP
0

1

2

3

4

5

Avg. Rank

Figure 2: Friedman rank tests for 20D.

with an emphasis on achieving better robustness and performance
improvements.
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2021 Special Session and Competition on Single Objective Bound Constrained
Numerical Optimization. Technical Report, Nanyang Technological University,

Table 6: Results of SOMA-CLP for 10D (Translation)

Func. Best Worst Median Mean Std
1 0.00E+00 3.07E–07 2.40E–08 5.18E–08 7.52E–08
2 2.70E–01 2.30E+01 6.92E+00 7.50E+00 6.43E+00
3 4.68E+00 1.82E+01 1.40E+01 1.38E+01 2.28E+00
4 2.62E–01 1.06E+00 6.62E–01 6.45E–01 1.79E–01
5 1.62E–02 1.54E+01 1.60E+00 2.58E+00 3.20E+00
6 4.97E–02 9.53E–01 4.35E–01 4.52E–01 2.18E–01
7 6.91E–03 1.11E+00 2.51E–01 3.10E–01 2.76E–01
8 2.18E–08 5.47E+01 1.01E–01 1.60E+01 2.04E+01
9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
10 5.15E+01 7.25E+01 5.20E+01 5.27E+01 3.76E+00

Table 7: Results of SOMA-CLP for 10D (Shift and Rotation)

Func. Best Worst Median Mean Std
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 5.34E–05 1.91E–01 1.25E–01 1.06E–01 5.72E–02
3 3.12E+00 1.09E+01 1.09E+01 1.04E+01 1.81E+00
4 1.46E–06 5.04E–01 3.57E–01 3.48E–01 1.04E–01
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 3.81E–03 5.03E–02 2.81E–02 2.94E–02 1.00E–02
7 1.32E–05 1.61E–02 9.66E–04 2.91E–03 4.23E–03
8 6.93E–05 3.07E–02 1.34E–03 3.42E–03 5.80E–03
9 3.08E+00 1.00E+02 1.00E+02 8.68E+01 3.06E+01
10 2.02E+02 4.00E+02 4.00E+02 3.87E+02 4.91E+01

Table 8: Results of SOMA-CLP for 10D (Shift and Transla-
tion)

Func. Best Worst Median Mean Std
1 0.00E+00 6.91E–07 2.24E–08 7.06E–08 1.38E–07
2 3.02E–01 2.21E+01 5.23E+00 6.13E+00 5.27E+00
3 8.67E+00 1.83E+01 1.36E+01 1.37E+01 1.98E+00
4 2.58E–01 1.12E+00 6.61E–01 6.69E–01 1.81E–01
5 2.12E–01 9.33E+00 2.03E+00 2.77E+00 2.33E+00
6 7.12E–02 9.80E–01 4.54E–01 4.62E–01 2.21E–01
7 2.98E–03 8.11E–01 3.21E–01 3.07E–01 2.08E–01
8 3.94E–05 4.88E+01 3.44E+01 2.47E+01 1.82E+01
9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
10 5.15E+01 5.32E+01 5.21E+01 5.21E+01 3.74E–01

Singapore.
[13] David H Wolpert and William G Macready. 1997. No free lunch theorems for

optimization. IEEE transactions on evolutionary computation 1, 1 (1997), 67–82.
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Table 12: Results of SOMA-CLP for 20D (Shift Operator)

Func. Best Worst Median Mean Std
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 6.25E–02 2.50E–01 1.56E–01 1.67E–01 4.64E–02
3 0.00E+00 6.96E+00 1.99E+00 2.09E+00 1.74E+00
4 5.70E–01 1.17E+00 8.95E–01 8.78E–01 1.47E–01
5 0.00E+00 2.08E–01 0.00E+00 4.51E–02 5.92E–02
6 6.75E–02 6.42E–01 4.12E–01 3.89E–01 1.52E–01
7 2.77E–02 3.34E–01 6.58E–02 8.87E–02 6.97E–02
8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
10 4.88E+01 4.90E+01 4.88E+01 4.88E+01 6.43E–02

Table 13: Results of SOMA-CLP for 20D (Rotation)

Func. Best Worst Median Mean Std
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 6.25E–02 2.66E–01 1.58E–01 1.68E–01 5.73E–02
3 2.02E+01 2.02E+01 2.02E+01 2.02E+01 0.00E+00
4 6.49E–01 1.33E+00 9.69E–01 9.79E–01 1.87E–01
5 0.00E+00 2.08E–01 0.00E+00 3.82E–02 5.79E–02
6 5.14E–02 5.53E–01 2.70E–01 2.75E–01 1.08E–01
7 2.67E–02 2.15E–01 8.82E–02 9.61E–02 5.21E–02
8 1.09E–04 1.00E+02 1.00E+02 7.81E+01 3.68E+01
9 1.00E+02 4.00E+02 1.00E+02 1.63E+02 1.10E+02
10 4.00E+02 4.00E+02 4.00E+02 4.00E+02 0.00E+00

Table 14: Results of SOMA-CLP for 20D (Translation)

Func. Best Worst Median Mean Std
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 1.56E–01 4.49E+00 9.98E–01 1.44E+00 1.32E+00
3 5.42E+00 2.40E+01 1.41E+01 1.48E+01 5.50E+00
4 6.72E–01 1.55E+00 1.12E+00 1.12E+00 2.27E–01
5 1.97E+01 8.45E+02 1.53E+02 2.36E+02 2.26E+02
6 2.99E–01 1.06E+00 6.63E–01 6.47E–01 1.71E–01
7 7.03E–01 5.23E+01 4.21E+00 8.71E+00 1.05E+01
8 5.97E+01 3.04E+02 1.25E+02 1.42E+02 6.11E+01
9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
10 6.31E+01 6.62E+01 6.46E+01 6.45E+01 7.58E–01

Table 15: Results of SOMA-CLP for 20D (Shift and Rotation)

Func. Best Worst Median Mean Std
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 3.13E–02 2.81E–01 1.56E–01 1.61E–01 5.59E–02
3 1.51E+01 2.02E+01 2.02E+01 1.99E+01 9.69E–01
4 5.66E–01 1.22E+00 8.59E–01 8.78E–01 1.80E–01
5 0.00E+00 2.08E–01 0.00E+00 3.82E–02 5.79E–02
6 1.02E–01 5.68E–01 3.05E–01 3.01E–01 1.02E–01
7 2.40E–02 3.36E–01 7.82E–02 1.04E–01 7.55E–02
8 1.38E–03 1.00E+02 1.00E+02 7.67E+01 4.04E+01
9 1.00E+02 4.00E+02 1.00E+02 1.60E+02 1.07E+02
10 4.00E+02 4.00E+02 4.00E+02 4.00E+02 0.00E+00

Table 16: Results of SOMA-CLP for 20D (Shift and Transla-
tion)

Func. Best Worst Median Mean Std
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 1.87E–01 6.04E+00 1.94E+00 1.88E+00 1.51E+00
3 5.97E+00 2.35E+01 1.21E+01 1.33E+01 5.09E+00
4 6.69E–01 1.78E+00 1.13E+00 1.18E+00 2.23E–01
5 3.86E+00 1.33E+03 1.87E+02 2.04E+02 2.54E+02
6 2.73E–01 9.88E–01 6.30E–01 6.38E–01 1.79E–01
7 3.91E–01 6.12E+01 5.95E+00 1.11E+01 1.45E+01
8 5.24E+01 3.03E+02 1.33E+02 1.44E+02 5.45E+01
9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
10 6.31E+01 6.79E+01 6.41E+01 6.44E+01 1.02E+00

Table 17: Results of SOMA-CLP for 20D (Rotation and Trans-
lation)

Func. Best Worst Median Mean Std
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 1.43E–01 9.63E+00 2.85E+00 3.74E+00 2.73E+00
3 2.04E+01 2.23E+01 2.11E+01 2.12E+01 6.14E–01
4 7.94E–01 1.85E+00 1.22E+00 1.25E+00 2.60E–01
5 1.37E+02 4.02E+03 9.81E+02 1.20E+03 9.49E+02
6 2.18E–01 1.63E+00 1.02E+00 9.69E–01 4.09E–01
7 9.26E+00 2.52E+02 2.94E+01 3.75E+01 4.44E+01
8 4.00E+01 1.02E+02 1.00E+02 9.03E+01 1.84E+01
9 1.00E+02 4.34E+02 1.00E+02 1.78E+02 1.38E+02
10 4.01E+02 4.14E+02 4.14E+02 4.13E+02 2.39E+00

Table 18: Results of SOMA-CLP for 20D (Shift, Rotation and
Translation)

Func. Best Worst Median Mean Std
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 2.19E–01 1.34E+01 3.66E+00 4.50E+00 3.46E+00
3 2.04E+01 2.24E+01 2.12E+01 2.13E+01 6.40E–01
4 5.07E–01 1.73E+00 1.16E+00 1.17E+00 2.78E–01
5 1.67E+02 8.88E+03 7.78E+02 1.43E+03 1.74E+03
6 2.06E–01 1.69E+00 7.96E–01 9.00E–01 4.03E–01
7 3.11E+00 1.37E+02 2.77E+01 3.74E+01 2.90E+01
8 3.64E+01 1.01E+02 1.00E+02 9.53E+01 1.35E+01
9 1.00E+02 4.31E+02 1.00E+02 1.43E+02 1.00E+02
10 4.00E+02 4.14E+02 4.14E+02 4.13E+02 2.45E+00
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Table 9: Results of SOMA-CLP for 10D (Rotation and Trans-
lation)

Func. Best Worst Median Mean Std
1 0.00E+00 2.10E–06 3.67E–08 2.11E–07 5.14E–07
2 3.67E+00 3.20E+01 1.37E+01 1.56E+01 9.40E+00
3 1.09E+01 1.87E+01 1.35E+01 1.38E+01 1.59E+00
4 9.92E–03 6.09E–01 1.81E–01 2.14E–01 1.73E–01
5 3.07E–01 2.39E+01 1.20E+01 1.03E+01 6.55E+00
6 3.83E–02 8.18E–01 2.62E–01 3.33E–01 1.91E–01
7 2.48E–03 6.31E–01 2.42E–01 1.96E–01 1.67E–01
8 9.77E–01 1.00E+02 2.81E+01 3.27E+01 2.22E+01
9 3.47E+00 1.00E+02 1.00E+02 9.20E+01 2.49E+01
10 3.98E+02 4.00E+02 4.00E+02 3.99E+02 7.97E–01

Table 10: Results of SOMA-CLP for 10D (Shift, Rotation and
Translation)

Func. Best Worst Median Mean Std
1 0.00E+00 9.50E–07 2.94E–08 7.77E–08 1.79E–07
2 3.14E–01 5.03E+01 1.53E+01 1.52E+01 1.13E+01
3 1.15E+01 1.65E+01 1.35E+01 1.35E+01 1.30E+00
4 9.89E–03 7.51E–01 1.30E–01 2.00E–01 1.93E–01
5 3.66E–01 2.55E+01 1.10E+01 9.43E+00 7.02E+00
6 3.61E–02 7.34E–01 2.78E–01 2.73E–01 1.56E–01
7 2.88E–03 6.38E–01 1.22E–01 1.84E–01 1.69E–01
8 1.45E–01 1.00E+02 2.81E+01 2.81E+01 1.98E+01
9 3.70E+00 1.01E+02 1.00E+02 9.69E+01 1.76E+01
10 1.11E+02 4.00E+02 3.98E+02 3.89E+02 5.25E+01

Table 11: Results of SOMA-CLP for 20D (Basic)

Func. Best Worst Median Mean Std
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 3.12E–02 3.12E–01 1.87E–01 1.73E–01 5.88E–02
3 0.00E+00 5.97E+00 1.99E+00 2.16E+00 1.63E+00
4 5.37E–01 1.04E+00 9.33E–01 8.88E–01 1.45E–01
5 0.00E+00 2.08E–01 0.00E+00 3.47E–02 5.69E–02
6 5.30E–02 6.01E–01 4.28E–01 3.92E–01 1.58E–01
7 1.60E–02 2.61E–01 6.64E–02 8.84E–02 5.52E–02
8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
10 4.88E+01 4.89E+01 4.88E+01 4.88E+01 4.59E–02

[14] G Zames, NM Ajlouni, NM Ajlouni, NM Ajlouni, JH Holland, WD Hills, and DE
Goldberg. 1981. Genetic algorithms in search, optimization and machine learning.
Information Technology Journal 3, 1 (1981), 301–302.

[15] Ivan Zelinka. 2004. SOMA—self-organizing migrating algorithm. In New optim-
ization techniques in engineering. Springer, 167–217.

[16] Ivan Zelinka. 2016. SOMA—self-organizing migrating algorithm. In Self-
Organizing Migrating Algorithm. Springer, 3–49.
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